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ABSTRACT OF DISSERTATION

IMAGE GEO-LOCALIZATION WITH CROSS-ATTENTION

The problem of estimating the location from which un-geotagged photographs were
captured has been well studied by the computer vision community in recent years. The
central proposal of this thesis is to define a common framework within which existing
approaches can be constructed and evaluated, and to introduce a new method under
this framework which uses cross-attention between the query image and a database of
satellite imagery with known geotags. Our experiments fit within three broad categories:
1) evaluating the ability of image localization approaches to generalize to unseen regions;
2) examining performance changes under various reference database resolutions, scales,
and densities; and 3) exploring localization with multi-modal reference imagery. Our key
contribution is the notion of attending between query and reference imagery throughout
inference, compared with the existing practices of attending late or not at all.
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Chapter 1 Introduction

1.1 Motivation

Estimating where exactly on the Earth a picture was taken using only its image content is

a challenging task that has received significant research attention in recent years. At this

scale, context clues such as architecture [7, 11], plants and signs, geography, and even

the clothing styles of people in photographs [9, 17] can all be used to refine the range

of possible places an image might have been captured at. In robotics applications, the

fine-grained image localization methods that are used often feature localization error

that is measured on the order of meters or centimeters [19–21]. In contrast, for global

image localization it may only be possible to estimate where an image was captured to

within a threshold of 10s or 100s of kilometers and only occasionally are precise locations

able to be found.

Despite the extreme drop in spatial precision, these methods are still broadly applica-

ble in a number of settings. For example in art, for retrieving images that look like they

come from the same place as a reference photo. In crime and policing, identifying the

sites of crimes posted to the internet, including identifying where sex trafficking and

abuse imagery such as those involving minors (CSAM) was captured 1. There also exist

similar but fully manual efforts by independent investigation groups 2 which reconstruct

crimes and disasters 3 and document war zones 4. And in business intelligence, identify-

ing and localizing trends in images to specific places without the need for geotags. Also in

anthropology, localizing old photographs in both space and time [44]. And finally, there

are those who localize images for the fun and challenge of it, such as the View From Your

Window project 5 and the players of GeoGuessr 6.

Further, we anticipate the future use of image localization in photograph collection

managers, a la the heat-map functionality in Google Photos (Fig. 1.1). Between the time

of the invention of photography and the common adoption of consumer-grade global

positioning system (GPS) modules, hundreds of millions or even billions of photographs

1http://www.traffickcam.com/about
2Forensic Architecture: https://forensic-architecture.org/, Bellingcat: https://www.

bellingcat.com/
3https://forensic-architecture.org/investigation/beirut-port-explosion
4https://www.washingtonpost.com/news/worldviews/wp/2014/08/26/

heres-how-to-track-terrorists-on-google-earth/
5http://dish.andrewsullivan.com/2010/09/07/the-view-from-your-window-contest-winner-14/
6https://www.geoguessr.com/

1

http://www.traffickcam.com/about
https://forensic-architecture.org/
https://www.bellingcat.com/
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https://www.washingtonpost.com/news/worldviews/wp/2014/08/26/heres-how-to-track-terrorists-on-google-earth/
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Figure 1.1: Example of Google Photos Heat-map. From the authors photo collection.

were captured without geotags. Even low-precision location estimates can be combined

with this imagery to support the construction of family histories through space and time,

or even to find that restaurant you ate at on holiday whose name you just can’t quite

remember.

1.2 A Review of Image Localization Methods

Recent image localization approaches fall into two broad categories: 1) those which are

classification-based [35, 39, 53] that divide the Earth into distinct regions a priori and

identify within which of those regions an image was captured; and 2) those which are

retrieval-based [15, 27, 29, 41, 52, 55, 66] that do similarly ad hoc by learning a common

feature space within which query images can be matched against massive databases of

geo-tagged imagery, composed of either ground-based or satellite-view imagery with

known locations.

2



Classification-based Localization

Classification-based approaches first divide a given region, typically the entire Earth,

into smaller regions within which a query image will be classified as being captured, or

not [35, 39, 53]. Most often, the parent-region is recursively divided into localizable sub-

regions or cells following a strategy that is based on the density of images located in each

sub-region. If a sub-region contains a number of images larger than a set upper-bound, it

is divided into a new collection of sub-regions. Many of the resulting sub-divisions will

contain too few or possibly zero images; those which contain less than a lower-bound are

completely discarded to ensure that each sub-region contains sufficient imagery to train

a classification model.

The earliest work in this space, PlaNet [53], recursively divides the world into a quad-

tree where each cell is a square projected onto the Earth’s sphere, and each sub-division

divides these squares into quadrants. The proposed classification architecture is a convo-

lutional neural network (CNN) whose final layer estimates the probability that the query

image was captured in any given cell, directly from the pixels of the query image. This

model is also applied to localizing photo albums by extending it with a Long Short-Term

Memory (LSTM) model which considers images from an album in sequence, iteratively

refining the global localization prediction.

A variant of this approach, called C-PlaNet [39], extends PlaNet with combinatorial

partitioning, wherein several coarse divisions of the parent region are computed indepen-

dently, then are combined to create a set of fine-grained regions. The coarse divisions of

the parent region are decided by merging neighboring quad-tree cells of a specific depth,

rather than recursive splitting. Each of the fine-grained locations is uniquely identified by

the set of coarse cells that overlap it. Following this fact, multi-head classifier optimizes

multiple classification heads and losses, one for each coarse division, and fine location

estimates are made by combining the coarse estimates.

In practice, images are commonly collected from a number of settings that each

feature unique patterns and limitations in their localization cues. For example, images

captured indoors often feature smaller objects that may be culturally relevant and indicate

a specific part of the world, but are not precisely localizable without additional clues such

as a skyline visible through a window. In rural outdoor images, the unique combination

flora and fauna may serve a similar function to the culturally relevant objects in indoor

images. An approach called GeoEstimation [35] accounts for these different cases by

turning image localization into a multi-stage process which features a classification of

query into one of a number of scene categories, scene category specific localization

3



models, and predictions at multiple partitioning scales.

Retrieval-based Localization

Retrieval-based methods approach localization from a different direction than classification-

based methods. The primary difference being that the set of locations that a query image

can be assigned to is not defined a priori, but instead at runtime. The main method for

defining these locations is by incorporating an outside data source that is closely tied

to the idea of location, typically satellite imagery, and estimating the likelihood that the

query image is associated with the reference image. While it is possible to use other data

sources, satellite images feature a number of traits that are beneficial to localization: cov-

erage of the planet that is (mostly) uniform, and frequent updates as collection platforms

continue to orbit the Earth taking new photographs.

Early approaches in this space [27, 52, 55] imported techniques from metric learning

and image-retrieval to image localization by training CNNs to match query photographs

against large databases of geotagged satellite imagery. They did so by training encoder

models which regress a feature vector from an input image such that the feature is

suitable for retrieval. Two encoders are trained, one each for photographs and satellite

imagery. These models are trained in tandem by presenting pairs of known pairs of images,

regressing feature vectors, and optimizing a metric learning loss which maximizes the

similarity between the vectors of known matches and while minimizing said similarity

for known negative examples.

Improved methods of regressing the feature vector encoders began by replacing the

simple global average pooling (GAP) operator which typically terminate each encoder.

One such work replaced the pooling step with a continuous variant of a histogram of

gradients operation [15], via which the main improvement over GAP is that visual con-

cepts that are useful for localization can be represented and also quantified in the overall

image representation. When localizing full panoramic images with known orientation,

the spatial orientation of those visual words can be incorporated into the images over-

all representation as shown by methods [41] which learn spatially-aware aggregation

methods as part of their image encoder.

Much of the work in this space has assumed that camera orientation was known while

location was unknown, aligning all images, panorama and satellite, to face north during

both training and inference. In practice this assumption rarely holds when attempting to

localize images found in the wild, which are typically not panoramas nor packaged with

compass metadata. To overcome this, later methods drop the assumption of north-facing

4



Table 1.1: Overview of image geo-localization datasets and their properties.

Dataset Scale Size Pano. Sat zoom Sat res.

CVUSA (CVPR) [62] USA ~50K Bing 19 750x750
CVUSA-500k [55] USA ~500K Bing 14,16,18 750x750
VIGOR [66] 4 cities ~100K Google 20 640x640
CVACT [29] 1 city ~128K Google 20 1200x1200
im2gps [11] global ~6.5M X — —
YFCC100M (w/GPS) [46] global ~5M X — —

imagery by applying random rotations to the panorama and train the localization models

for the additional task of recovering the orientation offset [29, 41], seeking to improve

both feature learning and localization accuracy.

Each of these methods has been focused on the problem of retrieving localizing

images against databases of satellite imagery which cover large spatial areas, such as the

contiguous United States. Recently, meter-level urban localization [66] has been explored

in select urban areas with the added challenge of including confusors, or reference images

without paired query examples in either the training or testing set.

1.3 Image Localization Datasets

The fundamental components of an image-localization dataset are images, each with

some form of geotag. Many such datasets have been published over the years and each

has their own specific qualities. The images themselves can be sourced in a couple of

ways. The least common approach is for them to be specially collected by hand using

GPS-enabled cameras for the purpose of the dataset, however this approach is much

more common for other types of datasets. Much more often, images are scraped from

social media sites such as Twitter, Facebook, or Flickr [46]. Wherever they come from,

images posted to the internet often contain metadata in the form of image metadata

(Exif) tags, and one of the encoded features is the GPS signal from the camera or phone

which captured or posted the photograph. The other common approach is to scrape

the 360°panoramas served by the Google StreetView service [54]. These are indexed

geographically in Google Maps and the public application programming interface (API)

enables pairing these images with accurate geotags.

Often paired with these images is a satellite image or other overhead view. These are

often sourced from the basemaps used by mapping services such as Google, Bing, or

Apple Maps. These basemaps are composite images composed of a number of captured

by high-resolution satellite platforms on cloudless days. These images feature a large
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Table 1.2: Overview of differences between CVUSA and CVUSA-500k. CVUSA-500K
is more than 10x larger, features higher resolution imagery with known location, and
multiple spatial scales of overhead imagery. We add additional imagery in the form of
cutouts from a Sentinel-2 basemap.

Dataset GPS Ground Res. m/pix Aerial Res. Aligned?

CVUSA (CVPR) [62] X 1232x224 0.30 750x750
CVUSA-500k [55] 3072x1536 9.55, 2.39, 0.60 800x800
+ Low-res Sentinel-2 — 225.4 256x256 X

amount of detail, typically pixels can be as small as 0.5 meters per side, but can be quite

old as the satellites that produce them may only view the entire Earth a few time per

year. Alternatively, coarser basemaps computed from low-resolution satellites that have a

more frequent revisit rate are used. One such platform is Sentinel-2, which produces a

new image of the Earth twice a week at a resolution of around 10 meters per pixel.

1.3.1 CVUSA-500k

Much of the work in the retrieval-based image localization space is based on solving

the panorama→satellite problem. This is different enough from most classification-

style localization, which usually operates on non-panoramic photographs, as to make

their methods and results difficult to compare. Most of this work is based on a what is

frequently referred to as the CVUSA dataset [62]. It consists of approximately 35K Google

StreetView panoramas paired with co-located satellite imagery. However, the absolute

location of each pair is unknown.

To support our aim of bridging classification and retrieval, we focus on non-panoramic

images. For our experiments, we adapt the full version of the CVUSA dataset [54] (which

we refer to as CVUSA-500k) in two ways. First, we simulate ground-level views by sampling

cutouts from the panoramas in CVUSA-500K. Second, we collect a new source of satellite

imagery composed of red-green-blue (RGB) cutouts from a Sentinel-2-based basemap.

The bounds of these cutouts are defined by the H37 cell within which the panorama is

located. This has two side effects: 1) panoramas are no longer guaranteed to be located

at the exact center of the paired overhead image; and 2) multiple panoramas can be

associated with a single overhead image. The latter side effect makes this data much more

like the classification problem which is inherently many-to-one (many photographs to a

single location bin).

7Uber H3: https://h3geo.org/
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Figure 1.2: Example images from the CVUSA-500k dataset. (Top Left): An overhead
image of Chicago, IL with resolution 800x800 at 0.6 meters/pix. (Top Right): An overhead
image of Chicago, IL with resolution 256x256 at 225 meters/pix. (Bottom): A panoramic
street-view image from the dataset with lateral cutouts are highlighted. Orientation with
respect to the overhead image is unknown.

1.4 Challenges

Global image localization is a challenging task for a number of reasons. One of the more

difficult is the issue of data density. Localization datasets are typically collected either

from geotagged social media images on the internet, or by collecting 360°panoramas such

as those available from Google Street View. Both of these approaches are biased towards

urban areas and away from rural areas, albeit for different reasons. The panorama based

datasets contain this bias because the imagery is almost always captured on roadways,

and there are simply more of those in urban centers. There are also issues of completeness

and remaining up to date. Social media data’s biases are more subtle, and can be grouped

into two main factors: 1) tourist bias, i.e. the tendency for people to take and post more

photographs when on vacation (often in large cities) or when notable events occur; and 2)

availability bias, where it is necessary to own a camera to take and post photos, while also
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Figure 1.3: Density of images in geospatial bins. The distribution of the number of
CVUSA examples that exist within each bin is non-uniform and varies geographically.
(Top) A histogram of how many occurrences of each quantity of examples per bin as they
occur in the dataset. (Bottom) Bin density roughly correlates with population density.

posting them to a social media site that the data is being collected from. Some sites are

more suited to this than others, namely Flickr, while others are more difficult to collect

from for reasons relating to their Terms of Service or API access, such as Facebook or

Twitter.

Ambiguity present in the content of images is an additional challenge that localization

approaches need to overcome. For example, individual locations within a given forest,

desert, corn field, etc. , might not be visually distinct from any other and thus unable to be

precisely located by an algorithm. Similarly, indoor areas provide few to none geographic

clues about the rooms specific location on the Earth, and many are only loosely localizable

to a particular region based on context clues such as language on signage and regionally-

identifiable objects. Data from social media comes with additional ambiguities, for many
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(a) High density areas. (b) Low density areas. (c) Incomplete coverage.

Figure 1.4: Undesirable properties of binning strategies based on image density. (a)
Some areas feature high-density, low-area cells, potentially as small as a few city blocks in
London, UK. (b) Other regions of the world feature cells that cover very large areas, such
as Iran which only has 6 cells. (c) Finally, there is incomplete coverage even in areas such
as the American Midwest.

kinds of photographs such as selfies or portraits the main subject of the image is not

directly relevant to the location of the image and a localization algorithm will need to

identify features on the periphery on the image. Finally, images sourced from the public

often come with erroneous geotags, either as a result of simple GPS sensor noise, user

error when uploading to social media, or intentionally obfuscated to protect sensitive

info such as the authors home or work address.

Additionally, there are inherent issues with classification based approaches to over-

come, such as the high variability in the size of the resulting cells required for classification

approaches, which can range in size from as small as a single city block (Fig. 1.4(a)) to the

size of a small country (Fig. 1.4(b)). Similarly, the density of the images does not always

correlate with the importance or difficulty of localizing an image from that location.

Classification approaches are also limited to making predictions within the regions from

which they are provided images with known locations. Typically this results in incomplete

coverage (i.e. areas interest around the world that are not contained within any cells, as

shown in Fig. 1.4(c)). Further, as they cannot make predictions in areas they were not

trained they are unable to generalize.

1.5 Research Objectives

In this work, we seek to unify the two classes of localization approaches and show that

such a hybrid approach can overcome issues that are present in both. To do so, we first
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need to establish a framework from which both the existing approaches and our proposed

hybrid method can be constructed and evaluated. Our framework starts from the existing

classification-based localization model where a query photograph is passed-through a

machine learning model, and then a set of logits corresponding to some set of location

labels or classes is predicted, where the computation of those logits and how they relate to

location is an "implementation detail". For classification, this is simply a linear projection

of the outputs of the model to a vector whose size is the same as the number of pre-

computed categories. For retrieval, that linear projection is defined by a database of

reference imagery and another learned model.

Our proposed approach can be considered a hyper-network for classification, with

classifiable locations dynamically defined by overhead imagery with known locations, and

further conditioned on the specific information available in those images. Specifically, we

propose using a cross-attention operation to make conditional estimates of geo-location,

where the query sequence is a single feature token representing the ground level image,

and the key/value sequence is a collection of satellite images the query could possibly

be located within. In this document we will explore and evaluate a number of specific

configurations of this architecture.

Introducing a transformer decoder to the localization model enables attaching addi-

tional information about the query image and the reference database by encoding and

including such information on the positional encoding added to each token passed to

the transformer. This information can include specific location details for each of the

reference images or additional metadata known to belong to the query image. In this

work we focus on the location of the reference imagery and what the optimal way of

encoding that might be.

Both the retrieval approach and our proposed hybrid models are capable of making

predictions in regions on which they were not trained, i.e. the model is never exposed to

specific details of architecture and other localizable features from such regions. We will

evaluate and compare these models in these settings to measure each models ability to

generalize beyond the area in which it was trained. We are also interested in the situation

where there is a limited amount of data available from held out regions, and will evaluate

all models under varying amounts of extra data.

Finally, all methods in the proposed framework can be trained for various scales

of target locations, from very coarse (1,000’s of km in area) to very fine (10’s of km in

area). This variability also opens up the possibility of hierarchical localization, where one

or more models are used to first localize an image to a large region, then increasingly

specific sub-regions in turn. We will evaluate each model for these different settings and
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identify which are best suited for each scale and which combinations produce the best

hierarchical localizer.

1.6 Summary and Thesis Outline

Thesis Statement Applying cross-attention to the features generated during retrieval-

based image-localization enables a new class of localization approach based on condi-

tionally refined image representations.

In Chapter 3, we address the problem of image geo-localization, of which there are

two primary classes of approaches: 1) classification-based, where images are predicted as

being within one of a set of pre-defined geographic regions; and 2) retrieval-based, where

images are queried against a database of images with known locations. We seek to bridge

these approaches, by modifying the classification approach to no longer assign images

to a fixed set of geographic locations, instead conditioning those locations on overhead

imagery. Our proposed approach uses cross-attention as a general image localizer, pre-

dicting among which provided satellite images a query photograph was captured within.

Existing approaches are tailored to one of these settings or the other. In contrast, our

approach attempts to solve both problems with a single model. We present the existing

methods, and detail our proposed hybrid approach. We also conduct a detailed ablation

study of the proposed approach.

In Chapter 4 we explore and evaluate the generalizability of each method of interest.

To do so we divide a major image-localization dataset into two geographically distinct

parts, training on one and testing on the other. We follow evaluations approaches sim-

ilar to several existing works which have measured localization accuracy in unknown

areas [29, 66], except at much larger spatial scales and our evaluation is not limited to

urban areas. Further, we explore the impact of varying the location encoding for the

hybrid methods reference image database. We also evaluate the change in generalization

accuracy as various amounts of data from the held out regions are introduced during

training, a proxy task for low-data situations in areas of interest.

In Chapter 5 we evaluate the impact of varying the spatial resolution of reference data

and the spatial extent of location bin sizes on each of the localization methods presented

in previous chapters. Localizing to areas of varying size can change the accuracy of

localization at the detriment of precision, and each model has their own trade-off profile.

We also evaluate a number of configurations for hierarchical localization.

In Chapter 6 we introduce a multi-modal variant of the the proposed image-localization

approach. As a proxy for situations where the reference image database is composed of
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satellite images sourced from multiple distinct platforms, we train localization models

on reference imagery that has been broken into their constituent channels. Further, we

evaluate this approach on a satellite-view semantic segmentation task.
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Chapter 2 Background

2.1 Transformers in Computer Vision

Transformers are a class of deep learning model which were first introduced [50] in

2017 in the context of natural language processing (NLP) where they quickly became

one of the dominant approaches to sequence-to-sequence language tasks. Following

their rise in popularity in the NLP space, they were then applied to computer vision

problems by converting images to sequences of tokens, much like sequences of word

tokens in NLP [8]. Transformers similarly became one of the dominant approaches to a

variety of computer vision problems, especially in settings where billion-scale datasets

are available. Since then, Transformers have been applied to video understanding [2],

semantic segmentation [43, 56, 60, 64], 3D point cloud understanding [63], and much

more.

The key insight of Transformer is the introduction of an attention mechanism. Given

three sets of tokens, a query-set Q ∈RN×F , a key-set K ∈RM×F , and a value-set V ∈RM×G ,

we define attention as the following function:

Attention(Q,K ,V ) = Softmax(Q ·K T ) ·V , (2.1)

Figure 2.1: Attention is the soft approximation of a key-value lookup in a database. The
key-indexing step is replaced with a soft-assignment from the query feature to each of
the key features. The soft-assignment weights are then used to compute a weighted sum
of the corresponding value features.
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where N and M are quantities of tokens and F and G are the size of the input and output

token vectors, and the output of the function is a new set of tokens in RN×G . The attention

function can be thought of as soft dictionary lookup, where the key-indexing is relaxed

from the identity function to a similarity-based weighting between Q and K , and the

returned value is a weighted sum over all values V .

A very common extension called multi-head attention first projects the input tokens

down to n lower-dimensional sub-spaces RF 7→RF /n , performs attention on each of these

"heads" independently, then concatenates the outputs. Generally, this is done in order to

reduce the spatial and computational complexity of attention, speed up learning, and

learn more robust features as a form of in-network ensembling.

In practice, there are two specific incantations of attention which are commonly used:

1) self-attention where Q = K =V , and 2) cross-attention where K =V . In their simplest

forms, Transformers are residual-connected stacks of these basic attention-variants and

shallow multi-layer perceptrons (MLPs). Specifically, an encoder layer is defined as:

Qi+1 = Norm(Qi +SelfAttention(Qi )) (2.2)

Qi+1 = Norm(Qi+1 +MLP(Qi+1)), (2.3)

and a decoder layer is defined as:

Qi+1 = Norm(Qi +SelfAttention(Qi )) (2.4)

Qi+1 = Norm(Qi+1 +CrossAttention(Qi+1,Vi )) (2.5)

Qi+1 = Norm(Qi+1 +MLP(Qi+1)), (2.6)

where Norm(·) is some normalization function, such as BatchNorm [16], InstanceNorm

[49], or LayerNorm [1].

The input to Transformer encoder- and decoder-networks is a sequence of tokens

where each token represents something. In NLP settings, these are typically words or

n-grams of words, and the tokens themselves are learned embedding vectors that encode

the semantic meaning of the corresponding word or n-gram. A wider variety of solutions

exist in the vision space. In the simplest case, n ×n sub-images are extracted from an

input image on a grid, then each is flattened and linearly projected onto RF . In more

complex systems, this step may be replaced with a CNN, useful for encoding the content

of a patch and its surrounding context, or even reducing an entire image to a single token

in multi-image tasks, such as image-localization.

In order to incorporate the relative positioning of each token into the decision-making

process, the position of each token must be encoded and combined with the tokens
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(a) Tokens extracted from text

(b) Tokens extracted from an image

Figure 2.2: Examples of tokenizing data for processing by a transformer. (a): Text is
typically broken down by word, and each is converted to a token by a learned embedding
model which associates each word with a vector. (b): Images are converted to tokens
by first extracting windowed sub-images, then a separate model predicts a token vector
from that sub-image.

representation. This positional encoding is responsible for representing the positions

of each token in the input sequence as a signal that can be used by the self-attention

modules to reason about the relative and absolute positions of each token. In the original

NLP context this was the indices denoting where each tokenized word was located in

the sentence. In the computer vision setting, this is typically the X ,Y position of each

tokenized sub-image. Typically these coordinates are converted to a high-dimensional

continuous representation by projecting them to a higher dimension p ′ ∈ Rn/2 with a

random projection matrix whose weights are kept fixed throughout training. The final

positional encoding is p = [si n(p ′),cos(p ′)], where p ∈ Rn and this is added directly to

the tokens representation vector.

In settings such as image-level classification or regression, the tokens produced by

the Transformer model must be reduced to a single summary token before being passed

to downstream prediction models. One simple approach to this is to take the mean of the

15



entire sequence of tokens, however in practice this leads to less desirable representations.

The typical approach is to append an additional token to the sequence, referred to as the

CLS or class token. This token has a fixed value throughout training and the corresponding

output is passed directly to any sequence-level downstream tasks.

2.2 Metric Learning and Image Retrieval

The goal of representation learning is to learn models which take high-dimensional and

un-evenly sized inputs from a given domain and compactly embed them into a low-

dimension latent space. One common approach to learning to represent a data domain

is the auto-encoder [6, 33, 51], where the task being optimized is embedding, and then

reconstructing, datapoints from the low dimensional latent code. Similarly, generative

models [23,37] learn to generate plausible examples from a dataset given a sample from a

pre-defined representation space, where "plausible" is defined by a critic network which

is simultaneously trained to differentiate between real examples from the dataset and the

results of the generator model.

Metric-learning approaches [13, 14, 24, 36, 45] instead learn such representations

based solely on relationships between datapoints by directly optimizing for a latent space

where similar examples have embeddings that are close to each other, and dissimilar

examples are embedded far from each other. These latent spaces are shaped by two

main factors: 1) the distance function, or metric, which is used to compare the latent

representations predicted by the trained model; and 2) the loss function, which for a

given batch of examples and the associated pairwise distance matrix will drive the shape

and arrangement of the latent space by directing the training of the representation model.

While one of the natural choices for a distance function would be the well known Ln

distances, much more common in the metric learning literature is the cosine distance

function [5, 30, 55]:

Dcos(X ,Y ) =− X ·Y

||X || ||Y || , (2.7)

where X and Y are representations returned by the metric learning model, and Dcos ∈
[−1,1] where D = −1 indicates identical inputs and D = 1 maximally different inputs.

There has also been some recent work which explored the use of the signal-to-noise ratio

as a distance for metric learning [59].

A number of loss functions have been proposed for this task; most fall into one

of two categories: 1) tuple-based methods, and 2) proxy-based methods. Tuple-based

methods [36, 52] are those where the computed distances for sets of known matching
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(a) Tuple-based (b) Proxy-based

Figure 2.3: Overview of basic metric learning paradigms.

and non-matching examples are used directly to push match embeddings towards each

other and mis-match embeddings away from each other. For example the contrastive

and triplet losses:

Lcontrastive = max(0, M −D(xi , x j )) (2.8)

Ltriplet = max(0,D(xi , yi )+M −D(xi , x j )) (2.9)

Lsoft-triplet = sigmoid(D(xi , yi ))−D(xi , x j ))) (2.10)

where xi and x j are known to match, and yi is known to be a mis-match to both. Many

such methods also introduce a margin term M which defines the minimum desired

distance between matched examples.

Recently, proxy-based methods [4, 22, 34] have introduced the use of artificial anchor

points in the latent space as a tool for reducing the computational complexity required

when computing the pairwise distance matrix, especially compared to contrastive and

triplet based losses. This is achieved by only considering distance computations between

proxies and sampled datapoints, rather than all pairs of data points, i.e. the complexity

of the distance computation step is reduced from O(|X |2) to O(|X | × |P |) where |X | is

the size of each sampled batch and |P | is the number of proxies. These methods learn

a set of proxy points within the latent space as an extra set of weights to be optimized

during training. In settings where there are labels available to be leveraged, each category

is assigned a proxy representation, and during training the known categories are used

to assign matches/non-matches. In settings where there are no labels to leverage, the

closest proxy in the latest space as defined by the chosen distance function D(·, ·) is used

instead.
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Chapter 3 Methodology

In this chapter we describe our proposed approach to unifying the classification and

retrieval settings of image geo-localization. First we present a framework within which im-

age localization approaches can be constructed under. Next, we introduce our proposed

approach which we call MetaLoc, which borrows important elements from each of the

existing categories of approaches. From retrieval, we take the ability to condition local-

ization estimates on a database of imagery with known location; from classification, we

take the training strategy and loss function. Specifically, MetaLoc takes as input a query

photograph and a set of aerial images with paired geographic information. All images

are tokenized into feature vectors, geographic information is encoded into an identically

shaped vector and combined with the aerial image vectors. Next, a new ground image

feature is computed using a transformer decoder where the existing ground feature is the

query and the database of aerial features is the key/value. The resulting aerial-conditioned

ground feature is then compared with the aerial features using the dot product to estimate

the final similarity score. The remainder of this section discusses these steps in greater

detail.

3.1 A Framework for Image Localization

In order to facilitate both the fair comparison of localization methods and to highlight

their main similarities and differences, we construct a framework within which local-

ization methods can be constructed. Localization methods share a number of common

components, specifically their inputs, outputs, and losses which drive the training pro-

cess. By fixing as many of these components to be the same in all settings we can more

rigorously explore which changes have the most impact on localization performance.

The input to our framework is a single query image whose location is to be estimated.

A feature encoder model transforms that image into a compact representation, often a

vector in Rn . That representation is then passed to some method-specific model which

makes the actual location estimation. Finally, that estimate is compared with the ground

truth to compute a loss value which is used to train all of the constituent models and

parameters. We diagram this framework in Fig. 3.1(a).

The main source of variation is in the method specific model. For a simple classifica-

tion model (Sec. 3.2 and Fig. 3.1(b)), this can be as simple as a learned set of weights in

Rn×L , where L is the number of locatable regions. Other methods may include additional
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(a) Localization framework.

(b) Classification ap-
proach.

(c) Retrieval approach. (d) Proposed MetaLoc approach.

Figure 3.1: Overview of image localization framework and approaches. Image geo-
localization can be decomposed into a simple framework, as shown in (a), where query
a image is reduced to a feature vector which is passed as input to some method which
predicts among which possible locations the image is from.

sources of input and new models and weights (Figs. 3.1(c) and 3.1(d)). We present two

such methods in Secs. 3.3 and 3.4

While the specifics of the image encoder and the loss function are flexible, for most of

this document we fix them to be a ResNet18 model [12] and the softmax cross entropy loss,

respectively. Similarly, we compare all models using the same set of metrics, evaluating for

recall at various thresholds both in terms of metric similarity and geographic proximity.

We describe these metrics in detail in Sec. 3.5.

3.2 Classification

Classification-based approaches to image localization take a single query image as input

and directly predicts where the image was captured. Predictions take the form of esti-

mated parameters to a categorical distribution, where each sub-region that the image

could possibly have been captured in is considered a category.

In other work [39, 53] the parent region that fully encompasses all examples in the

dataset, typically the entire Earth, is divided into smaller regions. Several approaches

to this partitioning have been proposed, including a Quad-trees1. To decide whether

or not to subdivide a particular region into a set of sub-regions, the number of images

from a reference dataset that lie within the query region is counted and then if the count

is above some threshold the region is split, discarding sub-regions that contain fewer

images than a second threshold. This splitting criteria is applied recursively until there

1Google S2: https://s2geometry.io/
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are no remaining sub-regions that contain enough images to warrant a split. Each of

these resulting sub-regions is considered a category to which all of its contained images

are assigned.

To ensure compatibility with retrieval-based methods (Sec. 3.3), we simplify this

process significantly and instead divide the parent region into uniformly sized sub-

regions without recursive subdivision. Because quad-tree cells are often non-uniform

polygons, especially towards the magnetic poles and quad-tree decision boundaries, we

instead use a hexagonal tiling of the Earth 2, assigning each image to its corresponding

cell at a particular zoom-level.

Within our image localization framework, these first compute a compact feature

representation, v ∈ Rn , which encodes the location relevant information in the query

image and compares it against a learned set of location representations, one per locatable

region, W ∈ Rn×L, typically via a dot product between the representation vector v and

the learned weights, v ·W ∈RL . each element of v ·W is a similarity score related to the

likelihood that the query image was captured at that particular location.

3.3 Retrieval

In contrast to classification-based image localizers, retrieval-based methods do not learn

to localize images to a fixed set of regions. Instead they learn to score the similarity

between a query image and a set of satellite images representing a number of regions

such that the matching satellite image has a high score and all others are low. Then, when

deploying such models, the similarity between a query image and each of the satellite

images for potential locations is computed and used to estimate the query’s location,

those with the highest score are considered the most likely. This last step is conceptually

similar to classification except with a potentially varying number of categories.

To compute the similarity between query and satellite images, a second model is

trained which acts as a feature extractor for satellite images. While this satellite feature

encoder could be any CNN, typically it is identical to the query feature extractor with an

independently updated set of weights. The similarity scoring function itself can take many

forms, most often a dot product, G · A = S where G ∈ R|G|×n , A ∈ R|A|×n , and S ∈ R|G|×|A|,
or the cosine similarity, which is the dot product between unit-normalized G and A,

s = cossim(c ∗F,c ∗ A), where c is a scaling factor.

Typically the loss function for retrieval-based methods that is used is the triplet margin

loss [52] or some variant. These optimize representations such that the similarity scores

2Uber H3: https://h3geo.org/
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Figure 3.2: Overview of the latent feature space in retrieval-based image localization.
Images from two different modalities, ground-level photographs and overhead satellite
images, are mapped into a semantic latent space where buildings with similar purposes
are grouped together.

for positively matched pairs and negative pairs have at least some margin (or difference)

and that the similarity between negative pairs is also minimized. In the simplest case

negative pairs are selected randomly from within each training batch; more complex

sampling schemes are common. For a more detailed explanation of retrieval and metric

learning methods please refer to Sec. 2.2.

A subset of metric learning methods concern themselves with the situation where

the dataset is not composed of one-to-one matches but instead of grouped (but not

necessarily categorized) examples [22]. Following the example of these works and also

taking into account the similarity with training models for classification, we proceed by

training our retrieval models with the softmax cross entropy loss.

3.4 MetaLoc: Attention-based Image Localization

The core proposal of this work is to condition the ground-level image features by the

aerial reference features using a cross-attention operation in the form of a transformer

decoder. This approach shares much in common with retrieval-based approaches, with

the additional difference of enabling the inclusion of geographic information in the aerial

features which is not possible in retrieval-based methods. We term this model MetaLoc.
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(a) Classif. (b) Retrieval (c) MetaLoc

Figure 3.3: Detailed overview of the proposed image-localization architectures.

3.4.1 Computing Image-level Tokens

The inputs of MetaLoc are a query photograph with an unknown location and a database

of satellite images with known location, bounding boxes, etc. We first reduce the images

to individual tokens for the downstream transformer decoder, fg ∈ Rn , and f̄a ∈ Rn

respectively. To do so, we use an off-the-shelf CNN terminated with a global average

pooling step, estimating a feature vector for each image, fg = F (Ig ), fa = F (Ia) In practice,

we use separate tokenizing networks, Fg and Fa , for each of the two input modalities,

ground and aerial imagery.

3.4.2 Location-based Positional Encoding

We convert the known location of the center point for each image in the satellite database

into a positional encoding vector. We adapt the strategy described in the original ViT [8]

paper, which operates by projecting the coordinates of a fixed grid into onto a random

high-dimensional space and then computing the sine and cosine of each value. The

result, shown in Fig. 3.4, resembles a smooth, warped grid. Every position has a unique

embedding and neighboring positions are smoothly translatable from one another.

In our specific use-case of image localization, we use the GPS coordinates associ-

ated with the center point of each reference satellite image. First, these GPS coordi-
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Figure 3.4: Positional encoding with GPS coordinates. The top and bottom rows are
the sin(.) and cos(.) components of the encoding, respectively. We show each location
projected onto a random 3D subspace. In practice the dimensionality is much higher,
half the size of the input token, resulting in a total positional encoding size equal to the
token size.

nates are projected to a higher dimension, p ′ ∈ Rn/2, with a random projection ma-

trix whose weights are kept fixed throughout training. The final positional encoding is

p = [si n(p ′),cos(p ′)], where p ∈Rn . This encoding is added directly to each aerial token,

f ′
a = fa +p.

3.4.3 Conditional Representation with Transformer Decoders

Our central proposal with MetaLoc is to condition aerial image representations on the

provided representations of all images involved in the localization of a particular query

image. In other words, we seek to refine each representation based on all available context

(all satellite images, where they were captured, etc. ). This is in contrast with existing

retrieval-based work where the similarity between the query image and each satellite

image is independent.

To estimate this conditional feature for each satellite image, we propose using a

transformer decoder [50]. First, multi-head cross-attention (MHCA) is computed between

the query images feature and the collection of satellite image features, g ′ = M HC A(g , a),

which is then followed by a stage of multi-head self-attention and a shallow MLP. The

result is a collection of features that have been conditioned on both the query image and

the full context provided by the satellite image database.

3.4.4 Predictor Head

We explore two different approaches to making the final prediction of similarity between

the query and reference imagery. The first is identical to the retrieval-based approaches
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which compute similarity via a dot product or the cosine similarity function.

The second approach we explore is to directly estimate the similarity score from the

conditioned aerial representation using an MLP. Conceptually this is very similar to how

predictions are made following a transformer decoder in other settings where each token

is passed independently through a MLP to make some final prediction for each token. In

this case, each token is a reference image in our satellite image database which has been

conditioned on the query image and the task is to estimate how likely the query was to be

captured within a given images region.

3.5 Metrics

We compute a number of recall-based metrics for evaluating the proposed set of image

localization models. An example is considered to have been localized correctly "within-

k" if the true locations similarity score is among the k largest values, within-k(i ) = li ∈
argsort(Si )[0 : k], and recall is defined as:

Recal l = T P

T P +F N
, (3.1)

where T P is the quantity of examples where the true label was within-k and F N are those

examples that were missed at the same threshold k. Each metric primarily differs in how

this score is aggregated and the resulting biases.

Micro Recall @ k Computes the recall score globally. This is biased towards categories

(locations) with large numbers of examples, especially if the model already performs well

in those areas.

Macro Recall @ k Computes the recall score first for each label, then take a simple

average. This metric is biased towards performance in low-population categories due in

part them being much more common in our datasets.

Distance Thresholded Micro Recall @ 1 This metric instead considers the minimum

distance between the query’s true location and the (k = 1) predicted location. If the

distance is below some threshold T then it is called a match. Micro Recall is computed as

normal.
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Table 3.1: Localization Results. In the High-res setting, all three methods perform sim-
ilarly with MetaLoc performing slightly better, especially the top-1 within threshold
metrics. Due to the fact that each high-res location has an identical number of examples,
the micro- and macro-recall rates for these models are the same, we denote this by itali-
cizing the macro-recall scores.

Micro-recall Macro-recall Top-1 < Thresh.
Method 1 10 1% 1 10 1% 10km 50 100

Lo
w

-r
es

Classif. 44.45 63.31 90.25 30.33 50.05 85.09 49.95 66.53 73.32
Retrieval 37.99 63.74 90.58 28.51 55.77 88.45 45.65 67.13 75.15
MetaLoc (Ret) 38.21 63.50 91.09 29.13 56.65 89.79 45.90 67.86 75.87
MetaLoc 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37

H
ig

h
- Retrieval 14.04 38.24 90.85 14.04 38.24 90.85 34.62 52.92 63.64

MetaLoc (Ret) 14.39 38.89 91.05 14.39 38.89 91.05 36.37 56.04 66.33
MetaLoc 14.79 39.48 91.13 14.79 39.48 91.13 35.64 53.68 63.78

3.6 Experiments

3.6.1 Implementation Details

For our the tokenizing network in our experiments we use a ResNet-18 [12] network

pre-initialized with ImageNet weights, with the final linear layer re-initialized to produce

512-d tokens. The transformer decoder used in the MetaLoc models is composed of 4

layers with 4 heads each, internal size 1024, and GeLU activation. The scaling factor c of

the Retrieval and MetaLoc (Ret) approaches is empirically set to 3. The classifier model is

trained with approx. 23k categories.

We train and test with lateral cutouts from streetview panoramas; during training we

sample a random 60° window whose center-point is facing laterally left or right away from

the road with a random offset of ±45°, during testing no random offset is used. When

training on the high resolution satellite images from CVUSA-500k, a random 512x512

cutout is used; and during testing the central 512x512 pixel region. At all phases of training

and testing, images and cutouts are downsampled to 256x256 using bilinear interpolation.

When training with low-resolution satellite imagery, we use H3 zoom-level 5 sized patches

from a Sentinel-2 basemap resized to 256x256 pixels.

All models are trained for 100,000 iterations with batch size 512, using the Lamb [58]

optimizer and 1-Cycle [42] learning rate schedule with a maximum learning rate of 0.005.

Each model is trained on a single NVIDIA V100 at half-precision for around 2 days.
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(a) Low-res data (b) High-res data

Figure 3.5: Same-area Localization Recall Curves.

Table 3.2: MetaLoc Results with Various Input Field of View Settings.

Micro-recall Macro-recall Top-1 < Thresh.
FoV 1 10 1% 1 10 1% 10km 50 100

30° 26.43 50.27 82.93 20.59 43.67 79.63 32.07 50.75 59.69
45° 33.05 58.97 88.71 25.44 51.83 86.32 39.58 60.60 69.29
60°* 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37

3.6.2 Results

First, we evaluate the performance of each of the proposed image-localization approaches.

We focus on two settings: 1) Low-res, which uses coarse-scale reference imagery sourced

from Sentinel-2, and 2) High-res, which uses fine-scale reference imagery sourced from

Bing Maps.

In Tab. 3.1 and Fig. 3.5, we find that in the low-res setting, the classification and

retrieval methods perform best in terms of micro- and macro-recall scores, especially for

lower values of k. Where MetaLoc performs best appears to be at higher values of k. This

may indicate that the model is more able to localize the query image to regions that are

close to, if not exactly, where the image is from. This insight is supported by the fact that

MetaLoc is able to localize the top-1 prediction to within 10km approx. 45% of the time,

and within 100km approx. 75% of the time.

In the high-res setting, all three methods considered perform similarly, with MetaLoc

outperforming retrieval by a small margin in every metric.
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Figure 3.6: Sample predictions ordered by estimated similarity between query and
reference imagery.

3.6.3 Ablation Study

We compare our proposed approach against a number of baselines. For the coarse setting,

we compare against a simple classifier (referred to as PlaNet-style [53]), a simple retrieval

model, a retrieval model with the addition of a transformer decoder, and finally with the

addition of a positional encoding scheme. We compare the same model settings for the

fine setting, sans the classification baseline.

A number of specific choices regarding the architecture were made empirically. Here

we explore additional settings to those and evaluate the impact those choices have on

MetaLoc’s performance. In each of these tables, the setting marked with an asterisk (*) is
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Table 3.3: MetaLoc Results from Various Tokenizer Networks.

Micro-recall Macro-recall Top-1 < Thresh.
Tokenizer 1 10 1% 1 10 1% 10km 50 100

ResNet-18 * 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37
ResNet-34 37.47 63.17 91.36 27.98 55.20 89.35 44.50 66.25 74.62
ResNet-50 34.12 60.82 90.89 26.61 53.97 89.10 42.06 65.42 74.19

Table 3.4: MetaLoc Results from Various Decoder Parameters.

Micro-recall Macro-recall Top-1 < Thresh.
Decoder 1 10 1% 1 10 1% 10km 50 100

To
ke

n
-D 128 26.24 49.98 83.02 17.60 40.37 79.51 32.79 55.07 65.40

256 31.03 56.81 88.66 22.62 49.25 86.44 38.24 60.81 70.70
512 * 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37

D
ep

th

1 34.71 60.24 89.95 26.48 52.88 87.61 41.51 63.02 71.55
2 34.72 60.83 90.24 26.28 53.36 88.08 41.56 63.79 72.56
4* 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37
8 35.75 62.43 91.42 26.98 55.05 89.77 43.18 66.31 74.93

H
ea

d
s

1 36.16 62.22 90.85 27.65 54.56 88.88 43.38 65.80 74.14
2 35.37 61.27 90.49 26.47 53.05 88.46 42.51 64.42 73.14
4* 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37
8 35.85 62.49 91.04 27.48 54.73 89.00 43.04 65.55 74.21

the default used in all other tables.

Field of View The default field of view (FoV) value of 90°was chosen to maximize the

visual keypoints visible in each cutout. However in the wild, images can feature a wide

variety of FoV values. In Tab. 3.2, we evaluate 4 such settings: 30, 60, 90, and 120 degrees.

Representation model parameters The tokenizer network can take a number of forms,

most often a CNN. For its simplicity and flexibility, we selected a ResNet-18 model pre-

trained on the ImageNet image classification task to be the representation network for

both ground and satellite imagery. In Tab. 3.3 we evaluate other choices in the ResNet

family as well as a Transformer model.

Decoder parameters Transformer decoders feature a large number of individually tune-

able parameters, the most significant of which control the models size. In Tab. 3.4, we

evaluate the effect that model depth, model width, and number of transformer heads

each has on localization performance.
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Figure 3.7: Relative recall rates of the MetaLoc and Retrieval approaches. The Recall@100
rates for each geographic bin are compared against each other in a 2D histogram. Each
histogram cell represents the occurrence rate of a particular pair of recall scores. Much of
the density lies on or above the diagonal, implying that in many of the geographic cells
the MetaLoc model is a direct improvement over Retrieval.

3.6.4 Comparing Recall Rates

In this section we visualize the relative distribution of recall scores for our proposed

MetaLoc model and the baseline Retrival approach. For each H3 cell in the Cross-area

test set, we compute the Recall@K scores for both models. In Fig. 3.7, we show the 2D

histogram comparing the relative distribution of these scores. We observe that much of

the density in this plot is above the diagonal, which directly shows that for more cells

than not, the MetaLoc model improves on the Retrieval baselines metric.

3.7 Discussion

In this chapter we present and evaluate a unified approach to image geo-localization. We

extend the most common retrieval-based localization dataset to include satellite imagery

intended to support classification-based methods. Further, we propose an approach

which uses a transformer decoder to estimate the likelihood that an image was captured

within a given satellite image. This work establishes a number of baseline results that we

hope inspire the community to compete against.
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Chapter 4 Generalizing to Unseen Areas

Humans are excellent at localizing images from places they have never been using con-

textual clues and other hints present in images. There’s even a game where users test

their global image localization skill1. Ideally, machine learning models would be able to

perform similarly well, even in areas and situations where they lack training data.

Many parts of the world are over- or under-imaged. For example, New York City and

Paris have been extensively well documented by historians and tourists while many of

the un-inhabited parts of the world may have only ever been imaged by satellites. More

difficult still, places change over time. New buildings are constructed, the addition of a

dam will dramatically alter a waterline, and forest fires can leave communities and their

surrounding biomes disrupted for decades. Localizing accurately in all of these settings

is arguably more important than localizing the images in the well-managed datasets

on which these models are trained because these are real situations where an image

localization model could be deployed and required to be accurate.

Existing approaches vary in how or whether they even generalize to unseen areas.

For example, classification models are unable to localize images to unknown areas by

default; since each location is treated as a separate category and as such the model will

have never been presented an example of that category. In contrast, retrieval methods

keep a reference database to localize against which can potentially be exchanged for a

new database covering a different area or upgraded to an extended one covering both.

This practice has not been well studied however, only recently [66] has a dataset been

presented to specifically evaluate this, and even then only at the extremely fine scale of

meter-level accuracy within urban environments.

Given that the proposed hybrid approach is based on a transformer decoder, we can

control the amount of geographic context included in the database by changing aspects of

the positional encoding. In retrieval methods, nothing about the satellite images location

or its position relative to other satellite images is included. We propose introducing that

kind of information and in this chapter will explore a number of possible approaches.

4.1 Same- vs. Cross-Area

We seek to evaluate the ability of our proposed approach to generalize to unseen areas.

Inspired by VIGOR [66], we split CVUSA-500k into two the eastern and western United

1https://www.geoguessr.com/
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Table 4.1: Same- vs. Cross-Area Splits. The aerial images are H3 resolution-4 cutouts from
a Sentinel-2 basemap covering the same area as the CVUSA dataset (CONUS + Alaska).
East-West split determined by median longitude in CVUSA (-91.21).

(a) Matching

Same-Area Cross-Area
Region Quantity Region Quantity

Tr
ai

n Ground All 979K
West

514K
Aerial All 489K 257K

Te
st Ground All 50K

East
514K

Aerial All 25K 257K
(b) Classification

Same-Area Cross-Area
Region Quantity Region Quantity

Tr
ai

n Ground All 979K
West

514K
Aerial All 4.3K 2.8K

Te
st Ground All 50K

East
514K

Aerial All 4.3K 1.4K

States by the median longitude value in the CVUSA dataset, -91.21°, producing an even

split between training and testing. In Tab. 4.1 we present the specifics of these splits.

We also seek to evaluate the situation where there is a limited amount of data available

in the held out region. To evaluate MetaLoc and the baseline Classification and Retrieval

methods for this low data setting, we further augment the Cross-area split by transferring

small amounts of data from the test split to the train split. Specifically, for 4 different

thresholds (1, 2, 5, and 10) we identify bins in the test split with more examples than the

threshold, and from each bin we sample threshold examples to transfer to the training

set. Bins with fewer examples than the threshold are dropped from the test set entirely.

We do so because we require unseen examples from each bin in the test set, while also

having at threshold examples per bin in the training set. Note, the threshold = 0 setting is

equivalent to the base Cross-area split. We summarize the final train/test dataset sizes for

each threshold in Tab. 4.2.

4.2 Positional Encoding Considerations

The positional encoding component of a transformer model is responsible for represent-

ing the positions of each token in the input sequence as a signal that can be used by the

self-attention modules to reason about the relative and absolute positions of each token.
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Table 4.2: CVUSA-500k train and test dataset sizes for Semi-Cross setting. To produce
each split, some number of examples from each location bin in the testing area are
transferred to the training set. In the case where there are not enough examples in the
bin to transfer to training while leaving at least one example for testing, the entire bin is
discarded.

Examples per bin from test area
0 1 5 10

East→West
Train 514K 520K 541K 562K
Test 514K 508K 486K 460K
Total 1.28M 1.28M 1.27M 962K

West→East
Train 514K 517K 529K 543K
Test 514K 511K 499K 485K
Total 1.28M 1.28M 1.28M 1.28M

In the original NLP context [50] this was the indices denoting where each tokenized word

was located in the sentence. In the computer vision application of Transformers [8], this is

typically the X ,Y position of each tokenized sub-image in the full image. The positional

encoding approach used by our MetaLoc model (Sec. 3.4.2) is conceptually very similar

to the image transformer setting, except the resulting encoding vectors denote where on

the surface of the Earth each satellite image is located. In this section we describe differ-

ent approaches to representing this location information, additional position-adjacent

information that can be useful to encode, and a detailed description of the positional

encoding module. Other more involved approaches to this have been proposed, but are

outside the scope of this work [32].

4.2.1 GPS Coordinates

Latitude-Longitude coordinates provided by the Global Positioning System are the form of

location encoding that people are typically most familiar with. They are part of a spherical

coordinate system with a fixed radius where Longitude, Lon ∈ (−π,π), represents the

azimuth angle around the Earths equator and Latitude, Lat ∈ (−π/2,π/2), represents the

polar angle from the equator.

4.2.2 Earth-Centered, Earth-Fixed Coordinates

GPS coordinates have a number of drawbacks including: 1) scaling issues as locations get

further from the equator (one degree of Longitude represents different distances in km

depending on Latitude), 2) discontinuity at the "seams" located at the poles and along

the −π→π Longitudinal transition line, 3) and a fixed radius that is not able to encode
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elevation changes in the geography. These drawbacks introduce small hurdles to learning

about geographic positions by an image localization model. An alternative encoding

that overcomes these issues at the expense of being easily human interpretable is the

Earth-Centered, Earth-Fixed2 (ECEF) coordinate system. Converting from GPS results in

a three-dimensional coordinate [x, y, z] ∈R3 and is straightforward:

x = r ∗cos(Lon)∗ sin(Lat )

y = r ∗ sin(Lon)∗ sin(Lat )

z = r ∗cos(Lat )

where r is a fixed radius for the Earth, typically 1. These new coordinates are the Cartesian

coordinates corresponding with the r -radius unit-sphere and they overcome all three of

the stated issues with GPS coordinates.

4.2.3 Other Positional Possibilities

Positional encodings are not strictly limited to spatial and ordering related information.

Other important metadata, such as spatial scale, temporal information, and details of a

tokens source can all be included in the encoding vector.

Geospatial Scale The size or scale of the area described by a single token can be an

important cue for a localization model, especially in settings where the localizable regions

are not uniformly sized and in hierarchical localization schemes. There are two main

approaches to this: 1) encode the scale factor directly, or 2) encode the bounds of the

region. In this work we opt for the second approach, whenever scale is included as part

of the positional encoding, it is encoded as the concatenation of the coordinates of the

upper left and lower right corners of the regions bounding box: [Latul ,Lonul ,Latl r ,Lonl r ],

and similar for ECEF coordinates.

Data Source In settings where there are more than one source of input tokens, it may be

important to encode from which source each token was sourced. Each source of tokens

typically will possess their own individual details and quirks that need to be included in

the localization models decision making, such as resolution, framerate, or spectral range

(Chapter 6). To encode these, for each source we propose adding a separate learnable

vector for each possible data source.

2https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system
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Table 4.3: Positional Encoding Ablation Study.

Micro Macro Thresh
10 1% 10 1% 50km 100

None 4.80 ±9.20 7.59 ±10.58 5.10 ±6.72 7.79 ±7.38 10.71 ±5.99 26.36 ±15.81
GPS 4.89 ±9.40 8.12 ±13.37 4.59 ±7.38 7.98 ±9.28 12.87 ±7.78 30.80 ±16.62
+ BBox 2.10 ±2.98 4.27 ±4.38 3.55 ±4.68 6.16 ±6.05 12.47 ±7.44 26.47 ±16.11
ECEF 3.65 ±2.82 6.17 ±4.05 5.57 ±6.24 8.05 ±6.90 12.92 ±12.59 24.14 ±17.65
+ BBox 3.16 ±2.50 5.35 ±3.81 5.11 ±5.20 7.67 ±6.46 13.41 ±7.43 29.75 ±11.52

4.2.4 Positional Encoding Method

We convert the known location of the center point for each image in the satellite database

into a positional encoding vector. We adapt the strategy described in the original ViT [8]

paper, which operates by projecting the coordinates of a fixed grid into onto a random

high-dimensional space and then computing the sine and cosine of each value. The

result, shown in Fig. 4.1, resembles a smooth, warped grid. Every position has a unique

embedding and neighboring positions are smoothly translatable from one another.

In our specific use-case of image localization, we use the GPS coordinates associ-

ated with the center point of each reference satellite image. First, these GPS coordi-

nates are projected to a higher dimension, p ′ ∈ Rn/2, with a random projection ma-

trix whose weights are kept fixed throughout training. The final positional encoding is

p = [si n(p ′),cos(p ′)], where p ∈Rn . This encoding is added directly to each aerial token,

f ′
a = fa +p.

4.3 Experiments

In each of the following experiments we focus exclusively on the situation where the

reference satellite image database is composed of Sentinel-2 basemap images, what is

referred to in Tab. 3.1 as the "Low-res" setting. Unless otherwise stated, we follow the

same experimental and model settings as in Sec. 3.6.

4.3.1 Ablation Study

To evaluate the effectiveness of the choice in positional encoding, we perform a simple

ablation study where we train across 10 splits of the CVUSA-500k dataset. To arrive at

these splits, we first divide the dataset into 10 approximately equally sized and spatially

contiguous regions by performing k-means clustering (with k=10) of the ground truth

spatial coordinates; the training set of each fold is 9 of these regions with the tenth held
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(a) GPS

(b) ECEF

(c) Center encoding (d) Box encoding

Figure 4.1: Example positional encodings given different location representations. The
rows of (a) and (b) are the sin(.) and cos(.) components of the encoding, respectively. We
show each location projected onto a random 3D subspace. In practice the dimensionality
is much higher, half the size of the input token. (c) and (d) show where the coordinates
for the center point and bounding box based positional encodings are sourced from.
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Table 4.4: Semi-Cross Localization Results.

ex
/b

in West→East East→West
Macro Thresh Macro Thresh

Method 10 1% 50km 100 10 1% 50km 100
=0

Classification Not Applicable Not Applicable
Retrieval 2.55 7.55 12.60 25.79 0.79 4.59 6.51 13.31
MetaLoc (Ret) 2.14 7.31 10.62 22.91 1.21 6.86 7.98 15.02
MetaLoc 1.81 6.00 14.01 30.63 0.67 5.06 6.17 13.08

=1

Classification 2.30 7.34 4.34 7.17 3.85 7.18 5.92 8.19
Retrieval 6.98 14.65 24.80 37.89 4.96 14.83 20.65 31.25
MetaLoc (Ret) 7.48 16.83 26.33 39.73 3.23 15.45 18.27 30.57
MetaLoc 6.33 14.39 28.62 40.15 3.29 14.15 12.64 22.97

=5

Classification 8.31 19.65 20.06 25.20 12.46 22.92 18.30 22.74
Retrieval 13.64 26.51 37.28 49.53 14.31 33.05 31.12 44.32
MetaLoc (Ret) 14.13 28.94 39.85 51.82 11.87 34.21 32.67 46.65
MetaLoc 10.30 22.43 28.31 41.46 8.72 27.15 22.22 35.30

=1
0

Classification 13.68 27.78 31.24 36.28 17.57 33.03 26.46 31.95
Retrieval 18.84 35.11 43.47 54.43 20.12 43.72 38.12 51.74
MetaLoc (Ret) 19.64 36.24 46.82 57.08 18.01 46.42 37.87 51.20
MetaLoc 13.60 27.98 36.93 47.81 12.41 34.79 24.00 37.04

out for testing. We compare a baseline MetaLoc model trained without positional encod-

ing against four different settings covering the combinations of GPS/ECEF coordinates

and scale-less/bounding-box encoded. In Tab. 4.3 we present the mean and standard

deviation of the micro-, macro-recall, and top-1 within threshold metrics. We observe

that in terms of micro-recall performance GPS-only performs the best at the cost of

increased variance. A similar pattern arises in the macro-recall results where ECEF-only

and GPS-only are best especially at the top-1% threshold. In both micro- and macro-

recall, the addition of bounding box coordinates either do not help or actually hinder

localization performance. This pattern does not hold for the distance-thresholded recall

metric, where the bounding box based encodings perform similarly to their coordinate-

only pair, and the ECEF-bounding-box encoding performing especially well. It is unclear

whether there is a best approach to encoding the position of each geo-spatial token, and

the choice of approach needs to be tailored to the specific problem at hand.

4.3.2 Low- and No-Data Generalization

In practice there are situations where there exists a large amount of training data for some

regions, and little to none for the regions where the model is intended to be deployed for
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(a) Retrieval

(b) MetaLoc

Figure 4.2: Geographic patterns emerge in satellite-view representations. The models
trained for the West→East setting are used to predict feature representation for each
Sentinel-2 basemap image. These are then decomposed into their principal components
using SVD. Each column represents a different component.

localization. This can arise for any number of reasons, including the data selection bias

in due to population density and the source of training data chosen. We evaluate four

different methods for performance in these settings by transferring a variable amount of

data (between 0 and 10 examples per sub-region) from each of the Cross-Area test sets

to the corresponding training set. In Tab. 4.4, we show results for each of the described

methods on each of the Semi-Cross splits.

In general, the Retrieval and MetaLoc (Ret) approaches perform similarly to each

other in terms of macro recall regardless of the number of additional examples from the

test region that are provided. Similarly for the MetaLoc model and top-1 retrieval at 50km.

As the number of examples increases, the PlaNet-style classification models quickly

catches up, but does not surpass, the other approaches. It is possible that at even higher

settings the classification approach would perform more similarly to the full-data setting

in Tab. 3.1.

4.3.3 Learned Satellite-View Representations

Both retrieval-based and MetaLoc image localization are based on work in metric learning

which was originally conceived of to learn compact representations for imagery without

the use of labels. Because there is an underlying structure (i.e. the images are geograph-
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ically close) to the satellite imagery our models were trained on, we can visualize the

satellite image representation each model learns as a side-effect of learning to localize.

We construct this visualization by first decomposing the learned representation using

Principle Component Analysis (PCA). In Fig. 4.2, we display the first several channels

resulting from this decomposition. We find that the learned representations encode

distinct things as they do not immediately resemble each other, and that the learned

features are geographically coherent. Regions such as the Appalachian Mountains appear

as specific high-spots in some of the components, implying that geographic features such

as mountains and forests play a major role in what is encoded.

4.4 Discussion

In this chapter we present a detailed discussion on positional encoding for transformers

trained on spatial data, including for image localization. We also explore the impact the

positional encoding has on the MetaLoc models ability to generalize to unseen regions,

as well as an in-depth evaluation of no- and low-data situations for a the roster of models

we consider in this document. Finally we qualitatively examine the learned satellite-view

representations, both the unconditioned ones learned by the Retireval and MetaLoc

models, as well as the conditional representations resulting from cross-attention with a

query ground-level image.
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Chapter 5 Reference Data Scale

The size of the reference areas against which image localization is performed has a

direct impact on the precision and accuracy of the predictions themselves. In an extreme

setting, a system which simply localized all images to a single Earth-sized bin would be

accurate for 99.999. . . % of images1 and have effectively 0 precision. On the other extreme,

centimeter-scale location bins would be extremely precise in the rare case that they could

be accurately localized. Logically, there must exist some medium point which balances

the trade-off in precision and accuracy inherent in global image-localization.

The optimal size of a bin for localization is highly varied and dependent on a number

of environmental factors that affect how easily recognizable the location is. Distinct

geography makes regions such as the Rocky Mountains and the Sahara Desert highly

identifiable. Many countries and states are recognizable by architectural details, similarly

for cities and specific neighborhoods. Further, in otherwise difficult to precisely locate

regions there exist clear landmarks which make localization much easier, such as specific

and well-known rock formations, monuments, and buildings.

All of this motivates a multi-scale approach to localization which proceeds from

coarse-to-fine scale bins. Specifically, one where we first localize an image into a coarse set

of bins, then refine the localization by making predictions against only those sub-regions

within the identified parent area. In this chapter, we propose training multiple models for

this task, one per binning-scale and making predictions from them in sequence.

5.1 Satellite Imagery Scales and Resolutions

To support our multi-scale image localization experiments, we construct multiple scales

of localization targets and associated reference satellite imagery sources. We present two

strategies, one for coarse-localization and one for fine-:

Coarse We continue with the binning strategy we used in Chapter 3 where the world is

divided into hexagonal cells of a given resolution using the H3 spatial library 2. In those

experiments we used the level-5 resolution, which for the CVUSA dataset produced 23.7k

hex-cells tiling the continental United States. For this experiment, we introduce level-4

binning, resulting in 4,333 cells.

1The counter examples being images captured on the Moon, on Mars, and by various probe missions.
2Uber H3: https://h3geo.org
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Table 5.1: Summary of satellite imagery sources and their spatial resolutions. As the
zoom level for each source increases, the spatial scale of the pixels (m/pix) in each
corresponding image decreases as does the spatial extent of the entire image (km2). In the
coarse setting, this also corresponds with an increase in the number of distinct locations.
Conversely, in the fine setting the number of distinct locations is constant.

(a) Coarse (Sentinel-2 @ 256x256 px)

Zoom Locs m/pix km2

H3-4 4,333 176.59 45.2
H3-5 23.7k 66.75 17.0

(b) Fine (Bing @ 512x512 px)

Zoom Locs m/pix km2

Bing-14 514k 9.5 4.8
Bing-16 514k 2.4 1.2
Bing-18 514k 0.6 0.3

Paired with each of these cells is an image which fully encompasses the hex-cell,

sourced from the red-green-blue channels of the Sentinel-2 satellite platform. The source

image features a ground-sampling-distance of 10 meters-per-pixel, and the images corre-

sponding with each level of binning are downsampled from this to an image resolution of

256x256 pixels. For more details, see Tab. 5.1a.

Fine At fine scales, we take a different strategy and revert back to retrieval based lo-

calization where for each GPS location in the dataset there is a corresponding satellite

image. This results in large areas that are left without image coverage, however this is a

practical requirement for our experiments. The combined size of the fine-scale reference

imagery is around 300GB gzip-compressed and full coverage of the continental United

States would be many times larger.

Three zoom-levels of satellite imagery was collected, at Bing-14, -16, and -18. Each of

these images was sourced from Bing maps circa 2015 [55] and is 512x512 pixels in size.

For more details including ground-sampling distance see Tab. 5.1b.

5.2 Experiments

5.2.1 Scale Study

First, we consider the impact that image scale has on localization accuracy. To do so

we vary reference imagery configuration following the sizes described in Tab. 5.1. For

each of these we train the full set of models described in Chapter 3, all with identical

hyperparameters. The results of this study can be found in Tab. 5.2.
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Table 5.2: Localization Results Using Various Imagery Scales.

Micro-recall Macro-recall Top-1 < Thresh.
Method 1 10 1% 1 10 1% 10km 50 100

H
3

=
4

Classif. 61.31 83.11 93.42 51.55 77.35 90.59 61.82 74.25 81.57
Retrieval 30.44 55.05 73.55 21.93 46.87 69.05 31.22 46.60 58.20
MLoc (Ret) 50.11 77.88 90.28 42.26 74.51 89.92 51.36 69.88 79.47
MetaLoc 17.06 35.60 53.78 10.85 28.19 47.71 17.60 29.22 40.41

=5

Classif. 44.45 63.31 90.25 30.33 50.05 85.09 49.95 66.53 73.32
Retrieval 37.99 63.74 90.58 28.51 55.77 88.45 45.65 67.13 75.15
MLoc (Ret) 38.21 63.50 91.09 29.13 56.65 89.79 45.90 67.86 75.87
MetaLoc 36.55 62.22 91.02 27.84 54.70 89.25 43.53 66.02 74.37

B
in

g

=1
4

Retrieval 1.36 6.16 52.67 1.37 6.17 52.66 10.41 24.46 34.90
MLoc (Ret) 13.66 40.45 92.28 13.70 40.51 92.31 41.23 62.83 72.30
MetaLoc 4.22 14.93 64.66 4.23 14.94 64.71 17.72 27.66 34.82

=1
6

Retrieval 14.09 38.03 91.17 14.09 38.09 91.21 34.72 53.29 63.72
MLoc (Ret) 15.00 39.63 91.30 15.04 39.66 91.31 36.64 56.12 66.63
MetaLoc 4.53 15.20 67.36 4.54 15.22 67.39 15.62 25.56 33.26

=1
8

Retrieval 16.51 40.61 92.78 16.52 40.74 92.81 33.42 48.26 59.03
MLoc (Ret) 18.31 42.55 92.80 18.34 42.59 92.80 34.69 51.51 62.08
MetaLoc 6.18 19.00 77.44 6.17 19.03 77.46 15.02 25.17 33.51

5.2.2 Recall Rate vs. Location as Scale Varies

Next we consider the geo-dependence of recall rate for the Retrieval and MetaLoc models.

To do so, we compute Recall@K rates individually for each coarse-localization overhead

image. We compute the similarity between each query image and each image in the

reference database, sort by similarity, and if the true location is within the top K choices

consider it a match. We then count the occurrences and divide by the total images within

that cell.

In Fig. 5.1, we observe that they perform very similarly, as suggested by the results in

Tab. 3.1. Interestingly, MetaLoc appears to generalize to unseen regions well, including

in rural areas, the likely source of the improvement in that table. Of note, a number of

bins between longitudes -120 and -100, corresponding with the Great Plains and Rocky

Mountain regions of the United States, frequently only have a single test example within

them and as a result are quite noisy, either with recall 1.0 or 0.0.
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(a) Retrieval, Same-Area

(b) MetaLoc, Same-Area

Figure 5.1: Mean recall rates as a function of location.

5.3 Discussion

In this chapter we evaluated the impact of reference imagery scale on localization accu-

racy. To do so we introduced several additional scales of reference imagery from both the

coarse and fine satellite image settings and evaluated a large collection of localization

models.

There is a wide variety of future work that can proceed from these findings. For

example, we proposed adding metadata describing the reference images spatial scale

to the positional encoding and training a single MetaLoc model on multiple scales of

satellite imagery. Doing so would enable applying a single model to the hierarchical

localization approach we proposed, as well as create a natural platform from which to

experiment with hierarchical localization loss functions and metrics.
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Chapter 6 Multi-modal Reference Imagery

As the quantity and quality of remote sensing imagery increases, so too does the difficulty

in processing it quickly and efficiently. Much of the data collected by satellites is multi-

spectral imagery where each channel corresponds to a particular range of frequencies

of light. Each spectrum is chosen to highlight certain details visible from space, such as

cloud cover, man-made structures radiating heat from the sun, or visible spectrum light

as we are used to. We propose considering each of these as separate images, or modalities,

of the same subject.

Multiple views from varying input modes, such as images (greyscale, RGB, and/or

multi-spectral), depth, text, etc., each provide a unique view of an example and can each

be leveraged to produce more detailed and higher performance models. This can be

especially useful in settings where some modes are cheap to acquire while others are

expensive, such as the tension that exists in autonomous driving between the cost and

quality of LiDAR (Light Detection and Ranging) sensors, and in situations where some of

the collected inputs might be occluded or otherwise corrupted

Training image-localization models that are capable of performing even when some

modalities are missing can be useful in settings where some modes are inexpensive to

acquire while others are costly. For example, combining low-resolution imagery that is

updated frequently with high-resolution imagery that is not. Similarly in situations where

some of the collected inputs might be occluded or otherwise corrupted.

In this chapter we propose a multi-modal transformer approach where each available

mode is converted to its own token stream and combined into a single input sequence.

Predictions are then made on the entire sequence by as single transformer model and

aggregated across modes into a final prediction sequence. This allows for there to be a vari-

able number of sequences or modes at all phases of training and inference, while allowing

the model to learn correspondences between features throughout. As a proof-of-concept,

we evaluate our proposed approach on the Onera Sentinel-2 Change Detection (OSCD)

dataset [3] by experimenting with selectively withholding subsets of the available 13

spectral bands during training and evaluation. Additionally, we apply the proposed multi-

modal training approach to image localization following a similar channel-withholding

scheme.

Current approaches that address the problem of missing modalities either learn to

hallucinate [25, 26, 28, 40, 48, 57], such as depth from RGB imagery, and then feed those
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predictions to downstream models trained on a complete set of modes. This makes

the assumption that the missing modality is recoverable and that artifacts introduced

by the recovery process won’t bias the resulting predictions. In contrast, our proposed

approach makes predictions directly from the available inputs at inference time, without

the need for hallucination. Other methods learn a separate model for each possible

modality [10,47,61], however this comes with a sizable overhead as the number of models

grows with the number of combinations of input modes and target tasks.

Our contributions include:

• Introducing a variant of the Vision Transformer that is trained for multi-modal

semantic segmentation and can handle missing input modes;

• Showing that as input modes are withheld during inference, performance metrics

taper off gracefully;

• Evaluating our proposed approach for remote sensing change detection;

• Evaluating our proposed approach for global image-localization.

6.1 Related Work

Hallucination Approaches and Multi-modal Learning Imputing missing modalities or

data is a topic that has been explored deeply. Recent works [25, 26, 40, 57] have employed

generative adversarial networks (GANs) and other adversarial methods to recover specific

modes that are either expensive or typically unavailable. [57] relies on an additional

network to generate "hints" about what might be present in a missing area, which is

supplied to the discriminator network. [18,25,40,65] employs a network of CycleGANs [65]

to impute missing modes from examples with multiple distinct data modalities that might

be present. [48] also handles multi-modal examples, except with a stacked autoencoder

featuring an additional mask indicating whether data is missing or present.

Other approaches directly model the relationships between groups of related data

modalities and learn to translate between them. [10] learns a model which embeds

examples from one mode into the same space as a pretrained embedding model for

another mode. [47] similarly uses contrastive learning to extend multi-modal learning to

an arbitrary number of modes. [61] simultaneously learns all pairs of transformations

between a set of related modalities, while leveraging path consistency to improve overall

model performance. [26] introduces additional generators and discriminators to adapt

the existing GAN structure to allow for imputation of missing data.
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Image Segmentation Transformers Finally, there are a number of recent approaches

to applying Image Transformers (ViT) to segmentation and other dense prediction tasks.

[38] follows an image pyramid approach where intermediate features from a stack of

Transformer encoder layers are upsampled and stacked to create the semantic features

passed to a final predictor head. [43] uses a Transformer encoder model to compute dense

semantic features which are then compared with a learned bank of categorical features

as an approach to segmentation. [31] introduces a hierarchical shifted window approach

to segmentation which increases the efficiency of the Transformer’s self-attention steps.

[60] also employs a hierarchical method which relates individual pixels to larger image

regions using a Transformer model. [56] employs a number of improvements to the

Transformer architecture that allow it to discard the positional encoding and operate

on overlapping patches. Our proposed architecture is similar to [2] which separates

the multi-head attention step into individual axes to combat the memory required for

video segmentation, however our approach differs in that is extended to handle arbitrary

additional axes (for example, modality), and is trained for setting where not all modes or

time steps can be expected.

6.2 MM-ViT: Multi-modal Image Transformers

The high level architecture of our proposed approach, MM-ViT, which is visualized in

Fig. 6.1, is as follows. Given a collection of views from differing modalities, we extract

fixed-sized tokens following a sliding window approach, then we append a positional

embedding that encodes both where in the original image the token was located spatially

or temporally, but also from which modality the token was extracted. Next, the tokens

from all modes are combined into a single sequence and an encoder regresses an output

feature for each. Those features are aggregated across modes, by computing the mean of

the mode-specific tokens at every spatial location. The resulting token sequence is passed

through a shallow MLP, and reshaped and upsampled to produce the final prediction. We

provide additional details in the remainder of this section.

6.2.1 Mode-Specific Positional Encoding

One of the key components of the Vision Transformer approach is the positional encoding.

There are a number of accepted methods for encoding the exact position (spatial or

otherwise) of a token in a sequence. We extend the positional embedding approach

of ViT [8] to also encode which modality the token is from in the same fashion as its

spatio-temporal location. To do so, we learn a separate positional encoding layer for each
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Figure 6.1: Multi-modal transformer (MM-Vit) architecture overview. The input modes
are tokenized, have positional encodings added, and the concatenated into a single token
stream. The positional encoding includes an extra feature encoding from which specific
mode the token is sourced from. Next, a transformer encoder is used to predict output
features for each input token. Then, the predicted tokens are aggregated across the modes
to produce a single prediction for each spatial position. Finally, these are reshaped back
into the input shape and a loss can be computed.

modality. The final embedding for each token is then concatenated with the flattened

contents of the token and added to the token stream.

6.2.2 Encoder

Given a collection of images of from different modalities, Im ∈RH×W ;∀m ∈ M , tokens are

extracted in a sliding window approach, t = [t i
m ;∀m ∈ M ]. The shape of each token patch

is t i
m ∈ RP 2

, where P is the window size for mode m. Then the sequence of tokens are

each projected to a common size, x0 = [ fm(t i
m);∀m ∈ M ], where fm(t ) :RP 2 7→RF flattens

the patch to a 1D vector, appends a positional encoding, and linearly projects each token

to dimension F . Internally we represent a token sequence as a tensor, x0 ∈RM×H×W ×F .

The token sequence, x0, is input to a Transformer encoder composed of L layers of

multi-head attention layers followed by MLPs:

xi+1 = LN(xi ) (6.1)

xi+1 = xi +MHA(xi+1, xi+1, xi+1) (6.2)

xi+1 = xi+1 +MLP(LN(xi+1)). (6.3)
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6.2.3 Separable Multi-Head Attention

Our proposal increases the number of tokens in the sequence by the number of modes.

Given that Multi-Head Attention (MHA) has O(n2) computational and space require-

ments, this is dramatically more expensive. To address this issue, we propose that during

the attention step of each transformer encoder layer, we compute attention only on a

subset of axes by reshaping the input tensor such that attention is only computed over a

subset of dimensions. We call this practice Separable Multi-Head Attention (S-MHA). For

example, to compute attention over the H ×W dimensions of x1:

xi = Reshape(M HW F → (M)(HW )F, xi ) (6.4)

xi = MHA(xi , xi , xi ) (6.5)

xi = Reshape((M)(HW )F → M HW F, xi ). (6.6)

We compose multiple calls over subsets of dimensions, such as over the spatial dimen-

sions, then modality, e.g. :

xi = xi +S-MHA(HW, xi , xi ) (6.7)

xi = xi +S-MHA(M , xi , xi ). (6.8)

6.2.4 Prediction Head

The final step of our proposed approach is to aggregate features along all dimensions

except height and width, then make a final prediction. We do so by a simple averaging

step. Our prediction head is a shallow MLP with a single output logit which signifies

the change / no-change decision. Finally, we use bilinear interpolation to upsample the

low-resolution logit image to be the same size as the input image. During training, we

minimize the weighted binary cross entropy loss between this resized logit map and the

ground truth change map.

6.2.5 Mode Dropout

One of the stated purposes of our proposed approach is to be invariant to the availability

of input modes during all stages in training and inference. To that end we propose that

during training, randomly drop modes from each example independently with some

probability p. We evaluate two different approaches to mode dropout: 1) zero-ing out

selected modes, and 2) removing selected modes from input sequences, referred to as

zero and drop, respectively.
1Our notation borrows heavily from the einops library: https://einops.rocks/
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Table 6.1: Performance comparison with other methods on OCSD dataset. Both our
proposed MM-ViT approach and the baseline ViT perform similarly to existing non-
transformer approaches. All results are reported using all 13 bands of OSCD imagery.

Method Prec. Recall Acc. F1

Siam. [3] 24.16 85.63 85.37 37.69
EF [3] 28.35 84.69 88.15 42.48
FC-EF [3] 64.42 50.97 96.05 56.91
FC-Siam-conc [3] 42.39 65.15 93.68 51.36
FC-Siam-diff [3] 57.84 57.99 95.68 57.92

ViT 42.73 67.46 94.81 52.32
MM-ViT 46.31 61.79 95.36 52.94

6.3 Experiments

We evaluate our proposed approach for change detection in satellite imagery. Our change

detection experiments focus on the Onera Sentinel-2 Change Detection Dataset (OSCD) [3],

a dataset composed of pairs of Sentinel-2 images and pixel-wise change maps centered

above 24 cities from around the world.

6.3.1 Implementation Details

Our change detection model for OSCD is an early fusion model. We treat each pair of

input bands as a separate mode. First, we concatenate the two images together, then we

compute token sequences following the method described in Sec. 6.2. The Transformer

encoder used is implemented in PyTorch, has 6 layers, each are 384 neurons wide, with 6

heads, an internal width of 1024, dropout set to 0.1, and GeLU activation.

As a baseline we also compare against a standard ViT model using the same settings.

The baseline differs from our proposed method in that during token creation, modes

are treated like image channels, i.e. tokens are extracted only along the space and time

dimensions.

Unless specified otherwise, all models are trained with zero-ing based input dropout

with p = 0.1, are optimized with the AdamW optimizer and a learning rate of 1e − 5

following a cosine annealing learning rate schedule. We weight the change labels by

20, a value we arrived at empirically. Our models are trained on a pair of NVIDIA V100

GPUs, for 1000 epochs and an effective batch size of 64. Results are reported on model

checkpoints with the best validation F1-score.

We evaluate performance using four different metrics: precision, recall, global accu-

racy, and F1. We find that our proposed approach and the ViT baseline both perform
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Table 6.2: Inference on OSCD subsets with our proposed model and ViT baseline. Giga-
multiply-addition operations (GMACs) are a measure of complexity during model infer-
ence.

Method Ch. Prec. Recall Acc. F1 GMACs

ViT 13 42.73 67.46 94.81 52.32 13.41
ViT 10 41.28 68.83 94.55 51.61 13.41
ViT 4 38.42 56.99 94.32 45.90 13.41
ViT 3 29.04 48.99 92.79 36.46 13.41

MM-ViT 13 46.31 61.79 95.36 52.94 63.05
MM-ViT 10 43.52 64.51 94.96 51.98 48.50
MM-ViT 4 46.19 52.44 95.41 49.11 19.40
MM-ViT 3 45.75 40.05 95.46 42.71 14.55

Figure 6.2: Performance on OSCD [3] as the number of channels supplied to the model
varies. We compare our proposed model, MM-ViT, against a baseline ViT model. Both
were trained under a number of mode dropout settings: none indicates no modal dropout,
zero indicates dropped modes are set to be all zeros, and drop (MM-ViT only) dropped
modes are removed from the input sequence entirely. We find that our proposed model
outperforms the baseline regardless of the number of input modes when trained with
zero dropout.

comparably with approaches that were designed specifically for the OSCD dataset (see

Tab. 6.1).
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Figure 6.3: Comparing MM-ViT performance when changing the mode dropout strategy
during testing. Lines are keyed as "train strategy / test strategy". Generally, changing the
strategy from what the model was trained on negatively affects performance.

6.3.2 Inference on Subsets of Modes

We evaluate the performance of our method and the baseline when only a subset of

channels is available at inference time. To do so we compare the final performance

metrics between our proposed MM-ViT and baseline tested on four subsets of modes. For

this experiment, we focus on the spectral band subsets from the original OSCD paper [3],

specifically 13 is the full set, 10 excludes the bands with 60 meter resolution, 4 is the RGB

bands plus the near infra-red band, and 3 is RGB only.

In Tab. 6.2, we show that while both models are capable of inference on subsets of the

full set of OSCD channels our proposed MM-ViT approach retains more performance

across subsets while actually becoming less expensive in terms of multiply-addition

operations (MACs) as fewer modes are provided.

6.3.3 Comparing Modality Dropout Strategies

We evaluated three strategies for training our model: randomly zero’ing out missing

modalities (zero), randomly removing missing modalities (drop), and always training with

all modalities (none). The key difference between zero and drop is that when using zero

we still include the tokens, they just have zero set for all features, except the positional

encodings. We evaluated models trained with these strategies, across varying numbers
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Table 6.3: Ablation study on OSCD (13).

S-MHA Dropout Prec. Recall Acc. F1

— — 39.05 70.16 94.11 50.17
— zero 42.73 67.46 94.81 52.32

— 40.21 61.54 94.51 48.64
drop 39.35 67.83 94.22 49.81
zero 46.31 61.79 95.36 52.94

of input channels, using either zero or drop at inference time. The results Fig. 6.3 show

that (1) the none training strategy performs poorly and (2) using zero during training and

inference performs best overall.

6.3.4 Ablation Study

We perform a simple ablation study of the extensions to the Transformer framework

proposed in this paper. Starting from a basic ViT Transformer model, we sequentially add

the two main proposals, Separable MHA and Mode Dropout. We investigate two different

settings of Mode Dropout, zeroing-based, where selected modes are zeroed out during

training, and dropping-based, where those modes are instead removed from the input

sample entirely.

In Tab. 6.3, we can see that initially the baseline approach out-performs MM-ViT. The

introduction of dropping-based dropout has a small effect on MM-ViT performance,

and that zeroing-based dropout has a more significant effect on both ViT and MM-ViT.

In particular, the addition of dropout pushes MM-ViT ahead of the baseline on most

metrics.

6.3.5 Application to Image-Localization

Next, we apply the proposed MM-ViT model to image localization. Following the other

experiments in this chapter, we treat each channel of the reference satellite imagery as a

separate source of tokens. To do so, we train a separate resnet18 tokenization network for

each. Similarly, the transformer decoder step of the MetaLoc approach is replaced with a

MM-ViT model. This new model is trained following the same training procedure as used

in the other localization experiments.

When evaluated on subsets of the channels available to reference image database, we

observe that localization performance degrades gracefully as fewer and fewer channels

are provided (Fig. 6.4). Interestingly, much of the performance is retained when only two
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Figure 6.4: Localization recall as reference channel-modalities are withheld.

channels are provided, regardless of which two. A similar pattern is seen when the model

is presented a single channel at test time.

6.4 Discussion

In this chapter we introduced a multi-modal vision transformer approach that is designed

to be agnostic to the number of input modalities at both training and inference time. We

extend existing approaches to positional encoding to account for the mode the token was

drawn from, describe an approach to applying transformer encoders to token sequences

with multiple dimensions to the problem of semantic segmentation, and evaluate the

proposed approach on a multi-spectral satellite change detection dataset.

Limitations Our proposed MM-ViT model has a couple of limitations. The most obvious

is that it is significantly more expensive than a comparable ViT model. In Tab. 6.2 we

can see that in the 13 channel setting, a MM-ViT model requires ~4x GMACs during

inference than an equivalent ViT. In the future, we plan to explore methods for reducing

the memory overhead.
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Chapter 7 Discussion

The aim of this dissertation is to unify under a single framework the various methods

for global image-geolocalization. Overall, this dissertation proposes a new approach to

image-localization under this framework and evaluates a number of such of methods for

their ability to generalize to unseen areas and applicability under a variety of reference

image settings.

In Chapter 3, we constructed a new framework within which existing image localiza-

tion methods can be composed and compared. This framework supported our introduc-

tion of a new image-localization method which introduces a cross-attention mechanism

to refine the representations of the reference image database by conditioning them on

the features visible in the query image. We performed a detailed ablation study of the

methods presented in this chapter, including varying the network responsible for com-

puting token representations from each image, the hyperparameters of the introduced

transformer decoder network, and more.

In Chapter 4, we evaluated the ability of several image-localization approaches to

generalize to unseen areas. To support this we provided a more in-depth look at positional

encodings and how geographic information can be included in them. We explored the

impact of the choice in positional encoding. Next, we evaluated the generalization of

these methods on both zero-data and low-data settings by introducing a simple strategy

for transferring into the training set controlled amounts of data from held out regions.

In Chapter 5, we investigated the impact of reference imagery scale on localization

accuracy. To do so we presented details on multiple resolutions of reference imagery and

how they relate to the dataset used throughout this text.

Finally, inn Chapter 6, we presented a new approach to learning from multi-modal

data with transformers. We applied this new model to localizing images against multi-

modal reference databases; to do so we introduce a variant of our proposed hybrid

approach which incorporates this multi-modal transformer variant. Next, we evaluate

the proposed approach for global-image localization under a controlled setting intended

to be a proxy for more realistic situations where multiple modalities of reference imagery

are known to be available. Further, we also evaluated this approach on a multi-spectral

semantic segmentation problem.
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