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ABSTRACT OF DISSERTATION 

 
 
 

THE ROLE OF FEED ADDITIVES TO MITIGATE THE EFFECT OF STRESSORS 
ON GROWTH, DIGESTIBILITY, INTESTINAL MORPHOLOGY, PERMEABILITY, 

AND IMMUNE RESPONSE IN POULTRY 
 

 Three experiments were conducted to evaluate the interactive effects of dietary 
supplements in birds exposed to different stressors, on growth performance, nutrient, and 
energy digestibility, antioxidant status, intestinal permeability, and immune status. The 
first study was conducted to evaluate the effect of a commercially available algae-based 
antioxidant, containing Selenium yeast (EconomasE™, EcoE) and two inorganic sodium 
sources (NaCl and NaCl+NaHCO3) on growth performance, nutrient and energy 
digestibility and utilization, antioxidant, and immune status of broilers challenged with oral 
gavage of dexamethasone (DEX). The inclusion of either of the sodium sources did not 
affect plasma corticosterone and antioxidant status levels, growth performance, and the 
relative weights of the lymphoid organs. Homeostasis was altered with DEX, evident in 
the increased (P < 0.05) levels of corticosterone in the plasma, reduced (P < 0.05) growth 
performance, and nutrient digestibility. The EcoE supplementation did not mitigate the 
performance parameters however, its supplementation in the diet increased (P < 0.05) 
nutrient and energy utilization and decreased corticosterone serum levels.  

The objective of the second study was to evaluate the effect of EconomasE™ (0 or 
0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+NaHCO3) in layers exposed 
to different environmental temperatures. Dietary treatment did not improve performance, 
egg quality, intestinal morphology, keel bone, bone-breaking strength, and HSP 70 and 90 
during ET1 and ET2. Exceptions to this were the increase (P < 0.05) in the albumen height 
and Haugh unit with EcoE and NaCl+NaHCO3 during TN2 and EcoE alone during the ET2 
regimen, which suggests that the supplementation can improve the fresh appearance of the 
egg during ET conditions. Similarly, NaCl+NaHCO3 as the sodium source helped limit the 
effects of respiratory alkalosis by reducing Cl- levels and increasing HCO3

- during the ET 
regimen. In normal temperature conditions, EcoE and NaCl+NaHCO3 diet were able to 
improve (P < 0.05) villus height and villus height: crypt depth ratio. 

The third study evaluated the effect of DEX and coccidia vaccine challenge in 
broiler chickens fed diets supplemented with or without Natustat™ (a natural plant-derived 
proprietary product composed of at least one yeast-derived MOS plus organic mineral 
nutrients and plant extracts) on growth performance, nutrient and energy digestibilities and 
utilization, intestinal barrier integrity, and immune response. Throughout the experiment, 
birds were fed a standard corn-SBM diet supplemented with or without Natustat™ at 1 



 

 
 

g/kg. Within each diet group, the birds were randomly assigned to four treatments: CON 
(no-challenge), dexamethasone (DEX), coccidia vaccine (Cocci), and a combination of 
Cocci and DEX (CocciDex) challenge. The DEX and CocciDex groups received 
dexamethasone in the feed at 1.5mg/kg of diet for 7 days, while the Cocci and CocciDex 
groups were orally gavaged with 20x coccidia vaccine. The DEX and CocciDex-challenge 
were able to induce stress and reduce performance, digestibility, intestinal permeability, 
and immune response. The coccidia vaccine challenge did not affect performance. 
However, total tract nutrient and energy utilization and the jejunal mRNA expression of 
(TLR4) and pro-inflammatory cytokines 7-days post-challenge, were impaired (P < 0.05). 
Finally, Natustat™ supplementation did not mitigate the negative effect of the stressors on 
performance, nutrient and energy digestibility and utilization, and intestinal morphology 
and permeability. The supplementation had a tendency to increase the expression of anti-
inflammatory cytokine (IL-10) 7-days post-challenge. It also increased IL-10 and 
decreased the mRNA expression of IL-6, 14-days post-challenge.   

In conclusion, stress was induced in the birds especially with DEX and some with 
coccidia challenge and heat stress, and the supplements had a limited effect in mitigating 
the effect of the stressors.  

 
KEYWORDS: Dexamethasone, coccidia challenge, intestinal permeability, immune 

response, poultry, tight junction.  
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CHAPTER 1.  LITERATURE REVIEW 

1.1 POULTRY PRODUCTION 

The popular image of American farming with cowboys rounding up steers on wide-

open ranches or countryside backyard farming has been replaced with intensive farming, 

where tens of thousands of animals are housed in a controlled environment. The poultry 

industry is a typical example of the transformation of farming into a vertically integrated 

enterprise. The vertical integration enterprise has allowed poultry to remain the largest 

sector of the meat industry in terms of count and pounds produced (The meat institute, 

2017). The US has led the world in large-scale farming, progressively using intensive 

poultry farming to produce meat and egg for human consumption - representing the largest 

broiler chicken industry in the world, and the second-largest producer of egg products 

(FAO, 2019). In concert, all over the world, the livestock sector is rapidly becoming an 

organized market chain contributing 17% to kilocalorie consumption and 33% to protein 

consumption worldwide (Thornton, 2010). This is driven by the increasing population, 

greater purchasing power, and urbanization (Speedy, 2003; Thornton, 2010). 

Accompanying this growth, the poultry industry is faced with an enormous 

challenge to maintain the health and well-being of the birds. Exposure to different sources 

of stress is detrimental to the health and well-being of the bird, which they are prone to in 

intensive farming. Even in the best controlled and state-of-the-art facility, birds can still 

be affected by environmental stress factors like extreme cold, heat, and humidity; 

management stress like light intensity, litter quality, beak trimming, stocking density, and 

poor ventilation; nutritional stress like nutrient excesses, nutrient inadequacies, digestive 

disorders, and feed intake problems; physical stress like catching and transportation; social 
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stress like overcrowding, lack of uniformity in body weight; and biological/pathological 

stress like viral, bacteria, fungi, and protozoa infections. (Virden et al., 2007). These stress 

factors are exacerbated in farms with poor biosecurity and management practices, 

predisposing the birds to excessive activation of their immune system and a compromised 

gut. As such, immune dysregulation, gut barrier dysfunction, cellular oxidative stress, 

malabsorption, nutrient digestibility maladies, decreasing productivity, and increased 

susceptibility to other infectious diseases ensue (Quinteiro-Filho et al., 2012). 

Stress can impinge on animal productivity and diminish animal welfare. Producers, 

veterinarians, and production animal specialists can all cite specific economic endpoints 

that are directly related to the incidence and intensity of stress and disease-related factors 

in livestock and poultry. Consequently, much effort and expense are directed toward 

minimizing the incidence of disease in these animals. Considerable advances have been 

achieved over the years to control infections or exposure to unnecessary stressors in 

poultry production. A combination of vaccination programs, drug-therapy, development 

of disease-resistant bird strains, optimized nutrition, and adequate biosecurity (NRC, 

1999) has made it possible to achieve high levels of productivity in the intensive 

production system. However, we are dealing with a multiplicity of stressors that coalesce 

over time to reduce the overall productivity of the animal. For infectious diseases, 

bolstering specific immunity against pathogens by vaccinations is helpful, but vaccines are 

expensive, not only to buy and administer but in terms of lost productivity due to the cost 

associated with the immune response (Cook, 1999). Moreover, for other stress factors that 

cause low morbidity but still affect animal productivity, vaccination is not an option. Thus, 

we rely on the bird’s immune system to thwart challenges from most pathogens. Hence, 
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the need to understand the chicken’s ability to cope with stress while maintaining a steady 

state of functioning is important.  

Maintaining healthy flocks and strong immune systems should minimize losses 

associated with various diseases and other stressors. Healthy animals are generally 

characterized as having a well-functioning intestinal tract that is efficient at protection 

against insults in feed, water, and the bird’s environment, transportation of feed and 

digesta, digestion and absorption of nutrients, as well as excretion (of undigested and 

unabsorbed components of the feed, and uric acid). Growth-promoting antibiotics have 

been a major tool in modulating host-pathogen interactions and limiting clinical and 

subclinical bacterial infection in confined animal production. However, regulatory 

pressures to limit antibiotic use in poultry production have limited the use of AGPs. 

Currently, it is unlikely that there is any single substance that could replace the function 

of feed antibiotics especially since the growth benefit found from feeding antibiotics is 

achieved through its many different effects on the GIT. A potential single substance 

intended to replace the role of antibiotics in farm animals will be subject to the intense 

scrutiny that antibiotics have been subjected to over the years and, would have to be 

accompanied by a combination of nutritional, management, husbandry, and sustainable 

practices. Hence, the appropriate strategy would be to increase the levels of certain 

nutrients in the diet to accommodate for nutritional strategies needed during diseased or 

stressed periods. The objective would be to target different goals including improving 

nutrient digestion and absorption, regulating the gut microbiota to more favorable bacterial 

species, and modulate the immune system to enhance disease resistance.  
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The focus of this review is to summarize the literature about the effect of stress on 

the animal's health and well-being. Special emphasis is placed on the effect of the stressors 

on performance, nutrient and energy digestibility and utilization, intestinal morphology, 

intestinal permeability, immune response. This dissertation will address the 

interrelationships of stress and nutrition in chickens, with a specific focus on the benefits 

of adding feed additives to the diet to ameliorate the negative effect of stress. 

1.2 THE CONCEPT OF STRESS 

Living organisms survive by maintaining a relatively stable equilibrium termed 

homeostasis that is constantly challenged by intrinsic or extrinsic forces, real or perceived 

insults, referred to as stressors. This steady-state is constantly maintained by a complex 

repertoire of the physiologic and behavioral central nervous system and peripheral adaptive 

responses, which attempt to counteract the effects of the stressors to maintain homeostasis 

(Chrousos and Gold, 1992). The concept of stress has been discussed in the scientific 

community for decades. In humans, stress is often described as a sequence of events 

associated with several perturbations such as infections, a variety of medical conditions, 

and emotional reactions (Tucker-Ladd, 2000; De Villers, 2003). These stress factors are 

mediated by brain perception that leads to biochemical, physiological, behavioral, and 

psychological changes. In animal husbandry, stress is conceived as a reaction impinged on 

animals from adverse environmental factors such as physical (handling, transport), 

psychological (fear, frustration), or biological stress which, may lead to many unfavorable 

consequences (Burkholder et al., 2008; Al-Aqil et al., 2009, Vicuña et al., 2015). These 

could range from discomfort, decrease in production, pathological losses, and eventually 

death. From an evolutionary standpoint, the ability of an organism to cope with stressors 
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gives a selective advantage, increasing their ability to cope with situations that require 

action or defense. Thus, adaptability and resistance to stress are fundamental prerequisites 

for life, and every vital organ and function participate in them (Selye, 1950). 

1.2.1 Historical overview of stress concepts 

Han Selye, in his 1973 paper, wrote, "everybody knows what stress is and nobody 

knows what it is." Its meaning and interpretation have eluded us over time because the 

concept is multidimensional and composite. Vaguely, it is often described as an agent, 

process, or a response (Le Moal, 2007). Implicitly, it implies a substantial imbalance within 

the physiological systems and the environment, and it seems to characterize a process 

leading to disease (Le Moal, 2007). Historically, investigations on stress response have 

always been categorized in terms of the physiological response to bodily injury. Bernard 

(1867) introduced the concept of a milieu - interieur as the ability of an organism to 

maintain a fluid matrix at optimal setpoints, independent of the external environment 

(Goldstein and Kopin, 2007; Antinori, 2017). Cannon, (1929) coined the term 

“homeostasis” to describe the maintenance of several physiological variables within 

acceptable ranges. Continuing in the tradition of Bernard and Cannon, Selye (1936) 

ventured on a quest to understand the concept of stress on the body. Selye redefined the 

word stress, from its meaning in physics as a force that puts pressure or strain on something 

to deform its shape and the opposing force that creates a resistance to restore the unstressed 

state. His definition of stress does represent “the nonspecific response of the body to any 

demand upon it” (Selye, 1973). His primitive experiments on the effect of stress conditions 

(e.g., fasting, extreme cold, operative injuries, and drug administration) on rats led to the 

publication of his historical article titled “A syndrome produced by diverse nocuous 
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agents”. The characteristics manifestation of the response observed includes a rapid 

decrease in the size of lymphoid organs, enlargement of the adrenal gland, tissue 

catabolism, hypoglycemia, gastro-intestinal erosions, and discharge of secretory granules 

from the adrenal cortex, among others. He concluded that the effect of acute non-specific 

agents produces a response independent of the nature of the damaging agent, and these 

adaptive responses represent the animals’ ability to alleviate physiological stress. This 

adaptive response, he later described as the "General Adaptation Syndrome" (GAS), 

develops in three stages: the alarm, resistance, and exhaustion stage (Selye, 1950).  

The GAS theory describes the response of stress to the activation of adrenocorticoid 

and pituitary hormones, challenging the pre-existing theory of specific etiology, which 

states that a specific disease must arise from a specific pathogen. The alarm stage is the 

initial response to a stressor that animal exhibits. Similar to this phenomenon is the 

characteristic physiological response known as the fight/flight response, first described by 

Cannon (1929). These actions are mediated by the release of catecholamines, which 

stimulate immediate energy production that allows the animal to cope with emergencies. 

The downstream effect alters various homeostatic processes, including regulatory 

processes affecting blood pressure, circulating levels of glucose, electrolyte balance, 

distribution of blood flow, and membrane permeability (De Villers, 2003). If the stressor 

is of moderate intensity and the duration is short, reversible responses ensue where the 

animal’s physiological state automatically returns to normal. As the name implies, the 

resistance stage serves as an adequate mechanism for adaptation, where the body continues 

to fight the stress long after the effects of the "fight or flight" response have worn off. At 

this point, the stress hormone, corticosterone, is released and inhibits glucose and fatty acid 
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storage to stimulate the mobilization of energy substrates such as glucose, amino acids, and 

free fatty acids from storage sites (muscles, fat tissue, and liver). A shift of energy 

substrates from the storage sites to the bloodstream, although short-term, helps to resist 

stress.  

The long-term effect of the resistance phase affects metabolism and can result in 

bodyweight loss due to general tissue catabolism (Selye, 1978; Plytycz and Seljelid 2002). 

The stage of exhaustion occurs if the stressor persists, which triggers the depletion of 

energy stores. According to Selye (1950), the degree of adaptability of any animal depends 

on the amount of "adaptation energy" which is determined by the level of resources 

available to the animal. This depletion of adaptation energy is often accompanied by 

enhanced activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the onset 

of pathophysiological changes in the body, ultimately resulting in death. This concept not 

only emphasizes the inadequacy of any organ system under stress to succumb to the lethal 

stage of exhaustion but the failure of adaptations within these systems to maintain 

homeostasis over the long term. This inefficiency revolves around increased secretion of 

glucocorticoids by the adrenal cortex, to the response and adaptation towards the stress 

factors. 

1.2.2 Physiological responses to stress 

The central neurochemical circuitry responsible for activating the stress system has 

been studied extensively. Based on the literature, an animal confronted with a stressful 

situation, in this case, transportation, overcrowding, prolonged irritation, diseases, etc., 

responds by initiating what is called a “stress cascade.” (Asres and Amha , 2014) First, the 

stress system relays stressor-relevant information to the brain, which recruits both neural 
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(autonomic nervous system; ANS) and neuroendocrine (hypothalamic-pituitary-adrenal; 

HPA) systems to respond and minimize the cost to the organism while maintaining 

homeostasis (Charmandari et al., 2005; Ketchesin et al., 2017). As part of the ANS, the 

sympathetic nervous system (SNS) enables the body to mobilize resources necessary to 

meet the increased metabolic demand associated with fight and flight. In conjunction, the 

nervous signals are relayed to the paraventricular nucleus (PVN) of the hypothalamus, the 

anterior lobe of the pituitary gland, and the adrenal gland, all of which are described as the 

principal effectors of the stress response (Smith and Vale, 2006; Antinori, 2017). These 

collective structures are referred to as the HPA axis. The sequence of events starts with 

specific neurons in the PVN of the hypothalamus signaling the release of a corticotropin-

releasing hormone (CRH) into the hypophyseal portal system. The CRH travels to the 

anterior pituitary and stimulates the pituitary corticotropes to release adrenocorticotropin 

hormone (ACTH) into the blood. The principal target for the circulating ACTH is the 

adrenal cortex, where it stimulates the synthesis and release of glucocorticoids (GC), which 

together with catecholamines produced by the SNS, are considered to be a major stress 

hormone (Figure 1.1, Matteri et al., 2000; Charmandari et al., 2005).  

The GC - released as cortisol in humans and as corticosterone (CORT) in avian 

species, passes through the blood barriers, crosses plasma membranes, and connects with 

intracellular receptors to initiate the consequences of stress. This occurs through the brain 

and body via the neuroendocrine, autonomic, immune, and metabolic systems (McEwen, 

2013). In turn, these systems are responsible for either the successful adaptation of the body 

or the development of pathologies depending on the severity. The association between 

stress and the endocrine function is the result of an evolutionary process that has shaped 
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the stress response. The released GCs have a pleiotropic effect, including anti-

inflammatory or immunosuppressive effects, undesired metabolic effect, suppressing bone 

formation, and influencing glucose uptake (McEwen, 2013). These effects are exerted 

ubiquitously through widely distributed intracellular receptors. In circulation, GCs are in 

equilibrium between bound and unbound forms. According to Hammond et al. (1987), 

circulating GCs are reversibly bound to a specific serum glycoprotein called transcortin or 

corticosteroid-binding globulins (CBG), and to a lesser extent to albumin, a low-affinity 

nonspecific binding protein. The CBGs are produced primarily in the liver, and low levels 

have been detected in the thymus, lung, and kidney (Southwick, 1982; Hammond et al., 

1987). Bound CORT is physiologically inactive and acts as the rate-limiting step of a stress 

response.  

When the stress response is activated, the proportion of the free CORT increases, 

which enters into target cells via simple diffusion mechanisms (Puvadolpirod, 1998), bind 

with unoccupied cellular receptors and alter enzymatic and nucleic acid activity 

(Thompson and Lippman, 1974). Most, if not all, of the cellular and tissue responses to 

corticoids, may be mediated via intracellular GCs, which have been found in numerous 

tissues including liver, lung, kidney, gut, heart, muscle, brain, skin, fibroblasts, and 

peripheral leukocytes (Thompson and Lippman, 1974; Southwick, 1982). Corticosteroids 

bind to the receptor proteins in the cytoplasm and form steroid-receptor complexes 

(Southwick, 1982), which undergo a conformational change and moves into the nucleus. 

The steroid-receptor complex binds to target sites in DNA initiating gene transcription, 

where it directs the synthesis of specific mRNAs (Southwick, 1982; Odhiambo, 2004) 

leading to the synthesis of enzymes/protein that alter cell function.  
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As described earlier, a stimulus–cognition–response process is initiated by stress 

factors perceived to be excessively demanding, which disrupts homeostasis of the body. It 

elicits a coordinated physiological response within the body in an attempt to reestablish 

homeostasis. The biomedical sciences have long been concerned with how animals and 

humans alike, respond to, and tolerate environmental stress (Selye and Fortier, 1949). Of 

importance is the fact that the response to a stressor does not categorically increase or 

decrease with the level of stress. In acute stress responses, adaptation, and survival via 

biological responses are promoted. By maintaining homeostasis during the stress response, 

Sterling and Eyer (1988) referred to this adaptation as “allostasis” or “stability through 

change.” The adaptive outcomes developed via biological responses are evident, presenting 

a combination of the four general biological defense responses: the behavioral response, 

the autonomic nervous system response, the neuroendocrine response, and the immune 

response (Moberg 2000) that help the animal to manage the situation. 

On the other hand, the potential for a cumulative overload in chronic stress is 

evident when the allostatic systems are either overstimulated or underperforming. This 

leads to repeated and perhaps persistent activation of the biological response essential for 

adaptation but then transitions into maladaptation and dysfunction (McEwen, 1998; 

McVicar et al., 2014). McEwen (1998, 2007) identified this exaggerated activity as an 

imposition of excessive allostatic load on the systems that are creating stability during the 

stress, such as the autonomic nervous system and the hypothalamus-pituitary-adrenal axis. 

The consequence of this load exacerbates pathophysiology through the same systems that 

are dysregulated.  
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Stress response, whether caused by physical or neurogenic factors, is meant to be 

of short or limited duration. The time course for the response usually involves a wave of 

enhanced secretion of catecholamines (epinephrine and norepinephrine) from the SNS, the 

activation of the HPA axis, among other things. Subsequently, the secreted hormones exert 

most of their effects on targeted tissues, where they bring about the significant 

physiological changes in response to the stressor (Puvadolpirod, 2000a-d; Sapolsky, 2000). 

According to Sapolsky (2000), these changes include, decreasing feed intake, mobilizing 

stored energy and inhibiting subsequent storage, suppressing inflammatory mediators, and 

inhibiting reproductive physiology (Figure 1.2). Depending on the severity of the exposure, 

the biological cost might be negligible or minimal. For example, if an animal is stressed, 

the catecholamine secretion utilizes the glycogen stores to readily utilizable glucose for 

metabolic use. Once the stressor is alleviated, the glycogen stores are quickly replenished 

by gluconeogenesis to pre-stress levels, and the stress effect becomes inconsequential to 

the animal’s welfare (Moberg, 2000). On the other hand, continuous exposure to the 

stressor disrupts biological functions and shifts necessary resources away from other 

critical functions. In response to the stress, the hormones secreted exert a catabolic effect 

on the muscle, adipose tissue, connective tissue, skin, and lymphoid tissue. This involves 

increased degradation and reduced synthesis of proteins, fat, DNA, and RNA and decreased 

uptake of glucose, amino, and nucleic acids (Baxter, 1976). The aftermath of these 

catabolic actions includes harmful consequences such as the inhibition of growth, 

osteoporosis, and enhanced susceptibility to infections. 
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1.3 STRESS IN CHICKENS 

Stress is a broad term generally used to describe the cumulative detrimental effect 

of a variety of factors on the health and performance of animals. Under this condition, the 

animal becomes unable to maintain a normal physiological state because of the various 

factors adversely affecting its wellbeing. At which point, a set of physiological and 

behavioral changes are elicited in response to the aversive stimuli. Like all complex 

organisms, the bird’s response to stressors depends on the integrative capacities of the 

nervous and endocrine systems. The incoming stress stimuli increase the hypothalamic 

production of CRH, which then stimulates the anterior pituitary gland to increase the 

synthesis of ACTH. The ACTH moves via the blood to stimulate the proliferation of 

adrenal cortical tissue cells and increases the synthesis and release of GC (Siegel, 1980; 

Smith and Vale, 2006; Antinori, 2017). This is the body’s way of eliciting a coordinated 

physiological response in an attempt to reestablish homeostasis. Short-term stress can be 

expected and are typical of minimal concern. However, a combination of stressors over 

time that exceeds the host’s coping mechanisms, can have far-reaching detrimental effects 

on poultry production (Siegel, 1980). Many aspects of daily life may not qualify as stress 

nevertheless may have an adverse effect on the body. Undoubtedly, one of the challenges 

the producer must overcome in the pursuit of increasing the production of poultry and 

poultry-byproducts to meet the increasing demand is to minimize the exposure of birds to 

potential stressors. Notwithstanding, birds are constantly confronted by various stressors 

during production, including environmental (thermal stress, high stocking density, 

transportation), management (lighting conditions, nutrient density, mycotoxin 
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contamination, vaccination programs), and various pathogenic (viruses, bacteria, and 

parasites) conditions (Siegel, 1980; Asres and Amha, 2014; Figure 1.3).  

These changes in the environment make it difficult to determine which concurrent 

variations the animal is responding to or reacting to. Besides, animals seldom experience a 

single stressor that alone underwrites the overall impact of stress production or 

performance. As such, alteration from the optimal condition can cause an exaggerated or 

inappropriate immune response, disrupting the growth process, overall performance, and 

put considerable demands on intestinal health (Song et al., 2014). Morbidity and mortality 

are no longer the primary metrics monitored concerning disease and stress management in 

poultry production (Collett et al., 2019). Emphasis has now shifted to the economic output 

measured through the entire production chain, on performance, product quality, and animal 

welfare (Collett et al., 2019). Although husbandry practices in the poultry industry such as 

nutrition and management practices, maintenance of hygienic standards, disease 

prevention protocols, and animal welfare considerations, are implemented to prevent and 

control specific disease conditions, that is not enough. These practices are necessary with 

an intensive production system but do not entirely prevent exposure to stressors. Preventing 

and limiting the consequence of more complex multifactorial stress factors to maximize 

the productivity of the flock becomes paramount. Consequently, there is a need for 

continuous monitoring of the intestinal health status, particularly in intensively reared 

animals, where the intestinal function is often pushed to the limit. 

1.3.1 Coccidiosis 

Coccidiosis in domesticated animals has been studied for over a long time (Davies 

et al., 1963; Hammond and Long, 1973; Pellerdy, 1974; Long, 1982, 1990), and as the 
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world’s poultry industry develops, it is one of the most widely reported diseases within the 

industry with significant economic importance (Biggs, 1982; Williams, 1999). The genus 

Eimeria, of the Coccidea class, within the phylum Apicomplexa, is arguably the most 

widespread and economically important protozoan parasites that affect the poultry industry 

(Cox, 1998). Indeed, has a protozoan species, they are ubiquitous in terrestrial and aquatics 

habitats as autotrophs or heterotrophs. However, they are also parasitic in nature and rely 

on host resources for their nutrition (Adlard and O’Donoghue, 1998). The complex life 

cycle of the Eimeria sp that causes coccidiosis has been extensively described (Cox, 1998; 

Lillehoj, 1998; Yun et al., 2000; Dalloul and Lillehoj, 2006; Kaiser, 2010). Basically, host-

cell invasion by Eimeria involves the ingestion of sporulated oocysts, excystation into free 

sporozoites invading the epithelial cells, and one or more cycles of schizogony, 

gametogony, and sporogony. The final product, zygote, escapes to the lumen of the 

intestine and passes into the external environment via excreta. These oocysts containing 

sporocysts are infective and can persist for long periods before being ingested and starting 

the life cycle over again (Figure 1.4). Thus, continual recycling through a flock leads to a 

high number of oocysts in the litter within 3–4 weeks (Williams, 1994), and the risk for 

infection is further facilitated by the intensive rearing conditions in the poultry industry.  

Through extensive research, seven species of Eimeria- Eimeria acervulina, tenella, 

maxima, necatrix, brunetti, mitis, and praecox, are recognized to colonize the 

gastrointestinal tract of domestic chickens (Lillehoj and Lillehoj, 2000; Chapman, 2014). 

Depending on the species, magnitude, and site of infection, they exhibit a characteristic 

degree of pathogenicity. The E. acervulina infects the cells of the duodenum, E. maxima 

infects the mid-gut, proximal as well as distal to Meckel's diverticulum, and E. tenella 
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infects the ceca (Williams, 2005; Chapman, 2014). The virulence-associated with these 

parasites is of varying level; a mild infection, causing no adverse effects, subclinical 

coccidiosis, resulting in slight but economically important reductions of growth and feed 

utilization, and full-blown clinical coccidiosis (Williams, 2005), which could result in 

significant economic losses as a result of high mortality and morbidity. The primary target 

of infection is the intestine, and defense against the parasite involves mobilizing the 

immune system mainly in the gut. One of the first observable effects of coccidiosis in 

poultry is diarrhea, dehydration, the reduction of weight gain, and a concomitant reduction 

in feed efficiency (Allen and Fetterer, 2002a; Dalloul et al., 2003; Amerah and Ravindran, 

2015). Similarly, the invasion of the intestinal epithelial lining causes a variety of clinical 

manifestations including the destruction of the mucosal barrier and underlying tissue 

(necrotic gut lesions), increasing mucosal permeability, to atrophy of the villus, limiting 

absorption and digestibility of nutrients (Persia et al., 2006; Adedokun et al., 2016). Transit 

time of the digesta is increased resulting in decreased viscosity, and high permeability of 

plasma proteins (Williams, 2005). The intestinal damage from the parasites leaves the gut 

vulnerable to overgrowth by opportunistic bacteria. The subsequent secondary bacterial 

infections that follow coccidiosis infections lead to further reduced feed efficiency and 

nutrient digestibility. Moreover, the invasion of the host intestinal epithelial cells activates 

both the humoral and cell-mediated immune responses, where the cell-mediated 

component of the immune response plays a major role in disease resistance (Cox, 1998; 

Lillehoj and Lillehoj, 2000).  

 There are two means of preventing coccidiosis in the flock: chemoprophylaxis and 

vaccination. Much research effort has been focused on developing effective vaccination 
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strategies for coccidiosis with varying success (Lillehoj and Trout, 1993). These 

vaccination strategies include live oocyst vaccines, either unattenuated or attenuated, 

recombinant DNA or protein vaccine, and immunization using anti-idiotype antibodies 

(Lillehoj and Lillehoj, 2000; Dalloul and Lillehoj, 2005). Live unattenuated vaccines 

comprised of a mixture of Eimeria species have been successfully used in a commercial 

application to induce long-lasting protective immunity. One drawback of using live 

unattenuated vaccines is the possible introduction of new pathogenic species into a 

previously unexposed flock (Vermeulen et al., 2001). Since vaccination occurs within the 

first day of the chick’s life when the adaptive immune system is not functionally immature, 

the risk of contracting coccidiosis or secondary infections caused by resident opportunistic 

bacteria is increased during this time, but decreases as immunity gradually develop over 

time (Lillehoj and Lillehoj, 2000; Vermeulen et al., 2001). Antibiotics and 

chemotherapeutics have remained the primary means of coccidiosis control (Lillehoj and 

Lillehoj, 2000). While these vaccines serve as the primary defense against the parasitic 

infection, AGPs are commonly used in addition to counteracting the growth problems 

occurring due to secondary bacterial infection. 

1.3.1.1 Performance, nutrient digestion, and absorption 

Subclinical coccidiosis is often characterized by poor weight gain and a 

concomitant adverse effect on feed conversion efficiency (William, 1999; 2005). The 

industry reports a loss of more than $3 billion annually to coccidiosis (Lillehoj and Lillehoj, 

2000). Using a compartmentalized model to quantify the monetary loss incurred by the 

poultry industry from coccidiosis control, William (1999) reported that in 1995, 17.5% was 

due to the cost of prophylaxis and therapy of commercial broilers, and 80.5% was due to 
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subclinical effects on their weight gain and feed conversion. Thus, because of its economic 

importance, coccidiosis has received much research interest, some of which have been 

directed toward understanding the effect of coccidia infections on nutrient digestion, 

absorption, and utilization. For research purposes, inoculating the birds with live oocyst of 

specific Eimeria sp (Isobe and Lillehoj, 1993; Laurent et al. 2001; Faber et al., 2012; 

Bortoluzzi et al., 2019), or sporulated oocyst of a combination of several Eimeria sp (Lee 

et al., 2011; Amerah and Ravindran, 2015), or an oral gavage using a vaccine with live 

oocyst at doses higher than the recommended dosage for day-old birds by the manufacturer 

(Persia et al., 2006; Adedokun et al., 2016), has been used to mimic coccidiosis in practical 

poultry production. These strategies often result in depressed feed consumption and BW 

gain with or without observable clinical symptoms. According to several published articles, 

the reduced broiler performance can be attributed to the reduced nutrient digestion and 

absorption caused by impaired absorptive capacity of the intestine (Preston-Mafham and 

Sykes, 1970; Russell Jr. and Ruff, 1978; Ruff and Wilkins, 1980; Adam et al., 1996). 

Coccidia challenge has the potential to influence the net movement of nutrients into the 

blood of the host by suppressing feed intake, digestion and absorption by the intestinal 

epithelial cells, and movement of nutrients through the absorptive cell into the bloodstream 

(Russell Jr. and Ruff, 1978). 

 Coccidiosis has been reported to decrease the digestion and or absorption of 

glucose, proteins, amino acids, lipids, metabolizable energy, minerals, and carotenoids 

(Turk et al., 1982; Willis and Baker, 1981; Adam et al., 1996; Persia et al., 2006). Ileal 

endogenous amino acid losses in broiler chickens have been extensively reported 

(Ravindran and Hendriks, 2004; Adedokun et al., 2007). A magnitude of reduction varying 
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from 8.5% (Parker et al., 2007), 15.2% (Adedokun et al., 2017), to 16% (Amerah et al., 

2015) in mean ileal amino acid (AA) digestibility of broilers challenged with coccidia 

vaccine, has been reported. A suggested reason for the increase in endogenous losses of 

mucin-associated AA has been attributed to increased host intestinal mucogenic response 

and enterocyte turnover (Fernando and McCraw, 1973), as well as the activation and 

heightened immune response (Parker et al., 2007) during the infection. Similarly, since fat 

and carbohydrate are the major sources of energy supplied by commercial poultry diets, 

coccidiosis infection on caloric costs has been investigated. The reduction was observed in 

the digestibility of dry matter, nitrogen, energy, and fat in birds challenged with coccidia 

(Amerah et al., 2015). Eimeria infection reduced dietary apparent metabolizable energy 

corrected for nitrogen, apparent ileal digestibility of organic matter, nitrogen, and total AA 

(Rochell et al., 2017) with observed reductions in plasma concentrations of arginine, 

tyrosine, glutamine, and asparagine (Rochell et al., 2016). Adams et al. (1996) also reported 

a reduction of about 22% in lipid utilization when birds were infected with E. acervulina. 

1.3.1.2 Changes in the intestinal epithelium during coccidia 

challenge 

During coccidiosis, sporozoites infect the cells of the intestinal lining, causing 

tissue damage and trauma to the intestinal mucosa and submucosa. Reid and Johnson 

(1970) reported a downward trend in weight gains with increasing lesion scores with E. 

acervulina inoculation. Similarly, increasing lesions scores with E. maxima and tenella 

infection has been reported (Conway et al., 1990). In addition to these lesions are 

histopathological features that accentuate the damaged intestines (Lillehoj and Trout 

1993). Villous atrophy and increased crypt depths have been observed with coccidia 
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infection (Amerah and Ravindran, 2015; Osho et al., 2019), contributing to malabsorption. 

Since the production of villus epithelial cells occurs in the crypt region, an increased crypt 

depth signifies an increase in crypt-cell production rate and overall stimulation of intestinal 

cellular turnover in the small intestine (Pluske et al., 1996; Montagne et al., 2003). 

Moreover, the infection also influences the villus height to crypt depth ratio, which 

suggests that the intestinal mucosa is not well-differentiated, more cells are exhibiting 

DNA fragmentation setting the cells up for programmed cell death (Montagne et al., 2003). 

From a production perspective, these changes are important because they are associated 

with a reduced digestive and absorptive capacity which plays a role in the reduced growth 

and performance observed in the infected chickens (Pluske et al., 1996). Furthermore, the 

activity of specific digestive enzymes on the brush border membranes of intestinal cells is 

often linked to morphological changes, especially in pathological states where the villus 

and crypt depth structure has been altered. Reductions in both pancreatic enzyme activity 

and expression of transporter proteins along the mucosal brush border have been reported 

during the damage to the intestinal epithelial cells (Adams et al., 1996). This is because as 

the turnover rate of the enterocytes increases, it reduces the maturity of digestive enzymes. 

Increased intestinal acidity can also impair digestive enzyme functions, as Eimeria-induced 

pH reductions can cause intestinal pH to fall below the optimal efficiency for digestive 

enzyme activity (Williams, 2005). Miska and Fetterer (2017) reported the downregulation 

of monosaccharides transporters sodium/glucose cotransporters 1 (SGLT1), Glucose 

transporter (GLUT) 2, and 5 at the height of coccidia infection. 

1.3.1.3 The immune response of broilers during coccidia 

exposure 
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The immune system is mobilized, mainly in the gut mucosa, to produce complete 

resistance to reinfection (Davis, 1981; Powell, 1987). Since Eimeria parasites invade the 

intestine, immune responses are primarily coordinated by the gut-associated lymphoid 

tissue (GALT) (Yun et al., 2000). In general, the GALT serves as the host’s defense against 

pathogenic infection by processing and presenting antigens, producing antibodies via the 

humoral immune system, and activating cell-mediated immunity (Dalloul and Lillehoj, 

2006). Following a coccidia exposure, innate immunity is associated with the early phase 

of the initial infection. In contrast, adaptive immunity follows a secondary infection, as it 

takes longer to initiate due to a specific response to the invading pathogen (Lillehoj et al., 

2007). During the early stage of infection, the innate immune system of the host can rapidly 

detect and respond to protozoan parasite infection via innate immune receptors (Dalloul 

and Lillehoj, 2006). The toll-like receptor (TLR) family are components of the innate 

immune system that sense conserved microbial patterns typically called pathogen-

associated molecular patterns (PAMPs) and endogenous danger signals. The TLR, upon 

activation by recognition of PAMPs, recruits several different adaptor molecules, including 

MyD88 and TRIF-dependent pathways (Hong et al., 2006; Zhou et al., 2013). These signals 

trigger both the innate immune defenses such as inflammation, and the acquired immune 

defenses by secretion of cytokines such as interferons (IFN), tumor necrosis factor (TNF), 

and interleukins (IL).  

Furthermore, the adaptive immune system is comprised of humoral and cell-

mediated immunity, and after coccidia infection, both immune responses of the bird are 

activated. Cell-mediated immunity plays a major role in disease resistance. T cell-

lymphocytes, NK cells, and macrophages are the three important cell types that are 
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involved in the cell-mediated immune response. There are two phenotypes of T cell-

lymphocytes that recognize the antigen: cytotoxic T cell (CD8+) and T helper cell (CD4+). 

This involves the activation of cytotoxic T cells and various CD4+ T-helper cell subsets 

(TH1 and TH2)- the cytokines they ultimately produce to evoke the immune response (Cox, 

1998; Lillehoj and Lillehoj, 2000; Laurent et al., 2001). The CD8+T cell recognizes the 

pathogen through the MHC class I molecules and kills the infected pathogen directly. 

Experimental evidence shows that chicken CD4+ T cell-lymphocytes mediate antigen-

specific protective immunity in avian coccidiosis (Degen et al., 2005), recognizing 

pathogens through the MHC class II molecules, and subsequently activating B-cells and 

macrophages. This drives the counter-regulatory cell-mediated and humoral immune 

reactions interplay between several effector systems (Cox, 1998; Kaiser, 2010). Gadde et 

al. (2009) saw an increase in CD4+ and CD8+ T cells population, 11 d post-challenge with 

Eimeria adenoeides oocysts in turkey poults. In broiler chickens, a remarkable up-

regulation of cytokine expression, such as IL-1β, IL-10, IL-6, TNF-α, transforming growth 

factor-beta (TGF-β4), IFN-γ, (Lillehoj, 1998; Dersjant-Li et al., 2016), as well chemokines 

IL-8 following coccidia infection, has been observed. In response to this infection, the 

cytokines depending on their biological process may function to induce or suppress 

inflammation. Anti-inflammatory cytokines like IL-4, IL-10, IL-13, and TGF-β4 are 

known to suppress the production of IL-1β, TNF-α, IFN- γ, and chemokine IL-8 in 

response to an infection (Dinarello, 2000). Therefore, following a coccidia challenge, a 

shift in the balance between the effects of pro- and anti-inflammatory cytokines can 

influence the outcome of the disease, whether in the short term or long term (Dinarello, 

2000).  
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An aggregate of immune mediators in response to coccidia infection induces a state 

of inflammation in the gastrointestinal tract, compromising the integrity of the gut (Lu et 

al., 2013). This inflammation state threatens the normal continuity of the epithelium 

necessary to control both the paracellular and transcellular permeability of the intestine. As 

a sophisticated gatekeeper, the epithelium regulates the transport of solutes, large 

molecules, and cells across its barrier. This cellular function is controlled by a heterotopic 

association between inflammatory and mural cells, transcellular transport, and junctional 

complexes (Goddard and Iruela-Arispe, 2013). Because Eimeria sp has an affinity for the 

intestine and induces changes in intestinal permeability, its relevance to gut health can not 

be understated. Extensive animal experiments have shown that the gut communicates with 

the brain to regulate major epithelial and immune functions that are of importance to gut 

health and health in general (Groschwitz and Hogan, 2009; Vicuna et al., 2015). Thus, 

understanding the immune system-parasite interactions in the gut is crucial to 

understanding the consequences of the possible alterations associated with the absorptive, 

metabolic, and immunological functions of the gastrointestinal tract (GIT). 

1.3.2 Heat stress 

The earth’s climate is changing at an unprecedented rate, and the impacts of global 

climate change are projected to intensify in the future. According to the Intergovernmental 

Panel on Climate Fifth Assessment Report, the planets' average surface temperature has 

risen about 1.62 ℉ (0.9 ℃) since the mid-20th century and could increase between 1.4 and 

5.8 °C by the year 2100 (IPCC, 2014). Among other things, heat waves (periods of 

abnormally hot weather lasting days to weeks) in different parts of the world are projected 

to become more intense, and cold waves less severe everywhere while summer 
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temperatures are projected to continue rising. The question most frequently raised in 

connection with climate change is concerning its impact on agriculture (crop and livestock 

production) and, from a broader perspective, on our food supply. Worldwide growth in the 

market for livestock and animal products continues a steady climb driven mostly by 

population growth, urbanization, and increasing per capita incomes in developing countries 

(Thornton, 2010). Besides, the potential for further growth is self-evident given the value 

of eggs and poultry meat as healthy alternatives to red meat and other protein sources. The 

poultry industry particularly assumes a leading role among agricultural sectors in many 

parts of the world. According to the Food and Agriculture Organization (FAO), about 103.5 

million tons of annual global chicken meat produced contributed to about 34.3% of global 

meat production (Pawar et al., 2016; Nawab et al., 2018). On the other hand, world 

commercial egg production is setting record-breaking trends, where egg production shot 

up from 15 to 81 million tons between 1961 and 2016 (FAO, 2016). One of the potential 

deterrents to this growth is the aforementioned increase in extreme heat conditions, which 

can result in large economic losses for producers. Without the use of heat management 

strategies, U.S. livestock producers incur a loss of an average of $2.4 billion annually while 

accounting for the heat management strategies, incur an estimated loss of $1.7 billion. 

From this total, a $128 million loss comes from the poultry industry (St-Pierre et al., 2003). 

With this huge economic importance, the deleterious consequences of heat stress (HS) in 

livestock production are always under constant scrutiny.  

The metabolic activities involved in regular metabolism, growth, egg production, 

and other physiological processes in birds lead to heat production. This can be influenced 

by the species, breed, body weight, level of production, level of feed intake, feed quality, 
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and environmental conditions (Pawar et al., 2016; Nawab et al., 2018). The thermoneutral 

zone (15 to 26 ℃) is the range in environmental temperature when the core temperature 

can be maintained with no change in metabolic heat production. Barring any underlying 

issue, the total heat production of the animal is at the minimum, and the energy from the 

various physiological processes is managed efficiently (Babinszky et al., 2011). At 

elevated temperatures, the total heat produced during those physiological processes can 

exceed the amount of energy flowing from the animal to its surrounding environment 

which, results in heat stress (Babinszky et al., 2011; Pawar et al., 2016; Nawab et al., 2018). 

The thermoregulation characteristics of poultry differ to some extent from those of 

mammals due to their high rate of metabolism associated with extensive genetic selection, 

more intensive heat production, and low heat dissipation capacity caused by their feathers 

and lack of sweat glands (Babinszky et al., 2011). Hence, to regulate thermoregulation and 

homeostasis in the absence of sweat glands, the bird dissipates body heat to the 

environment by radiation, conduction, convection, and evaporation. The first three routes 

work efficiently when the temperature difference between the bird and its environment is 

not dramatically different. As such, the normal behavioral patterns, feed intake, or 

metabolism is not drastically altered. When the environmental temperature reaches an 

upper critical limit, heat loss shifts to the evaporative mechanism (Lara and Rostagno, 

2013; Bhadauria et al., 2014). Air sacs are also very important in this process, contributing 

to increasing gas exchanges and bringing air circulation toward the surface (Lara and 

Rostagno, 2013; Bhadauria et al., 2014; Nawab et al., 2018). The various signs indicating 

heat stress in poultry include gasping, panting, spreading of wings, lethargic and droopy 

acting, extremely pale cones and wattles, closed eyes, lying down, drop in egg production, 
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reduced egg size, egg weight, poor shell quality, increased thirst, decreased appetite, loss 

of body weight, and increased cannibalism (Lara and Rostagno, 2013; Pawar et al., 2016). 

This implicates a wide variety of physiological, behavioral, neuroendocrine, and molecular 

responses in broilers and layers causing unfavorable consequences like depressed growth 

performance, immune suppression, an endocrine disorder, and electrolyte imbalance which 

reduces productivity and profitability (Lara and Rostagno, 2013; Nawab et al., 2018; Figure 

1.5). 

1.3.2.1 Heat stress on growth and reproductive performance 

Under high environmental temperature conditions, the HPA axis is activated, 

altering the neuroendocrine profile in poultry, which increases the secretion of GCs. In 

poultry, HS has been shown to cause elevated CORT concentrations (Garriga et al., 2006; 

Quinteiro-Filho et al., 2010). Consequently, the presence of GC reduces the activity of the 

appetite center in the medulla oblongata. Thus, exposure to high environmental 

temperature triggers a thermoregulatory response in the anterior hypothalamic area to 

depress feed intake, which in turn causes body weight loss (Miller and Heath, 1970; Lara 

and Rostagno, 2013). In addition to the limited feed intake, nutrient digestibility is 

impaired, such as decreasing the activity of trypsin, chymotrypsin, and amylase (Hai et al., 

2000). Though the variation in intensity and duration of responses may vary depending on 

the intensity and duration of the heat stress, the birds, however, succumb to the heat stress 

(Lara and Rostagno, 2013). As documented by several researchers, broilers and layers 

subjected to heat stress experience poor growth and performance (Hsu et al., 1998; Mashaly 

et al., 2004; Harsini et al., 2012; Quinteiro-Filho et al., 2012; Sohail et al., 2012). Sohail et 

al. (2012) reported that broilers held at 35℃ elevated temperature consumed 15.4% less 
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and gained 18.3% less on d 21 and consumed 25.4% less and gain 49.6% less on d 42 

compared with the control group (26 ℃ temperature). Similarly, Harsini et al. (2012) 

observed a reduction in body weight, feed intake, and increased feed conversion ratio when 

broilers were exposed to a cycling temperature of 23.9℃ to 37℃ to induce heat stress. 

Similar to its effects on broilers, HS in laying hens resulted in decreased BW, feed 

efficiency, and other production parameters (Mashaly et al., 2004; Deng et al., 2012).  

The deleterious effect of heat stress has far-reaching consequences in laying hens 

not only because of the reduced feed intake but the direct effect on the reproductive 

hormones. The decrease in the size of reproductive organs (follicular and oocyte 

development) in response to the decreased secretion of gonadotrophin-releasing hormone 

(GnRH) and the subsequent decrease in the release of follicle-stimulating and luteinizing 

hormones has been observed (Donoghue et al., 1989; Nawab et al., 2018). Moreover, in 

males, semen volume, sperm concentration, the number of live sperm cells, and motility 

decreased with exposure to elevated temperature (McDaniel et al., 1995). Experimental 

results showed that increasing environmental temperature significantly decreased egg 

production, egg weight (Hsu et al., 1998; Deng et al., 2012 ) and caused inferior egg quality, 

including eggshell thickness, shell breaking strength, specific gravity, and eggshell weight 

in laying hens (Hsu et al., 1998; Mashaly et al., 2004; Bozkurt et al., 2012). Moreover, the 

hyperventilation at elevated temperature decreases CO2 blood levels, which reduces 

eggshell thickness by approximately 12% (Bhadauria et al., 2014). Additionally, a 

reduction in feed conversion, egg production, and egg weight was identified in laying hens 

subjected to HS (Star et al., 2009). Ebeid et al. (2012) reported HS caused a 1% reduction 

in egg weight, eggshell thickness, eggshell weight, and eggshell percent. Ajakaiye et al. 
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(2011) also showed a reduction in eggshell weight and thickness. Corroborating these 

results, Mack et al. (2013) and Franco-Jimenez et al. (2007), observed decreased egg 

production, egg weight, eggshell thickness, and Haugh units in laying hens exposed to HS. 

1.3.2.2 Acid-base balance and electrolytes during heat stress 

At high environmental temperature, the bird dissipates heat by the evaporation of 

moisture from the respiratory tract through increased panting. At ambient temperature, the 

kidney and lungs work together to balance the acid-base ratio by combining hydrogen ion 

(H+) with bicarbonate ions (HCO3
−) to form carbonic acid (H2CO3). The H2CO3 is 

converted to carbon dioxide (CO2) and water (H2O) by the action of carbonic anhydrase. 

The resulting CO2 from this reaction is removed by the lungs, and the H+ ions with the 

HCO3
− are excreted via the kidneys. However, at elevated temperature, the bird’s 

respiratory rate increases, CO2 is lost from the lungs, which leads to a reduction in the 

partial pressure of CO2 in the blood. In turn, the bicarbonate buffer system lowers the 

concentration of H+ and H2CO3, excretion of HCO3
− increases, and H+ decreases via the 

kidney which, causes a rise in plasma pH and plasma bicarbonate levels. This condition is 

known as respiratory alkalosis (Borges et al., 2004; Ahmad and Sarwar, 2006; Borges et 

al., 2007; Figure 1.6). On the other hand, the reduction in serum HCO3
− from excretion via 

the kidney affects eggshell formation because in laying hens, HCO3
− plays an important 

role in the formation of calcium carbonate (CaCO3) by the shell gland to form eggshell 

(Borges et al., 2007; Allahverdi et al., 2013). According to Frank and Burger (1965) and 

Balnave et al. (1989), reduced bicarbonate concentration in the lumen of the shell gland 

adversely affects eggshell quality. Similarly, Harrison and Biellier (1967) reported that 

when the air temperature rises abruptly, eggshell quality declines within one oviposition 
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cycle which illustrates that as the hen experiences respiratory alkalosis, blood ionized 

calcium level drops dramatically within a short period (Odom, et al., 1986).  

Other variables that change simultaneously with an acid-base balance are the 

electrolyte status. Especially the monovalent minerals - Na+, K+, Cl−, which are essential 

for, among other things, the maintenance of intracellular and extracellular homeostasis and 

acid-base balance (Gezen et al., 2005). To maintain osmoregulation, the homeostasis of 

intracellular ions like K+ and extracellular ions like Na+ and Cl− contents are kept within 

narrow limits. According to Mongin (1981), to keep the acid-base homeostasis as close as 

possible to normal levels in broiler chickens, an optimal dietary electrolyte balance (DEB; 

a total of Na+ + K+ - Cl−, mEq/kg) of around 250 mEq/kg of feed should be provided. This 

however changes, depending on the ambient temperature. For the body to maintain the 

homeostasis of electrolytes in body fluids, the level of K+ and Na+ excreted in the feces 

and urine increases, while the Cl− concentration of the blood rises. Borges et al. (2004) 

reported a decrease in plasma Na+, K+, and pCO2, due to heat stress, probably as a result 

of hemodilution following increased water consumption. It stands to reason that there 

would be a progressive alteration to the acid-base balance in response to HS especially 

since some results have not been able to report any changes. Similarly, plasma levels of 

calcium, sodium, inorganic phosphorus, and magnesium were depressed in birds subjected 

to elevated temperatures (Koelkebeck and Odom, 1995). 

1.3.2.3 Intestinal morphology and immune response in birds 

during heat stress 

Gut health plays a significant role in the efficient digestion of feed and absorption 

of nutrient, water, electrolyte balance as well as immune system development. Hall et al. 
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(1999) found evidence of hypoxia in the intestinal villi of heat-stressed rodents. Lambert 

et al. (2002) reported that hyperthermia can induce changes to the morphological structure 

of the intestine. Rats subjected to a core body temperature above 41 ℃ exhibited damages 

to the intestinal epithelial cells, intestinal lesions, epithelial cells vacuolization, increased 

villus tips sloughing rate, and damage to the luminal membrane with loss of microvilli. Liu 

et al. (2009), reported that temperature at 40 ℃ resulted in epithelium shedding at the tips 

of the intestinal villi, a short villus height, and a shallow crypt depth in pigs. Similarly, in 

poultry, decreased villus height, villus surface area, and increased crypt depth have been 

observed at elevated temperatures (Hu et al., 2010; Quinteiro-Filho et al., 2010; Deng et 

al., 2012; Song et al., 2014; Abdelqader and Al-Fataftah, 2016). Thus, heat stress induces 

morphological changes to the small intestine, which inevitably leads to inefficient intestinal 

digestion and absorption capacity and can in part explain the reduced body weight gain.  

A healthy morphology and integrity of the small intestine are important to prevent 

bacteria translocation from the intestinal tract to the body as well as for efficient digestion 

and absorption of nutrients. Indeed, Geraert et al. (1996) suggested that growth reduction 

can partly be explained by the direct effect of high temperature and partly by decreased 

metabolic utilization of nutrients, increased heat production, reduced protein retention, and 

enhanced lipid deposition. Since the GIT is highly sensitive to hyperthermia, a 

compromised mucosa is pivotal to the pathobiology of HS. Pearce et al. (2013) reported 

that HS reduces blood and nutrient flow to the GIT, causing hypoxia. Hypoxia is said to 

deplete ATP stores and potentially cause intracellular acidosis and changes ion pump 

activity (Hall et al., 1999). Also, the depletion of ATP and acidosis can jeopardize tight 

junctions of the intestinal epithelium which, ultimately compromises intestinal integrity 
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and function. Intestinal tight junctions, which are made up of a complex of integral 

membrane proteins, are known to play an important role as a paracellular barrier of the 

permeation of harmful agents from the lumen to the animals’ body (Lambert, 2009). 

Expressions of occludin, claudin-1, zona occludin 1, and JAM2 all part of a tight junction 

protein network, were decreased with elevated temperatures (Shin et al., 2018; Goo et al., 

2019). Burkholder et al. (2008) and Song et al. (2014) reported that heat stress induces 

intestinal barrier dysfunctions in broilers by damaging the intestinal epithelium integrity, 

which causes an imbalance of the normal intestinal microflora, and increases intestinal 

colonization of pathogens. Heat stress can also cause oxidative stress which, increases tight 

junction permeability and membrane damage, which can result in bacterial translocation 

(Lambert, 2009).  

The morphology and characteristics of intestinal mucosa together with intestinal 

immune cells are constantly changing depending on the situation the animal is exposed to. 

Compromised intestinal epithelial integrity and a compromised mucosal immune response 

during stress may facilitate the secretion of endotoxins from gut microbes. This stimulates 

an immune response involving the production of pro-inflammatory cytokines from cells 

such as monocytes and macrophages. This response likely causes further inflammatory 

damage to the intestinal epithelium and the initiation of a vicious cycle of events (Lambert, 

2009). Several authors have reported the reduction in thymus, spleen, bursa of Fabricius, 

liver, and lymphoid organ weights in chicken exposed to elevated temperature (Quinteiro-

Filho et al., 2010; Ghazi et al., 2012). Also, increased levels of circulating antibodies, 

specifically IgM and IgG, and subsequent reduction of lymphocytes and IgA secretion in 

the gastrointestinal tract were observed (Deng et al., 2012). Although, Mashaly et al. (2004) 



 

31 
 

reported a decrease in total white blood cell (WBC) counts and antibody production, T- 

and B-lymphocyte activities were not affected in hens in the HS group. On the other hand, 

Pearce et al. (2013) reported that with acute HS in pigs, the expression of IL-8, IL-1β, and 

TNF-α was reduced in circulation and remained unchanged in the ileum epithelium. 

Similarly, B- and T-cell proliferation were not significantly affected by HS. While these 

observations are not consistent, the immune response activated in response to HS may 

depend on the length and intensity of the exposure. 

1.3.3 Glucocorticoid action to induce stress 

Glucocorticoid hormones influence many metabolic functions in several tissues 

which, bring about major physiological changes in response to stress. One of the classical 

studies done to understand the effect of stress observed the role of the adrenal gland in rats 

on the activation of a stress response. It was reported that adrenalectomy in rats resulted in 

the inability to regulate carbohydrate stores and electrolyte balance (Addison, 1855). The 

adrenals, which are embedded in the fatty tissue directly next to the kidneys, are composed 

of two separate endocrine glands, an outer layer of cells (the adrenal cortex) and an inner 

adrenal medulla. These glands are responsible for producing a large number of steroids 

(mineralocorticoids, GCs, and the androgen dehydroepiandrosterone), and catecholamines 

(epinephrine and norepinephrine), respectively (Southwick, 1982). The mineralocorticoids 

are essential for maintaining sodium balance and extracellular fluid volume, and the GCs 

exerts their effect on hepatic gluconeogenesis, inhibit glucose uptake by peripheral tissues, 

suppress inflammation, suppress numerous immune reactions, and inhibit the secretion of 

several hormones and neuropeptides (Munck et al., 1984). While GCs themselves are not 

directly responsible for the metabolic processes, they maintain a normal sensitivity to the 
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hormones which activate them via a permissive action. For example, Exton and Park (1967) 

observed that in fasted adrenalectomized rats, the normal stimulatory effect of glucagon on 

gluconeogenesis was lost in the liver and only restored with GCs treatment. An increase in 

the circulating catecholamines and GC causes changes in intermediary metabolism in 

several tissues including skin, fat, lymphoid cells, muscle, connective tissues, brain, blood 

cells, heart, liver, and kidney (Baxter and Rousseau, 1979; Southwick, 1982). However, 

these hormones generally express inhibitory actions on skin, fat, lymphoid cells, muscle, 

and connective tissues, which result in catabolism and anti-anabolism. On the other hand, 

the steroid hormones enhance anabolic effects and may utilize glucose diverted from other 

tissues to tissues which are perhaps more 'essential' than others (brain, blood cells, heart, 

liver, and kidney) (Munck, 1971, Baxter, 1976; Trout, 1993). 

The major metabolic effects of GCs and catecholamines hormones involves 

providing energy to resist stress via glycogenolysis, gluconeogenesis, and lipolysis 

activities (Granner, 1979; Berne and Levy, 1993). Similarly, during a stress response, a 

crosstalk between the endocrine and immune systems is activated which triggers the 

signaling cascades of both arms of the immune system. Inherent in any discussion on 

livestock production, or particular poultry production, is the effect of stress on metabolism. 

While this review has reported the impact of stresses from infection and environmental 

conditions, the effector and regulatory mechanisms affected and activated transcend 

several stressors. To induce controlled stress at the adrenal level, several researchers have 

opted for the administration of CORT or ACTH (Siegel and Van Kampen 1984; Davison 

et al., 1985; Puvadolpirod and Thaxton, 2000a, b; Virden et al., 2007). Others have 

suggested that glucocorticoid analogs like dexamethasone (DEX) can be used to study 
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hormone-mediated stress in chicks (Huff et al., 1998; Wideman Jr. and Pevzner, 2012; 

Vicuna et al., 2015). The administration of CORT or analogs of CORT is a promising tool 

in the research of adaptation to stress by broiler chickens. It can be used to delineate 

specific outcomes associated with inducing physiological stress in broilers. 

1.3.3.1 Glucocorticoid actions on carbohydrate metabolism 

There are at least three distinct transmitting pathways through which the CNS 

regulates hepatic glucose output to peripheral organs. This can be through epinephrine (EP) 

secretion, glucagon secretion, and inhibition of insulin secretion, and a direct innervation 

of the liver (Southwick, 1982). The breakdown of glycogen to glucose in the liver is 

initiated when EP interacts with β-adrenergic receptors on the cell membrane to activate a 

well-known sequence that produces cAMP, which subsequently phosphorylates a series of 

protein kinases that regulates glycogenolysis and gluconeogenesis (Berne and Levy, 1993). 

Various factors affect the relative contributions of α- and β-adrenergic receptor 

mechanisms to hepatic glucose production, which vary among species (Young and 

Landsberg, 1998; Odhiambo, 2004). Under normal conditions, an increase in the uptake 

and oxidative catabolism of glucose in the liver, muscle, and adipose tissue is triggered by 

the pancreatic β-cell hormone insulin, which simultaneously inhibits glycogenolysis and 

gluconeogenesis in the liver. In response to stress, along with drop-in insulin levels, both 

EP and norepinephrine (NE) undergo several functional adaptations that favor glucose 

homeostasis disruption.  

By the early 1940s, the actions of GCs on energy metabolism have been well 

established. In two different studies by Evans (1936) and Long et al. (1940), evidence 

shows that injecting adrenalectomized fasted rats with GCs increased the total carbohydrate 
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in the liver, followed by a concomitant increase in production of urea, the principal by-

product in the conversion of amino acids. They concluded that it is unlikely amino acid 

degradation was solely from liver proteins but must also have been derived from catabolic 

processes in extrahepatic tissues. Similarly, early studies using domestic fowl to understand 

the effect of chronic stressors by repeatedly injecting ACTH or GCs observed an increase 

in plasma concentrations of CORT, glucose, uric acid, and a concomitant decrease in 

weight gain, and increase in the relative weights of the liver (Freeman and Manning, 1975; 

Siegel, 1980; Davison et al., 1985). 

There are two general hypotheses proposed regarding the source of these effects. 

First, the hypothesis recognized that GCs are gluconeogenic- increasing the hepatic 

production of glucose from non-carbohydrate precursors (Exton, 1979). The precursors 

include primarily endogenous amino acids from extrahepatic tissues such as skeletal 

muscle (Munck, 1971; Exton, 1979), which are degraded to provide carbon skeletons that 

can be converted to glucose (Leeson and Summers, 2001) and stored in the liver. This 

occurs in conjunction with glucagon and catecholamines, were they initiate substrate 

supply and modulate enzymes to stimulate glycogenolysis, hepatic gluconeogenesis, and 

glycogen deposition (Southwick, 1982). Which means under stressful conditions where the 

circulating GCs level is high, there is a diversion of energy to exercising muscle, in part by 

mobilizing stored energy, inhibiting subsequent energy storage, and stimulating 

gluconeogenesis (Southwick, 1982; Siegel and Van Kampen 1984; Davison et al., 1985; 

Puvadolpirod and Thaxton, 2000a; Virden et al., 2007). The consequence includes 

unfavorable actions on peripheral tissues, such as skeletal muscle, bone, and adipose tissue. 
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The second hypothesis explained in the review paper by Munck (1971) outlined 

that alternatively, GCs decrease glucose uptake and utilization in various peripheral tissues 

by desensitizing the peripheral tissues to insulin, thus inhibiting glucose uptake. Evidence 

shows that blood glucose increased by 80 to 100 minutes after adrenalectomized rats were 

injected with cortisol along with an increase in glucose uptake by muscle but incorporation 

into adipose tissue was decreased (Munck, 1968). Similarly, in broilers, an increase in the 

concentration of plasma glucose with DEX-challenge has been reported (Lin et al., 2006a; 

Li et al., 2009). This means the two hypotheses are not mutually exclusive alternatives and 

can best be considered as complementary. Moreover, the transport of glucose is regarded 

as a crucial "chemical message" carried by hormones to initiate general metabolic pathways 

of the cell. If glucose transport is inhibited, the general metabolic characteristics of the cell 

dictate the response and eventually becomes manifested in the whole organism. This is 

probably most recognizable from the administration of CORT or ACTH or DEX treatment 

in chickens on live performance. A sharp reduction in BW gain is observed (Siegel and 

Van Kampen, 1984; Klasing et al., 1987; Puvadolpirod and Thaxton, 2000a,b), and a 

concomitant increase in abdominal fat deposition and reduction in muscle accretion (Siegel 

and Van Kampen, 1984; Virden and Kidd, 2009). These effects most likely occur because 

of the action of GCs on glucose metabolism. This is because a decrease in BW and muscle 

growth is independent of increased feed intake (Bartov et al., 1980; Siegel and van 

Kampen, 1984; Puvadolpirod and Thaxton, 2000d; Lin et al. 2004a, b; Dong et al. 2007; 

Wang et al. 2010). Since the goal of a poultry operation is to convert feed into food as 

economically as possible, managing both the risk and consequence of a stress challenge is 

critical. While the biological potential for feed conversion is governed primarily by 
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intrinsic or genetic determinants, in an intensive production system it is the extrinsic 

determinants, including nutrition, minimization of stress by management, and disease that 

ultimately decide the efficiency of the operation in both biological and financial terms.  

1.3.3.2 Glucocorticoid action on protein metabolism 

The main effect of GCs on protein metabolism is to decrease the rate of protein 

synthesis and stimulate protein degradation (Dong et al., 2007). This increases amino acid 

export, which ultimately increases net protein degradation in skeletal muscle (Hasselgren, 

1999; Vegiopoulos and Herzig, 2007). Experiments have shown that increased circulating 

GC levels, whether due to pathophysiological conditions or exogenous GC treatment, is 

associated with muscle atrophy (Hasselgren, 1999; Vegiopoulos and Herzig, 2007; Wang 

et al., 2015). The biological significance of this effect lies in the altered regulation of 

metabolism under conditions of stress. As such, a balance between hypertrophy and 

atrophy in skeletal muscle development is controlled by the action of counter-regulatory 

anabolic and catabolic signals. The inhibitory action of GCs can limit the transport of 

amino acids into the muscle affecting protein synthesis (Kostyo and Redmond, 1966). 

Skeletal muscle formation, myogenesis, is controlled by insulin-like growth factors 

(IGFs). Studies have shown that in vitro, IGF promotes muscle differentiation (Florini et 

al., 1991) and in vivo regulates the formation, maintenance, and regeneration of skeletal 

muscle (Liu et al., 1993). 

To promote muscle differentiation, IGFs activates multiple intracellular signal 

transduction cascade, including phosphatidylinositol 3-kinase (PI3K)-Akt, targeting the 

molecules that are both upstream and downstream of myogenin. Glucocorticoids are said 

to blunt IGF-1 signaling, inhibiting the protein synthesis machinery, and controlling the 
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initiation step of mRNA translation (Schakman et al., 2008). Kim et al. (2016) reported 

that DEX affected the IGF/PI3K/Akt pathway resulting in increased proteolytic protein for 

muscle degradation and decreased ribosomal S6 phosphorylation. Similarly, the 

mechanistic target of rapamycin (mTOR) signaling pathway has emerged as a central 

mediator of metabolism and growth. The mTOR acts as the central regulator of protein 

metabolism (Deng et al., 2009) and ribosome biogenesis by sensing and integrating signals 

from several stress factors. The Akt activates the mTOR pathway, which increases protein 

synthesis via activation of ribosomal protein S6 kinase (S6K) and eukaryotic translational 

initiation factor 4B (eIF4B) (Kim et al., 2016). Wang et al. (2015) reported that in vivo, 

muscle protein synthesis is depressed by DEX administration as evidenced by the 

decreased phosphorylation of mTOR and ribosomal protein S6K.  

Moreover, mTOR activation inhibits glucocorticoid receptor (GR) transcription 

function and efficiently counteracts the catabolic processes in muscle provoked by GCs 

(Shimizu et al., 2011). Another inhibitory action occurs via the inhibition of myogenesis 

through the downregulation of myogenin, a transcription factor mandatory for the 

differentiation of satellite cells into muscle fibers (Schakman et al., 2008). On the other 

hand, the enhancement of skeletal muscle protein degradation in response to GC treatment 

has been attributed to these major cellular proteolytic systems, the ubiquitin-proteasome 

system (UPS) and the lysosomal system (cathepsins) (Hasselgren 1999; Song et al., 2011), 

while calcium-dependent proteolysis plays a minor role in protein degradation (Hasselgren 

1999). Therefore, both decreased amino acid uptake, as well as increased intracellular 

breakdown, contribute substrates that circulate and ultimately feed into the 

gluconeogenesis pathway which occurs in the liver and kidney (Baxter, 1976; Kobayashi 
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et al., 1989). This is consistent with the observation by Song et al. (2011), where there was 

a consistent increase in circulating concentrations of urate/uric acid with DEX 

administration; reflecting increased protein/amino-acid catabolism. Considering the many 

effects of physiological stress on protein metabolism, Puvadolpirod, and Thaxton (2000d) 

examined the effect on AA digestion and utilization. Using ACTH-dispensing implants in 

broilers to induce stress, they reported that challenged broilers treated had a significantly 

lower protein digestibility than broilers in the nonstressed control group. Percentage 

nitrogen in excreta was increased in ACTH-treated chicks compared to the control. 

1.3.3.3 Glucocorticoid action on mineral metabolism 

Another consequence of stress and the release of corticoids is the effect on mineral 

metabolism. These actions mediated by the GR and mineralocorticoid receptor are 

integrally involved in the acid-base balance in several species as such can alter mineral and 

water metabolism (Selye, 1950; Selye, 1976). Glucocorticoids can influence fluid balance 

by increasing the glomerular filtration rate and renal plasma flow or by antagonizing the 

release of the antidiuretic hormone which explains the findings that cortisol tends to 

promote the excretion of 'free-water' (Baxter, 1976). Enhanced water diuresis due to GCs 

may also result in actual loss of sodium from the body (Dickson, 1984) even though GCs 

possess considerable sodium retention activity. Furthermore, through the action of 

catecholamines, CORT can affect mineral metabolism both directly and indirectly (Selye, 

1950; Hulter et al., 1980; Lupien et al., 2007) causing an increase in urinary excretion of 

calcium, magnesium, and phosphorus. Specifically, GCs have a significant impact on bone 

cells and continued exposure of the skeletal tissue to these steroids results in indirect effects 

on osteoporosis. Although the pathogenesis of GC mediated bone loss is not completely 
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understood, evidence suggests both direct effects upon bone cells and indirect effects via 

calcium homeostatic regulation (Gennari et al., 1984).  

Histologic bone studies in patients chronically treated with GCs demonstrate an 

increase in bone resorption presumably due to inhibition of the modulation of osteoblastic 

activity (Rasmussen, 1974) or at least in part, to an increased parathyroid hormone activity 

(Canalis and Delany, 2002). This action decreases calcium absorption in the 

gastrointestinal system and increases the urinary excretion of calcium. Also, a decrease in 

both the synthesis of collagen by pre-existing osteoblasts and the recruitment of progenitor 

cells to functioning osteoblasts is observed (Hahn et al., 1979). Other possible mechanisms 

involved in bone resorption in GC-induced osteoporosis include decreased gonadotropin 

production, which may result in increased bone resorption due to estrogen deficiency. The 

estrogen-deficient state increases the levels of tumor necrosis factor (TNF)-α secreted by 

T cells which play a central role in bone resorption (Canalis and Delany, 2002). Whereas 

the effect on bone formation is probably the result of a direct inhibitory action of 

glucocorticoids on bone cells decreasing cell replication and preventing the terminal 

differentiation of cells into mature functioning osteoblasts (Reid, 1997; Canalis and 

Delany, 2002). Besides, the synthesis of type I collagen, a major component of the bone 

extracellular matrix, can also be hindered which alters the function of the osteoblast with a 

consequent decrease in the bone matrix available for mineralization (Reid, 1997; Canalis 

and Delany, 2002). Other effects include increased urinary calcium excretion, reduction in 

tubular reabsorption of phosphate, and decreasing serum phosphorus, all of which lead to 

a negative calcium balance resulting in decreased bone formation (Canalis and Delany, 

2002). 



 

40 
 

1.3.3.4 Glucocorticoid action on immunity and inflammation 

The biological effects of GCs are usually adaptive except in circumstances that 

trigger an inadequate or excessive activation of the HPA axis, which may contribute to the 

development of pathologies. In addition to the general metabolic effects ascribed to stress 

above, excessive activation of the hypothalamus-hypophysis system gears the body for 

defense. To understand the actions of HPA axis-related factors on the immune system, we 

refer back to Selye’s 1936 paper “A syndrome produced by diverse nocuous agents” which 

demonstrates that one of the first responses to stress is the involution of lymphoid organs 

(thymus, spleen, and lymph glands) in the rat. This probably represents one of the first 

reported evidence of immune neuroendocrine interaction. As we know, the systemic 

defense measures against both general and localized stress factors are coordinated through 

the HPA axis and the autonomic nerves to peripheral systems. Organs of the immune 

system including the thymus, bone marrow, spleen, lymph nodes, and the GALT, receive 

sympathetic noradrenergic innervations (Felten and Felten, 1991). Similarly, some immune 

cells of both the innate and cell-mediated aspects of the immune system also contain β-

adrenergic receptors (Odhiambo, 2004). Hence, the immune system, once thought of as an 

autonomous entity, was soon realized to interact with the neuroendocrine system in 

response to a foreign substance. 

Like other hormones of the steroid-thyroid family, GCs initiate a molecular 

interaction in their target cells through binding to their nuclear receptors, activating the 

neural, endocrine, and immune system. The development of lymphoid cells is influenced 

by the endocrine function of the bursa and thymus, which is coordinated with the 

neuroendocrine system through hormones (Marsh and Scanes, 1994). Likewise, during an 
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inflammatory stress response, several cytokines –IL-1β, TNF-α, IL-2, IL-6, and IFN-γ 

stimulate the secretion of CRH via the HPA axis (Sapolsky et al., 2000; Elenkov et al., 

1999). However, the products released from activated immunological cells during immune 

responses induce both autonomic and endocrine mechanisms that suppress the immune 

response (Elenkov et al., 1999). The fact that GCs suppress the inflammatory and 

immunological responses is not surprising considering our understanding of the catabolic 

and anti-anabolic actions of GCs on lymphoid cells, mast cells, macrophages, other blood 

elements, endothelial cells, and fibroblastic tissues. (Baxter, 1976; Elenkov et al., 1999). 

Reports have stated that GCs not only inhibit most aspects of the immune response (Baxter, 

1976; Munck et al., 1984), they also cause substantial changes in both acute and chronic 

immunocompetence and the exaggerated responsiveness of certain components of the 

immune reaction (Baxter, 1976; Elenkov et al., 1999). Indeed, GCs affect antigen 

processing and presentation to T-cells; reduce the accumulation of monocytes and 

granulocytes at inflammatory sites; suppress the activity of humoral and cell-mediated 

immunological components; suppress the numbers of circulating leukocytes and their 

migration to extravascular fluid spaces for inflammatory reactions; and affect macrophage 

function (including phagocytosis) (Baxter, 1976; Siegel, 1980; Munck et al., 1984; 

Elenkov et al., 1999; Odhiambo, 2004).  

1.4 GASTROINTESTINAL HEALTH 

The GIT is an open-ended, epithelium-lined tube that runs from the beak to the 

cloaca in birds. The entire length of the GIT (beak to cloaca) is lined with a mucous 

membrane or mucosa which allows it to interact continuously with dietary antigens and 

diverse microorganisms (DeSesso and Jacobson, 2001). Other layers of the GIT include 
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the submucosa, muscularis propria, and serosa. Within the intestinal mucosa is the 

muscularis mucosae, lamina propria, and the epithelium, all of which work together to 

protect the complex multicellular organisms from the external environment (DeSesso and 

Jacobson, 2001). The intestinal epithelium, which is the innermost layer, constitutes the 

largest interface and most important barrier that separates the intestinal lumen from the 

host’s internal milieu (Groschwitz and Hagan, 2009). This single layer of intestinal 

epithelial cells acts as a selectively permeable barrier, critical for fluid and electrolyte 

secretion and nutrient absorption while also maintaining an effective defense against 

intraluminal toxins, antigens, and enteric flora, thereby shaping and guiding mucosal 

immune responses (Santos and Perdue, 2000; Matter and Balda, 2007; Groschwitz and 

Hagan, 2009). To exert these functions, a variety of cells including enterocytes, goblet 

cells, endocrine cells, Paneth cells, M cells, stem cells (crypt), and intraepithelial 

lymphocytes cooperatively form a physical and immunological network for the creation 

and maintenance of homeostasis between the environments inside and outside the intestine 

(Santos and Perdue, 2000; Goto and Kiyono, 2012). 

Similarly, these sophisticated gatekeepers allow epithelial permeation through two 

major mechanisms that regulate the transport of solutes, large molecules, and cells across 

the vessel wall - transcellular and paracellular pathways. In general terms, the transcellular 

pathway allows the transport of molecules across the epithelium. Through predominantly 

energy-dependent trafficking, it regulates selective transport of amino acids, electrolytes, 

short-chain fatty acids, and sugars from the luminal space to the interstitial space (Goddard 

and Iruela-Arispe, 2013; Adedokun and Olojede, 2019). The paracellular pathway is 

regulated by junctional complexes or intercellular junctions – desmosomes, tight junction 
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proteins, and adherens junctions localized at the apical-lateral membrane junction and 

along the lateral membrane (Groschwitz and Hagan, 2009; Turner, 2009). The paracellular 

pathway mediates the passive movement of luminal fluid and solutes in the spaces between 

epithelial cells. Because this barrier is not absolute, it serves as a fence that selectively 

allows the passage of proteins and lipids between the apical and basolateral plasma 

membrane domain (Laukoetter et al., 2006; Matter and Balda, 2007). Overall, these 

intercellular junctional complexes recruit signaling molecules that participate in the 

regulation of cell proliferation and they restrict diffusion across the epithelial surface 

(Laukoetter et al., 2006; Matter and Balda, 2007). 

Intestinal barrier function is a critical aspect of gut health. In addition to its barrier 

function, the GIT is also important for the digestion and utilization of nutrients. In this case, 

fingerlike structures (villi) covered by a thin layer of epithelial cells within the intestinal 

mucosa of the small intestine, are responsible for the digestion of food and absorption of 

nutrients (Murphy and Weaver, 2016). Its efficiency is maintained through continuous 

cellular turnover of the epithelial cells, derived from stem cells in the crypts of Lieberkühn 

of the epithelium, and the presence of various enzymes on the apical surface and within 

epithelial cells (Pluske et al., 1996; Santos and Perdue, 2000). Within the crypt unit, 

epithelial stem cells divide during migration along with the villus structure or in the base 

of the crypt into enterocytes. The enterocytes migrate along with the villus structure in a 

spiral path to the tip of the villi and depending on the length of the villus and age, survive 

between 48 and 96 hours before being lost by apoptosis (Smith et al., 2014). One of the 

most important gut-specific features is its ability to not respond inappropriately to food 

derivatives. Under normal circumstances, digested feed (macronutrients; proteins, 
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carbohydrates and fats, and micronutrients; vitamins and minerals) reaches the epithelium 

where they are effectively absorbed through several physical and biochemical processes. 

While these processes are quite honed, the intestine is frequently exposed to an unlimited 

number of antigens including dietary components, toxins, commensal and pathogenic 

microorganisms which can predispose it to gastrointestinal inflammation. Hence, in 

diseased or stressful conditions, excessive penetration of antigens through the epithelial 

layer promotes a cascade of reactions in the GIT including impaired intestinal barrier 

function, increased risk of bacterial translocation, and unnecessary inflammatory responses 

(Vicuña, 2015). This may result in a decrease in digestive efficiency and reduced 

absorption of both micros- and macronutrients (Celi et al., 2017).  

Like mammalians species, chickens also have a separate mucosal immune system 

within the intestinal epithelium that plays an active role in immunological and 

inflammatory events. The mucosal immune system is said to be an early evolutionary step 

necessary to deal with the vast populations of commensal bacteria that co-evolved with 

vertebrates (Murphy and Weaver, 2016). About 70% of the cells of the immune system are 

in the GIT (Vighi et al., 2008; Celi et al., 2017), which emphasizes the importance of 

immune function relating to GIT functionality. This function is carried out through the 

GALT - a compartmentalized structure comprised of organized lymphoid structures such 

as the bursa of Fabricius, ceca tonsils, Peyer’s patches, Meckel’s diverticulum, and small 

lymphoid aggregates scattered along the intraepithelial and lamina propria of the GIT 

(Lillehoj and Trout, 1996). Accordingly, antigen-presenting cells, immunoregulatory cells, 

and effector cell types are derived from these distinct structures. Considering that intestinal 

inflammation can negatively impact gastrointestinal function by disrupting the structure 
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and function of the intestinal mucosa, these defense mechanisms are essential to protect 

them from foreign invasion. The determination of the presence of intestinal inflammatory 

activity is crucial for the assessment of the gastrointestinal barrier and prevent the invasion 

or adherence of luminal pathogens to the cell surface of the epithelial cell. 

1.4.1 Stress and brain-gut axis 

The process of stress combines three major conceptual domains: the sources of 

stress, mediators of the stress response, and the manifestations of the stress pathologies 

(Pearlin et al., 1981). In recent years it has been recognized that diseased conditions or 

stressful events can interfere with the functionality of the GIT. Not only does it have to 

maintain the elaborate luminal bacteria within its periphery, but it also has divergent 

functions in terms of nutrient absorption and host local defense. This means the GIT plays 

an important role in health and well-being in so many ways. As previously discussed, 

poultry is faced with several stress factors including environmental, biological, or 

physiological stressors that lead to the activation of the stress response. Biological (Lillehoj 

and Trout, 1993; Lillehoj and Lillehoj, 2000; Yun et al., 2000; Laurent et al., 2001; Amerah 

and Ravidran, 2015; Adedokun et al., 2017), environmental (Scott and Balnave, 1988; 

Mashaly et al., 2004; Babinszky et al. 2011; Quinteiro-Filho et al., 2012; Sohail et al., 

2012), or chemically-induced (Binder, 1978; Spitz et al., 1994; Puvadolpirod and Thaxton, 

2000a-d; Li et al., 2009; Zhao et al., 2012; Vicuna et al., 2015), stressors can predispose 

the birds to gut health issues. The impact of the central nervous system sometimes called 

the “brain-gut axis,” is not fully elucidated. The stress response is comprised of complex 

interactions between components of the CNS and peripheral systems - the endocrine, 

immune, and commensal bacteria in the GIT. Indeed, there is ample evidence that suggests 
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the entities of the GIT microbiome, GIT barrier, and the enteric nervous system (ENS) 

function to confer epithelial defense, improve metabolic function, and maintain overall gut 

health in stressful conditions (Santos and Perdue, 2000; Söderholm and Perdue, 2001; 

Bischoff, 2011)  

The first link between stress and gastrointestinal diseases was from the observation 

of a wounded soldier which showed that fear or anger can significantly influence gastric 

physiology, especially acid secretion (Beaumont and Beaumont, 1847). In the later years, 

the crucial role the ENS (also known as “little brain”) play in the interactions between the 

CNS and the gut was elucidated (Konturek et al., 2011). The brain communicates with the 

gut through multiple parallel pathways including the ANS, the HPA, and other connections 

which were termed the brain-gut-axis (BGA) to interact with the immune system (Konturek 

et al., 2011; Foster et al., 2017). This synergy regulates the physiological gut functions 

including secretion, motility, the release of various neuropeptides and hormones, and 

creating a defensive barrier between externally derived pathogens and the internal 

biological environment (Söderholm and Perdue, 2001; Konturek et al., 2011; Foster et al., 

2017). While we would not focus much on the microbiota in this review, it is important to 

state the existence of a three-dimensional interaction. The brain-gut axis, gut microbiota, 

and the immune system play an important role in the modulation of the stress response of 

the gut to develop different gut disorders. Through different mechanisms, the microbiota 

communicates with the BGA: either by direct interaction with mucosal cells (endocrine 

message), via immune cells (immune message), and or via contact to neural endings 

(neuronal message) (Konturek et al., 2011). 
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To investigate the consequence of chronic stress on gut mucosa and pathology, 

adult rats were exposed to water avoidance stress (WAS, standing on a platform to avoid 

surrounding water) or no stress for 10 days. The WAS group exhibited an increase in the 

levels of circulating corticosterone and failed to gain weight during the experimental 

period. Mucosal abnormalities, physiological changes of ion secretion, and barrier 

dysfunction, but also morphological changes were observed (Tache and Perdue, 2004). 

Maejima et al. (1984) reported that rats that received thermal injury exhibited viable 

Escherichia coli, Proteus mirabilis, Staphylococcus sp., and Clostridium sp. in their 

mesenteric lymph nodes two days after exposure. This supported the concept that 

indigenous bacteria do not pass through the GI mucosa unless there is an overgrowth of 

certain bacteria populating the GI tract or when the host immune defense mechanisms are 

compromised. Similarly, in response to an acute stressor, colonic paracellular permeability 

increases and has been associated with the development of visceral hypersensitivity (Ait-

Belgnaoui et al., 2005). Moreover, immune cells have receptors for the catecholamines 

epinephrine and norepinephrine, which can respond to signals from the HPA axis and 

become either activated or downregulated. 

1.5 NUTRITIONAL MANAGEMENT 

1.5.1 Sub-therapeutic use of antibiotics 

The efficiency of antibiotic use has been unparalleled for the prevention, control, 

and treatment of infectious diseases in humans (McEwen, 2007). The same is true for its 

use in the livestock industry. The in-feed administration of non-therapeutic doses of 

antimicrobial growth promoters (AGP), has been successfully used to promote animal 

growth for more than 60 years. In 1946, Moore et al. reported that adding antibiotics 
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(streptomycin) to the diet, improved growth responses in chicks. Similarly, another study 

reported the beneficial effects of adding antimicrobials to poultry diets while in search of 

an inexpensive source of vitamin B12 (Stokstad et al., 1949). Vitamin B12 is considered an 

essential nutrient and is suggested to be produced by some bacteria species. Stokstad et al. 

(1949) reported that adding Streptomyces aureofaciens metabolites (known to produce 

vitamin B12) in the diet, improved BW gain in the chickens, with a markedly decrease feed 

intake. Later studies revealed that the metabolites included not only vitamin B12 but also 

the antibiotic, chlortetracycline (Stockstad and Jukes, 1950). This indicated that the 

beneficial effects were not entirely the effect of Vitamin B12 but rather the advantageous 

effect of the AGP added (Stockstad and Jukes, 1950). Further studies showed that the 

supplementation of chlortetracycline in diets improved BW gain of turkey poults (Stokstad 

and Jukes, 1950), and chickens (Whitehill, 1950). Similar production advantages were 

observed in swine and cattle research (Bartley et al., 1950; Loosli and Wallace, 1950; 

Gaskins et al., 2002).  

A combination of beneficial effects is derived from AGP use – growth promotion, 

feed efficiency, therapy for clinical bacterial infections, and prophylactic against clinical 

infections in a large group of animals. Hence the administration of AGPs became an 

effective tool for ensuring the development of intensive and large-scale farming (Gustafson 

and Bowen, 1997; McEwen, 2007). It became a common practice in the poultry industry 

that low levels of certain antibiotics be added to the feed, for an extended period, to dampen 

potential systemic infections, stabilize the gut microflora and, diminish the effects of 

subclinical infections (Mateos et al., 2002). The growth benefits observed with antibiotics 

use is suggested to be from its modification of the microbial population in the gut (Coates 
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et al., 1955; Coates et al., 1963). However, further observations demonstrated that the 

growth improvement caused by AGPs is a subject of their antimicrobial activity, as 

antibiotics do not have growth-promoting effects in germ-free animals. (Coates et al., 1963; 

Coates, 1980). Gaskins et al. (2002) summarised that AGPs enhance growth through, 

decrease microbial competition for nutrients, reduce the production of microbial 

metabolites, inhibit sub-clinical infections, and increase nutrient assimilation through a 

thinner intestinal wall. By inhibiting the growth of bacteria, AGPs limit the growth of gut 

microbiota and environmental pathogens. This reduces energy and nutrient competition 

among bacteria, thereby allowing more energy and nutrients to be allocated to the growth 

of the host animal. 

A multitude of AGPs is used in the broiler industry. The information obtained from 

the 2002 feed additive compendium reported that over 33 antimicrobial compounds were 

approved by the United States Food and Drug Administration (FDA), to be used in broiler 

feed without veterinary prescription (Miller, 2001). Fifteen of those compounds were used 

for the treatment of coccidiosis, 11 used as AGPs (for growth promotion and to alleviate 

the effects of bacterial infections), and 7 were used for the control of other diseases (Jones 

and Ricke, 2003). Currently, there is some level of resistance to therapeutic levels of all of 

these compounds due to their continued use as anticoccidials. hence, alternative methods 

are sought out to substitute for the growth permitting properties and additional 

antimicrobial activity characteristic of AGPs. After so many years of antibiotic use in 

human and veterinary medicine, concerns about the development of antibiotic resistance 

in the human population surfaced (Wierup, 2001). Recommendations were made to ban 

sub-therapeutic use of AGPs in animal feeds, particularly the European Union. in the 
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1980s. Concerns that the emergence of pathogenic bacteria resistant to several 

antimicrobial agents might pose a risk to human and animal health was compelling (World 

Health Organization, 2000; Dibner and Richards, 2005). The WHO recommended that the 

prophylactic use of antimicrobials in livestock be reduced, and those in the same class as 

used for humans be terminated or rapidly phased out (WHO, 2000; Dibner and Richards, 

2005). The United States Food and Drug Administration further issued restrictions on the 

use of AGPs (Costa et al., 2011). 

In addition to this, consumer concerns on the subject have impacted legislation. The 

trend for “natural” or “organically grown” animal products continues its upward trajectory 

in recent years among consumers. Whether for health or environmental reasons, consumers 

are making conscious decisions about what they eat or buy. This is especially true in 

western countries. The bans on AGPs have caused major problems for animal health and 

producer profitability due to dysbacteriosis, or imbalance of microflora, and other intestinal 

issues caused by bacterial overgrowth. So, to maintain productivity, producers are 

considering efficient alternatives to AGPs (Costa et al., 2011). A renewed interest in the 

immunologic and growth-regulating functions of the GIT as well as the 

immunomodulatory effect of certain nutrients are being investigated. Emphasis is placed 

on finding alternatives to improve the birds’ health, through nutritional regimens to 

modulate the immune system of chickens (Khan et al., 2012). Dietary modulations using 

products like antibacterial vaccines, immunomodulatory agents, bacteriophages and their 

lysins, antimicrobial peptides (AMPs), pro-, pre-, and sym-biotic, plant extracts, inhibitors 

for bacterial quorum sensing (QS), biofilm and virulence, and feed enzymes, vitamins and 

minerals are some of the alternatives for AGPs. (Cheng et al., 2014). 
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For any livestock operation, nutrition is important; however, with the removal of 

AGPs, nutrition should be placed at a higher priority because poor nutrition will predispose 

birds to opportunistic pathogens. Almost all nutrients in the diet play a crucial role in 

maintaining an “optimal” immune response such that deficient and excessive intakes can 

have negative consequences on immune status and susceptibility to a variety of pathogens. 

This means in a diseased or stressed state, increasing the intake of specific nutrients 

becomes paramount. Nutritionists formulate diets that supply adequate amounts of specific 

nutrients including carbohydrate, protein (amino acids), fat, minerals, and vitamins. Hence, 

the concentration of the nutrient in the feed is dependent on the physiological and health 

status of the animal. For maintenance, nutrient requirements are fairly low, but they are 

increased for growth or egg production (National Research Council, 1984) or in a diseased 

state. More research into nutrient-nutrient interactions and immune function in avian 

species is needed. Currently, the best dietary advice to enhance the immune function is to 

ensure variety, balance, and moderation of the nutrients. We can only achieve this if there 

is a set standard to how much of these additives can be added to the diet, especially under 

challenging conditions. 

1.5.2 Alternatives to antibiotics 

The biotechnology industry has offered the animal industry numerous potential 

applications including, the development of innovative products, advanced husbandry 

techniques, and clarity of understanding of the digestive physiology. This helps to improve 

the animal's performance, enhance production potential, and improve health status. 

Because of this knowledge and technological advancement, different classes of nutrients 

(carbohydrates, protein, fat, etc) can be modified or protected, resulting in improved diet 
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formulation that more accurately meet the specific needs of the animal. Pre- and probiotics 

are viable alternatives to AGPs explored to improve nutrient digestion, disease resistance, 

and good health. Pre- and pro-biotics or immune supplements can inhibit pathogenic gut 

microorganisms or make the animal more resistant to them. Exogenous enzymes can be 

used to improve nutrient availability from feedstuffs, lower feed costs, and reduce nutrient 

excretion into the environment.  Vitamins and minerals, a group of complex inorganic 

compounds present in minute quantities in natural food, are required for normal growth 

and maintenance (Lloyd et al., 1977). Substantial information available in the literature 

indicates that certain dietary components can modulate a bird’s susceptibility to infectious 

challenges, and subtle changes in the level of nutrients or the types of ingredients may at 

times, be of critical importance. 

1.5.2.1 Probiotics 

Probiotics are defined as live, naturally occurring microorganisms that beneficially 

affect the host animals and can improve their intestinal microbial balance (Fuller, 1989), 

or the properties of the local microflora (Song et al., 2014). Through competitive exclusion, 

these microorganisms inhibit the growth of pathogenic microorganisms and compete with 

them for a place in the intestinal epithelium. They can also modulate the immune system 

to increase the production of immunoglobulins and produce antimicrobial metabolites that 

inhibit the growth of pathogens. Studies have shown that the ability of probiotics to 

modulate the diversity and composition of the gut microbiota, may reduce the growth of 

pathogenic bacteria such as E. coli (La Ragione et al., 2004; Arreguin-Nava et al., 2019), 

Salmonella sp (Grimes et al. 2008), Clostridium perfrigens (Rahimi et al., 2019), 

Campylobacter jejuni ( Ghareeb et al., 2012; Smialek et al., 2018), and Eimeria sp (Dalloul 



 

53 
 

et al., 2005; Lee et al., 2007; Wael-Abderlrahman et al., 2014; Sokale et al., 2019). The 

effectiveness of probiotics on performance is an important factor considered in the poultry 

industry. Although, some studies have demonstrated the beneficial effect of probiotics on 

BW, BWG, and lowered feed conversion ratio (Awad et al., 2009), others have reported 

no effect (Murry et al., 2006; Liu et al., 2007).  

There are three major categories of probiotics approved by the FDA. Live 

apathogenic bacterial strains belonging to genus lactic-acid producing bacteria 

(Bifidobacterium, Lactobacillus, and Streptococcus), Bacillus sp, and yeast 

(Saccharomyces), are used in livestock and poultry (Dharma et al., 2011). Lactic acid 

bacteria-based probiotic has been reported to significantly reduce the incidence of 

Salmonella enteritidis by 60 to 70 % or Salmonella typhimurium by 89 to 95 % in the cecal 

tonsils of 1-day old broilers (Higgins et al., 2008). Broilers fed diets supplemented with B. 

subtilis exhibited a higher body weight, lower mortality, and lower intestinal necrotic 

enteric (NE) lesion score in birds challenged with NE (Sokale et al., 2019). Similarly, 

probiotics can also modulate either the innate or adaptive immune system (Dugas et al., 

1999). Pinto et al. (2009) found that pretreating the gut epithelium cells with Lactobacilli 

significantly increased IL-8 expression compared to the media treated group in vitro. These 

authors (Matsuzaki et al., 1997; Calcinaro et al., 2005; von Boehmer, 2005) also reported 

that probiotics could induce regulatory T cells or Th2 cells that could produce anti-

inflammatory cytokines, IL-10 and IL-4, and reduce pro-inflammatory cytokines such as 

interferon IFN-γ. Li et al. (2015) reported that Bacillus amyloliquefaciens decreased IL-

1β, increased IL-10, and elevated the expression of jejunal TLR4 in broilers challenged 

with lipopolysaccharide (LPS).  
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1.5.2.2 Prebiotics 

Prebiotics, on the other hand, is defined as dietary components that are not digested 

in the gastrointestinal tract until they reach the hindgut where they are acted upon by 

bacteria. They selectively stimulate the growth or activity of one or a limited number of 

bacterial species already resident in the colon and thus, attempt to improve the host health. 

Prebiotics are not hydrolyzed or absorbed in the upper regions of the digestive tract. In 

other words, prebiotics is not a microorganism but rather, a substrate meant to support the 

growth of beneficial gastrointestinal microbes. Only recently have oligosaccharide 

prebiotics being of interest in the area of animal nutrition and health. Oligosaccharides 

compounds have several classifications based on the type of monosaccharides (glucose, 

fructose, galactose, mannose, etc.), and consist of groups of monosaccharides.  The groups 

of monosaccharides range in length from 2 to 60 and are linked by β-(2,1) bonds which, 

prevent hydrolytic digestion in the upper gastrointestinal tract of monogastric animals 

(Briggs et al., 2011).  

The common prebiotics used in poultry production includes fructooligosaccharide 

(FOS) products [oligofructose, inulin, and short-chain fructooligosaccharides (SCFOS)], 

mannan-oligosaccharides (MOS), gluco-oligosaccharides, galactooligosaccharides, 

stachyose, transgalacto-oligosaccharides (TOS), oligochitosan, and lactulose (Patterson 

and Burkholder, 2003; Zhang et al., 2003; Jiang et al., 2006; Huang et al., 2007). They are 

specific non-digestible materials that can selectively increase the proliferation of bacteria 

types like bifidogenic bacteria (Bifidobacterium sp.) and Lactic acid bacteria (Lactobacillus 

sp.) which, are beneficial to the host (Patterson and Burkholder, 2003; Xu et al., 2003; 

Yusrizal and Chen, 2003). Broiler chickens fed diets containing different levels (2.0 or 4.0 
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g/kg) of fructooligosaccharides had significantly lower feed conversion ratios compared to 

the controls. The addition of 4.0 g/kg FOS increased the average daily gain of broilers and 

enhanced the growth of Bifidobacterium and Lactobacillus but inhibited Escherichia coli 

in the small intestinal (Xu et al. 2003). 

In another study, the effect of different oligosaccharides - inulin, oligofructose, 

SCFOS, MOS, and TOS supplemented in a basal corn-isolated soy protein diet, in intact 

and cecectomized roosters were examined (cecectomized roosters were used to eliminate 

any confounding effect of cecal microbes to allow for more accurate measurement of amino 

acid digestibility). Although the prebiotic additions had a little overall effect on amino acid 

digestibilities in cecectomized and intact roosters, improvements in isoleucine, lysine, 

methionine, and valine digestibilities were observed primarily in cecectomized birds fed 

diets supplemented with MOS or TOS. However, inulin supplementation depressed 

methionine digestibility in intact roosters (Biggs et al., 2007). Also, dietary 

supplementation of fructooligosaccharide (0.3% dose) or oligochitosan (0.1% dose) 

showed growth-promoting effects similar to antibiotic flavomycin (Huang et al., 2005) or 

aureomycin (Li et al., 2008). Wang et al. (2003) reported that dietary supplementation with 

0.1% of chitosan reduced the number of E. coli in the GIT of chicks while improving the 

small intestinal microvilli density, serum antibody titer against the Newcastle disease virus. 

Similarly, positive changes in digestive enzymes, gut morphology, and increased serum 

concentrations of IgG, IgA, and IgM were noticed in birds given prebiotic-supplemented 

feed (Xu et al., 2003; Zhang et al., 2003; Huang et al., 2007). 

1.5.2.3 Enzymes 
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Enzymes are naturally occurring and are produced by all living organisms for 

catalyzing chemical reactions. In the later part of the 19th century, enzymes were 

discovered and have been used in industry and food processes since the early 1900s 

(Clarkson et al., 2001). As special proteins, enzymes catalyze or accelerate the rate of 

specific chemical reactions in which the enzyme activity may be dependent on the substrate 

in a random manner or it may be through very specific sites on substrates such as fat, 

protein, or carbohydrates (Ferket, 1993). In the livestock industry, the addition of microbial 

enzymes to improve feed quality has dramatically increased. The benefits of enzyme use 

manifest by reducing the effect of anti-nutrients that cannot be hydrolyzed by endogenous 

enzymes and the efficient digestion and utilization of energy and nutrients from feed. This 

increases the amount of nutrients the animal could extract from their diet, as such microbial 

populations are reduced and so is the competition for intestinal nutrients by the hindgut 

microflora. Much of the performance response is thought to relate to changes in the 

microfloral population changes rather than the direct effect of the enzyme per se on diet 

digestibility. As a result, the response to enzymes is likely to be more pronounced in the 

absence of growth promoters than in their presence, although absolute performance is 

optimized in the presence of both products (Bedford, 2000). 

In addition to improving nutrient and energy digestion, they enhance the 

degradation of anti-nutritional factors and toxins. (Campbell and Bedford, 1992; Bedford, 

1996). However, enzymes cannot be applied broadly but rather used specifically to target 

appropriate substrates such as fiber, phytate, protein, carbohydrate, etc. White Pekin ducks 

fed diets supplemented with an enzyme mixture of amylase, protease and xylanase had 

increased BWG, feed efficiency, and ileal nitrogen digestibility however, ileal energy 
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digestibility was not affected (Hong et al., 2002). Starch digestibility has been reported to 

account for up to 35% of the improvement in available metabolizable energy as a result of 

xylanase supplementation, whilst fat accounts for 35% and protein for 30% (Bedford and 

Morgan, 1996). An enzyme blend (xylanase, amylase, and protease) in combination with 

a Bacillus-based direct-fed microbial, improved BWG, reduced FCR, increased energy 

efficiency, and reduced inflammatory responses compared to the non-supplemented groups 

challenged with coccidia vaccine in broilers (Dersjant-Li et al., 2016).  

1.5.2.4 Vitamins and minerals 

One of the many approaches proposed to enhance immune response is to 

supplement the diet with vitamins, which can modulate immune responses due to their 

extensive involvement in structural components and molecular mechanisms (Lloyd et al., 

1977). According to Weber (2009), the feed industry recognizes that the minimum dietary 

vitamin levels required to prevent clinical deficiencies may not support the optimum health 

and performance of poultry. This is because the productivity of poultry farming has 

continued to grow through genetic improvement, enhanced nutrition, management, and 

husbandry systems, which might increase the demand for vitamins. Vitamin E (VE), a fat-

soluble vitamin of plant origin, is essential for the integrity of the reproductive, muscular, 

circulatory, nervous, and immune systems (Leshchinsky and Klasing, 2001). It is most 

likely that VE, like other nutrients, affects the development and maintenance of 

immunocompetence through multiple functions. This can be by acting directly on immune 

cells or indirectly affecting metabolic and endocrine parameters, which in turn influences 

the immune system (Gershwin et al., 1985; Leshchinsky and Klasing, 2001).  



 

58 
 

Vitamin E is primarily known for its role as an antioxidant, reducing cellular free 

radical damage, but its deficiency causes a severe reduction in immune responses (Cook, 

1991). Niu et al. (2009) found that abdominal exudate cells and the percentage of 

macrophages increased in heat-stressed broilers fed diets supplemented with 200 mg/kg 

VE. Qureshi et al. (2000) suggested that the process of phagocytosis by macrophages is a 

membrane-mediated phenomenon, maintained by the availability of higher levels of VE 

needed for the integrity of phagocytosis. Also, VE protects cell membranes from damage 

caused by reactive oxygen species by acting as an oxidant scavenger (Field et al., 2002). 

The results reported from supplementing VE in the diet varies, depending on the level and 

duration of the feeding program, assessment criteria, and stress conditions. Allen and 

Fetterer (2002b) reported that increased dietary levels of VE-acetate had no significant 

effects on weight gain and feed conversion in Eimeria maxima infected chicks. Eid et al. 

(2008) reported that VE supplementation in the diet (200mg/kg) decreased the levels of 

plasma triglycerides and TBARs in laying hens challenged with DEX but had no effect on 

BW.  

Immune cells are particularly susceptible to oxidative damage and produce large 

amounts of free radicals during inflammation. Moriguchi and Muraga (2000), observed 

that VE improves the immune system by activating T-cells which, enhances host antiviral 

activity and increases the production of IFN-γ. Similarly, Erf and Bottje (1996) reported 

that broilers fed diets containing VE (100,000 IU/ton of feed) had a higher antibody 

response to S.pullorum, a T-cell independent antigen, than broilers receiving no 

supplemental VE suggesting that VE improves the response of B-cells to S. pullorum. As 

an antioxidant, VE also protects the phospholipids of cellular and sub-cellular membranes 
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from destruction by lipid oxidation and accordingly to maintain the morphological integrity 

and functionality of cells and tissues of the organism. As an essential micronutrient, VE 

optimizes the performance and reproduction of farm animals. In poultry, VE protects the 

ovarian follicles from oxidative damage and there is evidence that it also facilitates the 

release of vitellogenin as a precursor of the yolk from the liver and thus has an important 

function in egg production. Based on these effects, VE supplementation is recommended 

in broiler breeders and laying hen diets. In an HS study, laying hens fed diets supplemented 

with VE had increased egg production (Bollinger-Lee et al., 1999). 

Zinc (Zn) and Se are some of the trace minerals that have been associated with an 

improvement in immunity or functions that support immunity. Zinc, an essential nutrient 

for nearly all organisms, is an essential cofactor in hundreds of proteins (enzymes) within 

the avian body. The immune system is dependent on the functions of cellular metabolism 

with Zn being central in cellular metabolism and functions both structurally and 

catalytically in important biochemical pathways. It has been hypothesized that the 

antimicrobial effect of Zn leads to growth promotion where gut microbiota is altered to 

reduce fermentation loss of nutrients and to suppress gut pathogens, a mechanism similar 

to antibiotic-based growth promoters (Yazdankhah et al., 2014). Similarly, other evidence 

suggests that pathogens can have a competitive advantage over the commensal microbiota 

under Zn limiting conditions, thereby being promoted under an inflamed state (Gielda and 

DiRita, 2012). 

Recently, it was shown (Gielda and DiRita, 2012) that Zn competition exists in 

Campylobacter. jejuni and other bacterial species in the host-microbiota of conventionally 

raised versus germ-free broiler chickens. Under conditions of Zn deficiency, this might 
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lead to the preferential growth of bacteria able to survive at low-Zn levels. Furthermore, 

many recent studies have shown that prophylactic doses of Zn (as Zn oxide, ZnO) in 

various animal models increased the presence of Gram-negative facultative anaerobic 

bacterial groups, the colonic concentration of short-chain fatty acids (SCFAs), as well as 

overall bacteria species richness and diversity. Zinc supports the metabolism of numerous 

cells by functioning structurally and catalytically as metalloenzymes. Zinc’s role in 

immunity has been reviewed (Kidd et al., 1996).  Zinc is also essential for normal intestinal 

barrier function and the regeneration of damaged gut epithelium (Alam et al., 1994). Zinc 

supplementation has been reported to prevent tight junction opening in a rat colitis model 

(Sturniolo et al., 2002) and reduced intestinal permeability while increasing the 

concentration and expression of tight junction proteins in weaning piglets (Zhang and Guo, 

2009). Dietary zinc also effectively prevents or improves the loss of intestinal integrity 

during malnutrition (Rodriguez et al., 1996), ethanol-induced intestinal damage (Lambert 

et al., 2003), chronic inflammatory bowel diseases (Sturniolo et al., 2001), and infectious 

diarrhea (Alam et al., 1994). 

1.5.2.5 Other supplement strategies 

The supplementation of sodium, potassium, and chlorides in the diet have been 

clearly defined to achieve a balance between cation and anion supply. Sodium (Na+) and 

Cl− are low-cost nutrients, and their manipulation has little influence on the diet cost. 

However, they are involved in several metabolic activities such as the nerve cells, acid-

base balance, osmotic pressure regulation, and monosaccharide, and amino acid 

absorption, which requires that they are supplemented at precise levels quality (Murakami 

et al., 2001). Electrolyte imbalance is quite rare since the body’s buffering system provides 



 

61 
 

maintenance of normal physiological pH value, however, adequate balance ensures 

optimum growth, bone development, good litter, and egg quality (Murakami et al., 2001; 

Baloš et al., 2016). Physiological stress is associated with changes in electrolyte imbalance 

(Borges, 1997; Sandercock et al., 2001; Murakami et al., 2001; Olanrewaju et al., 2006, 

and 2007). Thus, the maintenance of this value is determined by three major factors – 

balance and ratio of electrolytes in feed, endogenous acid production, and level of renal 

activity (Baloš et al., 2016).  

To maintain acid-base homeostasis in poultry, the combined intakes of Na+, K+, 

and Cl-, are important to determine dietary electrolyte balance (DEB) (Mongin,1981). Most 

commonly, the electrolyte balance is described by a simple formula Na+ + K+ - Cl- and 

expressed as mEq/kg in the diet (Mongin, 1981). Salts such as sodium bicarbonate 

(NaHCO3), potassium chloride (KCl), calcium chloride (CaCl2), and ammonia chloride 

(NH4Cl) in water and/or feed proved beneficial for broilers under different heat stress 

regimens (Borges, 2003; Ahmad et al., 2005). Some researchers have reported the 

beneficial effect of substituting a part of the dietary inorganic Na provided in the diet as 

NaCl with NaHCO3 (Frank and Burger, 1965; Makled and El- Gammal, 1977; Makled and 

Charles, 1987; Balnave and Muheereza, 1997; Yörük et al., 2004), others have reported no 

benefits (Cox and Balloun, 1968; Ernst et al., 1975; Grizzle et al., 1992).  

The supplementation of Na+ (without Cl-) in feed leads to an increase in the 

concentration of HCO3
- ions and elevated blood pH, whereas supplementation of Cl- 

(without Na) decreases the concentration of HCO3
- ions and pH value. This means to 

correct for the decrease in blood bicarbonate levels during high temperatures decreases, an 

electrolyte source with less Cl- will be more efficient. Sodium bicarbonate in the diet may 
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help to maintain proper pH balance, eliminate acidosis, and ensure maximum growth and 

productivity (Ahmad et al., 2005; Naseem et al., 2005). Similarly, to correct for the reduced 

HCO3 concentration in the lumen of the shell gland that negatively affects eggshell quality 

in high temperatures, (Hall and Helbacka, 1959; Wideman Jr. and Buss, 1985). Ghorbani 

and Fayazi, (2009) observed an increase in the egg weight, egg production, and feed intake 

in laying hens subjected to heat stress (36 – 42 ℃) and fed a diet containing NaHCO3. 

Feeding corticosterone-treated broilers with supplemental water electrolytes improved 

body weight gain (Virden et al., 2009). The addition of 0.20 % dietary NaHCO3 with 

monensin significantly improved body weight, uniformity, feed efficiency, and breast meat 

yield in coccidia challenged birds (Hooges et al., 1999). 

1.6 OBJECTIVES 

1.6.1 Scope of the dissertation 

Unfavorable environmental stimuli that create a condition of stress can influence 

an animals' susceptibility to disease. Whether host resistance to disease is increased or 

decreased may depend on many factors, such as the type of stressor, the duration of the 

stress episode, the immune status of the animal, and the particular pathogen involved. In 

animal production, the consequences of stress-related factors are exacerbated by consumer 

demands to find economically viable strategies to the conventional use of sub-therapeutic 

antibiotics in poultry diets, without affecting production parameters. In summary, this 

literature review extensively outlined the negative impact of stress in poultry production. 

Specifically, focusing on stress factors like coccidiosis and heat stress conditions 

commonly affecting poultry, as well as using a glucocorticoid derivative to understand the 

stressful situations the birds might be predisposed to on the farm. From the background 
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information and studies presented in this review, the importance of intestinal health is 

paramount to the overall health and performance of poultry. Nutritional strategies play an 

important role in maintaining optimal gastrointestinal tract conditions to aid production 

Hence, the focus is to fully understand the potential of using feed additives during periods 

of stress conditions, and formulating diets to account for the malabsorption of nutrients to 

support poultry performance during the critical stages of development.  

This dissertation hypothesized that the stress agents (DEX, coccidia-vaccine, and 

heat stress) used in the studies presented would induce negative effects on the birds. Some, 

or all the measured parameters such as the BW, FE, digestibility, and utilization of 

nutrients, intestinal morphology, permeability, and immune response (in broilers), and egg 

production, egg quality, blood profile, and structural integrity (laying hens) will be 

impaired or altered. However, the addition of the feed additives will mitigate the negative 

effect and confer protection by eliminating ROS, balancing the expression of inflammatory 

mediators, maintaining the intestinal integrity to achieve maximum digestion and 

utilization of nutrients and growth.  

The overall aims of the research presented in this dissertation were to evaluate the 

effect of stress factors in poultry production on performance indices, intestinal barrier 

permeability, digestibility and utilization of nutrients, skeletal integrity, and immune 

response. With the limitation of antibiotics used in poultry production, understanding the 

effect of feed additives on specific cellular and molecular mechanisms is important for 

optimizing bird health and productivity. As such, any product that alters the balance of 

continuous antigenic challenge and epithelial, or mucosal defense is a potential target for 
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therapeutic strategies to modulate gut inflammation initiated or perpetuated by stress 

(Figure 1.7). 

1.6.2 Specific objectives 

1.6.2.1 First research objective 

To determine the effect of dexamethasone-induced stress on performance, intestinal 

morphology, nutrient and energy digestibility and utilization, bone integrity, and immune 

response of broiler chickens, and the interplay of supplementing two different inorganic 

sodium sources (NaCl or a combination of NaCl and NaHCO3) and EconomasE™. 

1.6.2.2 Second research objective 

To determine the effects of supplemental EconomasE™ (a blend of ingredients that 

maximizes and maintains the antioxidant status of the animal) and two inorganic sodium 

sources (NaCl or a combination of NaCl and NaHCO3) in laying hens on their production 

parameters, egg quality, blood metabolites intestinal morphology, keel bone, bone-

breaking strength, and ash at different environmental temperatures. 

1.6.2.3 Third research objective 

To outline the dysbiosis resulting from a well-established enteric broiler coccidia 

vaccine and DEX-challenge model with or without Natustat™ (a natural plant-derived 

proprietary product composed of at least 1 yeast-derived MOS plus organic mineral 

nutrients and plant extracts) supplementation. The analysis adopted a multifaceted 

approach that considered the effect of the challenge on performance, ileal nutrient and 

energy digestibility, intestinal morphology, gut permeability, and immune response. 

Furthermore, to understand how these stress factors alter intestinal inflammation-
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associated permeability, uptake of fluorescein isothiocyanate (FITC-d) a 3-5 kDa, a marker 

used to measure tight junction permeability in enteric inflammation models, was evaluated.
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1.7 FIGURES 

 

Figure 1.1 Schematic diagram of the major components of the hypothalamic-pituitary-
adrenal (HPA) Axis. The activation of the HPA axis in response to stress initiates a cascade 
of events through the paraventricular nucleus (PVN) of the hypothalamus to secrete 
corticotropin-releasing hormone (CRH). Activation of the sympathetic pathway initiates 
the release of catecholamines from the adrenal medulla which act on various target organs 
and tissues. The CRH travels to the anterior pituitary. There, CRH binds CRF receptors to 
release adrenocorticotropic hormone (ACTH) into circulation. The ACTH binds to 
receptors in the zona fasiculata of the adrenal cortex and causes the release of 
glucocorticoids (GC). The GC secreted as corticosterone (CORT) in birds act on a variety 
of target tissues and organs to maintain homeostasis (Adapted from Matteri et al., 2000).
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Figure 1.2 Schematic overview of the typical endocrine stress response. I. Changes in 
hormone-secretory patterns in response to a stressor. II. Physiological consequences of 
the stress response (Sapolsky et al., 2000). Abbreviations: SNS, sympathetic nervous 
system; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropin releasing 
hormone; GCs, glucocorticoids; GnRH, gonadotropin-releasing hormone 
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Figure 1.3 Some stressors poultry are exposed to during production. 
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Figure 1.4 Schematic representation of the life cycle of Eimeria sp (Lillehoj and Lillehoj, 2000; Allen and Fetterer, 2002a).
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Figure 1.5 Mechanism of heat stress: Its effects on neuroendocrine factors, growth, reproduction parameters, and respiratory profile. 
Adapted from Nawab et al., 2018. 
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Figure 1.6 The efficient functioning of the acid-base homeostatic mechanisms is an essential feature for optimal growth and 
production. Blood composition is maintained within narrow limits to allow for a complex interplay of biochemical and physiological 
events.
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Figure 1.7 Objectives of the entire study.  



 

 
 

CHAPTER 2.  

EFFECTS OF A DIETARY ANTIOXIDANT AND TWO INORGANIC SODIUM 

SOURCES ON PERFORMANCE, NUTRIENT DIGESTIBILITY AND UTILIZATION, 

INTESTINAL PERMEABILITY, AND INFLAMMATORY RESPONSE OF BROILER 

CHICKENS CHALLENGED WITH DEXAMETHASONE 

Abstract 

This study was conducted to evaluate the effect of an algae-based antioxidant containing 

Se yeast, EconomasE™ (EcoE), and two inorganic sodium sources (NaCl and 

NaCl+NaHCO3) on growth performance, nutrient digestibility and utilization, antioxidant, 

and immune status of 21-day-old broiler chickens challenged with dexamethasone (DEX). 

Broilers (336) were randomly assigned to one of four experimental diets: a basal diet with 

NaCl as the only source of inorganic sodium with no EcoE; a basal diet with a combination 

of NaCl and NaHCO3 as the sources of inorganic sodium with no EcoE; a basal diet with 

NaCl as the only source of sodium with EcoE; a basal diet with a combination of NaCl and 

NaHCO3 as the source of inorganic sodium with EcoE. At 16 d of age, half of the chickens 

in each dietary treatment were orally gavaged with a 0.6 mL solution of DEX at the rate of 

1 mg/kg body weight on 3 alternate days (d 16, 18, and 20). The remaining half (control 

birds) were gavaged with the same volume of nanopure water. Data were analyzed by a 

two-way ANOVA. Plasma corticosterone (CORT) levels increased (P < 0.0001) with DEX 

challenge. Bodyweight gain and feed efficiency of the broiler chickens decreased (P < 

0.0001) with DEX-challenge but not by the dietary treatment. Villus height decreased (P 

< 0.05) with DEX challenge. The addition of NaCl+NaHCO3 as the source of inorganic 

sodium in the diet increased (P < 0.05) the crypt depth of the non-challenge birds. With 

DEX-challenge, the apparent ileal digestibility (AID) of nitrogen (N) increased (P = 
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0.021). Dietary treatments had no effect on the digestibilities calculated. The non-challenge 

birds fed diets supplemented with EcoE had a higher (P < 0.05) total tract utilization (TTR) 

of DM compared to the other groups. The TTR of EN and AME and AMEn were higher 

(P < 0.05) in the non-challenged birds fed the diet supplemented with EcoE. Similarly, the 

TTR of N was higher (P < 0.05) in the non-challenge birds fed diets supplemented with 

EcoE. Finally, jejunal mRNA levels of cytokines and tight junction proteins measured were 

not affected by DEX-challenge, sodium source, or EcoE supplementation. The results 

indicate that the inclusion of either of the sodium sources did not attenuate the CORT 

levels, antioxidant status, growth performance, and immune response of the broilers. The 

EcoE supplementation did not improve the performance, antioxidant status, or immune 

response of the broilers however, in non-stress birds reduced CORT plasma levels and 

increased nutrient and energy utilization in broiler chickens. The DEX challenge was able 

to mimic the negative effects of an environmental stressor as shown by the depressed 

growth performance and nutrient utilization. 

2.1 INTRODUCTION 

The stress response involves the activation of a complex repertoire of the 

physiologic and behavioral central nervous system and peripheral adaptive responses. If 

excessive and prolonged, can cause adverse consequences on physiologic functions, such 

as growth, metabolism, circulation, reproduction, gut health, and the 

inflammatory/immune response (McEwen, 2008). The corticotropin-releasing hormone 

(CRH) released in the hypothalamus is the first step in the activation of the HPA axis 

involved in stress response, and this activates the pituitary and the adrenal glands to 

produce catecholamines and glucocorticoids (Axelrod and Reisine 1984; McEwen, 1998; 
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Puvadolpirod and Thaxton, 2000a,b; Virden and Kidd, 2009; Kuenzel and Jurkevich, 2010; 

Konturek et al., 2011). Studies have shown that the CRH plays a key role in stress-induced 

gut permeability, increases colonic paracellular permeability (Saunders et al., 1994), and 

visceral hypersensitivity (increased perception of pain).  

Given the negative impact of stress on animal welfare and gut health, it has become 

an important consideration in poultry production. Elevated levels of corticosterone in 

circulation have been shown to enhance excretion of a water load, inhibit the secretion of 

several hormones and neuropeptides, impair glucose and mineral metabolism, increase 

protein catabolism, gastrointestinal lesions, suppress numerous immune reactions, and 

increase phagocytosis and antibody formation (Selye, 1950; Lupien et al., 2007; Zhao et 

al., 2012). A composite of interacting stressors exists around broiler chickens and can be 

mimicked by glucocorticoid (such as corticosterone or dexamethasone) administration 

(Post et al., 2003; Lin et al., 2004a, b; 2006b). Observation from several studies shows that 

the administration of glucocorticoid mimics the adverse effects of elevated levels of 

corticosterone (Binder, 1978; Spitz et al., 1994; Li et al., 2009; Vicuna et al., 2015), and as 

such a useful tool to understand the negative impact of stress. Dexamethasone (DEX) 

administration in poultry has been reported to induce oxidative stress (Eid et al., 2003), 

suppress immune functions (Shini et al., 2010), results in gastrointestinal dysfunction 

(Saunders et al., 1994), intestinal permeability (Spitz et al., 1994; Vicuna et al., 2015), 

ultimately impairing the barrier function of the gut (Saunders et al., 1994), and eventually 

influencing the absorption of nutrients (Puvadolpirod and Thaxton., 2000d).  

 To improve the resilience of the animal to which its physiological functions can 

proceed effectively without deviating from their respective set points in the event of stress, 
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intentional manipulation of the diet even before the occurrence of an infection, will not 

only confer protection but becomes advantageous in terms of productivity. Among the 

strategies to improve health through diet, is the use of antioxidants. The most common 

natural dietary antioxidants capable of neutralizing reactive oxygen species include 

ascorbic acid (vitamin C), glutathione, lipoic acid, α-tocopherol (vitamin E, VE), 

carotenoids, coenzyme Q, and selenium (Se) (Masood et al., 2013). Vitamin E, which is 

part of the chain-breaking antioxidants plays an important role in protecting the cell 

membranes from oxidative damage (Surai, 2016). Studies have shown that by adding 

higher levels of VE to poultry diets at doses above the NRC-recommended amount 

(10 IU/kg of diet; this level is dependent on antioxidants such as vitamin C and selenium, 

type and amount of lipids in diets, and environmental conditions), can achieve an optimized 

growth performance, alter the antioxidant capacity (Mahmoud and Hijazi, 2007), and 

increase the expression of immune parameters (Pitargue et al., 2019). To maximize the 

benefits of VE when supplemented in the diet, a functional equivalent product was 

designed to replace VE. EconomasE™ [EcoE, Alltech, Nicholasville, KY] a proprietary 

blend of ingredients that maximizes the antioxidant status of birds has been shown to 

significantly reduce the amount of VE required in broiler diets without compromising 

performance and meat quality (Pierce et al., 2009). The inclusion of EcoE in the diet 

increased total antioxidant capacity and modulates the expression of certain genes involved 

in multiple metabolic processes, cell morphology, and immune responses (Xiao et al., 

2011). Moreover, these benefits have also been attributed to its high content of antioxidants 

such as selenium which, alongside other antioxidants play an important role in the 

antioxidative defense system (Choct et al., 2004).  
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Similarly, stress responses are integrally involved with the acid-base balance in 

several species. Through the glucocorticoid receptor and mineralocorticoid receptor, 

corticosterone can alter mineral and water metabolism (Selye, 1950; Selye, 1976). Brown 

et al. (1957) reported an increase in the excretion of sodium (Na), potassium (K), total 

nitrogen, and uric acid, in roosters treated with cortisone acetate. Olanrewaju et al. (2007) 

reported that birds treated with ACTH had a reduction in plasma concentrations of Na+ and 

Cl− which might be due to an increase in urinary electrolyte excretion. To maintain acid-

base homeostasis in poultry, the combined intakes of Na, K, and Cl, are important to 

determine dietary electrolyte balance (DEB) (Mongin,1981). Salts such as sodium 

bicarbonate (NaHCO3), potassium chloride (KCl), calcium chloride (CaCl2), and ammonia 

chloride (NH4Cl) in water and/or feed proved beneficial for broilers under different heat 

stress regimens (Borges, 2003; Ahmad et al., 2005). Feeding corticosterone-treated broilers 

with supplemental water electrolytes resulted in improved body weight gain (Virden et al., 

2009). Because the chief goal of the broiler producer is to achieve optimal meat production 

at the lowest possible cost, research directed to circumventing or alleviating physiological 

stress during live production is important.  

The hypotheses for this study were that the oral administration of DEX will induce 

stress in the birds and the supplementation of the different inorganic sodium sources and 

EcoE would ameliorate the negative impact of DEX in 21-d old broiler chickens. Thus, the 

objective of the study was to understand the effect of stress, induced by the administration 

of DEX on performance, intestinal morphology, nutrient and energy digestibility and 

utilization, immune response, intestinal permeability, and the role of different inorganic 
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sodium sources and EcoE supplementation in mitigating the effect of the stress in broiler 

chickens. 

2.2 MATERIALS AND METHODS 

2.2.1 Experimental design 

The experiment used day-old male by-product breeder chicks obtained from Cobb 

Monticello, KY. The chicks were placed in electrically heated battery cages and maintained 

on a 20 h of light and 4 h of dark lighting schedule. The room temperature was maintained 

at 32 ℃ for the first week and gradually decreased to 27 ℃ by the third week. Throughout 

the experiment, broilers had ad libitum access to water and diet that met or exceeded NRC 

recommended nutrient and energy requirement (NRC, 1994). On d 14, 336 broiler chickens 

were randomly assigned to 8 treatment groups with 7 replicate cages within each treatment, 

and 6 birds/cage in a completely randomized design. The 8 treatments were factorially 

arranged to include 2 levels of inorganic sodium sources, 2 levels of EcoE, and 2 levels of 

DEX challenge. The dietary treatments are listed in Table 2.1. The four diets used in the 

trial are (A) basal diet with NaCl as the only source of inorganic sodium with no EcoE; (B) 

basal diet with a combination of NaCl and NaHCO3 as the sources of inorganic sodium 

with no EcoE; (C) basal diet with NaCl as the only source of sodium with EcoE; (D) basal 

diet with a combination of NaCl and NaHCO3 as the source of inorganic sodium with EcoE. 

EconomasE™ was added to the diet at a 0.2 g/kg diet. Within each dietary treatment, chicks 

were either challenged with DEX (Sigma Chemical Co., St. Loius, MO) or nanopure water 

on days 16, 18, and 20 via oral gavage at the rate of 1 mg/kg body weight. The DEX dose 

of 1 mg/kg of BW was chosen based on previous literature (Li et al., 2009; Wideman and 

Pevzner, 2012). Although both studies administered the DEX intramuscularly, this study 



 

79 
 

administered the DEX via oral gavage with the expectation that the chosen route will have 

a high impact on the gut. Titanium dioxide was included in all diets (0.5 %) as an inert 

marker to determine energy and nutrient digestibility. All diets were made from a single 

basal diet. All animal handling procedures were conducted under protocols approved by 

the Institutional Animal Care and Use Committee at the University of Kentucky. 

2.2.2 Sample collection 

Birds were weighed individually on 0, 14, 16, and 21 d of age; meanwhile, feed 

intake (FI) was recorded per pen to calculate average body weight gain (BWG) and feed 

efficiency (FE). On d 21, all the birds were weighed individually and one bird with the 

weight closest to the average cage weight was selected for tissue collection. All the birds 

were euthanized by argon asphyxiation. From the designated tissue bird, blood was drawn 

from the wing vein into EDTA tubes and centrifuged at 1200 x g for 10 min at 4 ℃. At 

mid-jejunum, a tissue section was removed, immediately flushed with nanopore water, and 

divided into 2 segments. One 4-cm was fixed in 10% buffered formalin and processed for 

villus height, villus width, and crypt depth determination. Another 4 cm segment was taken 

out for intestinal mucosal samples. The intestinal segment was sliced open longitudinally, 

and mucosal samples were collected by scraping, using sterile glass microscope slides, into 

a microtube that contained Trizol (Invitrogen, Grand Island, NY, USA). The samples were 

rapidly frozen in liquid nitrogen and stored at – 80 ℃ for the gene expression of cytokines, 

chemokines, and tight junction proteins. The liver, spleen, and bursa of Fabricius were 

removed and cleaned of adherent tissues. The weight of these organs was determined and 

expressed as relative to final body weight at sampling [(organs weight/final BW) × 100]. 

Furthermore, the left, and right tibia were removed and stored at – 20 ℃ for bone-breaking 
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strength and bone ash. The remaining birds, including the one selected for tissue collection 

(6 birds per cage), were opened and the contents of the distal 2/3rd of the ileum, were 

collected by flushing with nanopure water into clean pre-labeled plastic containers. Digesta 

samples from individual birds within a cage were pooled and immediately frozen at -20 ℃. 

Ileal digesta samples were subsequently freeze-dried, finely ground using a coffee grinder, 

and stored in airtight bags until further analysis. Excreta samples were collected on days 

20 and 21 for total tract nutrient utilization. Excreta samples collected on d 20 and 21 were 

weighed to determine the wet weight, dried in a forced-air oven at 55 ℃ for 5 days, and 

subsequently weighed to determine the dry weight. The dried excreta samples were ground 

through a 0.5 mm screen using a Wiley Mill laboratory Standard (Model No. 3, Arthur H. 

Thomas Co., Philadelphia, PA, USA) and stored in airtight plastic bags. 

2.2.3 Plasma parameters measurements 

Blood samples were centrifuged to separate plasma and then stored at −80 °C until 

analysis. Plasma samples were analyzed for corticosterone (CORT), superoxide dismutase 

(SOD), and catalase (CAT) activities using commercially available diagnostic kits. Plasma 

levels of CORT were determined in duplicates using a Corticosterone ELISA kit (Catalog 

No ADI-900-097, Enzo Life Science Inc., Farmingdale, NY, USA) according to the 

manufacturer’s instruction. The total SOD activity was determined using a commercial kit 

(Catalog Number 706002, Cayman, Ann Arbor, MI, USA). Briefly, the activity was 

quantified using a tetrazolium salt for detection of superoxide radicals generated by 

xanthine oxidase and hypoxanthine. A unit is defined as the amount of enzyme needed to 

exhibit a 50 % dismutation of the superoxide radical produced. The analysis was carried 

out according to the manufacturer's instructions in 96-well format, read at 450 nm on a 
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plate reader Model 680 (Bio-Rad, Hercules, CA, USA). Standard curves for each plate 

were generated with a final activity of 0.005 to 0.050 U/mL SOD. The activities of CAT 

(Catalog Number 707002, Cayman Chemical, Ann Arbor, MI, USA) was measured by the 

rate of hydrogen peroxide (H2O2) disappearance. The catalytic activity involves the 

conversion of two molecules of H2O2 to molecular oxygen and two molecules of water. 

Samples and standards were measured at an absorbance of 440 nm with a plate reader 

Model 680 (Bio-Rad, Hercules, CA, USA. 

2.2.4 Intestinal morphology 

A segment of the jejunum was collected from one bird per cage, flushed with 

nanopore water to remove the digesta contents. The gut segments were fixed in 10 % 

neutral buffered formalin (Sigma Chemical Co., St Louis, MO, USA). Subsequently, tissue 

sections (5 μm) were cut, dehydrated, cleared, and embedded in Polyfin paraffin 

(Polysciences Inc., Warrington, PA, USA), and stained with hematoxylin and eosin. On 

each slide, villus height, width, and crypt depth were measured from 10 villi under a 

magnification of 4X, using a Nikon ECLIPSE Ci-E light microscope equipped with a 

computer-assisted digital camera (DS-Ri2) using NIS-Elements Br software (Nikon 

Corporation, Tokyo, Japan). An average value was calculated for each section measured. 

The villus height: crypt depth ratio was calculated. 

2.2.5 Intestinal gene expression 

The mRNA expression of the following genes was measured using a real-time 

quantitative PCR: pro-inflammatory cytokines - interleukin (IL) - IL-1β, IL-6; anti-

inflammatory cytokines - IL-10, interferon-gamma (IFN-γ), transforming growth factor-β4 

(TGF-β4); chemokines - CCL5 (RANTES), C-C motif, ligand 5;  CXCLi1, C-X-C motif 
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ligand 1 inflammatory; CXCLi2 C-X-C motif ligand 2 inflammatory; and tight junction 

proteins - ZO-1, claudin 1, occludin. Total RNA was extracted from the jejunum using 

Trizol® reagent (Invitrogen Canada, Inc.) following the manufacturer’s protocol. RNA 

samples were resuspended in nuclease-free H2O, and the concentration of the extracted 

RNA was determined using a ND-1000 spectrophotometer (Nanodrop Technologies, 

Wilmington, DE) at an optical density of 260 and 280 nm. Subsequently, 1 μg of total RNA 

from each sample was reverse transcribed into cDNA in a 20 μL RT reaction using Script 

cDNA super mix for qRT-PCR (Quanta Biosciences, Gaithersburg, MD) according to the 

manufacturer’s protocol in a Veriti TM Thermal cycler (Catalog no 4375786, Applied 

Biosystems). The RNA was incubated for 5 min at 25 ℃, followed by 30 min extension at 

42 ℃. The reaction was stopped at 80 ℃ for 5 min and then held at 4 ℃ until removal 

from the machine. The cDNA was then diluted 1:20 with nuclease-free water before being 

used for real-time PCR. Briefly, the reaction mix was prepared using 1 μL of cDNA, 

0.375 μL of each forward and reverse primer, 6.25 μL SYBR green master mix (Bio-Rad, 

Hercules, CA), and 4.5 μL of RNase free water to reach a total reaction volume of 12.5 μL. 

Each sample was tested in duplicate. PCR plate contained target genes and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) - an endogenous housekeeping control and a no-

template negative control containing water instead of cDNA. PCR was performed using 

the Bio-Rad CFX-96 real-time PCR system (Bio-Rad, Hercules, CA), with the following 

cycle profile: 95 ℃ for 5 min, 95 ℃ for 15 s and then 60 ℃ for 1min ran on a repeat for 

40 cycles. The relative levels of mRNA expression were calculated using the 2-∆∆CT method 

after normalization against the reference gene (Shini and Kaiser, 2009). The average value 
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of the control group was used as a calibrator. Primers used for real-time PCR are listed in 

Table 2.2. 

2.2.6 Bone breaking strength and bone ash 

The frozen tibias were thawed and later stripped of soft tissue. The bones were de-

fleshed by hand and the bone cap removed. Subsequently, bone-breaking strength was 

measured using an Instron Materials tester (model 4301, Instron Corp., Canton, MA) at a 

loading rate of 40 mm/min. The average breaking strength of the left and right tibia was 

reported as the breaking strength of the bone. To determine the ash content, the bones were 

further extracted in anhydrous ether for 24 h (removing nonpolar lipids). After the third 

extraction, bones were dried at room temperature for 4 h. Bones were individually weighed 

and placed in a porcelain crucible and ashed in a muffle furnace overnight at 600 ℃ and 

weighed again after ashing. The percentage of ash was determined relative to the dry 

weight of the bones. 

2.2.7 Chemical analysis 

Excreta, ileal, and diet samples were thoroughly mixed, and subset samples were 

taken for analyses in duplicate. Dry matter (DM) content in the excreta, ileal digesta, and 

diets was determined by oven-drying at 105°C for 24 h (AOAC International 2006; method 

934.01). Gross energy of excreta, ileal digesta, and diet samples were determined using a 

bomb calorimeter (Parr 6200 calorimeter, Parr Instruments Co., Moline, IL, USA) with 

benzoic acid used as a standard. Titanium (Ti) and nitrogen (N) contents in the excreta, 

ileal digesta, and diets were analyzed at the Agricultural Experiment Station Chemical 

Laboratories, University of Missouri-Columbia (Columbia, MO). The samples were 

digested using concentrated sulfuric acid and processed as described by Myers et al. (2004) 
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after which Ti concentration was determined by flame atomic absorption spectroscopy. 

Nitrogen content was determined by the combustion method using a LECO Trumac 

Nitrogen Analyzer (LECO, St. Joseph, MI; AOAC International, 2000; method 990.03).  

Apparent ileal digestibility (AID) and total tract nutrient utilization (TTR) of dry 

matter (DM), N, and energy (EN) were calculated using the following equation:  

𝐴𝐼𝐷 𝑜𝑟 𝑇𝑇𝑅, % = ቂ1 − ቀ
்௜಺

்௜ೀ
 ቁ ×  ቀ

௑ೀ

௑಺
 ቁቃ × 100-----Eqn. 1 (Adedokun and Adeola, 

2017) 

Where TiI represents the titanium concentration in the diet and Tio represents the 

titanium concentration in the ileal (AID), or excreta (TTR) samples (%); and XI represents 

the concentration of nitrogen or energy in the diet and XO represents are the concentration 

of nitrogen or energy in the ileal or excreta samples, respectively, (%). 

Ileal digestible energy (DE) and apparent metabolizable energy (AME) were 

calculated using the following equation. 

𝐷𝐸 𝑜𝑟 𝐴𝑀𝐸, 𝑘𝑐𝑎𝑙/𝑘𝑔 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑁 (%) ×  𝐺𝐸 𝑜𝑓 𝑑𝑖𝑒𝑡 (𝑘𝑐𝑎𝑙/𝑘𝑔)  

Where calculated EN is derived from Eqn. 1 for ileal or excreta samples, and gross 

energy (GE) of diet is determined by bomb calorimeter. Nitrogen-corrected AME (AMEn) 

was determined by correcting for N retention by a factor of 8.22 kcal/g of N retained in the 

body as described by Hill and Anderson (1958). 

2.2.8 Statistical analysis 

Prior to statistical analysis, outliers (data outside mean ±3 standard deviation) were 

removed from the data set. For performance and nutrient digestibility data, cage means 

were considered as experimental units. For the remaining analysis, a bird constituted an 

experimental unit. Data were subjected to a two-way ANOVA using the GLM procedure 
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of SAS 9.4 software (SAS Institute Inc., Cary, NC) as a completely randomized design 

with a 2 x 2 x 2 factorial arrangement of treatments. The significance of the main effects 

(inorganic sodium source, supplement type (EcoE), and challenge type (DEX) and their 

interactions were determined. To increase power, when the two-way interactions were not 

significant, they were pooled into the residual error. Means were separated using Tukey’s 

multiple comparison test and a level of 0.05 was used for statistical significance. 

2.3 RESULTS 

2.3.1 Plasma antioxidant status (SOD and CAT) and corticosterone 

Table 2.3 shows the effect of two inorganic sodium sources, two levels of EcoE, with or 

without DEX challenge on plasma corticosterone and antioxidant (SOD and CAT) indexes. 

The interaction effect between the diet and DEX-challenge was not significant for plasma 

CORT concentration. Plasma CORT level was higher (P = 0.020) in the DEX-challenged 

broilers compared to the non-challenged broilers. On the other hand, CORT concentration 

was lower (P = 0.015) in birds fed diets supplemented EcoE. Furthermore, the effect of diet 

(EcoE or sodium source) and DEX-challenge on antioxidant enzymes SOD and CAT was 

not significant. 

2.3.2 Growth performance 

The growth performance of birds in this study is reported in Table 2.4. No two-or 

three-way interactions were observed for BWG, FI, and FE. Inducing stress in the birds by 

orally administering DEX starting from day 16 depressed (P <.0001) BWG and FE (16 to 

21 d). Dietary supplementation of EcoE and the addition of NaCl or NaCl + NaHCO3 as 

the sources of inorganic sodium in the diet did not affect BWG, FI, and FE on 16 -21 d. 



 

86 
 

2.3.3 Relative tissue weights and bone characteristics 

The weights of the liver, spleen, and bursa of Fabricius are reported as a percentage 

of the final body weights (Table 2.5). Relative to body weight, the liver weight increased 

(P <.0001), and the spleen and bursa of Fabricius weight, decreased (P < 0.05) with DEX 

challenge. Dietary treatments did not affect the relative weights of the organs (Table 2.5). 

Bone breaking strength and bone ash were not affected by the different treatments (Table 

2.5). 

2.3.4 Intestinal morphology 

Data for the jejunal morphology is reported in Table 2.6. Dexamethasone challenge 

decreased (P < 0.05) the VH and CD and did not affect VH: CD. An interaction between 

NaCl + NaHCO3 as the source of inorganic sodium and DEX-challenge birds increased (P 

< 0.05) the crypt depth. The birds fed the diet supplemented with EcoE had an increase (P 

< 0.05) in CD and a decrease (P < 0.05) in VH: CD ratio. 

2.3.5 Apparent nutrient digestibility and utilization 

The influence of EcoE supplementation, the different inorganic sodium sources, 

and DEX challenge on AID of DM, N, EN, and DE are presented in Table 2.7. No 

significant interaction was observed between treatments for the AID of DM, N, EN, and 

DE. Ileal digestibility of DM, EN, and DE was not influenced by DEX challenge however, 

N digestibility (84.6 vs. 83.7%) was increased (P = 0.012) with the challenge. 

Supplementation of EcoE and the inclusion of two different inorganic sodium sources to 

the diet did not affect the AID of DM, EN, N, and DE. 

Furthermore, the effect of EcoE, the different inorganic sodium sources, and DEX 

challenge on apparent TTR of DM, N, and EN and AME and AMEn are presented in Table 
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2.8. No three-way interaction was observed. A significant two-way interaction of EcoE and 

DEX for TTR of DM, N, and EN, and AME and AMEn was observed. The non-challenge 

birds fed diets supplemented with EcoE had a higher (P < 0.05) TTR of DM compared to 

the non-challenged birds fed the diet with no EcoE supplementation. The TTR of EN and 

AME and AMEn were higher (P < 0.05) in the non-challenged birds fed a diet 

supplemented with EcoE compared to the DEX-challenged birds fed a diet supplemented 

with EcoE. Similarly, the TTR of N was higher (P < 0.05) in the non-challenge birds fed 

diets supplemented with EcoE compared to the DEX-challenge birds with or without EcoE 

supplementation in the diet. 

2.3.6 Jejunal gene expression 

The jejunal mRNA expression levels for cytokines (IL-1β, IL-6, TGF-β4, IL-10), 

chemokines (CXCLi1, CXCLi2, CCL5), and tight junction proteins (ZO-1, occludin, 

claudin-1) were unaltered by DEX challenge, inorganic sodium sources, and EcoE 

supplementation (Table 2.9). 

2.4 DISCUSSION 

Decades ago, Selye (1936) recognized the conundrum that exists with the activation 

of stress by physiological systems, and the development of adaptability or resistance to 

prevent long-term damage to the body. The concept of stress has been constantly revised 

by several scientists (Selye, 1950; McEwen, 1998.; Moberg, 2000; Kaiser et al., 2009) all 

of whom concluded that for an animal to experience stress, the body needs to recognize the 

stressor, develop a biological defense against it, and respond by achieving stability through 

the change. In cases of an exaggerated activity on the physiological systems, there are 

several pathophysiological consequences (McEwen, 1998) associated. One of the 
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mechanisms by which organisms control whole-body homeostasis is the secretion of 

glucocorticoid steroid hormones, which is corticosterone in birds. High glucocorticoid 

levels result in a diversity of metabolic effects and impairment of physiological functions. 

This is an important consideration in poultry production because commercial birds live in 

an environment with a variety of interacting stressors that can impact their health and 

productivity. Hence, how we deal with the compromise to their health and productivity 

through nutrition becomes imperative. This study explored the advantages of an algae-

based supplement (EconomasE™) and/or two inorganic sodium sources on performance, 

nutrient and energy digestibility and utilization, intestinal health, and overall biological 

response in broilers under immunological stress induced by DEX.  

Elevated plasma concentration of CORT in response to stress in poultry has been 

documented by many researchers (Davison et al., 1985; Puvadolpirod and Thaxton, 2000a; 

Post et al. 2003; Lin et al. 2006b). By these reports, a significant rise in plasma CORT 

concentration in DEX-challenged birds was observed compared to the control, which 

indicates a disruption in homeostasis. This disruption in status-quo can initiate a 

disproportionate generation of reactive oxygen species (ROS), causing oxidative damage 

to the tissue (Orzechowski et al., 2000; Lin et al., 2004a,b; Costantini et al., 2011). 

Glucocorticoid mediated stressful conditions, both in vitro and in vivo, have been linked 

to an increase in ROS, which damages cellular macromolecules, thereby affecting all 

cellular functions (Lawrence and Sapolsky, 1994; Lin et al., 2004a; Costantini et al., 2008). 

Acute exposure to elevated temperature (32°C for 6 h) resulted in an increase in the 

concentration of thiobarbituric acid reactive substances (TBARS) in the plasma and liver 

of  5-wk-old broiler chickens (Lin et al., 2006b). Similarly, Huang et al. (2015) reported 
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an increase in TBARS concentration in the breast and thigh muscle, an increase in plasma 

SOD activity, an increase in SOD and catalase activities in breast muscle, and a decrease 

in plasma total antioxidant capacity and glutathione peroxidase in heat-stressed (32°C) 

broiler chickens. In other studies, stress-induced by CORT in broiler chickens, caused an 

increase in TBARS (Eid et al., 2003; Lin et al., 2004a,b), a decrease in CAT (Zhang et al., 

2009), and SOD (Wang et al., 2008) plasma concentration, and an increase in SOD activity 

in the muscle (Gao et al., 2010).  

To protect the body from ROS, it has been suggested that the antioxidant defense 

system operates through three major lines of defense which, the activity of three enzymes; 

SOD, glutathione peroxidase (GPX), and CAT is the first line of defense (Surai, 2002). 

Costantini et al. (2008) observed a significant increase in reactive oxygen metabolites when 

kestrels were fed CORT for 2 weeks, but serum antioxidant capacity was not affected. Lin 

et al. (2004a) reported an increase in plasma concentration of TBARS and increased 

activity of SOD after 3 days of dietary CORT administration. A subsequent study from the 

same group showed no significant activity of SOD 3 hr after CORT treatment. Likewise, 

in this study, the oral gavage of DEX did not influence the enzymatic activity of SOD and 

CAT. Overall, in vitro studies have produced contradictory results regarding steroid effects 

on host enzymatic antioxidant defense system. However, studies show the possibility of 

tissue-specific steroid effect. In a rat study by Pereira et al. (1999), the effect of DEX on 

the antioxidant defense system demonstrated this. According to the group, the TBAR 

content in the lymphoid organs was decreased and increased in the muscle, Cu/Zn-SOD 

activity in all tissues was reduced, CAT activity was reduced in the thymus but increased 

in the muscle and other lymphoid organs, and GPX activity in the lymphoid organs was 
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elevated and diminished in the muscles. In rats, Mclntosh et al. (1998), observed decreased 

Cu/Zn SOD activity in the brain but opposite results in the liver and, CAT activity in the 

brain happens to be unaffected but decreased in the liver. In broilers, Lin et al. (2004b) 

observed increased SOD activities in the heart, and no effect was observed in the liver. On 

the other hand, the second line of defense involves non-enzymatic antioxidants like 

vitamins A, E, C, carotenoids, selenium, uric acid, etc. (Surai, 2016). In this study, EcoE 

or the inorganic sodium source did not alter the activity of the antioxidant enzymes (SOD 

and CAT). However, the combined efforts of VE and Se in removing free radicals and 

detoxifying hydroperoxides cannot be ignored.  

In stressful conditions, studies show that there is a redirection of nutrient flow to 

meet the metabolic requirements where, in a growing animal, the adipose tissue loses its 

priority (Latshaw, 1991; Elasser et al., 2000; Lupien et al., 2007). In this study, DEX- 

challenged birds had a decrease in BWG (25%) and FE (26%) (16 - 21 d) 4 d post-challenge 

compared to the control birds however, FI was comparable between the DEX-challenged 

and the control birds regardless of the dietary treatment. Although there have been varying 

reports on the effect of CORT on FI, some report an increase (Gross et al.,1980; Bartov et 

al., 1980; Nasir et al., 1999; Puvadolpirod and Thaxton, 2000d; Lin et al., 2006b), decrease 

(Lin et al., 2004a; Shini et al., 2008; Hu et al., 2010) or no effect (Buyse et al., 1987; 

Malheiros et al., 2003; Wang et al. 2015). This suggests that the observed suppressed 

growth might be due to an increase in energy waste rather than a decrease in feed 

consumption (Wang et al., 2015). The unifying explanation is that glucocorticoids exert a 

diversion of energy to exercising muscle by mobilizing stored energy, inhibiting 

subsequent energy storage, and stimulating gluconeogenesis (Southwick, 1982; Siegel and 
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Van Kampen 1984; Davison et al., 1985; Puvadolpirod and Thaxton, 2000a,b; Virden et 

al., 2007). Through the CORT-induced gluconeogenesis, catabolism of structural protein 

is enhanced, freeing free amino acids for use as gluconeogenic substrates, which puts meat-

producing animals at a disadvantage (Selye, 1950; Southwick, 1982; Puvadolpirod and 

Thaxton, 2000a; Virden and Kidd, 2009).  

There is also a negative feedback response that glucocorticoid exerts on peripheral 

tissues to insulin, which limits glucose uptake, suppresses muscle development, and alters 

energy deposition in broilers (Munck, 1971; Zhao et al., 2012). Although we did not 

measure glucose or insulin levels, observations from Lin et al. (2006b) and Li et al. (2009) 

demonstrated that CORT-treated broiler chickens expressed a high glucose and insulin 

plasma concentrations, followed by an increase in abdominal fat accretion (Lin et al., 

2006b). Thus, this can in part, explain the BWG decrease observed in the DEX-challenged 

birds in this study, where energy stores are been redistributed. The two different inorganic 

sodium sources had no significant effect on the parameters mentioned above. Olanrewaju 

et al. (2006) reported no alleviation of the negative effects of ACTH on BW that can be 

attributed to increasing the DEB. Although, they argued that because oxygen demand is 

increased in chronically stressed birds, maintaining higher levels of dietary electrolyte 

balance had the potential to ameliorate some of the effects of stress (Olanrewaju et al., 

2006). Similarly, EconomasE™ supplementation did not affect the performance 

parameters. Although VE is said to regulate the production of ROS in the mitochondria, 

and modulate the expression and activation of signal transduction pathways, which can 

prevent degenerative tissue changes (Avanzo et al., 2001). Supplementation of EcoE did 

not prevent the degenerative process – in terms of BW in the birds subjected to DEX. This 
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could be because DEX-challenge did not affect antioxidant status (SOD and CAT) rather, 

suppressed growth by limiting glucose uptake. 

Other measurements to ascertain a stress response were to demonstrate a difference 

in lymphoid organ weights. Relative to body weight, the spleen, and bursa weight were 

significantly decreased, and liver weight increased with DEX compared to the control. One 

of the common observations of physiological stress after CORT treatment is the involution 

of immunological organ weights (Gross et al., 1980; Puvadolpirod and Thaxton, 2000b; 

Post et al., 2003; Shini et al., 2008; Virden et al., 2007; Vicuna et al., 2015) and increased 

liver weight (Gross et al., 1980; Davison et al., 1985; Puvadolpirod and Thaxton, 2000a,b; 

Lin et al., 2006b; Virden et al., 2007). The former can be associated with a decrease in B 

cell differentiation especially since positive selection for B cells seems to occur at the final 

transition from immature to mature B cells, which occurs in the peripheral lymphoid tissue 

triggering apoptotic death in immature T and B cells precursor. Several explanations for 

hypertrophy of the liver based on previous work involves 1) an increase in liver lipid 

content which invariably increases plasma lipid concentrations providing nutrients to cells 

involved in host defense and substrates for the regeneration of damaged membranes 

(Puvadolpirod and Thaxton, 2000b; Lin et al., 2006b; Virden et al., 2007); 2) increase in 

gluconeogenic activity via a steroid-mediated pathway which increases the activity of key 

gluconeogenic enzymes (Munck, 1971; Southwick, 1982); and 3) an increase in the 

production of leukocyte endogenous mediators (LEM) by monocytes which, increase the 

synthesis of acute-phase proteins, C-reactive proteins, serum amyloid A in the liver 

associated with the reaction of the host to infection and inflammation (Mireles et al., 2005; 

Jain et al., 2011).  
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Often, market age poultry suffers from lameness, bone, and skeletal deformities 

which can cause bone breakage during catching and transportation, reducing their market 

value  (Weeks et al., 2000). Similarly, bone and skeletal deformities can be exacerbated 

under adverse conditions such as stress, infections, and inflammation, contributing to 

further leg problems, (Pattison, 2007; Wideman Jr. and Pevzner, 2012; Zhang et al., 2017). 

In rats, glucocorticoids have been shown to arrest bone formation and increase bone 

resorption (Ortoft and Oxlund, 1996). In poultry, synthetic glucocorticoid has been shown 

to trigger turkey osteomyelitis complex (turkey) and bacterial chondronecrosis with 

osteomyelitis (broilers). These pathologies occur due to a combined effect of stress-

mediated environmental and immunosuppression factors which allows opportunistic 

pathogens to develop in the joint which affects proliferation and differentiation of 

chondrocytes retarding bone growth (Zhang et al., 2017), and increases the incidence of 

lameness (Wideman Jr. and Pevzner, 2012). In this study, bone-breaking strength and bone 

ash were not affected by DEX challenge, dietary supplementation of EcoE, or either of the 

two inorganic sodium sources. The effect of DEX on bone breaking strength in this study 

is the opposite of the observations from Zhang et al. (2017) that reported a lower bone 

breaking strength in birds treated with methylprednisolone (another glucocorticoid 

derivative). According to Rath et al. (2000), the severity of DEX on bone strength is age-

related. Since Zhang et al. (2017) administered the glucocorticoid at an early age (d 8) 

compared to d 16 for this study, the severity of the effects of dexamethasone was much 

reduced when the drug was administered at an age when bone development had nearly 

reached completion. Hence, the route (oral vs injection) or intensity of dosage (once or 

continuous) might be a contributing factor to the severity. 
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Maintenance of normal morphology and structural integrity of the small intestine 

are imperative for adaptions to the nutrient absorptive function of the epithelium. The 

running hypothesis is that stressors can invoke significant changes in the intestinal 

morphology influencing the absorptive capacity of the intestine. According to several 

authors, exposure to stressors like DEX (Hu and Guo, 2008; Li et al., 2009; Hu et al., 2010; 

Carvalho et al., 2018), lipopolysaccharide (Liu et al., 2008; Hu et al., 2011; Li et al., 2015), 

and heat stress (Mitchel and Carlisle, 1992; Burkholder et al., 2008; Deng et al., 2012), 

decreases the villus height which would correlate with a lowered absorptive capability of 

the small intestine. However, conflicting results have been observed with crypt depth. 

Pluske et al. (1996) suggested that an increase in crypt depth is compatible with an increase 

in crypt-cell production rate and overall stimulation of cell turn-over in the small intestine 

which has been associated with reduced digestive and absorptive capacity. While 

observations from elevated temperature conditions have reported an increase in crypt depth 

(Burkholder et al., 2008; Deng et al., 2012; Liu et al., 2009), results from corticosterone 

related stress conditions have been conflicting. We observed a decrease in jejunal crypt 

depth in DEX-challenged birds similar to Hu and Guo, (2008) however, Li et al. (2009) 

reported an increase in jejunal crypt depth.  

A major criterion for a healthy GI system is the ability to break down dietary 

macromolecules into simple micro molecular moieties for efficient nutrient digestion and 

absorption. In situations where the animal is stressed, metabolic activity is altered, limiting 

the digestion or utilization of the nutrients. It could be surmised that the detrimental effects 

of stress can be mitigated through nutritional regimens that better meet the nutrient 

requirements of birds during stress. To understand this dynamic, the effects of stress on 
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nutrient digestion and utilization were elucidated. Ileal digestibility of N in DEX-

challenged birds was higher than in the non-challenged birds however, the TTR of N was 

the reverse. It has been demonstrated that glucocorticoid action increases uric acid 

excretion and total nitrogen (Brown et al., 1957; Davison et al., 1985; Puvadolpirod and 

Thaxton., 2000d) so, the digestibility results from this study further support this 

observation which, suggests that the birds had no problem absorbing the amino acid in the 

diet, however, the utilization of the nitrogen was subpar. Castellanos and Arroyave (1961) 

demonstrated that the utilization of proteins from extrahepatic tissues in cortisone treated 

rats is altered by the level of dietary protein the animal was fed.  

Under normal nutritional conditions, rats treated with cortisone experienced an 

increase in muscle and tissue protein catabolism increasing urea production. The opposite 

was true in the cortisone-treated rats fed protein-deficient diets because they had low serum 

urea. By this logic, the relative extent to which gluconeogenesis occurs or not in the 

presence of increased glucocorticoid activity depends on the level of protein in the diet. 

Because the DEX-challenge birds in this study already exhibit high levels of CORT, we 

can speculate that the action will be in favor of gluconeogenesis hence, a reduction in the 

utilization of nitrogenous compounds is expected (Siegel and Van Kampen, 1984). Thus, 

the proteins derived from skeletal muscle become the major source of non-carbohydrate 

compounds, which are preferentially metabolized to provide energy to resist stress. The 

dietary treatments did not affect the AID of DM, N, EN, and DE calculated. Because GC 

and catecholamines can cause an increase in urinary electrolyte excretion, it was 

hypothesized that perhaps, electrolyte deficiencies occur during physiological stress and as 

such, might influence the absorptive capacity of the birds. Based on our result, the inclusion 
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of either NaCl or NaCl+NaHCO3 did not influence the absorption and utilization of 

nutrients. Similarly, EcoE supplementation did not affect the absorption of the nutrients 

however, EcoE improved the TTR of DM, EN, N, AME, and AMEn in the non-challenged 

birds.  

Much of the impetus for studying the effects of stress on the GIT is to understand 

the role of stress on gastrointestinal functionality and to offer insights to diagnostic and 

therapeutic options essential for sustainable animal production. Under physiologic 

circumstances, among other things, intestinal epithelium represents a barrier that prevents 

undesirable solutes, microorganisms, and luminal antigens from entering the body. It is 

therefore easy to envision that the disruption of the epithelial barrier has deleterious effects 

and decreases the integrity of the intestinal epithelium exposing, tissue compartments to 

luminal antigens and bacteria. Also, tight junction proteins including claudin-1, occludin, 

and ZO-1 are complexes that restrict paracellular diffusion of hydrophilic macromolecules 

and are crucial for the maintenance of barrier integrity. Evidence suggests that claudins are 

important in establishing the tight junction pore, and ZO-1 and occludin are important in 

the leaky pathway. Thus, the relevance of gut health is therefore not only restricted to food 

processing and subsequent nutrient uptake but also its interaction with the epithelial and 

mucosal immune system that reports to the brain.  

In response to a stressor, this interaction signals the onset of both the host innate 

and acquired immune responses through mediators such as the pro- and anti-inflammatory 

cytokines and chemokines that regulate each other in an attempt to improve the body’s 

adaptation to stressors. These interactions are complex and often influenced by the time 

course and level of change of each of the mediators (McEwen, 2008). High concentrations 
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of CORT have immunosuppressive effects by inhibiting antibody production from B cells, 

T cells proliferation, and phagocytes (Shini et al., 2010). Acute stress may exacerbate pro-

inflammatory responses, whereas chronic stress may induce the suppression of immune 

responses (Dhabhar, 2009). Shini et al. (2010) showed that 3 to 24 hr (short-term) after 

CORT treatment led to the up-regulation of pro-inflammatory cytokines and chemokines 

in the blood whereas the chronic stress induced by CORT down-regulated pro-

inflammatory cytokines and chemokines. In this study, mucosal jejunal expressions of 

proinflammatory cytokines (IL-1β, IL-6, IFN-γ), anti-inflammatory cytokines (IL-10, 

TGF-β4), and chemokines (CXCLi1, CXCLi2, CCL5) were not influenced by the 

treatments.  

In conclusion, as hypothesized, the DEX administration was able to create some of 

the negative consequences associated with stress the birds might be exposed to in the 

industry. However, the inclusion of either of the sodium sources or EcoE supplementation 

did not mitigate the effect of stress-induced by DEX as evidenced by the insignificant effect 

on CORT levels, antioxidant status, growth performance, and immune response of the 

broilers. The magnitude of these results is marked by the decrease in performance, and the 

and utilization of nutrients observed in the birds. The DEX effect on N digestibility and 

utilization further demonstrates the complexity of balancing AA and energy levels in the 

diet during a stressful event. Despite this outcome, EcoE supplementation decreased CORT 

plasma levels and increased nutrient and energy utilization in non-challenged broiler 

chickens.



 

 
 

2.5 TABLES 

Table 2.1 Ingredients and nutrient composition of the diets fed to broiler chickens for 21 
days (on an as-fed basis). 

Diet type A B C D 

Sodium source NaCl NaCl +NaHCO3 
EconomasE™ No Yes No Yes 
Ingredients (g/kg)     
Corn 544.4 534.4 543.7 533.7 
Soybean meal, 47% 360.0 360.0 360.0 360.0 
Soybean oil 50.0 50.0 50.0 50.0 
Limestone (38% Ca) 10.5 10.5 10.5 10.5 
Dicalcium phosphate 15.8 15.8 15.8 15.8 
NaCl 4.0 4.0 2.4 2.4 
NaHCO3 0.0 0.0 2.4 2.4 
L-Threonine 1.1 1.1 1.1 1.1 
DL-methionine 3.8 3.8 3.8 3.8 
L-lysine HCL 2.9 2.9 2.9 2.9 
Vitamin mineral premix1 2.5 2.5 2.5 2.5 
Economase™ premix2 0.0 10.0 0.0 10.0 
Titanium dioxide premix3 5.0 5.0 5.0 5.0 

Total 1000 1000 1000 1000 
Analyzed nutrient composition4 `  
GE, kcal/kg 4223 
Crude protein, g/kg 218 
Calcium, g/kg 10.0 
Phosphorus, g/kg 6.4 

1Provided the following quantities of vitamins and micro minerals per kilogram of complete diet: 
iron, 40 mg; copper, 10 mg; manganese, 64 mg; zinc, 75 mg; iodine, 1.85 mg; selenium, 0.3 mg; 
vitamin A (retinyl acetate), 11,025 IU; vitamin D3 (cholecalciferol), 3,528 IU; vitamin E (dl-α-
tocopheryl acetate), 33 IU; vitamin K activity, 0.91 mg; thiamine, 2.21 mg; riboflavin, 7.72 mg; 
pantothenic acid, 18 mg; niacin, 55 mg; pyridoxine, 5 mg; folic acid, 1.10 mg; biotin, 0.22 mg; 
vitamin B-12, 0.03 mg; choline, 478 mg. 
2Economase™ premix was added to diets B and D at the expense of corn to supply 0.2 g of 
EconomasE™ per kg of diet. 
3Titanium dioxide was added to the diet at the expense of ground corn. 
4Because a basal diet was used in the study, the average values of the analyzed nutrients were used 
to determine digestibility and utilization values. 



 

 
 

Table 2.2 Primers used in real-time quantitative PCR 
RNA target1 Primer/probe sequence (5′̍-3′) Accession no. References 

Proinflammatory cytokines    

IL-1β F GCTCTACATGTCGTGTGTGA′TG AJ245728 Shini and Kaiser 2009 

 R TGTCGATGTCCCGCATGA   

IL-6 F GCTCGCCGGCTTCGA  AJ250838 Shini and Kaiser 2009 

 R GGTAGGTCTGAAAGGCGAACAG   

IFN-γ F GTGAAGAAGGTGAAAGATATCATGGA Y07922 Shini and Kaiser 2009 

 R GCTTTGCGCTGGATTCTCA   

Anti-inflammatory cytokines   

IL-10 F CATGCTGCTGGGCCTGAA  AJ621614 Shini and Kaiser 2009 

 R CGTCTCCTTGATCTGCTTGATG   

TGF-β4 F AGGATCTGCAGTGGAAGTGGAT  

R CCCCGGGTTGTGTTGGT 

M31160 Shini and Kaiser 2009 

Chemokines    

CXCLi1 F TGGCTCTTCTCCTGATCTCAATG  AF277660 Shini and Kaiser 2009 

 R GCACTGGCATCGGAGTTCA   

CXCLi2 F GCCCTCCTCCTGGTTTCAG  AJ009800 Shini and Kaiser 2009 

 R TGGCACCGCAGCTCATT   

CCL5 F CCCTCTCCATCCTCCTGGTT  AY037859 Shini and Kaiser 2009 
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Table 2.2 continued   

 R TATCAGCCCCAAACGGAGAT   

Tight junction proteins   

ZO-1 F TGTAGCCACAGCAAGAGGTG   XM 413773.4 Li et al., 2015 

 R CTGGAATGGCTCCTTGTGGT   

CLDN-1  F TTGGGGAAATGACTTTACAGG NM_001013611.2 Cowieson et al., 2017 

 R GGAAAGGAAGGTGCTGAAGA   

OCLDN F ATCAACGACCGCCTCAATCA NM_205128.1 Cowieson et al., 2017 

 R TCCGCTTCAGGTCTTTGAGC   

Housekeeping gene   

GAPDH  F ATGACCACTGTCCATGCCATCCA 

R AGGGATGACTTTCCCTACAGCGTT 

NM_204305.1 Cowieson et al., 2017 

*F, forward primer; R, reverse primer; P, probe. 
1IL-1β, Interleukin 1 beta; IL-6, Interleukin 6; IL-10, interleukin 10;  IFN- γ, interferon γ; Tumor necrosis factor- β4, TGF-β4; -  
CCL5 (RANTES), C-C motif, ligand 5;  CXCLi1, C-X-C motif ligand 1 inflammatory; CXCLi2 C-X-C motif ligand 2 inflammatory; 
OCLN, occludin; CLDN-1, claudin 1; ZO-1, zonula occludens-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Table 2.3 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on plasma corticosterone, superoxide dismutase, and catalase in dexamethasone-challenged broiler chickens1. 

Treatment Effect Corticosterone 
(ng/mL) 

SOD2 
(U/mL) 

CAT2 
(nmol/min/ml) Dexamethasone Sodium Source EconomasE™ 

Main effect    
No   17.58 5.73 12.86 
Yes   23.02 5.61 13.14 

 NaCl  21.09 5.73 13.34 
 NaCl+ NaHCO3  19.52 5.62 12.66 
  No 23.14 5.72 12.92 
  Yes 17.46 5.65 13.08 

Interaction effect    
No NaCl No 21.25y 6.04 14.17 
No NaCl+ NaHCO3 No 20.73y 5.69 12.68 
No NaCl Yes 17.50 5.84 12.15x 
No NaCl+ NaHCO3 Yes 10.85y 5.36 12.43x 
Yes NaCl No 28.69y 5.47 10.53x 
Yes NaCl+ NaHCO3 No 21.88 5.69x 14.32x 
Yes NaCl Yes 16.90x 5.57 16.53x 
Yes NaCl+ NaHCO3 Yes 24.59 5.73 11.23 

 Pooled SD3  7.57 1.00 4.14 
P-value    

Dexamethasone  0.020 0.665 0.802 
Sodium Source  0.486 0.682 0.560 
EconomasE™  0.015 0.720 0.893 
Dexamethasone x Sodium x EconomasE™ 0.116 0.793 0.083 

1Values represent means of 7 replicate cages per treatment except for mean values with x and y where the number of replicates was 6 and 5, respectively. 
2SOD = superoxide dismutase; CAT = catalase. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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Table 2.4 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on performance in dexamethasone-challenged broiler chickens1. 

Treatment Effect 16 – 21 d 
Dexamethasone Sodium Source EconomasE™ BWG2 

g/bird 
Feed Intake 

g/bird 
Feed efficiency 

g/kg 
Main effect    

No   365 462 784 
Yes   274 477 578 
 NaCl  315 477 674 
 NaCl+ NaHCO3  325 461 688 
  No 318 472 678 
  Yes 321 466 684 

Interaction effect    
No NaCl No 364 467 779 
No NaCl+ NaHCO3 No 360 455 793 
No NaCl Yes 370 456 776x 
No NaCl+ NaHCO3 Yes 367 467 788 
Yes NaCl No 267 466 575 
Yes NaCl+ NaHCO3 No 281x 501 567x 
Yes NaCl Yes 258 456 567 
Yes NaCl+ NaHCO3 Yes 291 483 606 

Pooled SD3 24.0 39.2 46.6 
P-value    

Dexamethasone <.0001 0.160 <.0001 
Sodium Source 0.583 0.150 0.264 
EconomasE™ 0.127 0.563 0.669 
Dexamethasone x Sodium x EconomasE™ 0.243 0.495 0.682 

1Values represent means of 7 replicate cages per treatment except for mean values with x where the number of replicates was 6. 
2BWG, body weight gain. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
.



 

 
 

Table 2.5 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on tissue weight and tibia breaking strength and ash in dexamethasone-challenged broiler chickens1. 

Treatment Effect Relative to body weight (%) Bone parameters 

Dexamethasone Sodium Source EconomasE™ 
Liver  
(%) 

Spleen  
(%) 

Bursa of 
Fabricius (%) 

Tibia breaking 
strength (kg/f) 

Ash 
 (%) 

Main effect      
No   2.73 0.09 0.16 21.6 52.0 
Yes   3.54 0.08 0.08 22.5 51.4 

 NaCl  3.20 0.08 0.12 21.6 52.1 
 NaCl+ NaHCO3  3.07 0.09 0.12 22.5 51.4 
  No 3.13 0.08 0.12 22.1 51.8 
  Yes 3.14 0.09 0.12 22.0 51.7 

Interaction effect      
No NaCl No 2.78x 0.09 0.16x 20.2 52.0 
No NaCl+ NaHCO3 No 2.76x 0.09 0.17 23.1x 51.7 
No NaCl Yes 2.75 0.08 0.15x 20.7 52.8 
No NaCl+ NaHCO3 Yes 2.64 0.10x 0.17 22.5 51.6x 
Yes NaCl No 3.62 0.06x 0.07x 21.9 52.1x 
Yes NaCl+ NaHCO3 No 3.37 0.07x 0.08 23.2 51.4 
Yes NaCl Yes 3.64 0.09 0.09 23.5 51.4x 
Yes NaCl+ NaHCO3 Yes 3.51 0.09x 0.08x 21.3x 50.8y 

 Pooled SD2  0.31 0.02 0.03 4.47 1.32 
P-value      

Dexamethasone <.0001 0.002 <.0001 0.490 0.089 
Sodium Source 0.148 0.292 0.536 0.442 0.060 
EconomasE™ 0.982 0.078 0.787 0.918 0.690 
Dexamethasone x Sodium x EconomasE™ 0.790 0.125 0.709 0.685 0.586 

1Values represent means of 7 replicate cages per treatment except for mean values with x and y where the number of replicates was 6 and 5, respectively. 
2SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
.



 

 
 

Table 2.6 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on intestinal morphology in dexamethasone-challenged broiler chickens1. 

1Values represent means of 7 replicate cages per treatment except for mean values with x and y where the number of replicates was 6 and 5, respectively. 
2SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
.

Treatment Effect1 Intestinal morphology 

Dexamethasone Sodium Source EconomasE™ 
Villus height  

(μm) 
Crypt depth 

 (μm) 
VH: CD 

Main effect    
No   896.0 162.3 5.64 
Yes   837.0 145.8 5.74 

 NaCl  850.4 151.2 5.79 
 NaCl+ NaHCO3  878.3 156.9 5.60 
  No 875.1 145.9 6.00 
  Yes 853.6 162.2 5.40 

Interaction effect    
No NaCl No 869.2 141.2 6.22 
No NaCl+ NaHCO3 No 943.6 161.1x 5.69x 
No NaCl Yes 873.9 163.8 5.36 
No NaCl+ NaHCO3 Yes 898.6 183.2x 5.12 
Yes NaCl No 805.4x 138.8x 5.89 
Yes NaCl+ NaHCO3 No 882.0 142.7 5.97x 
Yes NaCl Yes 852.9 161.2 5.47x 
Yes NaCl+ NaHCO3 Yes 788.9y 140.6x 5.63x 

 Pooled SD2  101.4 18.4 0.63 
P-value    

Dexamethasone 0.027 0.002 0.622 
Sodium Source 0.324 0.277 0.279 
EconomasE™ 0.447 0.003 0.001 
Dexamethasone x Sodium source 0.443 0.009 0.085 
Dexamethasone x EconomasE™ 0.963 0.240 0.206 
Sodium x EconomasE™ 0.100 0.227 0.392 
Dexamethasone x Sodium x EconomasE™  0.420 0.248 0.531 



 

 
 

Table 2.7 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on apparent ileal nutrient and energy digestibility in dexamethasone-challenged broiler chickens1. 

Treatment Effect Apparent Ileal Digestibility (%) 

Dexamethasone Sodium Source EconomasE™ DM (%) N (%) Energy (%) DE kcal/kg 

Main effect  
    

No   72.7 83.7 76.0 3642 
Yes   72.3 84.7 75.2 3605 

 NaCl  72.3 84.2 75.4 3615 
 NaCl+ NaHCO3  72.7 84.2 75.7 3632 
  No 72.3 84.1 75.4 3621 
  Yes 72.8 84.3 75.7 3627 

Interaction effect  
    

No NaCl No 71.8x 83.3x 75.6 3627 
No NaCl+ NaHCO3 No 72.9 83.9 75.7 3632 
No NaCl Yes 73.1 83.8x 76.6 3661 
No NaCl+ NaHCO3 Yes 73.0 83.9 76.0 3648 
Yes NaCl No 72.5x 85.0 75.0 3605 
Yes NaCl+ NaHCO3 No 72.2x 84.3 75.5x 3619x 
Yes NaCl Yes 71.8x 84.7 74.6 3569 
Yes NaCl+ NaHCO3 Yes 72.7 84.9 75.7x 3629x 

Pooled SD3 1.93 1.53 2.51 116.4 
P-value   

    
Dexamethasone   0.457 0.021 0.26 0.256 
Sodium Source   0.511 0.989 0.672 0.605 
EconomasE™   0.539 0.640 0.710 0.855 
Dexamethasone x Sodium Source 0.878 0.506 0.463 0.527 
Dexamethasone x EconomasE™ 0.470 0.898 0.575 0.561 
Sodium source x EconomasE™ 0.983 0.832 0.966 0.825 
Dexamethasone x Sodium x EconomasE ™ 0.275 0.420 0.635 0.616 

1Values represent the mean of 7 replicates cages (pooled ileal digesta of 6 birds per replicate) except for mean values with x where the number of replicates was 6. 
2DM = dry matter; N = nitrogen; DE = ileal digestible energy. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
.



 

 
 

Table 2.8 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on apparent total tract utilization of nutrient and energy in dexamethasone-challenged broiler chickens1. 

Treatment Effect Total tract Digestibility (%)  

Dexamethasone Sodium Source EconomasE™ DM % N (%) Energy (%) AME (kcal/kg) AMEn (kcal/kg) 

No     72.4 67.9 76.8 3679 3573 
Yes     70.3 54.0 75.7 3630 3476 

  NaCl   71.7 61.3 76.5 3668 3540 
  NaCl+ NaHCO3   71.0 60.7 76.0 3641 3508 
    No 71.1 60.6 76.0 3643 3510 
    Yes 71.6 61.4 76.5 3665 3538 

Two- way interaction effect           
No - No 71.5b 65.7a 75.9ab 3638ab 3523ab 
No - Yes 73.4a 70.1a 77.7a 3719a 3622a 
Yes - No 70.8b 55.5b 76.1ab 3649ab 3497b 
Yes - Yes 69.8b 52.6b 75.4b 3611b 3454b 

Pooled SD3           

 P-value           
Dexamethasone <.0001 <.0001 0.044 0.046 0.001 
Sodium Source 0.166 0.701 0.034 0.258 0.230 
EconomasE™ 0.348 0.621 0.276 0.356 0.299 
Dexamethasone x Sodium source 0.493 0.096 0.823 0.885 0.668 
Dexamethasone x EconomasE™ 0.003 0.019 0.013 0.015 0.010 
Sodium source x EconomasE™  0.166 0.306 0.133 0.194 0.181 
Dexamethasone x Sodium x EconomasE™  0.181 0.164 0.286 0.369 0.251 

a–b Means with different superscripts within the same row differ significantly (P < 0.05). 
1Values represent the mean of 7 replicates cages (pooled ileal digesta of 6 birds per replicate). 
2DM = dry matter; N = nitrogen; AME = apparent metabolizable energy; AMEn = nitrogen-corrected apparent metabolizable energy. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡



 

 
 

Table 2.9 The effects of EconomasE™ (0 or 0.2g/kg diet) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) on cytokines, chemokines, and tight junction protein mRNA expressions in the intestinal mucosa of dexamethasone-
challenged broiler chickens1. 

1Values represent means of 7 replicate cages per treatment except for mean values with x, y, and z where the number of replicates was 6, 5, and 4 respectively. 
2IL-1β, Interleukin 1 beta; IL-6, Interleukin 6; IL-10, interleukin 10;  IFN- γ, interferon γ; Tumor necrosis factor- β4, TGF-β4; -  CCL5 (RANTES), C-C motif, 
ligand 5;  CXCLi1, C-X-C motif ligand 1 inflammatory; CXCLi2 C-X-C motif ligand 2 inflammatory; OCLN, occludin; CLDN-1, claudin 1; ZO-1, zonula 
occludens-1. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
. 

 

Treatment Effect 
Pro-inflammatory 

cytokines2 
Anti-inflammatory 

cytokines2 
Chemokines2 

Tight junction 
 proteins2 

Dexamethasone Sodium Source EconomasE IL-1β IL-6 IFN-γ IL-10 TGF-β4 CXCLi1 CXCLi2 CCL5 ZO-1 CLDN1 OCLD 
Main effect      

No   1.15 0.97 1.08 1.44 0.97 1.48 2.20 0.99 1.19 1.04 1.11 
Yes   1.47 1.38 1.62 1.92 1.00 1.13 1.65 0.98 1.04 0.98 1.21 
 NaCl  1.36 1.15 1.26 1.64 0.97 1.28 1.69 0.96 1.08 1.14 1.11 
 NaCl+ NaHCO3  1.26 1.21 1.45 1.71 1.00 1.33 2.15 1.02 1.15 0.88 1.21 
  No 1.48 0.81 1.22 1.69 0.91 1.30 2.13 0.88 1.05 1.13 1.19 
  Yes 1.15 1.54 1.49 1.66 1.66 1.31 1.72 1.09 1.18 0.89 1.12 

Interaction effect      
No NaCl No 0.90x 0.65y 1.00x 1.49 0.88x 0.93x 1.32 0.96x 0.97x 1.31 1.13 
No NaCl+ NaHCO3 No 1.18 1.02y 1.18x 1.61x 1.22 1.45 2.93x 0.91x 1.11 1.06x 1.10x 
No NaCl Yes 1.88x 1.69y 1.59z 1.94 1.12x 1.93 2.52x 1.08 1.13y 1.32z 1.11 
No NaCl+ NaHCO3 Yes 0.66y 0.53y 0.58x 0.72x 0.67x 1.75 2.01x 1.03x 0.98x 0.49y 1.09 
Yes NaCl No 1.71y 0.47y 0.89z 1.43y 0.67x 1.35x 1.69y 0.80x 0.92y 1.17z 1.11x 
Yes NaCl+ NaHCO3 No 2.11 1.11y 1.81z 2.25x 0.86 1.61x 2.56x 0.85 1.23x 1.00y 1.43 
Yes NaCl Yes 0.96x 1.79x 1.56y 1.69 1.22x 0.91 1.25x 0.99x 1.31 0.75x 1.09x 
Yes NaCl+ NaHCO3 Yes 1.08x 2.17x 2.22x 2.29 1.26x 0.63 1.11x 1.27x 1.31 1.00 1.20x 
 Pooled SD3  0.97 1.34 0.95 1.26 0.62 0.88 1.36 0.42 0.44 0.80 0.55 
P-value      
Dexamethasone 0.274 0.327 0.084 0.188 0.857 0.150 0.174 0.905 0.263 0.803 0.533 
Sodium Source 0.712 0.886 0.540 0.826 0.865 0.823 0.253 0.630 0.578 0.305 0.517 
EconomasE™ 0.246 0.087 0.383 0.922 0.373 0.995 0.308 0.079 0.322 0.329 0.653 
Dexamethasone x Sodium x EconomasE™  0.067 0.413 0.159 0.298 0.205 0.060 0.169 0.760 0.662 0.638 0.902 



 

 
 

 

CHAPTER 3.  

EFFECT OF DIETARY ANTIOXIDANT AND TWO SODIUM SOURCES ON 

PRODUCTION PARAMETERS, EGG QUALITY, AND BLOOD ELECTROLYTE 

RESPONSES OF LAYING HENS EXPOSED TO ELEVATED TEMPERATURES 

Abstract 

The effect of an antioxidant EconomasE™ (EcoE; 0 or 0.2 g/kg) and two inorganic sodium 

sources (NaCl or NaCl+NaHCO3) in laying hens exposed to different environmental 

temperature on egg quality, performance, blood metabolites, keel bone damage, bone 

parameters, and mRNA expression of heat shock proteins were investigated. The Hy-line 

Brown hens at 26 wk of age were randomly assigned to one of four dietary treatments with 

9 replicates per diet and 12 hens per replicate. Hens were housed as two birds per cage and 

photo-stimulated with 16L: 8D. Feed and water were provided ad libitum. The birds were 

maintained at a thermoneutral (TN1) temperature of 23.8 °C until 31 wk of age. Then, all 

birds were maintained under cycling elevated temperature conditions (ET1) at 32.2 °C for 

8 hours per day (from 9:00 am to 5:00 pm) for 5 wk and allowed to recover at TN for 

another 5 wk (REC1). This was repeated following the same sequence after a week break. 

One bird from each 6 replicates (6 bird per treatment) was euthanized during TN1, ET1, 

REC1, TN2, ET2, and REC2. Serum metabolites and acid-base equilibrium related 

parameter (HCO
3, Na, K, Cl, and Ca) levels were determined. The dietary treatment 

did not improve performance during the ET1 and ET2 period. A combination of  NaCl and 

NaHCO3 increased (P < 0.05) feed intake (FI) during TN1 and REC1, and FCR during the 

REC1 regimen. The birds fed diets with no EcoE and with NaCl+NaHCO3 had a higher 

(P < 0.05) FI and FCR during the TN2 regimen compared to the birds fed the diet without 
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EcoE and NaCl. During the ET1 regimen, the albumen height and Haugh unit increased 

(P < 0.05) with EcoE and NaCl+NaHCO3 supplementation compared to birds on a similar 

diet but without EcoE. Similarly, EcoE improved (P < 0.05) albumen height (2.8%), and 

Haugh unit (1.2%) during the TN2 regimen. The NaCl+NaHCO3 diet decreased (P < 0.05) 

Cl- (ET1) and increased (P < 0.05) HCO3
- (ET2) levels in the serum. During REC1, the 

NaCl+NaHCO3 diet decreased (P < 0.05) Cl- and K+ serum levels while EcoE increased 

(P < 0.05) Cl- levels. Similarly, Na and Cl levels were decreased (P < 0.05) with 

NaCl+NaHCO3 inclusion in the diet (TN2). EconomasE™ and NaCl supplementation 

decreased (P < 0.05) serum HCO3
- (REC2) compared to the other three dietary 

combinations. During the REC2 regimen, serum Na+ level increased (P < 0.05) in the birds 

fed the diet supplemented with EcoE and NaCl+NaHCO3 compared to those fed diets with 

No EcoE + NaCl+NaHCO3 and EcoE + NaCl. The EcoE and NaCl+NaHCO3 diet increased 

(P < 0.05) villus height compared to birds in the other dietary treatments and increased 

(P < 0.05) VH: CD ratio compared to birds fed no EcoE and NaCl+ NaHCO3 and 

EcoE + NaCl (TN1). During the REC2 regimen, EcoE and NaCl+NaHCO3 in the diet 

reduced (P < 0.05) VH and CD compared to the diet without EcoE and NaCl+NaHCO3 

supplementation. The NaCl+NaHCO3 diet reduced (P < 0.05) tibia and femur breaking 

strength while EcoE improved (P < 0.05) the breaking strength in the femur (REC2). In 

summary, dietary treatment did not improve performance, egg quality, intestinal 

morphology, keel bone, bone-breaking strength, and HSP 70 and 90 during ET1 and ET2. 

Albumen height and Haugh unit with EcoE and NaCl+NaHCO3 (TN2) and EcoE alone 

(ET2), which suggests that the supplementation can improve the fresh appearance of the 

egg during ET conditions.  
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3.1 INTRODUCTION 

High environmental temperatures coupled with high humidity have been shown to 

influence thermoregulation and impact the production and physiological responses of 

commercial poultry. The deleterious effects of heat stress in laying hens have been 

discussed extensively (Sahin et al., 2002; Babinszky et al. 2011; Quinteiro-Filho et al., 

2012; Sohail et al., 2012). Impaired performance due to a decrease in feed intake with a 

concomitant reduction in body weight gain and increased feed conversion ratio has been 

observed (Scott and Balnave, 1988; Mashaly et al., 2004; Babinszky et al. 2011; Quinteiro-

Filho et al., 2012; Sohail et al., 2012). To put in perspective, Mitchell and Carlisle (1992) 

reported a decrease in feed intake (29%) and growth rate (37%) when birds were 

maintained at elevated environmental temperatures (35℃) for two weeks. Consequently, 

live weight, egg production, and mean egg weight decreases (Hsu et al., 1998; Mashaly et 

al., 2004), and some egg quality traits, such as eggshell weight, thickness, breaking 

strength, Haugh unit, and egg specific gravity were also influenced (Hsu et al., 1998; Sahin 

et al., 2002). Another adverse effect of elevated temperature is the imbalance of acid-base 

that stems from the excessive loss of carbon dioxide (CO2) via increased panting. The 

partial pressure of CO2 in the blood is reduced with panting, causing a decrease in the 

concentration of carbonic acid (H2CO3) and hydrogen ion (H+) (Allahverdi et al., 2013). 

In response, the kidney increases bicarbonate ions (HCO3-) excretion and conserves H+ 

which, inadvertently increases pH in an attempt to keep the bird’s acid-base balance. This 

condition results in respiratory alkalosis (Borges et al., 2007). On the other hand, metabolic 

compensation will automatically result in the retention of chloride – because of the anion 

gap which, results in a little bit of acidosis on top of the compensation. In laying hens, the 
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loss of CO2 is accentuated by the need for blood bicarbonate to increase the hydrogen ions 

and free calcium into circulation for the mineralization of the eggshell. This reduces the 

blood ionized calcium (Ca) pool, increasing the concentration of Ca that is bound to 

protein, which in turn limits the availability of Ca for eggshell formation (Odom et al., 

1986). A 19% reduction in blood ionized calcium level was observed in laying hens 

exposed to 35℃ temperature (Odom et al., 1986). Similarly, Allahverdi et al. (2013) 

reported a decrease in Ca concentration in birds exposed to elevated temperature and a 

subsequent decrease in egg production and egg quality. 

Also, it is important to note that acid-base and electrolytes status inter-relate 

through the body’s homeostatic mechanisms, specifically sodium (Na+), potassium (K+), 

and chloride (Cl-) which are essential ions for the maintenance of the acid-base balance of 

the body fluids Mongin (1981). Hence, in response to respiratory alkalosis, decreased 

levels of plasma Na+, K+, Ca+, magnesium (Mg), and increased levels of Cl- (Kohne and 

Jones, 1975; Borges et al., 2004) has been observed. Moreover, heat stress causes a variety 

of alterations in cellular physiology, altering the normal biochemical processes in the body. 

As a result, an increase in reactive oxygen species (ROS) production ensue (Lin et al., 

2006b). To protect the body from the deleterious effect of ROS, a conserved mechanism 

via the induction of heat shock proteins (HSP) have been reported (Wang and Edens, 1994; 

Mahmoud and Edens, 2005). Heat shock proteins have been implicated in the development 

of thermotolerance in protein folding and translocation, in steroid receptor protein binding, 

and the onset of human autoimmune diseases. In vivo, Wang and Edens (1994, 1998) 

demonstrated that broiler chickens were able to synthesize HSPs as a way to resist acute 

heat stress. Broiler chickens exposed to 41°C for 60 min induced the expression of HSP70 
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protein in blood leukocytes, testes, and bursa of Fabricius (Wang and Edens, 1998). 

Mahmoud and Edens (2005) reported an increase in HSP70 protein levels in the liver of 

broiler chickens subjected to HS (40-C for 1 h). 

Most of the common ways to mitigate the effect of heat stress involved 

environmental control, either by increasing airflow in the house, the use of evaporative 

cooling systems, reducing stocking densities, or implementing some nutritional 

modifications. Some statistics on heat stress management show that without the use of heat 

management strategies, U.S. livestock industry producers incur an average loss of 

$2.4 billion annually and when heat management strategies were accounted for, incur an 

estimated loss of $1.7 billion. From the overall total, a $128 million loss is attributed to the 

poultry industry (St-Pierre et al., 2003). Hence, since environmental control strategies are 

said to be an expensive option, nutritional modification strategies are becoming more 

favorable. Supplemental dietary vitamins E (VE) has been shown to improve egg 

production, feed intake, and egg qualities in hens reared under elevated temperature 

conditions (Sahin and Kucuk, 2001; Sahin et al., 2002). EconomasE, a cheaper alternative 

to VE can be advantageous in improving feed intake, feed efficiency, and egg quality. 

Similarly, the addition of electrolyte salts such as sodium bicarbonate (NaHCO3), 

potassium bicarbonate (KHCO3), potassium chloride (KCl), calcium chloride (CaC12), and 

ammonium chloride (NH4C1) (Ahmad and Sawar., 2005; Borges, et al., 2007) are 

important in maintaining acid-base balance during exposure to high environmental 

temperatures (Hayat et al., 1999; Borges et al., 2004; Gezen et al., 2005). Some researchers 

have reported the beneficial effect of substituting a part of the dietary inorganic Na 

provided in the diet as NaCl with NaHCO3 (Frank and Burger, 1965; Makled and 
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El- Gammal, 1977; Makled and Charles, 1987; Balnave and Muheereza, 1997; Yörük et 

al., 2004), others have reported no benefits (Cox and Balloun, 1968; Ernst et al., 1975; 

Grizzle et al., 1992). The Na and Cl dietary requirements are interdependent and are 

supplied at precise and adequate levels for optimum growth, bone development, good litter 

quality, and egg quality (Murakami et al., 2001). Sodium is closely associated with Cl- and 

HCO3 in managing the basal metabolism while Cl- competes with HCO3 for cations in the 

extracellular fluid to maintain electrical conductivity (Sandercock et al., 2001). Hence 

supplementing NaHCO3 may help to maintain proper pH balance, eliminate acidosis, and 

facilitate the metabolic process, ensuring maximum growth and productivity (Ahmad et 

al., 2005; Naseem et al., 2005). Similarly, to correct for the reduced HCO3 concentration 

in the lumen of the shell gland that negatively affects eggshell quality in high temperatures, 

(Hall and Helbacka, 1959; Wideman Jr. and Buss, 1985), a bicarbonate source is 

supplemented in laying hens diet as a source of alkaline (Ghorbani and Fayazi, 2009).  

There is contradicting information regarding the potential benefits of NaHCO3 in 

addition to NaCl in the diet, during elevated temperature on laying hen performance, egg 

quality, and blood profile. This is also true for the supplementation of VE in laying hens 

diet. Thus, the study hypothesized that if the level of Na in the diet is met by substituting 

half of the requirement with NaHCO3 and supplementing EcoE, this can mitigate the 

negative effect of elevated temperature in laying hens. The objective of the present study 

was to determine the effects of EconomasE™ (a blend of ingredients that maximizes and 

maintains the antioxidant status of the animal) and two inorganic sodium sources (NaCl or 

NaCl+NaHCO3), supplemented in the diet of laying hens on their production parameters, 
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egg quality, blood metabolites, intestinal morphology, keel bone, and bone-breaking 

strength and ash at different environmental temperatures. 

3.2 MATERIALS AND METHODS 

The birds in this experiment were maintained and used following the protocol 

approved by the University of Kentucky Animal care and Use Committee. 

3.2.1 Birds management and housing 

A total of 432 commercial brown laying hens (Hy-line Brown) at 26 weeks of age 

were used in this study. Hens were housed in a two-tier cage battery and randomly assigned 

to one of four dietary treatments replicated nine times, with 12 hens per replicate. The 

experimental house was a 2-tier cage facility and hens were housed 2 birds per cage. The 

hens in 3 adjacent cages on the top and bottom tier were considered an experimental 

replicate. Each cage (dimensions were approximately 65 cm wide, 103 cm deep, and 

116 cm tall) was equipped with a wire floor, automatic nipple drinkers, and a trough feeder 

located in front of the cage. The feed was manually distributed. Throughout the 

experimental period, feed and water were available ad libitum. Photo stimulation was 

provided as 16 hours of light and 8 hours of darkness throughout the entire laying period. 

A ventilation fan ran between 0800 h to 2000 h to maintain uniform distribution of air and 

temperature within the room. The experiment lasted between February 26 and June 22, 

2018, a 15-wk period for the first phase, and after a week break, the second phase lasted 

between July 2 and October 13, 2018, another 15-wk period. Within each phase, the 

experimental period consisted of 3 temperature regimen that lasted for 5 weeks.  

The first temperature regimen lasted between 26 and 30 wk of age, and the birds 

were maintained at thermoneutral temperature (TN1, 23.8 ± 1 °C). The second temperature 
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regimen lasted between 33 and 37 wk of age, representing the high environmental 

temperature (ET1, 32.2 ± 1 °C). The third temperature regimen lasted between 38 and 

42 wk of age, which was designated as the recovery period also at thermoneutral room 

temperature (REC1, 23.8 ± 1 °C). This same trend was followed for the second phase with 

each temperature and hen age represented as follows; TN2 (44 and 48 wk of age), ET2 

(49 and 53 wk of age), and REC2 (54 and 58 wk of age). During the TN and REC regimen, 

hens were maintained at the thermoneutral temperature for 24 h/d. While during the 

elevated temperature regimen (ET1 and ET2), hens were kept at the elevated temperature 

for 8 h/day (from 9:00 am to 5:00 pm) Monday to Friday, and reduced to 23.2 ℃ by the 

end of the day (5:30 pm to 7:30 am) and throughout the weekends; the same temperature 

as the TN and the REC groups. Ambient temperature and humidity values were recorded 

using an electronic data recorder (HOBO ZW series wireless, Onset Computer 

Corporation, Bourne, MA). It is important to point out that the initial elevated temperature 

for this experiment was set at 35 ℃ and set to start at hen age 31 weeks. However, due to 

issues with airflow that resulted in a lack of uniform heat distribution around the room, the 

study was terminated after about three hours. The elevated temperature regimen was 

eventually initiated two weeks (hen-age 33 weeks) after the heat circulation problem within 

the room was resolved. 

3.2.2 Experimental diet 

Table 3.1 shows the ingredients and nutrient composition of the experimental diets 

fed in the study. The basal diet was a typical commercial layer diet formulated to meet or 

exceed nutrients and energy requirements (NRC, 1994). The hens were randomly assigned 

to four dietary treatments that include two different inorganic sodium sources (NaCl or 
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NaCl+NaHCO3) and two levels of EconomasE™ supplementation (0 or 0.2 g/kg of diet) 

(Table 3.1). The diets given were A) a basal diet supplemented with NaCl as the only source 

of inorganic sodium with no EconomasE™ supplementation (0 g/kg diet); B) a basal diet 

with NaCl + NaHCO3 as the source of inorganic sodium (by substituting an equal amount 

of sodium (Na), as provided by NaCl) with no EconomasE™ supplementation (0 g/kg diet); 

C) a basal diet supplemented with NaCl as the only source of inorganic sodium with 

EconomasE™ supplementation (0.2 g/kg diet); D) a basal diet with NaCl + NaHCO3 as 

sources of inorganic sodium with EconomasE™ supplementation (0.2 g/kg diet). Hens 

were fed these diets throughout the experimental period with necessary nutrient 

adjustments made to accommodate for different production phases. 

3.2.3 Egg production and measurement of egg quality 

Egg production and mortality were recorded daily on a per-replicate basis and 

percent hen-day egg production was calculated for each time regimen (Eqn. 1). Feed 

consumption was determined at the end of each regimen, and feed intake was calculated as 

g/bird/d. The feed conversion ratio was expressed as kilograms of feed consumed per 

kilogram of egg produced (Eqn. 2). Throughout the experiment, production variables such 

as feed intake and egg production were adjusted for hen mortalities. All the eggs laid on 

two consecutive days on the first, third, and fifth week of each 5-wk regimen were collected 

to obtain the egg weight. Egg mass was calculated by multiplying percent hen-d production 

by egg weight. Subsequently, six eggs from each replicate (9) per dietary treatment were 

randomly chosen to determine egg quality (approximately 1,296 eggs were used for every 

temperature-period). Eggshell breaking strength was measured using an electronic eggshell 

tester equipment (Egg Force Reader, ORKA Technology LLC, USA) and expressed as a 
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unit of compression force exposed to unit eggshell surface area (kg/f). Then, eggs were 

cracked, carefully separating the eggshell and egg content. The eggshells were cleaned, 

dried, weighed, and expressed as a proportion (%) of the whole egg. Using a tripod 

micrometer (Sanovo), the albumen height was measured midway between the yolk and the 

edge of the albumen. Haugh unit was calculated from the HU formula (Eqn. 3). The 

summary of all the data collected as well as collection frequencies are reported in Table 

3.2. 

3.2.4 Sample collection 

Hens were weighed at the end of each temperature-regimen; TN1, ET1, REC1, 

TN2, ET2, and REC2. Furthermore, one bird was randomly chosen from 6 of the 9 

replicates (consistently from the first 6 replicates) per dietary treatment to collect samples, 

and the remaining birds were carried through the experiment. A blood sample was taken 

via the wing vein into heparinized tubes. Blood was allowed to clot and sent out for 

immediate analysis of blood chemistry panel. The birds were then euthanized by argon 

asphyxiation. At necropsy, the hen’s liver, jejunal segments, mucosa, and bones (tibia and 

femur) were harvested rapidly. The liver weights were recorded and used to calculate 

relative weight determinations. For mucosa collection, segments of the mid-jejunum were 

cut off and the mucosal side was exposed. The mucosal side was nipped by forceps and 

gently rinsed in nanopore water until the content was cleaned. Jejunal mucosa was scraped 

using a clean microscope slide, the mucosal scrapings were collected in microtubes 

containing TRIzol, snap-frozen in liquid nitrogen, and stored at −80°C until analysis of the 

mRNA expression of HSPs. Subsequently, segments of mid-jejunum harvested 

immediately after euthanasia were fixed in 10% formalin for morphology measurements 
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3.2.5 Blood electrolytes and metabolites analysis 

Blood samples collected were analyzed at the Rood and Riddle equine hospital 

(Lexington, KY, 40511). The blood chemistry panel [Alkaline Phosphatase (Alk. Phos.), 

creatinine kinase (CK), lactose dehydrogenase (LDH), Albumin, Calcium, Phosphorus, 

Glucose] and electrolytes (Na+, K+, HCO3
‒, and Cl−) analysis were performed using the 

AU480 Chemistry Analyzer (Beckman Coulter, Inc. CA. USA). 

3.2.6 Intestinal morphology 

The intestinal segment of the jejunum was collected from one bird per cage (using 

6 replicates per treatment) during each phase, flushed with nanopore water to remove the 

digesta contents. The cut sections were fixed in 10% neutral buffered formalin (Sigma 

Chemical Co., St Louis, MO, USA). In brief, tissue sections were cut, dehydrated, cleared, 

and embedded in Polyfin paraffin (Polysciences Inc., Warrington, PA, USA). Then, the 

paraffin-embedded jejunal samples were sliced to approximately 5 µm with a microtome 

and mounted on slides. These sections were deparaffinized in xylene, rehydrated in a 

graded alcohol series, and stained with hematoxylin and eosin. From each slide, villus 

height, width, and crypt depth were measured from 10 villi under a magnification of 4X 

using a Nikon ECLIPSE Ci-E light microscope equipped with a computer-assisted digital 

camera (DS-Ri2) using NIS-Elements Br software (Nikon Corporation, Tokyo, Japan). An 

average value was calculated for each section measured. The villus height: crypt depth ratio 

was calculated. 

3.2.7 Intestinal gene expression analysis 

The mRNA expression levels of HSP 70 and 90 were measured using real-time 

quantitative PCR. Jejunal mucosal samples in TRIzol reagent were allowed to thaw on ice 
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before the isolation process begins. Samples were homogenized using an Omni tissue 

homogenizer (TH) with 5 mm plastic disposable probes (Omni International, GA, USA) 

and placed on ice afterward. Total RNA extraction was performed on the homogenates 

according to the manufacturer’s instructions (Invitrogen Inc., Carlsbad, CA). RNA samples 

were resuspended in nuclease-free water, and the concentration and purity of the extracted 

RNA were determined using a NanoDrop one (Thermo Fisher Scientific, Wilmington, DE 

USA) spectrophotometer at an optical density of 260 and 280 nm. A 260/280 ratio above 

2.0 and 260/230 ratio in the range of 2.0–2.2 was accepted as “pure” for RNA. Lower ratios 

may indicate the presence of protein, phenol, EDTA, carbohydrates, or other contaminants 

that absorb at or near 260, 230, or 280 nm and were subjected to further purification.  

Subsequently, 1 μg of total RNA from each sample was reverse transcribed into cDNA in 

a 20 μL RT reaction using Script cDNA super mix for qRT-PCR (Quanta Biosciences, 

Gaithersburg, MD) according to the manufacturer’s protocol in a Veriti TM Thermal cycler 

(Catalog no 4375786, Applied Biosystems). The RNA was incubated for 5 min at 25 ℃, 

followed by 30 min extension at 42 ℃. The reaction was stopped at 80 ℃ for 5 min and 

then held at 4 ℃ until removal from the machine. The cDNA was then diluted 1:20 with 

nuclease-free water before being used for real-time PCR. Briefly, the reaction mix was 

prepared using 1μL of cDNA, 0.375μL of each forward and reverse primer, 6.25 μL SYBR 

green master mix (Bio-Rad, Hercules, CA), and 4.5 μL of RNase free water to reach a total 

reaction volume of 12.5 μL. Each sample was tested in duplicate. PCR plate contained 

target genes and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) - an endogenous 

housekeeping control, and negative controls, which consisted of all the components of the 

qRTPCR mix except cDNA, were used for all primers. Thermal cycling was carried out 
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using a Bio-Rad CFX-96 real-time PCR system (Bio-Rad, Hercules, CA) with the 

following cycle profile: 95 ℃ for 5 min, 95 ℃ for 10 s, followed by 30s at and then 60 ℃ 

and 72 ℃ for 10s with final melting at 95 ℃ for 20 s on repeat for 40 cycles. For each gene 

examined (GAPDH: F -5′ GTG TTA TCA TCT CAG CTC CCT CAG 3′, R- 5′ GGT CAT 

AAG ACC CTC CAC AAT G 3′ (GenBank No.FJ_217667); cHsp70: F - 5′ GAC AAG 

AGT ACA GGG AAG GAG AAC 3′, R-5′ CTG GTC ACT GAT CTT TCC CTT CAG 3′ 

(GenBank No. FJ_217667.1; Al-Zhgoul et al., 2013), HSP 90: F – TCA TCA ACA CGT 

TCT ACT CCA ACA AG, R – CGG AGG CGT TGG AGA TGA G (Rimoldi et al., 2015) 

duplicate from each cDNA was analyzed and the formation of single PCR products was 

confirmed using melting curves. The relative levels of mRNA expression were calculated 

using the 2-∆∆CT method after normalization against the reference gene (Shini and Kaiser, 

2009). In the 2-∆∆CT analysis, the threshold cycle (CT; cycle number at which the expression 

exceeds threshold level) from control birds was used as a calibrator sample. 

3.2.8 Keel bone damage, bone-breaking strength, and bone ash 

At the end of each environmental period, eighteen hens per treatment (two random 

hens were selected in each replicate cage) were assessed for levels of keel bone damage 

(KBD). Keel bone scores were not determined during the REC1 regimen because the 

investigator was not available during that time. After all, consistency is important to limit 

variations from different investigators. The hens were palpated by the same investigator 

throughout the experiment, an observer who has extensive experience in poultry handling 

and carcass dissection techniques. Palpations were performed by running the thumb and 

index finger down the edge and length of the keel bone, feeling for alterations such as S-

derivations, bumps or depressions, all indicators of keel bone damage. The keel was 
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assessed for fractures and deviations associated with KBD using a scoring scheme adapted 

from Scholz et al. (2008). For each damage type assessed, the scores were condensed into 

three categories showing increasing severity (Table 3.3). The severity of damage was 

assigned a numerical value between zero and two.  

The frozen tibias and femurs were thawed and later stripped of soft tissue. 

Extraneous muscles were removed by hand and the bone cap removed. Subsequently, 

bone-breaking strength was measured using an Instron Materials tester (model 4301, 

Instron Corp., Canton, MA) at a loading rate of 40 mm/min. The average breaking strength 

of the left and right tibia and femur was reported as the breaking strength of the bone. To 

determine the ash content, the bones were further extracted in anhydrous ether for 72 h 

during which the ether was replaced every 24 hours for three consecutive days or until the 

ether becomes completely clear. After the extraction process, bones were dried at room 

temperature, under the hood, for 4 h after which they were placed in the oven at 105 °C for 

a minimum of 16 hours (overnight). The weight of an empty porcelain crucible and bones 

were determined before ashing in a muffle furnace overnight at 600 ℃. The weight of each 

porcelain crucible and its content (ash) was thereafter determined. The percentage of ash 

was determined relative to the dry weight of the bones. 

3.2.9 Calculations 

Hen-d egg production %=  
୘୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୣ୥୥ୱ ୪ୟ୧ୢ ୢ୳୰୧୬୥ ୲୦ୣ ୮ୣ୰୧୭ୢ 

୘୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୦ୣ୬ିୢୟ୷ୱ ୧୬ ୲୦ୣ ୱୟ୫ୣ ୮ୣ୰୧୭ୢ
 × 100 ---------Eqn. 1 

where period represents the 5-wk period for each temperature regimen. 

Feed conversion ratio (per kg egg mass) =  
୩୥ ୭୤ ୤ୣୣୢ ୡ୭୬ୱ୳୫ୣୢ

୩୥ ୭୤ ୣ୥୥ ୮୰୭ୢ୳ୡୣୢ
 --------------------Eqn. 2 

Haugh Unit = 100𝑙𝑜𝑔 [H + 7.57 − 1.7W଴.ଷ଻] ---------------------Eqn. 3 
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where, H = albumen height in mm, W = weight of whole egg in gram (Eisen et al., 

1962). 

3.2.10 Statistical analysis 

In this study, the dietary treatment was not analyzed across the temperature 

regimens because the same birds were used throughout the experiment and, there is a 

potential inherent carryover of temperature effect that would not be accounted for. As such, 

analysis of the dietary treatment was conducted within each temperature regimen. The 

experimental unit for the performance parameters (body weight, feed intake, feed 

conversion, egg production), egg quality parameters, was a replicate consisting of two 

adjacently caged laying hens (3 adjacent cages; top and bottom tier) fed as a group, with a 

total of 9 replicates. The experimental unit for the blood parameters, histology, gene 

expression was a single bird from 6 replicates rather than 9 replicates. Data were subjected 

to a two-way ANOVA using the GLM procedure of SAS 9.4 software (SAS Institute Inc., 

Cary, NC) for a completely randomized design. The model included a 2 x 2 factorial 

arrangement of treatments, were the main effects of inorganic sodium source, 

EconomasE™, and their interaction within each temperature-period was tested. The mean 

values were compared using Tukey and significance is based on a probability of < 0.05. To 

assess the occurrence of keel bone damage (curvature and fracture) and the relationship to 

the dietary modifications (EconomasE™ and two different sodium sources) within each 

temperature regimen, PROC FREQ of SAS 9.4 software (SAS Institute Inc., Cary, NC) 

was used. In total, a count of 72 birds (2 birds per cage) were used to determine the 

frequencies of keel bone curvature or fracture occurring. Fisher’s exact test was used to 

determine the differences of the frequencies (P < 0.05). 



 

123 
 

3.3 RESULTS 

The effect of dietary supplementation of EconomasE™ and two inorganic sodium 

sources at different environmental temperature regimens on different parameters are 

presented. The experimental temperature regimen are as follows; Phase 1 [TN1 (23.2℃; 

26-30 weeks), ET1 (32.2℃; 33 – 37 weeks), REC1 (23.2℃; 38 – 42 weeks), and Phase 2 

TN2 (23.2℃; 44 - 48 weeks), ET2 (32.2℃; 49 - 53 weeks), REC2 (23.2℃; 54 -58 weeks)]. 

The performance data are presented in Table 3.4. During the REC2 regimen, birds 

fed the diet without EcoE and NaCl+NaHCO3, and with EcoE and NaCl as the source of 

inorganic sodium had a higher (P <.0001) body weight compared to the other combinations. 

Feed intake increased (P < 0.05) with NaCl+NaHCO3 supplementation during TN1 and 

REC1. Feed intake and FCR decreased (P < 0.05) in birds fed the diet with NaCl as the 

only source of inorganic Na without EcoE supplementation compared to birds on a similar 

diet but with inorganic Na coming from a combination of NaCl and NaHCO3 (Phase 2 

TN2; Table 3.4). Feed conversion ratio increased (P < 0.05) in birds fed diets with 

NaCl+NaHCO3 as the source of inorganic Na during the REC1 regimen. EconomasE™ 

supplementation improved (P < 0.05) HDEP during the REC2 period. 

Egg quality parameters observed in this study include average egg weight, eggshell 

weight, eggshell breaking strength, albumen height, and Haugh unit (Table 3.5). An 

interaction effect was observed during the ET1 regimen where albumen height and Haugh 

unit improved (P < 0.05) in birds on diets supplemented with EcoE and NaCl+NaHCO3 as 

the source of inorganic Na compared to birds on a similar diet without EcoE 

supplementation. Average egg weight decreased (P < 0.05) in birds fed the diet with EcoE 

supplementation and NaCl as the only source of inorganic Na during the REC1 temperature 
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regimen compared to those fed diets without EcoE supplementation and NaCl as the source 

of inorganic Na (Table 3.5). During the TN2 regimen, EcoE supplementation improved (P 

< 0.05) albumen height and Haugh unit (Table 3.5). The other egg quality parameters were 

not affected by the diet supplementation of EcoE and the two inorganic sodium sources.  

The effects of the experimental treatments on laying hen blood chemistry are 

reported in Table 3.6. An interaction (P = 0.015) between the dietary supplementation of 

EcoE and the two different inorganic Na sources was observed for HCO3
- during REC1. A 

combination of inorganic Na from NaCl and EcoE supplementation resulted in a reduced 

(P < 0.05) serum HCO3
- compared to the other three treatments (REC1). Serum K+ 

decreased during the REC2 with NaCl+NaHCO3 in the diet. Serum Na and Cl levels were 

higher (P < 0.050) in birds on diets with inorganic Na from NaCl only (TN2) while serum 

HCO3
- was increased (P <0.001) in birds with inorganic Na from a combination of NaCl 

and NaHCO3 (ET2; Table 3.6). EconomasE™ supplementation increased (P = 0.031) 

serum Na level (ET2). Serum Na level was increased (P < 0.05) with a combination of 

NaCl and NaHCO3 compared to birds on diets with NaCl as the only source of inorganic 

Na but was not different from that of birds on diet with NaCl as the only source of inorganic 

Na without EcoE supplementation. However, serum Cl level was higher (P = 0.011) in 

birds on the diet with only NaCl as the only source of inorganic Na without EcoE 

supplementation (REC2; Table 3.6). 

Blood metabolites are reported in Table 3.7. An interaction effect observed was on 

the levels of LDH, glucose, Ca, and P in the blood. During the TN environmental 

temperature, LDH levels in the blood decreased (P < 0.01) in birds fed the diet 

supplemented with NaCl +NaHCO3 and no EcoE compared to those that had EcoE in the 
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diet (Table 3.7). Serum Ca, P, and Albumin levels decreased (P < 0.05) and glucose levels 

increased (P < 0.05) in birds fed diets supplemented with EcoE (TN1; Table 3.7). Glucose 

levels, on the other hand, increased in birds fed the diet containing NaCl+NaHCO3 as the 

only source of Na in the diet (TN1). In the REC1 regimen, the serum CK levels decreased 

(P < 0.05) in birds fed diets supplemented with EcoE. The EcoE supplementation in the 

diet increased (P < 0.05) P and alkaline phosphatase levels in the blood during the ET2 

regimen. Furthermore, EcoE supplementation and inclusion of NaCl +NaHCO3 in the diet 

as the only source of inorganic Na decreased (P < 0.05) Ca and P levels in the serum 

compared to the treatment during the REC2 regimen. While glucose levels increased 

(P = 0.003) and Ck serum levels decreased (P < 0.05) in the blood with the inclusion of 

NaCl +NaHCO3 in the diet as the only source of inorganic Na during REC2. 

Relative to the body weight, liver weight was not affected by environmental 

temperature and the diet supplementation of the different inorganic Na sources and EcoE 

(Table 3.8). 

The jejunal morphology of birds subjected to different environmental temperatures 

and fed diets supplemented with or without EcoE and two different inorganic Na sources 

are presented in Table 3.9. The data showed that during the TN1 regimen, supplementation 

of EcoE and NaCl+NaHCO3 as the only source of inorganic Na improved (P < 0.05) villus 

height and VH: CD ratio compared to the other 3 diet combinations. By phase 2, no 

significant effect was observed until the REC2 period where birds fed a diet supplemented 

with EcoE and NaCl+NaHCO3 had a lower (P < 0.05) VH and CD compared to birds fed 

the diet without EcoE and NaCl+NaHCO3 in the diet.  
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The occurrence of the keel bone curvature was low (P = 0.013) in the birds fed 

NaCl as the source of inorganic sodium during the TN1 temperature regimen. Eighty-three 

percent of the birds fed NaCl had no curvature, 14% had a slight curvature, and 3% had a 

severe curvature compared to the 53%, 44%, and 3% respectively, fed a diet containing 

NaCl+NaHCO3 (Table 3.10).  

We observed no interaction effect of EcoE supplementation and the two inorganic 

sodium sources on bone breaking strength except during the REC1 regimen where birds 

fed diets with  EcoE and NaCl as the only source of Na had a decrease in femur breaking 

strength compared to birds fed diets without EcoE supplementation and NaCl. During the 

REC2 regimen, EcoE supplementation, improved (P < 0.05) femur breaking strength 

(5.4%; Table 3.11). On the other hand, birds fed a diet with NaCl+NaHCO3 as the only 

source of inorganic Na had a decrease (P < 0.05) in femur and tibia breaking strength (Table 

3.11). Percent tibia ash was improved (P = 0.02) by EcoE supplementation during the ET1 

period. Similarly, NaCl+NaHCO3 as the only source of inorganic Na resulted in a higher 

(P = 0.017) percent tibia ash (ET1; Table 12). During the REC2, regimen, EcoE 

supplementation improved (3.9%; P = 0.002) percent ash of the tibia (Table 3.12). 

The mRNA expression of HSP 70 and 90 in the jejunum was not influenced by 

EcoE supplementation and the two inorganic Na source during each temperature period 

(Table 3.13). 

3.4 DISCUSSION 

It has been inferred that the decline in egg production and egg weight is more 

influenced by the reduction in feed consumption, while eggshell and overall egg quality is 

influenced primarily by high temperature (Balnave and Muheereza, 1997; Mashaly et al., 
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2004). Dietary inclusion of a combination of NaCl and NaHCO3 as the source of inorganic 

Na significantly increased FI during the TN1 and REC1 regimen and FCR during the REC1 

regimen. Performance results have shown that the addition of 1.0% of NaHCO3 to diets 

fed to broilers subjected to elevated temperatures from 34 to 36 ºC led to a trend of 

improved feed consumption, weight gain, and feed conversion (March, 1984). Similar to 

Ahmad et al. (2005) report, we did not observe any significant difference with 

NaCl+ NaHCO3 in the diet for FI and FCR during the ET1 and ET2 regimen, however, 

Borges et al. (2003) reported an increase in FI and FCR with NaHCO3 and NaCl as the Na 

sources under heat stress conditions. Consequently, body weight was not affected during 

the different environmental temperature regimens except during the REC2 period where 

body weight increased in birds fed a diet supplemented with EcoE and NaCl as the source 

of inorganic Na in the diet. Although, during the same temperature regimen (REC2), the 

bodyweight of hens on diets supplemented with EcoE with a combination of NaCl and 

NaHCO3 as sources of inorganic Na was lower compared to the hens fed a diet without 

EcoE supplementation with a combination of NaCl and NaHCO3.  

In thermoneutral temperature, Borges et al. (2003) reported an increase in body 

weight gain of broilers with a DEB of 240. Similarly, Ahmad et al. (2005) reported that 

NaHCO3, Na2CO3, and Na2SO4 increased body weight gain after 42 days of age. Under 

elevated temperature, Hassan et al. (2011) suggested that the higher body weight gain 

observed in birds fed diet containing electrolytes such as NaHCO3 and KCl can be 

attributed to the partial correction in acid-base balance which acts as a heat sink and 

resulted in a better metabolism in the hens. Hen-d egg production was not impacted by the 

two different inorganic Na sources however, during REC1, HDEP decreased with EcoE 
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supplementation but increased during REC2. Numerous studies have documented the 

beneficial effects of VE (Whitehead et al., 1998; Puthpongsiriporn et al., 2001) 

supplementation on egg production and egg quality in heat-stressed poultry. Panda et al. 

(2008) reported that supplementing VE in the diet influenced egg production and feed 

efficiency, and by increasing the level of VE from 25 to 125 IU/kg diet, egg production 

and feed conversion efficiency were significantly improved.  

Egg quality parameters, excluding albumen height, Haugh unit, and average egg 

weight were affected by the dietary treatments during the different environmental 

temperature regimens. El-Gammal and Makled (1977) reported that by replacing NaCl 

(0.67%) with NaHCO3 (1%), egg production increased by 6%. However, no change in egg 

production was reported in hens supplemented with 1% NaHCO3 during peak period but 

eggshell weight increased (Balnave and Muheereza, 1997; Grizzle et al., 1992). 

Hassan et al. (2011) reported the beneficial effects of NaHCO3 in the diet on different egg 

production traits (egg number, egg weight). Jiang et al. (2015) reported the benefit of 

supplementing NaHCO3 in laying hens’ diet on eggshell breaking strength. In this study, a 

decrease in the albumen height and Haugh unit during the ET1 regimen in birds fed the 

diet supplemented without EcoE and with the inclusion of NaCl and NaHCO3 as the 

inorganic Na sources, was observed. Ghorbani and Fayazi (2009) indicated that the Haugh 

unit, albumen index, yolk index shell strength, shell weight, were not significantly affected 

by the addition of dietary NaHCO3. Sahin et al. (2002) reported that VE supplementation 

positively influenced, egg weight, egg specific gravity, eggshell thickness, and Haugh unit 

which demonstrates the beneficial effect of EcoE supplementation with NaCl+ NaHCO3 

on albumen height and Haugh unit that was observed in this study. This is beneficial to the 
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industry because albumen quality is a very important parameter in the raw egg consumption 

market. Both albumen height and Haugh unit are used as a global indicator of egg 

freshness. Eggs with higher albumen and greater Haugh unit values can be stored for a long 

time while still maintaining their fresh appearance when used by the consumer.  

Although we did not analyze across the different environmental temperatures to 

determine their effect on blood metabolites and electrolytes, studies have demonstrated that 

birds subjected to elevated temperatures can express respiratory alkalosis and a decrease 

in plasma levels of Ca, Na, P, and Mg (Kohne and Jones, 1975; Bogin et al., 1981). On the 

other hand, Koelkebeck and Odom (1995) reported that exposing laying hens to elevated 

temperature 38 ℃ did not affect blood plasma glucose, alkaline phosphatase, total protein, 

uric acid, and creatinine. The increase in plasma Cl− and reduction of Na+ and K+ levels as 

a function of heat stress has been well documented (Belay and Teeter, 1993). In the current 

study, Cl- levels were significantly reduced during ET1, REC1, and TN2 in birds fed diets 

with inorganic Na from both NaCl and NaHCO3. Cohen and Hurwitz (1974) suggested that 

one of the effects of dietary supplementation with one of the ionic components is the 

increase in its concentration in plasma. Ahmad et al. (2005) also reported that blood Na+, 

K+, and Cl− levels were a direct response to the respective supplemented minerals. This 

result indicates that the elevated levels of Cl- during HS because of respiratory alkalosis 

can be counteracted by supplementing with salts containing less Cl-. Though the decrease 

in Na+ levels with NaCl+ NaHCO3 during the TN2 failed to follow this logic, the increase 

in Na levels during the REC2 period in birds fed diets supplemented with NaCl+ NaHCO3 

and EcoE further supports this. Moreover, HCO3
- levels were increased with 

NaCl+ NaHCO3 supplementation during ET2 which according to Junqueira et al. (1984) 
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and Gorman and Balnave (1994), heat stress may induce a metabolic requirement for the 

HCO3
-, and dietary supplements of both bicarbonate and carbonate salts may be considered 

as a substrate for HCO3
-. This means the supplementation of NaHCO3 in the diet might 

counteract the need for HCO3
- associated with elevated temperature. 

Maintenance of normal microarchitecture in the small intestine is very important 

for the proper growth and development of the bird. Several reports have documented the 

effect of HS on intestinal morphology including a decrease in VH (Mitchell and Carlisle, 

1992; Sohail et al., 2012), CD (Burkholder et al., 2008; Sohail et al., 2012), and VH: CD 

while, others have reported no effect (Quinteiro-Filho et al., 2010, 2012). In this study, 

before exposing the birds to the ET, we observed an increase in VH and VH: CD ratio in 

birds fed diets supplemented with EcoE and NaCl+ NaHCO3. However, at the end of the 

experiment during the REC2 regimen, this interaction effect negatively affected VH and 

CD. Since there is a potential for an imbalance between pro- and antioxidant systems in 

animals leading to oxidative stress, EcoE an antioxidant is intended to confer protection 

limiting oxidative damage in the intestinal tract. This study did not support that hypothesis 

during the REC2 regimen. So probably, EcoE with a combination of NaCl and NaHCO3 

can improve the intestinal tract environment when conditions are favorable, as evidenced 

by the increased villus height observed in birds fed diets inclusion during TN1. However, 

in unfavorable conditions (elevated temperature) or after unfavorable conditions (recovery 

period), the beneficial effects are limited and an increase in the level supplemented might 

be advantageous. 

It has been shown that high temperatures (above the thermoneutral zone) have a 

negative effect on feed intake and body mass growth in poultry (Deaton et al., 1978; Deaton 
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et al., 1984) which, can result in the deficits of nutrients in the body that participate in bone 

building. Bone-breaking strength, bone ash, and bone mineral retention are criteria for 

assessing bone quality. Similarly, the relationship between bone strength and the overall 

prevalence of keel bone deformities is complicated by competing influences. The current 

opinion appears to be that deviations/deformities to the keel bone, to a large extent, are due 

to perching behavior in combination with hard, thin perches whereas fractures are the result 

of impact collisions with housing structures (Thofner et al., 2020). Layer fatigue or poor 

bone health have also been suggested to be contributing factors to keel bone fractures as 

well as the genetics of the bird, lack of specific feedstuff components, and high egg 

production (Fleming et al., 2004; Casey-Trott et al., 2017). Siegel et al. (1973) reported 

that thermal stress could reduce bone mass and the bones' mechanical strength. Moreover, 

the bone strength of caged layers is said to significantly correlate with the percentage of 

bone ash (Rowland et al., 1968). No significant difference was observed with 

NaCl+ NaHCO3 during the ET1 and ET2 regimen in this study. However, during the REC2 

regimen, birds fed diets supplemented with NaCl+ NaHCO3 had a decrease in both the tibia 

and femur breaking strength. This is unlike the results Ferguson et al. (1974) reported 

where no difference was observed in layers fed diets supplemented with NaHCO3. 

EconomasE™ supplementation on the other hand improved the femur breaking strength 

during the REC2 regimen. The progressive loss of bone strength in hens starts early but 

continues throughout the production period with no time to recuperate (Wilson et al., 1992) 

causing osteoporosis to be most severe at the end of the laying period (Whitehead and 

Fleming, 2000). Hence, even though NaCl+ NaHCO3 did not improve the bone-breaking 

strength and the decrease in bone breaking strength might be due to the age of the birds. 
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Murakami et al. (1997a, b) demonstrated experimentally that disorders in mineralization 

processes, manifested as reduced bone ash content, resulted from an increased amount of 

Na in chickens’ diet, while a higher dietary content of chlorine counteracted this effect. 

Percent ash improved in birds fed diets supplemented with either EcoE or with 

NaCl+ NaHCO3 during the ET1 regimen and a further increase during REC2 (EcoE). In 

Moghaddam et al. (2005) study, the tibia ash of pullets fed different dietary electrolyte 

levels (187, 230, 251, and 284 mEq Kg-1) was not significantly different. Keel bone 

damage was not observed during any of the environmental temperature periods except for 

the TN1 regimen where supplementation of NaCl+ NaHCO3 in the diet increased the 

chances of keel bone deviation. In concert, the severity of deviation of the keel bone was 

reduced with NaCl+ NaHCO3 and no EcoE in the diet which does not explain the tibia and 

femur breaking strength results where NaCl+ NaHCO3 in the diet reduced the breaking 

strength.  

Furthermore, cellular exposure to thermal stress induces several anomalies in the 

functioning of cells which ultimately alters the biological molecules. Heat shock proteins 

(HSPs) mediate important endogenous protective mechanisms to assist acclimatization to 

change environments and protect against various stressors such as heat, cold, bacteria, 

viruses, and UV (Garrido et al., 2001; Panda et al., 2008) Also, HSP is one of the cellular 

proteins found most abundantly under non-stress conditions. The expression of HSPs 

provides protection against hyperthermia, circulatory shock, and cerebral ischemia during 

heatstroke which signifies the ability of cells to resist damage and adapt to environmental 

stress (Garrido et al., 2001; Xu et al., 2017). Of the HSP proteins known, HSP70 is the 

most abundant and temperature-sensitive of the HSPs and can be activated by numerous 
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physical and physiological stressors (Al-Aqil and Zulkifli, 2009; Zulkifli et al., 2009). 

Also, HS has been shown to induce HSP90, which can help the proteins mostly associated 

with cellular pro-survival/anti-apoptotic signal transduction pathways to maintain their 

correct molecular structure (Chrisostomos et al., 2000; Wang and Edens, 1998). 

Gu et al. (2012) reported an increase in HSP70 at 2 h and 3 h after birds were subjected to 

an elevated temperature at 35 ℃. Similarly, Pearce et al. (2013) reported that HS in pigs 

resulted in an elevated ileal mucosa HSP70. During each of the environmental temperature 

conditions, the supplementation of EcoE or the two sodium sources did not affect the 

activities of HSP 70 and 90. Although, dietary supplementation with VE is beneficial 

against oxidative stress and the production of ROS. The production of HSP induced by HS 

has a close relationship with the generation of ROS. Panda et al. (2008) reported an increase 

in the activities of glutathione reductase, an enzymatic antioxidant that play a vital role in 

scavenging oxidative radicals. Yin et al. (2018) reported that in vitro, pre-treatment with 

vitamin C-Na for 16 h induced basal expression of HSP70 upon heat stress. 

In conclusion, the supplementation of NaCl+ NaHCO3 yielded comparable results 

in terms of feed intake and feed efficiency with the inclusion of NaCl+EcoE in the diet. 

While we see a decrease in egg quality parameters during the ET1 and ET2 regimen, the 

diet did not improve these parameters except in the albumen height and Haugh unit. 

Overall, NaCl+ NaHCO3 helped circumvent the effects of respiratory alkalosis by reducing 

Cl- levels during ET and increase Na+ and HCO3
- levels during the REC1 regimen. Also, 

the beneficial effect of EcoE with NaCl+ NaHCO3 was observed during the TN1 regimen 

on VH and VH: CD. Bone breaking strength, on the other hand, was not improved with 
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NaCl+ NaHCO3 supplementation however, percent tibia ash was improved by both EcoE 

and NaHCO3. 



 

 
 

3.5 TABLES 

Table 3.1 Ingredient and nutrient composition of the experimental diets (on an as-fed 
basis). 

Ingredients, % 
A B C D 

NaCl NaCl + 
NaHCO3 

NaCl + 
EconomasE™ 

NaCl + NaHCO3 
+ EconomasE™ 

Corn 56.0 55.9 56.0 55.9 
Soybean meal (48% CP) 28.0 28.0 28.0 28.0 
Soybean oil 3.75 3.75 3.75 3.75 
Limestone (38% Ca) 7.20 7.20 7.20 7.20 
Dicalcium phosphate 1.00 1.00 1.00 1.00 
NaCl 0.38 0.18 0.38 0.18 
NaHCO3 0.0 0.30 0.0 0.30 
DL- methionine 0.17 0.17 0.17 0.17 
Oyster shell 3.00 3.00 3.00 3.00 
Vitamin premix (no mineral)1  0.25 0.25 0.25 0.25 
Mineral premix2 0.25 0.25 - - 
Mineral premix3 - - 0.25 0.25 
EconomasE™ premix4 - - 0.02 0.02 
Total 100.0 100.0 100.0 100.0      

Analyzed nutrients and energy (%) 
    

Crude protein 17.36 17.73   
Crude fat 6.27 5.87   
Fiber 6.01 4.56   
Ash 13.57 15.19   
Calcium 4.26 4.92   
Total phosphorus 0.53 0.58   
Metabolizable energy5, kcal/kg 2,874 2,871   
Non-phytate P4 0.31 0.31 

  

Ca: tP5 0.79 0.79 
  

Sodium5 0.20 0.20 
  

Chlorine5 0.40 0.28 
  

Dietary electrolyte balance 
(DEB)6, mEq/kg 

183.59 217.65 
  

1Supplied per kg of diet: vitamin A, 9921 IU; vitamin D3, 2756 ICU; vitamin E, 33 IU, vitamin B12, 22.0 
μg; vitamin K (as menadione), 1.98 mg; riboflavin, 6.6 mg; d-pantothenic acid, 11 mg; thiamine, 1.98 mg; 
niacin, 44 mg; vitamin B6, 3.97 mg; folic acid, 1.32 mg; choline, 496 mg; biotin, 0.11 mg. 
2Minerals supplied per kg of diet: Selenium, 0.2 mg; Copper, 10.0 mg; Iodine, 3.0 mg; Iron, 79.8 mg; 
Manganese, 79.9 mg; Zn, 80.0 mg. 
3Minerals supplied per kg of diet: ; Copper, 10.0 mg; Iodine, 3.0 mg; Iron, 79.8 mg; Manganese, 79.9 mg; 
Zn, 80.0 mg.  
4Economase™ premix was added to diets C and D at the expense of corn to supply 0.2 g of EconomasE™/kg 
of diet. 
5Calculated values. 
6Electrolyte balance was calculated as Na+K-Cl in mEq/kg.



 

 
 

Table 3.2 Summary of measurements taken and sampling intervals 

Collection interval Parameter 

1Biweekly Egg weight (g) 

Eggshell weight (g) 

Yolk weight (g) 

Albumen height; calculated Haugh units 

Yolk color 

2End of each period Bodyweight (g) 

Feed intake (g); calculated Feed conversion ratio (g) 

Egg production (%) 

Blood metabolites (alkaline phosphatase, creatine kinase, lactose dehydrogenase, 

albumin, calcium, phosphorus, glucose, and electrolytes (Na+, K+, HCO3
‒, and 

Cl−). 

1Biweekly: Two consecutive days in the 1st, 3rd, and 5th week of each period 
2TN1 (23.2℃; 26-30 weeks), ET1 (32.2℃; 33 – 37 weeks), REC1 (23.2℃; 38 – 42 weeks), TN2 (23.2℃; 
44 - 48 weeks), ET2 (32.2℃; 49 - 53 weeks), REC2 (23.2℃; 54 -58 weeks). 



 

 
 

Table 3.3 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on performance variables in laying hens1. 

  
Environmental  
Temperature2 
  

  Main effect Interaction effect  P-value 

  EconomasE™ Sodium source No EconomasE™ EconomasE™  

EconomasE™ 
Sodium 
source 

EconomasE™ 
x Sodium 

source 

 Performance3 
No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

SD4 

TN1 (23.8 ℃) Bodyweight (kg) 1.98 1.97 1.97 1.97 1.99 1.97x 1.96 1.98 0.05 0.722 0.925 0.283 
26 – 30 wk Feed intake(g/hen/d) 104.2 107.4 103.8 107.8 103.0 105.3 104.5 110.2x 6.08 0.130 0.059 0.412 
  FCR 1.78 1.81 1.77 1.82 1.76 1.79 1.77x 1.85 0.10 0.358 0.127 0.501 
  HDEP (%) 97.2 97.7 97.5 97.3 97.9x 96.5x 97.1 98.2x 2.09 0.521 0.794 0.094 
ET1 (32.2 ℃) Bodyweight (kg) 1.93 1.91 1.92 1.93 1.92 1.95x 1.91x 1.91 0.04 0.157 0.437 0.245 
33 – 37 wk Feed intake (g/hen/d) 102.3 101.8 101.2 103.0 101.8x 102.9 100.6 103.1 2.88 0.602 0.070 0.512 
  FCR  1.74 1.74 1.73 1.75 1.73y 1.76 1.74 1.74x 0.04 0.744 0.131 0.310 
  HDEP (%) 96.1 95.8 96.4 95.5 97.2x 95.0 95.7 96.0 2.49 0.766 0.306 0.150 
REC1 (23.8 ℃) Bodyweight (kg) 1.96 1.94 1.94 1.96 1.95 1.97 1.93 1.95 0.06 0.473 0.331 0.877 
38 – 42 wk Feed intake (g/hen/d) 100.4 99.8 98.8 101.4 98.7 102.1 98.90 100.6 3.88 0.652 0.057 0.508 
  FCR  1.70 1.70 1.68 1.72 1.66 1.74 1.69 1.70 0.07 1.000 0.056 0.103 
  HDEP (%) 92.9 90.1 91.1 92.0 92.4x 93.4x 89.7 90.6 2.79 0.007 0.350 0.961 

TN2 (23.8 ℃) Bodyweight (kg) 2.03 2.03 2.01 2.05 2.00x 2.06 2.03 2.00x 0.07 0.884 0.194 0.331 
44 - 48 wk Feed intake (g/hen/d) 102.9 103.2 102.0 104.1 100.3b, x 105.4a 103.6ab 102.8ab, x 3.67 0.778 0.096 0.027 
  FCR  1.72 1.71 1.71 1.72 1.69b 1.75a 1.72ab 1.70b, x 0.05 0.483 0.298 0.014 
  HDEP (%) 89.7 89.6 89.7 89.5 90.8x 88.6x 88.7 90.4x 3.31 0.937 0.830 0.105 
ET2 (32.2 ℃) Bodyweight (kg) 1.93 1.92 1.92 1.93 1.90 1.95 1.93 1.90 0.08 0.720 0.816 0.130 
49 - 53 wk Feed intake(g/hen/d) 95.5 96.0 94.7 96.8 94.0 97.1 95.5 96.5 5.48 0.793 0.273 0.565 
  FCR  1.61 1.62 1.61 1.62 1.60 1.62x 1.62 1.62 0.09 0.613 0.703 0.758 
  HDEP (%) 83.9 84.3 84.0 84.2 84.7 83.0 83.3 85.3 4.49 0.791 0.916 0.222 
REC2 (23.8 ℃) Bodyweight (kg) 2.01 2.03 2.01 2.03 1.95b 2.07a, x 2.06a, x 1.99b, x 0.05 0.437 0.271 <.0001 
54 - 58 wk Feed intake(g/hen/d) 110.1 110.5 108 112.6 107.3 112.9 108.7 112.2 9.05 0.911 0.142 0.722 
  FCR  1.93 1.81 1.79 1.86 1.79 1.88 1.78 1.84 0.15 0.677 0.154 0.826 
  HDEP (%) 84.9 88.0 86.8 86.1 85.7 84.1x 88.0x 88.0x 4.19 0.041 0.599 0.577 

a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 9 replicate cages per treatment except for mean values with x where the number of replicates was 8. Hens were subjected to environmental 
temperature for 5 consecutive weeks.  
2Environmental temperature: (Phase 1 and 2) TN= Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature  
3FCR- Feed conversion ratio; HDEP- hen-d egg production 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
. 



 

 
 

Table 3.4 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on egg quality in laying hens1. 

a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Values are expressed as mean ± SEM. Hens were subjected to each environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature 

 
Environmental 
Temperature2  

 
Egg quality 

Main effect Interaction effect   P-value 
EconomasE™ Sodium source No EconomasE™ EconomasE™   

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 
NaHCO3 

NaCl 
NaCl + 
NaHCO3 

SEM 

TN1 (23.8 ℃) Average egg weight (g) 58.6 58.5 58.2 58.8 58.5 58.8 58.0 58.9 0.31 0.697 0.185 0.507 
26 – 30 wk Eggshell weight (%) 9.78 9.79 9.78 9.79 9.80 9.77 9.77 9.82 0.04 0.858 0.858 0.476 
  Eggshell breaking 

strength (kg/cm2) 
4.24 4.27 4.25 4.26 4.23 4.25 4.27 4.27 0.04 0.662 0.793 0.861 

  Albumen height (mm) 8.70 8.93 8.81 8.82 8.66 8.74 8.95 8.90 0.09 0.080 0.886 0.612 
  Haugh unit 93.3 94.2 93.7 93.8 93.1 93.5 94.3 94.2 0.37 0.082 0.818 0.660 
               

ET1 (32.2 ℃) Average egg weight (g) 58.5 58.3 58.2 58.5 58.5 58.4 57.9 58.7 0.38 0.687 0.391 0.331 
33 – 37 wk Eggshell weight (%) 9.74 9.77 9.76 9.8 9.71 9.77 9.81 9.73 0.07 0.631 0.873 0.339 
  Eggshell breaking 

strength (kg/cm2) 
3.64 3.68 3.66 3.66 3.60 3.67 3.72 3.64 0.06 0.483 1.000 0.299 

  Albumen height (mm) 8.08 8.1 8.17 8.04 8.24a 7.91b 8.09ab 8.17a 0.07 0.476 0.084 0.005 
  Haugh unit 90.2 90.4 90.6 90.0 91.0a 89.3b 90.3ab 90.6a 0.38 0.487 0.099 0.012 
               

REC1 (23.8 ℃) Average egg weight (g) 59.2 58.8 59.0 59.0 59.6a 58.8ab 58.4b 59.2ab 0.36 0.262 0.938 0.035 
38 – 42 wk Eggshell weight (%) 9.72 9.82 9.75 9.79 9.74 9.70 9.76 9.88 0.06 0.150 0.548 0.202 
  Eggshell breaking 

strength (kg/cm2) 
3.56 3.67 3.61 3.62 3.59 3.53 3.65 3.68 0.06 0.072 0.892 0.450 

  Albumen height (mm) 7.89 7.92 7.96 7.86 7.98 7.82 7.94 7.90 0.07 0.771 0.152 0.412 
  Haugh unit 89.1 89.3 89.5 88.9 89.56 88.67 89.51 89.08 0.40 0.649 0.107 0.572 



 

 
 

Table 3.4 contd. Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on egg quality in laying hens1. 

Environmental 
Temperature2 

 
Egg quality 

Main effect Interaction effect   P-value  
EconomasE™ Sodium source No EconomasE™ EconomasE™    

Sodium 
source 

EconomasE™ 
x Sodium 

source No Yes NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
SEM EconomasE™ 

TN2 (23.8 ℃) Average egg weight (g) 60.0 60.4 60.0 60.4 59.8 60.2 60.1 60.6 0.41 0.375 0.348 0.905 
44 - 48 wk Eggshell weight (%) 10.07 10.06 10.08 10.04 10.08 10.06 10.08 10.03 0.07 0.867 0.642 0.876 
  Eggshell breaking 

strength (kg/cm2) 3.69 3.76 3.74 3.70 3.69 3.70 3.79 3.70 0.05 0.291 0.449 0.321 

  Albumen height (mm) 7.92 8.14 8.07 7.99 7.99 7.84 8.15 8.13 0.09 0.016 0.350 0.460 
  Haugh unit 89.0 90.1 89.8 89.3 89.4 88.5 90.2 90.1 0.50 0.026 0.314 0.468 
                

ET2 (32.2 ℃) Average egg weight (g) 58.9 59.3 59.0 59.3 58.9 59.0 59.0 59.6 0.41 0.425 0.440 0.507 
49 - 53 wk Eggshell weight (%) 9.55 9.57 9.59 9.52 9.62 9.48 9.48 9.57 0.07 0.820 0.326 0.326 
  Eggshell breaking 

strength (kg/cm2) 3.21 3.29 3.23 3.26 3.16 3.26 3.31 3.27 0.07 0.257 0.655 0.284 

  Albumen height (mm) 7.52 7.63 7.62 7.53 7.65 7.38 7.58 7.68 0.10 0.242 0.372 0.066 
  Haugh unit 86.6 87.3 87.3 86.6 87.5 85.7 87.2 87.5 0.59 0.213 0.219 0.073 
                

REC2 (23.8 ℃) Average egg weight (g) 60.1 60.9 60.5 60.5 59.9 59.9 61.0 60.9 0.46 0.063 0.876 0.640 
54 - 58 wk Eggshell weight (%) 10.07 10.01 10.06 10.02 10.16 9.98 9.97 10.06 0.08 0.492 0.582 0.105 
  Eggshell breaking 

strength (kg/cm2) 3.64 3.63 3.69 3.57 3.72 3.56 3.67 3.58 0.70 0.844 0.099 0.633 

  Albumen height (mm) 7.37 7.46 7.46 7.37 7.47 7.27 7.44 7.48 0.12 0.480 0.497 0.325 
  Haugh unit 85.6 86.0 86.1 85.5 86.4 84.9 85.8 86.2 0.76 0.649 0.466 0.254 

1Hens were subjected to each environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 



 

 
 

Table 3.5 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimen on blood electrolytes in laying hens1. 

Environmental 
Temperature2 

Blood 
electrolytes3 

Main effect Interaction effect 
 

P-value 
EconomasE™ Sodium source No EconomasE™ EconomasE™ 

SD4 EconomasE™ 
Sodium 
source 

EconomasE™ 
x Sodium 

source 
No Yes NaCl NaCl + 

NaHCO3 
NaCl NaCl + 

NaHCO3 
NaCl NaCl + 

NaHCO3 
TN1 (23.8 ℃) HCO3

- 
(mmol/L) 

21.8 21.7 21.2 22.2 21.6x 21.7 20.9 22.6 1.41 0.889 0.131 0.192 

26 – 30 wk Na (mmol/L) 157.5 157.73 157.8 157.4 156.8 158.2x 158.8x 156.7 2.13 0.815 0.679 0.071  
K (mmol/L) 4.83 4.90 5.01 4.73 4.83 4.83 5.18x 4.62x 0.51 0.763 0.215 0.215  
Cl (mmol/L) 113.6 114 114.5 113.1 113.6x 113.5 115.4x 112.7 1.84 0.548 0.090 0.113               

ET1 (32.2 ℃) HCO3
- 

(mmol/L) 
19.5 19.8 19.1 20.2 18.8x 20.2x 19.4x 20.2x 1.36 0.629 0.089 0.629 

33 – 37 wk Na (mmol/L) 151.3 152.8 152.9 151.2 153.3 149.2x 152.5 153.2 2.89 0.210 0.168 0.062  
K (mmol/L) 4.26 4.46 4.30 4.42 4.16x 4.36x 4.43 4.48x 0.38 0.253 0.468 0.650  
Cl (mmol/L) 115.8 117.5 118.8 114.5 119.0 112.6x 118.7 116.3 2.90 0.177 0.002 0.110               

REC1 (23.8 
℃) 

HCO3
- 

(mmol/L) 
23.3 21.5 21.6 23.3 23.7a, x 23.0a 19.5b, x 23.5a 1.99 0.048 0.070 0.015 

38 – 42 wk Na (mmol/L) 152.7 154.2 153.2 153.8 151.8x 153.7x 154.6x 153.8x 3.33 0.313 0.705 0.369  
K (mmol/L) 4.29 4.37 4.66 4.00 4.67x 3.92 4.66x 4.08x 0.33 0.607 <.0001 0.577  
Cl (mmol/L) 114.2 116.3 117.0 113.5 116.0 112.4x 118.0 114.6x 2.21 0.050 0.003 0.921 

a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were subjected to each 
environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3Blood electrolytes: HCO3

- = bicarbonate; Na = Sodium; K = Potassium; Cl = Chloride 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.5 contd. Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimen on blood electrolytes in laying hens1. 

 

3Blood 
electrolytes 

Main effect Interaction effect 
 

P-value 

Environmental 
Temperature2 

EconomasE™ Sodium source No EconomasE™ EconomasE™ 
 

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

SD4 

TN2 (23.8 ℃) HCO3
- (mmol/L) 22.1 20.5 21.6 21.0 22.6x 21.7 20.6x 20.3 4.23 0.370 0.745 0.865 

44 - 48 wk Na (mmol/L) 154.7 155.1 156.2 153.6 155.2x 154.2x 157.2x 153.0x 2.04 0.667 0.012 0.098 
 K (mmol/L) 4.68 4.30 4.67 4.31 4.94x 4.42 4.40x 4.20x 0.53 0.119 0.135 0.493 
 Cl (mmol/L) 116.8 116.4 118.2 115.0 118.3 115.2x 118.0 114.8x 2.07 0.684 0.002 0.970 
 

             

ET2 (32.2 ℃) HCO3
- (mmol/L) 22.3 21.9 20.4 23.8 20.3 24.2x 20.4x 23.4x 1.47 0.575 <.0001 0.509 

49 - 53 wk Na (mmol/L) 152.4 154.3 153.7 153 152.2x 152.7 155.2x 153.4x 1.82 0.031 0.414 0.172 
 K (mmol/L) 4.73 4.94 4.92 4.75 4.72x 4.74x 5.12x 4.76x 0.37 0.224 0.321 0.269 
 Cl (mmol/L) 117 117.7 117.9 116.8 117.4x 116.7 118.3 117.0x 2.64 0.563 0.374 0.794 
              
REC2 (23.8 ℃) HCO3

- (mmol/L) 27.1 25.2 25.4 26.9 24.9 29.2x 25.8x 24.5 4.49 0.332 0.450 0.165 
54 - 58 wk Na (mmol/L) 153.3 153.4 153.0 153.8 154.7ab 152.0bc 151.3c 155.5a 2.33 0.931 0.439 0.002 
 K (mmol/L) 4.90 4.81 4.96 4.75 4.98 4.82x 4.94x 4.68 0.39 0.599 0.228 0.785 

 Cl (mmol/L) 116.0 115.4 116.2 115.2 117.8a 114.2b 114.6b, x 116.2ab 2.22 0.515 0.272 0.011 
a-c Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were subjected to each 
environmental temperature for 5 consecutive weeks for each temperature. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3Blood electrolytes: HCO3

- = bicarbonate; Na = Sodium; K = Potassium; Cl = Chloride 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.6 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimen on blood metabolites in laying hens1. 

Environmental 
Temperature2 

  Main effect Interaction effect   P-value 
Blood 
metabolites3 
  

EconomasE™ Sodium source No EconomasE™ EconomasE™   

No Yes 
NaCl 

NaCl + 
NaHCO3 NaCl 

NaCl + 
NaHCO3 NaCl 

NaCl + 
NaHCO3 

SD4 
EconomasE™ 

Sodium 
source 

EconomasE™ x 
Sodium source 

TN1 (23.8 ℃) Ca (mg/dL) 28.2 25.9 27.4 26.7 27.7x 28.6 27.1x 24.8 2.42 0.043 0.498 0.146 
26 – 30 wk Phos (mg/dL) 6.15 4.85 5.57 5.43 6.10 6.20 5.04x 4.66x 0.94 0.005 0.733 0.560 
 Glucose (mg/dL) 247.7 260.8 244.6 263.9 240.6x 254.8x 248.7 273.0x 9.17 0.005 0.0002 0.224 
 Albumin (g/dL) 1.78 1.65 1.73 1.70 1.83 1.72x 1.62x 1.68 0.13 0.041 0.666 0.138 
  AlkPhos (U/L) 333.3 322.5 344.5 311.3 343.0x 323.6x 346.0y 299.0x 114.2 0.840 0.538 0.797 
  CK (U/L) 1280.1 1217.8 1237.6 1260.3 1223.6x 1336.5 1251.7 1184x 235.9 0.546 0.825 0.383 
  LDH (U/L) 485.1 363.8 392.9 460 342.8ab 627.4a, y 443.0ab, x 284.6b, x 171.6 0.137 0.428 0.011 
              
ET1 (32.2 ℃) Ca (mg/dL) 26.5 27.8 25.9 28.2 24.0 28.9x 28.0x 27.6 5.01 0.556 0.309 0.232 
33 – 37 wk Phos. (mg/dL) 5.91 5.50 5.19 6.22 5.22x 6.60x 5.16x 5.83 2.00 0.643 0.258 0.692 
 Glucose (mg/dL) 227.5 221.9 225.3 224.2 233.7 221.3 216.8 227.0x 20.1 0.514 0.899 0.196 
 Albumin (g/dL) 1.62 1.68 1.64 1.60 1.60 1.64x 1.68 1.68x 0.17 0.412 0.806 0.771 
  AlkPhos (U/L) 546.4 596.5 631.1 511.8 584.5y 508.2x 677.6x 515.4x 232.1 0.646 0.283 0.694 
  CK (U/L) 1206.8 1293.0 1266.0 1233.8 1311.0x 1102.6x 1221.0x 1365.0x 225.3 0.405 0.753 0.099 
  LDH (U/L) 723.6 491.6 568.7 646.6 655.5x 791.7 481.8 501.4x 358.3 0.148 0.618 0.708 
              
REC1 (23.8 ℃) Ca (mg/dL) 27.1 26.2 27.1 26.2 27.5x 26.7x 26.6x 25.7x 2.79 0.467 0.486 0.969 
38 – 42 wk Phos. (mg/dL) 5.16 5.12 5.15 5.12 5.18 5.13x 5.12 5.12 1.03 0.932 0.955 0.955 
 Glucose (mg/dL) 213 217.9 217.7 213.2 213.7 212.3x 221.8x 214.0 10.7 0.297 0.33 0.488 
 Albumin (g/dL) 1.8 1.69 1.76 1.73 1.82 1.78x 1.70x 1.68 0.13 0.072 0.647 0.909 
  AlkPhos (U/L) 371.9 378.6 426.7 323.8 356.2x 387.7x 497.2 260.0x 171.7 0.931 0.194 0.095 
  CK (U/L) 1628.8 1149.3 1530.3 1247.8 1945.7x 1312.0x 1115.0x 1183.7x 510.3 0.049 0.228 0.138 
  LDH (U/L) 840.6 646.3 817.6 669.3 979.2x 701.9x 660.0x 636.7x 361.4 0.256 0.382 0.446 

a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x and y where the number of replicates was 5 and 4, respectively. Hens 
were subjected to each environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3Blood metabolites: Ca = Calcium; Phos = Phosphorus; AlkPhos = Alkaline phosphatase; CK = Creatine kinase; LDH = Lactate dehydrogenase 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.6 contd. Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on blood metabolites in laying hens1. 

Environmental 
Temperature2 

Blood 
metabolites3 

Main effect Interaction effect 
 

P-value 
EconomasE™ Sodium source No EconomasE™ EconomasE™ 

 

No Yes NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
SD4 

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source 

TN2 (23.8 ℃) Ca (mg/dL) 25.5 26.5 25.6 26.4 25.7x 25.3x 25.5x 27.5x 1.65 0.203 0.295 0.118 
44 - 48 wk Phos. (mg/dL) 5.40 5.40 5.46 5.34 5.25 5.54x 5.67 5.13 0.75 0.988 0.704 0.208 
 Glucose (mg/dL) 215.2 216.3 220.4 211.1 219.5 210.8x 221.2x 211.3 15.5 0.868 0.179 0.931  

Albumin (g/dL) 1.78 1.74 1.76 1.76 1.75 1.80x 1.76x 1.72 0.10 0.422 0.941 0.309  
AlkPhos (U/L) 260.0 337.5 341.4 256.1 284.4x 235.6x 398.3 276.6x 134.5 0.206 0.166 0.544  
CK (U/L) 2296.9 1900.8 2230.8 1966.9 2663.2x 1930.6x 1798.4x 2003.2x 685.7 0.215 0.402 0.146  
LDH (U/L) 1093.7 931.6 1105.6 919.8 1320.5x 867.0x 890.7x 972.5x 354.3 0.337 0.273 0.122 

              
ET2 (32.2 ℃) Ca (mg/dL) 24.0 24.0 23.4 24.6 23.7x 24.2x 23.0y 25.0x 3.25 0.973 0.441 0.616 
49 - 53 wk Phos. (mg/dL) 4.05 4.98 4.51 4.51 4.30x 3.80x 4.73y 5.23y 0.84 0.036 1.000 0.230 
 Glucose (mg/dL) 232.2 225.6 227.5 230.3 224.8x 239.5y 230.3y 221.0x 11.7 0.260 0.631 0.049  

Albumin (g/dL) 1.75 1.74 1.81 1.68 1.78 1.72 1.84x 1.64x 0.23 0.921 0.194 0.509  
AlkPhos (U/L) 320.5 464 324.4 460.1 272.2x 368.8x 376.7 551.4x 158.2 0.054 0.067 0.580  
CK (U/L) 865.5 1028.1 996.9 896.7 848.4x 882.6x 1145.4x 910.8x 373.9 0.345 0.558 0.433  
LDH (U/L) 474.4 455.0 496.9 432.5 526.7x 422.2x 467.2x 442.7x 217.7 0.844 0.517 0.687 

              
REC2 (23.8 ℃) Ca (mg/dL) 28.6 28.2 29.2 27.6 28.3a, x 28.9a, x 30.2a, x 26.3b, x 20.0 0.643 0.041 0.008 
54 - 58 wk Phos. (mg/dL) 6.14 6.38 6.52 6.00 5.88ab 6.40ab 7.16a, x 5.60b 1.15 0.625 0.290 0.043 
 Glucose (mg/dL) 237.8 235.5 232.1 241.2 231.8x 243.8x 232.3 238.6x 6.07 0.392 0.003 0.296  

Albumin (g/dL) 1.76 1.76 1.79 1.73 1.77ab 1.75ab 1.82a 1.70b, x 0.09 1.000 0.095 0.204  
AlkPhos (U/L) 294.2 259.6 250.9 302.8 290.7 297.7 211.2x 308.0 98.5 0.412 0.223 0.289  
CK (U/L) 656.9 846.7 886.3 617.3 741.3ab 572.4b, x 1031.2a 662.2ab, x 300.6 0.158 0.051 0.447  
LDH (U/L) 215.2 263.3 258.0 220.5 229.7x 200.7x 286.4x 240.3x 92.9 0.264 0.380 0.839 

a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x and y where the number of replicates was 5 and 4, respectively. Hens 
were subjected to each environmental temperature for 5 consecutive weeks for each temperature. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3Blood metabolites: Ca = Calcium; Phos = Phosphorus; AlkPhos = Alkaline phosphatase; CK = Creatine kinase; LDH = Lactate dehydrogenase 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.7 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on relative liver weight (%) in laying hens1. 

Environmental 
Temperature2 

Main effect  P-value 

EconomasE™ Sodium source  
EconomasE™ Sodium source  

EconomasE™ x 
Sodium source  No Yes NaCl NaCl + NaHCO3 SEM 

TN1 (23.8 ℃)  
26 – 30 wk 1.78 1.93 1.78 1.93 0.06 0.079 0.113 0.220 

ET1 (32.2 ℃) 
33 – 37 wk 1.84 1.82 1.84 1.82 0.05 0.744 0.744 0.448 

REC1 (23.8 ℃) 
38 – 42 wk 1.85 1.89 1.93 1.82 0.07 0.698 0.318 0.816 

TN2 (23.8 ℃) 
44 - 48 wk 2.23 2.24 2.12 2.35 0.10 0.909 0.122 0.570 

ET2 (32.2 ℃) 
49 - 53 wk 1.84 1.74 1.86 1.73 0.07 0.346 0.213 0.874 

REC2 (23.8 ℃) 
54 - 58 wk 

2.13 2.09 2.12 2.11 0.07  0.684  0.935  0.466  
2Environmental  temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 

 



 

 
 

Table 3.8 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on intestinal morphology in laying hens1. 

Environmental 
Temperature2 

Intestinal 
morphology3 

Main effect Interaction effect  
P-value 

EconomasE™ Sodium source No EconomasE™ EconomasE™ 
SD4 

No Yes NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
EconomasE™ Sodium 

source 
EconomasE™ x 
Sodium source 

TN1 (23.8 ℃) VH 1127.8 1157.0 1132.0 1152.9 1179.2b 1076.5b, x 1084.7b, x 1229.3a, x 104.20 0.531 0.652 0.015 
26 – 30 wk CD 177.3 175.4 175.5 177.1 178.0 176.5x 173.2 177.7 26.15 0.867 0.887 0.787  

VH:CD 6.49 6.72 6.47 6.73 6.88ab, x 6.10b, x 6.07b 7.37a 0.72 0.470 0.408 0.003               

ET1 (32.2 ℃) VH 1126.7 1168.6 1149.3 1146.0 1115.4 1138.1x 1183.3 1153.9 129.6 0.450 0.951 0.636 
33 – 37 wk CD 152.6 156.5 154.1 155.1 154.7x 150.5 153.4 160.0x 25.1 0.716 0.926 0.631  

VH:CD 7.56 7.42 7.29 7.69 7.24x 7.88 7.34x 7.50x 0.8 0.699 0.280 0.511               
REC1 (23.8 ℃) VH 1091.8 1156.6 1099.2 1149.2 1092.8x 1090.7 1105.5 1207.6 106 0.161 0.274 0.255 
38 – 42 wk CD 139.6 136.7 136.9 139.4 136.6 142.7 137.2 136.1x 16.30 0.667 0.714 0.604  

VH:CD 8.04 8.36 8.01 8.39 8.28 7.80 7.74x 8.98 0.99 0.461 0.382 0.056               
TN2 (23.8 ℃) VH 1204.4 1340.4 1259.6 1285.2 1217.4 1191.4 1301.8x 1379.0 215.4 0.149 0.780 0.574 
44 - 48 wk CD 148.8 148.2 148.8 148.3 152.5 145.1x 145.1x 151.4x 14.9 0.931 0.938 0.313  

VH:CD 7.90 8.03 7.97 7.96 8.05 7.75 7.90 8.17 1.81 0.858 0.982 0.705               
ET2 (32.2 ℃) VH 1286.7 1313.4 1302.0 1298.0 1282.1x 1291.2 1321.9 1304.9x 146.2 0.675 0.950 0.837 
49 - 53 wk CD 159.7 170.3 160.9 169.0 151.4x 167.9 170.4 170.1x 19.3 0.216 0.340 0.322  

VH:CD 8.14 7.55 7.96 7.73 8.50x 7.78 7.42x 7.68x 0.78 0.101 0.512 0.170               
REC2 (23.8 ℃) VH 1376.9 1363.5 1386.6 1353.7 1309.5ab, x 1444.2a, x 1463.8a 1263.2b 121.5 0.800 0.535 0.005 
54 - 58 wk CD 181.4 170.6 178.5 173.6 174.5ab 188.4a, x 182.4ab, x 158.8b, x 20.6 0.247 0.596 0.053  

VH:CD 7.83 7.58 7.83 7.57 7.95 7.70 7.72 7.44x 0.87 0.505 0.477 0.971 
a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were subjected to each 
environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3Intestinal morphology: VH = villus height; CD = crypt depth; VH:CD = villus height crypt depth ratio. 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.9 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on keel bone curvature occurrence in laying hens1. 

 
2Curvature 
score (%) 

Main effect Interaction effect P-value 

EconomasE™ Sodium source No EconomasE™ EconomasE™ 

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

TN1 (23.8 ℃) 26 - 30 wk 
0 67 69 83 53 78 56 89 50 

0.552 0.013 0.480 1 28 31 14 44 17 39 11 50 
2 6 0 3 3 6 6 0 0 

ET1 (32.2 ℃) 33 - 37 wk 
0 50 53 53 50 44 56 61 44 

0.559 1.000 0.607 1 3 8 6 6 6 0 6 11 
2 47 39 42 44 50 44 33 44 

TN2 (23.8 ℃) 44 - 48 wk 
0 42 36 39 39 39 47 39 33 

0.488 1.000 0.830 1 48 44 47 45 56 40 39 50 
2 9 19 14 15 6 13 22 17 

ET2 (32.2 ℃) 49 - 53 wk 
0 61 61 53 69 50 72 56 67 

1.000 0.227 0.733 1 0 0 0 0 0 0 0 0 
2 39 39 47 31 50 28 44 33 

REC2 (23.8 ℃) 54 - 58 wk 
0 61 44 64 42 72 50 56 33 

0.238 0.098 0.315 1 39 56 36 58 28 50 44 67 
2 0 0 0 0 0 0 0 0 

1Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
2The severity of the keel bone curvature was assigned a numerical value between zero and two.  



 

 
 

Table 3.9 contd. Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on keel bone fracture occurrence in laying hens1. 

 

2Fracture 
score (%) 

Main effect Interaction effect       

EconomasE™ Sodium source No EconomasE™ EconomasE™ 
EconomasE™ 

Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

TN1 (23.8 ℃) 26 - 30 wk 
0 78 92 89 81 83 72 94 89 

0.189 0.514 1.000  1 22 8 11 19 17 28 6 11 
2 0 0 0 0 0 0 0 0 

ET1 (32.2 ℃) 33 - 37 wk 
0 81 78 78 81 78 83 78 78 

1.000 0.812 0.411 1 3 6 3 6 6 0 0 11 
2 17 17 19 14 17 17 22 11 

TN2 (23.8 ℃) 44 - 48 wk 
0 76 83 86 73 83 67 89 78 

0.740 0.063 0.539 1 9 6 0 15 0 20 0 11 
2 15 11 14 12 17 13 11 11 

ET2 (32.2 ℃) 49 - 53 wk 
0 68 67 69 65 72 63 67 67 

0.564 0.918 1.000 1 23 31 25 29 17 31 33 28 
2 9 3 6 6 11 6 0 6 

REC2 (23.8 ℃) 54 - 58 wk 
0 72 64 69 67 78 67 61 67 

0.182 0.506 0.304 1 14 31 25 19 11 17 39 22 
2 14 6 6 14 11 17 0 11 

1Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
2The severity of the keel bone fracture was assigned a numerical value between zero and two. 



 

 
 

Table 3.10 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on bone breaking strength in laying hens1. 
    Main effect Interaction effect  P-value  

Environmental 
Temperature2 

Bone breaking 
strength (kg/f) 

EconomasE™ Sodium source  No EconomasE™  EconomasE™  

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

SD3 

TN1 (23.8 ℃) Tibia 20.34 20.25 20.20 20.39 20.50x 20.18x 19.90 20.60x 2.57 0.937 0.868 0.656 
26 – 30 wk Femur 20.30 22.06 20.47 21.85 18.86x 21.66x 22.08 22.04x 3.68 0.279 0.404 0.390 
   

            

ET1 (32.2 ℃) Tibia 17.72 18.75 17.33 19.14 16.75 19.62x 19.84x 20.63 4.15 0.559 0.308 0.590 
33 – 37 wk Femur 18.19 20.24 18.30 20.13 16.75 19.62x 19.84 20.63 5.21 0.370 0.423 0.647 
   

            

REC1 (23.8 ℃) Tibia 19.40 17.96 18.16 19.20 16.33 19.10 18.32x 19.18x 3.63 0.366 0.514 0.116 
38 – 42 wk Femur 19.29 18.43 18.39 19.34 20.95a 17.63ab 15.82b, x 21.04a.x 3.65 0.589 0.551 0.014 
   

            

TN2 (23.8 ℃) Tibia 21.03 21.01 21.61 20.43 21.20x 20.87x 22.02 20.00 3.55 0.987 0.439 0.578 
44 - 48 wk Femur 22.20 21.69 20.94 20.95 23.86x 20.54 22.07 21.37 3.68 0.751 0.225 0.409 
   

            

ET2 (32.2 ℃) Tibia 18.61 18.54 18.78 18.37 17.76 19.47x 18.10x 18.98x 3.62 0.964 0.794 0.414 
49 - 53 wk Femur 18.71 20.03 19.01 19.73 18.72 18.70x 19.30x 20.76 3.13 0.349 0.606 0.597 
   

            

REC2 (23.8 ℃) Tibia 20.64 22.25 23.29 19.60 23.20 18.08 23.38x 21.12 3.26 0.240 0.012 0.296 
54 - 58 wk Femur 19.85 23.53 23.48 19.89 22.37 17.33 24.60 22.45 3.69 0.028 0.031 0.363 
a-b Means within environmental temperature lacking a common superscript are different (P < 0.05). 
1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were 
subjected to each environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 3.11 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimens on bone ash in laying hens1. 

1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were subjected to each 
environmental temperature for 5 consecutive weeks for each temperature. 
2Environmental temperature: (Phase 1 and 2) TN = Thermoneutral temperature; ET = Elevated temperature; REC = Recovery temperature. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 

   Main effect Interaction effect       P-value   

Environmental 
Temperature2 

 
EconomasE™ Sodium source  No EconomasE™  EconomasE™  

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source Ash (%) 

No Yes NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
SD3 

TN1 (23.8 ℃) Femur 46.56 46.49 46.06 46.99 46.30x 46.82 45.82 47.16x 2.33 0.945 0.363 0.683 
26 – 30 wk Tibia 48.02 48.80 47.97 48.85 48.74x 47.30x 47.20 50.40 4.27 0.674 0.636 0.220 
                

ET1 (32.2 ℃) Femur 47.14 46.78 46.16 47.76 45.57 48.72x 46.76x 46.80 2.28 0.714 0.119 0.128 
33 – 37 wk Tibia 48.99 51.63 48.93 51.70 47.58 50.40 50.27x 53.00x 2.46 0.022 0.017 0.969 
                

REC1 (23.8 ℃) Femur 51.53 52.60 52.03 52.12 50.95 52.12 51.93 53.26x 2.29 0.282 0.934 0.210 
38 – 42 wk Tibia 58.64 57.54 58.38 57.80 59.45 57.82x 57.30 57.78x 2.72 0.359 0.627 0.376 
                

TN2 (23.8 ℃) Femur 55.09 54.38 54.68 54.80 54.40 55.78x 54.96x 53.82 1.56 0.308 0.862 0.076 
44 - 48 wk Tibia 59.38 60.04 60.36 59.06 59.40 59.37 61.32x 58.76x 1.90 0.429 0.128 0.137 
                

ET2 (32.2 ℃) Femur 54.05 53.70 53.20 54.56 53.22 54.88 53.18x 54.22 1.82 0.649 0.092 0.684 
49 - 53 wk Tibia 56.29 57.43 56.57 57.15 55.90 56.69 57.25 57.61 1.99 0.176 0.484 0.792 
                

REC2 (23.8 ℃) Femur 57.14 57.17 57.96 56.35 58.26 56.03 57.66 56.56 2.28 0.979 0.099 0.511 
54 - 58 wk Tibia 58.03 60.30 59.38 58.94 58.47 57.58 60.29 60.31 1.61 0.002 0.519 0.495 



 

 
 

Table 3.12 Effect of dietary supplementation of EconomasE™ (0 or 0.2 g/kg) and two inorganic sodium sources (NaCl or NaCl+ 
NaHCO3) during different environmental temperature regimen on the relative mRNA expression of heat shock protein 70 and 90 in 
laying hens1. 

  
Main effect  Interaction effect 

  
P-value 

 

Environmental 
Temperature2 

Heat 
shock 

proteins3 

EconomasE™ Sodium source No EconomasE™ EconomasE™ 
 

EconomasE™ 
Sodium 
source 

EconomasE™ x 
Sodium source No Yes NaCl 

NaCl + 
NaHCO3 

NaCl 
NaCl + 

NaHCO3 
NaCl 

NaCl + 
NaHCO3 

SD4 

TN1 (23.8 ℃) HSP 70 0.85 0.93 0.90 0.88 0.94x 0.76x 0.85 1.02 0.46 0.680 0.974 0.394 
26 – 30 wk HSP 90 1.54 0.80 0.92 1.42 1.06x 2.02 0.78x 0.82x 1.27 0.203 0.384 0.422               

ET1 (32.2 ℃) HSP 70 1.48 1.03 1.28 1.22 1.32 1.64x 1.25 0.80x 0.69 0.140 0.832 0.205 
33 – 37 wk HSP 90 1.34 1.06 1.04 1.36 1.08x 1.60x 1.00x 1.12x 0.58 0.284 0.223 0.440               

REC1 (23.8 ℃) HSP 70 1.13 1.19 1.05 1.27 1.07 1.18 1.03 1.35 0.39 0.683 0.193 0.542 
38 – 42 wk HSP 90 1.04 0.85 0.82 1.08 1.03 1.05 0.60 1.10 0.40 0.265 0.138 0.164 

1Mean values represent means of 6 replicate cages per treatment except for mean values with superscript x where the number of replicates was 5. Hens were 
subjected to each environmental temperature for 5 consecutive weeks. 
2Environmental temperature: (Phase 1) TN1 = Thermoneutral temperature; ET1 = Elevated temperature; REC1 = Recovery temperature 
3Phase 2 samples were not analyzed for HSP 70 and 90 to minimize the cost associated with the RT-PCR analysis of those samples. 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 

  



 

 
 

CHAPTER 4.  

THE EFFECT OF DEXAMETHASONE AND COCCIDIA VACCINE CHALLENGE 

WITH THE SUPPLEMENTATION OF A FEED ADDITIVE ON GROWTH 

PERFORMANCE, NUTRIENT DIGESTIBILITIES AND UTILIZATION, 

INTESTINAL BARRIER INTEGRITY, AND IMMUNE RESPONSE IN BROILER 

CHICKENS 

Abstract 

This study was conducted to evaluate the effect of stress and intestinal parasitic conditions 

typical of poultry production, on growth performance, nutrient digestibilities and 

utilization, intestinal barrier integrity, and immune response with Natustat™ 

supplementation. At day-of-hatch, birds were placed on two standard broiler diets 

supplemented with or without Natustat™ until d 28.  On d 14, within each diet group, 448 

chicks were randomly assigned to four challenge type: no-challenge (Control), 

dexamethasone (DEX), coccidia vaccine (Cocci), and a combination of DEX and Cocci 

(CocciDex) challenge. The DEX and CocciDex group received DEX in the diet at 

1.5mg/kg of diet for 7 days, while the Cocci and CocciDex groups were orally gavaged 

with coccidia vaccine 20 times the recommended dosage. This experiment lasted until d 

28, and performance data, blood, ileal digesta, excreta samples, jejunal segment, and 

mucosal samples were collected to determine growth performance, nutrient digestibilities 

and utilization, immune response, and intestinal permeability markers on d 21 and 28. 

Coccidia vaccine challenge did not affect BWG, FI, and feed efficiency (FE) on d 21 and 

28. In contrast, DEX and CocciDex challenge reduced  (P <.0001) BWG, FI, and FE 

compared to the Control and Cocci groups on d 21 and 28 except for FE that increased 

(P < .0001) with DEX and CocciDex-challenge (d 28). CocciDex decreased (P < 0.05) the 
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apparent ileal digestibility (AID) of dry matter (DM) and energy (EN), and digestible 

energy (DE), and total tract utilization (TTR) of DM, N, and EN, and the AME and AMEn, 

compared to the other challenge types on d 21. Both the DEX and CocciDex-challenge 

reduced (P < 0.05) AID of calcium (Ca) and phosphorus (P) on d 21 however, on d 28 the 

DEX-challenge increased (P < 0.05) AID of Ca. Cocci challenge reduced (P < 0.05) the 

TTR of DM, EN, AME, and AMEn (d 21), and N, AME, and AMEn (d 28) compared to 

the Control group. No significant differences were observed with Natustat™ 

supplementation on the digestibilities (d 21 and 28) and utilization (d 21) coefficients 

calculated. On d 28, TTR of EN, and the AME and AMEn increased (P < 0.05) in birds of 

the Control group fed diets without Natustat™. The FITC-d concentration in the serum 

increased (P <.0001) with CocciDex and DEX challenge on d 21 compared to the other 

groups. Cocci challenge increased (P < 0.05) the mRNA expression of TLR4, IL-1β, IL- 6, 

IFN-γ (d 21), and decreased (P < 0.05) SGLT1, NaPi-IIb, and IgA (d21), and  reduced 

(P < 0.05) TLR4, NF-κB, IL-10 and NaPi-IIb (d 28). The DEX challenge reduced 

(P < 0.05) the expression of TLR4, IL-1β, IL-6, IFN-γ, and increased (P < 0.05) SGLT1 

and IgA in the jejunum. In conclusion, DEX and CocciDex were able to induce stress and 

reduce performance, digestibility, intestinal permeability, and immune response. The 

coccidia vaccine challenge did not affect performance, and intestinal permeability 

however, TTR was impaired, and immune response was initiated. Finally, Natustat™ 

supplementation did not influence production parameters, intestinal permeability, or 

morphology however, increased the jejunal mRNA expression of IL-6 and MUC 2 and 

decreased IL-10.  
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4.1 INTRODUCTION 

Gut health challenges are becoming increasingly important in the animal food 

industry. The current understanding of the gastrointestinal tract (GIT), suggests it 

contributes to health in many ways. Gut health encompasses the healthy GIT which allows 

effective digestion and absorption, a stable intestinal microbiota, and a functioning immune 

status (Bischoff, 2011). Hence, the relevance of gut health in animal production highlights 

the need to maximize food processing and nutrient utilization, improve production 

performance, and enhance vitality. At the forefront of potential causes of impaired 

intestinal health is the prevalence of coccidiosis in poultry. Essentially, coccidiosis is a 

major recurring intestinal parasitic problem in poultry production caused by intracellular 

protozoan parasites of the Eimeria species which, invade and reside in the lining of the 

intestine or ceca (Lillehoj and Lillehoj, 2000; Laurent et al., 2001). These parasites form 

environmentally resistant oocysts which undergo a fecal-oral transmission between hosts. 

Depending on the species, Eimeria undergoes an endogenous development at different 

locations in the intestine and ceca, with varying degrees of pathogenicity (Rose, 1987; 

Lillehoj and Trout, 1993; Williams, 2005). Ultimately, this results in hemorrhagic enteritis 

with severe erosion of the mucosal membranes, loss of gut absorptive capacity, 

inflammation, and death (Lillehoj and Trout, 1993; Williams, 2005).  

In response to coccidia infection, the host initiates a complex protective mechanism 

to maintain the integrity of the gut barrier. Both the innate and adaptive arms of the immune 

system are involved. Protection via the activation of innate immune receptors in response 

to protozoan parasite infection has been observed (Swaggerty et al., 2011; Tan et al., 2014). 

To activate the innate immune system, certain sensor cells detect pathogen-associated 
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molecular patterns (PAMPs) associated with conserved microbial patterns and endogenous 

danger signals via the pattern recognition receptors (PRRs) (Keestra and van Putten, 2008; 

Temperley et al., 2008). Toll-like receptors (TLRs) are types of PRRs that serve to amplify 

the immune response via the MyD88-dependent and TRIF-dependent pathways to initiate 

a signaling pathway that leads to the activation of the transcription factor NF-κB 

(Juul- Madsen et al., 2008; Zhou et al., 2013). The NF-κB acts primarily to induce the 

expression of proinflammatory mediators including tumor necrosis factor (TNF-α), 

interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and type I interferons (IFNs) (Barton and 

Medzhitov, 2002; Temperley et al., 2008; Zhou et al., 2013). In an in-vitro study, 

expression of ChTLR4 and MyD88 were increased following a live Eimeria tenella 

sporozoites stimulation (Zhou et al., 2013). Similarly, Tan et al. (2014) reported an increase 

in the expression of ChTLR4 with coccidia challenge in broilers. Since Eimeria sp actively 

targets the gut, the GALT act as the front line of defense.  

Both the non-specific (antimicrobials, gastric secretions, mucus production by goblet cells, 

and activating phagocytosis by macrophages and dendritic cells), and specific 

(T- lymphocytes and, to a lesser extent, antibodies from B- lymphocytes) protective 

mechanisms are activated, to defend against the intestinal pathogen (Giambrone et al., 

1980; Lillehoj and Trout, 1993; Lillehoj and Lillehoj, 2000; Laurent et al., 2001; Dalloul 

and Lillehoj 2006; Tan et al., 2014). This often results in the activation of T lymphocytes 

and the expression of their corresponding cytokines, and the activation of IgA precursor B 

cells in GALT. The PAMPs of the parasite are recognized by TLR-mediated lamina propria 

macrophages, which activate the pathways that lead to the signaling of the Th1 cells and 

the subsequent release of the cytokines (Laurent et al., 2001; Dalloul and Lillehoj, 2005). 
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Key support for this is the proven involvement of IFN-γ during coccidia infection (Lillehoj 

and Trout, 1993; Lillehoj and Lillehoj, 2000; Yun et al., 2000; Laurent et al., 2001). 

Moreover, the activation of TLR4 can directly increase paracellular permeability 

(Camillerri et al., 2012). As such, a disrupted barrier function comprises of alterations in 

epithelial tight junction protein (TJ) and mucin gene expression. Following coccidia 

infection, there is evidence of intestinal epithelial sloughing and villus tip damage as seen 

by the reduced villus height, crypt dilation, and goblet cell depletion (Tan et al., 2014; 

Dersjant-Li et al., 2016). 

Indeed, the control and eradication of intestinal infections are some of the 

challenges faced by livestock producers worldwide. Successful commercial poultry 

production relies heavily on effective pathogen control, among other things. Vaccinating 

d-old birds with a low dose of live oocyst of important Eimeria sp is a common practice in 

the poultry industry (Chapman et al., 2005). This often results in a low-level infection with 

prospects that it confers protection on the birds against future coccidiosis occurrence. 

Accompanying this procedure is a decrease in some performance parameters – BWG and 

feed efficiency, impaired nutrient digestion and absorption, which are undesirable for 

efficient broiler production (Lee et al., 2011; Chapman, 2014). Similarly, reports also show 

that the birds have an increased susceptibility to secondary infections resulting in diseases 

such as necrotic enteritis (Kogut et al., 1998; Chapman et al., 2002; Williams, 2005; 

Chapman, 2014). This is because it requires at least 7 to 10 d, following vaccination, for 

the stimulation of the acquired immune response. 

Consequently, researchers capitalize on this and other pathophysiological effects 

that arise from coccidia challenge to understand and propose actions to counteract the effect 
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of coccidiosis in birds. Inducing mild coccidia challenge via oral gavage using a vaccine 

with live oocyst at doses more than the recommended dosage by the manufacturer 

(Adedokun et al., 2012; Adedokun et al., 2016; Adedokun and Adeola, 2017), live oocyst 

of specific Eimeria sp (Isobe and Lillehoj, 1993; Laurent et al. 2001; Bortoluzzi et al., 

2019), or sporulated oocyst of a combination of several Eimeria sp (Lee et al., 2011; 

Amerah and Ravindran, 2015) has been used to induce enteric diseases. To further 

understand the dynamics of an additional stressor during a coccidia challenge, the known 

immunosuppressant dexamethasone (DEX) was added to the diet. Corticosteroids are 

useful in the study of various parasitic diseases since they suppress the host's immune 

responses and thus modify the course of a disease (Nilo, 1970; Rose, 1970; Isobe and 

Lillehoj, 1993). By acting on glucocorticoid receptors, DEX mimics the effects of 

corticosterone as part of the feedback mechanism that turns the immune response 

(inflammation) down, impairing the ability to cope with stress. In chickens, an increase in 

oocyst production, susceptibility to Eimeria infections, prolonged patent period (Nilo, 

1970; Rose, 1970; Isobe and Lillehoj, 1993), and enhanced disease susceptibility as a result 

of reduced T- cell proliferation, IL-2, and IFN-γ (Isobe and Lillehoj, 1993) have been 

observed. 

In addition to vaccination, prophylactic control of coccidiosis using anticoccidial 

drugs has been used to maintain or restore gut-related infections. However, the increase in 

anticoccidial resistance has raised concerns about the need for new alternatives for the 

control of coccidia infections. New strategies have been embraced in recent years to induce 

potent protective immune responses in poultry (Allen et al., 1998; Yang et al., 2009). These 

strategies consider that any disturbance on the balance of the microbiome and the mucosal 
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immune system will lead to impairment of the GIT barrier, and subsequently an increased 

risk to gut health and development of intestinal infection. There are various chemicals and 

biologic substances considered immunomodulators in poultry; of interest are those with 

known influence on the intestinal integrity and immune system. Prebiotics, probiotics, 

synbiotics, essential oils, and plant extracts are considered alternative products to 

antibiotics used to improve chicken intestine health and growth performance in the poultry 

industry. Specifically, mannan oligosaccharide (MOS), a type of commercial prebiotic, has 

been reported to prevent gram-negative pathogen infection by competitive exclusion in 

chicken GIT (Baurhoo et al., 2007; Yang et al., 2009). The benefits of the yeast-derived 

MOS as natural feed additives in livestock and poultry on performance (Sims et al., 2004; 

Reisinger et al., 2012; Fowler et al., 2015) and gastrointestinal health (Gomez-Verduzco et 

al., 2009; Munyaka et al., 2012; Alizadeh et al., 2016), have been well documented. Others 

have suggested that probiotics may enhance host defenses and improve vaccine response 

against enteric parasites (Dalloul et al., 2003; Farnell et al., 2003; Koenen et al., 2004). The 

beneficial effects of Natustat™ (Alltech, Inc., Nicholasville, KY), a natural plant-derived 

proprietary product composed of at least 1 yeast-derived MOS plus organic mineral 

nutrients and plant extracts have been reported. Improved body weight gain, feed 

conversion ratio, reduced oocyst shedding in Eimeria challenged broilers (Duffy et al, 

2005a), and improved performance, a reduction in intestinal lesion severity in Cochlosoma 

anatis and Eimeria challenged turkeys (Duffy et al., 2005b) fed diets supplemented with 

Natustat™ has been observed. 

Thus, this study hypothesized that Natustat™ supplementation will ameliorate the 

effect of DEX, coccidia vaccine challenge, and their combination in broiler chickens 7- 
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and 14- days post-challenge. The objective of the present study was to outline the metabolic 

failings from a well-established enteric broiler coccidia vaccine and DEX challenge model 

with or without Natustat™ supplementation. The analysis adopted a multifaceted approach 

that considered the effect of the challenge on performance, ileal nutrient and energy 

digestibility, intestinal morphology, gut permeability, and immune response. Furthermore, 

to understand how these stress factors alter intestinal inflammation-associated 

permeability, fluorescein isothiocyanate (FITC-d) a 3 – 5 kDa, a marker used to measure 

tight junction permeability in enteric inflammation models was evaluated. 

4.2 MATERIALS AND METHODS 

Experimental procedures followed the approved protocols of the Animal Care and 

Use Committee of the University of Kentucky. 

4.2.1 Bird husbandry and experimental diets 

The experiment used 500 day-old male by-product breeder chicks obtained from 

Cobb Monticello, KY. For the first 7 days, the chicks were housed in electrically heated 

battery cages with wire floors in an environmentally controlled room. Room temperature 

was maintained at 37 ℃ for the first week and gradually decreased to 27 ℃ by the end of 

the experiment. Birds were reared up to 28 d post-hatch and fed a corn-soybean meal-based 

starter (d 0-14) and grower (14-28) diets, that met the National Research Council (NRC, 

1994) energy and nutrient requirements. The ingredient composition and analyzed nutrient 

and energy contents of the diets are shown in Table 4.1. Included in the diets was titanium 

dioxide (0.5%) as an inert marker. Chicks consumed feed and water ad libitum during the 

entire time of the experiment. At the start of the experiment, all the chicks were tagged at 

the wing, weighed individually, and randomly assigned to two dietary treatments - (I) a 
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basal diet not supplemented with Natustat™ or (II) a basal diet supplemented with 1g/kg 

of Natustat™ (Alltech, Inc., Nicholasville, KY). The birds were on the two-dietary 

treatments from d 0 – 28.  

On d 14, birds were weighed individually and randomized to treatments with 

similar weights between cages and across treatments. Four hundred and forty-eight chicks 

were used in this experiment and were randomly assigned to eight treatments with seven 

replicate cages per treatment and eight birds per cage in a 2 x 4 factorial arrangement. 

Using the Experimental Animal Allotment Program by Kim and Lindemann (2007), in a 

completely randomized design, the birds within each dietary treatments mentioned above 

were assigned to four challenge types; no-challenge (Control), dexamethasone challenge 

(DEX), coccidia vaccine challenge (Cocci), and a combination of dexamethasone and 

coccidia vaccine challenge (CocciDex). To minimize cross-contamination, treatments were 

randomized to battery cages in different sections of the room, with the Control and DEX 

group in the front section of the room and Cocci and CocciDex group in the rear section of 

the room. Moreover, daily monitoring and care of the birds started with non-challenged 

birds followed by the challenge birds. Dexamethasone was supplemented to the basal diet 

at 1.5 mg/kg of diet and fed to treatment groups DEX and CocciDex. Diet containing DEX 

was fed for 7 consecutive days. Furthermore, Coccivac-B-52 a live oocyst vaccine 

containing strains of E. acervulina, E. mivati, E. maxima, and E. tenella (Coccivac®-B- 52; 

Merck Animal Health), was used as an immune stimulus. According to the manufacturer’s 

recommendation, one dose of the coccidia vaccine is administered to day-old broiler 

chicks. Day-old chicks are approximately 45 g in weight. To induce an immune response 

at d 14, accounting for the weight of the birds (at d 14; an average of 450 g), 20 times the 
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recommended dosage for day-old chicks were used to achieve the equivalent of ~2X of 

what is recommended for 45 g day-old chick. Birds in the Cocci and CocciDex groups 

were orally gavaged with 0.6 mL solution containing Coccivac-B-52 diluted in nanopure 

water. Birds in the unchallenged group received the same volume of nanopure water via 

oral gavage. On d 21, following sampling, birds on the DEX diet were switched to a 

standard grower diet with or without Natustat™ supplementation for an additional 7 days 

(until d 28) (Figure 4.1). 

4.2.2 Sampling 

Bodyweight (BW) and feed intake (FI) were monitored pre- (d 0 to 14), during 

(d 14 -21), and post (d 21 – 28) challenge periods for calculation of performance. Average 

FI and BW gain were adjusted for mortality. Similarly, tissue samples were collected on 

d 21 and d 28 to determine the effect of the treatments during and post-challenge periods. 

On d 21, all the birds were weighed and 4 (2 heaviest and 2 lightest) were randomly selected 

from each cage and euthanized for sample collection. The remaining birds were raised for 

an additional seven days. Out of the 4 birds selected for sampling, one bird was returned 

to the cage for FITC-d administration and blood collection. Subsequently, the birds were 

euthanized by CO2 asphyxiation. A blood sample was drawn from the jugular vein into 

EDTA tubes, spun down at 1200 x g for 10 mins at 4 ℃ for plasma. Plasma samples were 

stored at -80 ℃ for further analysis. Liver and spleen samples were excised, cleaned and 

the weights were recorded. The determined organ weight was expressed relative to the 

bird’s final body weight.  

Five centimeters of the mid-jejunum was taken for mucosa gene expression 

determination. The jejunal sections were cleaned by flushing with nanopore water, sliced 
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open longitudinally, and the mucosa layer was scraped into a microtube containing 1 mL 

of Trizol (Invitrogen, Grand Island, NY, USA), snap-frozen in liquid nitrogen, and stored 

at – 80 ℃ for gene expression of immunity and inflammation-related genes, cytokines, and 

tight junction proteins. Additional jejunal tissue was collected to determine intestinal 

morphology. Ileal digesta was collected from the distal two-thirds of the ileum The 

contents of the posterior ileum were collected by gently flushing with nanopore water into 

labeled plastic containers and stored at – 20 ℃ until freeze-dried. Ileal digesta within a 

cage was pooled, lyophilized, ground using a coffee grinder, and stored in corresponding 

labeled bags. Excreta samples were collected from each cage on days 20 and 21, and 27 

and 28 stored at –20 °C, and subsequently oven-dried at 55 °C for six days. Diets and the 

dried excreta samples were ground through a 0.5 mm screen using a Wiley Mill laboratory 

Standard (Model No. 3, Arthur H. Thomas Co., Philadelphia, PA, USA) and stored in 

airtight plastic bags. Dried ileal digesta, excreta, and diet samples were stored until they 

were analyzed for dry matter (DM), gross energy (GE), nitrogen (N), calcium (Ca), and 

Phosphorus (P). 

4.2.3 Chemical analyses 

Ground excreta, ileal digesta, and diet samples were thoroughly mixed, and subset 

samples were analyzed in duplicate. Dry matter content in the excreta, ileal digesta, and 

diets was determined by oven-drying at 105 °C for 24 h (AOAC International 2006; method 

934.01). Gross energy of excreta, ileal digesta, and diet samples were determined using a 

bomb calorimeter (Parr 6200 calorimeter, Parr Instruments Co., Moline, IL, USA) which 

was standardized with benzoic acid. Titanium (Ti) and N, Ca, and P content in the excreta, 

ileal digesta, and diets were determined at the Agricultural Experiment Station Chemical 
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Laboratories, University of Missouri-Columbia (Columbia, MO). The samples were 

digested using concentrated sulfuric acid and processed as described by Myers et al. (2004) 

after which Ti concentration was determined by flame atomic absorption spectroscopy. 

Nitrogen content was determined by the combustion method using a LECO Trumac 

Nitrogen Analyzer (LECO, St. Joseph, MI; AOAC International, 2000; method 990.03). 

The samples were wet acid digested with nitric and perchloric acid mixture (AOAC 

International, 2005; method 990.08), and concentrations of Ca and P were determined at 

specific wavelengths for each element (Ca, 393.3 nm; P, 185.9 nm) by inductively coupled 

plasma-optical emission spectroscopy using a Thermo Jarrell Ash IRIS instrument 

(Thermo Jarrell Ash Corporation, Franklin, MA). The instrument was calibrated against 

standards (Junsei Chemical Co., Ltd., Tokyo, Japan) of known concentration. Apparent 

ileal digestibility (AID) and total tract nutrient utilization (TTR) of DM, N, energy (EN), 

Ca, and P were calculated using the following equation:  

𝐴𝐼𝐷 𝑜𝑟 𝑇𝑇𝑅, % = ቂ1 − ቀ
்௜భ

்௜బ
 ቁ × ቀ

௑బ

௑భ
 ቁቃ × 100   -------------Equation 1 (Kiarie et al., 2014) 

Where TiI represents the titanium concentration in the diet and Tio represents the titanium 

concentration in the ileal (AID), or excreta (TTR) samples (%); and XI represents the 

concentration of nitrogen or energy in the diet and XO represents are the concentration of 

nitrogen or energy in the ileal or excreta samples, respectively, (%). 

Ileal digestible energy (DE) and apparent metabolizable energy (AME) were calculated 

using the following equation. 

DE or AME, kcal/kg = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑁 (%) ×  𝐺𝐸 𝑜𝑓 𝑑𝑖𝑒𝑡 (𝑘𝑐𝑎𝑙/𝑘𝑔)  

Where calculated EN is derived from Eqn. 1 for ileal or excreta samples, and gross energy 

(GE) of diet is determined by bomb calorimeter.  
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Nitrogen-corrected AME (AMEn) was determined by correcting for N retention by a factor 

of 8.22 kcal/g of N retained in the body as described by Hill and Anderson (1958). 

Relative organ weight, % =
𝑂𝑟𝑔𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝐹𝑖𝑛𝑎𝑙 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) 
 × 100 -------------Equation 3  

4.2.4 Jejunal morphology analysis 

On d 21 and 28, tissue samples of the mid-jejunum were collected from one bird 

per cage and flushed with nanopure water to remove the contents. In brief, the gut segments 

were fixed in 10% neutral buffered formalin (Sigma Chemical Co., St Louis, MO, USA). 

Subsequently, tissue sections (5 μm) were cut, dehydrated, cleared and embedded in 

paraffin (Polyfin paraffin, Sigma Polysciences, St. Louis, MO), and stained with 

hematoxylin and eosin. On each slide, villus height, width, and crypt depth were measured 

using a Nikon ECLIPSE 80i light microscope (Eclipse E600, Nikon Corp., Tokyo, Japan) 

equipped with computer-assisted imaging software (Nikon’s NIS Elements Basic Research 

Microscope Imaging morphometric system), and a camera (XC77E, Sony Corp., Tokyo, 

Japan). Approximately ten intact villi were randomly selected per slide and measured under 

a 4X magnification. Villus height was measured from the tip of the villus to the villus-crypt 

junction, whereas crypt depth was defined as the length between the crypt opening and 

base. Villus width was measured at the basal (crypt-villus junction) and apical ends (Iji et 

al., 2001). An average value was calculated for each section measured and the villus height: 

crypt depth ratio was calculated. 

4.2.5 Administration and determination of FITC-d 

Mucosal barrier dysfunction was determined by measuring the appearance of a 

marker - FITC-d MW 3–5 KDa (Sigma Aldrich Co., St. Louis, MO, USA) in the blood. 
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All administration and detection procedures of FITC-d was done as described by Kuttappan 

et al. (2015); Vicuna et al. (2015); Baxter et al. (2017); and Duff et al. (2019). Briefly, on 

d 21 and 28, FITC-d was prepared at 4.17mg/mL of the mean weight of birds in the pen 

and orally gavaged 0.6 ml of the solution. Two hours post-gavage, birds were euthanized 

via CO2 asphyxiation, and blood samples were collected from the jugular vein to quantify 

levels of FITC-d. To determine FITC-d, the blood was kept at room temperature for 2 h to 

allow clotting and centrifuged at 1000×g for 15 min to separate the serum. The serum 

samples were then diluted in phosphate buffer saline at 1:5 and readings were performed 

at a gain 70. A non-FITC-d serum was used as blank and FITC-d concentrations were 

calculated using the standard curve adapted for each plate. Fluorescence was measured 

spectrophotometrically at 485 nm excitation and 528 nm emission wavelength (Synergy 

HT, multimode microplate reader, BioTek Instruments, Inc., VT, USA). 

4.2.6 Jejunal gene expression 

Two-step quantitative real-time PCR (qRT-PCR) was used to determine the 

expression levels of selected genes in the jejunum. Jejunal mucosa samples collected on d 

21 and 28 were analyzed for mucosal immune-related genes – mucin-2 and IgA; 

inflammation-related genes – TLR4, NF-κB, IL-1β, IL-6, IFN-γ, and IL-10; tight junction 

protein – occludin; and nutrient transporters – SGLT-1 and NaPi-IIb. Jejunal mucosa 

samples suspended in 1 mL of Trizol® were homogenized using a power homogenizer 

(Omni tissue homogenizer TH) with 5 mm plastic disposable probes (Omni International, 

GA, USA) at room temperature before RNA isolation. Subsequently, total RNA was 

extracted using a TRIzol/chloroform/isopropanol method followed by the removal of 

supernatants. The RNA pellet was then resuspended in nuclease-free H2O, and the 
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concentration and purity of the extracted RNA were determined using a NanoDrop One 

(Thermo Fisher scientific™, Wilmington, DE, USA) spectrophotometer at an optical 

density of 260 and 280 nm. Total RNA was quantified at 260/280nm using the Acclaro™ 

Sample Intelligence technology built into the NanoDrop One instruments ND-1000 

spectrophotometer (Thermo Fisher scientific™, Wilmington, DE, USA) and stored at −80 

℃. Total RNA (1μg) from each sample was reverse transcribed into cDNA in a 20 μL RT 

reaction using Script cDNA supermix (Quanta Biosciences, Gaithersburg, MD) according 

to the manufacturer’s protocol in a Veriti Dx Thermal cycler (Applied Biosystems, Foster 

City, CA). The RNA was incubated for 5 min at 25 ℃, followed by 30 min extension at 

42 ℃. The reaction was stopped at 80 ℃ for 5 min and then held at 4 ℃ until removal 

from the machine. Real-time PCR detection of the cDNA was conducted using the SYBR 

Green assay. The primers used for real-time PCR are listed in Table 4.2. The cDNA was 

diluted to 1:20 with nuclease-free water before being used for real-time PCR. 

Amplification was carried out in a total volume of 12.5 μL containing, 1μL of cDNA, 0.375 

μL of each forward and reverse primer, and 6.25 μL SYBR green master mix (Bio-Rad 

Laboratories, Hercules, CA), and 4.5 μL of RNase free water. Each sample was tested in 

duplicate. PCR plate contained target genes and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) an endogenous housekeeping control and a no-template negative 

control containing water instead of cDNA. PCR was performed using the Bio-Rad CFX-

96 real-time PCR system (Bio-Rad, Hercules, CA), with the following cycle profile: an 

initial denaturation step at 95 ℃ for 5 min, followed by 95 ℃ for 15 s and then 60 ℃ for 

1min ran on a repeat for 40 cycles. The relative levels of mRNA expression were calculated 
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using the 2-∆∆CT method after normalization against the reference gene (Shini and Kaiser, 

2009). The average value of the control group was used as the calibrator. 

4.2.7 Statistical analysis 

Data were analyzed using a two-way ANOVA to determine differences between 

the main effects of the 2 dietary levels, 4 challenge measures, and their interaction using 

the general linear model procedure of SAS 9.4 software (SAS Institute Inc., Cary, NC). 

For performance and nutrient digestibility data, cage means were considered as the 

experimental unit. For the remaining analysis, a bird constituted the experimental unit. 

Differences were separated using Tukey multiple comparison test and a probability value 

of less than 0.05 was defined as statistically significant.  

4.3 RESULTS 

4.3.1 Growth performance 

To understand the dynamics between birds fed the diet supplemented with or 

without Natustat™ and the challenge type (Control, Cocci, DEX, and CocciDex), we 

evaluated the growth performance of broilers from d 0 -14 (pre-challenge), d 14 -21 

(during-challenge), and d 21 -28 (post-challenge). These data are presented in Table 4.3. 

During the pre-challenge period, the supplementation of Natustat™ in the diet did not 

affect the BWG, FI, and FE. During the challenge period (d 14 -21), the coccidia vaccine 

challenge had no significant effect on BWG, FI, and FE rather, they were comparable to 

the Control birds. However, these parameters were reduced (P <.0001) by DEX-challenge, 

with further reduction (P <.0001) by CocciDex-challenge. Post-challenge (d 21 – 28), the 

BWG and FI were similar in the Control and Cocci groups but lower (P <.0001) with DEX 

and CocciDex-challenge.  Furthermore, FE was higher ((P <.0001) in the DEX- challenged 
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birds compared to the Control and Cocci birds. Natustat™ supplementation did not impact 

any of the observed performance parameters pre, during, and post-challenge. 

4.3.2 Organ weights 

Liver weight relative to the BW on d 21, was higher (P <.0001) in the 

DEX- challenged birds compared to the remaining groups with the Cocci and Control birds 

having the lowest (P < 0.05) liver weight (Table 4.4). In contrast, spleen weight was lower 

(P <.0001) in DEX and CocciDex-challenge birds compared to the Control and Cocci 

group where the Cocci group had the highest (P < 0.05) spleen weight (Table 4.4). 

Post- challenge (d 28), liver weight was similar between the Cocci, DEX, and 

CocciDex- challenge birds but higher (P < 0.05) than the Control birds while spleen weight 

was lower (P <.0001) in the Control and Cocci-challenge birds compared to the 

CocciDex- challenge birds. Natustat™ supplementation did not affect organ weights 

measured during and post-challenge periods (Table 4.4). 

4.3.3 Jejunal morphology 

Jejunal morphological effects in response to the challenge-type and dietary 

treatment for d 21 and 28 are presented in Table 4.5. There was no significant interaction 

between the challenge-type and dietary treatment on VH, CD, VH: CD ratio on d 21. The 

birds in the Control group had a higher (P <.0001) VH compared to the birds in the other 

challenge-types (Cocci, DEX, CocciDex) on d 21. The CD of birds in the Cocci group was 

higher (P <.0001) compared to the other challenge-types, while the VH: CD ratio was lower 

(P <0.0001) in the Cocci and CocciDex compared to the Control and DEX-challenge birds 

(d 21). On d 28, an interaction effect was only observed for the VH. The birds in the Cocci 

group fed the diet supplemented with Natustat™ had a higher (P < 0.05) VH compared to 
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birds in the Control group fed diets with no Natustat™ supplemented, and birds in the DEX 

and CocciDex group with Natustat™ supplemented in the diet. An inverse outcome was 

observed for the measured CD and VH: CD within the challenge-types on d 28. The CD in 

the Cocci and CocciDex group was higher (P <0.0001) compared to the DEX and Control 

group while the VH: CD ratio was lower (P <0.0001) in the Cocci and CocciDex group 

compared to the DEX and Control group. Natustat™ supplementation did not affect the 

CD and VH: CD ratio (d 28). 

4.3.4 Ileal digestibility and total tract utilization 

The effects of DEX, coccidia vaccine challenge with or without Natustat™ 

supplementation on AID of DM, N, EN, Ca, P, and DE as well TTR of DM, N, EN, Ca, 

and P, and AME, and AMEn in 21 and 28 day-old broilers, are presented in Table 4.6 and 

4.7, respectively. Results for the ileal digestibility showed no significant interaction 

between the treatments on d 21 and 28 (Table 4.6). CocciDex-challenge resulted in a lower 

(P < 0.05) ileal DM, EN, Ca, and DE digestibility compared to the Control. Apparent ileal 

P digestibility values in the DEX challenged birds, although higher (P < 0.05) than the 

CocciDex-challenge birds, was lower (P < 0.05) than the Control and Cocci birds. (d 21; 

Table 4.6). Similarly, AID of Ca was lower (P <.0001) in the DEX-challenged birds 

compared to the Control and Cocci birds but comparable to the CocciDex birds. On d 28, 

the challenge type did not affect the apparent ileal digestibility of DM, N, and EN, and DE. 

However, ileal Ca digestibility was higher (P <.0001) in the DEX-challenge group 

compared to the remaining challenge groups. The Cocci and CocciDex-challenge reduced 

(P <.0001) AID of P on d 28 compared to the Control and DEX-challenge birds. On the 
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other hand, Natustat™ supplementation did not influence the AID of DM, N, EN, Ca, P, 

and DE, on days 21 and 28 (Table 4.6).  

 The TTR of DM and AMEn for both the Control and DEX groups were similar 

and higher (P <.0001) than Cocci and CocciDex groups (Table 4.7). The TTR of EN and 

AME in the DEX-challenged birds was higher (P <.0001) compared to the other challenge 

type with the CocciDex-challenged birds having the lowest utilization. Nitrogen TTR was 

lower (P <.0001) in the DEX group compared to the Cocci and Control groups and 

considerably lower (P < 0.05) in the CocciDex-challenge group compared to the other 

treatments. Apparent TTR of P was highest (P < .0001) in the Control group compared 

with the other challenge groups. Coccidia challenge decreased (P <.0001) the TTR of DM, 

EN, Ca, P, and the AME and AMEn compared to the Control. Total tract utilization of N 

was higher (P <.0001) in the DEX group compared to the Control and Cocci group (d 28). 

Calcium utilization was higher (P <.0001) in the Control, Cocci, and DEX group compared 

to the CocciDex birds, while P utilization was higher (P <.0001) in the Cocci, DEX, and 

CocciDex-challenged groups compared to the Control group. Natustat™ supplementation 

did not affect the TTR of DM, N, EN, Ca, P, and the AME and AMEn on d 21 (Table 4.7). 

On d 28, an interaction effect (P < 0.05) between Natustat™ and the challenge type was 

observed for EN, and the AME and AMEn, with an increase (P <.0001) in these parameters 

in birds of the Control, DEX, and CocciDex birds fed diets without Natustat™ (d 28; Table 

4.7). 

4.3.5 Intestinal permeability determined by FITC-d 

Intestinal permeability was assessed through the translocation of FITC-d into the 

bloodstream. The FITC-d concentration in blood serum of birds in the CocciDex-
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challenged type increased (P <.0001) compared to the other challenge types on d 21 and 

28 of age (Table 4.8). Similarly, DEX-challenge in the birds increased (P <.0001) FITC-d 

concentration in blood serum compared to the Cocci and Control birds. FITC-d 

concentration in the blood in both the Cocci and Control birds were not different. 

Natustat™ supplementation did not influence the translocation of FITC-d (Table 4.8). 

4.3.6 Jejunal gene expression 

The jejunal expression profiles of genes involved in inflammation (TLR4, NF-κB, 

IL-Iβ, IL-6, IFN-γ, and IL-10), intestinal nutrient transporters (SGLT-1 and NaPi-IIb), and 

gut integrity (MUC-2, IgA, and Occludin) for all treatment groups on d 21 and 28 are 

presented in Table 4.9 and 4.10 respectively. On d 21, no significant interaction was 

observed between Natustat™ supplementation and the challenge type for the mRNA 

expressions of the genes evaluated in this study except for SGLT-1. This interaction effect 

reveals that supplementation of Natustat™ increased (P <.0003) the expression of SGLT- 1 

in the CocciDex-challenged group compared to the birds in the DEX and Cocci-challenged 

groups (Table 4.9). Individual main effects for the mRNA expression of jejunal samples 

analyzed on d 21 are summarized as follows: TLR4 expression increased (P <.0001) with 

Cocci-challenge compared to the other groups; NaPi-IIb expression increased (P <.0001) 

with DEX and CocciDex-challenge compared to the Cocci and Control birds; MUC-2 gene 

expression levels was higher (P <. 0001) in the Control birds compared to the challenge 

birds; Coccidia vaccine challenge increased (P <.0001) the expression levels of IFN-γ 

compared to the other groups and was considerably lower (P < 0.05) in the DEX challenge 

birds. Similarly, IL-1β and IL-6 gene expression levels were lower (P < 0.05) in the DEX 

group compared to other challenge groups; expression levels of NF-κB occludin was not 
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influenced by the challenge type. Overall, Natustat™ supplementation did not influence 

the mRNA expression of the genes analyzed except for SGLT-1 on d 21 (Table 4.9).  

On d 28, an interaction effect was observed in 1L- 6 and IL-10 mRNA expression 

(Table 4.10). With Natustat™ supplementation, IL-6 mRNA expression was lower 

(P < 0.011) in the Cocci group and IL -10 was higher (P < 0.011) in the 

CocciDex- challenge group compared to birds in the same group fed diets without 

Natustat™. Other main effects include - decreased (P < 0.05) TLR4, NFκB, SGLT1, and 

NaPi-IIb and increased (P < 0.05) occludin mRNA mucosal expression in the 

Cocci- challenge group. The DEX-challenge increased (P < 0.05) TLR4, NaPi-IIb and 

decreased (P < 0.05) NFκB, IL-1β, IFN-γ, and SGLT1 expression. Finally, CocciDex and 

DEX challenge increased (P < 0.05) TLR-4 gene expression but unlike DEX, it also 

resulted in higher mRNA expression of NFκB, IL-1β, IFN-γ, IL-10, SGLT-1 (Table 4.10). 

4.4 DISCUSSION 

In the present study, the coccidia vaccine (at 20x the manufacturer's recommended 

dose for d-old chicks) and/or the addition of DEX to the feed, were used to induce the 

experimental intestinal challenge.  Challenging the birds with the 20x  coccidia vaccine on 

d 14 did not induce a significant decrease in performance. This observation is contrary to 

several reports that showed the coccidia vaccine challenge significantly reduced BWG, FI, 

and FE in broiler chickens (Isobe and Lillehoj, 1993; Tan et al., 2014; Amerah and 

Ravindran, 2015; Adedokun et al., 2016; Dersjant-Li et al., 2016; Osho et al., 2019). The 

observed BWG, FI, FE the during-challenge (d 14 -21) and post-challenge (d 21-28) 

periods were comparable to the birds not challenged with the vaccine. Only very few 

published articles reported similar results (Kettunen et al., 2001; Bortoluzzi et al., 2019). 
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The cause for this is unknown but the rationale is that the vaccine was not virulent enough 

to induce a mild infection to allow the birds to express the characteristic outcomes of 

coccidiosis, such as reduced performance. Conversely, DEX-induced stress resulted in 

depressed BWG, FI, and FE, similar to other published articles (Isobe and Lillehoj, 1993; 

Li et al., 2009; Barekatain et al., 2019) except for FE that was improved significantly post-

challenge (d 28), and further depressed the BWG, FI, FE in combination with Cocci 

during- the challenge period. However, post-challenge, BWG, and FI were comparable 

between DEX and CocciDex groups. 

As an exogenous glucocorticoid, DEX has a profound effect on energy homeostasis 

and glucose metabolism. Well established actions of glucocorticoids exert that it acts on 

hepatic production of glucose from amino acids, enhancing protein catabolism; and 

simultaneously decreasing glucose uptake (Munck, 1971; Post et al., 2003; Lin et al., 

2004a). Although plasma glucose of broilers has been reported to increase significantly 

with DEX administration (Li et al., 2009), the decrease glucose uptake can explain the 

negative impacts DEX has on the performance of the animal as reflected by the depressed 

BWG and FE. Despite the large variety of stressors, birds are exposed to in the industry, 

the effects are often similar, and their combined effect can exacerbate an infectious disease 

(Isobe and Lillehoj, 1993; Huff et al., 1999; Huff et al., 2001). Similarly, in addition to 

direct measurements of corticosteroids, there is other (indirect) evidence of pituitary-

adrenal involvement in the stress response of birds which is, for the most part, based on the 

target tissue responses to the corticosteroids. One important target is the lymphatic tissue 

the corresponding heavy liver weight and small spleen weight associated with DEX stress 

models were observed in this study. However, with the CocciDex challenge, the liver was 
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smaller than the DEX but considerably bigger than the Control and Cocci groups (Siegel, 

1980).  

In this study, the supplementation of Natustat™ did not yield a better growth 

performance in the challenged birds. Duffy et al. (2005c) also reported no significant 

improvement with Natustat™ supplementation in the performance of turkey tom 

challenged with Histomonas meleagridis on d 28. However, in another study, they reported 

a higher live weight gain and lower FCR in the Eimeria-challenged birds fed a diet 

supplemented with Natustat™ (Duffy et al., 2005a). The improved performance in birds 

fed MOS supplemented diets is suggested to be due to the prebiotic functionality, which 

tends to promote the colonization of beneficial bacteria, improve intestinal integrity, and 

enhance immune functions. Some researchers have found that the inclusion of yeast-

derived MOS in the diet improved the growth performance of broiler chickens (Muthusamy 

et al., 2011; Ghosh et al., 2012; Gomez-Verduzco et al., 2009). Other studies have 

demonstrated no significant difference in growth performance parameters (Midilli et al., 

2008; Cox et al., 2010; Munyaka et al., 2012). The rationale for this inconsistency with 

regards to the benefits of yeast-derived MOS on performance has been suggested to be due 

to differences in the source and concentration of the yeast products, duration of the trial, 

presence, and type of challenge used, and the experiential condition of the studies 

(Alizadeh et al., 2016).  

To maintain maximum digestive and absorptive capability in broiler chickens, a 

large luminal surface area with optimal enterocyte functional maturity is important. This is 

because the inadequacies of the intestine may reduce the growth and extend the time 

broilers reach market weight. Increased villus height and short crypt depth, are associated 
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with a healthy intestinal morphology which, ensures greater digestion and absorption of 

nutrients (Gao et al., 2008). In this study, DEX, coccidia vaccine, and a combination of 

DEX and coccidia vaccine-challenge reduced the length of the villi compared to the 

control, on d 21. Coupled with the longer crypt depth observed in this study, the coccidia 

vaccine challenge negatively influenced the morphology of the intestine (d 21 and 28). 

Other studies have reported a longer CD (Reisinger et al., 2012; Tan et al., 2014) which, 

indicates an increase in the migration of epithelial, and an increased rate of apoptosis to get 

rid of infected enterocytes The literature illustrates that the sporozoites of Eimeria sp infect 

the cells of the intestinal lining causing tissue damage and trauma to the intestinal mucosa 

and submucosa (Lillehoj and Trout, 1996; Lillehoj and Lillehoj, 2000). The epithelial 

damage can reduce the nutrient absorption, which can explain the reduction in the total 

tract utilization of nutrients observed in the Cocci challenge group in this study. Similarly, 

exogenous CORT or its analog causes a decrease in the jejunal villus height (Hu and Guo, 

2008; Li et al., 2009; Carvalho et al., 2018; Barekatain et al., 2019) with varying reports 

on their effect on the CD. A shorter CD is associated with a healthy proliferation of 

enterocytes, and the ratio of villus height to crypt depth reflects the comprehensive ability 

for intestinal nutrient absorption and function, which is what is observed in the DEX and 

CocciDex challenge group. However, this does not translate to the performance results. 

This means the results (short villus height and CD) might be a reflection of the reduction 

in intestinal size associated with smaller body size rather than the absorptive function of 

the jejunum. 

Dietary prebiotics like MOS, can improve the integrity of the intestinal mucosa by 

binding and inhibiting pathogenic and opportunistic pathogenic bacteria from attaching to 
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the intestinal mucosa. Jejunal morphology analysis on d 21 revealed that Natustat™ 

supplementation decreased the VH compared to the control. The reason for the decrease in 

VH is unknown but on d 28, the supplement increased the VH of birds challenged with the 

coccidia vaccine compared to the Control (without the supplement) and the DEX and 

CocciDex groups (with the supplement). A study conducted by Baurhoo et al. (2007) 

revealed that dietary MOS (0.2% of the starter diet and 0.1% of the grower diet) did not 

have a significant effect on the VH of the jejunum on d 14 however, a significant increase 

was observed on day 28 and 42 compared to virginiamycin and the control. Others have 

reported no significant differences in VH on d 21 (Yitbarek et al. 2012) or d 42 (Lea et al., 

2013). The possible reason for Natustat supplementation to increase the VH in the Cocci 

group compared to the DEX and CocciDex on the same diet could be that the supplement 

was able to reduce the growth of the pathogenic intestinal bacteria associated with coccidia. 

On the other hand, Zhang et al. (2005), Yitbarek et al. (2012), observed that supplementing 

the diet with MOS did not affect CD in birds, as seen in this study on both d 21 and 28.  

General malabsorption of nutrients in poultry during the acute phase of intestinal 

coccidiosis is well documented (Ruff, 1978; Persia et al., 2006; Adedokun et al., 2016). In 

this study, we did not observe any significant deleterious effect of the coccidia vaccine 

challenge on AID of DM, N, EN, Ca, and P, and DE on d 21 and 28. This is expected based 

on the performance data from this study but contrary to reported data from other studies 

(Persia et al., 2006; Adedokun and Adeola, 2017; Adedokun et al., 2016; Rochell, et al., 

2017). In contrast, the TTR of DM, EN, Ca, P, and AME, and AMEn on d 21, and DM, N, 

EN, AME, and AMEn on d 28 in the Cocci group, were impaired compared to the Control 

group. With the help of specific enzymes expressed on the brush border membrane, 
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epithelial cells further serve to digest luminal nutrients. The digested end products are then 

absorbed by the epithelial cells in the intestine through the action of nutrient transporters 

located on the brush border membrane (Gilbert et al., 2008). Based on our result, we 

speculate that while the birds were able to digest and absorb the nutrients, conditions of the 

gut increased nutrient drainage from the body to promote endogenous catabolism and 

mucus secretion as part of the maintenance activity that occurs during an infection, 

preventing the proper utilization of those nutrients. 

 Furthermore, the DEX challenge impaired only the Ca and P ileal digestibilities 

while the CocciDex challenge significantly impaired ileal DM, EN, Ca, and P digestibility, 

and AME on d 21 with a significant improvement observed with DEX challenge on ileal 

Ca and P digestibility by d 28. Similarly, N, Ca, and P were poorly utilized with DEX and 

DM, N, EN, Ca, and P utilization, and AME and AMEn were impaired even further with 

CocciDex on d 21. These parameters improved post-challenge (d 28), with a complete 

recovery observed in the DEX challenge when compared to the control. To focus on Ca 

intestinal absorption, studies have shown that it can be impaired by the presence of 

glucocorticoids (GCs) through decreased active transport and inhibition of normal vesicle 

uptake by the brush border membrane (Kimberg et al., 1971, Kim et al., 2009). Though we 

do not fully understand the mechanisms responsible for glucocorticoid-induced inhibition 

of Ca, reports have suggested a decrease in soluble calcium-binding protein (Mitchell and 

Lyles, 1990; Kim et al., 2009), and an increase in the excretion of urinary Ca ions (Weiler 

et al., 1995). Thus, the negative balance from decreasing gastrointestinal Ca absorption, 

increasing bone resorption, and increasing renal Ca excretion can stimulate an increase in 

the release of parathyroid hormone which has been shown to induce phosphaturia in rats 
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(Lukert and Raisz, 1990; Mitchell and Lyles, 1990). Hence, the reduced Ca and P ileal 

digestibility in our study, the accompanying poor utilization at d 21, and complete recovery 

at d 28, reiterate the effects outlined above. This also suggests that the efficiency of P 

digestion and utilization is dependent on the efficiency of Ca metabolism.  

As suggested above, nutrient uptake is mediated by digestive enzymes and 

membrane-bound transporter proteins located at the brush border membrane of intestinal 

epithelial cells. Intestinal transport of glucose and phosphate (Pi) is accomplished by Na+‐

coupled glucose transporter-1 and phosphate transporter, respectively, expressed in several 

tissues, including the brush border membranes of the small intestinal epithelium, where 

these molecules are transported against a concentration gradient into the enterocytes (Feng 

et al., 2012). Understanding how stressors influence these transporters, SGLT-1, and NaPi-

IIb is important. A previous study showed that GCs released during stress periods induced 

the expression of glucocorticoid regulated kinase, which enhances glucose transportation 

by increasing SGLT-1 abundance in the cell membrane (Garriga et al., 2006). Feng et al. 

(2012) observed an increase in mRNA abundance of SGLT-1 in LPS challenged chickens. 

Another interesting study by Dieter et al. (2004) showed that serum‐ and glucocorticoid‐

dependent kinase 1 (SGK1) whose transcription is stimulated by GCs, regulates the 

abundance expression of SGLT-1 in the apical cell membrane, stimulating glucose 

transport. All of this supports our result with the increased expression of SGLT-1 in the 

DEX group but also demonstrates the inhibitory effect GCs have on glucose uptake by 

peripheral tissues. We can theorize that while the birds in this group were able to absorb 

and utilize the glucose coming from the diet, as seen with comparable results of EN, DE 

digestibility and EN utilization, and AME, AMEn with the Control group, the muscle 



 

178 
 

“peripheral tissue” was not a priority.  This also translates to the N digestibility where the 

DEX and CocciDex- challenged birds were able to digest and absorb the nitrogen in the 

diet, but due to the actions of GCs to stimulate hepatic gluconeogenesis from amino acids, 

increased the production of uric acid (in the case of chickens) hence, the low utilization of 

N in our results. Similarly, the expression of NaPi-IIb was increased with DEX and 

CocciDex challenge but decreased with the Cocci challenge. However, NaPi-IIb mRNA 

expression in the Control and Cocci-challenged birds was not different. 

When considering the mechanisms associated with gut functionality, it is important 

to consider the biology of the pathogens and other possible stress-causing factors, to the 

host tissues. For example, as part of their life cycle, Eimeria sp localizes predominantly in 

the lumen of the GIT, persisting for extended periods and causing acute to chronic disease 

depending on several factors. In response to this, the GALT maintains functionality via a 

conserved elaborate communications system that transmits signals between the host’s 

external physical barrier and the underlying cells of the host’s innate and adaptive mucosal 

immune system (Smith et al, 2014; Fukui, 2016). The resultant effect from this involves 

the exploitation of host signaling pathways to cause the redistribution of TJ structural 

proteins and compromise barrier function. Also, infection by Eimeria sp induces both the 

innate and adaptive immune system, which culminates in the activation of several types of 

immune cells, including lymphocytes, dendritic cells, and macrophages that are close to 

the mucosal surface (Rose, 1987; Lillehoj and Trout, 1993; Lillehoj and Lillehoj, 2000; 

Laurent et al., 2001). In this study, epithelial permeability function was determined based 

on the levels of FITC-d in the serum, a molecule that does not usually leak through an 

intact gastrointestinal tract barrier (Vicuna et al., 2015). Because of the lack of severity 
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with the coccidia vaccine challenge, Cocci-challenge alone did not induce significant gut 

permeability on d 21 and 28 of age, but rather in conjunction with the DEX-challenge, 

increased the levels of FITC-d in the blood. This is supported by earlier reports, (Latorre 

et al., 2018; Hernandez-Patlan et al., 2019; Stefanello et al., 2020) where increased levels 

of FITC-d were observed in birds challenged with Eimeria and other infectious agents. 

However, Schneiders et al. (2019) reported an increase in FITC-d levels 6 days after 

Eimeria inoculation alone but at d 7 to 10 post-inoculation, the FITC-d levels were not 

different from the control group. As with other studies, the administration of DEX causes 

alterations in permeability characteristics that are consistent with glucocorticoid-induced 

changes, increasing the entry of FITC-d into circulation which, demonstrates a compromise 

to paracellular permeability rather than transcellular transport (Spitz et al., 1994; Kuttappan 

et al., 2015; Vicuana et al., 2015; Barekatain et al., 2019). Disruption of the mucus layer 

and TJ complex also increases intestinal permeability. In livestock production, impaired 

intestinal barrier function leads to reduced animal health and growth performance (Tan et 

al., 2014; Osho et al., 2019). Therefore, it is critically important to understand how the 

intestinal barrier function is maintained and regulated to achieve optimal animal health and 

productivity. The observed changes in epithelial permeability function for both the DEX 

and CocciDex group can also be explained by the decrease in the expression of MUC-2 on 

d 21. Although the activity of occludin cannot be explained in this study because, while 

there were no significant changes in the expression with any challenge type on d 21, its 

expression was significantly higher than the control on d 28.  

One of the evolutionarily conserved receptors of the innate system (TLR4) that 

recognizes specific molecular patterns associated with microbes has been implicated in the 
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fight against coccidiosis. Once a TLR binds a molecule from an invading micro-organism 

or molecules produced by damaged tissues, the downstream signaling activated via the 

NFκB pathway triggers innate immune defenses such as inflammation, and the acquired 

immune system, secreting cytokines. Similar to this study, Zhou et al. (2013) and Tan et 

al. (2014) observed an increase in jejunal TLR4 expression with coccidia challenge on d 

21, with the possibility that TLR4 activation might operate via the MyD88-dependent 

pathway. The involvement of TLR4 in host resistance to Eimeria sp infection can also be 

explained with the increased mRNA expressions of IL-1β, IFN-γ, and IL-6 observed in the 

jejunum. Extensive experimental evidence provides supports to the role cell-mediated 

immunity, predominantly mediated by antigen-specific and nonspecific activation of T 

lymphocytes and macrophages, play to confer protective immunity in avian coccidiosis 

(Rose, 1987; Lillehoj and Trout, 1993; Lillehoj and Lillehoj, 2000; Dalloul and Lillehoj, 

2005). A subsequent decrease in the mRNA expression of TLR4 and NFκB in the 

jejeunum, on d 28 probably signifies the clearance of the infection however gradual it might 

be, since the mRNA expression levels of IL-1β, IFN-γ, and IL-6 are still elevated.  

Antibodies are involved in the response against coccidia infection, albeit a minor 

role. Although we observed a reduced jejunal mRNA expression of IgA in the Cocci-

challenge birds, secretory IgA antibodies are more likely to be involved in resistance with 

parasitic infection of the intestinal mucosa (Yun et al., 2000; Tan et al. 2014), and usually 

appear about a week after Eimeria sp infection reach a peak and decline thereafter (Rose, 

1987). The spleen weight is assumed to directly correlate with the proliferation of immune 

cells and often, represents a compensatory response to a need for increased activity during 

infection and recovery (Panda and Combs, 1964). However, despite the increased spleen 
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weight observed in this study, it did not translate to increased expression of antibodies 

especially because the spleen is known to be involved in antibody production. Furthermore, 

the immune response observed against DEX-challenge birds in the current study was the 

opposite of that expressed in the Cocci-challenge birds. As supported by literature, DEX 

inhibits synthesis, release, and efficacy of T lymphocytes, cytokines, and other mediators 

that promote immune and inflammatory reactions, both in cell culture systems and several 

animal species (Isobe and Lillehoj, 1993; Sapolsky et al., 2002). As observed in this study, 

the expression of TLR4, IL-1β, IFN-γ, and IL-6 were reduced on d 21 in the DEX and 

CocciDex challenge birds, however, their expression in the CocciDex was exacerbated on 

d28 (except for IL-6). Though it is not clear what immune functions are enhanced with 

DEX, evidence supports that it triggers the apoptotic death in immature T and B cell 

precursors and mature T cells evident by the atrophy of the spleen and thymus in some 

studies (Sapolsky et al., 2002), and increase susceptibility to Eimeria infection (Isobe and 

Lillehoj, 1993).  

Several conclusions were drawn from this study. First, the characteristic of the 

coccidia vaccine challenge effect in terms of performance, digestibility, and intestinal 

permeability were not observed in this study. Based on our previous experience, this 

observation may be due to variations in the vaccine batches. However, the challenge 

induced the expression of inflammatory mediators. Second, the DEX challenge supported 

the hypothesis based on the impact on performance, intestinal morphology, permeability, 

digestibility of Ca and P, utilization of N, Ca, and P, and suppressed the expression of 

inflammatory mediators.  Moreover, exposure to another stress factor – like DEX, 

exacerbated the coccidia challenge increasing the susceptibility of the birds to coccidia 
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infection as regards to the reduced performance, intestinal permeability observed, and 

activation of the inflammatory pathway (TLR4) and subsequent expression of 

proinflammatory cytokines 7-days post-challenge. Third, the addition of Natustat did not 

mitigate the negative effect of the stressors as hypothesized based on nutrient and energy 

digestibility and utilization, and intestinal morphology and permeability observations. The 

supplementation had a tendency to increase the expression of anti-inflammatory cytokine 

(IL-10) 7-days post-challenge. It also increased IL-10 and decreased the mRNA expression 

of IL-6, 14-days post-challenge. 
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4.5 TABLES 

Table 4.1 Ingredient composition and analyzed nutrient and energy contents of the experimental 
diets (g/kg, on an as-fed basis). 

Description of diets 
Ingredients, g/kg 

Starter diet (d 0-14)1 Grower diet (d 14 - 28)2 

Natustat™ 
0 g/kg 

Natustat™ 
1.0 g/kg 

Natustat™ 
0 g/kg 

Natustat™ 
1.0 g/kg 

Corn 572.3 562.3 619.7 609.7 

Soybean meal, 48% 360.0 360.0 302.0 302.0 

Soybean oil 30.0 30.0 35.0 35.0 

Limestone (38% Ca) 10.0 10.0 8.6 8.6 

Dicalcium phosphate 16.3 16.3 15.4 15.4 

NaCl 4.0 4.0 4.0 4.0 

Vitamin-mineral 
premix2 

2.5 2.5 2.5 2.5 

DL-Methionine 2.9 2.9 3.8 3.8 

L-Lysine HCL 1.5 1.5 2.9 2.9 

L-Threonine 0.5 0.5 1.1 1.1 

Natustat premix3 0.0 10.0 0.0 10.0 

Titanium dioxide  0.0 0.0 5.0 5.0 

Total 1,000 1,000 1,000 1,000 

Analyzed analysis4  
    

Dry Matter, g/kg   882.0 
Crude protein5, g/kg 

  
210 

Calcium, g/kg 
  

9.7 
Total phosphorus, g/kg 

  
7.7 

Ca: tP6, g/kg   1.2 
Non-phytate phosphorus6, g/kg  4.2 
Gross energy, kcal/kg  4,098 

1Dexamethasone was added at 1.5 mg/kg of diet to groups challenged with DEX from d 14 -21 
2Vitamin-mineral premix supplied per kg of diet: 11 025 IU of vitamin A; 3528 IU of vitamin D; 33 IU of vitamin E; 
0.91mg of vitamin K; 2.21 mg of thiamin; 7.72 mg of riboflavin; 55 mg of niacin; 18 mg of pantothenate; 5 mg of 
vitamin B-6; 0.22 mg d-biotin; 1.10 mg of folic acid; 478 mg of choline; 0.03 mg of vitamin B-12; 75 mg of Zn; 40 
mg of Fe; 64 mg of Mn; 10 mg of Cu; 1.85 mg of I; and 0.30 mg of Se. 
3Natustat™ Alltech, Inc., Nicholasville, KY. The premix was added to the diets at the expense of ground corn to 
supply 1g of Natustat/kg of diet. 
4Starter diets were not analyzed for nutrient composition. All the experimental diets were produced from a single 
basal diet; hence the average of the analyzed nutrients vales was used to calculate nutrient and energy digestibility 
and utilization. 
5Nitrogen value multiplied by 6.25 
6Calculated values
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Table 4.2 Primers used in real-time quantitative PCR. 
RNA target1 Primer sequences (5′̍-3′) Accession no. References 

Markers of inflammation   

TLR4 F: AGT CTG AAA TTG CTG AGC TCA AAT 

R: GCG ACG TTA AGC CAT GGA AG 

NM_001030693 Tan et al., 2014 

NF-κB F: GTG TGA AGA AAC GGG AAC TG  

R: GGC ACG GTT GTC ATA GAT GG 

NM_205129 Tan et al., 2014 

IL-1β F GCT CTA CAT GTC GTG TGT GAT G AJ245728 Shini and Kaiser 2009 

 R TGT CGA TGT CCC GCA TGA   

IL-6 F GCT CGC CGG CTT CGA  AJ250838 Shini and Kaiser 2009 

 R GGT AGG TCT GAA AGG CGA ACA G   

IFN-γ F GTG AAG AAG GTG AAA GAT AT CAT GGA Y07922 Shini and Kaiser 2009 

 R GCT TTG CGC TGG ATT CTC A   

IL-10 F CAT GCT GCT GGG CCT GAA  AJ621614 Shini and Kaiser 2009 

 R CGT CTC CTT GAT CTG CTT GAT G   

Intestinal transporter   

SGLT-1 F: CATCTTCCGAGATGCTGTCA ENSGALG0000000672 Adedokun and Adeola 2017 

 R: AGGTATCCGCACATCACACA   

NaPi-IIb F: CTGCAGGACACTGGAGTCAA NM_204474 Adedokun and Adeola 2017 

 R: CCGCAACAGGATTAGAGAGC   

Markers of gut integrity   

MUC-2 F: CAG CAC CAA CTT CTC AGT TC  XM_421035 Tan et al., 2014 
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Table 4.2 continued   

 R: TCT GCA GCC ACA CAT TCT TT   

IgA F: ACC ACG GCT CTG ACT GTA CC  

R: CGA TGG TCT CCT TCA CAT CA 

S40610 Tan et al., 2014 

Occludin F ATC AAC GAC CGC CTC AAT CA NM_205128.1 Cowieson et al., 2017 

 R TCC GCT TCA GGT CTT TGA GC   

Housekeeping gene   

GAPDH  F ATG ACC ACT GTC CAT GCC ATC CA 

R AGG GAT GAC TTT CCC TAC AGC GTT 

NM_204305.1 Cowieson et al., 2017 

*F, forward primer; R, reverse primer. 
1mRNA genes analyzed TLR4, toll-like receptor4; NFκB, Nuclear factor κB; IL-1β, Interleukin 1 beta, IL-6, Interleukin 6; IL-10, Interleukin 10; IFN- γ, Interferon 
γ; NaPi-IIb, sodium-dependent phosphate transporter; SGLT-1, sodium-dependent glucose transporter-1; MUC-2, Mucin-2; IgA, Immunoglobulin A; GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase
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Table 4.3 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on growth 
performance of broilers (d 21 and d 28)1. 
   d 0 - 14 14 - 21 21 - 28 

Interaction effect  BW 14 
(g) 

Gain 
(g/bird) 

FI 
(g/bird) 

G:F 
(g/kg) 

BW 21 
(g) 

Gain 
(g/bird) 

FI 
(g/bird) 

G:F 
(g/kg) 

BW 28 
(g) 

Gain 
(g/bird) 

FI 
(g/bird) 

G:F 
(g/kg) 

Challenge effect  Natustat™             
Control No - - - - 908 456 596 766 1564 643 920 705 
Cocci No - - - - 877 443 584 757 1537 643 918 670 
DEX No - - - - 580 151 511 295 986 402 540 746 
CocciDex No - - - - 556 119 462 241 946 363 517 703 
Control Yes - - - - 895 449 592 758 1541 623 920 698 
Cocci Yes - - - - 869 433 577 750 1512 623 896 695 
DEX Yes - - - - 578 145 491 296 969 393 527 745 
CocciDex Yes - - - - 567 121 482 252 963 387 528 732 

              
Challenge effect               
Control  - - - - 902a 453a 594a 762a 1553a 644a 920a 701b 
Cocci  - - - - 873a 438a 581a 756a 1524a 633a 907a 697b 
DEX  - - - - 579b 148b 501b 293b 978b 398b 533b 745a 
CocciDex  - - - - 561b 117c 472c 247c 955b 375b 523b 717ab 

 Natustat™             
 No  434 390 481 811 730 290 538 515 1258 514 724 713 
 Yes 439 395 494 803 727 287 536 514 1246 511 718 717 

SEM  22.6 21.9 31.2 40.3 13.3 8.7 9.2 9.5 21.4 15.4 17.8 15.1 
P-value              
Challenge effect  - - - - <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.102 
Natustat™  0.457 0.3240 0.121 0.427 0.759 0.622 0.693 0.912 0.437 0.764 0.658 0.707 
Challenge x Natustat™ - - - - 0.815 0.692 0.201 0.729 0.729 0.522 0.791 0.602 

a–c Means with different superscripts within the same column differ significantly (P < 0.05). 
1Values represent the means of 7 replicate cages per treatment. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone.
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Table 4.4 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on organ 
weights relative to body weight in broiler chickens (d 21 and d 28)1. 

Treatment effect2 
  Day 21 Day 28 
  Relative Liver 

weight (%) 
Relative Spleen 

weight (%) 
Relative Liver 

weight (%) 
Relative Spleen 

weight (%) 
Challenge effect Natustat™     
Control No 3.03x 0.13 2.35 0.09x 
Cocci No 3.52 0.15 2.62x 0.12 
DEX No 5.93x 0.06 2.44 0.13 
CocciDex No 5.44x 0.09x 2.71 0.17 
Control Yes 3.12 0.13 2.28 0.12 
Cocci Yes 3.31 0.16 2.46 0.10x 
DEX Yes 5.84 0.07x 2.63 0.12x 
CocciDex Yes 5.05x 0.10x 2.70x 0.15x  

 
  

  
Challenge effect   

  
  

Control  3.13c 0.13b 2.31c 0.11b 
Cocci  3.38c 0.16a 2.54ab 0.11b 
DEX  5.89a 0.07c 2.53ab 0.13ab 
CocciDex  5.25b 0.09c 2.71a 0.15a 
 Natustat™ 

  
  

 No 4.48 0.11 2.53 0.12  
Yes 4.33 0.11 2.52 0.12 

Pooled SD3  0.51 0.03 0.30 0.03 
P-value 

   
  

Challenge effect 
 

<.0001 <.0001 0.013 0.001 
Natustat™ 

 
0.287 0.249 0.881 0.918 

Challenge x Natustat™  0.692 0.985 0.467 0.216 
a–c Means with different superscripts within the same column differ significantly (P < 0.05).  
1Values represent the means of 7 replicate cages per treatment except for mean values with superscripts x where the number of replicates was 6. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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Table 4.5 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on jejunal 
morphology in 21 and 28-day broiler chickens1. 

Interaction effect  

Jejunal Morphology (d 21) Jejunal Morphology (d 28) 

Villus Height 
(µm) 

Crypt Depth 
(µm) 

VH: CD 
Villus Height 

(µm) 
Crypt Depth 

(µm) 
VH: CD 

Challenge effect  Natustat™ 
      

Control No 1262 153x 9.9 1207b 140 8.7 
Cocci No 1095 236 9.0x 1290ab, x 198 6.9x 
DEX No 1078x 144 12.0 1272ab 129x 9.2x 
CocciDex No 1068 164 9.8 1245ab, x 183 6.7 
Control Yes 1180x 138 10.7x 1301ab, x 146 8.8 
Cocci Yes 1079x 219x 8.2 1364a, x 199 7.2 
DEX Yes 1069x 132 10.7x 1159b, x 142x 8.3x 
CocciDex Yes 888 148x 8.1 1210b, x 180 7.0         

Challenge effect  
       

Control 
 

1221a 145b 10.3ab 1254ab 143b 8.7a 
Cocci 

 
1087b 227a 8.6c 1327a 194a 7.0b 

DEX 
 

1073b 138b 11.3a 1228b 136b 8.7a 
CocciDex 

 
978b 156b 9.0bc 1215b 182a 6.9b  

Natustat™ 
      

 
No 1126 174 10.2 1253 161 7.9  
Yes 1054 159 9.4 1258 167 7.8 

Pooled SD3 
 

114.9 33.5 1.56 82 25.3 1.03 
P-value 

       

Challenge effect 
 

<.0001 <.0001 0.0001 0.008 <.0001 <.0001 
Natustat™ 

 
0.030 0.114 0.078 0.831 0.381 0.809 

Challenge x Natustat  0.203 0.997 0.224 0.008 0.856 0.369 
a–c Means with different superscripts within the same row differ significantly (P < 0.05). 
1Values represent means of 7 replicate cages per treatment except for mean values with superscripts x where the number of replicates was 6. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
 



 

 
 

Table 4.6 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on apparent 
ileal digestibility of dry matter, nitrogen, energy, calcium, phosphorus, and digestible energy in 21 and 28-day broiler chickens1. 

Interaction effect  

Apparent ileal digestibility d 21 (%)3 
  

Apparent ileal digestibility d 28 (%)3 

DM N EN Ca P 
DE 

kcal/kg 
DM N EN Ca P 

DE 
kcal/kg    

Challenge effect Natustat™              
Control No 72.3 83.8x 76.3x 33.6 51.9 3543x  70.7 84.6x 76.2x 41.7x 56.3 3562x 
Cocci No 71.0x 82.7x 73.9 36.0 51.7 3428  69.6 84.0 74.3 38.1 50.1 3487 
DEX No 69.7 83.6y 74.0x 29.1 45.6 3434x  70.5x 84.7 75.8x 51.5x 53.1 3551x 
CocciDex No 67.9 83.6y 71.3 16.7 41.0 3315  70.1 84.1x 75.6 43.0x 49.9 3530 
Control Yes 72.2x 84.3x 75.3x 46.7 54.5x 3497x  69.7 83.0 74.4 48.0x 55.0x 3424 
Cocci Yes 70.3x 82.0 74.2x 43.0 50.7 3445x  69.0 82.1x 72.7 39.9 49.9 3377 
DEX Yes 69.1 82.3z 72.9 31.1 44.7 3379  71.0x 83.5 76.0 58.7x 56.2x 3508 
CocciDex Yes 69.3x 81.4 72.5x 30.3 38.1 3369x  69.5x 82.6y 73.4 47.1 49.0x 3383 
               
Challenge effect                 

Control   72.3a 84.1 75.8a 40.1a 53.2a 3520a  70.2 83.8 75.3 44.8b 55.6a 3493 
Cocci   70.7ab 82.3 74.0ab 39.5a 51.2a 3437ab  69.3 83.1 73.5 39.0b 54.7a 3432 
DEX   69.4ab 82.9 73.4ab 30.1b 45.1b 3407ab  70.8 84.1 75.9 55.1a 50.0b 3530 
Cocci/Dex   68.6b 82.5 71.9b 23.5b 39.6c 3342b  69.8 83.4 74.5 45.1b 49.4b 3456  

Natustat™              

 No  70.2 83.4 73.9 28.9 47.5 3430  70.2 84.3 75.5 48.4 52.4 3533 
 Yes 70.2 82.5 73.7 37.8 47.0 3423  69.8 82.8 74.1 43.6 52.5 3423 
Pooled SD4   2.86 2.10 2.50 8.93 4.63 116.6  2.12 1.33 2.13 6.44 2.99 100.3 
P-value                

Challenge effect 0.014 0.184 0.003 <.0001 <.0001 0.005  0.356 0.242 0.073 <.0001 <.0001 0.076 
Natustat™ 0.970 0.152 0.826 0.464 0.681 0.824  0.467 0.253 0.503 0.643 0.748 0.434 
Challenge x Natustat™  0.762 0.479 0.591 0.271 0.491 0.595  0.831 0.684 0.613 0.520 0.226 0.546 

a–c Means with different superscripts within the same row differ significantly (P < 0.05). 
1Values represent means of 7 replicate cages per treatment except for mean values with superscripts x and y where the number of replicates was 6 and 5. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3DM = dry matter; N = nitrogen; EN= energy; Ca = calcium; P = phosphorus; DE = ileal digestibile energy 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡



 

 
 

Table 4.7 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on total tract 
utilization of dry matter, nitrogen, energy, calcium, phosphorus, and metabolizable energy and nitrogen-corrected metabolizable 
energy in 21 and 28-day broiler chickens1. 

.  Total tract utilization d 21   Total tract utilization d 28 

Interaction effect  DM N EN Ca P AME AMEn DM N EN Ca P AME AMEn 
Challenge effect Natustat™               

Control No 73.9 69.0 78.3 51.6 49.3 3635 3539 73.9 71.0x 78.4ab 41.9 40.4 3637ab 3548a 
Cocci No 70.7x 67.2x 75.0x 46.7 43.6 3483x 3380x 70.9 67.5x 74.9e 44.1 47.1 3475e 3371e 
DEX No 74.7x 39.5x 79.8x 41.7x 36.2x 3708x 3520x 74.7x 73.0 78.6a 45.5x 47.7 3650a 3566a 
CocciDex No 63.3x 20.1 71.8x 23.1 8.33x 3330x 3085x 73.2x 70.4 77.0bcd 35.2x 46.1 3581bdc 3504abc,x 
Control Yes 72.6 67.3x 77.2x 52.4 49.5x 3579x 3478x 72.3 68.3x 76.9cd 44.3x 42.3x 3570cd 3473bcd 
Cocci Yes 70.5x 67.2x 75.2x 40.8x 40.0x 3484x 3381x 71.3x 67.6 75.5de, x 47.6 47.7 3512de, x 3414de,x 
DEX Yes 73.7x 42.8x 79.5x 46.7x 39.3 3692x 3518 73.7 72.0x 78.1abc 45.0 47.6 3630abc 3540ab 
CocciDex Yes 63.4 16.4 71.6 27.3 11.6 3328 3066 72.1 71.3 76.2de, x 37.6 44.8x 3549d, x 3457cd,x 
                

Challenge effect                

Control  73.2a 68.2a 77.7b 52.0a 49.4a 3607b 3508a 73.1ab 69.7b 77.6a 43.1a 41.4b 3603ab 3511b 
Cocci  70.6b 67.2a 75.1c 43.8b 41.8b 3484c 3381b 71.1c 67.5c 75.2c 45.9a 47.4a 3494c 3392c 
DEX  74.2a 41.2b 79.7a 44.2b 37.7b 3700a 3519a 74.2a 72.5a 78.4a 45.3a 47.6a 3640a 3553a 
CocciDex  63.4c 18.3c 71.7d 25.2c 9.9c 3329d 3075c 72.7b 70.9ab 76.6b 36.4b 45.5ab 3565b 3481b 
 Natustat™               
 No 70.6 49.0 76.6 40.8 34.3 3539 3381 73.3 70.5 77.2 41.7 45.4 3629 3497 
 Yes 70.0 48.4 75.4 41.8 35.1 3521 3361 72.4 69.8 76.7 43.6 45.6 3522 3471 
                

Pooled SD4  1.15 4.19 0.84 5.56 4.09 38.07 46.9 1.06 1.76 0.89 5.39 4.51 39.1 41.0 
P-value                

Challenge effect  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0001 0.003 <.0001 <.0001 
Supplement  0.076 0.666 0.114 0.505 0.513 0.097 0.138 0.0110 0.168 0.029 0.195 0.836 0.057 0.026 
Challenge x Supplement 0.373 0.199 0.299 0.069 0.131 0.220 0.317 0.098 0.081 0.020 0.805 0.834 0.012 0.005 

a–e Means with different superscripts within the same row differ significantly (P < 0.05). 
1Values represent means of 7 replicate cages per treatment except for mean values with superscripts x where the number of replicates was 6. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3DM = dry matter; N = nitrogen; EN= energy; Ca = calcium; P = phosphorus; AME = apparent metabolizable energy; AMEn = nitrogen-corrected apparent 
metabolizable energy  
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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Table 4.8 Effect of dexamethasone and coccidia vaccine challenge with or without 
dietary Natustat™ supplementation on serum fluorescein isothiocyanate dextran (FITC-
d) concentration in 21 and 28 broiler chickens1. 

Treatment effect2 
  FITC-d concentration (ng/mL)  
  Day 21 Day 28 

Challenge effect  Natustat™ 
  

Control No 536.0z 903.7 
Cocci No 644.2x 982.6 
DEX No 1266.7 995.0x 
CocciDex No 2236.9 1127.7x 
Control Yes 471.7x 892.6 
Cocci Yes 516.3 836.5x 
DEX Yes 1318.4 1037.8x 
CocciDex Yes 2254.7x 1078.5x   

  

Challenge effect  
 

  

Control 
 

503.8c 898.1b 
Cocci 

 
580.2c 909.5b 

DEX 
 

1292.6b 1016.4ab 
CocciDex 

 
2245.8a 1103.1a 

    
 

 
  

 Natustat™ 1170.9 1002.2 
 No 1140.3 961.4  

Yes   

Pooled SD3 
 

374.5 127.3 
P-value 

 
  

Challenge effect 
 

<.0001 0.005 
Natustat™ 

 
0.750 0.250 

Challenge x Natustat™  0.900 0.308 
a–c Means with different superscripts within the same row differ significantly (P < 0.05). 

1Values represent means of 7 replicate cages per treatment except for mean values with superscripts x 
where the number of replicates was 6. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia 
vaccine + dexamethasone. 
3SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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Table 4.9 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on mRNA 
expression of genes analyzed from the jejunal mucosa in 21 day-old broiler chicken1. 

Treatment effect2 
Inflammation-related genes3 Intestinal transporters3 Markers of gut integrity3 

TLR4 NF-κB IL-1 IL-6 IFN-γ IL-10 SGLT-1 NaPi-IIb MUC-2 Occludin IgA 
Challenge effect  Natustat™            

Control No 0.93x 1.27x 1.32 1.28 1.01x 0.82x 1.14ab 0.98 0.93x 1.07x 1.23x 
Cocci No 2.22x 1.16 2.60 1.51x 3.57 1.66 0.77bc 0.72x 0.48 1.72 0.61 
DEX No 0.47x 1.09 0.80 0.04x 0.09x 1.41 1.05bc 1.91 0.56x 1.26x 1.90x 
CocciDex No 0.38x 0.87 1.49 0.13x 1.46 1.18 0.72bc, x 1.49 0.43x 1.29x 0.51x 
Control Yes 0.90x 0.92 1.03 1.09 0.83x 1.39 1.12abc, x 1.00x 1.04 1.01x 0.79x 
Cocci Yes 1.74 1.02x 1.91x 1.95 2.45 1.91 0.56c, x 0.68 0.53 0.92 0.60x 
DEX Yes 0.47x 0.85 0.71 0.28x 0.28x 1.30x 0.97bc, x 1.55x 0.71 1.16x 1.36 
CocciDex Yes 0.52x 1.10x 1.98x 0.05x 2.25y 1.78 1.60a, x 1.95x 0.73 1.88x 0.63x              
             
Challenge effect  

           

Control  0.91b 1.09 1.18b 1.18a 0.92bc 1.10 1.13a 0.99b 0.99a 1.04 1.01ab 
Cocci  1.98a 1.09 2.25a 1.73a 3.01a 1.79 0.66b 0.70b 0.63b 1.32 0.61b 
DEX  0.47b 0.97 0.76b 0.16b 0.19c 1.35 1.01a 1.73a 0.58b 1.21 1.63a 
CocciDex  0.45b 0.99 1.73ab 0.09a 1.86ab 1.48 1.16a 1.72a 0.50b 1.58 0.57b 

 Natustat™            

 No 1.00 1.10 1.55 0.74 1.53 1.27 0.92 1.28 0.60 1.33 1.06 
 Yes 0.91 0.97 1.41 0.84 1.45 1.59 1.06 1.29 0.75 1.24 0.85              

Pooled SD4  0.59 0.33 1.01 0.59 1.05 0.67 0.31 0.64 0.25 0.85 0.73 
P-value             

Challenge effect  <.0001 0.646 0.002 <.0001 <.0001 0.072 0.008 0.0001 <.0001 0.470 0.002 
Natustat™  0.565 0.178 0.612 0.553 0.798 0..076 0.105 0.916 0.032 0.703 0.301 
Challenge x Natustat™ 0.512 0.147 0.511 0.491 0.167 0.476 0.0003 0.437 0.597 0.248 0.623 

a–c Means with different superscripts within the same row differ significantly (P < 0.05) 
1Values represent means of 7 replicate cages per treatment except for mean values with x and y where the number of replicates was 6 and 5, respectively. 
2 Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3 TLR4, toll-like receptor 4; IL-1β, Interleukin 1 beta, IL-6, Interleukin 6; IL-10, Interleukin 10; IFN- γ, Interferon γ; NaPi-IIb, sodium-dependent phosphate transporter; SGLT-1, 
sodium-dependent glucose transporter-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MUC-2, mucin-2; IgA, immunoglobulin A 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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Table 4.10 Effect of dexamethasone and coccidia vaccine challenge with or without dietary Natustat™ supplementation on mRNA 
expression of genes analyzed from the jejunal mucosa in 28-day-old broiler chicken1. 

Treatment effect2 
Inflammation-related genes3 Intestinal transporters3 Markers of gut integrity3 

TLR4 NF-κB IL-1β IL-6 IFN-γ IL-10 SGLT-1 NaPi-IIb MUC-2 Occludin IgA 
Challenge effect  Natustat™ 

           

Control No 1.14 1.27x 1.41x 1.44bc, x 1.35 1.16bc 0.97 0.89x 1.27 0.99 1.09x 
Cocci No 0.80x 1.19 0.86 3.40a 1.67 1.29bc 0.90 1.25 1.26x 1.18 0.93 
DEX No 1.45 1.13 0.68x 1.72b, x 0.90 0.91c, x 1.36x 1.87 1.15 1.32 0.98x 

CocciDex No 1.56x 2.48 2.06y 1.25bc, x  1.45x 1.70abc, y 2.36x 2.50 1.04 1.48x 1.31y 

Control Yes 0.93x 0.99x 0.90 0.74c, x  0.81x 1.02c 1.22x 1.15 0.99 0.99x 1.91 
Cocci Yes 1.09x 1.58x 1.40x 1.56bc, x 1.79 1.89b 1.55 1.44x 1.38 1.50 0.95x 
DEX Yes 1.60 1.07x 0.40x 1.50bc, x 0.97 1.01c 1.56 2.20 1.55 1.31x 1.00 
CocciDex Yes 1.07x 2.35 1.54x 1.49bc 1.48 2.54a, x 2.39 2.55x 0.85 1.44 2.13 
Challenge effect   

           

Control  1.03b 1.13b 1.15ab 1.09b 1.08bc 1.09c 1.10b 1.12b 1.13 0.99b 1.50 
Cocci  0.94b 1.38b 1.13ab 2.48a 1.73a 1.59b 1.23b 1.34b 1.32 1.34a 0.94 
DEX  1.52a 1.10b 0.54b 1.61ab 0.94bc 0.96c 1.46b 2.04a 1.35 1.32a 0.99 
CocciDex  1.32ab 2.41a 1.80a 1.37b 1.46ab 2.12a 2.37a 2.52a 0.95 1.46a 1.72  

Natustat™ 
           

 
No 1.24 1.52 1.25 1.95 1.34 1.27 1.4 1.63 1.18 1.25 1.08  
Yes 1.17 1.5 1.06 1.33 1.26 1.62 1.68 1.83 1.19 1.31 1.5 

Pooled SD  0.47 0.55 0.63 0.83 0.56 0.47 0.48 0.57 0.47 0.34 1.15 
P-value 

            

Challenge effect 
 

0.011 <.0001 0.0004 0.001 0.002 <.0001 <.0001 <.0001 0.104 0.007 0.261 
Natustat™ 

 
0.614 0.893 0.302 0.011 0.595 0.011 0.037 0.195 0.918 0.492 0.201 

Challenge x Natustat™  0.164 0.467 0.138 0.021 0.403 0.048 0.402 0.930 0.226 0.476 0.678 
a–c Means with different superscripts within the same row differ significantly (P < 0.05). 
1Values represent means of 7 replicate cages per treatment except for mean values with superscripts x and y where the number of replicates was 6 and 5, respectively. 
2Control = non-challenge; Cocci = 20x coccidia vaccine; DEX = dexamethasone; CocciDex = 20x coccidia vaccine + dexamethasone. 
3TLR4, toll-like receptor-4; IL-1β, Interleukin 1 beta, IL-6, Interleukin 6; IL-10, Interleukin 10; IFN- γ, Interferon γ; NaPi-IIb, sodium-dependent phosphate transporter; SGLT-1, 
sodium-dependent glucose transporter-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MUC-2, mucin-2; IgA, immunoglobulin A. 
4SEM can be calculated from the pooled SD: S𝐸𝑀 =

ௌ஽

√௡
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4.6 FIGURE 

 
 

Figure 4.1 A graphical illustration of the experimental design.  
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CHAPTER 5. SUMMARY AND CONCLUSION 

Host response to stressors and enteric parasites are extremely complex and involve 

different effector mechanisms depending on the intensity and duration of the stress, prior 

host exposure to the parasite or infection, stage of parasite development, the nutritional 

status of infected chickens, and the genetic makeup of the host. Unfortunately, we cannot 

measure all components of the system simultaneously and must rely on measurements of 

only a few of them in any one study. Because a healthy intestine is necessary for adequate 

nutrient digestion, enteric diseases such as coccidiosis or transient stress factors on the farm 

that compromise the integrity of the intestinal tract, are of great importance when 

considering how to improve intestinal health through nutrition. While good nutrition is 

important, it is equally important to understand the role of nutrition in stressful conditions. 

The question this dissertation tried to answer is, how do certain feed additives ameliorate 

the impact of disease or stress conditions in poultry? The research conducted in this 

dissertation used stress-causing factors such as dexamethasone (oral or in-feed 

applications) and coccidia vaccine challenge in broilers, or heat stress in laying hens, with 

the addition of specific feed additives to answer the above question. In the broiler studies 

performance (BWG, feed intake, and feed efficiency), digestibility (ileal digestibility and 

total tract utilization of energy and nutrients), intestinal morphology, intestinal 

permeability (FITC-d marker, tight junction proteins), and immune response (cytokines, 

chemokines using RT-PCR) were evaluated (chapters 2 and 4). In the laying hen study, 

production parameters, egg quality, blood metabolites intestinal morphology, keel bone, 
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bone-breaking strength, and bone ash at different environmental temperatures were 

evaluated (chapter 3). 

In the first experiment (Chapter 2), broilers challenged with DEX (via oral gavage) 

on alternate days (d 16, 18, and 20) had increased levels of CORT in the plasma which 

marks the disruption in homeostasis. The BWG and FE were also decreased, however, 

nutrient and energy digestibility and utilization were not impaired. This suggests that the 

birds were able to absorb and utilize the nutrients but because of the presence of CORT, 

those nutrients were diverted to other processes, glucose uptake was inhibited, energy 

storage was limited. Similarly, N digestibility was not impaired, but its utilization was, 

contributing to the diversion of glucose use and increase favor towards gluconeogenesis 

hence, a reduction in the utilization of nitrogenous compounds is expected. Antioxidant 

status (SOD and CAT), bone-breaking strength, bone ash percent, immune response, and 

tight junction proteins were not affected by the DEX challenge. Some contributing factors 

could be the route of DEX administration and the intensity of dosage (once, intermittent, 

or continuous exposure) which might play a role in its severity. Two sodium sources were 

added to the diet to help maintain acid-base balance. The GC action can increase urinary 

electrolyte excretion, which might lead to electrolyte deficiencies during physiological 

stress and affect the digestibility of nutrients. In this study, the sodium sources did not 

improve any of the parameters measured. A potential reason could be the absence of pH 

change in the digestive tract with the addition of NaHCO3. Several reports have shown that 

digestive enzymes function differently based on the pH of the GIT, which can in part 

explain the lack of significance in the performance and nutrient and energy digestibility 

observations in this dissertation. Similarly, EcoE supplementation only decreased CORT 
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plasma levels and increase nutrient and energy utilization in broiler chickens in the non-

challenge birds. It failed to mitigate the negative effect of the stressor.  

To further understand the dynamics of stressors and the application of a feed 

additive on performance, ileal nutrient and energy digestibility, gut permeability, and 

immune response in broiler chickens, study 3 (Chapter 4) was conducted. Intestinal 

permeability dysfunction was determined using the FITC-d marker. The stressors applied 

in this study were DEX added at 1.5 mg/kg of diet (fed to the birds for 7 days) and coccidia 

vaccine administered at 20 times the recommended dosage for day-old chicks via oral 

gavage. A combination of the two stressors was also introduced (CocciDex). The coccidia 

vaccine challenge did not affect BWG, FI, FE, AID of DM, N, EN, Ca, and P, and DE, and 

intestinal permeability on d 21 and 28. This is an unusual result because one of the reasons 

why the vaccine is used as a challenge model in poultry nutrition research studies is because 

its use on the farm often results in a decline in these (BWG, FI, FE) parameters which, are 

unfavorable to the producer. Hence, research studies are developed using this challenge 

model to understand some of the biological functions impaired in the first few days of use. 

On the other hand, the coccidia vaccine challenge reduced the TTR DM, EN, Ca, P, AME, 

and AMEn on d 21, and DM, N, EN, AME, and AMEn on d 28. The challenge also 

increased the jejunal mRNA expression of TLR4 and the expression of other inflammatory 

mediators. The increase in IL-1β, IFN-γ, and IL-6 mRNA expression levels can also be 

attributed to TLR4 involvement in protecting the host against Eimeria sp infection. The 

immune system produces various mediators that either act directly to destroy invading 

microbes, or act on other cells to propagate the immune response. The expression of these 

inflammatory mediators suggests the birds' immune system was activated against the 
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Eimeria sp. However, the cost of activating these mediators was negligible, as such, did 

not affect performance and gut integrity. The 20X dose of the vaccine used in this study 

has consistently resulted in a significant reduction in performance, however, based on our 

experience, in about 20% of the time, 20X dose has resulted in very mild or no significant 

effect on performance. Although difficult to explain, this effect could be associated with 

variations in the batch of vaccine. 

In contrast, DEX and CocciDex challenge reduced BWG, FI, and FE and this 

reduction is more evident in the CocciDex challenge birds on d 21. Birds are exposed to a 

variety of stressors in the industry, it stands to reason that the combined effect can 

exacerbate an infectious disease as seen in this study. The absence of DEX or a stressor, 

whatever the case may be, that the birds are exposed to, can improve the BWG and FI but 

might not be sufficient to revert to the control. Like the first study, DEX did not affect AID 

of DM, EN, and DE on d 21. We observed a decrease in Ca and P digestibility and no effect 

on N digestibility. The CocciDex challenge significantly impaired ileal DM, EN, Ca, and 

P digestibility, and AME on d 21 with a significant improvement observed with DEX 

challenge on ileal Ca and P digestibility by d 28. Similarly, N, Ca, and P were poorly 

utilized with DEX and DM, N, EN, Ca, and P utilization, and AME and AMEn were 

impaired even further with CocciDex on d 21. These parameters improved post-challenge 

(d 28), with a complete recovery observed in the DEX challenge when compared to the 

Control. By equating the effect on DEX with any type of stressor the bird might encounter 

in the field that affects Ca and P digestion, it is safe to say that the implications can be 

great. Since most of the total body Ca is stored in the bone, the negative balance from 

decreasing gastrointestinal Ca absorption, increasing bone resorption, and increasing renal 
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Ca excretion can increase skeletal disorders in poultry, and can be exacerbated by an 

infection. As with other studies, the administration of DEX causes alterations in 

permeability characteristics that are consistent with glucocorticoid-induced changes, 

increasing the entry of FITC-d into circulation which, demonstrates a compromise to 

paracellular permeability rather than transcellular transport. Therefore, it is critically 

important to understand how the intestinal barrier function is maintained and regulated to 

achieve optimal animal health and productivity. Further insults to the intestinal 

permeability from DEX and CocciDex challenge is evident in the decreased expression of 

MUC-2 on d 21.  

Unlike the coccidia challenge where the expression of inflammatory mediators was 

enhanced, the DEX challenge reduced the mRNA expression of TLR4, IL-1β, IFN-γ, IL- 6. 

This predisposes the bird to insults without protection from the immune system. The 

proposed hypothesis was that Natustat™ supplementation would mitigate the effect of the 

stressor, DEX, and coccidia vaccine. However, the feed additive did not affect 

performance, nutrient and energy digestion and absorption, intestinal morphology, and 

intestinal permeability (FITC-d levels). The reason for this is unknown and limited 

conclusions can be drawn because of the limited information about the product. However, 

the supplementation of Natustat™ had a tendency to increase the expression of anti-

inflammatory cytokine (IL-10) 7-days post-challenge. It also increased IL-10 and 

decreased the mRNA expression of IL-6, 14-days post-challenge. Overall, exposure to 

compounding stressors can exacerbate the negative effects the birds encounter at the farm. 

Stressors that induce the secretion of CORT can adversely affect the development of the 
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bird and render them vulnerable to other stress factors since inflammatory mediators can 

be depressed. 

Examining another form of stress in poultry production, study 2 (Chapter 3) 

investigated the effect of exposing laying hens to different temperature regimen on egg 

quality, performance, blood metabolites, keel bone damage and bone parameters, and 

mRNA expression of heat shock proteins and the mitigating actions of supplementing two 

sodium sources (NaCl or NaCl+NaHCO3) and EconomasE™. Overall, the dietary 

treatment did not improve performance, egg quality, intestinal morphology, keel bone, 

bone-breaking strength, and HSP 70 and 90 during ET1 and ET2. Exceptions to this were 

the increase in albumen height and Haugh unit with EcoE and NaCl+NaHCO3 during TN2 

and EcoE alone during ET2 regimens, which suggests that the supplementation can 

improve the fresh appearance of the egg during ET conditions. Similarly, NaCl+NaHCO3 

as the sodium source helped circumvent the effects of respiratory alkalosis by reducing Cl- 

levels and increasing HCO3
- during the ET regimen. In normal temperature conditions, 

EcoE and NaCl+NaHCO3 diet were able to improve VH and VH: CD which suggests that 

morphological characteristics can be maintained with the use of these supplements and 

possibly improve the absorption of nutrients. 

Collectively, data from these experiments illustrate that stress factors impact 

several metabolic and biological responses in the bird. We showed that the cost of the stress 

response is offset by enhanced immunosurveillance and higher biological priority for the 

animal to fight off the infection to survive as observed in the coccidia challenge birds. The 

DEX challenge model successfully suppressed growth, immune response, and increase 

intestinal perturbation. Coccidia challenge though had no limiting effect on performance 



 

201 
 

but activated an immune response to elicit protection. It will be relevant to quantify the 

oocyst in the excreta because several observations reflects that the level of the effect of 

coccidia vaccine challenge varies from batch to batch and from  experiment to experiment. 

The utilization of nutrients and energy was impaired with the coccidia challenge 

emphasizing its economic importance, and the need for modifications during coccidia 

challenge to limit wastage of nutrients. Similarly, with the DEX challenge, it could be 

surmised that by reducing the level of protein in the diet, or including more dietary 

glucogenic amino acids in the diet during stressful conditions, the glucose production 

burden placed on skeletal muscle during stress is lessened, CORT-driven catabolism is 

decreased, and protein wastage is reduced which is sustainable to the environment. This is 

based on the reduction in N utilization and increased uric acid excretion associated with 

DEX challenge models. Further research should be done to understand why the DEX 

challenge model and the Eimeria challenge immune response diverge in terms of activated 

immune cells. This can be focused on the endocrine and immune molecular cross-talk in 

avian species, especially pathways by which innate and acquired cells are involved in the 

stress response.  

It is important to note that the reports from this dissertation, illustrate some of the 

biological responses associated with specific stress models. In conjunction with other 

published studies, the results observed (DEX- suppression of inflammatory responses, 

depression of performance parameters, nutrient utilization, etc. or Coccidia vaccine 

challenge - activation of inflammatory mediators, reduction in utilization of nutrients, etc.) 

can serve as a road map to understanding the complexities of these stressors in the poultry 

management. It also highlights the specific areas nutritional strategies can target to modify 
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the negative effects of the stressor. Future research with EconomasE™ supplementation 

can incorporate different levels in the diet to understand its effects on the status of the 

antioxidant / free radical ratio. Also, the level of free radical production can be influenced 

by a variety of factors. For example, the type or concentration of an antigen may affect the 

antioxidant status of an animal. Hence, the benefits associated with EcoE might depend on 

the type and level of the antigen, and it would be desirable to evaluate the relationship 

between the type or/and level of the antigen, cellular free radical status, and the presence 

of the immunomodulatory effects. Also, more research should be done using the feed 

additives used in this study, especially for a longer duration post-challenge. By extending  

the length of the study to market age, 42, or 56 days, the birds might benefit from diets 

supplemented with the feed additives for longer periods. This may improve performance 

the absorption and utilization of nutrients, and enhance immunomodulatory actions.  
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APPENDICES 

APPENDIX 1. Analysis of intestinal perturbation 

Intestinal health is crucial for the general health and well-being of animals and 

humans alike. In farm animals, feed intake and the efficient absorption of nutrients are very 

much determined by the health status of the GIT. Currently, the most direct method to 

quantitatively assess the intestinal barrier function is the measurement of intestinal 

permeability. This is assessed noninvasively in vivo by measuring serum/plasma levels of 

orally administered test substances. The two protocols described below provides a specific 

index of intestinal permeability. We adopted the second method in one of our studies 

(chapter 4). 

A colorimetric micro-method for d-xylose in serum 

Scope: D-Xylose is a pentose sugar absorbed by the upper small intestine primarily 

by passive transport, like the sodium-dependent active transport of glucose and amino acids 

(Goodwin et al., 1984; Doerfler et al., 2000). However, it is usually excreted in the urine 

because the body does not metabolize it properly. Because urine collection can be difficult 

in chickens, change in plasma xylose levels are indicative of its absorption from the 

intestinal tract.  

This method describes a procedure for xylose absorption test as an index of the 

small intestinal function  

Assay protocol 

Color reagent: 

 0.5g of Phloroglucinol 
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 100mL of concentrated acetic acid 

 10mL of concentrated HCL 

Prepare color reagent:  

Dissolve 0.5g of phloroglucinol in 100ml of concentrated acetic acid (AcOH) and 

10 ml of concentrated hydrochloric acid (HCL). Use caution when working with strong 

acids. 

Xylose reagent: 

a) Benzoic acid 

b) Heat block 

c) Spectrophotometer 

d) Flow-through sampling device 

Prepare d-xylose standard dilutions 

Xylose assay: 

a) 50μL Serum/plasma (undiluted) 

b) Standard solution 

c) Blank solutions 

Prepare samples: 

 In duplicates add 50μL serum/plasma, xylose standards, and blanks into disposable 

test tubes 

 Add 5 ml of phloroglucinol color reagent  

 Heat all tubes for exactly 4 mins at 100°C, then cool at room temperature in water 

 Mix well and read the absorbances at 540nm 

Serum FITC-d Assay Protocol (Duff et al. (2019) 
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Scope: Recent publications describing both poultry and rodent models of enteric 

inflammation and leaky gut have described FITC-d as a marker of enteric leakage (Brandl 

et al., 2009; Yan et al., 2009; Kuttappan et al., 2015; Vicuna et al., 2015; Duff et al., 2019).  

Reagent and supplies: 

 Black 96- well plate 

 5-50 multichannel pipette 

 50-300 multichannel pipette 

 20-200 pipette 

 Pipette tip 

 Plate/sample layout 

 1X PBS 

 FITC-d standard curve 

 Negative serum 

 FITC-d serum 

Prepare FITC-d standard dilutions 

(Samples ran are diluted 1:4) 

Standard Curve: 

1. 30µL of PBS 

2. 20µL of negative serum 

3. 50µL of standard curve dilutions 

Sample Wells: 

1. 80µL of PBS 

2. 20µL of FITC-d serum 
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Negative Control Wells: 

1. 80µL of PBS 

2. 20µL of negative serum 

The Plate Reader 

1. Create a new experiment using an existing protocol 

2. Read plates using the Gain 70 and 80 protocol 

3. Export “statistics” read (plate layout read additionally if desired) to Excel 

Guidelines 

 Always work in a low light environment 

 Entering specific plate layouts and sample IDs into the GEN5 software can speed 

up later analysis 

 Check that samples are evenly drawn up across multichannel pipettes 

 Running samples in duplicate are preferred 

 Warm up the bulb in the machine before loading FITC-d serum in the first plate 

 Each plate ran needs to have a negative control 

 If running only one sampling period (i.e. all d7 serum), one standard curve can be 

used for multiple plates If multiple sampling periods are running (i.e. d7 serum, d14 

serum, etc), a new standard and negative control should be made for each period 

using the respective negative serum 

 If working with multiple plates, prep with PBS and negative serum all at once then 

cover with respective plate ID lids until all are ready for the addition of FITC-d 

serum. 
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APPENDIX 2. Photo- characteristic effect of DEX on chicken excreta consistency 

 

Figure A 5.1 Photo of excreta collected from birds challenged with or without 
dexamethasone a).   birds were not challenged with dexamethasone b). birds were 
challenged with dexamethasone

a 

b 
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APPENDIX 3. Analysis of layer study (Chapter 3) 

The second study of this dissertation was focused on the effect of heat stress on 

laying hen performance among other things. We were posed with certain limitations with 

regards to running the experiment concurrently with birds in different rooms and exposed 

to different temperatures (normal room temperature and elevated room temperature). For 

one, there was limited room availability, and secondly, a question was raised on how we 

can run the experiment with birds in different rooms. Hence, the protocol was adjusted 

such that the experiment was conducted with the birds exposed to an environmental 

temperature at a time. For every 5 weeks, throughout 15 weeks, the laying hens were either 

exposed to normal temperature (23.8 ℃), elevated temperature (32.2 ℃), and returned to 

normal temperature (23.8 ℃). After a week break, the laying hens were exposed to the 

different environmental temperatures following the above trends. Within each temperature 

regimen, the effects of dietary treatments (with or without EconomasE™ and the addition 

of NaCl or NaCl+NaHCO3 as the source of inorganic Na source) were studied. The 

experimental temperature regimen is as follows; Phase 1 [TN1 (23.2℃; 26-30 weeks), ET1 

(32.2℃; 33 – 37 weeks), REC1 (23.2℃; 38 – 42 weeks), and Phase 2 TN2 (23.2℃; 44 - 

48 weeks), ET2 (32.2℃; 49 - 53 weeks), REC2 (23.2℃; 54 -58 weeks)]. Hence, statistical 

analysis was conducted for all parameters within each temperature regimen as described in 

Chapter 3- section statistical analysis. 

Alternative statistical analysis 

Another suggested statistical analysis would be to analyze the data differently. As 

a refresher, the experimental unit for the performance parameters (body weight, feed 

intake, feed conversion, egg production), and egg quality parameters was a replicate 
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consisting of two adjacently caged laying hens (3 adjacent cages; top and bottom tier) fed 

as a group, with a total of 9 replicates. While the experimental unit for the blood 

parameters, histology, gene expression was a single bird from 6 replicates rather than 9 

replicates. Because the production and egg quality data were collected from the same group 

of hens over time, a MIXED model of SAS with repeated measures can be considered as 

another option of analysis. In this section, the production and egg quality data were 

analyzed as a completely randomized design using a MIXED procedure of SAS with 

repeated measures in a 4 x 6 factorial experiment, where diet represented one factor and 

temperature as the repeated factor. The method applied was based on a mixed model, where 

the data were fit to a model that included the effects of diet, temperature, and temperature 

× diet. The repeated statement indicates via sub=cage (diet) that the data are correlated on 

the same animal (i.e. cage(diet)). Due to the sequential nature of the data on the animals, 

the appropriate covariance structure that fits the model must be set. Thus, covariance 

structures were compared using the goodness of fit criteria including the REML log-

likelihood (REML), Akaike information criterion (AIC), Schwartz Bayesian criterion 

(SBC), and the model with the lowest fit statistics value and the fewest number of 

parameters were selected. For this analysis, the best covariance structure, heterogeneous 

AR (1) covariance structure was chosen. The data were subjected to ANOVA in a 

completely randomized design with a 2 x 2 factorial arrangement of treatments using the 

GLM procedure of SAS software. The main effects of inorganic sodium source, 

EconomasE™, and their interaction within each temperature-period were tested. All 

statements of significance are based on a probability of <0.05. The mean values were 

compared using Tukey
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Tables 

Table A 5.1 The scoring scale of keel bone damage in laying hens fed diets with or without 
EconomasE™ (0 or 0.2 g/kg) supplementation and two inorganic sodium sources (NaCl or 
NaCl+NaHCO3) during different environmental temperature regimen1. 

Curvature Score Fracture Score 

No curvature 0 No fracture 0 

Slight curvature 1 Slight fracture 1 

Severe curvature 2 Severe fracture 2 

1Total score was the count of two hens per 36 cages. 
Keel bone damage was determined at the end of each environmental temperature regimen (with the exception 
of REC1): (Phase 1) TN1 = Thermoneutral temperature; ET1 = Elevated temperature; (Phase 2) TN2 = 
Thermoneutral temperature; ET2 = Elevated temperature; REC2 = Recovery temperature.  
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Table A.5.2 Effects of dietary supplementation of EconomasE™ and two sodium sources 
on production parameters across different temperature regimen in laying hens1. 

Temperature2 NaCl 
NaCl + 

EconomasE™ 
NaCl+ 

NaHCO3 
NaCl+ NaHCO3 
+ EconomasE™ 

TN (23.8 ℃) 
26 - 30 wk 1.99a ± 0.04 1.96a ± 0.04 1.97a ± 0.04 1.98b ± 0.06 

ET (32.2 ℃) 
33 - 37 wk 1.92b ± 0.04 1.91b ± 0.03 1.95b ± 0.04 1.91c ± 0.06 

REC (23.8 ℃) 
38 - 42 wk 1.95b ± 0.03 1.93b ± 0.06 1.97b ± 0.08 1.95b ± 0.08 

TN1 (23.8 ℃) 
44 - 48 wk 2.01a ± 0.03 2.06a ± 0.05 2.06a ± 0.10 2.04a ± 0.04 

ET1 (32 ℃) 
49 - 53 wk 1.90c ± 0.04 1.93b ± 0.08 1.95b ± 0.10 1.90c ± 0.09 

REC1 (23.8℃) 
54 - 58 wk 1.95b ± 0.05 2.03a ± 0.07 2.07a ± 0.06 1.99a ± 0.06 

P-value     

Temperature  <.0001  
  

Diet type 0.320  
  

Temperature * Diet <.0001  
  

1Values are expressed as mean ± SEM. Hens were subjected to each environmental temperature regimen for 
5 consecutive weeks. 
2Temperature: (Phase 1) TN1 = Thermoneutral temperature; ET1 = Elevated temperature; REC1 = Recovery 
temperature; (Phase 2) TN2 = Thermoneutral temperature; ET2 = Elevated temperature; REC2 = Recovery 
temperature 
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Table A 5.3 Effects of dietary supplementation of EconomasE™ and two sodium sources 
on production parameters across different temperature regimen in laying hens1. 

Temperature Diet 
Feed Intake 

(g/hen/d) 
Feed Efficiency 
(feed/egg mass) 

Hen-d egg 
production (%) 

TN 23.8 ℃ 
(26 - 30 wk) 

 
105.4b ± 1.14 1.80a ± 0.02 96.84a ± 0.55 

ET 32.2 ℃ 
(33 - 37 wk) 

 
101.9cd ± 0.51 1.75b ± 0.01 95.63ab ± 0.52 

REC 23.8 ℃ 
(38 - 42 wk) 

 
100.1d ± 0.61 1.70c ± 0.01 94.44b ± 0.84 

TN1 23.8 ℃ 
(44 - 48 wk) 

 
103.7bc ± 0.79 1.72bc ± 0.01 89.97c ± 0.70 

ET1 32 ℃ 
(49 - 53 wk) 

 
95.7e ± 0.88 1.62d ± 0.02 84.09e ± 0.72 

REC1 23.8℃ 
(54 - 58 wk) 

 
110.3a ± 1.51 1.82a ± 0.03 86.94e ± 1.16 

 
NaCl 100.8b ± 0.96 1.70b ± 0.02 91.67 ± 0.81 

 
NaCl + EcoE 104.3a ± 0.96  1.76a ± 0.02 90.74 ± 0.81 

 
NaCl+ NaHCO3 101.9ab± 0.96 1.72ab ± 0.02 91.06 ± 0.81 

 
NaCl+ NaHCO3 + EcoE 104.3a ± 0.96  1.75a ± 0.02 91.81 ± 0.81 

P values     
Temperature 

 
<.0001 <.0001 <.0001 

Diet  
 

0.029 0.057 0.759 
Temperature * Diet 0.994 0.993 0.964 

1Values are expressed as mean ± SEM. Hens were subjected to each environmental temperature for 5 
consecutive weeks. 
2Temperature: (Phase 1) TN1 = Thermoneutral temperature; ET1 = Elevated temperature; REC1 = Recovery 
temperature; (Phase 2) TN2 = Thermoneutral temperature; ET2 = Elevated temperature; REC2 = Recovery 
temperature 
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Table A 5.4 Effects of dietary supplementation of EconomasE™ and two sodium sources on egg quality across different temperature 
regimen in laying hens1. 

Temperature Diet 
Average egg 

weight (g) 

Eggshell 

weight (%) 

Eggshell breaking 

strength (kg/cm2) 

Albumen 

height (mm) 
Haugh Unit 

TN (23.8 ℃)  
26 - 30 wk  

 
58.5bc ± 0.22 9.79b ± 0.03 4.25a ± 0.03 8.81a ± 0.06 93.8a ± 0.27 

ET (32.2 ℃)  
33 - 37 wk 

 
58.4c ± 0.20 9.76b ± 0.03 3.66bc ± 0.03 8.10b ± 0.03 90.3b ± 0.19 

REC (23.8 ℃)  
38 - 42 wk  

59.0b ± 0.17 9.77b± 0.03 3.61c ± 0.03 7.91c ± 0.03 89.2c ± 0.19 

TN1 (23.8 ℃)  
44 - 48 wk  

 
60.2a ± 0.20 10.06a ± 0.03 3.72b ± 0.03 8.03bc ± 0.05 89.5c ± 0.25 

ET1 (32 ℃)  
49 - 53 wk  

 
59.1b ± 0.21 9.56c ± 0.04 3.25d ± 0.03 7.57d ± 0.05 87.0d ± 0.29 

REC1 (23.8℃)  
54 - 58 wk 

 
60.5a ± 0.22 10.04a ± 0.04 3.63bc ± 0.04 7.41e ± 0.06 85.8e ± 0.38 

 
NaCl 59.2 ± 0.23 9.85 ± 0.04 3.66 ± 0.04 8.00a ± 0.05 89.5a ± 0.31 

 
NaCl + EcoE 59.2 ± 0.23 9.79 ± 0.04 3.66 ± 0.04 7.83b ± 0.05 88.4b ± 0.31 

 
NaCl+ NaHCO3 59.1 ± 0.23 9.82 ± 0.04 3.73 ± 0.04 8.02a ± 0.05 89.5a ± 0.31 

 
NaCl+ NaHCO3 + EcoE 59.6 ± 0.23 9.85 ± 0.04 3.69 ± 0.04 8.04a ± 0.05 89.6a ± 0.31 

P-values       

Temperature 
 

<.0001 <.0001 <.0001 <.0001 <.0001 
Diet  

 
0.359 0.691 0.457 0.028 0.030 

Temperature * Diet 0.177 0.611 0.743 0.722 0.575 
1Values are expressed as mean ± SEM. Hens were subjected to each environmental temperature for 5 consecutive weeks. 
2Temperature: (Phase 1) TN1 = Thermoneutral temperature; ET1 = Elevated temperature; REC1 = Recovery temperature; (Phase 2) TN2 = 
Thermoneutral temperature; ET2 = Elevated temperature; REC2 = Recovery temperature 
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