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and self-occlusion. Before going to our model-based approach for human body reshaping, 

I first introduce a system to estimate the pose of human subject using two RGB-D sensors 

to improve the performance of the skeleton-based approach for human body reshaping as 

described in Section 5.1.  

5.2.1 System overview 

The two sensors simultaneously capture the front and back of the body’s 

movement. Using a wide-baseline RGB-D camera calibration algorithm, the two 3D 

scans are first geometrically aligned, and then registered to a generic human template 

using a Gaussian-mixture-model based point set registration procedure with local 

structure constraints. The new pose of person is finally estimated by a rigid bone-based 

pose transformation. Experimental results demonstrate the effectiveness of our system in 

estimating the body pose over other state-of-the-arts techniques. 

The overall pipeline of our proposed framework is illustrated in Figure 5.4. It 

consists of three main components: data acquisition & preprocessing, non-rigid 

 

Figure 5.4 The Overview of our proposed pose estimation pipeline 
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registration, and skeleton estimation. We first discuss the acquisition and preprocessing 

of the data used in our framework in Section 5.2.2, followed by the method to register the 

template to the target model in Section 5.2.3. In Section 5.2.4, we introduce how we 

estimate the pose from the template and registered input scans. The experimental result is 

finally discussed in Section 5.2.5. 

5.2.2 Data acquisition and preprocessing 

 In our framework, two Kinects are mounted in opposite direction facing toward 

the front and back of the subject being captured. The subject can move freely within the 

intersecting view frusta of the two Kinects during the capture. The input data is a set of 

color and depth images. Each pair of input images are aligned and transformed into a 

point cloud representation. As shown in Figure 5.4, we first detect and segment the 

person from the scene using background subtraction and morphological operations. Since 

  
(a) (b) 

Figure 5.5 Point cloud alignment from two depth sensors: (a) before alignment; (b) after 
alignment. 
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the 3D positions of point cloud is obtained with respect to the local coordinate system of 

each depth sensor, we first provide a coarse alignment of the point clouds from those two  

depth sensors using the extrinsic camera parameters. Different from traditional 

calibration methods using a checkerboard [206], we use a wide-baseline RGB-D camera 

network calibration method proposed in [155]. This approach makes use of a spherical 

object with distinct color as a calibration object and identifies the correspondences across 

different views based on the estimated locations of the center of the sphere. The 

calibration procedure produces the relative camera pose between the two cameras, which 

we use to provide a rough alignment of the two point clouds. Figure 5.5 shows the 

alignment of the two point-clouds.  

After the initial alignment process, the combined point clouds are roughly aligned 

but there are still noise and outliers that could affect the pose estimation. To remove these 

noises, we follow a two-stage process. By assuming the distribution of the distances of 

each point to its closest K neighbors follows a Gaussian distribution, we first remove 

those points whose mean distance between all its neighbors significantly deviate from the 

global mean distance. Even though this stage can remove most outliers, the surface of the 

point cloud is still noisy and unevenly distributed. Surface reconstruction directly on 

these low-quality data would be highly unreliable. As such, we apply Weighted Locally 

Optimal Projector (WLOP) to further denoise these data points and resample them evenly 

across the surface [77]. 

5.2.3 Non-rigid point set registration 

In the next stage of our proposed pipeline, similar to [201], we create a 3D 

template model that consists of the surface vertices, the surface mesh connectivity, the 
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5.2.4 Skeleton estimation using bone-based approach 

Once the input scan is registered to the template, the correspondence between 

them is obtained. Inspired by the work in [101][102], we treat the template as a rest pose, 

which is used to estimate the pose of the input scan. According to the skeleton and 

weights provided by the template, we can obtain 17B =  parts for the rest pose, the 

vertices in the same cluster have the same rigid motion. The clustering in our framework 

is achieved by assigning the vertices to the bone with the largest weights.  

Since the vertices in the registered input scan { }| 1, ,iv i Nχ = =  has 

correspondences to the vertices in the rest pose { }| 1, ,iu i Nϕ = = , the estimation of the 

new pose becomes the problem of finding a set of rigid bone transformations 

{ }, | 1, 2, ,j jR T j B=  to associate the vertices in the input scan to the vertices in the rest 

pose through minimization the following objective function: 
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where  1, 2, ,j B= ; jS  is the scaling factor for each bone transformation, which helps 

to fit the bone length of the input scan; ( , )j k Edge∈  means bone j  and bone k  share the 

same joint jkC ; λ  has the value of 1 in our framework. diffE  ensures that the difference 

of new positions of joints connecting two bones will be small after transformation. 

Similar to [101][102], we find the solution to the Weighted Absolute Orientation problem 
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[72] to solve Equation (5.6). The new pose of the input scan can be obtained by applying 

transformation to the rest pose.   

In our framework, the last step in this stage is to build the detailed human pose 

model. The original incomplete input scan contains the detailed information, like clothes 

winkles, hair style etc., and the registered input scan can be used to fill the gap of the 

missing data. As such, we fuse them together and then apply Poisson surface 

reconstruction [93] to obtain a detailed human pose model. 

5.2.5 Experimental results 

In this section, we experimentally demonstrate the effectiveness of our framework 

from two perspectives: qualitative analysis and quantitative evaluation. Our system was 

first tested on a publicly available dataset provided by MPI Informatik [70]. This dataset 

contains six sequences (D1-D6) of motion with varying difficulties performed by one 

actor including kicking, rotation, and circular walking. The ground truth of joint position 

of the actor is also provided in this dataset obtained by a marker-based Mocap system.  

 

Figure 5.6 Visual comparison of our proposed method using the dataset in [70] with its 
ground truth data. Blue line (Our method estimation) and Black dot (Ground truth).  
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Chapter 6 Model-based Approach for Human Body Reshaping with Sensor 

Network  

In this chapter, a novel pipeline to reshape the human body using noisy depth data 

from multiple RGB-D sensors (sensor network) is presented. Compared with a single 

view reshaping system introduced in Chapter 5, multiple RGB-D sensors provide more 

constraints and better coverage, leading to more consistent results. However, there exist 

several challenges in estimating the pose and shape of human simultaneously in RGB-D 

data due to self-occlusion and motion complexity. To cope with the time-varying 

articulated human shape, we propose a new approach that combines a Gaussian Mixture 

Model (GMM) based fitting approach as introduced in Section 5.2.3 with a morphable 

model learned from range scans. Without any user input, this approach can automatically 

account for the variations in pose and shape. It also enables different types of reshaping 

by manipulating body attributes such as height, weight or other physical features. 

Experimental results are provided to demonstrate the effectiveness of our system in 

manipulation of human body shapes. In the last part of this chapter, we demonstrate the 

feasibility in using our proposed system for visual privacy protection. 

6.1 Overview of the System 

The schematic of our proposed framework is shown in Figure 6.1. It consists of 

three main components: data acquisition & preprocessing, pose & shape estimation, and 

human body reshaping. Inputs are aligned color and depth data captured from multiple 

RGB-D cameras. Based on offline calibration parameters, we first perform denoising on  
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the depth data and align them onto the same coordinate system based on the system 

described in [155]. 

To estimate the pose and shape of the actor, we use a morphable model along with 

the GMM based framework to fit the observed data.  We optimize the model to the 

observed data in two stages. The first stage (Section 6.3.2) estimates the posture and 

coarse body shape of the observed actor, by combining a modified approach from [10] 

with the GMM based point set registration [120]. While this initial step produces accurate 

pose and coarse shape, it fails to reconstruct the non-rigid deformations caused by 

clothing of the actor. In the second stage (Section 6.3.3), the details of the surface shape 

are estimated by finding the difference along the normal directions between the 

reconstructed shape in the first stage and the original refined point cloud. 

After finding the correspondence between the observed data and the morphable 

model, we can now reshape the observed actor by modifying the semantic body attributes 

of the morphable model and applying the deformation transfer to the fitted model fully 

automatically (Section 6.4). 

Foreground 
Segmentation
(Section 4.1)

Wide-baseline camera 
network calibration(offline)

Pose and Shape 
Estimation 

(Section 4.3;4.4;4.5)

Human Body Reshaping 
(Section 5)

SCAPE Model

    Aligned Data    Aligned Data

Noisy Removal 
& Alignment

 

Figure 6.1 Overview of our proposed system. 
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(a) (b) (c) 

Figure 6.2 Point cloud alignment from four depth sensors: (a) before alignment, (b) after 
alignment. (c) alignment with texture and camera position (1,2,3,4) 

6.2 Data Collection and Pre-processing 

In our experimental setup, we used four Kinect cameras mounted in four 

directions perpendicular to each other for data capture. This configuration helps to 

minimize any interference between adjacent Kinect cameras. The actor can move freely 

within the four intersecting view frusta during the capture. The input data is a set of color 

and depth images. Each pair of input images are aligned and transformed into a point 

cloud representation [26].  

As shown in Figure 6.1, we first detect and segment the person from the scene 

using background subtraction and morphological operations. Since each depth sensor 

produces point clouds in its own local coordinate system, we need to estimate the 

extrinsic camera parameters before aligning the local point cloud data into a global 

coordinate system. Different from traditional calibration methods using checkerboard 

[206], we estimate the extrinsic parameters using a wide-baseline RGB-D camera 

network calibration method from [155]. This approach uses of a spherical object with 

distinctive color as a calibration object, and identifies the correspondences across  
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0θ . SCAPE models the shape variation using a PCA model ( )fD Uβ β µ≡ + , where U  
and µ  are both pre-trained PCA parameters, µ  is the mean body shape. 

Given both θ  and β , vertex positions 1, , Nz z  of the target mesh can be 

determined by solving the linear least square problem as follows: 

1

2

, ,
{ , , } 1 2,3
argmin ( ) ( ) ( )

N

F

m f f f f k f k
z z f k

E R D Q x zθ β θ
= =

≡ ∆ −∆∑ ∑


                    (6.2) 

where F  is the total number of faces, N  is the total number of vertices, and 

, , ,1 , , ,1,f k f k f f k f k fx x x z z z∆ = − ∆ = −  are edges for each triangle. As shown in Figure 6.4, 

we can synthesize realistic meshes for different people in a broad range of poses and 

shapes. 

6.3.2 GMM-based pose and shape fitting 

The next step is to fit the trained SCAPE model to the observed data obtained in 

Section 6.2. The goal of fitting is to optimize both θ  and β  such that the resulting 

 
     (a) (b)   (c)                (d) 

Figure 6.4 SCAPE Model with 16 parts of different poses and shapes 
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empirically set to 0.1 . The last term accounts for smoothness with the weighting factor

0.5sλ = . This is a least square problem and can thus be solved efficiently. Figure 6.6 

shows how the details are preserved and the resulting reconstructions.  

6.3.4 Bone-based approach for skeleton estimation 

Once the observed data are registered to the morphable model, the 

correspondences between them can be obtained. Similar to the process of skeleton 

estimation introduced in Section 5.2.4, we treat the morhpable model as a rest pose and 

use it to estimate the skeleton of the observed data. According to the skeleton and weights  
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from the morhpable model, we can obtain 16B =  parts or clusters for the rest pose. 

Vertices in the same cluster are assumed to have the same rigid motion. The clustering in 

our framework is achieved by assigning the vertices to the bone with the largest weights. 

The new skeleton of the observed data can finally be obtained by applying the resulting 

transformation to the rest pose following the procedure as described in Section 5.2.4.  

6.4 Human Body Reshaping 

In Section 6.3.2, we describe the procedure to establish the correspondences 

between the morphable model and the observed data. Such correspondences can then be 

used to reshape the human body. In particular, we treat the morphable model as source 

mesh, and the deformed mesh with details as target mesh, the deformation transfer is 

applied to reshape the human body. 

 The goal of the deformation transfer is to transfer the change in shape from the 

source to that of the target. In our system, the attributes, like the weight, height or leg 

length of a human body can be modified by changing the shape parameter from β  to β ∗   

(a) (b) (c) 

Figure 6.6 Detail reconstruction (a) Initial registration result. (b) Reconstruction with 
details. (c) Detailed model with texture. 

 

 

   
(a) (b) (c) (d) 

Figure 6.7 Human body reshaping (a) Original; Reshaping to different shape parameters 
(b) shorter; (c) thinner; and (d) fatter. 
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similar challenges. Visual privacy protection techniques, such as blurring or object 

removal, can be used to mitigate privacy concern, but they also obliterate important 

visual cues of affect and social behaviors that are crucial for the target applications. In 

this section, an application using human body reshaping and facial image manipulation 

for concealing the identity of individuals while preserving the underlying affect states is 

discussed. The experiment results demonstrate the effectiveness of our method for visual 

privacy protection.  

6.6.1 Evaluation of human body reshaping with depth sensor network for visual 

privacy protection 

In this section, we evaluate the entire system from data capturing to human 

reshaping described in Section 6.1 for visual privacy protection. Our hypothesis is that 

the reshaped video will preserve the naturalness of human movements while obfuscating 

important soft biometrics such as height and weight for privacy protection. We use the 

same sequences captured in the lab environment as mentioned in Section 6.5.3. In order 

to objectively prove our hypothesis, we have devised two tests in measuring the 

naturalness and privacy preservation of the reshaping results.  

In the first test, we have recruited 25 non-expert participants who were not 

familiar with the four actors in the videos. Each of them was shown 4 video sequences. 

Each sequence has 4 sub-sequences derived from the same data – the second one was 

always the original while the other three were different reshaped versions. However, the 

participants were not aware which was the original, and they were asked to rank the 4 

sub-sequences ranging from 1 (least natural) to 4 (most natural). The participants were 

free to watch all sequences repeatedly. 
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As the ranks are not independent samples, we utilize the Wilcoxon signed-rank 

test [189] to analyze the result obtained from the questionnaire. In this two-sample 

statistical test, we set one sample to be the original video (sub-video 2), and the other one 

to be each of the reshaped videos. The null hypothesis is that the mean rank of the  

reshaped videos is the same as that of the original video. Our test results are shown in 

Figure 6.16, in which the y-axis in (a), (b), (c) and (d) represents the rank scores from the 

 
(a) (b) 

 
(c) (d) 

 

Figure 6.16 Average score of questionnaire results on the naturalness of our reshaping 
method.   
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questionnaire. The p-value of the test for each sub-video paired with the original video is 

marked on top of each box bar. None of the p-values are significant enough (p < 0.05 

[50]) to reject the null hypothesis. As such, we conclude that the naturalness of our 

proposed method for human body reshaping is comparable with the real captured video. 

In the second test, we evaluate the capacity of our reshaping method for privacy 

protection. We use gait analysis as an instance. In particular, the performer is required to 

first stand as an ‘A’-pose and then walk normally towards the depth sensor for a few 

steps. The motion data are captured and extracted by using our skeleton estimation 

approach mentioned in Section 6.3.4. We use the foot step or stride length and rotation 

angle of knees as the gait features for analysis, which has been investigated and proved to 

be a key measurement for gait recognition in existing work [117]. 

Foot step: During a walking period, one foot serves as a pivot when the other foot 

moves, it’s half of the stride length. In our experiment, we assume that the pivot foot not 

move in the short time interval. We compute the foot step by averaging the Euclidean 

Distance between the locations of left and right foot joint in several intervals. 

Axis of Rotation

Longitudinal Axis

θ 
α 

β 

Knee angle(Relative)

 

Figure 6.17  Axis of rotation and relative angle of knees.  
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Rotation Angle of knees: With the help of the obtained joint position from our 

system, we calculate the relative angle of left and right knee along the longitudinal axis, 

as shown in Figure 6.17. The knee angle can be computed as θ α β= − . After reshaping, 

if the foot step is changed to some extent while the relative rotation angle of knee is 

preserved, which indicates that the soft biometric feature, gait for example, is protected. 

We test the effectiveness of our proposed method for privacy protection by 

capturing two sequences of people walking normally in the room. Figure 6.19 shows the 

result of foot joint position in one gait cycle before and after reshaping, respectively with 

different reshaping parameters. In Table 6.1, we show the average step length in several 

 
Figure 6.18 Joint Angle in one gait cycle. (a) Sequence1. (b) Sequence2. 



 
 98 

intervals for different reshaping parameters. Reference to the work proposed by 

Middleton et al. in [117], we can conclude that the range for stride length used as gait 

feature to recognize the identity of a person from others is from 640mm~840mm, that is, 

320mm~420m for each foot step. In other words, we can assume that the identities of two 

people are different if the difference of their step length is greater than 20mm. Figure 

6.18 shows the result of joint angle of knee in one gait cycle before and after reshaping, 

respectively. 

From Figure 6.19 and Table 6.1, we can see that the foot joint position after 

reshaping is quite different with that of the original one for two different actors, and the 

step length changes between 30-80mm according to different reshaping parameters. The 

significant difference in foot step length between the original and reshaped videos will be 

able to protect the identity of an individual from a gait biometric identification system. 

And from Figure 6.18 we can see that the joint angle after reshaping is almost similar 

with that of the original one for two different actors. The results, therefore, demonstrate 

the effectiveness of our proposed method for privacy protection. 

Table 6.1 Average step length with different reshaping parameters (mm) 
 

Category Test1 Test2 Test3 

Sequence1 Original 361.76 361.76 361.76 

After Reshaping 407.14 339.96 328.76 

Sequence2 Original 354.49 354.49 354.49 

After Reshaping 434.40 329.95 299.80 
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(a) 

 
(b) 

Figure 6.19 Foot Joint position in one gait cycle. (a) Sequence1. (b) Sequence2. 
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Chapter 7 Conclusions and Future Work 

 

In this dissertation, I have described several novel systems that can be used to conceal the 

identity of the person in the captured video frame while preserving the person’s pose and 

facial expression. It has been demonstrated that unlike existing visual privacy protection 

methods that often lead to loss of significant social cues, my dissertation work provides a 

way to protect privacy and maintain utility for behavior observation. The key ideas 

behind the proposed visual privacy protection are reshaping of body shape and facial 

image manipulation. To the best of knowledge, we are the first to propose the usage of 

body shape reshaping as an effective solution for visual privacy protection while 

preserving the underlying affect states.  

In addition to the target goal of privacy protection, I have also made fundamental 

contributions to computer vision. Our proposed pose estimation scheme is robust under 

heavy occlusion using multiple depth sensors. With a wide-baseline RGB-D camera 

calibration algorithm, the point set registration procedure with local structure constraints, 

the rigid bone-based pose transformation and the holes filling scheme, the reconstruction 

of detailed human model is greatly improved. Even for the case with a single depth 

sensor, I have presented a new method to accurately estimate the complex movement 

pose, though the detailed human shape model have been shown to be too difficult to 

capture. With the help of morphable model, all aforementioned models have been used to 

reshape a human body through deformation transfer. 

I have also presented two approaches for facial image manipulation. The first 

method combines recoloring and composition of facial component to produce a new face 
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image while preserving the general configuration of different facial features so as to 

preserve the expression. The second method transfers both the facial expression and the 

eye gaze from source input image to target input image by first reconstructing the 3D 

face from single image in an illumination-invariant manner and then capturing person 

specific details with a coarse-to-fine scheme. The final manipulated output images have 

demonstrated the effectiveness of our system. 

In the future, I plan to improve the speed of the system for pose estimation to 

make it run in real-time and improve eye gaze rendering by taking reflection caused by 

local illumination into consideration. In addition, more challenging tasks such as multiple 

people interacting, detailed human model from one depth sensor, will be investigated.  

  

Copyright © Wanxin Xu 2018 
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