University of Kentucky

UKnowledge

Theses and Dissertations-Computer Science Computer Science

2022

Learning a Scalable Algorithm for Improving Betweenness in the
Lightning Network

Vincent Davis

University of Kentucky, vincentmdavis@protonmail.com

Author ORCID Identifier:
https://orcid.org/0000-0001-7336-6378

Digital Object Identifier: https://doi.org/10.13023/etd.2022.432

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Davis, Vincent, "Learning a Scalable Algorithm for Improving Betweenness in the Lightning Network"
(2022). Theses and Dissertations--Computer Science. 123.
https://uknowledge.uky.edu/cs_etds/123

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0001-7336-6378
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

| represent that my thesis or dissertation and abstract are my original work. Proper attribution
has been given to all outside sources. | understand that | am solely responsible for obtaining
any needed copyright permissions. | have obtained needed written permission statement(s)
from the owner(s) of each third-party copyrighted matter to be included in my work, allowing
electronic distribution (if such use is not permitted by the fair use doctrine) which will be
submitted to UKnowledge as Additional File.

| hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and
royalty-free license to archive and make accessible my work in whole or in part in all forms of
media, now or hereafter known. | agree that the document mentioned above may be made
available immediately for worldwide access unless an embargo applies.

| retain all other ownership rights to the copyright of my work. | also retain the right to use in
future works (such as articles or books) all or part of my work. | understand that | am free to
register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on
behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of
the program; we verify that this is the final, approved version of the student’s thesis including all
changes required by the advisory committee. The undersigned agree to abide by the statements
above.

Vincent Davis, Student
Dr. Brent Harrison, Major Professor

Dr. Simone Silvestri, Director of Graduate Studies

LEARNING A SCALABLE ALGORITHM FOR IMPROVING BETWEENNESS
IN THE LIGHTNING NETWORK

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Engineering at the

University of Kentucky

By
Vincent M. Davis
Lexington, Kentucky

Director: Dr. Brent Harrison, Professor of Computer Science
Lexington, Kentucky
2022

Copyright© Vincent M. Davis 2022

ABSTRACT OF THESIS

LEARNING A SCALABLE ALGORITHM FOR IMPROVING BETWEENNESS
IN THE LIGHTNING NETWORK

This paper presents a scalable algorithm for solving the Maximum Betweenness Im-
provement Problem as it occurs in the Bitcoin Lightning Network. In this approach,
each node is embedded with a feature vector whereby an Advantage Actor-Critic
model identifies key nodes in the network that a joining node should open channels
with to maximize its own expected routing opportunities. This model is trained us-
ing a custom built environment, lightning-gym, which can randomly generate small
scale-free networks or import snapshots of the Lightning Network. After 100 training
episodes on networks with 128 nodes, this A2C agent can recommend channels in the
Lightning Network that perform competitively with recommendations from central-
ity based heuristics and in less time. This approach provides a fast, low resource,
algorithm for nodes to increase their expected routing opportunities in the Lightning
Network.

KEYWORDS: Bitcoin, Betweenness, Reinforcement Learning, Graph Networks

Vincent M. Davis

November 12, 2022

LEARNING A SCALABLE ALGORITHM FOR IMPROVING BETWEENNESS
IN THE LIGHTNING NETWORK

By
Vincent M. Davis

Dr. Brent Harrison
Director of Thesis

Dr. Simone Silvestri
Director of Graduate Studies

November 12, 2022
Date

TABLE OF CONTENTS

Listof Tables o o o v
[List of Figures| vi
[Chapter 1 Introduction|., 1
[Chapter 2 Background| 4
2.1 The Lightning Networkl 4
2.1.1 Channeld. 4

[2.1.2 Liquidity|. 5

[2.1.3 Routing Nodes|)

2.1.4 Fee Policy| 5

2.1.5 Hash Time Lock Contracts 6

2.1.6 Network Modell 6

[2.1.7 Attachment Strategies|, 6

. etweenness Centrality|o oL

2.2 B C lity]| 7
[2.3 Reinforcement Learningl 8
[Chapter 3 Related Works|. 9
[3.1 Attachment Strategies| 9
[3.1.1 Greedy Algorithm|. 9

[3.1.2 Centrality-based Selection| 10

[3.2 Graph Embedding Techniques| 11
[3.3 Lightning Network Simulators| 13
B3I _CLoTHI o oo e 13

(3.3.2 LNTrafficSimulatorlo 14

(3.3.3 TimeMachinel oo 14
[Chapter 4 Methods| 15
[4.1 Graph Representation| 15
4.2 Markov Decision Process Formulationl 16
4.3 Actor-Critic Modello oo 17
[4.3.1 Policy Networkl 17

[4.3.2 Value Networkl 17

[4.4 Training Architecture. Lo 18
[4.4.1 Network Training| 19
[Chapter 5 Experiments|. 20
b1 Baselined 20
(5.2 lightning-gym| 20
[>.3 Experiment 1 - Setup|. 21

il

(.4 Experiment 2 - Setup|.o 21

[>.5 Experiment 3 - Setup|. 21
[Chapter 6 Results|. 23
6.1 Experiment 1-Results 23
(6.2 Experiment 2 - Results| 0000 25
[6.3 Experiment 3 - Results| 000 27
[Chapter 7 Discussion| 29
[[1 Performance 29
(7.2 Scalability| 30
(7.3 Training| 30
(.4 Future Workl. 31
[Chapter 8 Conclusion|. 33
Bibliography| e 34
IVITal . . o o e 37

v

LIST OF TABLES

[6.1 Comparison of pertormances on the Lightning Network.|. 24
[6.2 Change in Number of Nodes and Edges after pruning| 26
[6.3 Comparison of runtimes for each algorithm.| 27

LIST OF FIGURES

[2.1 A fixed transaction size is applied to all fee policies in order to simplify |
[the network. 7
[4.1 Advantage Actor-Critic Architecturel 17
[4.2 Training architecture. A2C accepts as mput a graph embedding from |
| the GCN and then takes an action in the environment, producing a new [
| state-reward pair| 18
[6.1 Performance comparison on a synthetic network with 128 nodes.|. 23
[6.2 Performance comparison on a synthetic network with 1024 nodes.| 23
[6.3 Comparison of the performances ot A2C agent, Betweenness, Degree, and [
| Random on instances of the Lightning Network. Each algorithm starts |
[with an 1solated node and a budget of 10 channels.| 24
[6.4 Change in number of nodes after removing bridges, smaller connected |
| components, and low degree nodes.| 000 25
[6.5 Change in number of channels after removing private, inactive, and low [
[capacity edges.| 25
[6.6 Comparison of the runtimes of the five algorithms for each month. | . . . 26
[6.7 Performance of agent trained on different random scale free networks with |
| 128 nodes and a budget £ =10.| 27
[6.8 Performance of agent repeatedly trained on single instance of a random [
[scale free network with 128 nodes and a budget £k =10, 28

vi

Chapter 1 Introduction

Bitcoin is a peer-to-peer electronic cash system whose defining characteristics are its
decentralized ledger, proof-of-work consensus model, and fixed supply cap[2]. These
features combined allow anyone to exchange value without the need for a trusted
third party. There is no central server to coordinate Bitcoin transactions. Instead,
transactions are added to the decentralized ledger through a process known as mining.
Transactions are broadcast and picked up by miners who add them to an “ongoing
chain of hash-based proof-of-work” [22]. This process involves solving a computation-
ally difficult problem that can be easily verified by any participant in the network.
The chain that exhibits the greatest amount of computational work is accepted as
the “true” chain of events. To change this history of transactions would require an
attacker to own a majority of the computational power of the network. Miners are
incentivized to process transactions by earning block rewards and mining fees.

Since its inception in 2008, Bitcoin has reached a magnitude in both use and
value that it has become more economical to defer finalization of exchange between
individuals. The mining fees associated with transactions are calculated based on the
volume of data consumed on-chain, not by the amount of funds involved, making small
payments expensive. Furthermore, transaction throughput on the Bitcoin blockchain
is limited by design. Bitcoin has a fixed blocksize and blocktime which limits the
speed of the network to processing on average one 4MB block every ten minutes
or a maximum of seven transactions per second [22]. The design decision to have
a fixed blocktime and blocksize comes with a tradeoff: it keeps Bitcoin’s storage
requirements accessible, but it also limits scalablility of Bitcoin’s blockchain as a P2P
electronic cash system. When considering the time, mining fees, and energy involved,
common use cases such as micropayments, subscriptions, and streaming payments
are expensive to perform on the base layer of the Bitcoin blockchain.

The Lightning Network is a Layer 2 payment protocol built on top of the Bitcoin
blockchain meant to answer it’s scalability problem while still maintaining a trustless
payment system. It is characterized as a peer-to-peer Payment Channel Network
(PCN) consisting of nodes and channels; directed edges with both capacity and lig-
uidity [23]. Nodes could be merchants, consumers, or routing nodes (liquidity service
providers). It is not necessary that each node have a direct channel to every node
with which they exchange value. Payments can be routed through other nodes as
long as there exists a path with sufficient liquidity and capacity. The intermediate
nodes can charge a fee for allowing others to leverage their liquidity. Payments are
source-routed over cheapest paths with regard to these transfer fees. Therefore, rout-
ing nodes are incentivized to maximize the number of cheapest routes on which they
lie. This problem is more formally known as the Maximum Betweenness Improve-
ment Problem (MBI). Opening channels that improve betweenness have been shown
to lead to higher expected routing opportunities and expected revenue[I2][17].

Current approaches to MBI are either intractable or suboptimal. For example,
implementations of the exact MBI algorithm [I7] took between 30 to 40 minutes per

channel on snapshots of the Lightning Network in 2019. The network has grown
considerably since then, from 2,400 nodes in February 2019 [25] to 18,000 nodes in
December 2021. The network topology can update as often as every 10 minutes and so
the suggestions of an exact algorithm will likely be obsolete by the time the algorithm
completes. The Greedy algorithm [6] can approximate the exact solution within a
factor of 1 — % in directed networks, but its complexity grows polynomially with the
size of the network. There is much time that can be saved by not investigating “low
quality” nodes.

On the other hand, centrality based heuristics such as LightningNetworkDeamon’s
autopilot prefer nodes with high betweenness centrality, but do not make use of the
underlying structure of the network. The improvement this algorithm has on be-
tweenness centrality has been shown to be mostly superficial as nodes usually place
themselves in high competition/low revenue areas[17]. Nodes cannot increase their
fees without pricing themselves out of participation. Furthermore, neither exact algo-
rithms nor heuristics make use of previous work. Nodes can simulate opening channels
and then observe the outcome. Based on that outcome, they can decide whether or
not to actually open the channel. This manual process is not as intuitive when mul-
tiple channels will be opened. The individual benefit of each channel is impacted
by the opening of the other channels. To try all possible channel combinations can
quickly become computationally infeasible. Even after all that effort, a brute force
approach would only solve the specific instance of the problem.

Rather, a reinforcement learning agent should be used. Reinforcement learning is
a trial-and-error learning process by which an agent learns how to optimally interact
with a complex environment. Observations from the environment turn into insight as
the agent learns a relationship between its current state, its available actions, and the
states into which those actions transition. By framing the MBI problem on the Light-
ning Network as a reinforcement learning problem, the agent can learn the impact
that each channel opening has as it relates to other potential channels. The insights
gained from this previous work can be exploited to produce better recommendations
later on.

Arguably just as important as the solution method is the problem representation.
If the problem is not represented in a way that can be generalized, then the rein-
forcement learning agent will only be able to solve that specific problem instance.
Graph Convolutional Networks (GCNs) are a powerful method of representation that
is both permutation invariant and inductive[29]. Combining this graph representation
method with reinforcement learning methods allow the agent to apply previous insight
to solving unseen instances of the problem through relational inductive bias[10][14] [4].

This paper presents a scalable reinforcement learning approach to solving the MBI
problem as it appears in the Bitcoin Lightning Network. In this approach, each node
is embedded with network context using a GCN. An Advantage Actor-Critic (A2C)
agent then identifies key nodes via the network embedding that a joining node should
open channels with to maximize its own betweenness centrality. The performance of
this method as well as its ability to generalize to unseen snapshots of the Lightning
Network is evaluated.

The A2C model is trained using a custom built environment, lightning-gym. Un-

like other Lightning Network simulators, lightning-gym uses a common interface de-
fined by OpenAl[7]. This interface is episodic in nature, which allows for the training
of reinforcement learning agents. In general, an agent observes an initial state of
the environment, and takes an action, which returns a new state and reward. This
process is repeated until a terminal state is reached. [lightning-gym can randomly
generate small networks or import snapshots of the Lightning Network and simulate
channel openings.

The lightning-gym simulator is able to test the A2C model against other baselines
in a consistent way. After 100 training episodes on graphs with 128 nodes, the A2C
agent can recommend channels in the Lightning Network that perform competitively
with recommendations from centrality based heuristics and in less time. This has
huge implications on the future development of the topology of the network as nodes
will have access to a fast, low resource, algorithm to increase their expected routing
opportunities.

The major contributions of this thesis include: a scalable reinforcement learning
algorithm to the MBI problem, lightning-gym, an OpenAl gym environment for the
Lightning Network capable of training and comparing multiple attachment strategies
on random and real data, and a collection monthly snapshots of the Lightning Net-
work from February 2021 to December 2021. This data is available for use within
lightning-gym.

Copyright© Vincent M. Davis, 2022.

Chapter 2 Background

This chapter covers the necessary background information on the Lightning Network,
betweenness centrality, and reinforcement learning. First, the Lightning Network is
presented from a high level, followed by a more detailed explanation of its individual
parts. The incentive model of the Lightning Network is also mentioned and how it
encourages routing nodes to maximize their betweenness centrality. A summary of
reinforcement learning and a high level description of the solution method to the MBI
problem is included at the end.

2.1 The Lightning Network

The Lightning Network is a layer of abstraction on top the Bitcoin blockchain. At a
high level, nodes open channels in the network by depositing funds into an address
they share with another node. This transaction is recorded on the blockchain, indi-
cating to other nodes in the network of the existence of the channel. The amount
of funds each user owns is their liquidity. The initial liquidity balance is apparent
on the blockchain. However, the current liquidity balance is maintained between the
owners of the channel. This is because the balance is updated without broadcasting
the update to the blockchain.

Payments are routed through the network in an atomic way via decrementing hash
time lock contracts. Funds are only routed if there is a path with sufficient liquidity.
Since users defer broadcasting their latest balance to the blockchain, the transfer of
funds is not subject to a 10 minute blocktime. In addition, the cost to send funds
is no longer related to mining fees. On the base blockchain, users compete to have
their transactions included in a block sooner by paying higher fees. This paradigm is
flipped on the Lightning Network. Routing nodes compete for routing opportunities
by offering cheaper routes than other nodes.

2.1.1 Channels

Channels are the mechanism by which two parties exchange value over the Lightning
Network. They are composed of two types of on-chain transactions: an initial funding
transaction, and a commitment transaction. The funding transaction determines the
capacity of the channel, while the commitment transaction determines the liquidity
balance. Creating a channel is analogous to opening a joint bank account, wherein
the total amount of funds does not change, only who owns how much. Updating this
balance is free between adjacent nodes.

When creating a channel, funds of one or both parties are locked in a 2-of-2 mul-
tisignature address on-chain via a funding transaction. 2-of-2 multisignature means
that updating the liquidity balance between parties requires a new commitment trans-
action signed by both parties. Dispersal of the funds occurs when the latest dually
signed commitment transaction is broadcast on-chain. The funds are then moved

from the channel to on-chain addresses owned by either party according to the bal-
ance. Thus an unlimited number of feeless payments between the parties can be made
by just two on-chain transactions: one to open the channel, and one to close it [23].

2.1.2 Liquidity

From a node’s point of view, capacity is made up of inbound liquidity, how much funds
are available to be received via incident channels, and outbound liquidity, how much
funds are available to be sent via incident channels. Sending funds across the Light-
ning Network reduces the outbound liquidity of the sender’s channel and increases
the outbound liquidity of the recipient’s channel. If a node’s channels consists of only
outbound liquidity, they are unable to receive funds and vice-versa. Channels with
similar inbound and outbound liquidity are considered balanced. Keeping a balanced
liquidity allows nodes to route the payments of others.

2.1.3 Routing Nodes

Routing nodes in the Lightning Network leverage their liquidity to route payments
between peers that do not share a direct channel. In exchange for this liquidity
provision, routing nodes charge a transfer fee. When making a payment, nodes will
choose the cheapest path available with respect to these fees. Therefore, for a node to
maximize its ezpected routing opportunities [12], it should open low-fee channels with
other nodes such that it creates as many cheap paths as possible. There is a real-
world cost associated with opening and closing channels. The capacity of a channel
is determined by the amount of Bitcoin ‘locked’ into it by one or both parties. This
work considers a scenario where a routing node can open a certain number of channels
and wants to maximize their expected routing opportunity.

2.1.4 Fee Policy

The cost to send a payment between non-adjacent nodes is determined by the fee
policy of each channel along the path. The fee policy contains information about the
base fee and the fee rate, which are chosen by the node. The base fee is constant,
but the fee rate scales with the volume of the payment. In the figure below, the fee
f» that B charges A to forward a transaction tz to C'is fy(c, [tz]) where fi(c, |tz|) =
fE + fF = |tx| (the base rate plus the fee rate multiplied by the payment size) [31].
Fees are also forward facing along the payment path. In other words, a routing node
calculates their fee using the policy of its channel that is losing outbound liquidity.
Note that how this fee is calculated is fundamentally different than how mining fees on
the base blockchain are calculated. Since transaction fees on the Lightning Network
are determined by the transaction size, rather than volume of data, smaller payments
are more affordable. The disruption large payments cause to the liquidity balance of
intermediary nodes is priced into the Lightning Network. As a result, larger payments
may be better suited for the base Bitcoin blockchain.

2.1.5 Hash Time Lock Contracts

Atomic transfer of funds between nodes on the Lightning Network is facilitated by
Hash Time Lock Contracts[I]. This contract uses a combination of two locks, a hash
lock and a time lock, to ensure the atomic transfer of funds in a trustless way. The
recipient will generate a time sensitive, data sensitive, invoice. Essentially, the sender
commits to paying this invoice for a specific amount of time and the recipient reveals
a secret value before that time to settle the invoice.

A hash lock locks the funds behind the output of a hash function, in this case
RIPEMD160[I]. The funds can be unlocked by providing the input, also known as
the secret preimage, to the hash function which produces the previously specified
hash output. The hash lock allows the payment to be routed through the network
because only those who know the secret input can redeem it. The recipient reveals
this secret in order to claim the funds, but only after the sender commits their funds
behind a time lock.

A time lock locks funds until a specified time. Time in this case is determined
by the current blockheight of the Bitcoin blockchain. Time locks can also be used to
“release” funds to a new spending condition. The time lock in a Lightning invoice is
used to reverse the payment in case of uncooperative behavior. Thus, protecting the
sender in case the recipient does not reveal the secret preimage. It also forces any
intermediary nodes to reveal the secret in order to be reimbursed for their payment
on the sender’s behalf.

2.1.6 Network Model

Altogether, the Lightning Network is a graph made up of nodes interconnected by
channels containing capacity-respecting liquidity balances. G = (V, E,F) where
E = {(i,j,¢,1;,1;) such that i, € V, and ¢,[;,l; € Nand ¢ = [; +1;}. F is the
set of fee policies associated with each channel. In simulation, the Lightning Net-
work is typically represented as a symmetric directed weighted graph. Figure
below shows a simplification that is frequently made when evaluating the network in
simulation[I7][12][5][31]. A fixed size transaction is input into all of the fee policies
and the returned value representing the cost to forward a payment one hop is assigned
as the edge weight.

2.1.7 Attachment Strategies

An attachment strategy recommends which channels a node should open. The method
for suggesting a set of channels can be anything ranging from random selection to
centrality based heuristics or even the optimization of some node/network metric. In
general, an attachment strategy S(G, k, cap) takes as parameters:

e (& - a lightning network snapshot,
e k - the number of channels to be opened, and

e cap - the capacity for each new channel

fabJtx) _ fo(cltxl)

CL_T1 19

~fo(a,|tx]) (b,|tx])

W4 w3

Figure 2.1: A fixed transaction size is applied to all fee policies in order to simplify
the network.

and returns C' a list of candidate channels [I7]. Note that this definition relates to
joining nodes only and does not consider nodes with preexisting channels.

2.2 Betweenness Centrality

Betweenness centrality indicates how many shortest paths make use of a given node
or edge. It can be used to determine key nodes in the flow of information [3],
resources[27], traffic[16], etc. In PCNs like the Bitcoin Lightning Network, flow occurs
in the form of payments between individuals across paths of channels.

Definition 1 (Betweenness Centrality). The betweenness centrality of a vertex
is the number of shortest paths that pass through that vertex relative to the total
number of shortest paths[13], i.e.,

be(v) = 3, 4, 2

However, instead of measuring path cost by hop count, cost is calculated with
respect to a channel’s fee policy along the path and the payment amount being sent.
The current implementation of the Lightning Network uses source routing to find
the cheapest available path to route a payment. Fee-weighted betweenness centrality
indicates how many cheapest paths make use of a given node or channel. Therefore,
this study focuses on maximizing fee-weighted betweenness centrality.

Expected routing opportunity is closely correlated to betweenness centrality [12][25] [5].
Thus increasing betweenness will also increase expected routing opportunity. This
problem is formally known as the the Maximum Betweenness Improvement (MBI)
problem. The MBI problem is concerned with adding edges between a joining node
and other nodes in the network such that the betweenness of the joining node is
maximized. As mentioned earlier, this work considers the budget constrained version
of this problem.

Definition 2 (MBI Problem). Given a graph G = (V| E), a vertex v € V, and a
budget k£ € N, add k edges incident to node v such that be(v) is maximized [6].

MBI is an NP-Hard problem with no polynomial time approximation algorithm
within 1 — &~ (unless P=NP) [6][11]. This complexity results from the combinatorial
nature of the problem and polynomial time complexity required to calculate between-
ness centrality. As will be shown later on in this work, the time required to calculate
the betweenness centrality of a node has increased significantly since the Lightning

Network’s inception.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique where an agent learns
how to make decisions in an environment to reach a goal. The problem the agent is
attempting to solve is framed as a Markov Decision Process (MDP). By framing the
problem as a MDP, an environment, or gym, can be created to “train” the agent. A
MDP can be expressed as a tuple of < S, A, T, R,y > where:

e S is the set of possible environment states.
e A is the set of actions an agent can take.

o 1': S x A — II(Y) is the state-transition function that describes how states
transition to another state when an agent takes an action.

e R:5x A — R is the reward function that describes the reward of taking an
action in a given state.

e v :0 < v < 1is the discount factor which determines how much an agent
discounts future rewards [19].

The agent learns by interacting with the environment and observing the outcome.
The agents behavior is defined using a policy 7 : S — A which is a function mapping
states to actions. The goal of an agent in a MDP is to learn a policy that specifies
the action that should be taken in each state that maximizes the agent’s expected
cumulative reward.

This work explores solving the MBI problem by framing it as a MDP and applying
an Advantage Actor-Critic (A2C) model. The A2C model consist of 3 parts: a policy
(actor) network, a value (critic) network, and an advantage function. The policy
network learns which action to take in a given state. The value network learns
to approximate the expected reward, or quality, of a given state. The advantage
function calculates the error between the predicted quality of state and its actual
quality returned by the environment. The advantage function is used to teach the
value network to predict the quality of a state which in turn teaches the policy network
to suggest actions that lead to better states[2I] The A2C model was chosen for two
main reasons. Firstly, the advantage function acts as a baseline, which leads to lower
variance when estimating the policy gradient [30]. Secondly, actor-critic methods are
well suited for large action spaces [26].

Copyright© Vincent M. Davis, 2022.

Chapter 3 Related Works

This chapter covers other’s previous work investigating attachment strategies, how
graph embedding techniques and reinforcement learning can be combined to solve
combinatorial problems on graphs, and state of the art Lightning Network simulators.

3.1 Attachment Strategies

This section details current approaches to the MBI problem as well as popular at-
tachment strategies in the Lightning Network. Strategies have been divided into two
categories: greedy and centrality-based. The former strategy selects channels based
on immediate reward, in this case betweenness, while the latter strategies use network
metrics to select nodes. There is a tradeoff between time and solution quality as well
as the impact certain strategies have on the topology of the network.

3.1.1 Greedy Algorithm

The greedy MBI algorithm developed by Bergamini et al. iteratively suggests edges
that lead to the greatest improvement in betweenness centrality[6]. The authors
designed a dynamic algorithm to incrementally update the betweenness centrality
of the joining node with each new edge. This method saves time as the algorithm
only has to calculate the betweenness of the candidate edge at each iteration. The
betweenness centrality of a node in a directed graph as it iteratively adds edges is
a monotone non-decreasing function. This submodularity can be exploited by the
greedy algorithm. After the first iteration of the greedy algorithm, node suggestions
can be pruned from future iterations if the improvement caused by adding that edge
is less than some observed lower bound. However, this is not the case for undirected
networks.

The authors measured the runtime of the greedy MBI algorithm on several real
world directed and undirected networks. The algorithms runtime on directed graphs
of similar size to the Lightning Network are between ten and twenty minutes with a
budget of ten edges. On undirected graphs of similar size to the network, the runtime
of the greedy algorithm ranges from ten minutes to slightly less than one hour. These
runtimes are more relevant as the Lightning Network is a symmetric directed graph.
Most of the time is consumed during the first iteration of the algorithm, when the
betweenness of the node is first being calculated. Afterwards, finding additional
edges consume less time because the betweenness of the node is updated by the
dynamic algorithm. The memory footprint of their dynamic update algorithm for
calculating betweenness is polynomial, which makes it unsuitable for large networks.
Unfortunately, the greedy algorithm’s runtime on weighted directed graphs was not
evaluated.

3.1.2 Centrality-based Selection

The most popular Lightning Network protocol implementation, LightningNetwork-
Daemon (LND), includes an autopilot feature that will automatically open and man-
age channels on the user’s behalf. This feature uses the Betweenness heuristic first
identified in [24] to suggest with which nodes to open channels. This attachment
strategy suggests nodes with preference to high betweenness centrality. The intuition
is that creating channels with well connected nodes will in turn make the joining node
well connected also. Note that this implementation considers traditional betweenness
centrality (shortest paths) rather than fee-weighted betweenness centrality (cheapest
paths). The original implementation calculates betweenness centrality once and se-
lects the top k vertices with respect to betweenness centrality (where k is the budget)
whereas the Betweenness heuristic implemented in the LND autopilot calculates the
betweenness centrality of every node in the network, selects the node with the highest
betweenness centrality, and repeats this process k times.

Previous work [12] shows that the greedy algorithm outperforms centrality based
attachment strategies like Betweenness in improving a joining node’s betweenness
centrality. The authors show that expected reward improvement is also impacted by
the channel attachment strategy. Reward improvement, like betweenness improve-
ment, considers how to open channels to maximize the number of cheapest paths a
node lies on but with the added complexity of deciding what fee policy to set also.
The authors proved that, by assuming a constant fee policy for the joining node’s
channels, that the Maximum Reward Improvement (MRI) problem reduces to MBI
Therefore the problem of MRI can be solved in stages, where the first stage is chan-
nel selection and the second stage is calculating the fee policy for each channel. This
second stage is the Channel Fee Function (CFF).

In their experimental setup, the authors compare several different attachment
strategies for selecting channels with and without the CFF and then compare the total
revenue earned by each strategy in simulation. The attachment strategies include
preferential attachment such as Betweenness, Degree, and Pagerank as well as a
Random selection and the Greedy algorithm.

By including variations of the same attachment strategy but without the CFF, the
authors were able to draw conclusions about how each strategy places the joining node
into different levels of competition. Other factors kept equal, the authors showed that
using an attachment strategy that improves betweenness centrality directly leads to
higher expected reward improvement than strategies that open channels according to
a heuristic. Furthermore, using the Betweenness attachment strategy lead to worse
expected reward improvement than Random selection. Their explanation for this
phenomena is that because of the nature by which the Betweenness heuristic suggests
nodes, there is little opportunity to increase expected reward without decreasing
expected routing opportunities [12].

This conjecture is further reinforced by the work of [I7]. This work explores the
impacts of different attachment strategies on the node’s ability to use the network and
the development of the network’s topology. The authors evaluate a set of attachment
strategies based of motivations for joining the network. They classified three types

10

of motivations for joining the network: users which are interested in improving local
connectivity and cost to use the network, service providers which are interested in
earning transaction fees and global connectivity, and an altruistic motivation which
is interested in improving network metrics such as robustness and diameter.

They evaluated six different attachment strategies:

1. random selection (Random)

2. preference to highest degree (Degree)

3. preference to highest betweennness (Betweenness)

4. minimize the joining node’s maximum distance from all other nodes (k-Center)
5. minimize the joining node’s average distance from all other nodes (k-Median)
6. an exact algorithm for maximizing betweenness improvement (MBI)

Of the strategies evaluated in simulation, Betweenness resulted in less routed transac-
tions than Random selection. On the other hand, they found that the MBI strategy
leads to the greatest increase of expected routing opportunities and it is the second
best strategy for improving one’s cost to use the network. However, each additional
edge in the budget added at least 30 minutes to the runtime of the MBI algorithm.
In order to evaluate how the topology of the network would be affected, they sim-
ulated 5,000 nodes joining the network with a budget k& = 10 under each strategy.
However, the MBI attachment strategy was excluded from this experiment because
of the intractability of finding exact solutions for thousands of nodes.

All of the attachment strategies with an objective of optimizing some node metric
have a common issue: there is no specific way to select the first node. This is
true for both the exact MBI algorithm and the greedy algorithm for maximizing
betweenness. This is due to the fact that having a nonzero betweenness centrality
requires that the node have at least two channels. When evaluating the greedy
algorithm in [6], the algorithm starts from a random pivot node with at least 2
channels. In the betweenness improvement algorithms presented in [12],[17] the joining
node will first open two channels with preference to nodes with the highest degree.
Preferential attachment to nodes with high degree can lead to centralization of the
network [17, [31].

3.2 Graph Embedding Techniques

The Lightning Network is dynamic and competitive; it updates as often as every ten
minutes and users are financially motivated to continuously improve their position
in the network. Therefore, using an exact algorithm for the MBI problem is not
practical because by the time the solution is found it is most likely obsolete. Nor is
it practical to trade time for perceived solution quality by using a centrality based
heuristic. Furthermore, neither approach relies on its previous work if the network
has changed by the time it completes. The problem of maximizing betweenness is a

11

problem being repeatedly solved on slightly different graphs. By using a reinforcement
learning approach, every observation can be turned into a learning opportunity.

Previous research [10] has successfully learned greedy heuristics with low approx-
imation ratios for solving hard problems by using graph embedding techniques and
reinforcement learning. This approach is attractive as the agents can generalize their
learning between graphs of different sizes and similar distributions. Their experimen-
tal setup considered three graph problems: minimum vertex cover (MVC), maximum
cut (MAXCUT), and the traveling salesman problem (TSP). These problems were
formulated as Markov Decision Processes where the state is the current partial so-
lution, and each node that is not included the partial solution represents an action.
The Q function learns to predict the quality of each available action in the current
state. A greedy policy can be formulated from this Q) function that selects the action
with the greatest expected reward given the current state.

The initial challenge of this approach is constructing a representation of the nodes
in such a way that it can evaluated by the Q function. The authors used a graph
embedding technique structure2vec to embed each node with context about its n-
hop neighborhood. Each node in the graph is tagged with a feature vector including
information about the node such as whether the node is included in the solution.
Each node then aggregates the node feature vectors of their neighbors according to
the topology and apply a nonlinear function. The output of this function is assigned
as the node’s new feature vector. Successive iterations embed information from more
distant nodes. These node embeddings are input into a Deep Q Network to predict
expected reward. The structureZ2vec DQN model is incrementally trained using e-
Greedy on random Barabasi-Albert graphs generated from a similar distribution.
The training graphs range from 50 to 500 nodes. In order to show scalabilty, the
testing graphs range up to 1200 nodes. Against solvers like CPLEX, the learned
greedy heuristic can achieve comparable approximation ratios (< 1%).

Other embedding techniques such as Graph Convolutional Networks (GCN) have
been explored [18]. Their experimental setup considers three graph problems: maxi-
mal independent set (MIS), minimum vertex cover (MVC), and maximal clique (MC).
These are NP-Complete problems which the authors prove by reducing MVC and MC
to MIS and then reducing MIS to the Boolean Satisfiability problem (SAT). The pur-
pose of proving reducibility is so that the authors can focus on creating an algorithm
for solving MIS which can then be modified for the other problems mentioned. This
work explores using a GCN to label whether each node belongs to the solution set.
The authors describe a spatial GCN with multiple hidden layers, the last of which
is the sigmoid function. The training set for this approach is a set of graphs each
paired with a binary vector that indicates which nodes belong to the solution. The
GCN is then trained to predict this binary vector when given a graph as input. This
is done by minimizing the binary cross-entropy loss for each training sample. The
naive implementation would predict a real value within the continuous range [0,1] for
each of the nodes. Rounding this value produces a potential solution, although there
is no guarantee that the constraints of the problem will not be violated. In situations
where there exists more than one optimal solution for the given graph, the GCN may
produce a labelling that does not differentiate between these solutions.

12

Instead, the authors use the predictions returned from the GCN as a probability
map. The first algorithm presented in the work, BasicMIS, takes a graph as input and
returns the best MIS solution found. The algorithm produces a probability mapping
for the nodes in the graph, iterates through them descending order and labels unla-
beled nodes with 1 and their neighbors with 0 until the graph is completely labelled
or the algorithm encounters an already labelled node. If the graph is completely
labelled, then it is compared to the current best solution, otherwise, the graph is re-
duced and the algorithm is recursively called with the new graph as input. Essentially,
the probability mapping is guiding a depth first tree search for candidate solutions.
Algorithm 2 is a modified version of BasicMIS that can generate a set of solutions by
using multiple probability mappings and a queue to keep track of partial solutions.
Using a queue and investigating diverse partial solutions adds breadth to the search.
The combined approach results in the rapid generation of diverse solutions that can
be further improved by using local search.

The model was trained using SAT problems from the SATLIB benchmark which
had been converted into graphs. These graphs have about 1200 vertices each. The
authors compared their approach against baselines including the S2VDQN model
from [10],a state of the art SAT solver, Z3, a SOTA MIS solver, ReduMI, and a
SOTA Integer Linear Program (ILP) solver, Gurobi. The algorithms were compared
on 20 problems from the 2017 SAT competition with a time limit of 10 minutes. The
authors approach was able to solve 100% of the problems faster than the purpose
built solver, ReduMIS. On the other hand, S2VDQN was only able to solve 80% of
the problems in the allotted time.

3.3 Lightning Network Simulators

There are a limited number of simulators that have been built specifically for the
Lightning Network. The Lightning Network simulators listed below have either of
two responsibilities. Either they are gossip simulators or they are traffic simulators.

3.3.1 CLoTH

Previous work [8], designed a network simulator, CLoTH, to simulate HTLC pay-
ments over snapshots of the Lightning Network and generate statistical reports. These
reports are used to answer specific questions about routing, capital allocation, pay-
ment success, and the price of uncooperative behavior. The simulator processes a
list of HTLC payments as discrete events and updates the state of the network. The
process of simulating payments uses functions analogous to the actual functions in
the Lightning Network. The authors reference the source code of the most popular
Lightning Network protocol implementation, LightningNetworkDaemon, and how it
guided the design of the simulator. At the end of each simulation, CLoTH returns
a list of performance measures detailing payment success rate, payment failure due
to insufficient capacity or liquidity, and payment route lengths. The authors detailed
their findings in a later work [9].

13

3.3.2 LNTrafficSimulator

The simulator, LNTrafficSimulator, in [5] also simulates payment processing on the
Lightning Network. However, the questions they sought to answer were economic
in nature. The authors sought to investigate the price competition among routing
nodes, optimal fee policies for central nodes, and the privacy implications of short
payment paths. Furthermore, LNTrafficSimulator can simulate a bias in payment
destination towards merchants. This feature stems from the assumption that most
payments are made by users to online shops and liquidity service providers. The
authors gathered a list of merchants from an online node directory 1ML.com and
include it as input to the simulator. The authors also wanted to estimate the daily
traffic and income of each node in the network. Since payments are handled peer
to peer, daily traffic and income cannot be estimated without nodes volunteering
information. The authors validated their parameters for the simulator by adjusting
them to match the reported traffic and income of nodes owned and operated by
LNBIG.com. At the time of writing, the authors estimated that 5,000 payments
occurred on the Lightning Network each day, with an average size of 60,000 satoshis
(0.0006 BTC), with 80% of them destined towards merchants. Running the simulation
with these parameters reproduced revenue and traffic similar to that reported for
LNBIG-owned nodes.

3.3.3 TimeMachine

Recent work [31] investigating the centrality of the Lightning Network used a custom-
built simulator, TimeMachine. This simulator is capable of recreating snapshots of
the Lightning Network by replaying gossip messages containing information about
updates to the network. These gossip messages include updates about nodes, the
creation and closure of channels, and updates to channel fee policies. Gossip messages
were collected by several nodes deployed in the network over a duration of almost 2
years, April 2019 to January 2021. The team studied how the centralization of the
network changes over time. In particular, the authors investigated the distribution
of betweenness centrality across the network. An equal distribution of betweenness
centrality is indicated by a 1:1 relationship between the share of nodes and the share of
centrality that they possess. In other words, “X% of nodes possess X% of betweenness
centrality”. The relative difference between the area under the equal distribution and
the actual distribution indicates how centralized a network is. This value is known
as the Gini Coefficient. During the time that these gossip messages were collected,
the researchers found that centralization has increased from a Gini coefficient of 81%
to a coefficient of 91%.

Copyright© Vincent M. Davis, 2022.

14

Chapter 4 Methods

The MBI problem can be framed as an MDP whereby an A2C agent learns to identify
nodes in the network that will maximize the betweenness centrality of a joining node.
In the process of training, the agent approximates two functions: the state-action
function, or policy, and the state-value function. A greedy policy can be derived from
the policy network by taking the action with the highest probability of being the
“best” action.

4.1 Graph Representation

In order to facilitate the agent’s learning, a representation model is required. This
work chose to use a Graph Convolutional Network to embed each node. Given an
instance of the network, the GCN embeds each node with information about the node
itself and its n-hop neighborhood where 7 is the number of layers in the GCN. From
these embeddings, the agent learns to identify key nodes in the network.

Features such as a node’s location in the network or the policies of its channels
can be exploited by a reinforcement learning agent. However, the challenge lies in
designing a node representation that captures this information across different sized
networks. In other words, similar nodes should have similar embeddings.

Graph Convolutional Networks are designed to address this challenge. In GCNss,
each node collects the feature vectors of the nodes in its immediate neighbors. These
feature vectors are aggregated by the node, thus fixing the dimensionality problem
that arises between nodes with different degrees. The aggregated features are then
passed to a linear layer, followed by a non-linear activation function [29]. The node
then assigns the output as its new feature vector. Successive layers capture neigh-
borhood information from nodes an increasing hop distance away. A single layer is
shown below.

HED = o(D 2 AD 2 HOOW)
where
e H® = X - the initial node feature tensor
e A=A+ Iy - adjacency matrix of G plus self loops
e D= Zj flij - the out-degree of each node along the main diagonal
e O is a vector of learnable parameters
e o - the nonlinear activation function
The node feature vector X contains the following information about each node:

e degree centrality - the ratio of a node’s degree to the total number of edges.

15

e inclusion - whether the node is included in the solution S.

The A2C agent is trained using random scale-free networks generated by the Barabasi-
Albert Model. The weights were uniform in the training data. However, when testing
on snapshots of the Lightning Network, performance is increased by using the recip-
rocal of the edge weights. The modified layer is shown below.

HUHY = o(E x HOeW)

where
e £=D"3x E x D% - normalized edge weights
o E=le;= fL], the reciprocal of the cost of the channel, if it exists, otherwise
Cij
€ij = 0.

4.2 Markov Decision Process Formulation
The states, actions, and reward space of the Markov Decision Process are defined as:

1. Actions: Adding any node v € V' which has not yet been added to the current
state S is a legal action. Each node is represented by its embedding from the
GCN.

2. States: A state S is a sequence of actions (nodes) on a graph G. To the
value network, the state is represented by a column-wise average of all of the

embeddings:
B ot
veV

A terminal state is reached when the budget k£ has been exhausted.

3. Transition: Transitions are deterministic. When a node u is selected as an
action, its feature indicating inclusion in the solution z, € X is set equal to 1.
In addition, S transitions to S" = (S, u).

4. Rewards: Let the agent suggest opening a channel on behalf of node v to node
u. The reward, r(S,u), of taking action u in state S is the change in the
betweenness centrality of v after connecting v and transitioning to the new
state S’

r(S,u) = beg (v) — beg(v)

16

4.3 Actor-Critic Model

Actor-critic models separate the roles of evaluating the quality of a state and de-
termining the action to take in given a state. These roles are assigned to the value
network and policy network, respectively. This architecture was chosen because it is
well suited for problems with large state and action spaces. The state space scales
with both the budget and the number of nodes in the network. A node is either in-
cluded in the solution (state) or not. For a budget, n, equal to the number of nodes,
the number of possible states is 2.

4 a2c)

] Action
Policy Network J >
State A
I Advantage
State-Value
Network

. J

Figure 4.1: Advantage Actor-Critic Architecture

4.3.1 Policy Network

The policy network, P™, takes as input the embedded network and produces a prob-
ability distribution. This is a vector of values, each representing an action’s likeliness
to be the best action. The policy network learns to increase the probability of select-
ing the node u in state S that improves the fee weighted betweenness centrality of
the joining node v the most.

During training, the agent’s policy samples from the probability distribution re-
turned by the policy network, taking H® as input.

7(S) == sample,.sP™(H®Y)

During evaluation, the A2C agent’s policy takes the mostly likely action according
to the policy distribution.

7(S) := argmaz,.gP*(HY)

4.3.2 Value Network

The value network is responsible for predicting the quality of the partial solution.
The quality of the partial solution is equal to the expected reward of the episode. In
other words, the value network predicts the total betweenness improvement of the
isolated node assuming it has already created channels with nodes from the partial

17

solution. The value network takes as input a mean pooling of the output layer, ngl),
multiplies it by a set of learnable parameters, applies a nonlinear activation function,
and returns a scalar value. Hél), H®_ and X should be considered synonymous with

S.

4.4 Training Architecture

A high-level description of how the A2C agent learns the greedy heuristic:

— Iightning-gyml—
A
s s @
b1} o
< a 5
—
— A2C Embedded State | GCN |«

Figure 4.2: Training architecture. A2C accepts as input a graph embedding from the
GCN and then takes an action in the environment, producing a new state-reward

pair.

. A random scale free network , G = (V| E), is generated.

. Partial solutions are represented as a set S = {v1,vs,...,v5/} where v; € V

and S = V —S. In practice, however, the structure of G is manipulated directly
and the partial solution is represented using a 0-1 vector. For each element z,
in this vector, x, = 1 if the corresponding node v € S and 0 otherwise. This
vector is used in the feature tensor of the nodes.

. Each node in S represents a new neighbor with the A2C agent’s node. The

quality of S'is the resulting betweenness of the agent’s node after having opened
channels with all the nodes in S.

. The agent selects action that iteratively maximizes the quality of S. It se-

lects these actions based off its previous observation and the current embedded
network.

18

4.4.1 Network Training

A custom environment, lightning-gym, is used to train the agent. This environment
simulates channel openings on small, randomly generated, scale-free networks and
returns the reward. This observation is used to train the A2C agent. During each
iteration of an episode, the A2C agent collects the environment observations and
output of the Value and Policy networks. The following policy gradient function is
used in training the network:

VoJ(0) ~ (i logﬁ(a|5t)> A(S;,a)

where A(Sy, a) is the expected benefit of taking an action a in state S at time ¢:
A(St, CL) = Q(St, CL) - Vﬂ—<St>

and Q(S;, a) is the actual value of taking action a at time t.

The observations and outputs are collected by the A2C agent to be used as input
to the policy gradient function which back-propagates corrections through the value
and policy networks.

Copyright© Vincent M. Davis, 2022.

19

Chapter 5 Experiments

5.1 Baselines

The performance and scalability of the A2C agent is compared to six other attachment
algorithms:

e Random - suggests k£ nodes sampled uniformly at random.
e Degree - suggests k nodes w.r.t. highest degree.
e Betweenness - suggests k nodes w.r.t. greatest betweenness centrality.

e k-Center - suggests k nodes that the minimize the joining node’s mazimum dis-
tance to all other nodes.

e Greedy - suggests nodes that result in the greatest betweenness improvement after
trying all available actions.

e Trained Greedy - like Greedy, except this algorithm suggests the best action out
of five sampled from the policy network of the trained A2C agent.

The Trained Greedy algorithm is inspired by the approach taken [18]. However,
Trained Greedy samples multiple actions from the trained policy network of the A2C
agent, tries all of them, and then selects the one with the best immediate improve-
ment. The approximation algorithm from [I5] is used for the k-Center algorithm.
Results from the Greedy Algorithm are excluded for graphs with > 1,000 nodes.
The performance of the Random algorithm is the average result of 30 trials.

5.2 lightning-gym

A node was deployed to collect monthly snapshots of the Lightning Network from
February 2021 to December 2021. These snapshots contain information about the
network’s nodes and channels, including fee policy and capacity. These snapshots are
used in the custom OpenAl Gym environment, lightning-gym, to train the A2C agent
and compare it against baselines.

Instances of the Lightning Network are pruned before being used in training and
comparison. The network itself is a multidirected graph represented as an array of
nodes and an array of channels. To be included in the network, a channel must be
active, have a defined policy, and a minimum capacity. If a channel is not active
or its policy is undefined, it cannot be used by the network, and so it is removed.
Channels with low capacity are removed because they are easily made unbalanced
with relatively low payments. Therefore, low capacity channels add little to the
connectivity of a node and should be ignored. The minimum channel capacity is set
to 0.01 Bitcoin. If a pair of nodes has more than one channel between them, the
higher fee is retained and the capacities are combined.

20

Afterwards, all bridges are removed from the network, along with all of the re-
sulting smaller connected components. This guarantees that every remaining node
has a degree of at least 2 and every remaining channel is capable of undergoing a cir-
cular rebalance. The remaining network consists of well connected nodes and public
channels with good probability of liquidity.

The environment generates random scale-free directed graphs and adds an isolated
node. These graphs are generated using the Barabasi-Albert method. The A2C agent
trains on this environment selecting nodes for the joining node to open channels
with. The environment simulates the channel opening and returns the betweenness
improvement of the joining node as the reward and the new embedded graph as
the next state. This process is repeated until the A2C agent’s budget is exhausted.
Afterwards, the agent updates its policy and value networks with regard to the new
state-action-reward observations. The cumulative reward of an episode represents the
total betweenness improvement the agent was able to gain.

5.3 Experiment 1 - Setup

The objective of Experiment 1 is to compare the performance of each algorithm in
real and synthetic environments. In the real environment scenario, each algorithm
is compared on monthly snapshots of the Lightning Network. Each algorithm is
given a budget of 10 channels, and identical fee policies. The cumulative reward of
each algorithm is collected at the end of each episode. In the synthetic environment,
performance is compared on two random BA graphs: one with 128 nodes and one
with 1024 nodes. For these two graphs, performance is compared as the budget
increases from 1 to 15. The algorithms are evaluated on graphs of two different sizes
to determine whether there is a drop off in performance as the size of the graph
increases.

5.4 Experiment 2 - Setup

In order to determine the scalability of this approach, Experiment 2 includes an
analysis of the size of the Lightning Network over time before and after pruning.
This is followed by a comparison of the runtimes for each algorithm to return chan-
nel recommendations for each monthly snapshot of the Lightning Network. In this
experiment, results are evaluated with consideration to the time required to discover
them. The algorithms and environment were implemented in Python. The runtime
of the algorithms are measured using Python’s built-in library timeit. The machine
used was an MSI GE76 Raider with 16GB DDR4 RAM, 11th Gen Intel i7 processor,
and GeForce RTX 3060 with 6GB VRAM.

5.5 Experiment 3 - Setup

In Experiment 3 the training performance of the A2C agent is evaluated under two
scenarios. The environment has been designed so that the agent can be trained on

21

a new random instance every episode or repeatedly on a single instance. The former
scenario should lead to better performance on the general MBI problem, but the
latter scenario is more analogous to repeatedly solving the MBI problem in a specific
context, such as the Lightning Network. Repeated training demonstrates whether
the A2C agent is able to exploit previous work. The cumulative reward after each
episode is plotted as a percentage of the performance of the greedy algorithm. i.e. A
score greater than or equal to 1 means that the agent found a solution as good as or
better than the solution found by greedy search. The agent is trained for 100 episodes
on graphs with 128 nodes. It is a given a budget of 10 channel openings. The table
below includes the parameters used when training the value and policy networks.

Training Parameter Value
GCN Dimensions 2x128x128
Actor Network Dimensions 128x128
Policy Network Dimensions 128x1

Learning Rate le-2
Decay Rate 0.999
Activation ReLu
Optimizer ADAM

Copyright© Vincent M. Davis, 2022.

22

Chapter 6 Results

6.1 Experiment 1 - Results

Comparison of Betweenness Improvement (128)

—— Random -
0.25] — Betweenness /
—— Degree
— A2C
o
é 0204 — k-Center
s — Gre_edg,,r
g Trained Greedy xx
£ 0.15 - rd
P
4]
=
o 0.10 A
w
z
7]
m
0.05 1
0.00 4

T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Budget

Figure 6.1: Performance comparison on a synthetic network with 128 nodes.

Comparison of Betweenness Improvement (1024)

0.16
—— Random
01ad Betweenness
—— Degree
0.12 A2C
: —— k-Center

Trained Greedy
0.10 -

0.08 -

0.06 A

0.04 4

Betweenness Improvement

0.02 1

0.00 4

T T T T T
1 2 3 4 5 6 7 8 9 10 11 1z 13 14 15
Budget

Figure 6.2: Performance comparison on a synthetic network with 1024 nodes.

23

Performance Comparison of Algorithms

0.07 A
— A2C

Random
—— Betweenness
—— Degree
—— Trained Greedy
—— k-Center

0.06

0.05 4

0.04 4

0.03 4

0.02 4

Betweenness Improvement

0.01

H*_‘____‘——*-‘"#““mﬁ__ﬂ-—_________—ﬂ—__‘

0.00 4

T T T T T T T T T T T
Feb Mar April May June July Aug Sept Oct Nov Dec
Month

Figure 6.3: Comparison of the performances of A2C agent, Betweenness, Degree,
and Random on instances of the Lightning Network. Each algorithm starts with an
isolated node and a budget of 10 channels.

Table 6.1: Comparison of performances on the Lightning Network.

Months A2C Random Betw. Degree Trained kCenter
Feb. 0.0449 0.0028 0.0417 0.0392 0.0456 0.0038
March 0.0537 0.0036 0.0546 0.0363 0.0568 0.0027
April 0.0495 0.0051 0.0479 0.0432 0.0554 0.0028
May 0.0653 0.0021 0.0677 0.0518 0.0653 0.0021
June 0.0618 0.0028 0.0633 0.0463 0.0643 0.0033
July 0.0230 0.0013 0.0196 0.0137 0.0238 0.0014
Aug. 0.0169 0.0010 0.0146 0.0110 0.0179 0.0019
Sept. 0.0168 0.0013 0.0156 0.0111 0.0171 0.0015
Oct. 0.0206 0.0009 0.0143 0.0149 0.0220 0.0015
Nov. 0.0141 0.0007 0.0082 0.0091 0.0150 0.0020
Dec. 0.0136 0.0009 0.0089 0.0095 0.0141 0.0011

Figures and show a comparison of the agent’s performance as budget
increases on two differently sized synthetic networks. Overall, behavior is similar
between the two figures. Both show an increase in betweenness as budget increases,
although there is less improvement gained in Figure [6.2] Centrality based heuris-
tics show a clear advantage over Random and k-Center. There is more variation in
performance on the network in Figure [6.1] On the larger network in Figure [6.2], the
performance is less varied.

24

6.2 Experiment 2 - Results

Change in Number of Nodes After Pruning

E Nodes Before
17500 1 mmm Nodes After

15000 4

12500 4

10000 4

7500 A

Number of Nodes

5000 A

2500 A

Feb Mar April May June July Aug Sept Oct Nov Dec
Month

Figure 6.4: Change in number of nodes after removing bridges, smaller connected
components, and low degree nodes.

Change in Number of Edges After Pruning

Il Edges Before
I Edges After

40000 A

35000 A

30000 A

25000 A

20000 A

Number of Edges

15000 4

10000 4

Feb Mar April May June July Aug Sept Oct Nov Dec
Month

Figure 6.5: Change in number of channels after removing private, inactive, and low
capacity edges.

From February 2021 to December 2021 the number of nodes in the network in-
creased 75% from 10k nodes to 17.5k nodes. In the same time, the number of channels

25

Table 6.2: Change in Number of Nodes and Edges after pruning
Months Nodes Before Nodes After Edges Before Edges After

Feb 9602 2316 19949 8814

Mar 10516 2676 21063 9818

April 11161 2996 21854 10607
May 11907 3491 24039 12579
June 12770 3876 26550 14528
July 13944 4643 30772 18081
Aug 15469 5316 34600 21277
Sept 16374 2872 37427 23816
Oct 15891 6144 37345 24594
Nov 17572 6409 39672 25298
Dec 18558 6686 40938 26878

doubled from 20k channels to 40k channels. The size of the network is reduced signif-
icantly by the pruning operation. However, this amount is decreasing over time. In
February, the pruning operation reduced the number of nodes by 75%. In December,
the pruning operation reduced the number of nodes by 63%.

The ratio of remaining “well connected” nodes grew steadily over time relative to
the entire network. In the February, 75% of the nodes were removed, yet 45% of the
edges remained. In the December snapshot, 66% of the nodes were removed and 66%
of the edges remained.

Runtime Comparison of Algorithms

103 4

102 4
— A2C
Random

—— Betweenness
i Degree
10°3 — Trained Greedy

—— k-Center
/

o ///—/~_

T T T T T T T T T T T
Feb Mar April May June July Aug Sept Oct Nov Dec
Month

Runtime (s)

Figure 6.6: Comparison of the runtimes of the five algorithms for each month.

Table [6.3] lists the cumulative runtime of each algorithm over each month. The
cumulative runtime is the total time in seconds each algorithm requires to suggest

26

Table 6.3: Comparison of runtimes for each algorithm.

Months A2C Random Betw. Degree Trained kCenter
Feb. 0.52 0.29 2.68 0.30 105.34 0.44
March 0.53 0.31 3.56 0.32 137.05 0.48
April 0.59 0.36 4.35 0.36 169.39 0.50
May 0.69 0.41 6.03 0.44 241.90 0.55
June 0.82 0.49 7.82 0.52 309.40 0.72
July 1.07 0.67 11.86 0.71 473.69 0.92
Aug. 1.28 0.70 15.93 0.74 642.95 1.07
Sept. 1.38 0.87 19.58 0.84 790.56 1.31
Oct. 1.56 0.95 22.13 0.92 855.17 1.25
Nov. 1.52 0.94 23.05 0.90 942.50 1.32
Dec. 1.60 0.97 25.76 0.98 1042.43 1.33

ten channels on the given graph. Betweenness and Trained Greedy stand out as the
two longest running algorithms. The other four algorithms execute faster than the
shortest instance of Betweenness. Figure shows the runtimes of each algorithm
plotted on a log scale.

6.3 Experiment 3 - Results

1.0

0.8

Percentage of Greedy

0.2 1

Training Performance on Random Graphs

0.6 1

T
20

T
40

Episodes

T T T
60 80 100

Figure 6.7: Performance of agent trained on different random scale free networks with

128 nodes and a budget k£ = 10.

Figure[6.7]shows the A2C agent’s performance quickly increasing after 40 episodes.
The agent scores at least 80% of Greedy from there on. The agent’s performance

27

Training Performance on Single Graph

1.0 A

0.9 4

0.8

0.7 1

0.6

0.5 4

Percentage of Greedy

0.4 4

0.3 4

T
0 20 40 60 80 100
Episodes

Figure 6.8: Performance of agent repeatedly trained on single instance of a random

scale free network with 128 nodes and a budget k£ = 10.

converges even sooner when repeatedly trained on a graph. In Figure [6.8] after 25
episodes, the agent is scoring at or above 90% of Greedy.

Copyright© Vincent M. Davis, 2022.

28

Chapter 7 Discussion

7.1 Performance

From the figures and [6.1] it is clear that the A2C agent is capable of gener-
alizing its learning to different budgets and different sized networks. The A2C agent
shows comparable performance in Figure [6.1] breaking out from the centrality based
heuristics after a budget of 8. The next best performing algorithm is Degree followed
by Betweenness. Surprisingly, k-Center is the only strategy whose node has a positive
betweenness centrality when given a budget of 2. In Figure [6.2] Betweenness begins
to diverge after budget 6, but the A2C and Degree algorithm stay relatively equal.
The A2C agent performs competitively, even on unseen networks eight times larger
than those it was trained on.

The Trained Greedy algorithm shows that improvement can be gained by trading
time to explore several recommended actions. In Figure the Trained Greedy
algorithm performs identically to the Greedy algorithm. The Greedy algorithm was
not evaluated in the larger synthetic network so their performance cannot be com-
pared. However, the Trained Greedy algorithm outperforms every other baseline in
the larger network as well.

Through experimentation, it was observed that after training for 100 episodes
on random networks the A2C agent performs competitively on unseen instances of
the Lightning Network. Figure [6.1] shows the performances of each algorithm on
monthly snapshots of the network. Performance is determined by the fee-weighted
betweenness improvement of an isolated node in the Lightning Network after adding
10 channels suggested by each of the respective algorithms. The Greedy algorithm was
not included in this comparison because of time constraints. However, the Trained
Greedy algorithm performs best in ten of the eleven months. May is the only month
where the Betweenness algorithm outperforms both A2C and the Trained Greedy
algorithm.

From February to June, the Betweenness and A2C algorithms perform similarly.
Of those five months, Betweenness outperformed A2C in March, May, and June.
From June until December, the A2C agent outperforms Betweenness. Additional
improvement is gained through the Trained Greedy algorithm at the expense of time.
Degree is the next best algorithm after Betweenness, but it is clearly underperforming.
Meanwhile, k-Center has a similar betweenness improvement as picking channels at
random. Considering the nature of k-Center and the size of the Lightning Network,
it may need a higher budget to gained a significant betweenness centrality in the
network.

A possible limitation of this work is indicated by the disparity in performance be-
tween the Degree algorithm on the random networks in Figures and versus the
real-world network in Figure [6.1} The future works section discusses the limitations
of using the BA model as a substrate network in more detail.

29

7.2 Scalability

In Figures[6.4] and [6.5] it can be seen that the size of the network has been increasing
consistently. Even though the pruning operation removes over half of the nodes, the
number of channels is not as strongly affected. This indicates that removal of these
nodes had low impact on the connectedness of the remaining network. However, even
with the pruning operation, the “well-connected” portion of the network on which
these algorithms were tested is clearly increasing.

The Betweenness baseline requires that the betweenness centrality of the network
be calculated at least once. As a result, the minimum runtime of the Betweenness
algorithm increased 10 fold this year from 2.6 seconds in February to 25.1 seconds in
December. The Trained Greedy algorithm also calculates betweenness several times
before making a recommendation. Unsurprisingly, its runtime was the greatest among
the seven algorithms. However, the Trained Greedy algorithm’s runtime increased
from 105 seconds to 1,042 seconds, a similar factor as Betweenness. Unlike the Greedy
algorithm, which must try all actions before choosing the best one, Trained Greedy
tries a constant number of actions each iteration and therefore scales at the same rate
as the Betweenness algorithm.

In contrast, the total time required for the A2C agent to suggest 10 channels only
increased by a factor of 3 from 0.5 seconds in January to 1.6 seconds in December.
Indeed, all algorithms which did not need to calculate betweenness only increased by
a factor of 3. This factor is the same rate of growth as the number of nodes in the
Lightning Network snapshots. This relation suggests that the reinforcement learning
algorithm, like Degree and Random, scales linearly with the size of the network.

7.3 'Training

The GCN/A2C Agent can be trained in two different modes: repeatedly on a single
instance, or on a new random instance each time. For better comparison between
these modes, the performance during training is plotted relative to the performance
of the Greedy algorithm. At the end of each episode, the betweenness centrality of
the joining node controlled by the Agent is compared to the betweenness of a joining
node controlled by the Greedy Algorithm. This metric indicates how well the Agent
performed relative to the Greedy Algorithm by dividing the former’s result by the
latter.

By measuring performance as a percentage of greedy, it is clear that the A2C agent
learned to generalize between different graphs. Figure shows the performance of
the A2C agent when trained repeatedly on a single instance. This use case is more
analogous to repeatedly solving for MBI on a slowly growing Lightning Network,
or any other large real-world network. The A2C agent quickly approaches greedy
performance when trained on a single graph. These results show that a reinforcement
learning approach would be able to exploit previous work done for solving the MBI
problem.

30

7.4 Future Work

The work of [12] addresses both the MBI problem, and the MRI problem. The former
entails deciding which nodes to open channels with to maximize expected routing
opportunities, and the latter entails, after having opened these channels, deciding
what fees to charge to maximize expected fee revenue. A future work might explore
a combined approach using the method described by [12] to decide fees for channels
suggested by the A2C agent.

Pruning instances of the Lightning Network is a limitation of this work. The
intention is to reduce the memory requirements of the network, decrease noise among
candidates for the GCN/A2C agent, and counteract betweenness inflation caused by
ill-connected pendant nodes. However, in doing so, important information may be
lost from the network. In a future iteration, importance sampling methods [20] may
be able to avoid this bias while still saving on memory resources.

Figures|6.1{and show a disparity of performance in the Degree algorithm as an
attachment strategy. In the random networks used to train the A2C agent, Degree
performs similarly to Betweenness and the agent. However, the Degree algorithm un-
der performs on the real-world networks used to test the agent. Recent work [28] has
called into question the efficacy of using the BA model to evaluate channel manage-
ment programs for the Lightning Network. For example, in their analysis, the authors
found that the Lightning Network is disassortative while BA graphs are practically
neutral. Additionally, the Lightning Network has a larger network diameter, nearly
double that of a similarly sized BA graph, and exhibits a closenesss-preferential at-
tachment while BA graphs are generated with degree-preferential attachment. Since
BA graphs are used to generate training networks in lightning-gym, there may be a
performance gain in using a different model. A future work might explore training the
A2C agent on samples obtained from the Lightning Network, or networks generated
with a preference to closeness.

The bottleneck of the current architecture is the reward function that calculates
the joining node’s betweenness centrality. As mentioned in the Related Works, dy-
namic algorithms for updating betweenness centrality are memory intensive and/or
have not been designed for directed weighted graphs. An architecture with a guaran-
teed approximation lower bound for predicting betweenness could significantly speed
up training of the agent. The reward function would become probabilistic, but it
would still measure the approximate reward of each action. With a guaranteed lower
bound, the agent would still be able to learn which actions lead to better states. This
architecture change could also save time selecting the “best” action in the Trained
Greedy algorithm.

The Trained Greedy algorithm samples multiple actions from the same proba-
bility mapping. The inspiration from this design comes from the sampling methods
described in [18]. A future iteration of this work might explore training multiple A2C
agents to produce multiple probability mappings. Sampling actions from each of the
probability mappings rather than just one could produce a diverse set of actions and
lead to better performance.

The primary objective of the A2C agent is to maximize betweenness improvement.

31

However, one may be able to use different, possibly multiple objectives. Minimizing
objectives such as Gini coefficient, average fees for the network, or diameter, improve
the network. Maximizing metrics such as closeness centrality and number of triangles
make the network personally cheaper to use and rebalance. Betweenness improvement
becomes sparse as a node adds more channels. It may be useful to consider optimizing
other metrics as budget increases. Market context such as a nodes reputation or its
function in the network as consumer, merchant, or router would also be of interest.
One could even imagine automatically reallocating capital by opening and closing
channels. Other works[5] have shown that proper allocation of channels leads to a
faster return on investment.

Furthermore, if this approach were deployed to nodes running LND, they could
combine their models in a federated learning style. One could imagine users identi-
fying what objectives they want optimize for and then entering pools of processing
power to collectively train a model towards these ends.

Copyright© Vincent M. Davis, 2022.

32

Chapter 8 Conclusion

This work provides a background on the Bitcoin Lightning Network including the
scalability problem it solves, and the new challenge that arises, the MBI problem.
Others previous work shows that solving the MBI problem directly leads to greater
expected routing opportunities in the Lightning Network[I7]. Increasing one’s routing
opportunities leads to greater expected revenue. Thus, the motivation for solving the
MBI problem is apparent.

Current attachment strategies have been shown to have drawbacks which essen-
tially amount to trading time for performance. Just the time required to calculate the
betweenness centrality of a node in the Lightning Network has increased significantly.
There exists a need for an algorithm for improving betweenness that can scale with
the Lightning Network.

Reinforcement learning and graph embedding techniques are a powerful method
for solving graph optimization problems. These approaches have been shown to
have low approximation ratios when solving classic problems such as the Maximal
Independent Set and Minimum Vertex Cover problems. Agents can generalize their
learning, allowing the agents to solve problems on graphs magnitudes of size larger
than those on which they were trained.

It has been shown that the MBI problem can be formulated as a MDP, thus
allowing reinforcement learning techniques to be applied to solving it. An Advantage
Actor-Critic model is chosen as the agent, as they are compatible with problems
that have a large action space. However, in order to generalize learning, a graph
embedding technique is also used. This work chose to use GCN'’s as they are able to
capture structural information about a node and it n-hop neighborhood.

A custom developed Lightning Network environment, lightning-gym, is used to
train the A2C agent on random graphs and evaluate it against six other algorithm
for suggesting channels in the Lightning Network. Through experimentation, it was
shown that an Advantage Actor Critic model can learn a greedy heuristic to suggest
channels that maximize a joining node’s betweenness centrality. After training on
small randomly generated graphs for 100 episodes, the agent performs competitively
with the current selection algorithm implemented in the LND autopilot as well as four
other baselines. Furthermore, this work showed that the runtime of this reinforcement
learning algorithm scales linearly with the size of the Lightning Network. Using a
trained A2C agent in combination with a GCN for node embedding to select nodes
is a fast, low-resource algorithm for improving one’s betweenness centrality in the
Lightning Network.

Copyright© Vincent M. Davis, 2022.

33

Bibliography

1]

[10]

[11]

[12]

A. Antonopoulos, O. Osuntokun, and R. Pickhardt. Mastering the Lightning
Network: A Second Layer Blockchain Protocol for Instant Bitcoin Payments.
O’Reilly Media, Incorporated, 2022.

b}

A. M. Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, Inc.”, 2014.

M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. Fast exact computation
of betweenness centrality in social networks. In 2012 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pages 450-456.
IEEE, 2012.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Re-
lational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

F. Béres, I. A. Seres, and A. A. Benczir. A cryptoeconomic traffic analysis of
bitcoin’s lightning network. arXiv preprint arXiw:1911.094532, 2019.

E. Bergamini, P. Crescenzi, G. D’angelo, H. Meyerhenke, L. Severini, and Y. Ve-
laj. Improving the betweenness centrality of a node by adding links. Journal of
Ezperimental Algorithmics (JEA), 23:1-32, 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. Openai gym, 2016.

M. Conoscenti, A. Vetro, and J. C. De Martin. Cloth: A lightning network
simulator. SoftwareX, 15:100717, 2021.

M. Conoscenti, A. Vetro, and J. C. De Martin. Hubs, rebalancing and service
providers in the lightning network. IEEE Access, 7:132828-132840, 2019.

H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing
Systems, 2017-Decem:6349-6359, 2017.

G. D’Angelo, L. Severini, and Y. Velaj. On the maximum betweenness improve-
ment problem. FElectronic Notes in Theoretical Computer Science, 322:153-168,
2016.

O. Ersoy, S. Roos, and Z. Erkin. How to profit from payments channels. In
International Conference on Financial Cryptography and Data Security, pages
284-303. Springer, 2020.

34

[13] L. C. Freeman. A set of measures of centrality based on betweenness, 1977.

[14] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[15] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical computer science, 38:293-306, 1985.

[16] A. Kazerani and S. Winter. Can betweenness centrality explain traffic flow. In
12th AGILE international conference on geographic information science, pages
1-9, 2009.

[17] K. Lange, E. Rohrer, and F. Tschorsch. On the impact of attachment strate-
gies for payment channel networks. In 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 1-9. IEEE, 2021.

[18] Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph con-
volutional networks and guided tree search. Advances in neural information
processing systems, 31, 2018.

[19] M. Littman. Markov decision processes. In N. J. Smelser and P. B. Baltes, edi-
tors, International Encyclopedia of the Social Behavioral Sciences, pages 9240—
9242. Pergamon, Oxford, 2001.

[20] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh. Learning
heuristics over large graphs via deep reinforcement learning. 3 2019.

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928-1937. PMLR, 2016.

[22] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[23] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

[24] R. Puzis, Y. Elovici, and S. Dolev. Finding the most prominent group in complex
networks, 2007.

[25] E. Rohrer, J. Malliaris, and F. Tschorsch. Discharged payment channels: Quanti-
fying the lightning network’s resilience to topology-based attacks. In 2019 IFEE
European Symposium on Security and Privacy Workshops (EuroSEPW), pages
347-356. IEEE, 2019.

[26] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018.

[27] W. To. Centrality of an urban rail system. Urban Rail Transit, 1(4):249-256,
2015.

35

[28] Z. Wang, R. Zhang, Y. Sun, H. Ding, and Q. Lv. Can lightning network’s
autopilot function use ba model as the underlying network? Frontiers in Physics,
9, 2022.

[29] M. Welling and T. N. Kipf. Semi-supervised classification with graph convo-
lutional networks. In J. International Conference on Learning Representations

(ICLR 2017), 2016.

[30] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229-256, 1992.

[31] P. Zabka, K.-T. Foerster, S. Schmid, and C. Decker. A centrality analysis of the
lightning network. arXiv preprint arXiv:2201.07746, 2022.

36

Vita

Vincent Michael Davis

Place of Birth:
e Columbus, NC
Education:

e Berea College, Berea, KY
B.A in Computer Science, Aug. 2019
B.A in Mathematics, Aug. 2019
cum laude

Professional Positions:
e Graduate Teaching Assistant, University of Kentucky Fall 2019-Spring 2022

e Google AMLI Bootcamp Teaching Assistant, University of Kentucky Summer
2021

37

	Learning a Scalable Algorithm for Improving Betweenness in the Lightning Network
	Recommended Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 The Lightning Network
	2.1.1 Channels
	2.1.2 Liquidity
	2.1.3 Routing Nodes
	2.1.4 Fee Policy
	2.1.5 Hash Time Lock Contracts
	2.1.6 Network Model
	2.1.7 Attachment Strategies

	2.2 Betweenness Centrality
	2.3 Reinforcement Learning

	3 Related Works
	3.1 Attachment Strategies
	3.1.1 Greedy Algorithm
	3.1.2 Centrality-based Selection

	3.2 Graph Embedding Techniques
	3.3 Lightning Network Simulators
	3.3.1 CLoTH
	3.3.2 LNTrafficSimulator
	3.3.3 TimeMachine

	4 Methods
	4.1 Graph Representation
	4.2 Markov Decision Process Formulation
	4.3 Actor-Critic Model
	4.3.1 Policy Network
	4.3.2 Value Network

	4.4 Training Architecture
	4.4.1 Network Training

	5 Experiments
	5.1 Baselines
	5.2 lightning-gym
	5.3 Experiment 1 - Setup
	5.4 Experiment 2 - Setup
	5.5 Experiment 3 - Setup

	6 Results
	6.1 Experiment 1 - Results
	6.2 Experiment 2 - Results
	6.3 Experiment 3 - Results

	7 Discussion
	7.1 Performance
	7.2 Scalability
	7.3 Training
	7.4 Future Work

	8 Conclusion
	Bibliography
	Vita

