
www.nature.com/scientificreports/

8SCIENtIFIC REPORTS | 7: 17059  | DOI:10.1038/s41598-017-17134-2

Figure 6. (a) Comparison of the domain architecture of Dicer2 (Dcr2) proteins: The domains in Dcr2 proteins 
were identified by ScanProsite. The species and their accession numbers are: Aedes aegypti, Aa, AAW48725.1; 
Drosophila melanogaster, Dm, NP_523778.2; Schistocerca gregaria, Sg, AFY13245.1; Halyomorpha halys, 
Hh, XP_014275311.1; Acyrthosiphon pisum, Acp, XP_016665093.1; Agrilus planipennis, Ap, AJF15703.1; 
Tribolium castaneum, Tc, NP_001107840.1; Leptinotarsa decemlineata, Ld, Dcr2a-AKQ00041.1, Dcr2b-
AKQ00042.1; Bombyx mori, Bm, NP_001180543.1; Spodoptera litura, Sl, AHC98017.1; and Manduca sexta, 
Ms, JH668653.1. (b) Comparison of domain architecture of Argonaute2 (Ago2) proteins: The domains in 
Ago2 proteins were identified by ScanProsite. The species included in the above analysis and their accession 
numbers are: Tribolium castaneum, Tc, Ago2a-NP_001107842.1, Ago2b-XP_008192985.1; Leptinotarsa 
decemlineata, Ld, Ago2a-AKQ00044.1, Ago2b-AKQ00045.1; Agrilus planipennis, Ap, XP_018319532.1; Locusta 
migratoria, Lm, BAW35368.1; Halyomorpha halys, Hh, Ago2a-XP_014271332.1, Ago2b-XP_014287702.1; 
Aedes aegypti, Aa, XP_011493002.1; Drosophila melanogaster, Dm, NP_648775.1; Bombyx mori, Bm, 
NP_001036995.2; Spodoptera litura, Sl, AHC98010.1; Helicoverpa armigera, Ha, ADL27914.1; and Manduca 
sexta, Ms, JH668437.1. (c) Comparison of the domain architecture of R2D2 proteins: The domains in R2D2 
proteins were identified by SMART. The species included in the above analysis and their accession number are: 
Tribolium castaneum, Tc, A9QW22; Leptinotarsa decemlineata, Ld, LDEC002591-PA; Agrilus planipennis, Ap, 
XP_018328507.1; Drosophila melanogaster, Dm, NP_609152.1; Aedes aegypti, Aa, AJF11544.1; Bombyx mori, 
Bm, NP_001182007.1; Spodoptera litura, Sl, AHC98011.1; Manduca sexta, Ms, JH668281.1; and Halyomorpha 
halys, Hh, XP_014285641.1. (d) Comparison of domain architecture of Sid like protein (Sil) proteins: The 
domains in Sil proteins were identified by SMART. The species included in and their Sil genes accession 
numbers are: Manduca sexta, Ms, SilA-JH668306.1, SilB -JH668472.1, SilC-JH668472.1; Spodoptera litura, 
Sl, SilA-AHC98014.1, SilB-AHC98013.1, SilC-AHC98015.1; Bombyx mori, Bm, SilA-NP_001106735.1, SilB-
BAF95807.1, SilC-NP_001106736.1; Tribolium castaneum, Tc, SilA-NP_001099012.1, SilB-NP_001103253.1, 
SilC-NP_001099128.1; Leptinotarsa decemlineata, Ld, SilA-ALG36906.1, SilC-ALG36907.1; Agrilus planipennis, 
Ap, SilA-APLA015140-PA, SilC-APLA000678-PA; Acyrthosiphon pisum, Acp, SilC-XP_001951907.1; 
and Schistocerca gregaria, Sg, SilC-X2J861. (e) Comparison of domain architecture of dsRNase proteins: 
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degradation of dsRNA. Both the salivary secretions and body fluid from aphids were able to degrade the dsRNA, 
and the administered dsRNA was not able to provoke a response in the expression of the siRNA core machinery 
genes. The dsRNA-degrading nucleases likely contribute to poor RNAi efficiency in hemipteran insects52.

Several previous reports suggest that dipteran (mosquitoes and flies) insects are sensitive to dsRNA or siRNA 
mediated gene silencing13,55–57. The processing of injected dsRNA into siRNA was observed in A. aegypti and M. 
domestica but not in D. melanogaster (Fig. 4b). A high concentration of the body fluid from all these insects was 
required for the dsRNA degradation (Fig. 4a). In D. melanogaster, dicer1 but not dicer2 is essential for miRISC 
translational repression58. The genomes of D. melanogaster and two mosquito species (Anopheles gambiae and A. 
aegypti) also do not contain sid-1-like genes35.

The injection of dsRNA/siRNA triggers silencing of the target gene in orthopteran insects (locusts and crickets)59. 
Silencing of development and molting related genes (Lm-TSP and Chitin synthase 1) in locusts induced mortality60,61. 
We detected siRNA bands in the total RNA isolated from dsRNA injected S. admirabilis and G. texensis. These data 
support the previous reports on the efficient RNAi upon injection of dsRNA in orthopteran insects (Fig. 5b). The con-
centrations of hemolymph required to degrade dsRNA varied drastically in these insects; the CB50 value for S. admi-
rabilis are lower (2.47 mg/ml) compared to that of G. texensis (11.02 mg/ml) (Fig. 5a). Only injection, but not feeding 
dsRNA caused knockdown of a target gene in case of S. gregaria25 and L. migratoria26. Expression of non-specific 
nucleases in the gut of S. gregaria was suggested as the reason for inefficient feeding RNAi in S. gregaria25. Lower 
levels of Dcr2 or Ago2 have been suggested as a limiting factor for reduced RNAi observed in the reproductive tissues 
of S. gregaria62. Injection but not feeding dsRNA induces robust RNAi response in L. migratoria63–65.

Published reports and the data included in this paper suggest that dsRNA degradation by dsRNases, transport 
of dsRNA into and within the cells and processing of dsRNA to siRNA are among the major contributing factors 
for an inefficient RNAi, in insects. Research aimed at uncovering the molecular basis of these mechanisms as 
well as developing the methods to overcome these limitations should help in improving RNAi efficiency and 
wide-spread use of this technology in the development of novel methods for controlling pests and disease vectors.

Methods
Collection of insects. The insects used in the studies were collected either from the University Farm 
(University of Kentucky) or laboratory maintained cultures. In the present study, a total of 37 insect species 
from five orders (Coleoptera, Lepidoptera, Hemiptera, Diptera, and Orthoptera) were tested. The identification 
of farm-collected insects was done in the Department of Entomology, University of Kentucky, Lexington, USA.

Collection of body fluid and gel retardation assay. Body fluid was collected from each insect except in 
the case of lepidopteran larvae, where hemolymph was collected into microcentrifuge tubes containing phenylth-
iourea dissolved in 1XPBS and kept on ice to prevent melanization. Hemocytes were removed by centrifugation 
at 13,000 rpm for 10 min at 4 °C. The supernatant was transferred to a new tube and stored at −20 °C for dsRNA 
degradation assay as described previouly26,33,43. Protein concentrations were estimated using Bradford’s assay66. 
Different dilutions of body fluid were prepared based on total protein concentration. The range of serially diluted 
body fluid used was 0.007 to 16 mg/ml. 300 ng of dsGFP was incubated with the body fluid for 1hr at room tem-
perature. The “concentration of body fluid required to degrade 50% of dsRNA” (CB50) was calculated for different 
insects using probit analysis67. Samples were mixed with loading dye and run on a 1% agarose gels and the gels 
were stained with ethidium bromide. The dsRNA was visualized with an AlphaImager™ Gel Imaging System 
(Alpha Innotech, San Leandro, CA) under UV light. The results were analyzed using the Image-J software, and 
the relative band intensity was calculated as described previously68.

Synthesis of 32P UTP labeled and unlabeled dsGFP. 32P UTP labeled and unlabelled dsGFP were syn-
thesized as described previously33. The quality and quantity of dsGFP were checked by agarose gel electrophoresis 
and NanoDrop-2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA), respectively. The radio-
activity of the labeled dsGFP was measured using a scintillation counter.

Injection and feeding of 32P UTP labeled dsRNA. Insects were starved for 2–3 hr and chilled on ice, 
dsRNA containing about 8 × 106 counts per minute (CPM) was injected into insect using an insulin syringe. After 
injections, insects were reared on their respective diets in plastic cups. Total RNA was isolated from these insects. 
RNA samples were run on 16% polyacrylamide-8M Urea gels. Gels were washed, fixed (10% methanol and eth-
anol), and dried in a gel drier. Dried gels were exposed overnight to a phosphor-Imager screen, and the screen 
was scanned in a phosphorImager (Typhoon 9500, GE Healthcare Life Sciences). Details on the methods used for 
injection and feeding of dsRNA to different insects are included Supplementary Table S2.

The domains in dsRNase proteins were identified by SMART. The species and their dsRNase accession 
numbers: Locusta migratoria, Lm, dsRNase-KX652408; Schistocerca gregaria, Sg, dsRNase1-AHN55088, 
dsRNase4-AHN55091; Halyomorpha halys, Hh, dsRNase-XP_014282547; Tribolium castaneum, Tc, 
dsRNase1-XP_970494, dsRNase2-XP_015840884; Agrilus planipennis, Ap, dsRNase1-XP_018323185, 
dsRNase2-XP_018334885, dsRNase3-XP_018331412; Leptinotarsa decemlineata (Ld) dsRNase1-KX652406, 
dsRNase2-KX652407; Acyrthosiphon pisum, Acp, dsRNase-XP_003242653; Drosophila melanogaster, Dm, 
dsRNase1-AAF49208, dsRNase2-AAM29515; Aedes aegypti, Aa, dsRNase-XP_001651912, Bombyx mori, Bm, 
dsRNase1-XP_004922835, dsRNase2-BAF33251; Spodoptera littoralis, Sl, dsRNase- CAR92522, Spodoptera 
frugiperda, Sf, dsRNase-CAR92521, and Manduca sexta, Ms, dsRNase-JH668361.1.
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Bioinformatics Analysis. The sequences of RNAi core machinery proteins (Dicers, Argonauts, R2D2, Sil 
and dsRNase) from different insects were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/), UniProt (http://
www.uniprot.org/) and i5k databases (https://i5k.nal.usda.gov/). In some cases, the sequences were obtained by 
a BLAST search in the i5K workspace @ NAL platform (http://i5k.nal.usd.gov/webapp/blast/) using annotated 
RNAi core machinery gene sequences of Tribolium castaneum as a query. To analyze the domain architecture 
in the protein sequences of Dicers and Argonauts genes, Scan-Prosite (http://prosite.expasy.org/scanprosite/), a 
database of protein families and domains was used69. SMART (simple modular architecture research tool) anal-
ysis program (http://smart.embl-heidelberg.de/)70,71 was used to analyze domain architecture of R2D2, Sid and 
dsRNase family proteins. The CLC Genomics Workbench and the Pfam database at http://pfam.sanger.ac.uk/ and 
http://www.clcbio.com/ resources72 were also used in the analyses (Table 1).
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