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ABSTRACT OF DISSERTATION

Complexity, Entanglement and Codes in Quantum Field Theory

In recent decades many deep connections between quantum information theory and
quantum field theory have been unearthed. In this dissertation we study topics
in high-energy physics through the lens of quantum information: 1) We develop
connections between error-correcting codes and Narain conformal field theories. 2)
We study the entanglement entropy of one-dimensional fermionic chains with long-
range interactions. 3) We study the temperature dependence of Lanczos coefficients
and Krylov complexity.
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Chapter 1 Introduction

Quantum information has proven to be a powerful tool in advancing our under-
standing of physics. Besides the ability of quantum computers to efficiently simu-
late complex quantum systems, mathematical concepts from quantum information
theory—such as entanglement, complexity, and error-correcting codes—have found
significant applications in high-energy physics, offering a fresh perspective on quan-
tum field theory and gravity.

In the quest for a theory of quantum gravity, it is often said that our classical
theory of gravity is incompatible with quantum theory. However, recent developments
suggest that gravity can emerge from complex patterns of quantum information,
supporting the view that quantum mechanics is the fundamental theory of nature,
while gravity is an emergent phenomenon.

Over the past two decades, numerous deep connections between quantum infor-
mation, quantum field theory, and gravity have been uncovered, with early hints
appearing even further back. One of the earliest indications emerged in 1973 when
it was recognized that thermodynamics has many parallels with black holes [1]. This
connection was further strengthened when the entropy of a black hole was identified
with its surface area [2], which was also an early manifestation of the holographic
principle.

A concrete realization of the holographic principle, the AdS/CFT correspondence
[3] has played a pivotal role in discovering the connections between quantum infor-
mation and gravity. This correspondence conjectures a duality between gravity in
a (d + 1)-dimensional anti-de Sitter (AdS) space-time and a conformal field theory
(CFT) existing on its d-dimensional boundary. Concepts such as quantum error-
correction, entanglement entropy (EE) and complexity are crucial in understanding
how information is encoded in this correspondence.

Entanglement entropy in the AdS/CFT framework acquires a concrete geometric
interpretation, as the Ryu-Takayanagi (RT) formula [4] and its extensions establish a
connection between the entanglement entropy of the boundary CFT and the minimal
surface area within the bulk. In this context, dynamics of gravity are closely related
to dynamics of entanglement [5], indicating that the space-time’s geometry arises
from the entanglement pattern inherent in the quantum state.

Moreover, the concept of quantum error-correction, vital for building robust quan-
tum computers, finds application in the study of space-time. The way information is
protected in a quantum code has parallels with how local bulk information is encoded
in the AdS/CFT correspondence [6]. Tensor networks, which provide toy models for
holography, realize the error-correcting features of AdS/CFT [7], helping us under-
stand how space-time can emerge from a more fundamental quantum information
description.

A description of Narain CFTs in terms of codes [8] opened another path for for-
mulating gravity in terms of error-correcting codes. Recent advances suggest that
low-dimensional gravity is dual not to a single boundary theory, but rather an en-
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semble of theories [9]. A toy model of 3d gravity, called “U(1) gravity”, was found to
be dual to the ensemble of Narain CFTs [10]. A generalization of the code description
of Narain CFTs (see Chapter 3) has enabled our understanding of how “U(1)” gravity
emerges from ensembles of codes [11].

Complexity is another quantity that acquires geometric meaning in holography.
The complexity of an object refers to the number of “simple” objects required to build
it. Specifically, for an extended quantum system, one could ask: how many local
operators are needed to build a specific state starting from a fully unentangled state?
This notion of complexity is known as circuit complexity. For holographic states,
circuit complexity is conjectured to be related either to the volume of a maximal
space-like slice [12], or the action of a region in the space-time [13].

Quantum information, under time evolution, tends to spreads across many de-
grees of freedom; a spreading that is governed by universal laws. Within a chaotic
system, quantum information spreads rapidly throughout the entire system, trans-
forming “simple” operators into complex multi-particle operators. This phenomenon,
known as scrambling, can be described in terms of out-of-time-order correlation func-
tions (OTOCs), which exhibit exponential growth in large-N systems. The rate of
this growth, characterized by the “Lyapunov exponent” λ, is constrained by the uni-
versal Maldacena-Shenker-Stanford (MSS) bound, λ ≤ 2π

β
, where β is the inverse

temperature [14].
Krylov complexity, proposed as a bridge between OTOCs and traditional indi-

cators of chaos [15] measures the average position of an operator within the Krylov
basis as it evolves over time. In chaotic systems, Krylov complexity grows expo-
nentially, with its exponent λK acting as an upper limit for the Lyapunov exponent
(λ ≤ λK) at infinite temperature, and it is conjectured to hold true at finite temper-
atures as well. This inequality is suggested to be part of a generalized MSS bound
λ ≤ λK ≤ 2π

β
[16]. Dynamics in the Krylov space are encoded by the sequence of

Lanczos coefficients. The temperature-dependence of this sequence is governed by
integrable Hamiltonian dynamics (see Chapter 6), and the characteristics of Krylov
complexity at low temperatures exhibit universal traits.

The structure of this dissertation is as follows. In Chapter 2 we give an introduc-
tion to error-correcting codes and their generalizations, as well as a brief introduction
to Narain CFTs. In Chapter 3, we construct the known (conjectured) optimal Narain
CFTs for central charge up to c = 8 from codes. By performing an average over
codes, we find that asymptotically, for large-c, the spectral gap ∆ grows linearly with
c, saturating the conjectured upper bound ∆ ∼ c

2πe
. In Chapter 4, we use codes to

construct the RCFTs described by A,D,E affine Lie algebras at level 1. We show
that classification of modular invariants is equivalent to classification of all self-dual
codes with alphabets based on the discriminant groups of the A,D,E root lattices.
Finally, we show how Poincaré sums can be phrased and evaluated in terms of codes.

In Chapter 5, we study the entanglement entropy of 1-dimensional fermion chains
with long-range interactions, with a parameter α controlling the range of the interac-
tions. We find that the EE in systems with a smooth IR limit obey area law, governed
by the CFT at their IR fixed point. However, systems without smooth IR limit, such

2



as disordered systems, are not constrained to obey area law. We show, numerically,
that such systems show intermediate fractal scaling of EE, as they transition from
volume to area law, while α is increased.

In Chapter 6, we formulate the temperature dependence of Lanczos coefficients
as an integrable Hamiltonian system. Specifically, this system is related to the Toda
hierarchy. We identify two effects that cause “staggering” in the Lanczos sequence at
finite temperature and illustrate them using examples.

Copyright© Nikolaos Angelinos, 2024.
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Chapter 2 An introduction to codes and Narain CFTs

An error-correcting code is a method of introducing redundancies into a message
transmitted over a noisy channel to protect against data loss or corruption. For
example, consider the transmission of a single binary bit, 1, over a noisy channel.
The receiver, in this case, cannot determine whether the received bit is correct or has
been corrupted by noise.

To address this problem, the sender can construct a string (codeword) containing
three copies of the bit:

c = (1, 1, 1).

This is known as the ”repetition code.” During transmission, some bits may be cor-
rupted. The receiver can attempt to reconstruct the original message by taking a
majority vote of the received message. This code can detect up to two-bit errors
but can only correct single-bit errors. To provide better protection, one can send a
string containing more copies of the initial bit. Clearly, there is a trade-off between
efficiency and error-correcting capabilities.

A code can be defined abstractly as a subset C of Gn, where G is an alphabet.
If G is an additive group, we can build additive codes, which have an additional
structure: the sum of any two codewords is also a codeword, i.e., C is a Z-module. If
G is a field, we can define G-linear codes, requiring that C is a G-linear vector space.
In this dissertation, we are not interested in the error-correcting properties of codes.
Instead, we use codes to aid in the study of 2-dimensional conformal field theories.

2.1 Classical binary codes

A binary code C is a Z2-linear subspace of Zn
2 . The elements of C are called code-

words. Let G be the generator matrix, a k×n binary matrix (k ≤ n) whose rows
form a basis of C. This matrix is a linear map from Zk

2 to C, which maps a string x
of logical bits into a codeword c

c = xG, x ∈ Zk
2. (2.1)

We equip the space Zn
2 with a bi-linear form (or inner product)

〈a|b〉 =
n∑

i=1

aibi. (2.2)

Now, for a code C, we can define the dual code C⊥, as follows

C⊥ = {c′ ∈ Zn
2 : 〈c′|c〉 = 0 ∀c ∈ C}. (2.3)

Note that (C⊥)⊥ = C. A code C is self-dual if C = C⊥. Since |C||C⊥| = |Zn
2 | = 2n,

it follows that a self-dual code exists only if n is even and it consists of |C| = 2n/2

codewords.
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The generator H of C⊥, an n − k × n matrix, is also called the parity check
matrix of C. It satisfies cHT = 0 if and only if c ∈ C, therefore if cHT 6= 0 we can be
certain that an error has occurred. The converse is not true; if an error occurs, cHT

is not zero necessarily. This is because some errors may transform a codeword within
the code subspace C. Such errors change more bits than the Hamming distance of
the code, which we will define next.

In order for the code to be good at detecting and correcting errors, we need to
be able to easily distinguish between codewords. To make this notion more precise,
define the Hamming weight, w(c) of a codeword c as the number of its non-zero
elements. The Hamming distance dC of a code C is the minimum weight of its
non-zero codewords

dC = min
c∈C, c ̸=0

{w(c)}. (2.4)

A code can detect errors that corrupt up to dC bits, while it can correct errors that
corrupt up to bdC−1

2
c bits. A code is called even if the Hamming weights of all its

codewords are divisible by 2.
A useful quantity that encodes important properties of a code is the weight

enumerator polynomial. It is a homogeneous polynomial of two variables

WC(x0, x1) =
∑
c∈C

x
n−w(c)
0 x

w(c)
1 =

n∑
k=0

Akx
k
1x

n−k
0 , (2.5)

where w(c) is the Hamming weight of c. The coefficients Ak are positive integers that
count the number of codewords of weight k and satisfy

∑
Ak = |C|. Uniqueness of

the zero codeword imples A0 = 1.
Two codes C, C ′ are called equivalent if there exists a bijective map C → C ′ that

preserves the bi-linear form and all Hamming weights. Clearly, equivalent codes have
identical enumerator polynomials. Therefore, it is not possible, in most cases, to
reconstruct the code from an enumerator polynomial. In fact, there also exist “fake”
enumerator polynomials; polynomials that satisfy all properties of an enumerator
polynomial, but for which no code exists.

The MacWilliams identity relates the weight enumerator polynomial of a code
C to that of its dual code C⊥

WC⊥(x0, x1) = 2
n
2
−kWC

(
x0 − x1√

2
,
x0 + x1√

2

)
. (2.6)

It follows that for a self-dual code

WC⊥(x0, x1) = WC(x0, x1). (2.7)

To illustrate the definitions so far, consider the codes C1, C2, C3 with generator
matrices

G1 =

(
1 0 1 0
0 1 0 1

)
, G2 =

(
1 1 1

)
, G3 =

(
1 0 0 1
0 1 1 0

)
. (2.8)
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The codes C1, C3 consists of 4 codewords each, while C2 consists of 2. Their Hamming
distances are dC1 = dC3 = 2, dC2 = 3. Their dual codes are generated by

H1 =

(
1 0 1 0
0 1 0 1

)
, H2 =

(
1 1 0
0 1 1

)
, H3 =

(
1 0 0 1
0 1 1 0

)
. (2.9)

Since C1 = C⊥
1 and C3 = C⊥

3 , these codes are self-dual. Moreover, the codes C1, C3 are
equivalent.

The codes C1, C3, being equivalent, have identical enumerator polynomials. The
polynomials are given by

WC1 = WC⊥
1
= x40 + 2x20x

2
1 + x41, WC2 = x30 + x31, WC⊥

2
= x30 + 3x0x

2
1. (2.10)

It is straightforward to confirm that WC1 is invariant under MacWilliams identity,
while √

2WC2

(
x0 − x1√

2
,
x0 + x1√

2

)
= WC⊥

2
(x0, x1). (2.11)

2.1.1 Generalization

We will now generalize all the notions introduced earlier about binary codes to codes
with alphabet ZN (the ring of integers modulo N).

A code C is a ZN -linear subspace of Zn
N (also called a Z-module or a free Abelian

group). The generator matrix G, with entries in ZN , is a linear map from Zk
N to C

c = xG, x ∈ Zk
N . (2.12)

Unlike binary codes, one can define many different weights on Zn
N . A common and

straightforward generalization of the Hamming weight counts the number of non-zero
entries of a codeword. For our purposes, we will need to define a more complicated
weight. We will specify the choice of weight in section 2.3, but for now we mention
that we require that the weight is non-degenerate, semi-positive definite and satisfies
the triangle inequality.

We also need to generalize the notion of evenness in a way that is useful for our
goals. We define a function wt2, with the property that wt2(c) = 0 if the codeword
c is even and wt2(c) 6= 0 otherwise. If all the codewords of C satisfy this evenness
condition, the code C is even.

Given a bi-linear form 〈a|b〉 on Zn
N , we can define the dual code of C

C⊥ = {c′ ∈ Zn
N : 〈c′|c〉 = 0 ∀c ∈ C}. (2.13)

The complete enumerator polynomial of a code C ⊆ Zn
N is

WC(x0, x1, . . . , xN−1) =
∑

(c1,c2,...,cn)∈C

n∏
i=1

xci . (2.14)

The MacWilliams identity can be straightforwardly generalized:

WC⊥(x0, x1, . . . , xN−1) = N
n
2
−kWC(x̃0, x̃1, . . . , x̃N−1), (2.15)
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where
x̃a =

1√
N

∑
a′∈ZN

e−2πi⟨a|a′⟩xa′ . (2.16)

The enumerator polynomial of a self-dual code is invariant under this transformation

WC⊥(x0, x1, . . . , xN−1) = WC(x0, x1, . . . , xN−1). (2.17)

2.2 Lattices

A lattice is a periodic arrangement of points in space. Lattices have many applications
including cryptography, solid-state physics and sphere-packings. Here we are going
to adopt an abstract mathematical description.

A lattice Λ ⊆ Rm of dimension n is a free Z-module whose R-span is isomorphic
to the vector space Rn. Consequently, a lattice as an additive group, is isomorphic
to Zn. We will only consider the case n = m for simplicity.

A lattice Λ inherits a bilinear form 〈·|·〉 from the space (usually Rn) in which it
is embedded. Using this form, we can define the dual lattice as follows

Λ⊥ = {λ′ ∈ Rn : 〈λ|λ′〉 ∈ Z ∀λ ∈ Λ}. (2.18)

If Λ ⊆ Λ⊥, the lattice Λ is called self-orthogonal. If Λ = Λ⊥, the lattice is
self-dual. If 〈λ|λ〉 ∈ Z for all λ ∈ Λ, then Λ is integral. If 〈λ|λ〉 is even for all
λ ∈ Λ, then the lattice is even. Finally, an integral lattice whose unit cell has volume
equal to 1 is called unimodular.

The theta series of a lattice Λ is a holomorphic function of τ in the upper-half
complex plane that encodes important properties of the lattice.It is defined by

ΘΛ(τ) =
∑
λ∈Λ

eπiτ⟨λ|λ⟩. (2.19)

Consider now the case where 〈λ|λ〉 =
∑n

i=1 λ
2
i is the Euclidean inner product in

Rn. The theta series of an even, self-dual Euclidean lattice is a modular form of
weight n

2
. Even, self-dual Euclidean lattices are not easy to construct. In fact, they

exist only in dimensions divisible by 8. The smallest example is the E8 lattice; the
root lattice of one of the exceptional Lie algebras. For n = 16 there are two even,
self-dual lattices, while for n = 24 there are 24, the most important of which is the
Leech lattice[17].

We will be interested in even, self-dual Lorentzian lattices (which will be defined
later in section 2.4). Such lattices exist for any even integer dimension n. The theta-
series is generalized to the Siegel theta series, a function of two variables τ, τ̄ in the
upper half complex plane. The Siegel theta series is a Siegel modular form, a type of
automorphic form.
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2.2.1 Lattices from binary codes: Construction A

Let C be a classical binary code. The construction A lattice is defined by [17]

Λ =

{
1√
2
x ∈ Rn : x = c mod 2 for some c ∈ C

}
. (2.20)

If C is even and self-dual, then Λ is a unimodular lattice. In addition, if the weights
of all codewords of C are divisible by 4 (doubly even), then Λ is even.

The theta series of Λ can be obtained from the enumerator polynomial of C by
the substitutions [8]

x0 → θ3(q
2), x1 → θ2(q

2), (2.21)
where θ2, θ3 are the Jacobi theta functions

θ2(q) =
∑

n∈Z+ 1
2

qn
2/2, θ3(q) =

∑
n∈Z

qn
2/2, q = e2πiτ . (2.22)

Consider two examples: the trivial binary code C0 = {(0, 0)}, as well as the code
C1 generated by

G1 = (1, 1). (2.23)
The construction A lattice of C0 is the square lattice of side length

√
2. Meanwhile,

C1 leads to the unimodular lattice:

Λ1 =

{(√
2
0

)
p+

(
1√
2
1√
2

)
q, p, q ∈ Z

}
. (2.24)

Their enumerator polynomials are respectively

WC0(x0, x1) = x20, WC1(x0, x1) = x20 + x21. (2.25)

Explicitly, they are given by

ΘL0 = θ23(q
2) =

∑
n,m∈Z

qn
2+m2

, ΘL1 = θ23(q
2) + θ22(q

2) =
∑

n,m∈Z

qm
2+2n2+2nm. (2.26)

These examples illustrate how codes can be a powerful tool in the study of lattices.
Unlike lattices, codes contain finitely many elements. The short vector of a lattice
stems from the codeword with the minimum Hamming weight, therefore the short
vector problem is equivalent to finding the Hamming distance of a code. Moreover,
an enumerator polynomial, being a homogeneous polynomial of a finite number of
variables, is much easier to handle than a theta series.

2.3 Generalized construction A

Let Λ be a self-orthogonal lattice. Then, G = Λ⊥/Λ is a finite, free Abelian group,
called the discriminant group. We define a code C to be an additive subgroup of
Gn. We are interested in self-dual codes with alphabet G.

8



Let ϕ : Λ⊥ → G be a surjective map with ker(ϕ) = Λ. The inner product 〈·|·〉Λ
on the lattice Λ induces an inner product 〈·|·〉 on the group G. Let g1, g2 ∈ G and let
λ1, λ2 ∈ Λ⊥ be such that g1 = ϕ(λ1) and g2 = ϕ(λ2). We define

〈g1|g2〉 ≡ 〈λ1|λ2〉Λ mod Z. (2.27)

We also define the evenness condition wt2 on G, which will be used to define even
codes. For g = ϕ(λ):

wt2(g) ≡ 〈λ|λ〉Λ = 0 mod 2Z. (2.28)
We extend the above definitions to Gn in the following, straightforward way. For

g = (g1, . . . , gn), g
′ = (g′1, . . . , g

′
n) ∈ Gn:

〈g|g′〉 =
n∑

i=1

〈gi|g′i〉, (2.29)

wt2(g) ≡
n∑

i=1

wt2(gi). (2.30)

A code C is even if all c ∈ C satisfy wt2(c) = 0.
Now we can define the following generalization to construction A

LC = {l ∈ Λ⊥ ⊕ · · · ⊕ Λ⊥|ϕ(l) ∈ C}. (2.31)

By definition, this lattice satisfies

Λ⊕ · · · ⊕ Λ ⊆ LC ⊆ Λ⊥ ⊕ · · · ⊕ Λ⊥. (2.32)

We define the weight wt on Gk as follows

wt(c) = min
l∈Λ⊥⊕···⊕Λ⊥:ϕ(l)=c

〈l|l〉Λ. (2.33)

In words, the weight of an element of Gk is equal to the length of the shortest vector
it gives rise to under construction A.

From these definitions, it follows that the lattice constructed from the dual code
C⊥ is dual to the lattice constructed from the code C

LC⊥ = L⊥
C . (2.34)

In particular, if C is self-dual, the lattice LC is self-dual. Additionally, the minimum
weight of the code is equal to the length of the short vector of the lattice, and even
codes result in even lattices.
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2.4 Conformal Field Theory: Narain lattices

Consider a theory of n free bosons in 2 space-time dimensions, governed by the action
[18]

S =
1

8π

∫
dt

∫ 2π

0

dσ((∂tϕ)
2 − (∂xϕ)

2 − 2Bij∂tϕ
i∂xϕ

j). (2.35)

We require that the bosons are compactified on a torus Rn/(2πΓ), where Γ ⊆ Rn is
a Euclidean lattice. In practice, this means that we impose the boundary condition

ϕ(t, x+ 2π) = ϕ(t, x) + 2πα, α ∈ Γ. (2.36)

The solution to the classical equation, after imposing (2.36), is

ϕ(t, x) = ϕ0 + vt+αx+
i

2

∑
n ̸=0

an

n
e−in(t+x) +

i

2

∑
n ̸=0

bn
n
e−in(t−x), α ∈ Γ. (2.37)

It can be written as a sum of left and right movers

ϕ(t, x) = ϕL(t+ x) + ϕR(t− x), (2.38)

where
ϕL(t+ x) =

1

2
ϕ0 + pL(t+ x) +

i

2

∑
n ̸=0

an

n
e−in(t+x), (2.39)

ϕR(t− x) =
1

2
ϕ0 + pL(t− x) +

i

2

∑
n ̸=0

bn
n
e−in(t−x) (2.40)

and
pL − pR ∈ Γ, (2.41)
pL + pR = v. (2.42)

The canonical momentum, from (2.35), is

Pi =
1

2
(vi − Bijαj). (2.43)

In the quantum theory, after imposing canonical commutation relations, the canonical
momentum is quantized in P ∈ Γ⊥ (the dual lattice of Γ). Therefore, we can write(

pL

pR

)
= L̃k, k ∈ Z2n, (2.44)

where
L̃ =

(
Γ⊥ B+I

2
Γ

Γ⊥ B−I
2

Γ

)
(2.45)

and by abuse of notation, we denote the lattices Γ⊥,Γ and their generator matrices
by the same symbol. It is convenient to make the choice Γ⊥ = (Γ−1)T .
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We shall also use another convention, mainly in chapter 3, where we define the
lattice L by (

pL+pR√
2

pL−pR√
2

)
= Lk, k ∈ Z2n, (2.46)

from which it follows that

L =

(
γ⊥ Bγ
0 γ

)
, γ = Γ/

√
2. (2.47)

The generator matrix L satisfies the O(n, n,R) relation

LTgL = g, g =

(
0 I
I 0

)
, (2.48)

where I is the n × n identity matrix. Therefore, all inner products, with respect to
g are integers and all lengths are even integers. We will refer to g as the Lorentzian
inner product. This means that L is an even, self-dual Lorentzian lattice. Lattices
satisfying these conditions are also called Narain lattices [19].

The partition function of this CFT is given by

Z(τ, τ̄) =
1

|η(τ)|2n
∑

(pL,pR)∈L̃

qp
2
L/2q̄p

2
R/2, q = e2πiτ , q̄ = e−2πiτ̄ . (2.49)

For a CFT to be well-defined, its partition function must be modular invariant. The
modular group SL(2,Z) is generated by τ → τ + 1 and τ → −1/τ . Evenness and
self-duality of L automatically implies that Z(τ, τ̄) is modular invariant. In chapter 3
we will see how the partition function of a CFT constructed from a code C is related
to the enumerator polynomial of C.

Consider now the moduli space Mc of all Narain CFTs of fixed central charge c.
Since every Narain CFT can be described by a Narain lattice, we may want to identify
Mc with the indefinite orthogonal group O(c, c,R), which is the set of all self-dual
Lorentzian lattices. However, the correspondence between this group and Narain
CFTs is not one-to-one. First, we must quotient out the automorphism group of the
lattice, which is O(c, c,Z). Moreover, distinct Narain lattices may correspond to the
same underlying CFT, due to T-duality. The group of T-dualities, O(c,R)×O(c,R)
contains the elements that preserve the Lorentzian inner product, as well as the
Euclidean norms of all vectors. Hence, the moduli space of Narain CFTs at central
charge c is given by [10]

Mc = O(c,R)×O(c,R)\O(c, c,R)/O(c, c,Z). (2.50)

Copyright© Nikolaos Angelinos, 2024.
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Chapter 3 Optimal Narain CFTs from codes

This chapter is based on the published work “Optimal Narain CFTs from codes” co-
authored with D. Chakraborty and A. Dymarsky [20] and is reproduced here with the
co-authors’ consent and according to the CC BY 4.0 license. Minor changes were made
in order to improve consistency with other chapters and to eliminate redundancies.

3.1 Motivation: Codes and Narain CFTs

Conformal modular bootstrap program aims to establish universal constraints on two-
dimensional CFTs and elucidate properties of those special theories which saturate
these constraints. One of the central goals of the modular bootstrap is to study
theories maximizing the value of the spectral gap for a given fixed value of central
charge [21], as these theories for large central charge are expected to be dual to weakly
coupled gravity [22]. To simplify this obviously challenging task one can restrict their
attention to a class of Narain theories, i.e. CFTs exhibiting U(1)c ×U(1)c symmetry.
In this case, large spectral gap theories are not sparse (in the sense of [22]), and their
holographic description is less clear [23]. Nevertheless, the study of such theories
is well motivated by both holography and the modular bootstrap, with the latter
relating solutions of spinless bootstrap constraints to densest sphere packings [24].1
Narain theories were studied in [26] and [27] using spinless and full modular bootstrap,
with the hypothetical optimal theories being identified for c ≤ 8. Here, following [28]
we say optimal to denote CFTs maximizing the spectral gap for a given c.

A relation between quantum codes and Narain CFTs, proposed in [29], generalizes
the chiral constructions of [30]. Starting from a code, it constructs the correspond-
ing Narain lattice and expresses CFT torus partition function in terms of the code
enumerator polynomial. In this way constraints of modular invariance reduce to two
algebraic constrains at the level of enumerator polynomial. The relation to quan-
tum codes was recently extended and interpreted in terms of CFT Hilbert space in
[31]. There are also “bottom-up” generalizations when the connection with codes is
perceived as a tool to solve modular bootstrap constraints and construct interesting
CFTs [8, 32], also see [33, 34] for the subsequent developments.

In this chapter, we apply the Construction A outlined in chapter 2, which gen-
eralizes and encompasses the constructions of [8, 32]. In particular, we explicitly
construct all (conjecturally) optimal Narain theories for c ≤ 8 identified in [27]. We
consider self-dual codes over abelian groups G = Zp × Zq, built from 2-dimensional
even, Lorentzian lattices. The generalization of the code Hamming distance, modulo
certain subtleties, defines CFT spectral gap ∆∗ such that “better” codes with larger
Hamming distance corresponds to larger ∆∗. In each case, the resulting Narain lat-

1Here we are speaking of a density of states satisfying (some subset) of modular bootstrap con-
straints, with no regard to whether there is an actual CFT yielding this density of states. Similarly,
speaking of densest sphere packings, we in fact refer to a solution to Cohen-Elkies linear program
constraints [25], with no regard to whether there are actual associated sphere packings.
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tice necessarily has vectors of particular length which is independent of c. Hence any
given construction can only yield CFTs with bounded spectral gap that doesn’t grow
with c. Nevertheless by considering a sequence of constructions parametrized by c
one can obtain a family of Narain theories with the spectral gap growing linearly with
c. For c � 1 finding optimal codes, i.e. those maximizing corresponding Hamming
distance, is a challenging task, but one can average over a family of codes with the
given c. From here we find that random code CFT, drawn from a particular ensemble,
has spectral gap

∆∗ =
c

2πe
, c→ ∞, (3.1)

which was conjectured in [23] to be asymptotically largest possible value. Thus, we
conclude that certain code CFT are optimal for c � 1 or at least give spectral gap
with the conjectured maximal asymptotic value of ∆∗/c.

This chapter is organized as follows. In section 3.2 we outline our main construc-
tion mapping codes to Narain CFTs and then express their partition functions in
terms of enumerator polynomials in section 3.3. We then use these results to con-
struct optimal theories for c ≤ 8 in section 3.4. We proceed by considering the case
of asymptotically large c and a family of associated constructions in section 3.5. We
conclude in section 3.6.

3.2 Additive codes and Lorentzian lattices

The main ingredient of our construction is a 2-dimensional even lattice Λ ∈ R1,1,
which we call a “glue” lattice. The discriminant group of such a lattice is an additive
group G, which serves as the alphabet of the code. Then Construction A (see section
2.3) maps a code C ⊂ Gc into a lattice

Λ⊕ · · · ⊕ Λ︸ ︷︷ ︸
c times

⊂ ΛC ⊂ Λ⊥ ⊕ . . .Λ⊥︸ ︷︷ ︸
c times

⊂ Rc,c. (3.2)

When C satisfies additional conditions, the lattice ΛC is even and self-dual, thus
defining a Narain theory.

3.2.1 Even lattices in R1,1

We equip R2 with a Lorentzian metric

g =

(
0 1
1 0

)
, (3.3)

thus turning it into R1,1. It is convenient to parametrize a lattice by a generating
matrix Λ, such that v = Λn, n ∈ Z2 generates all lattice vectors. Again we abuse
the notation by using Λ to denote both the lattice and its generating matrix. The
generating matrix is not unique, obviously Λ and ΛS for S ∈ SL(2,Z) generate the
same lattice. So far we are only interested in the scalar product defined by (3.3), we
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can identify all lattices related by O(1, 1), Λ ∼ OΛ for O ∈ O(1, 1). The dual lattice
Λ⊥, at the level of generating matrix can be expressed as Λ⊥ = g(Λ−1)T .

We can parametrize all even lattices in R1,1 as follows. In full generality

gΛ = ΛTgΛ =

(
2m k
k 2n

)
, n,m, k ∈ Z, (3.4)

assuming det(Λ) =
√
k2 − 4mn > 0. Then using SL(2,Z) we can bring n,m, k to

satisfy (see chapter 15 of [17])

0 < k <
√
k2 − 4nm < min(k + 2|n|, k + 2|m|), (3.5)

unless k2 − 4nm is a full square, in which case one can choose new n,m, k such that

n = 0, −k < m ≤ k. (3.6)

With the help of an appropriate O(1, 1) transformation the corresponding gener-
ating matrix can be brought to the form

Λ =

(
1 n

a

m a

)
, a =

1

2
(k +

√
k2 − 4mn). (3.7)

Since Λ is integral, it is contained in its dual Λ⊥ ⊇ Λ. Its discriminant group (which
we will call “glue group” in this chapter) is

G = Λ⊥/Λ = Z2/gΛ = Zp × Zq. (3.8)

Here

p = gcd(2n, 2m, k), q = |G|/p, (3.9)

where
|G| = | det(Λ)/ det

(
Λ⊥)| = k2 − 4mn. (3.10)

is the order of the group. This follows from the invariant factor decomposition of
finitely generated Abelian groups.

One possible parametrization of the elements of G is as pairs g = (a, b) of integer
numbers 0 ≤ a < p, 0 ≤ b < q. Another useful parametrization is as integer vectors
ℓ(g) ∈ Z2 modulo columns of gΛ. An explicit map between these two parametrizations
may be nontrivial.

The Lorentzian metric on R1,1 induces a bi-linear form (or scalar product) 〈·|·〉 on
G, which is then extended to Gc (see section 2.3). We are interested in codes C ⊆ Gc

that are even and self-dual with respect to this inner product.

14



3.2.2 Narain lattices from Construction A

Starting from a code C ⊂ Gc, Construction A (2.31) associates to it a lattice ΛC in
Rc,c. Then it is straightforward to see that an even C would give rise to an even lattice
ΛC and a self-dual C to a self-dual ΛC, both understood with respect to Lorentzian
scalar product gL = g ⊕ · · · ⊕ g in Rc,c.

To define a Narain theory, besides Lorentzian scalar product, even self-dual lattice
should also be equipped with the Euclidean scalar product. For each Λ defined in
previous section there is O(1, 1) ambiguity how it can be embedded in R2. Thus, very
explicitly we can write

v =

O(Λ
⊥ℓ1 + Λk1)

...
O(Λ⊥ℓc + Λkc)

 ∈ ΛC, (ℓ1, . . . , ℓc) ∈ C, ki ∈ Z2, (3.11)

where in (3.11) we parametrize elements of G = Z2/gΛ by vectors ℓ. Matrix O is
an arbitrary element from O(1, 1). In principle we can introduce c different transfor-
mations Oi ∈ O(1, 1) acting in each R2 plane. In this case most of the construction
remains intact, but the permutation of factors of G in C ⊂ Gc, which is convention-
ally considered to be a code equivalence, would no longer yield physically equivalent
lattices. In what follows we assume that all factors O are the same.

The main result of this section is as follows. For any discriminant group G defined
via (3.8) with the help of an appropriate even lattice Λ ⊂ R1,1, any even self-dual
code C ⊂ Gc via Construction A defines Narain lattice ΛC (3.11) and hence a Narain
CFT. We will call such CFTs code theories.

3.2.3 Example: square glue lattice

Consider the following glue lattice generating matrix

Λ =
√
p g, p ∈ N. (3.12)

The dual lattice is generated by Λ⊥ = I/
√
p. Clearly this is the case of n = m = 0, k =

p and the glue group G = Zp × Zp is parametrized by g = (a, b) ∈ G, 0 ≤ a, b < p
and

ℓ(g) = (a, b)T . (3.13)

It is convenient to write codewords c = (g1, . . . , gc) ∈ C ⊂ Gc as

c = (a1, . . . , ac|b1, . . . , bc) ∈ Z2c
p . (3.14)

A code can be defined with a 2c× d generating matrix GC such that

c = GC r, r ∈ Zd
p, (3.15)

where d depends on p. For prime p generating matrix is 2c×c and using permutations
can always be brought to the form

GC =
(
I |BT

)
, (3.16)
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where B is an integer values antisymmetric c× c matrix defined mod p,

BT = −B mod p, (3.17)

and Bii = 0. Applying Construction A to such codes leads to Narain lattices gener-
ated by

ΛC =

(
pIc B
0 Ic

)
/
√
p, gL =

(
0 Ic
Ic 0

)
, (3.18)

associated with the Lorentzian scalar product gL. Here Ic is a c-dimensional identity
matrix.

The form of ΛC provides a clear interpretation – corresponding Narain theory
describes c scalars compactified on a c-dimensional cube of size 1/

√
p in presence of

B-field B.
The construction of [8, 29], which considered the case of p = 2, is a special case

of the construction described in this section. A similar generalized construction has
been recently introduced independently in [33].

3.2.4 Generalization: isodual codes

Permutation of factors S : Gc → Gc

S : (g1, . . . , gc) → (gi1
, . . . , gic) (3.19)

is the simplest example of code equivalences, defined as a linear transformation S :
Gc → Gc which preserves scalar product 〈·|·〉. Provided dual code is equivalent to
the original one

C⊥ = S(C), (3.20)

such a code is called isodual. From this follows S2 = 1, i.e. when S is a permutation,
it is a pair-wise permutation, with the corresponding matrix satisfying ST = S.

We can introduce evenness as the condition for all codewords (g1, . . . , gc) ∈ C ⊂ Gc

to have even scalar product with its permuted self,
c∑

i=1

〈gi|gS(i)〉 ∈ 2Z. (3.21)

An even, isodual code C with respect to some pairwise permutation S, via Con-
struction A (3.11) gives rise to an even lattice, which is self-dual with respect to
Lorentzian scalar product

gL = g ⊗ S. (3.22)

In this way isodual codes also can be used to define Narain lattices and code CFTs.
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3.2.5 CFT spectral gap and code modified Hamming distance

Construction A (3.11) relates each codeword c ∈ C to a family of vectors l(c). We
define the weight of c to be the minimal length squared among all such l, according to
(2.33). Define the generalized Hamming distance d(C) to be the minimum non-zero
weight of the code C.

From this definition follows that the code theory spectral gap ∆∗, defined as the
length-squared of the shortest non-zero vector divided by two, is simply related to
code’s generalized Hamming distance ∆∗ = d(C)

2
. This relation is transparent, but

there is one caveat: zero codeword c = 0 is mapped into the origin of ΛC, as well as
many vectors of the form Λ(k1, . . . , kc). The origin is excluded from the consideration,
while minimizing over ki yields shortest vector of Λ. We thus have

∆∗ =
1

2
min

(
d(C), |vΛ|2

)
, (3.23)

where by |vΛ| we denoted the length of shortest non-trivial vector of Λ. This length
depends non-trivially on the choice of n,m, k and the O(1, 1) factor (which we ab-
sorbed into the definition of Λ), but an upper bound (3.26) is readily available, see
below.

For the square lattice of subsection 3.2.3 we find that wt(c) is given by

wt(c) := min
k∈Z

(c+ pk)2, (3.24)

and |vΛ|2 = p.
To obtain the upper bound on the length, in the sense of Euclidean norm, of the

shortest vector vΛ belonging to (3.11) we consider all ℓi = 0, arbitrary k1 and ki = 0
for i > 1. Then the Euclidean norm of corresponding two-dimensional vectors is

|v|2 = kT1 Λ
TOTOΛk1, (3.25)

which defines a positive-definite scalar product in R2. The shortest vector will neces-
sarily be shorter than |vΛ|2 ≤ 2|G|1/2/

√
3, see Appendix A, and therefore correspond-

ing code CFT would have the spectral gap not exceeding

∆∗ ≤
√
k2 − 4nm√

3
. (3.26)

This is a standard weakness of the Construction A lattices; they always include short
vectors of a certain length, which does not increase with c. Therefore to construct
large spectral gap CFTs with ∆∗ scaling linearly with c we would need to consider a
cascade of different constructions by adjusting k, n,m together with c.

3.3 Torus partition function of code theories

3.3.1 Enumerator polynomial and theta-series

One of the central properties of code theories which make them interesting is that
their torus partition function can be expressed in a compact way in terms of the
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so-called code enumerator polynomial which characterizes the corresponding code.
Generalization of this result to higher genus partition function is also possible [35, 36].

We use the complete enumerator polynomial of a code C (2.14) as a vehicle to
count how many times each element g ∈ G appears in each codeword of C,

WC({xg}) =
∑

(g1,...,gc)∈C

c∏
i=1

xgi . (3.27)

The torus partition function of a code CFT, associated with ΛC obtained by
Construction A, is given in terms of WC,

ZC(τ) = WC({ψg(τ)}), (3.28)

where

ψℓ(τ) =
1

|η(τ)|2
∑
k∈Z2

exp
(
iπvTΩv

)
, (3.29)

v = Λ⊥ℓ+ Λ k, Ω =

(
iτ2 τ1
τ1 iτ2

)
, (3.30)

τ = τ1+ iτ2 is the torus modular parameter and in (3.29) we parametrize elements of
G with help of vectors ℓ ∈ Z2/gΛ. We also absorbed O ∈ O(1, 1) into the definition
of Λ.

The modular group, generated by T : τ → τ +1 and S : τ → −1/τ , transforms Ω
as follows

T ◦ Ω = Ω+ g, (3.31)
S ◦ Ω = −Ω−1. (3.32)

Functions ψℓ transform accordingly

T ◦ ψℓ(τ) = ψℓ(τ + 1) = exp
(
iπvT gΛv

)
ψℓ(τ), v = Λ⊥ℓ, (3.33)

S ◦ ψℓ(τ) = ψℓ(−1/τ) =
1√
|G|

∑
ℓ′∈G=Z2/gΛ

exp
(
−2πiuT gΛv

)
ψℓ′(τ), u = Λ⊥ℓ′.(3.34)

Evenness and self-duality of C ensure that ZC(τ) is invariant under T and S respec-
tively. Indeed, since the code is even, for any (ℓ1, . . . , ℓn) ∈ C we have

∑
i ℓ

T
i g

−1
Λ ℓi ∈

2Z, and therefore T is a symmetry of PC({ψℓ}), while it is invariant under (3.34)
because of self-duality.

3.3.2 Example: theta series for square glue lattice

For the lattice (3.12) functions ψg defined in (3.29) read

ψab =
1

|η|2
∑

k1,k2∈Z

q
p
4
(a+b

p
+k1+k2)2 q̄

p
4
(a−b

p
+k1−k2)2 , (3.35)
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where (a, b) ∈ G = Zp × Zp. This can be written as follows

|η|2ψab = Θa+b,pΘ̄a−b,p +Θa+b−p,pΘ̄a−b−p,p, (3.36)

where
Θm,p =

∑
n∈Z

qp(n+
m
2p

)2 . (3.37)

These functions are the chiral algebra characters of free boson compactified at radius
R =

√
2k.

Note, if we perform O(1, 1) rotation on the lattice Λ, functions ψab will change.
Let

Λ′ = O
√
pg, O =

(
λ 0
0 λ−1

)
. (3.38)

Then
|η|2ψab =

∑
k1,k2∈Z

q
p
4
(λa+λ−1b

p
+λk1+λ−1k2)2 q̄

p
4
(λa−λ−1b

p
+λk1−λ−1k2)2 . (3.39)

For λ =
√
q with q ∈ N, we can again decompose ψab as follows

|η|2ψab =

q−1∑
k=0

Θqa+b+kp,qpΘ̄qa−b−kp,qp +Θq(a−p)+b+kp,qpΘ̄q(c1−p)−c2−kp,qp, (3.40)

where the functions Θm,pq above are now characters of compactified boson at radius
R =

√
2pq.

Finally, if λ =
√
q/r with q, r are co-prime, we can again perform the same

decomposition to obtain a more general result

|η|2ψab =
r−1∑
v1=0

q−1∑
v2=0

Θq(a+pv1)+r(b+pv2),pqrΘ̄q(a+pv1)−r(b+pv2),pqr+

Θq(a+pv1)+r(b+pv2)−pqr,pqrΘ̄q(a+pv1)−r(b+pv2)−pqr,pqr,

(3.41)

where the functions Θm,pqr above are characters of compactified boson at radius R =√
2pqr.

3.3.3 Partition function in case of isodual codes

In case of isodual codes satisfying (3.20) with pairwise permutation S, the codeword
c = (g1, . . . , gc) ∈ C should be understood as consisting of r pairs (gi, gj) with S
mapping i ↔ j, while the remaining c − 2r “letters” remain intact. It is convenient
to introduce new notation for c which is related to the previous one by permutation,

c = ((gi1
, gj1

), . . . , (gir , gjr), g2r+1, . . . , gc) ∈ C. (3.42)

With this notation we define an extended enumerator polynomial, which will depend
on both C and S. It is a function of |G|2 variables yg1g2 and |G| variables xg,

W S
C ({yg1g2}, {xg}) =

∑
((gi1 ,gj1 ),...,(gir ,gjr ),g2r+1,...,gc)∈C

r∏
k=1

ygikgjk

c∏
i=2r+1

xgi . (3.43)
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The CFT partition function is given by

ZC(τ) = W S
C ({ψg1g2(τ)}, {ψg(τ)}), (3.44)

where

ψℓ1ℓ2(τ) =
1

|η(τ)|4
∑

k1,k2∈Z2

exp
(
iπ(v1, v2)

T Ω̃(v1, v2)
)
, (3.45)

Ω̃ =

(
iτ2I2 τ1g
τ1g iτ2I2

)
, vi = Λ⊥ℓi + Λ ki. (3.46)

Under modular transformations T : τ → τ + 1 and S : τ → −1/τ , this function
changes as follows

T ◦ Ω̃ = Ω̃ + g ⊗ g, (3.47)
S ◦ Ω̃ = −Ω̃−1. (3.48)

and

T ◦ ψℓ1ℓ2 = exp
(
2iπvT1 gv2

)
ψℓ1ℓ2 , vi = Λ⊥ℓi, (3.49)

S ◦ ψℓ1ℓ2 =
1

|G|
∑

ℓ′1,ℓ
′
2∈G=Z2/gΛ

exp
(
2iπ(uT1 gv1 + uT2 gv2)

)
ψℓ′1ℓ

′
2
, ui = Λ⊥ℓ′i. (3.50)

Clearly when C is even in the sense of (3.21) and isodual in the sense of (3.20), the
identities (3.49,3.50) respectively ensure modular invariance of (3.44).

3.4 Examples: optimal Narain theories for small c

In this section we consider a number of explicit examples of code theories. In par-
ticular we discuss optimal theories, i.e. those with the largest spectral gap, for c ≤ 8
identified in [27], and show they all are codes theories, in the sense defined in this
chapter.

3.4.1 c = 1

We first consider the simplest case of n = m = 0, when

gΛ =

(
0 k
k 0

)
. (3.51)

In this case the group G = Zk × Zk is parametrized by vectors ℓ = (a, b) for 0 ≤
a, b < k. Let’s consider a self-dual code C = C⊥ and demand it to be even and self-
dual. When k is prime the only such two codes consist or vectors (a, 0) and (0, a) for
0 ≤ a < k correspondingly. Using appropriate O(1, 1) transformation we can bring
corresponding Narain lattice to the form

ΛC 3
(
a/

√
k

b
√
k

)
, a, b ∈ Z. (3.52)
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At this point we recognize Narain lattice of a compact boson of radius R2 = 2k.
Choosing k = 1 will yield boson at self-dual radius, which has largest possible spectral
gap

∆∗ =
1

2
. (3.53)

The corresponding enumerator polynomial is simply P = x00, giving rise to torus
partition function via (3.28) and (3.29),

ZC(τ, τ̄) = Ψ0,0 =
1

|η|2
∑

n,m∈Z

q
(m+n)2

4 q̄
(m−n)2

4 =
|θ3(2τ)|2 + |θ2(2τ)|2

|η|2
. (3.54)

Clearly, an appropriate O(1, 1) transformation will turn ΛC to any other Narain
lattice in R1,1, or, equivalently, change the compact boson radius R to any desired
value. In other words, together with the O(1, 1) factor our code construction is
versatile enough such that any c = 1 Narain theory is a code theory. This emphasizes
the bottom-up nature of our approach. While codes are expected to reflect some
algebraic properties of the underlying CFTs in the top-down constructions [31], in our
construction certain non-rational CFTs without obvious algebraic properties which
would make them “finite” also can be obtained from codes.

3.4.2 c = 2

We start with m = 2, n = −1, k = 2, which satisfies (3.5) and the glue lattice
generated by

gΛ = ΛTgΛ =

(
4 2
2 −2

)
, Λ = R 2

(
1 1/2

0
√
3/2

)
, R =

(
1 −1
1 1

)
/
√
2.(3.55)

From the Euclidean point of view this is a hexagonal (triangular) lattice with the
lattice vectors of length 2, rotated by π/2. Using equivalence transformation

P =

(
0 1
−1 1

)
∈ SL(2,Z) (3.56)

we can bring gΛ = ΛT gΛ to the diagonal form(
−2 0
0 6

)
= P TgΛP, (3.57)

which makes decomposition G = Z2 × Z6 manifest, with the map

g = (a, b) ∈ G, 0 ≤ a < 2, 0 ≤ b < 6, ℓ(g) = (P T )−1

(
a
b

)
∈ Z2/gΛ.

We consider a code C generated by the following three codewords

c1 = ((0, 3), (1, 0)), (3.58)
c2 = ((1, 0), (0, 1)), (3.59)
c3 = ((0, 0), (0, 2)), (3.60)
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in the notations c = (g1, g2) = ((a1, b1), (a2, b2)). This codes is iso-dual, C⊥ = S(C),
where S is the permutation of two elements. Corresponding lattice ΛC obtained via
(3.11)

ΛC =

(
Λ⊥(P T )−1 0

0 Λ⊥(P T )−1

)ℓ+


2k1
6k2
2k3
6k4


 , ℓT =

3∑
i=1

nici, ni ∈ Z, ki ∈ Z.

In this expression above we should understand codewords ci as regular vectors in Z4.
This lattice is a Narain lattice with respect to the Lorentzian metric (3.22)

gL =

(
0 S
S 0

)
, S =

(
0 1
1 0

)
. (3.61)

By an orthogonal transformation gL can be brought to conventional form

OgLO
T =

(
0 I2
I2 0

)
, O =

1√
2


1 1 0 0
0 0 1 −1
0 0 1 1
−1 1 0 0

 , (3.62)

such that ΛC becomes equivalent to the Narain lattice Λc=2 defining SU(3)1 WZW
theory

Λc=2 ∼ OΛC , Λc=2 =

(
(γ−1)T Bγ

0 γ

)
, γ =

√
b2
t2

(
1 t1
0 t2

)
, B =

b1
b2

(
0 1
−1 0

)
,

where t1 + it2 = b1 + ib2 = (1 + i
√
3)/2.

The code enumerator polynomial of C is

W S
C = y00,00 + y00,02 + y00,04 + y10,01 + y10,03 + y10,05

+ y03,10 + y03,12 + y03,14 + y13,11 + y13,13 + y13,15,

which yields partition function via (3.44). Shortest lattice vector with ℓT = c2 or
ℓT = c3 and ki = 0 has length |v|2 = 4/3, hence corresponding CFT has spectral gap
∆∗ = 2/3.

3.4.3 c = 3, 4, 5

Optimal theories for c = 3, 4, 5 were constructed from codes in [8]. They correspond
to k = 2 and n,m = 0 with

Λ =
√
2

(
0 1
1 0

)
, gΛ = 2

(
0 1
1 0

)
, Λ⊥ = I2/

√
2. (3.63)

In this case G = Z2×Z2 which as an additive group is equivalent to F4. As discussed
in section 3.2.3 these codes are parametrized by B-matrix controlling the B-field of
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the Narain compactification, BT = B mod 2, see (3.18). The case of k = 2 is special
because antisymmetric BT = −B mod 2 and symmetric matrices B are equivalent.

For the optimal theories with c = 3, 4, 5 the symmetric B-matrices, which can be
interpreted as graph adjacency matrix , describes the maximally connected graph

Bij =

{
1, i 6= j,
0, i = j.

(3.64)

Their enumerator polynomials and partition functions can be found in [8]. Here we
only point out that for p = 2 and 0 ≤ a, b < p

ψa,b =
1

|η|2
∑

n,m∈Z

q(ã+b̃)2/8q̄(ã−b̃)2/8, ã = a+ 2n, b̃ = b+ 2m, (3.65)

ψ0,0 =
|θ3(τ)|2 + |θ4(τ)|2

2|η|2
, (3.66)

ψ1,1 =
|θ3(τ)|2 − |θ4(τ)|2

2|η|2
, (3.67)

ψ0,1 = ψ1,0 =
|θ2(τ)|2

2|η|2
. (3.68)

in full agreement with [8]. The spectral gaps are ∆∗ = 3/4, 1, 1 for c = 3, 4, 5
correspondingly.

3.4.4 c = 6, 7

Optimal theories for c = 6, 7 were found in [32] to be related to codes, where a
construction, different from [8, 29], relating codes over F4 to CFTs was introduced.
Here we show this construction is a particular case of the glue construction introduced
in this chapter.

Let us consider the glue matrix

Λ =
1

31/4

(
1 −1

−
√
3 −

√
3

)
. (3.69)

This corresponds to m = −1, n = 1, k = 0 case as follows from

gΛ =

(
−2 0
0 2

)
. (3.70)

Clearly G = Z2 × Z2 which can be parametrized by ℓT = (a, b), 0 ≤ a, b < 2. As in
the previous section we can identify G with F4 via the Gray map

(a, b) → c(a, b) := aω + b ω̄, (3.71)

where F4 = {0, ω, ω̄, 1}.
The scalar product inherited from on G from (3.3) reads

〈(a1, b1), (a2, b2)〉 = ℓT1 g
−1
Λ ℓ2 =

b1b2 − a1a2
2

. (3.72)
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Since the scalar product is defined up to integer shits, orthogonality with respect to
〈·|·〉 is equivalent to orthogonality with respect to

a1a2 + b1b2 mod 2 = c1c2 + c̄1c̄2, (3.73)

where the right-hand-side uses notations (3.71). This is different from the conven-
tional Hermitian scalar product on F4

(c1, c2) = c1c̄2 + c̄1c2, (3.74)

by an additional conjugation. Thus a code C ∈ Gc iso-dual with respect to scalar
product on G inherited from (3.3) and pairwise permutation S, C⊥ = S(C), will be
isodual to its conjugate, C⊥ = S(C̄), with respect to Hermitian scalar product (3.74).
This is exactly the isoduality condition outlined in [32].

Similarly, the evenness condition (3.21), written in coordinates
c∑

i=1

bibS(i) − aiaS(i)
2

mod 2 = 0, (3.75)

matches precisely with the evenness condition of [32].
To complete the comparison with [32] we note that under Construction A (3.11)

group elements ℓT = (a, b) will be mapped to

v = Λℓ, Λ =

(
−1

2
−1

2√
3
2

−
√
3

2

)
, (3.76)

which is exactly the map from c = aω + bω̄ ∈ F4 to R2 used in [32]. In other words,
we have shown that the construction of [32] is exactly the construction of this chapter
with the glue matrix taken to be (3.69).

We notice the choice m = −1, n = 1, k = 0 is not the canonical one. By an
appropriateGL(2,Z) transformation we can bring it tom = 1, n = 0, k = 2, satisfying
(3.6). The new form of the glue lattice generating matrix is then

Λ =
2

31/4

( 1
2

1√
3
2

0

)
, (3.77)

which is a hexagonal (triangular) lattice with the basic vector length 2/31/4.
The codes leading to optimal c = 6 and c = 7 theories, the hexacode and the

“septacode” are rather bulky and we do not repeat them here. Let us just mention
that in both cases the resulting spectral gap is ∆∗ =

√
4/3.

3.4.5 c = 8

We consider the n = m = 0, k = 4 case with the glue lattice

Λ = 2

(
0 21/4

2−1/4 0

)
, gΛ =

(
0 4
4 0

)
, Λ⊥ =

(
21/4 0
0 2−1/4

)
/2. (3.78)
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In this case G = Z4 × Z4 parametrized by g = (a, b), 0 ≤ a, b < 4 and ℓT = (a, b).
Let us consider the code C ∈ G8 generated by rows of the following matrix

GC =



0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 3 1 0 0 2 2 0 0 0 0 0 0
0 3 1 0 0 3 1 0 0 2 2 0 0 0 0 0
0 0 3 1 0 0 3 1 0 0 2 2 0 0 0 0
3 0 0 3 1 0 0 3 0 0 0 2 2 0 0 0
1 3 0 0 3 1 0 0 0 0 0 0 2 2 0 0
0 1 3 0 0 3 1 0 0 0 0 0 0 2 2 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1



(3.79)

in the notation c = (a1, . . . , a8|b1, . . . , b8) ∈ C. This code is even and self-dual with
respect to

〈(a|b)|(a′|b′)〉 = a · b′ + a′ · b
4

. (3.80)

Accordingly the lattice

ΛC =
1

2

(
21/4I8 0
0 2−1/4I8

)
(GT

C z + 4k), z ∈ Z12, k ∈ Z16, (3.81)

is a Narain lattice with respect to

gL =

(
0 I8
I8 0

)
. (3.82)

The lattice shortest vector has length |v|2 = 2
√
2 yielding ∆∗ =

√
2. This follows

from the lattice theta series, which can be readily obtained from the code enumerator
polynomial. The code in question has 216 codewords and enumerator polynomial
PC(xab) is too large to be written explicitly here. Upon substituting xab → ψab where

ψab =
∑
k∈Z2

q|v|
2/2, v = Λ⊥(ℓ+ 4k), ℓT = (a, b). (3.83)

(this definition is different from (3.29) in two ways: i) there is no |η(τ)| in the denom-
inator because we are interested in the lattice theta-function rather than the CFT
partition function ii) ψab depends on q but not q̄ as we are interested in the Euclidean
structure only), we obtain

WC(ψab) = 1 + 4320t2 + 61440t3 + 522720t4 + 2211840t5 +O
(
t6
)
, t = q2

−1/2

,

which is exactly the theta-function of the Barnes-Wall lattice. This is in agreement
with [37] who identified optimal c = 8 theory to be based on a rescaled Barnes-Wall
lattice, equipped with the Lorentzian metric and understood as a Narain lattice.
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3.5 Asymptotically large c

When c � 1 asymptotic behavior of spectral gap is not known. Spinless modular
bootstrap bounds ∆∗/c to be less than or equal to 1/π2 (with this value being obtained
numerically) [26], while the full set of bootstrap constraints is likely to significantly
decrease this value. Averaging over the whole moduli space of Narain theories provides
a lower bound on ∆∗/c to be 1/(2πe) [37]. Ref. [23] conjectured this value to be
asymptotically saturated,

lim
c→∞

∆∗

c
=

1

2πe
. (3.84)

For this to be true, i.e. for the mean value to (asymptotically) be the largest possible
value, the distribution of spectral gaps on the Narain moduli space for large c must
be very sharply peaked around the mean without outliers. Thus, for consistency, as
a necessary condition, variance should be very small. Using the ensemble of code
CFTs, as well as chiral cousins of Narain theories, ref. [23] has shown the variance of
density of states distribution to be exponentially suppressed ∼ e−O(c), the conclusion
consequently confirmed for the Narain theories in [38]. This does not constitute a
proof of (3.84) as variance is not sensitive to possible outliers.

The conjecture of [23] is based on similarity between the ensemble of codes, en-
semble of sphere packings, and the ensemble (space) of CFTs, and the problems
of maximizing code Hamming distance, density of sphere packing and CFT spectral
gap. Specifically for codes, there is an expectation that the Gilbert-Varshamov bound
(the value resulting from averaging over all codes) would asymptotically yield the best
value of Hamming distance to code size ratio [39, 40]. Similar expectation holds for
the maximal density of lattice sphere packing: the densest packing to asymptoti-
cally saturate the Minkowski bound, which is simply averaged value over all possible
lattices. (For sphere packings of general kind stronger asymptotic value is expected
[41].) While we leave validity of (3.84) for future studies, here we show there are
codes theories achieving this value of ∆∗ for large c.

The Construction A used in this chapter has a fundamental limitation: the cor-
responding lattices have vectors of certain length no matter how big the dimension
c is. This is formalized in equation (3.26), which provides an upper bound on ∆∗.
Thus, to obtain ∆∗ scaling linearly with c one has to adjust n,m, k together with c
such that |G| grows as or faster than c. Here for simplicity we focus on the square
gluing lattice n = m = 0, with prime k = p, discussed in sections 3.2.3, 3.3.2. The
spectral gap is given by (3.23) with |vΛ| =

√
p,

∆∗ =
1

2
min (d(C), p) . (3.85)

The best (maximal) generalized Hamming distance d beyond small c values is not
known. One nevertheless can bound d from below by consider ensemble averaging,
the so-called Gilbert-Varshamov bound. Then, similarly to the case of binary linear
codes one may expect best d/c to asymptotically approach the bound when c→ ∞.
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By averaged polynomial P̄ ({xab}) we mean enumerator polynomial averaged over
all pc(c−1)/2 possible codes parametrized by B, see (3.16). From the CFT point of view
this is the calculation of averaged torus partition function. So far we are interested
only in d, or alternatively only in mass but not spin of the lightest non-trivial state,
we can consider torus parameter to be purely imaginary τ = iτ2. Then function
(3.3.2) factorizes

ψab(iτ2) =
1

|η(τ)|2
ψaψb, ψa = Θ2a,p(iτ2/2) =

∑
k∈Z

e−πτ2(a+kp)2/p. (3.86)

Going back to enumerator polynomial, instead of variables xab we use

xab = tatb, ta = t−a, (3.87)

where the last property reflects ψa = ψ−a. We conjecture the form of corresponding
averaged enumerator polynomial based on invariance under MacWilliams identity
and explicit checks for sufficiently small n and prime p, for which direct evaluation
of P̄ ({tatb}) using computer algebra is feasible,

P̄ ({tatb}) =
1

pc(c−1)/2

∑
B

PC(B)({tatb}) =

t2c0 +

p=1∑
k=0

(
p−1∑
a=0

p−1∑
b=0

cos
(

2πkab
p

)
tatb

)c

− p tc0

(
p−1∑
a=0

ta

)c

pc
. (3.88)

Now we are ready to analyze this expression to deduce the lower bound on ∆∗.
For large c, the main contribution to (3.88) comes from k = 0, leading to the averaged
partition function

Z̄ ≈ 1

|η|2c

(
p−1∑
a=0

ψa

)2c

pc
=

1

|η|2c

(∑
n∈Z

e−πτ2n2/p

)2c

pc
. (3.89)

Interpreted as sum over lattice points, the numerator is simply the sum over 2c-
dimensional square lattice of size 1/

√
p. On the length scales of ∼ 1/

√
p or larger this

is just the homogeneous distribution of points with the averaged density 1/(1/
√
p2c) =

pc. This factor exactly cancels pc in the denominator of (3.89) and we find density of
states

ρ(∆) =
(2π)c∆c−1

Γ(c)
(3.90)

valid on scales ∆ ≳ 1/
√
p. This is exactly the density of states of “U(1)-gravity” –

Narain theory averaged over the whole moduli space. Accordingly, the threshold for
the density to become of order one is ∆ = c/(2πe), which is our Gilbert-Varshamov
bound. For this result to be valid we must require p/2 > c/(2πe), otherwise shortest
vector of ΛC would have length √

p.
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To conclude, for sufficiently large p we find that the averaged density of states
(with zero chemical potential for spin) of n = m = 0, and prime k = p code theories
is the same as the averaged density of states for all Narain theories. In particular
in the limit c → ∞, for p > c/(πe) there are code theories with ∆∗/c = 1/(2πe).
Provided the conjecture of [23] is correct, it would mean similar conjecture applies to
n = m = 0, prime k = p codes, in the sense that their averaged Hamming distance is
asymptotically the best one.

3.6 Summary: Optimal and large-c Narain theories

In this chapter, we proposed a family of constructions mapping additive codes over
abelian groups G = Zp × Zq to Narain lattices and hence Narain CFTs. Each con-
struction is parametrized by a triplet of integer numbers n,m, k and an element from
O(1, 1) parameterizing an even “glue” lattice Λ ⊂ R1,1. The resulting Narain lattice
ΛC associated with a code C ⊂ Gc obeys

Λ⊕ · · · ⊕ Λ︸ ︷︷ ︸
c times

⊂ ΛC ⊂ Λ⊥ ⊕ · · · ⊕ Λ⊥︸ ︷︷ ︸
c times

⊂ Rc,c. (3.91)

We call this glue construction following [17]. This construction generalizes and en-
compasses those of [8, 29], [32] and [33]. We call the CFTs obtained from codes “code
theories.” Their torus partition functions ZC are given in terms of the code enumer-
ator polynomials, which are multi-variable polynomials satisfying certain algebraic
identities, which guarantee modular invariance of ZC. In this way one can construct
many new solutions to modular bootstrap constraints.

We have provided explicit code constructions for all conjectural optimal Narain
theories for c ≤ 8 identified in [27]. Furthermore we have shown there are code
theories with the spectral gap ∆∗ scaling linearly with c� 1, ∆∗ ∝ c/(2πe), with the
coefficient which has been conjectured in [23] to be maximal possible.

An important direction would be to connect the bottom-up approach of this chap-
ter with the top-down approach of [31] where quantum codes were given an interpre-
tation in terms of CFT Hilbert space extended by defect operators. Another direction
would be to develop our approach into a systematic and practical way of constructing
optimal theories with c > 8, thus complementing conventional modular bootstrap.
This would be an important but challenging task because there is no known efficient
methods to construct “good” codes with largest or even large (generalized) Hamming
distance. And though there is a finite number of codes for any given G and c, their
number grows exponentially with c. Furthermore, there is an infinite number of con-
structions, i.e. infinite number of different G and Λ, making the problem seemingly
incomprehensible. This pessimistic assessment could be too naive, we expect only
finite number of constructions to be relevant for any given c. The inequality (3.26) as
well as the results of section 3.5 clearly indicate |G| can not be too small, |G|1/2 ≥ ac,
for c � 1 with some positive constant a. We also strongly suspect large generalized
Hamming distance, for given c, would require |G| not be too large. We conjecture
this may come from the linear programming constraints stemming from the algebraic
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identities satisfied by code enumerator polynomial (the MacWilliam identity and the
condition due to code evenness), i.e. generalization of Delsarte’s bounds [42] to the
types of codes of interest. For c� 1 we expect the bound to have the form |G|1/2 ≤ bc
with some b > a. Thus for large but finite c we expect large but finite number of
glue groups satisfying bc ≥ |G|1/2 ≥ ac. This form of the bound on |G| is merely a
guess; the important point here is the expectation that the problem of identifying the
code with largest generalized Hamming distance can be reduced to an optimization
problem over a finite set. Of course even for moderate c naive brute-force approaches
such as going through all possible codes very quickly becomes unfeasible. The result-
ing optimization problem over a discrete set would be NP-hard, but novel quantum
platforms promise an exciting hope of solving medium-sized discrete optimization
problems in real time, the avenue we hope to pursue in the future [43].

To conclude this chapter, we would like to point out another very important
direction for future work – to extend the connection between codes and CFTs beyond
the Narain theories.

Copyright© Nikolaos Angelinos, 2024.
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Chapter 4 Rational CFTs and Poincaré sums from codes

4.1 Narain CFTs with enhanced symmetry and Poincaré sums

In recent years, there is an understanding that AdS gravity in low dimensions is not
dual to a single theory, but rather an ensemble average of CFTs. In [44] the path
integral for 3d Einstein gravity with AdS boundary conditions was evaluated, but the
result does not make sense as a CFT partition function, as it cannot be expressed in
the form tr e−βH . Results from 2d gravity, [9], indicate that gravity may be dual to
an ensemble of boundary theories. However, it is not known how to average over all
2d CFTs, or how they should be weighted in this average. A more realistic goal is to
average over a known family of CFTs, such as the Narain family. This was achieved in
[10], resulting not in 3d Einstein gravity, but rather an exotic theory, dubbed “U(1)
gravity”.

Any Narain CFT can be constructed from codes (see section 3). However, the
space of codes of a given alphabet and length is finite, therefore by averaging over
codes it is not possible to cover the Narain moduli space. In [11] it was shown that
averaging a family of code Narain CFTs and subsequently taking the limit where
the size of the alphabet grows to infinity, the partition function of “U(1) gravity” is
reproduced.

In this chapter we use codes to study Narain CFTs at the points of enhanced
symmetry, described by affine Lie algebras of type A,D,E at level 1. Such CFTs are
rational, meaning that they contain a finite number of primary fields. The A,D,E, are
the three families of simply-laced classical Lie algebras. An, Dn are infinite families,
corresponding to the Lie groups SU(n+1), SO(2n) respectively, while E6, E7, E8 are
exceptional Lie algebras.

The theories with A Lie symmetry at level 1 were classified and their Poincaré
sums were evaluated in [45]. We show that this problem can be formulated in terms
of codes and the results can be straightforwardly reproduced. We proceed to apply
the code formalism to theories with Lie symmetries D and E at level 1.

Let Λ denote the root lattice of a simply-laced Lie algebra. The discriminant
group G = Λ⊥/Λ is a finite Abelian group. The elements of G are in one-to-one
correspondence with the highest-weight representations of the affine Lie algebra at
level 1. The fusion rules of the full (non-chiral) CFT are described by the group G×Ḡ,
where the two factors correspond to the holomorphic and anti-holomorphic sectors.
We start by classifying all their modular invariants using codes. Subsequently, we
calculate their Poincaré series.
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4.2 Codes based on the root lattice AN−1

4.2.1 The su(N)1 × su(N)1 CFT

The chiral su(N)1 theory has central charge c = N − 1 and N primary fields whose
conformal dimensions are given by

hi =
i(N − i)

2N
, i = 0, 1, . . . , N − 1. (4.1)

The root lattice of su(N) is Λ = AN−1. A generator matrix is given by (we will abuse
notation to denote lattices, as well as their generator matrices by the same symbol):

Λij =


√

i+1
i

i = j

−
√

i
i+1

j = i+ 1

0 otherwise

, i, j = 1, 2, . . . , N − 1 (4.2)

or in matrix form

Λ =



√
2 − 1√

2
0 0 · · · 0 0

0
√

3
2

−
√

2
3

0 · · · 0 0

0 0
√

4
3

−
√

3
4

· · · 0 0
... ... ... ... ... ... ...
0 0 0 0 · · ·

√
N−1
N−2

−
√

N−2
N−1

0 0 0 0 · · · 0
√

N
N−1


. (4.3)

The determinant is

det(Λ) =
N−1∏
i=1

√
i+ 1

i
=

√
N. (4.4)

A convenient generator matrix for the dual lattice Λ is

Λ⊥ = (ΛT )−1. (4.5)

The order of the discriminant group G = Λ⊥/Λ can be found by dividing the volumes
of the unit cells |G| = det(Λ)/ det

(
Λ⊥) = det(Λ)2 = N , hence the discriminant group

has order N and is the following

G = Λ⊥/Λ ∼= ZN . (4.6)

Let us choose the map ϕ : Λ⊥ → ZN such that ϕ−1 acting on an element of ZN

results to the following set of vectors in Λ⊥ ⊆ RN−1:

a 7→

Λm+ aλ, λ =


0
...
0√
N−1
N
.

 : m ∈ ZN−1

 . (4.7)

31



The group G is induced with the following bi-linear form (stemming from Eu-
clidean inner product of RN−1)

〈a1, a2〉 = a1a2|λ|2 =
N − 1

N
a1a2 mod Z. (4.8)

Note that the choice of λ is not unique; we may choose any element of Λ⊥/Λ that
has order N . However, the inner product (4.8) is independent of the choice of λ. The
group G is also equipped with the weight

wt(a) ≡ min
k∈ZN−1

||Λk + aλ|| = a(N − a)

N
, a = 0, 1, . . . , N − 1. (4.9)

For each a ∈ ZN define the holomorphic function in the upper half-plane

χa(τ) =
1

ηN−1

∑
n∈ZN−1

eπiτ(Λn+aλ)T (Λn+aλ). (4.10)

The functions χa(τ) are precisely the chiral characters of su(N)1. They transform as
follows1 under the modular T, S transformations

χa(τ + 1) = e−
(N−1)πi

12

∑
Taa′χa′(τ), Taa′ = δaa′e

πi(N−1)a
2

N (4.11)

χa(−1/τ) =
∑
a∈ZN

Saa′χa′(τ), Saa′ =
1√
N
e−2πi aa

′
N . (4.12)

Now consider codes C ⊆ G× Ḡ. We equip G× Ḡ with a Lorentzian bi-linear form
by extending (4.8) to G× Ḡ as follows

〈(a1, b1)|(a2, b2)〉 = 〈a1|a2〉 − 〈b1|b2〉 =
N − 1

N
(a1a2 − b1b2) mod Z. (4.13)

The evenness condition on G× Ḡ is

wt2((a, b)) =
N − 1

N
(a2 − b2) = 0 mod 2Z. (4.14)

From wt2 it is obvious that if N is odd, any self-dual code is even. However, for even
N not all self-dual codes are even. This will have consequences in our enumeration
of even self-dual codes.

We define the enumerator polynomial of a code C as follows

WC(x0, x̄0, . . . , xN−1, x̄N−1) =
∑

(a,b)∈C

xax̄b. (4.15)

The partition function is obtained by the substitution

xa → χa(τ), x̄b → χ̄b(τ̄), (4.16)
1We do not include the constant phase e−

(N−1)πi
12 in the definition of Taa′ , since it always cancels

out upon combining holomorphic and antiholomorphic characters.
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where χa are defined in (4.10). The MacWilliams transformation acts on the xi in
the same way as the modular S transformation acts on the characters (4.12). We may
also define T acting on code variables in the same manner as (4.11). In this way, the
variables xi form a representation of SL(2,Z), with the generators given by

T (xa) =
N−1∑
b=0

Tabxb, Tab = eπi(N−1)a
2

N δab, (4.17)

S(xa) =
N−1∑
b=0

Sabxb, Sab =
1√
N
e−2πi ab

N . (4.18)

Let us now enumerate all even, self-dual codes. Their number depends on the
factors of N

number of self-dual codes =
{
σ0(N) N odd
σ0(N/2) N even,

(4.19)

where σ0(m) denotes the number of divisors of m. To make this more precise, define

κN =

{
N, N odd
N
2
, N even.

(4.20)

The number of even self-dual codes is σ0(κN). The characters (4.10) have the property
χi = χN−i. Therefore, not all codes lead to distinct modular invariants. On the code
side, this means that the operation sending a codeword (a, b) to (a,−b) is a code
equivalence. The number of inequivalent codes, or linearly independent partition
functions, in agreement with [45], is given by

number of inequivalent codes =
{

σ0(κN )
2

, σ0(κN) even
σ0(κN )+1

2
, σ0(κN) odd

. (4.21)

To show (4.19), consider the prime factorization of N = Πip
ni
i . By the Chinese

Remainder Theorem, there exists an isomorphism

π : ZN →
l⊗

i=1

Zp
ni
i
, l ∈ N. (4.22)

Explicitly, this isomorphism may be chosen as follows

π(x) = (x modpn1
1 , x modpn2

2 , . . . , x modpnl
l ). (4.23)

Its inverse is given by

π−1(a1, a2, . . . , al) = m1a1
N

pn1
1

+m2a2
N

pn2
2

+ · · ·+mlal
N

pnl
l

, (4.24)

where m1,m2, . . . ,ml are integers that satisfy

m1
N

pn1
1

+m2
N

pn2
2

+ · · ·+ml
N

pnl
l

= 1. (4.25)
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The existence of these integers is guaranteed by Bezout’s lemma.
An even, self-dual code C with alphabet ZN exists if and only if even, self-dual

codes with each factor alphabet Zp
ni
i

exist. Moreover, given a collection of self-dual
codes with alphabets Zp

ni
i

a self-dual code with alphabet ZN can be constructed by
applying the map π−1.

Consider now the codes over a single factor Zp
ni
i

, where pi is odd. We shall drop the
subscript i in this and the following paragraph, to reduce clutter in the notation. Each
self-dual code with alphabet Zpn is isomorphic, as an additive group, to Zpn−k × Zpk

for k = 0, 1, . . . , n, resulting in σ0(p
n) = n + 1 self-dual codes. Explicitly, the codes

are generated by2

Ci
0 = (1, 1), Ci

n = (1,−1), Ci
k =



(
pk pk

0 pn−k

)
1 ≤ k ≤ n

2
,(

pn−k −pn−k

0 pk

)
n
2
< k ≤ n− 1

. (4.27)

For p = 2, there is a small, but important modification of (4.27). If n is even, the
code Cn/2 is not even, therefore must be excluded. If n is odd, the codes C(n−1)/2

and C(n+1)/2 are identical. In either case, this decreases the number of even, self-dual
codes to σ0(2n−1) = n.

Now, since the divisor function has the multiplicative property σ0(m)σ(k) =
σ(mk) for co-prime m, k, and every factor Zp

ni
i

contributes σ(pni
i ) = ni + 1 to the

number of even self-dual codes (except for p = 2 which contributes σ(2ni−1) = ni, the
counting (4.19) immediately follows.

The enumerator polynomial of a factor code (4.27) can be written explicitly as

W i
k =

p
ni−k
i −1∑
a=0

pki −1∑
b=0

xapki x̄apki +bpn−k
i

, 0 ≤ k ≤ ni. (4.28)

Let l be the number of factors in (4.22) and define the linear map ξ, acting on the
enumerator polynomial variables by combining them as follows

ξ(x1a1 x̄
1
b1
, . . . , xlal x̄

l
bl
) = xπ−1(a1,...,al)x̄π−1(a1,...,al). (4.29)

Making a choice of a self-dual code Ci
k for each factor in (4.22) and applying the map

π−1 we construct the code Ck1,...,kl with alphabet ZN . The enumerator polynomials
of the code Ck1,...,kl of alphabet ZN can be expressed as

Wk1,...,kl = ξ(W 1
k1
, . . . ,W l

kl
). (4.30)

2An interesting fact is that for even n and odd prime p, pn−1 is a multiple of 8, a dimension where
even, self-dual Euclidean lattices exist (see section 2.2). In particular, this implies the existence of
chiral bosonic CFTs. The code with k = n

2 decomposes into a direct sum of two lower-dimensional
codes, resulting in a product of two chiral CFTs, with partition function

Zn
2
=

N−1∑
a=0

χa

N−1∑
a=0

χ̄a. (4.26)
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Finally, the partition functions are obtained by replacing the code variables xi, x̄j by
the characters χi, χ̄j

Zk1,...,kl(τ, τ̄) = Wk1,...,kl(χ0, χ̄0, . . . , χN−1, χ̄N−1). (4.31)

4.2.2 Poincaré series

We are now ready to evaluate the Poincaré series, Z̄; a sum over modular images of
the vacuum character

Z̄ ∝
∑

γ∈SL(2,Z)

γ(χ0χ̄0). (4.32)

This series is manifestly modular invariant. The space of modular invariants is
spanned by the (finitely many) partition functions (4.31), therefore Z̄ is a linear
combination of the functions (4.31).

Under a general modular transformation, the character χ0χ̄0 is mapped to a linear
combination of characters χiχ̄j. Since there are finitely many characters and the group
SL(2,Z) is infinite, the sum in the right-hand side of (4.32) is divergent, however it
can be easily regularized, as this infinity is an overall factor. We first identify an
(infinite) subgroup of SL(2,Z) that leaves the vacuum character invariant. This
subgroup is Γ0(N), a congruence subgroup of level N (note that this is not a normal
subgroup). It is defined by:

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c = 0 mod N

}
, (4.33)

and its index is finite

[SL(2,Z) : Γ0(N)] = N
∏

p|N, p prime

(
1 +

1

p

)
, (4.34)

where the product is over the prime divisors of N . The sum on the right-hand side of
(4.32) can be replaced by a sum over the quotient SL(2,Z)/Γ0(N), which is a finite
set:

Z̄ =
∑

γ∈SL(2,Z)/Γ0(N)

γ(χ0χ̄0). (4.35)

Equivalently, we can consider the Poincaré series of the “vacuum” code enumerator
variable x0x̄0

W̄ =
∑

γ∈SL(2,Z)/Γ0(N)

γ(x0x̄0). (4.36)

Now consider a single Zp
ni
i

factor from the decomposition (4.22). Let {xia, x̄ib}
denote its enumerator polynomial variables and W̄ i its Poincaré sum

W̄ i =
∑

γ∈SL(2,Z)/Γ0(p
ni
i )

γ(xi0x̄
i
0). (4.37)
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The index of the congruence subgroup Γ0(p
ni
i ) is

[SL(2,Z) : Γ0(p
ni
i )] = pni

i + pni−1
i . (4.38)

We make a choice of representatives in this quotient and perform the sum

W̄ i =

p
ni
i −1∑
k=0

T kS +

p
ni−1
i −1∑
k=0

ST pikS

xi0x̄
i
0 = W i

0 +W i
ni
+
pi − 1

pi

ni−1∑
k=1

W i
k. (4.39)

This formula is in agreement with [45].
Combining all factors of (4.22), we obtain

W̄ = ξ(W̄ 1, . . . , W̄ l). (4.40)

Finally, to obtain the Poincaré series in terms of characters, we make the substitution

Z̄(τ, τ̄) = W̄ (χ0, χ̄0, . . . , χN−1, χ̄N−1). (4.41)

In the special case, where N is square-free, W̄ is a sum of all polynomials in (4.30)
with coefficients equal to 1, leading to

W̄ =
x0x̄0 +

1
N2

∑N−1
r=0

∑N−1
a,b=0 xax̄be

−2πir a2−b2

N

1 + 1
N

. (4.42)

4.3 Codes based on the root lattice Dn

4.3.1 The so(2n)1 × so(2n)1 CFT

The so(2n)1 chiral CFT has central charge c = n. In contrast to the An case, the
number of highest-weight representations is independent of n. There are 4 highest-
weight representations, which we denote by 1, v, c, s. Their conformal weights are

h1 = 0, hv =
1

2
, hc = hs =

n

8
. (4.43)

Let Λ = Dn be the root lattice of the Lie algebra so(2n). A generator matrix is
given by

Λij =


1 i = j

−1 i = j + 1

1 i = n− 1 ∧ j = n

0 otherwise

. (4.44)

For example, the generators of D4, D5 are the following

D4 =


1 0 0 0
−1 1 0 0
0 −1 1 1
0 0 −1 1

 , D5 =


1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 1
0 0 0 −1 1

 . (4.45)
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The discriminant group depends on the parity of n

G = D⊥
n /Dn

∼=

{
Z4 n odd
Z2 × Z2 n even

. (4.46)

4.3.2 Odd n

For odd n, G is cyclic and we choose the map ϕ : Λ⊥ → ZN , such that ϕ−1 from Z4

to Λ⊥ ⊆ Rn:

a 7→

Λm+ aλ, λ =


1
2...
1
2
1
2

 : m ∈ Zn

 . (4.47)

This induces the inner product on G

〈a1|a2〉 =
n

4
a1a2 mod Z. (4.48)

The weights on Z4, defined by

wt(g) = min
k∈Zn

||Λk + gλ||, (4.49)

are the following

wt(0) = 0, wt(1) =
n

4
, wt(2) = 1, wt(3) =

n

4
. (4.50)

We can make the following identifications between G ∼= Z4 and the highest-weight
representations

0 7→ 0, 1 7→ c, 2 7→ v, 3 7→ s. (4.51)
The conformal dimension hg is half of the group weight wt(g). This correspondence
is summarized in table (4.1).

Addition in Z4 reproduces the fusion rules, which are the following

v × v = 1, v × s = c, (4.52)

s× s = c× c = v, (4.53)
s× c = 1. (4.54)

For each a ∈ G, define the following functions, which are the holomorphic char-
acters of so(2n)1

χa =
1

(η(τ))n

∑
k∈Zn

eπiτ(aλ+Λk)2 . (4.55)

In terms of Jacobi theta functions, they read

χ0 =
1

2

θn3 + θn4
ηn

, χ1 = χ3 =
1

2

θn2
ηn
, χ2 =

1

2

θn3 − θn4
ηn

. (4.56)
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Under modular T, S transformations, we have

χa(τ + 1) = e−
πi
12

n
∑
a′∈Z4

Taa′χa′(τ), Taa′ = eπi
a2n
4 δaa′ , (4.57)

χa(−1/τ) =
∑
a′∈Z4

Sabχab(τ), Sab =
1

2
e−2πinaa′

4 . (4.58)

Now we construct codes C ⊆ G × Ḡ. We extend (4.48) to a Lorentzian bi-linear
form on G× Ḡ as follows

〈(a1, b1)|(a2, b2)〉 = 〈a1|a2〉 − 〈b1|b2〉 =
n

4
(a1a2 − b1b2) mod Z. (4.59)

The evenness condition is

wt2((a, b)) =
n

4
(a2 − b2) = 0 mod 2Z. (4.60)

There exist 2 even self-dual codes, which are equivalent, with generators

C0 = (11), C1 = (13). (4.61)

The characters χ1, χ3 being equal, at the level of codes, means that the operation
that sends a codeword (a, b) to (a,−b) is a code equivalence. Therefore, these two
codes are equivalent and lead to the same modular invariant partition function

Z0 =
3∑

i=0

χiχ̄i, Z1 =
3∑

i=0

χiχ̄−i, Z1 = Z0. (4.62)

Similarly to section 4.2.2, we now consider the Poincaré series of the vacuum
character

Z̄ ∝
∑

γ∈SL(2,Z)

γ(χ0χ̄0). (4.63)

An (infinite) subgroup of SL(2,Z) that leaves the vacuum character invariant is Γ0(8),
of index 12. We replace the sum on the right-hand side of (4.63) by:

Z̄ =
1

2

∑
γ∈SL(2,Z)/Γ0(8)

γ(χ0χ̄0). (4.64)

In terms of code enumerator polynomial variables it reads

W̄ =
1

2

∑
γ∈SL(2,Z)/Γ0(8)

γ(x0x̄0) =
1

2

(
7∑

k=0

T kS +
3∑

k=0

ST 2kS

)
xi0x̄

i
0 = W0 +W1. (4.65)

Therefore, the Poincaré series leads to

Z̄ = Z0 + Z1 = 2Z0. (4.66)

38



Table 4.1: The correspondence between chiral primaries and elements of the discrim-
inant group G for odd n (left) and even n (right).

field G ∼= Z4 wt h
1 0 0 0
v 2 1 1

2

s 3 n
4

n
8

c 1 n
4

n
8

field G ∼= Z2 × Z2 wt h
1 (00) 0 0
v (11) 1 1

2

s (10) n
4

n
8

c (01) n
4

n
8

4.3.3 Even n

For even n, we choose the map ϕ : Λ⊥ → Z2 × Z2 such that ϕ−1 takes elements of
Z2 × Z2 to the lattice vectors

(a, b) 7→

Λm+ aλ− + bλ+, λ± =


1
2...
1
2

±1
2

 : m ∈ Zn

 . (4.67)

The induced inner product on the group G is

〈(a, b)|(a′, b′)〉 = n

4
(aa′ + bb′) +

n− 2

4
(ab′ + a′b) mod Z. (4.68)

The weights are

wt(0, 0) = 0, wt(1, 1) = 1, wt(1, 0) = wt(0, 1) =
n

4
. (4.69)

We make the following identifications between G ∼= Z2 × Z2 and the highest-weight
representations

(0, 0) 7→ 1, (1, 0) 7→ c, (1, 1) 7→ v, (0, 1) 7→ s. (4.70)

This identification is summarized in table 4.1.
Addition in Z2×Z2 reproduces the fusion rules for even n, which are the following

v × v = 1, v × s = c, (4.71)

s× s = c× c = 1, (4.72)
s× c = v. (4.73)

The holomorphic characters of so(2n)1 are given by

χ(ab) =
1

(η(τ))n

∑
k∈Zn

eπiτ(aλ−+bλ++Λk)2 . (4.74)

In terms of Jacobi theta functions, they read

χ(00) =
1

2

θn3 + θn4
ηn

, χ(10) = χ(01) =
1

2

θn2
ηn
, χ(11) =

1

2

θn3 − θn4
ηn

. (4.75)
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Under T, S, they transform as

χ(ab)(τ) = e−
π
12

n
∑

(a′,b′)∈Z2×Z2

T(a,b),(a′,b′)χ(a′b′)(τ), T(a,b),(a′,b′) = eπi((a
2+b2)n

4
+abn−2

2
)δaa′δbb′ ,

(4.76)
χ(ab)(−1/τ) =

∑
(a′b′)∈Z2×Z2

S(a,b),(a′,b′)χ(a′b′)(τ), S(a,b),(a′,b′) =
1

2
e−2πi⟨(a,b)|(a′,b′)⟩. (4.77)

We now construct even, self-dual codes C ⊆ G×Ḡ, by extending the bilinear form
(4.68) to

〈(a, b)|(a′, b′)〉 = 〈a|a′〉 − 〈b|b′〉. (4.78)
The evenness condition for ((a, b), (a′, b′)) ∈ G× Ḡ is

wt2(((a, b), (a
′, b′))) =

n

4
(a2 + b2 − a′2 − b′2) +

n− 2

2
(ab− a′b′) = 0 mod 2Z. (4.79)

The equality of characters χ(10) = χ(01) means that the operation acting on a codeword
as ((a, b), (a′, b′)) → ((a, b), (b′, a′)) is a code equivalence. Due to the nature of (4.68),
we need to consider different cases in order to classify the modular invariants and
calculate the Poincaré series.

n = 2 mod 4

There are two even, self-dual codes, generated by

C0 =

(
(10) (10)
(01) (01)

)
, C1 =

(
(01) (10)
(10) (01)

)
, (4.80)

giving rise to the modular invariants

Z0 = χ0χ̄0 + χsχ̄s + χcχ̄c + χvχ̄v, (4.81)

Z1 = χ0χ̄0 + χsχ̄c + χcχ̄s + χvχ̄v. (4.82)
These two codes are equivalent, leading to Z1 = Z0.

We now calculate the Poincaré series of the vacuum character. An (infinite)
subgroup of SL(2,Z) that leaves the vacuum character invariant is Γ0(4). In terms
of code enumerator polynomial variables, the sum can be performed as follows

W̄ = (
3∑

i=0

T iS +
2∑

i=0

ST 2iS)x(00)x̄(00) = W0 +W1, (4.83)

leading to the linear combination of the two partition functions with equal weights

Z̄ = Z0 + Z1 = 2Z0. (4.84)
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n = 4 mod 8

There are six even, self-dual codes

C0 =

(
(10) (10)
(01) (01)

)
, C1 =

(
(01) (10)
(10) (01)

)
, (4.85)

C2 =

(
(10) (11)
(11) (10)

)
, C3 =

(
(01) (11)
(11) (10)

)
, (4.86)

C4 =

(
(10) (11)
(11) (01)

)
, C5 =

(
(01) (11)
(11) (01)

)
, (4.87)

giving rise to the modular invariants

Z0 = χ0χ̄0 + χsχ̄s + χcχ̄c + χvχ̄v, (4.88)

Z1 = χ0χ̄0 + χsχ̄c + χcχ̄s + χvχ̄v, (4.89)
Z2 = χ0χ̄0 + χcχ̄v + χvχ̄c + χsχ̄s, (4.90)
Z3 = χ0χ̄0 + χcχ̄s + χsχ̄v + χvχ̄c, (4.91)
Z4 = χ0χ̄0 + χcχ̄v + χsχ̄c + χvχ̄s, (4.92)
Z5 = χ0χ̄0 + χcχ̄c + χsχ̄v + χvχ̄s. (4.93)

Due to χs = χc, only two of them are distinct,

Z0 = Z1, Z2 = Z3 = Z4 = Z5. (4.94)

We now calculate the Poincaré series of the vacuum character. The representation
of S, T matrices satisfy the relations of the dihedral group D6: S2 = T 2 = (ST )3 = 1,
which is a finite group of order 6. We can perform the sum over all elements of this
group

W̄ = (1 + T + S + TS + STS + TSTS)x(00)x̄(00) = W0 +W3 +W4, (4.95)

leading to the linear combination of the partition functions

Z̄ = Z0 + Z3 + Z4 = Z0 + 2Z2. (4.96)

n = 0 mod 8

There are six even, self-dual codes3

C0 =

(
(10) (10)
(01) (01)

)
, C1 =

(
(01) (10)
(10) (01)

)
, (4.97)

3Here we note again the existence of factorizable partition functions, due to the existence of
Euclidean even, self-dual lattices in dimensions divisible by 8.
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C2 =

(
(01) (00)
(00) (01)

)
, C3 =

(
(01) (00)
(00) (10)

)
, (4.98)

C4 =

(
(10) (00)
(00) (01)

)
, C5 =

(
(10) (00)
(00) (10)

)
, (4.99)

giving rise to the modular invariants

Z0 = χ0χ̄0 + χsχ̄s + χcχ̄c + χvχ̄v, (4.100)

Z1 = χ0χ̄0 + χsχ̄c + χcχ̄s + χvχ̄v, (4.101)
Z2 = |χ0 + χs|2, (4.102)

Z3 = (χ0 + χs)(χ̄0 + χ̄c), (4.103)
Z4 = (χ0 + χc)(χ̄0 + χ̄s), (4.104)

Z5 = |χ0 + χc|2. (4.105)
Again, due to χs = χc only two of them are distinct

Z0 = Z1, Z2 = Z3 = Z4 = Z5. (4.106)

We calculate the Poincaré series of the vacuum character similarly to the n = 4
mod 8 case:

W̄ = (1 + T + S + TS + STS + TSTS)x(00)x̄(00) = W0 +W3 +W4, (4.107)

leading to the linear combination

Z̄ = Z0 + Z3 + Z4 = Z0 + 2Z3. (4.108)

4.4 Codes based on the root lattices E6, E7, E8

4.4.1 E6

The (E6)1 CFT has central charge c = 6. It has 3 chiral primary fields with dimensions
0, 2

3
, 2
3
.

The Λ = E6 latice is generated by

Λ =



1 0 0 0 −1
2

0
−1 1 0 0 −1

2
0

0 −1 1 0 −1
2

0
0 0 −1 1 −1

2
1

0 0 0 1 −1
2

−1

0 0 0 0
√
3
2

0

 . (4.109)

The discriminant group is G ∼= Z3. Choose the function ϕ : Λ⊥ → Z3, such that ϕ−1

maps an element a of Z3 to the following vectors

a 7→
{
aλ+ Λm, λ = (1, 0, 0, 0, 0, 1/

√
3)T : m ∈ Z6

}
. (4.110)
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This induces the inner product on G

〈a1|a2〉 =
4

3
a1a2 mod Z. (4.111)

The weights on Z3 are the following

wt(0) = 0, wt(1) = wt(2) =
4

3
. (4.112)

For each a ∈ Z3, define the following functions, which are the holomorphic char-
acters of the CFT

χa =
1

(η(τ))6

∑
k∈Z6

eπiτ(aλ+Λk)2 . (4.113)

Under modular T, S transformations, we have

χa(τ + 1) = eπi
4
3
a2χa(τ), (4.114)

χa(−1/τ) =
1√
3

∑
a′∈Z3

e−2πi 4
3
aa′χa′(τ). (4.115)

We define the Lorentzian bi-linear form on G× Ḡ

〈(a1, b1)|(a2, b2)〉 = 〈a1|a2〉 − 〈b1|b2〉 =
4

3
(a1a2 − b1b2) mod Z. (4.116)

The evenness condition is

wt2((a, b)) =
4

3
(a2 − b2) = 0 mod 2Z. (4.117)

It follows that any self-dual code is also even.
There exist 2 even self-dual codes, generated by

C0 = (11), C1 = (12). (4.118)

This leads to the modular invariants, which are not distinct, due to χ1 = χ2

Z0 =
2∑

i=0

χiχ̄i, Z1 =
2∑

i=0

χiχ̄−i, Z1 = Z0. (4.119)

The Poincaré series of the vacuum character can be written as

W̄ =
∑

γ∈SL(2,Z)/Γ0(3)

γ(x0x̄0) = (1 +
2∑

i=0

T iS)x0x̄0 = W0 +W1, (4.120)

leading to
Z̄ = Z0 + Z1 = 2Z0. (4.121)
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4.4.2 E7

The (E7)1 CFT has central charge c = 7. It has two chiral primary fields of conformal
weights 0, 3

4
.

A generator of the root lattice E7 is

Λ =



1 0 0 0 0 −1
2

0
−1 1 0 0 0 −1

2
0

0 −1 1 0 0 −1
2

0
0 0 −1 1 0 −1

2
0

0 0 0 −1 1 −1
2

1
0 0 0 0 1 −1

2
−1

0 0 0 0 0 1√
2

0


. (4.122)

The discriminant group is G = Λ⊥/Λ = Z2. Choose ϕ : Λ⊥ → Z2 such that ϕ−1 maps
an element a ∈ Z2 to the vectors

a 7→
{
aλ+ Λm, λ = (1, 0, 0, 0, 0, 0, 1/

√
2)T : m ∈ Z7

}
. (4.123)

The induced inner product in the group G is

〈a1|a2〉 =
3

2
a1a2 mod Z. (4.124)

The weights are
wt(0) = 0, wt(1) =

3

2
. (4.125)

For each a ∈ Z2, define the following functions, which are the holomorphic char-
acters of the CFT

χa =
1

(η(τ))7

∑
k∈Z7

eπiτ(aλ+Λk)2 . (4.126)

Under modular T, S transformations, we have

χa(τ + 1) = eπi
3
2
a2χa(τ), (4.127)

χa(−1/τ) =
1√
2

∑
a′∈Z2

e−2πi 3
2
aa′χa′(τ). (4.128)

We extend the bi-linear form on G× Ḡ as follows

〈(a1, b1)|(a2, b2)〉 =
3

2
(a1a2 − b1b2) mod Z. (4.129)

The evenness condition is

wt2((a, b)) =
3

2
(a2 − b2) = 0 mod 2Z. (4.130)

There exists 1 even self-dual code, generated by

C0 = (11), (4.131)
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leading to the diagonal modular invariant

Z = χ0χ̄0 + χ1χ̄1. (4.132)

Since there is a unique modular invariant, the Poincaré series of the vacuum
character is a multiple of Z.

4.4.3 E8

We conclude this chapter with the E8 lattice. The analysis of this theory is trivial,
but it is included for completeness. The (E8)1 CFT has central charge c = 8 and a
single chiral primary of conformal weight 0.

A generator of the root lattice E8 is

Λ =



2 −1 0 0 0 0 0 1
2

0 1 −1 0 0 0 0 1
2

0 0 1 −1 0 0 0 1
2

0 0 0 1 −1 0 0 1
2

0 0 0 0 1 −1 0 1
2

0 0 0 0 0 1 −1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2


. (4.133)

This lattice is unimodular, hence the discriminant group is trivial. There is a single
chiral character

χ0 =
1

(η(τ))8

∑
λ∈E8

eπiτλ. (4.134)

There is a unique modular invariant partition function, which is factorizable

Z = |χ0|2. (4.135)

The vacuum character χ0χ̄0 is already modular invariant, hence the Poincaré series
is equal to Z.

4.5 Summary

Using codes based on the root lattices A,D,E, we studied the Poincaré series of the
vacuum characters of RCFTs described by affine Lie algebras A,D,E at level 1. The
An theories at level 1 were studied in [45]. Here we formulated the problem in terms
of codes and reproduced these results. We proceeded to apply our formalism to the
families D,E at level 1.

For the Ei, D2i+1, D4i+2 and Aj (with j square-free) lattices, the Poincaré series
of the vacuum returns a linear combinations of all partition functions with equal
weights. For the D4i cases, the Poincaré series results in a linear combination of the
partition functions with unequal weights. The An case, where n is not square-free, is
much richer, with coefficients depending on the prime factors of n.
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The code formalism paves the way to study, in a systematic way, CFTs with
more general chiral symmetries. A straightforward generalization is to consider the-
ories with chiral symmetry described by products g⊗k

1 , where g is one of the A,D,E
algebras, by classifying codes of larger length. Another interesting generalization
would be to consider levels higher than 1. There is no obvious way to accomplish
this, as the operator product expansions of these CFTs do not exhibit an additive
structure at higher levels.

Copyright© Nikolaos Angelinos, 2024.
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Chapter 5 Entanglement Entropy in Ground States of Long-Range
Fermionic Systems

This chapter is based on the work “Entanglement Entropy in Ground States of Long-
Range Fermionic Systems” co-authored with D. Chakraborty [46] and is reproduced
here with the co-author’s consent.

5.1 Entanglement entropy beyond local systems

Locality severely constrains the features of commonly studied physical systems. Such
local systems show special features that are absent in generic quantum-mechanical
models. A crucial property is the relative suppression of long-range correlations in
the ground states of local Hamiltonians [47] compared to random states in the Hilbert
space [48]. Besides exhibiting exponential decay of correlation functions, such ground
states obey an area law for entanglement entropy along spatial bi-partitions, in the
presence of an energy gap. For d = 1 critical systems, entanglement entropy may be
enhanced by a logarithmic term, whose coefficient is proportional to the central charge
of the conformal field theory (CFT) describing the critical point. Similarly, in d = 2
topological phases of matter can be understood in terms of the presence of certain
universal terms in the entanglement entropy [49]. Entanglement entropy also plays
a central role in providing quantum mechanical interpretations for geometric data in
theories of quantum gravity [50]. Entanglement entropy has been a powerful tool to
characterize phases of matter and their low-temperature physics. These properties
of entanglement entropy have been exploited to efficiently study ground states of
many-body systems with the help of various tensor network methods [51].

In this chapter, we study the geometric scaling of ground-state entanglement
entropy as a function of a continuous parameter which controls the degree of non-
locality of interactions. We do this by considering various setups involving fermions
with long-range power-law couplings that decay with the exponent α. There is a
number of reasons for considering such a setup. Experimental progress has led to
the possibility of realizing controlled Ising-type power-law interactions in trapped ion
systems with tunable exponent α. Such systems carry several signatures of exotic
phases of matter, partially reflected by anomalous entanglement scaling. An example
of this is the known logarithmic violation of the area-law behavior in the presence of
a gap [52], [53].

The theoretical analysis of long-range models has independent interest. Long-
range interactions often show up in continuum theories upon partially integrating
out degrees of freedom in local models. While the vacua of such models, in terms of
appropriate degrees of freedom, are not expected to be qualitatively different, there
are field theories with nonlocal UV descriptions that show novel structures, such as
critical points with conformal symmetry without the existence of a local stress-energy
tensor [54], and unusual symmetry-breaking patterns [55]. In the context of holog-
raphy, highly non-local quantum theories with volume-law scaling of entanglement

47



entropy have been proposed as candidate duals to asymptotically flat theories of
gravity [56].

In [57] it was shown that there exists an area law for general gapped systems having
bounded local Hilbert spaces with few-body interactions falling off as a power α > 2
in d = 1 spatial dimensions generalizing previously known bounds for local models
[58], [59]. For fermions with long-range hopping or pairing, the bound is tighter and
an area law is expected for α > 3

2
in the presence of a gap. We are interested in

understanding the transition to conventional scaling of entanglement entropy as α is
varied. The conventional scaling in d = 1 is an area law (i.e bounded entanglement on
increasing subsystem size) for gapped systems and possible logarithmic dependence
on subsystem size for gapless systems. There are constructions designed to break
these conventional expectations [60], [61]. We ask the following questions:

1. For sufficiently small α, what kind of scaling of EE do generic models show?

2. Is there any universality in the transition of EE to conventional scaling as a
function of α? In other words, does there exist a common αc controlling the
behavior of ground state correlations across a variety of models?

3. How does EE scale for models with a well-defined continuum limit?

We study these questions with several numerical calculations in quadratic models
of spinless fermions on a lattice in d = 1. Despite the simplicity of these models, their
detailed study in the local case has paved the way for understanding interacting and
higher-dimensional systems. The numerical flexibility to study large subsystem sizes
is a bonus for examining subtleties in the scaling behavior.

We postulate:

1. Systems with a smooth IR continuum limit will have their long-range entan-
glement scaling constrained by the scaling of entanglement in their continuum
theory. For this reason, such systems will typically have only logarithmic viola-
tions of area-law behavior in the presence of a gap for the few-body interactions
we consider.

2. Systems that have large gradients at the microscopic scale, like disordered sys-
tems will violate the area law by a power-law correction that may transition to
a volume-law at small enough α.

3. The exponent αc at which the transition to conventional scaling occurs depends
on features of the system. One may identify αc for particular ensembles of ran-
dom Hamiltonians. For translationally invariant models in the infinite system
limit technical considerations and examples suggest αc = 1 though for α > 1
the saturation of EE could set in for very large subsystem sizes.

We illustrate all three of the points using numerical examples in free systems that
are expected to generalize to the interacting systems. We also support point 1) using
some qualitative RG arguments that we hope to make more precise in the future.
Section 5.2 deals with models with particle number conservation and discusses the
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translationally invariant 5.2.1 and disordered cases 5.2.2 separately. Section 5.3 con-
siders translationally invariant models with long-range hopping and pairing. Section
5.4 summarizes the key points along with a conceptual discussion.

5.2 Models with particle number conservation

We begin by reviewing some preliminary definitions. The reduced density matrix
ρA of a contiguous spatial subsystem A with linear size LA is obtained from tracing
out the complement Ā from the global state ρ of a lattice of fermion of length L as
ρA = TrĀ ρ. The von Neumann entropy of ρA is defined as:

S(ρA) = −Tr(ρA log(ρA)) (5.1)
When ρ is a pure state, S(ρA) is a genuine measure of quantum entanglement

and is called the entanglement entropy. The entanglement entropy of eigenstates of
lattice models quadratic in fermionic operators can be efficiently computed because
the subsystem is specified entirely by two-point functions [62]. The reduced density
matrix of a subsystem is proportional to the exponential of a modular Hamiltonian
quadratic in fermionic operators. The lattice fermionic degrees of freedom are iden-
tified with creation operators c†i . We consider Hamiltonians of the form:

H =
∑
i,j

Vijc
†
icj (5.2)

Here Vij is the Hermitian matrix with entries such that Vij falls of as |i− j|−α at
long distances. This Hamiltonian is diagonalized with a unitary rotation of the oper-
ators ci. We adopt the convention that the many-body ground state |Ω〉 is the state
occupied by the negative-energy modes of the Hamiltonian, without fixing particle
number. This means that once we diagonalize Vij as follows,

H =
∑
i,j

Vijc
†
icj =

L∑
k=1

λkη
†
kηk (5.3)

the ground-state is given by
|Ω〉 =

∏
k:λk<0

η†k |0〉 . (5.4)

We restrict attention to cases without degenerate ground states. The entanglement
entropy of a subsystem A is computed using the eigenvalues of the correlation matrix
(CA)ij = 〈Ω| c†icj |Ω〉 with i, j ∈ A as:

S(ρA) = −Tr(CA log(CA))− Tr((I− CA) log(I− CA)) (5.5)
It follows that empty ground states will have zero entanglement entropy.
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5.2.1 Translationally invariant models

Translationally invariant models have Vij as a function of |i− j| alone, which means
that the matrix V is Toeplitz. We suppose Vij can be written in the form

Vij =
f(dO/P (i, j)))

g(dO/P (i, j))
, (5.6)

where f(r) is a function that remains bounded and does not decay with r and g(r)
is a function that grows as rα. For finite systems one may consider open boundary
conditions dO(i, j) = |i− j|, or periodic boundary conditions with distance dP (i, j) =
min(L − |i− j|, |i− j|) such that V is circulant. In the thermodynamic limit, the
spectrum of the Toeplitz matrix coincides with that of the circulant matrix. The
latter can be diagonalized even at finite L using a Fourier unitary. The choice of
open or periodic boundary condition does affect the entanglement entropy but not
its scaling in the thermodynamic limit, see for example [63]. For finite L, the open
boundary condition is the physical choice. For α ≤ 1 in 1D, the spectrum may develop
isolated divergences in the thermodynamic limit, related to the nonconvergence of the
generalized harmonic sum. The ground-state energy-density may still remain well
defined.

Let us consider the large L limit of these models. Our claim is that for a generic
translationally invariant Vij which also has a smooth continuum limit, the entan-
glement entropy is at most log(LA) for any α. This well-understood point for short-
ranged models generalizes in a simple way and has important implications. We briefly
review the mathematical and conceptual underpinnings of this result.

In the thermodynamic limit, the eigenvalues become a smooth function of quasi-
momenta k taking values in [0, 2π), in units of inverse lattice spacing

λ(k) =
∞∑

r=−∞

V (r)eikr, (5.7)

where V (r) = V (i− j). The correlation submatrix CA of the subsystem of interest is
given by

CA(i− j) =
〈
c†icj

〉
=

1

2π

∫ 2π

0

dk e−ik(i−j)Θ(−λ(k)), (5.8)

where we used the important fact that CA is Toeplitz to write CA(i−j). The formula
(5.5) can be rewritten as a contour integral involving log(det(CA − IA)) and model
independent functions. On using the Fisher-Hartwig conjecture and certain assump-
tions [64], the leading answer is proportional to log(LA). The prefactor of the log is
given by 1

6
times the number of discontinuities of the “symbol”, Θ(−λ(k)). These

discontinuities are precisely at the Fermi points k∗i where the dispersion changes sign.
The 1D answer for free fermions was generalized to higher-dimensions in [65] and seen
to be consistent with a conjecture due to Widom.

There is a physical argument based on RG for the results explained above as
discussed in [63], [66] that we expand on. The long distance entanglement properties
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of such free fermion models under consideration should match the predictions from
the effective IR theory. Despite the potentially complicated nature of the dispersion
λ(k), assuming analytic behavior about c Fermi points k∗i , the IR theory in momentum
space will look like:

H ∝
c∑

i=1

∫
dk vFi

k(ψ†
iψi − χ†

iχi) + . . . , (5.9)

where vF i = λ′(k∗i ) is the local Fermi velocity and ψi and χi are the right and left-
movers corresponding to low energy excitations and holes. We omit the higher powers
of k, which are irrelevant at low energies. Thus the entanglement entropy can be
understood as being the sum of contributions from c decoupled chiral and anti-chiral
modes. The CFT answer is nL+nR

6
log(LA) which gives a contribution of 1

6
log(LA)

from each mode. On summing them we get S(ρA) = c
3

log(LA)+ . . . where the ellipsis
stands for subleading contributions. The answer for open boundary condition can
be derived within the CFT formalism and is given by halving the prefactor of the
logarithm S(ρA) =

c
6

log(LA) + . . ..
The low-energy theory written in (5.9) has an emergent Lorentz invariance but

lacks conformal invariance unless all the vF i are equal. In that case conformal symme-
try arises from a spacetime rescaling, in addition to the internal symmetry between
different chiral fields. An interesting manifestation of the emergent conformal sym-
metry is found in examining the finite-size correction to ground state energy:

FL = f0L− πcvF
6L

+O(
1

L2
), (5.10)

where f0 is the ground state energy density in the thermodynamic limit and FL is
the ground state energy at finite size L. This relation is obtained applying the Euler-
Maclaurin formula to an arbitrary dispersion on the lattice. The leading order answer
precisely matches the correction to vacuum energy density of a CFT on mapping a
theory from infinite plane to a cylinder of radius L and setting vF = 1. The lack
of scale invariance of (5.9) is not a problem from the RG perspective, because the
vFi

’s get renormalized and the theory flows to the one with all vF ’s the same. This
expected behavior is illustrated with the agreement between finite-size results and
the thermodynamic limit of

Vij =

{
1

dP (i,j)0.6

∑l=3
l=−3 cos

(
2πl
7
dP (i, j)

)
i 6= j

0 i = j
. (5.11)

The function λ(k) can be computed in the thermodynamic limit as a linear combi-
nation of polylogs. The periodic modulation that picks out every seventh site in the
numerator gives rise to c = 7 pairs of Fermi points and emergent species of fermions.
The EE for L = 1200 with open boundary conditions is presented in Fig. 5.1c. This
example illustrates how predictions from the effective theory give an accurate answer
for the EE when there are no obvious means to an exact answer: for finite L and
open boundary conditions.
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The nontrivial implication of the argument in [66] was that it predicted, in d
dimensions, the same Ld−1

A log(LA) scaling of EE for interacting theories that can be
described in terms of a deformed Fermi surface. This discussion generalizes to our
setting: for fermionic systems with a continuum limit, provided the Fermi surface is
stable, the leading piece of EE will continue to scale at most as Ld−1

A log(LA) even
if the microscopic degrees of freedom have long-range interactions. The stability of
the Fermi surface is a more subtle matter, but it is unlikely that long-range hopping
terms alone affect the conventional kinematical arguments provided at least that
α > d, though long-range density interactions might. The hopping model ground
states considered above are simple and non-generic, but they illustrate the utility of
effective theory for understanding entanglement.

Lattice models without a continuum limit however, are not constrained in this
manner. By this we mean models which lack a gradient expansion or equivalently,
a smooth momentum-space Hamiltonian which can be expanded around low-energy
points. Disordered hopping models are known to exhibit volume law entanglement
in the limit of small α, [67], and are expected to show area law for large α. We study
this transition in EE for disordered models in Section 5.2.2.

However, disorder is not necessary to go beyond log(LA) scaling as has been
appreciated in [68], [69]. To illustrate this point, we first construct an example of
Vij with translation invariance weakly broken only due to open boundary conditions,
that we numerically show to saturate the maximal possible growth of entanglement
for fermionic models at α = 0, see Fig 5.1a. This is given by the highly oscillatory
sequence of models:

Vij =

 1
dO(i,j)α

sin((L+ 1
2
)dO(i,j))

sin( 1
2
dO(i,j))

i 6= j

0 i = j
(5.12)

The transition to bounded EE is seen in this model through the appearance of a
plateau at large fractions f = LA

L
and the appearance of fractal scaling Lγ

A with
0 < γ < 1 for 0.8 < α < 1.6, see Fig. 5.1b. The intermediate fractal scaling Lγ

A

is an interesting feature that shows up robustly for disordered models. We expand
on this in Section 5.2.2. Note that this sequence of models has couplings explicitly
dependent on L and therefore its scaling properties might differ from conventional
models.

Another example of a translationally invariant model without disorder with a
ground state which saturates the maximal growth of entanglement entropy is the
following

H =

L
2∑

j=1

c†
j+L

2

cj +

L
2∑

j=1

c†jcL
2
+j, (5.13)

where we assume that the system size L is even. The entanglement entropy for
LA ≤ L/2 is S(LA) = LA log 2 (see appendix C).
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Figure 5.1: Fig 5.1a shows maximal volume-law growth of entanglement in ground
state of the model specified by (5.12) at α = 0, shown for sequence of L starting from
800 to 1400. To compare across system sizes, the entropy density 1

L
S is expressed as

a function of subsystem fraction f = LA

L
. Fig 5.1b shows the intermediate EE scaling

regime for the same model for different α at L = 1200. Fig 5.1c shows the agreement
between the EE of a long-ranged hopping model with α = 0.6 of L = 1200 and OBC,
with the CFT predictions (dashed lines). The inset shows the dispersion relation of
this model for L → ∞ limit with seven pairs of Fermi points giving rise to c = 7 in
the CFT formula.

5.2.2 Universality in Disordered Models

Volume-law scaling of EE in random hopping models has been studied across the
entirety of spectrum in [70],[71] and for ground states in [72], [73], [67], the latter in
the context of the SYK2 model. SYKq models are generally interpreted as being N
flavors of fermions embedded in a quantum dot, with all-to-all interaction in flavor
space. Here we consider a disordered hopping model that interpolates between a
complex SYK2 model embedded on a 1D wire at α → 0 to a disordered local model
for α → ∞. We examine the nature of the transition of EE scaling and the value αc

that controls the transition to bounded EE.
For our numerical study we consider the ensemble:

Vij =
Rij

1 + (dO(i, j))α
, (5.14)

where Rij are elements of a symmetric Gaussian random matrix with zero mean.
The variance of Rij needs to be chosen as a function of both L and α to retain
extensivity of total energy, but the overall scale does not affect the ground state or
entanglement properties. The single particle Hamiltonian is an example of a power-
law banded random matrix of the type studied in [74]. This model is known to
exhibit an Anderson localization transition at α = 1, as diagnosed through inverse
participation ratios [74], [75]. The random matrix model in (5.14) retains a lack of
correlation between matrix elements akin to Gaussian random matrix models, but
loses invariance under a change of basis.

The ensemble averaged EE S(LA) displays the following properties:

1. Self-averaging, meaning that a randomly picked member of the ensemble gives
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S(LA) similar to S(LA) for fixed α and L. The distribution of S(LA) about the
mean increases with α.

2. L-independent behavior for LA/L small compared to 1
2
.

3. Leading order fractal scaling Lγ(α)
A with 0 < γ(α) < 1 with γ(α) continuously

decreasing from 1 as α → 0.

We numerically checked that other choices of random ensembles of Vij preserve
the features mentioned above as long as the Vij’s are identically distributed and
uncorrelated. For example, a sign-randomized ensemble with Rij = ±1 will show
similar features. The exponent γ(α) as well as the coefficient of the term L

γ(α)
A are

dependent on the choice of ensemble; see Figure 5.2b.
To account for finite-size effects we use the following fitting function:

S̄(LA) = aLγ
A +

b

L
Lγ+1
A . (5.15)

This fitting function is chosen for two reasons. First, the Page curve for free fermions
is known to be susceptible to considerable finite size effects. In the α → 0 limit,
γ = 1 and the leading order correction to volume-law behavior is of the form L2

A

L
[71].

Second, the best-fit a(α) and b(α) are O(1) numbers roughly independent of system
size. Therefore, at least for f = LA

L
� 1 and α not too large, this fit should capture

the correct behavior.
The fit gives accurate behavior, see the inset in Fig 5.2a. For small α, say 0.01, we

checked that the answer for ground state EE matches the average answer for EE across
the spectrum valid for arbitrary subsystem fractions derived in [71]. This fractal scal-
ing is consistent with the results of scaling of entanglement for typical eigenstates in
a disordered ensemble studied in [72]. The rate of change of γ(α) sharply increases
at about α ≈ 0.5, see Fig 5.2b. The transition to bounded entanglement at larger α
seems to be continuous. That makes it difficult to pin down a precise αc where the
ensemble-averaged S saturates as for short-ranged disordered hopping models. We
estimate that αc ≈ 1.3 where according to our numerics, S saturates for a sequence
of L. We note that for the range of powers we consider, there is no indication of an
emerging gap. Although the localization of entanglement and Anderson localization
arise due to similar mechanisms in the considered model, CA and therefore entropy
depends on the correlations between distinct single-particle eigenvectors. Therefore
without contradiction, the EE continues to show slow fractal growth for α > 1 when
the model has undergone a localization-transition as diagnosed through inverse par-
ticipation ratios. See Fig 5.2c for the slowly growing S at α = 1.05 for different
system sizes expressed as a function of f .

We do not give a first-principles derivation of the behavior of the EE. However,
we make the observation that the α-dependent falloff in the Hamiltonian gives rise to
localization of the correlation functions. The two-point function develops a power-law
decay of exponent β with a stochastic envelope, which means for i 6= j:√

C2
ij =

κ

dO(i, j)β
. (5.16)
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In the free fermion case, the scaling of entanglement entropy is severely constrained
by particle-number fluctuations [65], [68], given by ∆N2

A = Tr(CA(I− CA)) using the
inequality

2∆N2
A ≤ S(LA) ≤ ∆N2

AO(log(LA)). (5.17)
Using (5.16), neglecting correlations and using the constraint that the ground state
will generically be at half-filling, we give a non-rigorous estimate of the scaling of
S(LA) using the behavior of ∆N2

A in Appendix B as a function of β, see (A.5). The
scaling (5.15) is controlled by the exponent β. This point of view suggests that the
onset of area-law behavior in disordered hopping models is linked to the the exponent
β becoming larger than 1. See Figure 5.3a for an example of β dependence of root-
mean square of the two-point functions and 5.3b for the prediction generated by ∆N

2
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Figure 5.2: Fig 5.2a shows the behavior of the ensemble averaged S(LA) for different
α’s and its L independent collapse, for LA smaller than a certain fraction of L. Inset
shows S(LA) for α = 0.8 and L = 2000, 3000 along with the fit (5.15) indicated by
dashed lines. Fig 5.2b shows numerically obtained best-fit γ(α) for system sizes L =
2000, 2500, 3000. To compare across system sizes best fit parameters were obtained
by fitting S for LA up to 200. The collapse for different system sizes over the range
of α indicates γ for this range may be well-defined in thermodynamic limit for finite
LA. For α > 1, extracting the value of γ becomes difficult, though the EE still shows
growth. Fig 5.2c shows that for numerically accessible L, S now expressed as function
of f = LA

L
continues to slowly increase at α = 1.05. Between 400 to 500 samples were

used to generate the plots above.

5.3 Models without particle number conservation

Here we consider translationally invariant free models of the form:

H =
∑
i,j
i ̸=j

Aijc
†
icj +

∑
i,j

1

2
(Bijc

†
ic

†
j + h.c.) + µ

∑
i

c†ici (5.18)

B is antisymmetric, with entries falling off with the exponent αp whereas the entries
of A can decay with a different exponent αh. Such Hamiltonians are diagonalized
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using a combination of Fourier and Bogoliubov transformations, or in the absence
of translation invariance through the singular value decomposition of A + B. The
ground-state reduced density matrix is characterized in terms of

〈
c†ic

†
j

〉
for i, j ∈ A in

addition to the matrix CA. The formula for the EE in terms of correlation matrices
is a generalization of (5.5), see [62] for details. These models will generically contain
singular excitations, though the ground state energy density is still well-defined. Refs
[53], [76], [77] studied models of the form above as extensions of Kitaev’s model of
a superconducting wire hosting Majorana modes at the edge. For sufficiently slowly
decaying couplings, these models show several exotic features such as massive edge
modes, anomalous decay of correlation functions and logarithmic violations of the
area law, despite a gap in the thermodynamic limit. The latter two are related: the
algebraic decay of two-point functions is a necessary but not sufficient condition for
the entanglement entropy to not saturate. This point is particularly transparent for
free fermion systems where Renyi entropies are directly expressed in terms of traces
of powers of correlation matrices.

The exponents αh and αp have different roles in controlling the physics, which may
be understood from considering the Hamiltonian in momentum space (after dropping
an additive constant):

H =
1

2

π∑
k=−π

(
c†k c−k

)(a(k) + µ ib(k)
−ib(k) −a(k)− µ

)(
ck
c†−k

)
. (5.19)

The functions a(k) and ib(k) are the symbols of the matrices A and B respectively,
which when smooth, allow rewriting (5.19) as an integral in the thermodynamic limit.
Both a(k) and b(k) are 2π periodic, but a(k) is even about 0 (assuming reflection
symmetry) while b(k) is odd. The spectrum of single-particle excitations is given by
λ(k) =

√
(a(k) + µ)2 + b(k)2.

We examine two instances of models (5.18) in the L→ ∞ limit that highlight the
important features in the scaling of EE:

(i) Aij =
1

dP (i, j)αh
and Bij =

sgn(i− j)

dP (i, j)αp
(5.20)

In this case a(k) = ReLiαh
(eik) and b(k) = ImLiαp(e

ik), where Liα(z) stands for
polylogarithm of order α. For large αh and αp, on tuning µ to criticality, the system
falls under the c = 1

2
Ising universality class. This follows from the low-energy

behavior of (5.19) by taking the continuum limit, using a procedure similar to the one
used in 5.2.1, see [78] for more details. When αp > 2, for any αh, this model continues
to show similar behavior to the Ising model at criticality, but shows deviations away
from it. Driving αp ≤ 2 alone, while keeping a local hopping term, alters the critical
behavior [53] and results in an additive logarithmic term in the EE that persists in the
presence of a gap. This additive term quickly jumps to about 1

6
log(LA) for α < 1. In

[79], studying the same model, an effective field theory description of this phenomenon
was developed, using modes away from the low-energy points in momentum space that
remain relevant, arising from an expansion of the form: b(k) = v(α)kα−1+ . . .. These
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terms correspond to fractional spatial derivatives and for α < 2 may dominate low-
energy behavior over the standard kinetic and mass terms. Such expansions also exist
for a(k), and indeed, even for dispersion of the model considered in (5.11). However
these contributions may develop divergent masses and get gapped out. We leave to
the future the task of systematically studying these excitations and a field-theoretic
derivation of their contribution to entanglement entropy.

We discuss now the numerical results with αh = αp = α, which is an instance of
model studied in [76]. This model can be tuned to criticality by choosing µc = −a(π),
in which case the spectrum of excitations becomes linear about k = π. The EE shows
scaling S(LA) =

ceff
3

log(LA) with ceff = c(α) + c(µ). c(µ) is the critical contribution
that jumps to 1

2
at µc but vanishes away from it. The ceff in our notation is unrelated

to the Virasoro central charge of a CFT in general. The anomalous α-dependent
contribution c(α) is independent of any O(1) choice of µ other than µc. It is close
to 1

2
as α = 0 and approaches 0 in a continuous manner as α is increased. Notably

the interacting long-range 1D antiferromagnetic Ising model displays very similar
behavior of the coefficient ceff as a function of α [76].

(ii) Aij =
cos(πdP (i, j))
dP (i, j)α

and Bij =
sgn(i− j)

dP (i, j)α
(5.21)
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Figure 5.3: Fig 5.3a shows the root-mean square correlator
√
C2

ij with i = 100 for
L = 800 after averaging over 100 random samples from the power-law ensemble (5.14)
with α = 0.8 obeying (5.16). Fig 5.3b uses empirically determined parameters m and
β for L = 2000 in (A.5) and makes a prediction for number fluctuations (orange line)
consistent with (5.17) using (A.5). S(LA) (dots) is for a system of L = 2000 averaged
over 400 samples for the same α. Note the agreement between the slopes for small
subsystem sizes. Fig 5.3c demonstrates ceff(α) for models shown in (5.20), (5.21),
with αh = αp = α and µ = 0. The superimposed dashed lines show the analytically
computed ceff using block Topelitz symbols.

This model of staggered hopping terms, with α = αh = αp, has its spectrum
shifted such that it cannot be tuned to a gapless point by tuning µ for α < 1.
Naturally, this model would also have a different low-energy theory. We set µ = 0
and still write S(LA) = ceff(α)

3
log(LA) as a convention. ceff here is a function of α

alone. For α ≤ 1, the numerically obtained ceff is approximately constant and close
to 1

2
, and as α increases beyond 1 it goes to 0 (see Fig 5.3c).
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We now interpret these numerical results in light of developments in [80], [81]
which allow the computation of the leading order terms in S(LA) in terms of the
matrix symbol G(k) of the block Toeplitz correlation matrix:

CA(i− j) =

δij − 2
〈
c†icj

〉
2 〈cicj〉

2
〈
c†ic

†
j

〉
−δij + 2

〈
c†icj

〉 , (5.22)

which is written in terms of the 2× 2 matrix G(k) as

CA(i− j) =
1

2π

∫ 2π

0

dk G(k)eik(i−j). (5.23)

Similar to the discussion below (5.8), the asymptotic expansion of the determinant
of CA was computed in [80], [81] and it was used to determine that the leading order
term in S(LA) is logarithmic with a coefficient which depends on the discontinuities
of the matrix symbol G(k), see Appendix D for details. In general, the analytical
value of ceff has an integral representation and for (5.20) we plot it in Fig 5.3c. We
find that the analytical prediction for ceff vanishes at α = 1 although the numerically
determined ceff is nonzero and continues to decay past α = 1. For (5.21) the analytical
ceff = 1

2
when 0 < α < 1 with a jump to ceff ≈ 0.437 at α = 1 and ceff = 0 for α > 1.

The numerically determined ceff is close to 1
2

for α < 1 but decays gradually for α > 1.
This apparent discrepancy between numerics and the analytical ceff is resolved

with the observation that the scaling of entanglement entropy is an asymptotic state-
ment about LA. In other words, in an infinite system S(LA) can continue to grow
logarithmically (or otherwise) up to some point and can then transition into its true
asymptotic scaling. In the long-range models we consider, even in the absence of true
asymptotic logarithmic scaling S(LA) continues to grow with logarithmic behavior for
finite LA until when the large LA behavior from the asymptotic expansion of Toeplitz
determinants becomes valid. This is also found when one considers a theory near a
critical point such that m� 1, in which one finds from field-theory calculations that
S(LA) ∼ c

3
log(LA) for LA smaller than the scale set by m−1 with S(LA) saturating

beyond that, a scenario validated in lattice models. In case of the gapped long-range
models with α > 1, the length-scale controlling the transition is not obvious. It is
unclear if the logarithmic growth which saturates when ceff calculated from the matrix
symbol vanishes, could persist on turning on interactions.

Our examples show that the anomalous scaling of entanglement is quite sensitive
to the details of the model. The manner in which such scaling can transition to
conventional scaling is non-universal. Given that the isolated divergences of b(k) for
α < 1 play a crucial technical role for ceff to be nonzero for α > 1 as outlined in
Appendix D, it is likely that there is no violation of the area-law in the presence of a
gap for α > 1 for translationally invariant models with a thermodynamic limit. That
being said, there could be faster growth of entanglement for finite L and for finite
subsystems LA below a certain scale.
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5.4 Summary: Fermionic models with long-range interactions

In this chapter, we examined the behavior of ground-state entanglement entropy in
lattice models with long-range couplings and numerically studied several examples of
free fermionic models in one spatial dimension. We found a regime of intermediate
fractal scaling for disordered models and for a sequence of deterministic Hamiltonians
without a continuum limit, as a function of the decay exponent α. For disordered
models EE continues to be unbounded for α > 1. We provided constructions where
the ground state EE approaches maximal volume-law growth consistent with the size
of local Hilbert space. For systems with a continuum limit, we found that in the
thermodynamic limit, the entanglement entropy is described by the predictions from
the effective low-energy theory. The low-energy theory for α < 2 may be an exotic one,
featuring fractional derivative terms that give rise to algebraic decay of correlations
and unbounded entanglement in the presence of a gap. In the translationally invariant
models we study, the transition to conventional scaling of entanglement occurs when
α > 1 and we discuss why likely αc = 1 for this case. There is no common αc at
which conventional entanglement scaling kicks in across all free fermion systems.

This brings us to our main result which is conceptual. Consider an infinite sys-
tem. Long-range entanglement describes quantum correlations across large spatial
distances and is in this sense an IR property. For translationally invariant models
with a continuum limit, this implies that entanglement scaling in the IR will con-
strain the scaling in the UV. Here S(LA) is precisely translationally invariant and
is expected to match the predictions from UV theory at LA � ξ, where ξ is the
length scale above which the IR scaling sets in. In d = 1, an application of strong
subadditivity gives1 S(ξ) ≥ S(l) for l � ξ. The inequality above constrains the range
over which the UV scaling can be parametrically faster. For example, assuming
S(ξ) ∼ log(ξ) and S(l) ∼ lγ, the inequality above constrains the power-law growth to
be suppressed for domains of size roughly larger than log(ξ)1/γ. Further constraints
in general systems can probably be deduced on the grounds of smoothness of S and
dimensional analysis. There is perhaps a better formulation of these constraints by
considering the putative equivalence of field-theoretic renormalization to real-space
renormalization schemes like entanglement renormalization [82], [83] that proceed by
removing short-distance entanglement along with rescalings.

In d = 1, for Poincare-invariant continuum theories the constraints can be made
much stronger:

d

dLA

(
LA

dS(LA)

dLA

)
≤ 0 (5.24)

implies that S(LA) cannot grow faster than log(LA), regardless of some nonlocal de-
scription. The concavity of S(LA) with respect to log(LA), which follows from the
Poincare invariance of S(LA), lies at the heart of the entropic c-theorem [84]. Conjec-
tured generalizations of similar restrictions on scaling also exist for higher dimensions

1Strong subadditivity applied to subsystems corresponding to intervals l1, l2 and the union of
l1, l2 with separating interval of length r gives S(l1 + r) + S(l2 + r) ≥ S(l1) + S(l2) for all l1, l2 and
r. We set l1 = l2 = l and l + r = ξ.
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[85]. Independent arguments based on crossovers between entanglement and thermal
entropies restrict the violations of area law to be at most logarithmic [86] assum-
ing conventional low-temperature thermodynamics. Due to technical considerations,
area laws (with potential logarithmic enhancements) are natural in continuum field
theories, even nonlocal ones [87], [56] although there are constructions of highly non-
local theories with volume-law scaling [56], [88]. The logarithmic scaling we find in
the smooth long-range free fermionic systems on the lattice follows from these con-
siderations applied to the corresponding IR continuum theories. This reasoning is
consistent with results from various nonlocal lattice models [52], [89].

Disordered systems and systems without a continuum limit are not constrained
in this manner. To clarify, our statements about the continuum limit do not imply
the lack of a continuum field-theoretic description of spatial or ensemble-averages for
these models. Nor do our suggestions contradict the findings of entanglement scaling
in local disordered models, where the logarithmic scaling obtained after a real-space
RG procedure describes the entanglement up to short-distance terms [90].

It would be desirable to put our RG arguments above on a more quantitative foot-
ing. Another important task would be to carry out a systematic effective field theory
calculation of entanglement entropy in the long-range lattice models discussed in this
chapter. As a separate matter, it would be interesting to compare the properties of
nonlocal UV-complete quantum field theories with the lattice models considered here.
The latter will not have Lorentz-invariant effective theories in general. Similar com-
putations in analytically solvable d > 1 models may shed more light on the scaling
of entanglement in reasonable nonlocal models.

Copyright© Nikolaos Angelinos, 2024.
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Chapter 6 Temperature Dependence of Lanczos coefficients

This chapter is based on work-in-progress in collaboration with D. Chakraborty and
A. Dymarsky and is reproduced here with the consent of both collaborators.

6.1 Introduction: Krylov complexity

In recent years, the study of Krylov space and Krylov complexity has emerged as a
significant avenue for exploring chaotic dynamics in quantum systems. Krylov space,
defined as the minimal linear space that contains an operator A during its time
evolution, is spanned by nested commutators of the operator with the Hamiltonian
[H, [H, · · · [H,A] · · · ]. Utilizing the recursion method, an orthogonal Krylov basis can
be constructed, also leading to the sequence of Lanczos coefficients bn. This sequence
encodes the auto-correlation function C(t) of the operator A, with its asymptotic
behavior at large n offering insights into the system’s dynamics [15].

Krylov complexity K(t) is the average position of the operator A(t) in the ab-
stract Krylov basis. In some regime, it quantifies the “size” of the operator A as it
evolves over time. For a generic chaotic system K(t) is proportional to eλK t asymp-
totically. This exponential growth of K(t) is also universal for field theories. It was
conjectured in [15] and proved for β = 0, that the exponent λK serves as an upper
bound for the growth exponent λOTOC of out-of-time-ordered correlation functions
(OTOCs). Further developments [16] proposed this conjecture as part of a general-
ized Maldacena-Shenker-Stanford inequality

λOTOC ≤ λK ≤ 2π

β
. (6.1)

Considering systems at a finite inverse temperature β, the Lanczos sequence ex-
hibits β-dependence due to the parametric dependence of the autocorrelation function
Cβ(t) on temperature. In [91], the Lanczos coefficients were promoted to a contin-
uous function of Euclidean time and it was shown that the singularity of Cβ(t) in
Euclidean time was due to delocalization in Krylov space. The dynamics of bn in
Euclidean time is governed by the Toda equations, a completely integrable system.
Using related techniques, in Section 6.2 we show that the β-dependence of bn is
described by integrable Hamiltonian dynamics, which has a Lax pair formulation.
Specifically, the β-evolution of bn is described by a pair of systems related to the
Toda hierarchy.

In Section 6.3.1, we inspect the β-dependent properties of the spectral function.
We describe two mechanisms that induce “staggering” in the Lanczos sequence on
introducing β-dependence. We illustrate these ideas through examples such as the
XY model and free scalar field theory. In Section 6.3.2, we argue for a universal
asymptotic behavior of bn in typical system for low temperatures. In a finite system,
half of the Lanczos coefficients converge to the energy gaps while the rest asymptote
to zero. The convergence rate depends on n, with bn of smaller n converging faster
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to their asymptotic values. In Section 6.3.3, we discuss the implications for K(t).
We provide numerical evidence that the time-averaged Krylov complexity K̄ expo-
nentially decays with β, with the exponent proportional to the system’s first energy
gap. We conjecture that this behavior of complexity holds for arbitrarily large system
sizes.

6.2 Equations of motion and Hamiltonian

The starting point is the Lanczos algorithm, which is used to iteratively build an
orthogonal basis in the Krylov space, starting with an initial operator A. Orthog-
onality is defined with respect to a choice of an inner product, defined in terms of
the correlation function. Our goal is to understand temperature dependence of the
correlation function and we define the scalar product

〈A,B〉β ≡ Tr
(
A†ρ1(β)Bρ2(β)

)
. (6.2)

such that
Cβ(t) ≡ 〈A(0)A(t)〉β = 〈A(0), A(t)〉β, (6.3)

In general ρ1(β) and ρ2(β) are Hermitian positive semi-definite operators that com-
mute with the system’s Hamiltonian. In most of this chapter we focus on the Wight-
man inner product by making the choice

ρ1 = ρ2 = e−
β
2
H , (6.4)

where H is the Hamiltonian of the quantum system. Later in 6.2.3, we will explain
how our formalism can be straightforwardly adapted to the choice of other thermal
inner products. For an initial operator A0, we define the Krylov basis recursively

An+1 = [H,An]− b2n−1An−1, (6.5)

where we set b−1 = 0. The Lanczos coefficients bn(β) are fixed by requiring that the
basis is orthogonal,

b2n(β) =
〈An+1, An+1〉β
〈An, An〉β

. (6.6)

Since the norms are non-negative, for convenience, we define qn(β) as follows

δnme
qn(β) := 〈An, Am〉β. (6.7)

It is sometimes convenient to work with the orthonormal Krylov basis {On} defined
by

On :=
An√

〈An, An〉β
= Ane

− qn(β)
2 . (6.8)

Since the inner product (6.4) is β-dependent, all quantities introduced above, includ-
ing the Lanczos coefficients bn(β) and the Krylov basis operators On are β-dependent.
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Our main goal is to understand this temperature dependence. We often will suppress
β-dependence in our notations, except where necessary for clarity.

From (6.5) it follows that the action of the Liouvillian [H, ·] in the normalized
Krylov basis has a tridiagonal representation,

Mnm := 〈On, [H,Om]〉β =



0 b0 0 0
. . .

b0 0 b1 0
. . .

0 b1 0 b2
. . .

0 0 b2 0
. . .

. . . . . . . . . . . . . . .


. (6.9)

A central point is that regardless of the temperature, which defines scalar product in
the Krylov space, the Krylov space itself, and the adjoint action of H are temperature
independent. It follows that β-dependent matrix M in (6.9) are different representa-
tions of the same operator, thus β-dependence is the isospectral deformation of M ,
which we would like to study.

To that end it is convenient to introduce “temperature evolution,” by considering
β-dependent operators,

A[β] := e−
β
2
H Ae−

β
2
H . (6.10)

An important subtlety is that temperature evolution of A = A0 will in most cases
move it out of the Krylov space. To see that, we decompose A in the energy eigenbasis

A = A⊥ + Ad, (6.11)

where Ad and A⊥ stand for diagonal and off-diagonal parts of A, written in the
eigenbasis of H, correspondingly. The diagonal operator Ad is in the nullspace of the
Liouvillian and therefore all operators An defined by (6.5) will share the same diagonal
part (up to normalization). On the contrary, diagonal part of A[γ]d is γ-dependent
and hence for γ 6= 0 outside the Krylov space. The same problem will appear for
any degenerate energy gaps ωij = Ei − Ej, and zero energy gap ω = 0 is always
maximally degenerate. Keeping this in mind, in full generality we can introduce the
superoperator −1

2
{H, .} acting on the Krylov space as

−1

2
{H,On} =:

∑
m

TnmOm + T⊥
n =⇒ Tnm(β) := −1

2
〈Om, {H,On}〉β, (6.12)

where by T⊥
n we denote the components not contained in the Krylov space.

Our goal would be to derive differential equations describing integrable dynamics
of β-dependence of Tnm and Mmn. We first assume that A has no non-zero matrix
elements Aij corresponding to degenerate gaps ωij, in particular all diagonal matrix
elements of A have to be zero. This would ensure that all T⊥

n vanish. This scenario
would normally apply to a chaotic H with no non-zero degenerate gaps, and A with
vanishing thermal expectation value at all temperatures, due to a discrete symmetry.
We then generalize to include arbitrary H and A.
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6.2.1 No degenerate energy gaps

Here we consider the case when {H, ·} does not move operators outside the Krylov
space, which means all T⊥

n vanish. It is easy to see that the matrices T (β),M(β)
commute, as follows from

[H, {H, . }] = {H, [H, . ]}. (6.13)

Next, we temperature-evolve basis operators in Krylov space

On(β)

[
β − β0

2

]
≡ e−

(β−β0)H
4 On(β)e

− (β−β0)H
4 =

∑
m

(
eT (β)

β−β0
2

)
nm
Om(β). (6.14)

It is clear that On(β)
[
β−β0

2

]
are mutually orthogonal with respect to the scalar prod-

uct 〈·, ·〉β0 . Thus, the basis {On(β)
[
β−β0

2

]
} is related to the basis {On(β0)} by an

orthogonal transformation Q,∑
m

(eT (β)
β−β0

2 )nmOm(β) =
∑
m

Qnm(β, β0)Om(β0). (6.15)

Acting on both sides of (6.15) with [H, ·], and using [M,T ] = 0, we obtain

M(β) = Q(β, β0)M(β0)Q
T (β, β0). (6.16)

Similarly, acting by −1
2
{H, ·} and using (6.12) we obtain

T (β) = Q(β, β0)T (β0)Q
T (β, β0). (6.17)

As was expected, β-evolution of both M and T is an isospectral deformation and can
be written in Lax form. The “evolution” operator Q can be written as Q(β, β0) =
U(β)U †(β0), where U is an orthogonal matrix. The recursion relation (6.5) implies
that the basis element On(β) is a linear combination of the first n elements of the
basis Om(β0). Hence there is a lower-triangular matrix RT such that

On(β) =
∑
m

(R−1)Tnm(β, β0)Om(β0) (6.18)

Therefore, (6.15) can be written as follows∑
m

(eT (β)
β−β0

2 )nmOm(β) =
∑
m,k

Qnm(β, β0)R
T
mk(β, β0)Ok(β), (6.19)

which implies
eT (β)

β−β0
2 = Q(β, β0)R

T (β, β0), (6.20)
where R is an upper triangular matrix. Using (6.17) with (6.20) we find the QR
decomposition

eT (β0)
β−β0

2 = QT (β, β0)R(β, β0). (6.21)
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Taking a derivative with respect to β and using (6.17), we obtain

1

2
T (β) = −B(β) + Ṙ(β, β0)R

−1(β, β0), (6.22)

where we defined
B(β) = −Q(β, β0)Q̇T (β, β0). (6.23)

Notice, that B is independent of β0. Now using the fact that B is antisymmetric and
ṘR−1 is upper triangular, (6.22) implies that

B(β) =
1

2
(T+(β)− T−(β)), (6.24)

where by T+, T− we denote the upper-triangular and lower-triangular parts of T ,
respectively. Finally, taking a derivative of (6.17) and (6.16) with respect to β gives

Ṫ = [B, T ], Ṁ = [B,M ], B =
1

2
(T+ − T−). (6.25)

The equations (6.25) describe completely integrable dynamics. They govern temperature-
dependence of Lanczos coefficients bn(β). This is one of our main results, written in
a simplified scenario of no degenerate energy gaps. Similar equations would describe
the dependence of bn on any continuous parameter deforming the scalar product.

Since our main goal is to understand temperature dependence of bn, or equiv-
alently, qn(β), we would like to parameterize T through the same variables. From
(6.12), and using the fact than the unnormalized bases An(β) and An(β0) are related
by a lower-triangular matrix with 1 in its diagonal, it follows that the diagonal entries
of T are given by

hn ≡ Tnn = q̇n (6.26)
One possible strategy is to make use of [M,T ] = 0 to recursively solve for the entries
of T in terms of hn and the Lanczos coefficients bn. We may build Tnm recursively as
follows

Tn,n+(k+2) =
bn−1Tn−1,n−1+(k+2) + bnTn+1,n+1+k − bn+kTn,n+k

bn+1+k

. (6.27)

The identity (6.27) can be used recursively to determine T . Care must be taken to
ensure proper termination condition in the case of finite-dimensional Krylov space.
The Lax equations (6.25) can be written as a system of differential equations for
bn, hn, i.e. for both qn(β) and q̇n(β). To specify a solution, one needs to supply
initial conditions not only for bn, but also for hn. The former can be evaluated by
the Lanczos algorithm at the initial value β = β0, while for the latter one needs to
evaluate the following quantities in the initial Krylov basis at β = β0

hn(β0) = −1

2
〈On(β0), {H,On(β0)}〉β0 . (6.28)

An explicit example of writing down and solving differential equations for qn(β) is
given in subsection (6.2.1).
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Finally we can identify the orthogonal matrix U(β) introduced above with the
matrix that diagonalizing M

M(β) = U(β)ΛUT (β). (6.29)

Here Λ is β-independent diagonal matrix of eigenvalues, and U satisfies

U(β) = Q(β, β0)U(β0), U̇(β) = B(β)U(β). (6.30)

Relation to Toda chain

There is another way to build a basis for the Krylov space. We start by performing
the Lanczos algorithm with the super-operator −1

2
{H, ·} and the initial operator

Ãeven
0 ≡ A0:

Ãeven
n+1 = −1

2
{H, Ãeven

n } − ãeven
n Ãeven

n − (b̃even
n−1)

2Ãeven
n−1 , (6.31)

where
(b̃even

n )2 =
〈Ãeven

n+1 , Ã
even
n+1〉

〈Ãeven
n , Ãeven

n 〉
, ãeven

n =
〈Ãeven

n , {H, Ãeven
n }〉

〈Ãeven
n , Ãeven

n 〉
. (6.32)

After normalizing Aeven
n we obtain Õeven

n . We observe that for Hermitian initial oper-
ator A0, the Krylov basis {On} splits into alternating Hermitian and anti-Hermitian
operators for even and odd n respectively. However, {H, ·} maps a Hermitian (anti-
Hermitian) operator to another Hermitian (anti-Hermitian) operator. This implies
that {Õeven

n } spans only half of the Krylov space, namely the subspace spanned by
Hermitian operators. To obtain the rest of the Krylov space, we must perform Lanc-
zos iteration again, but this time starting with the initial operator Ãodd

0 ≡ A1. This
leads to another set of operators {Õodd

n } and Lanczos coefficients b̃odd
n , ãodd

n .
The super-operator −1

2
{H, ·} has a tridiagonal representations T̃even, T̃odd in these

two bases:
(T̃even)nm = −1

2
〈Õeven

n , {H, Õeven
m }〉, (6.33)

(T̃odd)nm = −1

2
〈Õodd

n , {H, Õodd
m }〉, (6.34)

while 〈Õodd
n , {H, Õeven

m }〉 = 〈Õeven
n , {H, Õodd

m }〉 = 0. Following the same steps as in
[91], it is straightforward to show that the temperature evolution of these matrices is
governed by Toda equations

˙̃Ti = [B̃i, T̃i], B̃i =
1

2
(T̃+

i − T̃−
i ), i = even, odd. (6.35)

We can arrive at this result in a different way. Due to the elements of the Krylov
basis {On} alternating between Hermitian and anti-Hermitian operators for even and
odd n respectively, Tij = 0 unless i + j is even. Hence, we can split T into a direct
sum of even and odd parts

(Teven)ij = T2i,2j (Todd)ij = T2i+1,2j+1. (6.36)
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We rewrite the equation for Ṫ (6.25) as two Lax equations

Ṫl = [Bl, Tl], Bl =
1

2
(T+

l − T−
l ), l = even, odd. (6.37)

Therefore the dynamical equations governing even and odd subspaces are fully de-
coupled. It follows from the Lax representation that the constants of motion are

I l
k =

1

k
tr
(
T k
l

)
, l = even, odd. (6.38)

From the definition of T and using that T and M commute, one finds

Ieven
k = Iodd

k . (6.39)

The matrices Teven, Todd are real-symmetric and can be tri-diagonalized using Lanczos
algorithm. Namely, by acting by Teven onA0, and by Todd onA1 Lanczos algorithm will
yield T̃even and T̃odd respetively. In other words T̃l, for l = even, odd, are the matrices
Teven, Todd brought to tridiagonal form by a β-dependent orthogonal transformations
Pl,

Tl = PlT̃lP
T
l , l = even, odd. (6.40)

The Lax equations (6.37) are equivalent to the following equations for T̃l

d

dβ
T̃l = [B̃l, T̃l], B̃l =

1

2
(T̃+

l − T̃−
l ), l = even, odd. (6.41)

The equations (6.41) describe precisely two Toda chains in Lax form. In terms of the
phase space variables {p̃l = ˙̃ql, q̃l} with the canonical Poisson bracket, the Hamilto-
nian is

H = Ieven
2 + Iodd

2 . (6.42)
This describes two decoupled open Toda chains, related only by the initial conditions
Ieven
k = Iodd

k for all k. The same Hamiltonian (6.42) generates the dynamics of the
original matrix T . However, the relation between qn(β) and q̃n(β) is non-universal
and complicated. Both Hamiltonians I lk and the Poisson brackets look non-trivial in
terms of qn.

Example

As a simple example, let us consider a spin chain of size 2 governed by the Hamiltonian

H = −J(σ1
xσ

2
y + σ1

yσ
2
x) + h(σ2

y + σ1
x). (6.43)

The eigenvalues of this Hamiltonian are

E0 = 0, E1 = 2J, E2 = −J −
√
J2 + 4h2, E3 = −J +

√
J2 + 4h2. (6.44)

Starting from the initial operator

A0 = σ1
yσ

2
z . (6.45)
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and performing the Lanczos algorithm with β = 0 we find

A1 = 4ih(σ1
yσ

2
x + σ1

zσ
2
z) + 4iJσ2

y , (6.46)
A2 = −16h2σ1

zσ
2
x, (6.47)

A3 = 32i
h2J

2h2 + J2

(
(2h2 + J2)σ1

x + hJσ1
yσ

2
x − 2h2σ2

y + hJσ2
zσ

2
z

)
, (6.48)

along with Lanczos coefficients

b0(0) = 2
√
J2 + 2h2, b1(0) =

4h2√
2h2 + J2

, b2(0) = 2

√
4h2J2 + J4

2h2 + J2
. (6.49)

We also evaluate
hi(0) = −1

2
tr
(
A†

i{H,Ai}
)
/ tr
(
A†

iAi

)
, (6.50)

resulting in
h0(0) = h2(0) = 0, h1(0) = −h3(0) =

2h2J

2h2 + J2
. (6.51)

The Krylov space is 4-dimensional. Let us write

T even =

(
h0 t02
t02 h2

)
, T odd =

(
h1 t13
t13 h3

)
, (6.52)

t02 =
b0
b1
(h1 − h0), t13 =

b20(h1 − h0) + b21(h2 − h1)

b1b2
, (6.53)

where we used (6.27) to determine the off-diagonal entries of matrix T in terms of
bi, hi.

The Lax equations Ṫ = [B, T ], Ṁ = [B,M ] become the following system of
differential equations

ḣ0 = −ḣ2 =
b20
b21
(h0 − h1)

2, ḣ1 = −ḣ3 =
b22
b21
(h2 − h3)

2, (6.54)

ḃ0 =
1

2
b0(h1 − h0), ḃ1 =

1

2
b1(h2 − h1), ḃ2 =

1

2
b2(h3 − h2). (6.55)

Taking advantage of the fact that the quantities tr(M2) and tr
(
(T even)k

)
= tr

(
(T odd)k

)
for k = 1, 2 are conserved, we find the general solution parametrized by c, κ, β0, β1, λ,

h0 =
c

2
+ κ tanh(κ(β − β0)), (6.56)

h2 =
c

2
− κ tanh(κ(β − β0)), (6.57)

h1 =
c

2
+ κ tanh(κ(β − β1)), (6.58)

h3 =
c

2
− κ tanh(κ(β − β1)), (6.59)
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b0 =
λ√

cosh (κ(β + β1 − 2β0)) sech (κ(β − β1)) + 1
, (6.60)

b1 =
λ sech(κ(β − β1))|sinh(κ(β1 − β0))|√

cosh (κ(β + β1 − 2β0)) sech (κ(β − β1)) + 1
, (6.61)

b2 =
λ cosh(κ(β − β0))sech(κ(β − β1))√

cosh (κ(β + β1 − 2β0)) sech (κ(β − β1)) + 1
. (6.62)

Given the initial values bi(0), hj(0) (6.49,6.51), the integration constants can be
evaluated to be

c = 0, λ = 2
√
2J2 + 4h2, κ = −J, β0 = 0, β1 = − 1

J
arctanh 2h2

2h2 + J2
. (6.63)

This completes the derivation of bn(β).
Asymptotically, as β → ∞ we find that b0 → |E1 − E0|, b1 → 0, b2 → |E3 − E2|.

This is a pattern that we explore in generality in section 6.3.2.
We note that in this small-dimensional example, Teven = T̃even, Todd = T̃odd,

so this system is exactly the same as two conventional Toda chains of size two, with
dynamical variables {qi, hi} satisfying conventional Poisson brackets. This is no longer
true for Krylov spaces of larger size: the Poisson brackets between {qi, hi} become
complicated.

6.2.2 General initial operator

For a general initial operator with non-vanishing diagonal matrix elements Aii, even if
non-zero gaps ωij are non-degenerate, zero gap is degenerate. This will alter derivation
of the preceding section. Most importantly, Krylov spaces for different β are different.
However it is possible to keep track of the diagonal parts of operators separately. We
modify the definition (6.12) to

Tnm(β) = −1

2
〈On, {H,Om}〉β −

1

2
am〈On, {H, e−µ(β,β0)d(β0)}〉β, (6.64)

d(β0) ≡
diag A√

〈diag A, diag A〉β0

, e2µ(β,β0) ≡ 〈d, d〉β, (6.65)

where, up to normalization, d is the diagonal part of A – the projection of A on
the nullspace of [H, ·] (we assume energy spectrum is non-degenerate). In (6.64)
basis operators On are β-dependent. Vector an is the normalized null vector of the
Liouvillian M , and consequently also the null vector of T . Explicitly, an can be
written in terms of Lanczos coefficients

an(β) =

(−1)k
(∏l=k−1

l=0
b2l(β)

b2l+1(β)

)
a0(β), n = 2k,

0, n = 2k + 1,
(6.66)

and a0(β) is given by

a0(β) =
〈d,O0〉β√
〈d, d〉β

. (6.67)
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By these modifications, T becomes a representation of −1
2
{H, ·} projected on the

Krylov space with the direction corresponding to the degenerate eigenvalue of M
subtracted, while the evolution of the initial operator outside this space is governed
by functions an(β) and µ(β). From (6.64) it follows that the temperature evolution
operator acting on the Krylov basis can be expressed as

e−
(β−β0)H

4 On(β)e
− (β−β0)H

4 =
∑
m

(eT (β)
β−β0

2
+µ(β,β0)aT (β)a(β))nmOm(β). (6.68)

Similarly to (6.21), we consider the QR decomposition:

eT (β0)
β−β0

2
+µ(β,β0)a(β0)aT (β0) = QT (β, β0)R(β, β0). (6.69)

The matrix T and its null-vector a evolve as

T (β) = Q(β, β0)T (β0)Q
T (β, β0), a(β) = Q(β, β0)a(β0). (6.70)

Taking a derivative of (6.69) with respect to β we find that the Lax equations
(6.25) continue to hold with a generalized B:

B =
1

2
(T+ − T−) + µ̇((aaT )+ − (aaT )−), (6.71)

where we note that, due to definition (6.65), µ̇(β) ≡ ∂
∂β
µ(β, β0) is independent of β0.

Just like before, the equations for the odd and even subspaces decouple

Ṫl = [Bl, Tl], l = even, odd, (6.72)

Beven =
1

2
(T+

even − T−
even) + µ̇((aaT )+even − (aaT )−even), Bodd =

1

2
(T+

odd − T−
odd). (6.73)

These equations do not determine the function µ̇(β), which must be evaluated inde-
pendently from its definition (6.65).

This dynamics has a Hamiltonian description. To see this, we could consider the
tridiagonal representation T̃l. These continue to satisfy the same type of Lax equation

˙̃Tl = [B̃l, T̃l], l = even, odd, (6.74)

with

B̃even =
1

2
(T̃+

even − T̃−
even) + µ̇((ããT )+even − (ããT )−even), Bodd =

1

2
(T̃+

odd − T̃−
odd). (6.75)

Here ã is the normalized null-vector of T̃even. From this we can infer that the full
Hamiltonian describes two decoupled systems

H = Heven +Hodd, (6.76)

where the odd subspace continues to evolve according to the usual Toda dynamics
with the Hamiltonian

Hodd = Iodd
2 =

1

2
tr
(
T 2

odd
)
, (6.77)
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and the even part is modified to

Heven = Ieven
2 + µ̇H′, H′ =

∑
ck Ieven

k . (6.78)

The coefficients ck introduced in (6.78) are the coefficients that appear in the
characteristic polynomial of Teven. They can be evaluated as

ck =
1

k!

∂k

∂λk
det(λ− T (β0))|λ=0 (6.79)

The determinant of Teven is written in general in terms of Ik as

C =
n∑

k=1

kckIeven
k . (6.80)

C vanishes on-shell due to the zero mode of Teven. A calculation (see Appendix F)
shows that

ck =
2
∂C

∂Ieven
1

∂C
∂Ieven

k

, (6.81)

allowing (6.78) to be rewritten as, (where “os” stands for on-shell)

H′ =
2C

∂C
∂Ieven

1

∣∣∣∣
os

. (6.82)

Example

Consider again the spin chain of section 6.2.1

H = −J(σ1
xσ

2
y + σ1

yσ
2
x) + h(σ2

y + σ1
x). (6.83)

Starting from the initial operator

A0 = σ1
zσ

2
z , (6.84)

and performing the Lanczos algorithm with β = 0 we find

A1 = 4ih(σ1
zσ

2
x − σ1

yσ
2
z), (6.85)

A2 = 8hJ(σ1
x + σ2

y) + 16h2σ1
yσ

2
x, (6.86)

(6.87)

along with Lanczos coefficients

b0(0) = 2
√
2|h|, b1(0) = 2

√
2h2 + J2. (6.88)

We also evaluate
hi(0) = −1

2
tr
(
A†

i{H,Ai}
)
/ tr
(
A†

iAi

)
, (6.89)
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and
e2µ(β,0) ≡ 〈d, d〉β, (6.90)

resulting in

h0(0) =
2h2J

4h2 + J2
, h1(0) = J, h2(0) =

2h2J + J3

4h2 + J2
, (6.91)

e2µ(β,0) =
2J2eβJ cosh(β∆) +∆2

(
e−2βJ + 1

)
2 (∆2 + J2)

, ∆ ≡
√
4h2 + J2. (6.92)

The Krylov space is 3-dimensional. Let us write

T even =

(
h0 t02
t02 h2

)
, T odd =

(
h1
)
, (6.93)

t02 =
b0
b1
(h1 − h0), (6.94)

where we used (6.27) to determine the off-diagonal entry of matrix T in terms of bi, hi.
The Lax equations Ṫ = [B, T ], Ṁ = [B,M ] give the following system of differential
equations

ḣ0 = −ḣ2 =
b20
b21
(h0 − h1)

2 + µ̇
2b20

b20 + b21
(h0 − h1), ḣ1 = 0, (6.95)

ḃ0 =
1

2
b0(h1 − h0)− µ̇

b0b
2
1

b20 + b21
, ḃ1 =

1

2
b1(h2 − h1) + µ̇

b20b1
b20 + b21

. (6.96)

Taking advantage of the fact that the quantities tr(M2) and tr
(
(T even)k

)
= tr

(
(T odd)k

)
for k = 1, 2 are conserved, we find the general solution parametrized by c, C, λ

h0 = c
Cecβ−2µ(β,0)

1 + Cecβ−2µ(β,0)
, (6.97)

h1 = c, (6.98)

h2 = c
1

1 + Cecβ−2µ(β,0)
, (6.99)

b20 =
λ2C

C + e2µ(β,0)−cβ
, (6.100)

b21 =
λ2

1 + Cecβ−2µ(β,0)
. (6.101)

Given the initial values bi(0), hj(0) (6.88,6.91), the integration constants can be eval-
uated to be

c = J, λ = 2
√
4h2 + J2, C =

2h2

J2 + 2h2
. (6.102)

This completes the derivation of bn(β).
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6.2.3 Case of degeneracies and Generalizations

Here we consider systems with degeneracies in the energy differences. The simplest
example is the quantum harmonic oscillator (see Appendix E). This treatment works
for all initial operators and general inner products (6.2) with a real parameter β where
ρ1(β), ρ2(β) are Hermitian, positive semi-definite operators that commute with the
Hamiltonian. Let J be the self-adjoint super-operator such that eJβA = ρ1(β)Aρ2(β)
for all operators A. For the Wightman inner product we have J = −1

2
{H, ·}.

We start by extending the Krylov space with an additional set of orthonormal
operators which span the operator space. Let N denote the size of Krylov space and
N ′ ≥ N the size of the extended Krylov space. There are several equivalent ways
to do this. The resulting normalized operators Oi with i < N are fixed, but there
is freedom in the choice of Oi for i ≥ N , stemming from the freedom to rotate Oi

among themselves for i ≥ N . One way to accomplish this is to lift all the degeneracies
by introducing a small parameter ϵ, perform the Lanczos algorithm, normalize the
operators and send ϵ→ 0 in the end. Another way to accomplish this, is to perform
Lanczos algorithm with the operator [H, ·] + ϵJ , and send ϵ→ 0 at the end.

We define the extended matrix T ′ similar to (6.12), but with i, j running through
the entire extended Krylov space

T ′
ij = 〈Oi, JOj〉β, 0 ≤ i, j ≤ N ′ − 1. (6.103)

The superoperator J is an endomorphism of the extended Krylov space, and using
the same steps as in section 6.2.1 we obtain the Lax equation

Ṫ ′ = [B′, T ′], B′ =
1

2
((T ′)+ − (T ′)−). (6.104)

Let us denote by TK the submatrix of Tij with 0 ≤ i, j ≤ N − 1 in order to write
T ′ in the block form:

T ′ =

(
TK t
tT TE

)
. (6.105)

From (6.104) we obtain the following equation for TK

ṪK = [BK, TK] + ttT , B =
1

2
(T+

K − T−
K ). (6.106)

We can also write the equation as follows

ṪK = [BK, TK]− T 2
K + Y, (6.107)

where
Yij = 〈JOi, JOj〉. (6.108)

6.2.4 Exact Solutions

For a generic system in the absence of symmetry reasons, T and hence B will be a
full-matrix with roughly O(N2) components. This makes the task of obtaining exact
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solutions of (6.25) daunting. There are special choices of T that offer a way to solve
for the bn’s through (6.25), though most of the solutions in question may not be
physical Lanczos coefficients. A way of obtaining exact solutions could be through
postulating an ansatz for the diagonal elements Tnn in terms of {qn}. Another way
could be through the choice of an even function f , such that T = f(M). The
evenness requirement ensures compatibility in multiplicity of eigenvalues of T and
M , consistent with T being a direct sum of odd and even parts. An interesting choice
is f(M) = αM2k for a positive integer k. The equation Ṁ = [B,M ] then becomes
an instance of the Toda hierarchy.

The case with T = −1
2
αM2 is particularly convenient. T becomes direct sum of

two coupled Toda chains Todd and Teven which allows one to solve exactly for T (β).
The equation Ṁ = [B,M ] reduces to

ḃn(β) = −α
2
bn(β)(b

2
n+1(β)− b2n−1(β)). (6.109)

This is the integrable system studied by Kac and Van Moerbeke [92]. The separable
polynomial solutions to these equations are given by

bn(β) = α

√
n+ 1

β − β0
. (6.110)

The autocorrelation function corresponding to this solutions is the Gaussian

Cβ(t) = e
− α2t2

2(β−β0) , (6.111)

which for α > 0 has physical behavior. For large β, Cβ(t) decays more slowly and
the spectral function becomes localized, consistent with the large β limit for Cβ(t) in
a physical system.

6.3 General Properties of Lanczos Coefficients

6.3.1 Properties of the Measure

In practice a lot can be said about the general properties of temperature dependence
of Lanczos coefficients by considering the spectral representation of the Wightman
function:

Cβ(t) =

∫
ei(E1−E2)te−β

E1+E2
2 ρ(E1, E2)| 〈E1|A |E2〉 |2dE1dE2, (6.112)

where ρ(E1, E2) is the joint density of eigenvalues. It is useful to change variables to
E = 1

2
(E1 + E2) and ω = E1 − E2 to write

Cβ(t) =

∫
(g(ω, β) + κ(β)δ(ω))eiωtdω ≡

∫
Φ(ω)eiωt dω (6.113)

where

g(ω, β) =

∫
e−βEρ

(
E+

ω

2

)
ρ
(
E−ω

2

)
|A(E, ω)|2dE , κ(β) =

∫
e−βEρ(E)|A(E, 0)|2dE

(6.114)
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The asymptotic growth rate of Lanczos coefficients is governed by the large-
frequency asymptotics of the measure Φ(ω), [15], and it follows that a key ingredient
is the β-dependence of the asymptotic decay of the measure induced from the E inte-
gral. However, the large-ω behavior of Φ(ω) is not enough to characterize the details
of the Lanczos sequence.

In this section, we describe a number of general factors that determine the be-
havior of the spectral function Φ(ω) as β is varied, and hence comment on universal
behavior of Lanczos coefficients in systems with a discrete spectrum. These factors
include the relation between β and the saddle point location E∗ in the integrand
defining g(ω, β), the size of κ(β) and the suppression of the |A(E, ω)|2 for small ω
due to the presence of a finite gap ∆ in the energy spectrum of a the system.

Reference [15] showed that the slowest possible asymptotic decay for large β is
Φ(ω) ∼ e−

β
2
|ω| in the case of the Wightman function. A number of results show that

this slowest possible decay is saturated and results in the behavior of bn ∼ πn
β

. At
β = 0, the linear growth of Lanczos coefficients for local operators in discrete systems
is associated with chaotic systems, because they are expected to saturate the bound
Φ(ω) ≤ Ce−γω consistent with locality. In field theory, the singularity of Cβ(t) at
t = iβ

2
implies the exponential decay above and the asymptotic growth bn ∼ πn

β

provided the dependence on n is smooth. An important point is to bridge the gap
between these regimes discussed in the literature based on an analysis of (6.113).

In the large-system limit and local operators, |A(E, ω)|2 is typically expected
to decay with a factor of e−S(E) and any other E-dependence will be subleading.
Collecting the factors of ρ in (6.114), we find that g(β, ω) to be determined mainly
by the E integral about the saddle-point E∗, defined by S ′(E∗) = β, provided such
E∗ exists. The ω dependence of the integrand of g(ω, β) will be dominated by the
contribution of the slice |A(E∗, ω)|2, which for small β probes contributions from the
high-energy parts of the spectrum. For systems (such as a spin-chain) where ρ′(E)
changes sign and ρ(E) decays after some E, at large enough β, E∗ may not exist,
and instead the ω-dependence would come from the lower limit of E in the integral
defining g. Consistency with the asymptotic e−β

|ω|
2 would imply constraints on the

|A(E∗, ω)|2 along the ω-direction.
Another perspective is the following: for an infinite system with zero ground state

energy the limits in defining g are

g(ω, β) =

∫ ∞

|ω|
2

e−βEρ
(
E +

ω

2

)
ρ
(
E − ω

2

)
|A(E, ω)|2dE, (6.115)

and this integral can be rewritten with the shift Ẽ = E − |ω|
2

g(ω, β) = e−β
|ω|
2

∫ ∞

0

e−βẼρ
(
Ẽ + |ω|

)
ρ
(
Ẽ + |ω|

)
|A(Ẽ + |ω

2
|, ω)|2dẼ. (6.116)

Once again, a saddle point analysis of the integral in terms of the variables Ẽ could
be used to identify Ẽ∗(β) which contributes most of the ω-dependence. If the ω-
dependence coming from this region in (6.116) is slower than the e−β

|ω|
2 coming from
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the shift, that would explain the emergence of the field-theory answer and the asymp-
totic πn

β
growth. Such a mechanism is likely at play for local operators in integrable

lattice models with a good field theory limit, where for small β, g(ω) decays faster
than exponential. For large β, the low-energy matrix elements contribute and their
slower ω-decay gets dominated by the exponential decay coming from the shift in
(6.116). This can be made firmer if |A(E, ω)|2 vanishes beyond some |ωmax|, like in
free integrable models. In that case the e−

β|ω|
2 decay dominating for intermediate

ω < ωmax will determine the moments and bn.
The contribution of κ(β) to the spectral sum, i.e. Cβ(0), relative to g(ω, β) will

typically increase with β. This follows from the exponential (in β) suppression of
exponentially many high-energy states, which diminish the contribution of κ(β) to the
moments for small β. The contribution of κ(β) may be missed in the thermodynamic
limit depending on the operators in question and the order of limits. However, for
systems with a discrete spectrum, in the extreme β∆ → ∞ where ∆ = E1 − E0

is the first energy gap, the Wightman function will project onto the element |A00|2.
In practice, g will typically decay faster as a function of β than κ, and κ(β) will
contribute to the moments at a O(1) value of β. This is because only a finite region
around E∗ (or E0) will contribute significantly to both κ and g. Of course, there could
be systems in which the κ(β) could be non-negligible, despite being a non-increasing
function of β and we find such an example in massive XY model where the spin
auto-correlation function has a t-independent piece equal to the magnetization.

The κ term has the effect of rescaling all but the zeroth moment by a factor of
1

1+κ
. This suggests that the Lanczos coefficients for κ 6= 0 could be related to the

Lanczos coefficients for κ = 0. That is indeed the case. There exists the following
relationship between the Lanczos coefficients b̃n at κ = 0 and bn at non-zero κ:

b22n+1b
2
2n+2 = b̃22n+1b̃

2
2n+2, for n = 0, 1, 2... (6.117)

b22n + b22n+1 = b̃22n + b̃22n+1, for n = 0, 1, 2... (6.118)
And by definition,

b20 =

∫
w2g(ω)dω

κ+
∫
g(ω)dω

. (6.119)

These suggest that bn for even n are shifted relative to b̃n for odd n. For example,
the effect of κ given b̃n smoothly depends on n and b̃n = αn+ o(n),

bn = b̃n + (−1)ncn, (6.120)

where cn > 0 for n > 0 can be shown to be slowly decaying to 0 with n. At large β,
g(ω) becomes localized around ω = 0 and, for typical A, κ dominates over the second
moment of g and b0 tends to 0. While the mathematical relation between bn and b̃n
continues to hold, in this range of β the Lanczos coefficients will become sensitive to
the spectrum and for small n, the Lanczos coefficients will begin approaching their
β → ∞ value. The asymptotics for Lanczos coefficients are positive energy gaps and
0’s in alternating odd-even pattern. We will address this in details in 6.3.2.
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Yet another deformation, independent of κ is when β∆ � 1 and the e−β∆ factor
in (6.114) suppresses the contribution of |A(E, ω)|2 as ω → 0. This could depend on
whether the integrand in g(ω, β) gets a large contribution in the vicinity of E ⪆ ∆.
This would result in g(ω) approximately vanishing in the vicinity of ω = 0. In free-
field theory, g(ω) for a local field ϕ(x) will vanish exactly for |ω| ≤ m where m is the
mass for ϕ(x). g(ω) having a “gap” around ω = 0 will be another source of staggering
in the Lanczos coefficients. It may be possible to describe the Lanczos coefficients in
this case through the use of the auxiliary measure described in the appendix G but
one can deduce staggering from the fact that the difference of asymptotic value of
bn’s for odd and even n has to be equal to the size of the gap in g(ω). In the case
κ = 0, for small n the bn’s again converge to the positive gaps in alternating pattern,
but this time b0 converges to ∆. Including the effect of κ causes this staggering to
“shift” such that the even bn’s vanish.

So far, the focus was on the behavior of Lanczos coefficients for n ≤ O(S), which
survives in the thermodynamic limit. The Krylov space dimension N is O(e2S) and
for n/N finite, the behavior of the Lanczos coefficients is governed by the UV physics,
i.e the bn’s are sensitive to the fact that the measure is a sum of Dirac mass points.
Numerics show that on increasing β, bn’s continue to decay with the profile determined
by the spectrum of M with the Lanczos coefficients showing progressively larger
fluctuations about the mean. The transition to the UV behavior is controlled by
the so-called Lanczos plateau where bn is approximately equal to a constant b. The
Lanczos plateau can still be described by the properties of the continuous measure
Φ(ω): if Φ(ω) = 0 for ω > ωmax (which necessarily exists in finite sytems), then
b = ωmax

2
and assuming smooth behavior for the growth bn ∼ b(n), the n∗ at which

bn = b will be given by n∗ = b−1(ωmax
2

). Hence, provided β is not extremely large such
that the β → ∞ answer kicks in throughout the entire Lanczos chain, Φ(ω) will get
more localized and the growth of moments will be suppressed by β-dependent factor.
Thus the rate of growth of bn’s will slow down and n∗ will increase. When bn ∼ πn

β
,

then n∗ ∝ β.
Above, we mentioned a few factors describing the deformation of the measure

Φ(ω) as β increases, including factors that go beyond asymptotic decay of Φ(ω). As
evidence, we plot the Lanczos coefficients for the XY model (see (A.38)) in thermody-
namic limit along the Ising line at the critical point h = 1, γ = 1 as well as at a point
with gap, h = 1.1 and γ = 1. At the critical point, for positive β the Lanczos coeffi-
cients show the πn

β
behavior with staggering due to the presence of nonzero κ ( which

is decreasing with β in this case ). On increasing β, the plateau shifts to infinity and
the field theory answer emerges see Fig 6.2b. At h = 1.1 there is a range of positive
β, where the linear Lanczos growth emerges in presence of staggering from both κ
and gap in measure due to ∆ = ϵ0 until saturation see Fig 6.1a. When β∆ � 1, for
small n the Lanczos coefficients begin to converge to gaps corresponding to lowest
energy sums cf. 6.3.2 probed by the operator and b1, b4 . . . converge to 2ϵ0.

We now consider the Lanczos coefficients of free scalar field theory, which are
plotted numerically for d = 3 and m = 10 in 6.2a. There is staggering for all β due
to the presence of a mass gap m in the measure Φ(ω), which sets the magnitude of
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this staggering. In the large β limit and for small n, the subsequence b2n+1 is close to
0, while b2n converge to the mass m, consistent with the results of section 6.3.2. The
singularity of C(t) in Euclidean time still implies asymptotic linear in n growth of
bn. In Appendix G we explain how this is captured by considering the combination
b2n+b2n+1 for n� 1. Note the staggering pattern is different from that of XY model
because κ = 0 here.

We illustrate these deformations using a toy model of Φ(ω) in (A.30). This toy
model takes into account the presence of a gap in the measure as ω → 0, the universal
asymptotic e−β

|ω|
2 decay, as well as an upper bound where Φ(ω) gets cut off. This

model accurately captures the behavior of Lanczos coefficients in both XY model and
free scalar theory (for different values of its parameters). In particular, the Lanczos
coefficients of the transverse spin operator in the XY model, in the regime of finite
β (but β∆ not too large), is described by a finite value of ωmax and ∆ = 2ϵ0, where
ϵ0 is the energy gap of a single particle state. Meanwhile, the behavior of massive
free scalar field theory is captured by ωmax → ∞ and ∆ = m. In the case of scalar
field theory, the agreement with the Lanczos coefficients holds to a high degree of
numerical precision because this toy measure is a very accurate approximation for
the true Φ(ω) in scalar field theory, especially for d = 3. We use this agreement to
find an answer for bn’s in scalar field theory valid for β∆ � 1 and small n:

b2n = ∆+
2n

β
+

(2n)2

2β2∆
+O

( 1

β3∆2

)
b2n+1 =

2n+ 1

β
+

(2n+ 1)2

2β2∆
+O

( 1

β3∆2

)
.

(6.121)

This expansion gets o(n) corrections depending on the number of spacetime di-
mensions d and is consitent with the expansion computed in [93]. Beyond certain n
the expansion (6.121) receives significant corrections from the subleading terms such
that the asymptotic in n behavior kicks in

b2n + b2n+1 =
4πn

β
+ o(n).

b2n − b2n+1 ≈ m,

(6.122)

see appendix G for a discussion.

6.3.2 Large β asymptotics of the flow

A remarkable property of the Toda flow and its generalizations is that they offer an
alternative perspective on the spectral theorem for symmetric matrices [94], [95]. We
will illustrate this principle for the specific case of β evolution of T and M . Let us first
consider the case when µ̇ = 0. In that case the eigenvalues of T , λk are determined
by the energy sums: λk = −1

2
(Ei + Ej). As β → ∞, T converges to the diagonal

matrix of its eigenvalues.
To see this, we first note that under the flow T remains a symmetric matrix and

hence Tii < maxk λk. Therefore for any partial sums of diagonal elements
∑l

i=0 Tii
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Figure 6.1: Lanczos coefficients for the XY model (see appendix H) at parameters
γ = 1 and h = 1.1 (Ising limit) and β = 25 (left) and β = 3000 (right). In 6.1a, the
“average” πn

β
dependence, until reaching saturation, is deformed by the presence of

both κ and presence of gap in measure due to gap in spectrum. In 6.1b, for small n,
the bn are converging to the energy gaps. Orange dashed line is at 2ϵ0, the energy
gap connecting the vacuum to two-particle states in the free-fermion representation.

for finite l exists, and consequently the limβ→∞ Tii exists. Now we notice that the β
derivative of the partial sum is given by

d(
∑l

i=0 Tii)

dβ
=
∑

j≤l,k>l

T 2
jk (6.123)

For the limβ→∞ Tii to exist all Tjk for j 6= k have to vanish as β → ∞. This shows
how T converges to the diagonal matrix of its eigenvalues. In principle, T could
converge to any diagonal matrix but the stable fixed-point of this flow is given by the
diagonal matrix with the ordering Tkk = λk such that λ0 = λ1 > λ2 = λ3 . . ., where
λ0 = −1

2
(E0 + E1). Because the non-diagonal energy sums are symmetric in their

two indices, each eigenvalue of T appears twice and λ2k = λ2k+1.
The Lanczos coefficients in this limit can be obtained using the following compo-

nents of [T,M ]:
[T,M ]k,k+1 = bi(λk − λk+1) (6.124)

For this to vanish we must have bi = 0 or λi = λi+1. The latter condition is satisfied
for all even i so the b2i’s do not have to vanish. To satisfy the former conditions, we
find that all the b2i+1 = 0. Hence, strictly at the β → ∞ limit, M becomes block
diagonal, consisting of 2×2 blocks. This helps us deduce the even Lanczos coefficients
by noticing that the diagonal matrix M2 has M2

2k,2k = M2
2k+1,2k+1 = b22k. Then using

the fact that T and M2 share common eigenvectors, it follows that b2k = |Ei − Ej|
given that λ2k = −1

2
(Ei + Ej).

The situation is altered in a slight way in the case when µ̇ 6= 0. By construction,
T has a 0 eigenvalue in addition to the remaining eigenvalues proportional to non-
diagonal energy sums. Asymptotically µ̇ = −E0 and that has the effect of shifting
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λ0 = 0 and λ1 = λ2 > λ3 = λ4 > . . ., such that λi for i ≥ 1 are proportional to the
non-diagonal energy sums in decreasing order. The ordering argument for Lanczos
coefficients follows as before such that for initial operators with nonzero diagonals, the
even Lanczos coefficients vanish in the large β limit and the odd Lanczos coefficients
converge to (positive) energy gaps.

Regarding the rate of convergence, inspecting the expression for An(β) in energy
eigenbasis would suggest that bn’s should converge exponentially to their infinite β
values when

βmin
k

(λk − λk+1) � 1 (6.125)

similarly to what is known for Toda case [96]. In practice, the convergence of bn’s
depends on n and we argue that bn for small n will converge to the gaps faster with
a rate related to β∆, where ∆ = E1 − E0. To see this we remind ourselves that
this limit emerges when the spectral measure is a sum of discrete delta functions
successively exponentially suppressed

Φ(ω) = |A00|2δ(ω) + e−β∆|A01|2δ(ω −∆) + . . . , (6.126)

where we order the terms by the magnitude of the coefficients of the delta functions.
The moments µ2n for small n are largely determined by the location of the delta
functions whose coefficients are leading in this ordering. However as n becomes large
enough µ2n will begin probing the tails of the spectral function Φ(ω), despite it being
exponentially suppressed. Provided that for larger ω the coefficients of successive
delta functions don’t decrease too rapidly, the asymptotic growth of µ2n could still be
well-approximated using a continuous approximation to Φ. Finally, while we provided
this argument without considering the degeneracy in the spectrum of M , combining
the arguments of this section with the construction in 6.2.3 would suggest the same
convergence in the extended space.

6.3.3 K-Complexity

The mean position of the operator O(t) in the Krylov chain is given by the Krylov
complexity K(t), defined as

K(t) =
n=N−1∑
n=0

n|〈On, O(t)〉β|2. (6.127)

When K(t) receives most of its contributions from the Lanczos sequence in the region
n ≤ O(S), it serves as a good measure of the spatial operator size. In this regime, if
bn is a smooth function of n, K(t) can be calculated in the continuum limit using the
discrete Schrödinger equation for the wavefunctions:

−i d
dt
〈On, O(t)〉β = bn〈On+1, O(t)〉β + bn−1〈On+1, O(t)〉β. (6.128)

We have identified certain β-dependent deformations of the Lanczos coefficients
that induce odd-even staggering without altering the asymptotic slope. Numerical
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Figure 6.2: In 6.2a, the Lanzcos coefficients are shown for free scalar field-theory
with mass m = 10 and different β. As β increases, bn for even n approach 0 and for
odd n they approach m at rate given by (6.121). For larger n they continue to grow
linearly satisfying (6.122). The solid line superimposed with β = 100 values display
the fit with (6.121). In 6.2b we show the emerging field theory behavior for bn for the
Ising critical point (γ = 1 and h = 1 ) in the 1D quantum XY chain.

evidence presented in [97] supports the results of a continuum limit calculation with
staggering, where (6.128) is transformed into a Dirac equation. This suggests that
for sufficiently large times t > t0

K(t) ∼ e
2π
β
(t−t0), (6.129)

where t0 is a characteristic time scale, and it is assumed that bn asymptotically grow
as bn ≈ πn

β
. In infinite systems, even in the large β∆ case, in the regime where

the initial bn start converging to gaps, (6.129) is expected to hold provided that our
arguments are valid and that the asymptotic growth is maintained. The effect of half
of the bn approaching 0 will be to induce oscillatory behavior in the early growth
of K(t). This can be seen by considering a perturbation of M at infinite β, which
will be a direct sum of 2× 2 blocks of nonzero bn. From the discussion presented in
section 6.3.1, we can infer that for free scalar field theory, K(t) will transition from
an oscillatory behavior

K(t) ≈ sin2(mt) (6.130)
at early times t ∝ β for fixed m, to the asymptotic behavior (6.129), consistent with
the numerics presented in [93].

In finite systems for fixed β, K(t) slows down after this exponential growth (or
polynomial growth if bn grow slower than linearly), but it continues to grow for
O(e2S) > t > O(S). This regime is primarily determined by the spectrum of M , which
also determines the bn for n > O(S) and causes their “ringdown”. As discussed in
section 6.3.1, at large β, this ringdown becomes distorted, leading to a large deviation
about the mean.
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Increasing β in finite systems slows down the growth of complexity. When there is
large staggering due to β∆ � 1, or when the growth of bn is significantly modified by
the convergence of bn to gaps, K(t) may not exhibit obvious growth. In this regime,
K(t) will show only oscillatory behavior due to the finite number of contributing
modes. Since it is challenging to characterize the time-dependence of K(t) further,
we examine the infinite time average or mean position of O(t) in the Krylov chain
after time-averaging:

K(β) = lim
t→∞

1

T

∫ T

0

K(t)dt =
∑
n,k

n|U0k|2|Unk|2, (6.131)

where K has been expanded as sum over the overlap (see (6.29)) between the Krylov
basis indexed by n and the eigenvectors of M indexed by k

In the large β limit, the overlap |U0k|2 will localize towards ωk = 0, responsible
for the localization of the measure Φ(ω). This suggests that K should decay with β.
For operators with no projections on the nullspace of Liouvillian, limβ→∞K(β) = 1

2
,

while for operators with a nonzero diagonal in energy basis, limβ→∞K(β) = 0. K
can be estimated using analytical tools in some cases [98], and we leave the task
of analytically predicting K(β) for future work. In spin-chains, we numerically find
that for large enough β, K ∼ Nr(β), where r(β) ≈ ce−

∆β
2 at large β, as illustrated

in Figure 6.3. At intermediate β, r(β) likely receives polynomial corrections to the
exponential decay. We conjecture that such behavior will persist to larger system
sizes. This suggests that by tuning β, the mean position K(β) can display various
scalings as a function of system size.

6.4 Summary: Temperature dependence and large-β asymptotics

In this chapter we studied the temperature dependence of Lanczos coefficients in-
herited through a temperature-dependent inner product for operators. First, we cast
this temperature dependence as an integrable system of equations related to the Toda
hierarchy. For initial operators with no diagonal components in the energy basis this
dynamics is described in terms of two Toda chains, while for a generic operator, one
of the Toda chains is modified.

We also directly analyzed how the spectral measure of generic systems could
evolve as a function of temperature. Through this analysis we identified two distinct
mechanisms that cause the cause “staggering” in the Lanczos sequence. One source
of staggering is the off-diagonal part g(ω, β) of the measure Φ (6.113) developing a
gap around ω = 0. Another source is the presence of a diagonal term ∼ δ(ω) in the
measure Φ with a large contribution to the spectral sum. We illustrate the former
mechanism by a toy model (appendix G) with tunable parameters.

Additionally, we described universal features of the Lanczos chain at low temper-
atures β → ∞. Specifically, in a finite-dimensional Krylov space, as β → ∞, half of
the Lanczos coefficients vanish while the other half converge to positive energy gaps,
with the bn’s for smaller n converging more quickly to their asymptotic values. This
feature appears to persist in the thermodynamic limit.
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∆ is plotted against β for the integrable Ising (blue),

Heisenberg (orange) and non-integrable Ising (green) models for initial operators
with non-zero diagonal in the energy eigenbasis. The parameters have been fine-
tuned so that the gap ∆ ≊ 3.46 is the same for the three models. The saturation
for large β indicates a universal exponential behavior of the time-average complexity
K̄(β)

K̄(0)
∝ e−β∆

2 .

We argued that the time-averaged Krylov complexity decreases exponentially at
large β as K̄(β) ∼ e−∆β/2, up to polynomial corrections, where ∆ is the first energy
gap. We conjecture that this behavior persists for arbitrarily large system sizes.

These results pave the way for a more systematic understanding of how temper-
ature affects Krylov space and complexity. Future directions include:

1. The Lax equations (6.72) have been studied in the literature. It would be
interesting to identify solutions that describe the Lanczos coefficients of realistic
physical systems

2. The equations of motion (6.72) could be used to numerically calculate temperature-
dependent Lanczos coefficients. This can be done perturbatively given knowl-
edge of the Lanczos coefficients at some fixed β. To accomplish this a study of
numerical stability of the equations is needed.

3. An important step would be to study the Krylov complexity K(t) as the inverse
temperature β is tuned to large values. Fresh analytical tools to incorporate
the effects of staggering could give new analytical solutions describing the true
behavior of K(t) in systems with a gap. In particular, is K(t) always a de-
creasing function of β for generic system in the limit of large N? How can the
generalized MSS bound be formulated in the β → ∞ limit in systems where
the Lanczos coefficients converge to gaps?
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4. The Lanczos algorithm has historically been a tool to numerically obtain ex-
tremal eigenvalues. Our analysis of the large β behavior of Lanczos algorithm
suggests that it can be used to find the energy gaps related to low-lying energies
of the Hamiltonian. This could be especially promising with the combined use
of quantum algorithms with Krylov methods on quantum devices.

Copyright© Nikolaos Angelinos, 2024.
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Chapter 7 Conclusion

In this dissertation, we studied topics in high-energy physics through the lens of
information theory.

In Chapter 3, we developed a connection between error-correcting codes and
Narain CFTs. This unites and generalizes previous constructions relating Narain
CFTs to binary and F4 codes [8, 29] [32], as well as codes over Zp [33]. The torus
partition function of the CFT is given in terms of the code enumerator polynomial,
which has properties that guarantee the modular invariance of the partition function.
In this way, one can rephrase and solve modular bootstrap constraints in terms of
polynomials.

We provided explicit constructions for all (conjectural) optimal Narain theories
for c ≤ 8, [27]. By averaging over codes, we showed the existence of theories at
large central charge c whose spectral gap ∆∗ scales linearly ∆∗ ∝ c/(2πe), with the
coefficient being maximal, as conjectured in [23].

From this construction, and its generalizations [11], it is apparent that any Narain
CFT can be constructed from codes. This provides a powerful framework to system-
atically study the space of Narain CFTs. In Chapter 4 we used the code formalism
to study the Narain CFTs at the points of enhanced symmetry, described by A,D,E
affine Lie algebras at level 1. The problem of classifying modular invariants and
calculating fusion rules can be phrased fully in terms of 2-dimensional codes. We
proceeded to evaluate the Poincaré series of the vacuum character in each case.

In Chapter 5 we turned our attention to the entanglement entropy of 1-dimensional
fermionic chains. Specifically, we studied fermionic chains with long-range interac-
tions, where the hopping and pairing terms fall-off with distance as a power-law with
exponent α. For systems with a smooth continuum limit, the scaling of the entangle-
ment entropy at the thermodynamic limit is determined by the low-energy effective
theory and is described by area law.

For disordered models, as well as for non-disordered Hamiltonians without a
smooth continuum limit, the scaling of entanglement entropy is not constrained in
this way. These systems exhibit a regime of intermediate fractal scaling, whose expo-
nent is a continuous function of α. There is no universal critical value αc at which the
scaling of entanglement across all free fermion systems transitions to the conventional
scaling.

In chapter 6 we studied the temperature-dependence of Lanczos coefficients and
Krylov complexity. The temperature dependence of the Lanczos coefficients is de-
scribed by an integrable system of equations related to the Toda hierarchy. For initial
operators with vanishing diagonal in the energy basis, this evolution is described in
terms of two decoupled Toda chains, while for a general operator, one of the Toda
chains is modified.

We proceeded to identify two mechanisms that cause “staggering” in the Lanczos
sequence. These mechanisms are best described in terms of the spectral measure
Φ(ω). One cause of staggering is the off-diagonal part of the measure developing a
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gap at ω = 0. The other source is the presence of a diagonal term in the measure,
proportional to ∼ δ(ω).

In addition, we identified universal properties of the Lanczos coefficients at low
temperatures. In a finite-dimensional Krylov space, as β → ∞, half of the Lanczos
coefficients vanish while the other half converge to positive energy gaps. The Lanczos
coefficients that appear early in the chain converge much faster to their asymptotic
values that the later ones. We show numerical evidence that this feature persists in
the thermodynamic limit. We also show numerical evidence that the time-averaged
Krylov complexity decreases exponentially at large inverse temperature β as K̄(β) ∼
e−∆β/2, up to polynomial corrections, where ∆ is the first energy gap. We believe
that this behavior persists for arbitrarily large system sizes.

Copyright© Nikolaos Angelinos, 2024.
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Appendices

Appendix A: Shortest vector bound

Let us consider a two-dimensional Euclidean lattice Λ with the scalar product g2.
Using rotation and up to an overall rescaling basis vectors can be chosen to be 1 and
τ = τ1 + iτ2, where we introduced complex coordinates on R2. In other words

g2 = ΛTΛ, Λ = α

(
1 τ1
0 τ2

)
, (A.1)

and α is some scalar factor. Using GL(2,Z) transformations, together with an ap-
propriate rotation and rescaling, we can bring τ to belong to fundamental domain

|τ1| ≤ 1/2, τ2 ≥ 0, |τ | ≥ 1. (A.2)

In this case the shortest vector is α(1, 0)T and its norm is α2. From (A.1) we find
α4 = detg2/τ 22 and from (A.2) we know τ 22 ≥ 3/4. We therefore find the bound

α2 ≤ 2√
3

√
detg2, (A.3)

which in many cases is conservative. Applying that to (3.25) we obtain (3.26).

Appendix B: Fractal Scaling in Disordered Models

The exponent γ can be inferred from (5.16) as a function of β, though the derivation
of β as a function of α is a task to be done. Let us assume that the density of
ground state is 1

L
Tr
(
C
)
= 1

2
. This mild assumption follows from the symmetry of

averaged single-particle Hamiltonian about zero. This leads to 1
L

Tr
(
C

2
)
= 1

2
. Since

the diagonal elements scale differently than the off-diagonal ones, let C2
ii = m. This

fixes normalization κ as:

κ =
1
2
−m

2(H2β(L− 1)− H2β−1(L−1)

L
)

(A.4)

Where Hj(n) is the generalized Harmonic number of order j. Plugging in the
same κ and m, in expression of N2

A

∆N
2

A = (
1

2
−m)(LA − H2β(LA − 1)LA −H2β−1(LA − 1)

H2β(L− 1)− H2β−1(L−1)

L

) (A.5)

In (A.5) an accurate estimate is provided, consistent with the scaling of S(LA) on
plugging in the numerically obtained β and m see Fig. 5.3b. The undetermined value
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of m does not alter scaling of entanglement but changes the coefficient. For finite L
and arbitrary β (A.5) does not give a simple power-law. However, for 1 < 2β < 2

and large enough LA and L, N2

A scales as L2−2β
A .

For the α = 0 limit, β = 0, and this computation gives the accurate estimate
of N2

A as LA

4
− LAL

4(L2−L)
. In fact, the leading order expression for S(LA) = LA log(2)

follows directly from analytic continuation (in n) of Tr(Cn
A) ≈ LA2

−(n+1), neglecting
correlations among the elements of CA for LA � L and likewise for (I− CA).

Appendix C: A Ground State With Maximal Entanglement Entropy

Consider a system of even size L with the interaction Hamiltonian

H =
L∑

i,j=1

Vijc
†
icj, Vij = V (i− j), V (r) = δr,L

2
+ δr,−L

2
. (A.6)

The single-particle eigenvalues are

ak =
L∑

j=1

V (j)eij
2πk
L = (−1)k. (A.7)

The correlation matrix is given by

C(r) =
1

L

L∑
j=1

e2πi
rj
L Θ(−aj) =

1

L

∑
j odd

e2πi
rj
L

=
1

2
(δr,0 − δr,L

2
− δr,−L

2
).

(A.8)

For a subsystem A of size L/2 or smaller, the correlation matrix is diagonal CA = 1
2
I.

This implies maximal growth of entanglement entropy

S(LA) = LA log 2. (A.9)

Appendix D: Block Toeplitz Matrix

The correlation matrix (5.22) is a block Toeplitz matrix, which can be written as

CA(i− j) =
1

2π

∫ 2π

0

dk G(k)eik(i−j), (A.10)

where the matrix symbol is

G(k) =
1

λ(k)

(
α(k) + µ ib(k)
−ib(k) −α(k)− µ

)
. (A.11)
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We apply the method of [81] to obtain ceff from this block-matrix symbol. We
parametrize the latter as

G(k) = cosϕkσz + sinϕkσy. (A.12)

We define the coefficient of the logarithmic term to be ceff/3. It is determined by
the discontinuities of the symbol. Let {kn}, be the values of k at which the symbol
is discontinuous. Then, ceff is given by the integral

ceff =
3

π2

∑
n

∫ 1

cos ξn
dx log 1− x

1 + x
log

√
1− x2√

x2 − cos2 ξn + sin ξn
, (A.13)

where
ξn =

δϕkn

2
, (A.14)

and δϕkn is the discontinuity of ϕk at k = kn.
For (5.20), and αh = αp = α, there is only one discontinuity at k = 0

δϕ0 =

{
π(1− α) 0 ≤ α < 1

0 α ≥ 1
. (A.15)

On tuning µ to the critical value µ = −a(π), a second discontinuity arises at k = π,
such that δϕπ = π. In this case, the integral (A.13) results to ceff = 1

2
.

For (5.21), and αh = αp = α, the discontinuity is again at k = 0

δϕ0 =


π 0 ≤ α < 1

2 arctan π
2 log 2

α = 1

0 α > 1

. (A.16)

This leads to ceff = 1
2

for α < 1 and ceff ≈ 0.437 for α = 1.

Appendix E: Quantum Harmonic Oscillator

Consider the quantum harmonic oscillator H = ω(1
2
+ a†a) with initial operator

A0 = x. The Krylov space is two-dimensional A0 = x, A1 = −ip, with Lanczos
coefficient b0 = ω.

The matrix TK as defined in (6.107) is

TK = ω coth βω
2

(
1 0
0 1

)
. (A.17)

This means that B = 0 and the equation (6.107) becomes

ṪK = −T 2
K + Y. (A.18)

The matrix Y can be calculated independently from

Yij =
1

4
〈{H, x}, {H, x}〉δij = ω2 cosh(βω)

cosh(βω)− 1
δij. (A.19)

It is now straightforward to confirm that equation (A.18) is satisfied.
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Appendix F: Modified Toda Dynamics

The constants ci in terms of the eigenvalues of Teven are

ci = 2(−1)i+1 en−i({λj})
en−1({λj})

, (A.20)

where ei denotes the elementary homogeneous symmetric polynomial of order i. Due
to one of the eigenvalues vanishing, we have the following constraint

C =
n∑

k=1

kckIeven
k = 0. (A.21)

Let us define the generating function

G(z) = det(1 + zTeven) = ezI
even
1 e−z2Ieven

2 ez
3Ieven

3 · · · . (A.22)

We can write the elementary polynomials as follows

ei =
1

i!
G(i)(0). (A.23)

The constraint can be written as

C ≡ 1

n!
G(n)(0). (A.24)

Note that it vanishes on-shell C|os = 0.
We can calculate

∂

∂Ii

G(z) = (−1)i+1ziG(z). (A.25)

Therefore
∂C
∂Ii

= (−1)i+1 d
n

dzn
(ziG(z))|z=0 = n!en−i(−1)i+1. (A.26)

We can write
ci =

2
∂C
∂I1

∂C
∂Ii

. (A.27)

The Hamiltonian can now be written as

H′ =
2

∂C
∂I1

∣∣∣∣
os

∑ ∂C
∂Ii

∣∣∣∣
os

Ii. (A.28)

The same flow is generated by the following function, since it has the same gradient
as H on the surface of constraint

H′ =
2C

∂C
∂I1

∣∣∣∣
os

. (A.29)
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Appendix G: A Toy Model for Φ(ω)

Here we consider a toy model of an orthogonality measure, which captures the generic
features of Lanczos coefficients that come into play with β-dependence. To avoid
extraneous factors of 2, we make the shift β → 2β and the measure is:

Φ(ω) =

{
1
N e

−β|ω| + κδ(ω), if ∆ < |ω| < ωmax

0, otherwise
, (A.30)

where the normalization is

N =
2
(
e−β∆ − e−βωmax

)
β

. (A.31)

First we consider the case when κ = 0 such that ∆ models the presence of a
“gap” where the measure vanishes, which in this case arises from the spectral gap in
density of states relevant for large β. ωmax is a hard cutoff for the measure arising
from presence of maximum energy in a finite system. The even moments are given
by (while the odd moments vanish)

µ2n =
eβ(∆+ωmax) (Γ(2n + 1, β∆)− Γ (2n+ 1, βωmax))

β2n(eβωmax − eβ∆)
(A.32)

Let’s consider the case with ∆ = 0 first. The saddle point expression of µ2n

approximately matches the ωmax → ∞ answer, and we find that for 2n < βωmax,
µ2n ≈ 2n!

β2n . For 2n > βωmax, using the leading order asymptotics of the Gamma
functions, we find that µ2n ≈ βω2n+1

max
2n

e−βωmax

Thus, for ∆ = 0,

µ2n ≈

{
2n!
β2n , for 2n < βωmax
βω2n+1

max
2n

e−βωmax for 2n > βωmax
(A.33)

For n < n∗ = βωmax
π

, the Lanczos coefficents go as bn ≈ π
2β
n , and for n > n∗,

bn ≈ π
2β
n∗. The saturation of Lanczos coefficients can be inferred from the following

bound
µ2n ≥ b20b

2
1 . . . b

2
n−1, (A.34)

since indefinite growth of bn’s would be incompatible with the asymptotic growth of
µ2n for 2n > βωmax. The inequality above does not fix the proportionality constants
in n∗, which instead is fixed by continuity of bn with its asymptotic value.

In general, a full analysis for the case incorporating the effects of the gap ∆ can
be carried out when the recurrence coefficents for the measure Φ(

√
ω)/

√
ω (ω > 0) is

known [99]. Nonetheless [99], this will generically cause an even-odd splitting of bn’s
such that in terms of variables limn→∞ b2n = be and limn→∞ b2n+1 = bo, be − bo = ∆.
For this model the sum be+ bo will coincide for any choice of ∆, as it is set by ωmax/2.

The mathematical argument is summarized in the following. The true interval of
orthogonality which determines the support of the continuous part of the measure
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Φ(ω) is in general fixed by the limiting values (as n → ∞) of recursion coefficients.
Consider the more general recursion relation:

Pn+1(ω) = Pn(ω)− anPn(ω)− b2n−1Pn−1(ω). (A.35)

The true interval of orthogonality of an arbitrary measure Φ(ω) is given by [a −
2b, a+ 2b] where

lim
n→∞

an = a and lim
n→∞

bn = b. (A.36)

In general, for an even measure Φ(ω), an = 0 so it follows that if the support
of the bounded measure is [−ωmax, ωmax], then b = ωmax

2
. Now, to describe the case

with ∆, one instead considers the auxilliary orthogonality measure Φ(
√
ω)/

√
ω with

the interval of orthogonality [∆2, ω2
max]. The recursion with respect to this measure

becomes

P ′
n+1(ω) = P ′

n(ω)− a′nPn(ω)− b
′2
n−1P

′
n−1(ω) (A.37)

Where the relations a′n = b22n + b22n+1 and b
′2
n−1 = b22nb

2
2n+1 can be inferred. Now

from (A.36), it follows that be−bo = ∆ and be+bo = ωmax. Thus knowledge of a′n and
b′n may be used to obtain bn. Nonzero ∆ implies even-odd splitting for the Lanczos
coefficients, see Fig A.1a for illustration in toy model. To see that we note that the
difference of their limiting values must match ∆.

In practice for the toy model and also for free scalar field theory, we find that
b2n − b2n+1 quickly converges to a value close to ∆ (m in scalar field theory). The
sum b2n + b2n+1 ≈ 4πn

β
+ o(n) for large enough n >> β∆. This convergence could be

understood through the following way: the asymptotics of the recurrence coefficients
of the auxilliary measure, a′n and b′n are determined by the asymptotic decay of the
auxilliary measure. The asymptotic decay of the auxilliary measure as ωmax → ∞ is
independent of the choice of ∆ and therefore for large n, the moments of the auxilliary
measure approach the moments of the auxillary measure as ∆ = 0. The asymptotic
a′n and b′n of course will still retain an imprint of ∆ such that the difference a′n− b′n−1

converges to the ∆2. However the sum a′n + b′n−1 will approach the same limit, just
like in the case of ωmax where it follows from the theorem mentioned above. As an
illustration of this, see Fig A.1b.
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Figure A.1: Lanczos coefficients corresponding to the orthogonality measure (A.30)
for β = 5 and ωmax = 100. (a) Compares the Lanczos coefficents for the gapless case
with the case when ∆ = 3. (b) shows the convergence of b2n + b2n+1 for different
values of ∆ with n.

Appendix H: XY model

Consider the integrable XY model with periodic boundary conditions, described by
the Hamiltonian:

H =
N∑
j=1

[(1 + γ)Sx
j S

x
j+1 + (1− γ)Sy

j S
y
j+1]− h

N∑
j=1

Sz
j . (A.38)

We consider the limit where N → ∞.
Define the following auto-correlation function at inverse temperature β:

Cβ(t) = 〈Sz
0S

z
0〉 =

tr
{
e−βH/2Sz

0e
−βH/2Sz

0(t)
}

tr(e−βH)
. (A.39)

The Hamiltonian (A.38) can be diagonalized by the Jordan-Wigner transforma-
tion. The quasi-particles energies are

ϵk =
√

(cos k − h)2 + γ2 sin2 k. (A.40)

In addition, define
λk =

1

2
arctan γ sin k

cos k − h
. (A.41)

Note that in all formulas of this section, we make the choice arctan(x) ∈ (0, π].
The auto-correlation function is given by [100]

Cβ(t) = m2
z+

[
1

2π

∫ π

0

dk cos(ϵkt) sech
(
1

2
βϵk

)]2
+

[
1

2π

∫ π

0

dk cos(2λk) sin(tϵk) sech
(
1

2
βϵk

)]2
,

(A.42)
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where
mz ≡ 〈Sz

0〉β = − 1

2π

∫ π

0

dk cos
(

arctan γ sin k
cos k − h

)
. (A.43)

In order to calculate the moments, we first Taylor expand as follows

1

2π

∫ π

0

dk cos(ϵkt) sech
(
1

2
βϵk

)
=

∞∑
n=0

u2nt
2n, (A.44)

1

2π

∫ π

0

dk cos(2λk) sin(tϵk) sech
(
1

2
βϵk

)
=
∑

vnt
2n, (A.45)

where the expansion coefficients are

u2n =
(−1)n

2π

ϵ2nk sech
(
1
2
βϵk
)

(2n)!
, (A.46)

v2n =
(−1)n

2π

ϵ2nk sech
(
1
2
βϵk
)

cos(2λk)
(2n+ 1)!

. (A.47)

The moments are now given by

µ2n =
1

M0

(
m2

zδn,0 + n!
n∑

i=0

(uiun−i + vivn−i)

)
, (A.48)

where M0 is a constant chosen such that µ0 = 1.
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