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ABSTRACT OF THESIS 

Effect of Different Fat Sources and Vitamin E Isoforms/ Levels on Carcass 
Characteristics, Meat Quality, and Belly/Bacon Characteristics of Pigs Grown to Heavy 

Slaughter Weights (>150kg) 

Two separate studies were conducted to evaluate the potential interaction of fat sources 
and vitamin E (VE) on heavy slaughter weights. In Study 1, a total of 64 individually-fed 
pigs (28.41 ± 0.83 kg) were randomly assigned to 8 dietary treatments in a 4×2 factorial 
arrangement. Fat treatments included cornstarch (CS), tallow (TW), corn oil (CO), and 
coconut-oil (CN). VE treatments were dietary alpha-tocopheryl-acetate (ATA) at 11 and 
200 ppm. In Study 2, a total of 72 individually fed pigs (28.55 ± 1.16 kg) were randomly 
assigned to 12 dietary treatments in a 2 × 6 factorial arrangement. Fat treatments were TW 
and CO. VE treatments included four levels of ATA (11, 40, 100, and 200 ppm) and two 
levels of mixed tocopherols (primarily gamma-tocopherol (γ-T); 40 and 100 ppm). For 
Study 2, slaughter weight (P = 0.04) and pork sensory attributes such as tenderness (P < 
0.01), juiciness (P < 0.01) and overall approval (P < 0.01) increased with increasing dietary 
ATA VE. Feeding γ-T at 40 ppm, resulted in a higher L* and hue as well as a lower a*, 
a/b, and chroma. Furthermore, feeding γ-T at 100 ppm resulted in a lower L* and hue (P < 
0.05) as well as a higher a*, a/b, and chroma (P < 0.05). During extended shelf life 
measurements, TW tended to have a higher L* (P < 0.05) and b* (P < 0.05). γ-T VE chops 
exhibited less of an off-flavor (P = 0.05). Bellies from pigs fed higher saturated fat acids 
displayed a greater belly depth (P < 0.05), a larger belly angle (P < 0.05), and a lower 
bacon fat shatter score (P < 0.05). Overall, feeding a higher percentage of statured fatty 
acids leads to a more desirable pork belly and supplementing higher levels of γ-T could 
improve shelf life color and consumer sensory analysis. 
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Chapter 1 LITERATURE REVIEW 

1.1. Introduction 

Overall meat consumption has continued to rise globally. According to the USDA 

(2016), commercial red meat production has increased by 25 percent in the past 25 years, 

with most of the increase being in pork production. The increasing demand for pork can 

only be met either by increasing the number of pigs produced or by increasing slaughter 

weight (SLW). Given the pressure of total food supply on a finite land mass, 

environmental impact and the dilution effect of fixed production cost, it is obvious that 

increased market weights will be a large part in meeting the pork demand.  

The increasing demand for pork globally has provided the swine industry both 

opportunities and challenges in providing more and more high-quality products. The 

market weight of pigs has risen continuously over the past decades from 113 kg (1990) to 

127 kg (2017). Based on a projection using slaughter weight data from the USDA 

National Agricultural Statistics Service, the estimated slaughter weight in 2032 will be 

over 150 kg. As one of the promising solutions, increasing slaughter weight up to 150 kg 

might come into practice in the near future. Previous research suggested that slaughter 

weights over 124 kg decreased live pig performance and carcass leanness without any 

additional benefits to pork quality (Latorre et al., 2004). However, the improvements in 

genetics over the past 15 years may overcome this problem.  

Another rising challenge for the industry is the cost pressure caused by the 

increasing price of corn which has driven the producer to explore feeding more by-

products, such as dried distillers grains with solubles (DDGS), that are higher in 
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unsaturated fatty acids (Seman et al., 2013). Additionally, the American Heart 

Association recommends limiting saturated fats because they can raise LDL-Cholesterol 

which can cause a higher risk for heart disease (AHA, 2015). The swine industry has 

responded to these challenges by developing leaner genotype pigs by supplementing 

swine diets with unsaturated fat sources which leads to higher polyunsaturated fatty acids 

(PUFA) in pork because the changes of the dietary fatty acid profile are able to be 

expressed in pork (Gatlin et al., 2002). The increase of unsaturated fatty acids results in 

soft pork fat, which is associated with greater potential for oxidative problems and poor 

belly quality. Pork processors consider soft belly fat undesirable because it leads to poor 

bacon slicing due to an oily appearance, poor slice definition in retail packaging, fat and 

lean separation, reduced slicing efficiency and problems with processing. If longer 

periods of feeding high polyunsaturated oils happens when growing pigs to heavy 

slaughter weights, a reduction in pork quality and product value may occur.  

Many attempts have been made to solve meat quality problems caused by over 

consumption of highly unsaturated fat that can lead to peroxidation of pork fat. One 

attempt is using different fat sources that have a high saturated fatty acid content (such as 

beef tallow) (Wood and Enser, 1997; Wood et al., 2004; Mitchaothai et al., 2007). 

Another attempt is dietary antioxidants supplementation with Vitamin E (VE). Dietary 

vitamin E supplementation improves the oxidative stability of pork and prolongs shelf 

life of fresh pork (Boler et al., 2009). Among many VE forms, α- and γ-tocopherols are 

two possible forms for the swine diets as acetate or alcoholic forms. Although the 

absorption rate of RRR-α-tocopherol and RRR-γ-tocopherol is similar, the elimination of 

RRR-γ-tocopherol from plasma is faster (Jiang et al., 2001), which might imply either 
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faster excretion or faster incorporation into tissue; more rapid incorporation into tissue 

could be extremely positive in improving meat quality, especially in preventing lipid 

oxidation in meat. The interaction between VE and fat sources are rarely reported, 

especially under a long-term dietary treatment at heavy SLW beyond 150 kg. 

 

1.2. Measurements for Market Pigs, Pork Carcasses and Pork Quality 

1.2.1 Measurements for Pork Quality 

Pork quality affects both consumer acceptance and value-added opportunities for 

pork. The quality of pork results from the combination of genetic and environmental 

factors, for example, breed, gender, nutrition, pre- and post-slaughter conditions. There are 

five major indicators used in measuring pork quality: color, marbling, water-holding 

capacity, firmness and ultimate pH.  

1.2.2 Meat Color 

Meat purchasing decisions are influenced by color more than any other quality 

factor. Consumers use discoloration as an indicator of freshness and wholesomeness 

(Mancini and Hunt, 2005). Meat color is dependent on the ratio of red to white muscle 

fibers. Red, Type 1, fibers have a higher myoglobin content compared to white, Type 2, 

muscle fibers. Pork color can be measured by three different methods: subjective 

assessment, computer vision and instrumental color (Mancini and Hunt, 2005).  

Subjective assessment of meat color is closely related to consumer evaluations and 

is the benchmark for instrumental measurement comparison (Hunt et al, 1991). Subjective 

color is measured by an experienced grader using the National Pork Board Color Standards 

(NPB, 2011). The scale ranges from one to six. A color score of one appears pale, grayish 
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pink to white in its appearance. While a color score of six appears dark, purplish. Wright 

et al. (2005) determined an average mean color score of boneless loin chops was 3.52.  

 Visual-color appraisals are difficult to conduct because human judgement may not 

be repeatable from day to day and are often influenced. The use of instrumental color 

evaluation is of significant interest to the industry because of its speed, consistency of 

measures, and potential for use as the basis of sorting (Brewer et al., 2001). Objective 

analysis can be performed with instrumental color (colorimeters or spectrophotometers) or 

computer vision, however this can be a costly instrument. Computer vision measures the 

entire sample surface, it is more representative of sensory descriptors than the colorimeter, 

which is only based on point-to-point measurements (Mancini and Hunt, 2005).  

For instrumental color, the Hunter color solid system, or HunterLab, is the most 

widely used system for the measurement of meat color. The Hunter L*, a*, and b* values 

represent a three-dimensional specification of color location within a three-dimensional 

color solid as shown in Figure 1.1 (Hunt et al., 1991). L*, a* and b* measure lightness, 

redness and yellowness, respectively (AMSA, 2012). Color may also be observed using 

calculations from the a* and b* values. Larger ratios of a*/b* (or decreases in b*/a*) 

indicates more redness and less discoloration (Hunt et al., 1991; Mancini and Hunt, 2005). 

Hue angle (tan−1(b*/a*) is the development of color from red to yellow and larger angle 

values indicate a less red product. Chroma (√𝑎𝑎∗2 + b∗2) is used to indicate the saturation 

of color with larger values indicating more saturation of the color (Tapp et al., 2011). 

Minolta and Hunter colorimeters are the most popular colorimeters used in recent 

published papers.  
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Figure 1.1 Representation of Color Solid for L* a* b* Color Space. 
AMSA (2012) 

1.2.3 Intramuscular Fat 

Intramuscular fat is located between and within muscle fibers (cells) and its greatest 

deposition is in the later stages of the growth process. Intramuscular fat is called marbling 

in the meat industry and marbling has a significant impact on marketing fresh meat, 

particularly pork loin cuts (Gerrard and Grant, 2003). Pork is given a subjective marbling 

score based on the percentage of intramuscular lipid content. The recommended 

intramuscular fat content to meet consumer demand ranges from 2.0 to 4.0% (Verbeke et 

al., 1999). Fernandez (1999) concluded that lower sensory quality traits were associated 

with intramuscular fat content below 2.5%. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj94Zb6rdPiAhWEjlQKHfrxCcMQjRx6BAgBEAU&url=https%3A%2F%2Fwww.picswe.com%2Fpics%2Fcielab-color-coordinates-47.html&psig=AOvVaw14si8pSBdo47hYvv-xiKLC&ust=1559859047010784
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1.2.4 Firmness 

Firmness can be measured both subjectively and objectively for the loin and belly. 

Subjective firmness measurement, for the loin, is conducted with either trained or 

consumer panels according to a certain standard, such as the NPPC (1999) 1 to 3 scale or 

the NPPC (1991) 1 to 5 scale.  A texture analyzer can be used to measure objective firmness 

for a fresh pork loin (Rincker et al., 2007). The following methods that have been employed 

in assessing subjective belly firmness: visual appraisal using either 4, 5, or 6 point scales 

(Weber et al., 2006) and finger testing (Maw et al., 2003). The belly-flop test using either 

a suspended round bar (Uttaro and Zawadski, 2010) or a v-shaped smokehouse stick 

(Whitney et al., 2006) and the belly-flex method (Rentfrow et al., 2003) are used to 

objectively assess fresh pork belly firmness. Firm pork is usually associated with other 

quality measurements indicating better quality such as darker color and greater water 

holding capacity. Additionally, appropriate firmness allows for better meat processing for 

bacon and sausage (McClelland et al., 2012).   

1.2.5 Water Holding Capacity 
 

The water holding capacity, or ability to retain inherent water, is an important 

property of fresh meat as it affects both the yield and the quality of the end product. Water 

accounts for approximately 75% of the weight of meat. This water can be found in the three 

forms within the muscle; bound, immobilized, or free. The portion of bound water is the 

smallest (1-2%) and the sturdiest of the three. This portion is very tightly associated with 

proteins by hydrogen bonds and is nearly impossible to remove from meat. Meat 

processing has little effect on the bound component of water. Immobilized water (80%) is 

held together by steric effects and/or by attraction to the bound water. The more water that 
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is immobilized, the greater the water holding capacity. Free water that flows from the tissue 

is unimpeded (Huff-Lonergan and Lonergan, 2005) and is likely to be lost as purge.  

Unacceptable water holding capacity costs the meat industry millions of dollars 

annually (Huff-Lonergan and Lonergan, 2004). For fresh products, drip loss and purge loss 

are the two measurements commonly used to determine water holding capacity. The 

mechanism by which drip or purge is lost from meat is influenced both by the pH of the 

tissue and by the amount of space between proteins in the muscle cell. Numerous factors 

can affect both the rate and the amount of drip or purge lost from the product.  

The number of cuts made, size of resulting meat pieces and orientation of the cuts 

with respect to the axis of the muscle cell can influence the immobilized and free water. 

When increasing the number of cuts and cutting perpendicular to the muscle fibers some 

of the immobilized water may move into the free category and more free water can be lost 

as purge. The rate of temperature decline after harvest, temperature during storage and even 

the rate of freezing and temperature of frozen storage can cause immobilized water to shift 

into the free water category due to protein denaturation. This can lead to a decrease in water 

holding capacity (Huff-Lonergran and Sosnicki, 2002).  

1.2.6 pH 
 

Normal muscle pH drops from 7.2 (physiological) to between 5.5 and 5.8 during 

the immediate 24-hour post-slaughter. The ultimate pH is determined by the extent of the 

pH decline at 24-hours after slaughter. If pork reaches an ultimate pH of below 5.4 within 

approximately 3 to 5 hours after slaughter the pork is classified as PSE (pale, soft, and 

exudative) (Bendall and Swatland, 1988). PSE pork is caused by a very rapid drop in pH 

immediately after slaughter while muscle temperatures are still high. This combination of 
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relatively low pH and high temperatures results in proteins being denatured, which reduces 

WHC and results in a pale color (Brewer et al., 2001). PSE can be triggered by a 

combination of factors, such as genetics, pre-slaughter stress and post-slaughter handling. 

Pork classified as PSE loses its value for further meat processing, such as juiciness, 

solubility and gelation due to the lack of functional proteins (Schilling et al., 2003).  

If the ultimate pH is above 6.0 the meat will have DFD (dark, firm, and dry) 

characteristics which appears darker in color, firmer texture, and has a high-water holding 

capacity. The DFD condition results from low glycogen levels in the muscle at slaughter 

due to glycogen depletion that occurs from a combination of chronic stress and activity 

levels before slaughter. DFD fresh meat is usually more palatable; however, it can cause 

bacteriological spoilage in fresh meat and problems in dry-cured products (Guardia et al., 

2005).  

 

1.3. Role of Fat in Swine Diet, on Carcass Characteristics and on Meat Quality 

1.3.1 Role of Supplementing Fat in Swine Diets 

Most of the lipid in swine diets is in the form of triacylglycerol which consist of three 

fatty acid molecules attached by ester bonds to a single glycerol moiety. The three fatty 

acids, which are hydrocarbon structures formed by four or more carbons attached to a 

carboxyl group, may differ in chain length and/or degree of saturation. Other types of lipids 

in swine diets include diacylglycerides (two fatty acids on a glycerol), monoacylglycerides 

(one fatty acid on a glycerol) and phospholipids, which are like a triacylglycerol except 

one fatty acid is replaced by orthophosphate and a nitrogenous base (Pettigrew, 1991). A 

fat is defined as a mixture of triacylglycerides which is solid or pasty at room temperature 
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(usually 20o C). Conversely, the term oil corresponds to a mixture of triglycerides which is 

a liquid at room temperature. The increase of double bonds in fatty acids significantly 

reduces its melting point. Thus, for a structure of the same number of carbon atoms, if it is 

saturated may give rise to a solid or semisolid product at room temperature, but if the same 

structure is unsaturated, it may originate a liquid or less solid product at room temperature 

(Valenzuela and Valenzuela, 2013). 

Fatty acids are classified as short-chain fatty acids with four to six carbons; as 

medium-chain with eight to fourteen carbons; as long-chain with sixteen to eighteen 

carbons; and as very long-chain with twenty or more carbons. The longer the fatty acid 

chain the higher the melting point of the fatty acid. Carbons in fatty acids are linked by a 

covalent bond which may be single (saturated bond) or double (unsaturated bond). The 

simpler classification of fatty acids divides them into saturated fatty acids (SFA) which 

have no double bonds, monounsaturated fatty acid (MUFA) which have one double bond, 

and polyunsaturated fatty acids (PUFAs) which have two to six double bonds. Furthermore, 

each unsaturated fatty acid can be classified as cis- or trans- based on the configuration of 

the double bonds. Different forms of fatty acids function differently in animal metabolic 

reactions (Rossi et al., 2010; Valenzuela and Valenzuela, 2013).  

There are physical effects of fat in swine diets that are of practical importance. 

Inclusion of supplemental fat reduces the amount of airborne dust in the pig building 

(Chiba et al., 1985). Added fat can also be used to reduce wear on feed processing 

equipment and increase the uniformity of feed mixes. Additionally, good quality 

supplemental fat increases the diet palatability for animal feed. Fat plays a key role in the 

growth and development of pigs and the requirements for these molecules changes with 



10 
 

age and individual physiological state. Biological attributes of dietary fat include: 1) 

provide a dense source of energy; 2) provides essential fatty acids; 3) facilitates absorption 

and transportation of fat-soluble vitamins; 4) affects meat quality; 5) provides bioactive 

lipid molecules; and 6) acts as important signal compounds (Rossi et al., 2010). 

1.3.2 Meat Quality 
 

According to the Swine NRC (2012), growing-finishing pigs require a metabolizable 

energy (ME) content of 3.34 Mcal ME/kg to maximize growth. Animal fats, vegetable oils 

and restaurant greases are common supplemental fat sources used in swine diets and they 

differ largely in their fatty acid composition. The addition of fats to grow-finish diets have 

been shown to reduce feed intake and enhance overall feed conversion thus making pigs 

more efficient. The goal is to provide just enough fat in the diet to maximize protein 

accretion (Pettigrew & Esnaola, 2001). Also, the inclusion of fats in pig finishing diets 

seem to have no significant effects on estimated carcass yield and pork quality (Eggert, 

Grant, & Schinckel, 2007). It is well-documented that pig growth, carcass composition and 

pork color quality are affected by genetics (Gu et al., 1992; Lo et al., 1992), gender (Mahan 

and Gerber, 1985; Shipp et al., 1996), BW (Martin et al., 1980; Cisneros et al., 1996), and 

the interactions among these effects (Fortin et al., 1987; Ellis et al., 1996; Unruh et al., 

1996).  

Typically, pork fat contains high concentrations of saturated fatty acids and lower 

concentrations of mono- and poly-unsaturated fatty acids (Miller, Shackelford, Hayden, & 

Reagan, 1990). The consumption of saturated fatty acids by humans may increase LDL-

cholesterol, resulting in an increased risk of coronary heart disease (Rivellese et al., 2003). 

For pigs, there’s been a drive to manipulate the fatty acid composition of meat. One way 
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to achieve this is by increasing n-3 PUFAs (formed from alpha-linolenic acid 18:3) by 

feeding oils/oilseeds that are high in unsaturated fatty acids (Wood et al., 2004). The swine 

industry has responded to the consumer preferences by developing leaner pigs with more 

unsaturated fatty acids. However, increases in linolenic acid and other PUFAs are 

undesirable to pork meat because increased PUFA content results in soft belly fat, which 

leads to poor bacon slicing, and may result in poor meat color due to oxidation (Gatlin et 

al., 2002). A greater amount of unsaturated fatty acids in meat lipids is more likely to cause 

fat oxidation when catalyzed by heme pigments. Thus, the interaction between pigment 

and lipid oxidation results in discoloration of meat due to pigment damage from oxidation 

(Gray and Pearson, 1994). Gatlin et al. (2003) showed that an increasing saturation of fat 

reduced the color or redness of pork due to lipid oxidation denaturing heme pigments. 

Oxidation can also result in the loss of nutritional value of meat, especially losses of 

vitamins (A, E, and C), and production of toxic molecules from cholesterol oxidation 

(Xiong, 2000). One method of interest to slow down oxidation is supplementing diets of 

livestock animals, or increasing amounts of, with antioxidants such as Vitamin E. 

 

1.4. Dietary Vitamin E and Pork Quality 

Vitamin E refers to a family of 8 structurally related fat-soluble compound isoforms, 

including four tocopherols (α, β, γ, and δ) and four tocotrienols (α, β, γ, and δ). These 

compounds contain a chromanol ring attached to a saturated (tocopherols) or unsaturated 

(tocotrienols) phytyl chain and vary as to the number of methyl groups on the chromanol 

ring as shown in Figure 1.2 (Jiang et al., 2001; Gril et al., 2014). All isoforms of vitamin E 
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are potent membrane-soluble antioxidants, however, α- tocopherol is the most potent form 

and is the most widely studied by meat scientists (Burton & Traber, 1990).  

 

Figure 1.2 Chemical Structures of Vitamin E. 
Jiang et al. (2001) 

The supplementation of natural and synthetic Vitamin E, as an antioxidant, in 

livestock feed has gained popularity since the early 1990s. The requirements of Vitamin E 

and Se for grow-finishing pigs, from the NRC (2012), is shown in Table 1.2. The 

supplemental use of Vitamin E at supernatural levels in the swine diet has shown a dose-
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dependent increase in tissue tocopherol concentration (Cannon et al., 1996). This 

accumulation is associated with several meat quality improvements.  

Table 1.1 Requirement of Vitamin E and Selenium for Grow-Finishing Pigs 

 BW, kg 5-7 7-11 11-25 25-50 50-75 75-100 100-135 
NRC1 
(2012) 

Vitamin E 
  Dietary2 16 16 11 11 11 11 11 
  Daily need3 4.3 7.5 10.0 16.5 23.3 27.6 30.7 
Se 
  Dietary4 0.3 0.3 0.25 0.2 0.15 0.15 0.15 
  Daily need5 0.08 0.14 0.23 0.30 0.32 0.38 0.42 

DSM6 

(2016) 
BW, kg 5-30 30-70 70-market 
Dietary2 100-150 60-100 60-100 

1 Assuming diets meet the energy requirement recommended by NRC (2012) 
2 Unit, IU/kg of diet. 1 IU vitamin E = 0.67 mg of D-α-tocopherol or 1 mg of DL-α-tocopheryl 
acetate.   
3 Unit, IU/day.  
4 Unit, %.  
5 Unit, mg/day.  
6 When dietary fat is higher than 3%, then add 5 ppm vitamin E for each 1% dietary fat. 

 

1.4.1 Vitamin E and Meat Color 

Myoglobin is the sarcoplasmic protein primarily responsible for the color of meat 

obtained from a well-bled livestock carcass (Livingston and Brown, 1981).  In live muscle, 

myoglobin functions as the oxygen binder and delivers oxygen to the mitochondria, 

enabling the tissue to maintain its physiological functions, while in meat myoglobin serves 

as the major pigment responsible for the red color (Suman and Poulson, 2013). Myoglobin 

is a monomeric heme protein with a heme prosthetic group and a globin (protein) moiety. 

The globin chain, as shown in Figure 1.3, consists of eight helical segments (blue) forming 

a coiled structure enwrapping the heme (red), and the ability of myoglobin to bind oxygen 

is due to the presence of heme located within the heme crevice.  
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Figure 1.3 The three-dimensional structure of pork myoglobin.  
Adapted from Suman and Joseph (2013) 

Pigments oxidation, oxygen consumption and the effectiveness of the 

metmyoglobin enzymatic reducing systems affect the rate of discoloration in fresh meat. 

A consistent effect of dietary vitmain E supplementation on meat color has been 

extensively reported in ruminant animals including cattle, goat and lamb; however, this 

effect has been inconsistent in pork (Phillips et al., 2001). Ashgar et al. (1991) showed that 

the pork from pigs receiving the highest level of vitamin E (200 IU kg-1 feed) exhibited the 

smallest increase in thiobarbituric acid reactive substances. Similar results were reported 

by Lanari et al. (1995) where pigs were fed with either 13 ppm or 200 ppm VE, VE 

improved bone color stability regardless of the package atmosphere, and muscle color 
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stability was improved during display in air or modified atmosphere, although the 

beneficial effect was only detectable for illuminated storage. Jensen et al (1997) reported 

that a diet supplemented with 100 mg of a- tocopherol/kg feed from weaning to slaughter 

was sufficient to ensure optimum color stability of porcine M. Longissimus dorsi and M. 

Psoas major. Higher supplementation levels of 200 and 700 mg α-tocopheryl acetate/kg 

feed provided no additional benefit for pork meat quality color, marbling or firmness. 

Hoving-Bolink et al. (1998) also found that extra dietary vitmain E, or higher 

supplementation, had no effect on meat quality traits such as color, marbling and firmness. 

More recent studies using up to 326 ppm dietary VE did not detect significant effects in 

delaying discoloration (Ohene-Adjei et al., 2004 and Guo et al., 2006). 

The inconsistent result might be due to the structural differences of myoglobin from 

pigs and cattle. When myoglobin was incubated with 4‐hydroxy‐2‐nonenal (HNE), only 

mono-adducts of HNE with porcine myoglobin were detected and three histidine (HIS 24, 

36 and 119) residues in porcine Mb that were readily adducted by HNE, whereas in bovine 

Mb seven histidine residues (HIS 24, 36, 81, 88, 93, 119 and 152) were detected (Suman 

et al., 2007). 

1.4.2 Vitamin E and Water Holding Capacity 

The term water-holding capacity refers to the ability of meat to hold moisture and 

it affects the appearance, cooking quality and eating quality. Past research has indicated 

that VE’s antioxidant action can increase water holding capacity by measurements of drip 

loss and purge loss, although results are inconsistent. Cheah et al. (1995) reported an 

increase in water-holding capacity and Dirinck showed an increase in juiciness (Dirinck et 

al, 1996) as a result of dietary vitamin E supplementation. Ashgar et al. (1991) showed cell 
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membrane integrity is believed to play a role in drip loss and membrane lipids are thought 

to be protected from lipid oxidation by endogenous a-tocopherol. In a similar study, pork 

Longissimus dorsi samples from pigs fed increased α-tocopheryl acetate (200 mg/kg feed) 

showed reduced drip loss and lipid oxidation (TBARS) than a diet of 10 mg/kg (Monahan 

et al, 1994).  However, other studies showed that dietary supplementation of VE up to 200 

ppm has no significant effect on water holding capacity as measured by drip loss in pigs 

compared to those fed with control diets of less than 20 ppm dietary VE (Cannon et al., 

1995; Cannon et al., 1996; Hoving-Bolink et al., 1998). Further studies need to be done for 

us to better understand the role of dietary VE on the water holding capacity. 

1.4.3 γ-Tocopherol 

Humans and animals do not synthesize vitamin E, they primarily acquire tocopherols 

from plants or chemically synthesized sources. α-tocopheryl acetate (ATA) is the most 

commonly used isoform in swine diets, however, γ-tocopherol represents ~70% of the VE 

consumed in the typical human diet in the United States (Jiang et al., 2001). γ-tocopherol 

is often the most prevalent form of VE in many plant seeds (Grilo et al., 2014). In contrast, 

α-tocopherol is the predominant form of VE in most human and animal tissues, blood 

plasma and the primary form in supplements. However, Burton et al. (1998) reported γ-

tocopherol may constitute as much as 30–50% of the total VE in human skin, muscle, vein, 

and adipose tissue. Additionally, recent studies indicate that γ-tocopherol may be important 

to human health and that it possesses unique features that distinguish it from α-tocopherol. 

γ-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is α-

tocopherol (Jiang et al., 2001).  
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1.4.4 Shelf-Life 

Shelf-life is defined as the period between packaging of a product and its end use 

when product properties remain acceptable to the product user. Shelf-life properties may 

include appearance, texture, flavor, color and nutritive value. Simply put, shelf-life is the 

amount of time that passes before meat becomes unpalatable or unfit for human 

consumption because of the growth of spoilage organisms (Delmore, 2009).  

Meat color is an important attribute for consumers because it is the primary standard 

by which consumers assess freshness and acceptability. Consumers prefer bright-red fresh 

meats, brown or gray-colored cooked meats and pink cured meats. Any deviations may 

result in reduced price, consumer complaints and returned products. The relatively short 

shelf-life of fresh meats is the single greatest concern to retail meat markets (Cornforth, 

1994). The rate of discoloration of meat is believed to be related to the effectiveness of 

oxidation processes and enzymic reducing systems in controlling metmyoglobin levels in 

meat (Gray, Gomaa and Buckley, 1996). 

Fresh meats are stored under a variety of packaging systems for retail display. In 

packaged fresh meat, myoglobin can exist in any of the four redox states (Figure 1.4): 

deoxymyoglobin, oxymyoglobin, carboxymyoglobin and metmyoglobin (Mancini and 

Hunt, 2005). The heme iron of the porphyrin ring can exist either in a reduced ferrous (+2) 

or oxidized ferric (+3) state. If molecular oxygen complexes with myoglobin, oxygenation 

occurs by the formation of oxymyoglobin, which is a desirable bright red color. CO can 

attach to myoglobin and produce carboxymyoglobin. When oxygen is made unavailable, 

reducing enzymes convert myoglobin to a purplish-red myoglobin molecule known as 

deoxymyoglobin. Oxymyoglobin, carboxymyoglobin and deoxymyoglobin are susceptible 
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to oxidation when the state of iron changes from ferrous to ferric. Formation of brown 

metmyoglobin results from the oxidation of the three ferrous forms to ferric state and is 

associated with meat discoloration (Suman and Poulson, 2013).  

 

Figure 1.4 Myoglobin redox forms in fresh meat. 
Adapted from Suman and Poulson (2013) 

1.4.5 Oxidative Stability 

One of the major factors affecting the shelf-life of meat products is rancidity or lipid 

oxidation, a chemical reaction that occurs when fatty acids found in meat react to a source 

of oxygen in the environment (Gerrard and Grant, 2003). Lipids are especially prone to 

oxidation during post-mortem handling and storage. Oxidation of lipids is a three-step 

radical chain reaction, which consists of initiation, propagation, and termination with the 

production of free radicals (Frankel, 2014) as shown in Figure 1.5. Initiation reaction 

produces the fatty acid (alkyl) radical (R•) which in turn reacts with oxygen to form peroxy 
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radicals (ROO•) in the propagation reaction. The peroxy radicals react with UFAs and form 

hydro-peroxides (ROOH), which later decompose to produce the volatile aromatic 

compounds that give meat its perceived off-flavors and rancid odor. The rate and extent of 

lipid oxidation are influenced by several factors, which include iron content, distribution 

of unsaturated fatty acids, pH and antioxidant levels (Falowo et al., 2014).   

The thiobarbituric acid reacting substances (TBARS) test is the most commonly used 

method to measure lipid oxidative stability in foods, particularly meat and fish (Tarladgis, 

1960). Malondialdehyde (MDA) is a decomposition product of lipid peroxides formed in 

meats which reacts with the TBA reagent to form a colored complex with maximum 

absorbance at 532 nm (Fernández et al., 1997).  

 

Figure 1.5 Antioxidant reaction with lipid oxidation from the propagation stage to 
terminate the oxidation cycle.  

Adapted from Falowo et al. (2014) 
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1.5. Sensory Evaluation 

The main objective of sensory evaluation is to provide valid and reliable 

information to production, research and development, marketing and quality control to 

make profitable decisions about the perceived sensory properties of the food products 

(Meilgaard, 1991). Sensory evaluation can be divided into two categories: consumer testing 

and objective quality measurements.  

The current sensory evaluation methods comprise a set of measurement techniques 

with established track records of use in industry and academic research. The primary 

concern of any sensory evaluation is to ensure that the test method is appropriate to answer 

the questions being asked about the product in the test. Three types of sensory testing are 

commonly used, each with a different goal and each using participants selected using 

different criteria. A summary of the three main types of testing from Lawless and Heymann 

(2013) is given in Table 1.2.  

Table 1.2 Classification of Test Methods in Sensory Evaluation. 

Class Question of Interest Type of Test Panelist 
Characteristics 

Discrimination Are products 
different in any way? 

“Analytic” Screened for sensory 
acuity, oriented to 
test method, 
sometimes trained 
 

Descriptive How do products 
differ in specific 
sensory 
characteristics? 
 

“Analytic” Screened for sensory 
acuity and 
motivation, trained 
or highly trained  

Affective How well are 
products liked or 
which products are 
preferred? 

“Hedonic” Screened for product 
use, untrained or 
trained 
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1.5.1 Hedonic Scale 

The hedonic scale was developed in the U.S. Army Food and Container Institute in 

the late 1940s by Jones et al. (1955). In the hedonic scale method, the samples are presented 

singly and are rated on a scale where the 9 categories range from “dislike extremely” to 

“like extremely” with a neutral category “neither like or dislike” at the center of the scale 

(Peryam and Pilgrim, 1957). The test relies on people’s ability to communicate their 

feelings of like or dislike. Hedonic is popular because it may be used with untrained people 

as well as with experienced panel members. In hedonic testing, samples are presented in 

succession and the subject is able to make their own inferences about the meaning of the 

scale categories and determine for their self how they will apply them to the samples 

(Peryam and Pilgrim, 1957). A separate scale is provided for each sample in a test session. 

The scales may be grouped together on a page or be on separate pages. The like or dislike 

phrases are placed on a line-graphic scale either horizontally or vertically.  

1.5.2 Sensory Attributes in Meat Quality  

The most important aspect of meat quality is eating quality, usually defined as 

scores given by taste panelists for tenderness, juiciness, and flavor. These characteristics 

are affected by several factors in production, such as breed and diet and by intrinsic factors 

in the animal such as muscle type as determined by the proportions of the different muscle 

fibers (Wood et al., 2004). The sensory properties that are important to consumers may 

differ among different meat products.  

For pork, tenderness is arguably the most important quality attribute to consumers 

(Steenkamp and Trijp, 1988). Tenderness can be attributed to a perception of meat, such 

as: softness to tongue and cheek, resistance to tooth pressure, fragmentation of the food 
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particles, adhesion, and residual after chewing (Breene, 1978). Juiciness depends on the 

amount of water retained in a cooked meat product. It helps in softening meat to make it 

easier to chew while fat stimulates saliva production in the mouth. Water retention and 

lipid content can impact the perception of tenderness and can determine juiciness (Blumer, 

1963). Flavor is an important sensory attribute in pork, but this characteristic cannot be 

explained by consumers given their vocabulary is inadequate to explain the complex 

flavors found in most meat products (Chambers and Bowers, 1993). Thus, flavor intensity 

and off-flavor are typically the only flavor attributes evaluated in consumer sensory studies.   

1.6. Belly/ Bacon Production and Quality 

The pork belly is currently one of the most valuable primal cuts on the pork carcass 

(USDA, 2018). Despite the continued increase in bacon prices in recent years, consumer 

demand has not waned. This is partly because the consumption of bacon has transformed 

over the years from the traditional breakfast entrée to condiment for different dishes, 

including sandwiches, bacon bits, combination dishes and salads, among others, which has 

triggered the recent growth trend in the bacon market (Scramlin et al., 2008). The belly is 

one of the primal sections obtained from pig carcasses, usually cut from between the 2nd 

and 3rd ribs to just a few inches above the hip bone. About 55–60% of a pork belly is 

adipose tissue, although this percentage has decreased over the years (Person et al. 2005). 

Bacon processing generally follows the same basic steps with slight variations with spices 

and curing ingredient mixtures, as well as curing methods. The following briefly describe 

the basic operations in commercial bacon processing.  

javascript:void(0);
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1.6.1 Raw Material Selection and Sorting 

The composition of pork bellies is 55-60% fat; however, this varies depending on sex, 

genetics of the animal or dietary treatments, among other factors (Mandigo, 2002). Based 

on technological requirements and consumer demands for leaner meat, pork processors 

would prefer to sort pork bellies based on thickness and fat percentages but, currently, 

weight seems to take precedence. Proper sorting is essential because the bellies are pumped 

with curing solution at fixed percentage and poor sorting will lead to inconsistent product 

and poor product quality (The National Provisioner, 2008). Following sorting, pork bellies 

are skinned. Then adequate trimming of bellies to individual industrial specifications is 

done to get rid of spareribs and flank ends, which leaves about 65 to 85% of the original 

pork belly weight for curing (Knipe and Beld, 2014).  

1.6.2 Curing Methods 

There are basically three methods of curing bacon: pump/ injection, dry, and immersion 

curing. Pump/ injection curing is widely used for mass production of bacon because it 

allows the liquid curing ingredients to be injected directly into the pork belly to accelerate 

the curing process. This is done by a stitch or spray needle type machine (Mandigo, 2009). 

Dry curing involves applying premeasured dry cure mixture onto the belly surface and 

allowing it to cure for a few days. For immersion cure, bellies are immersed in a curing 

solution for two to three days.  

For pump curing, the pork belly is injected with a liquid brine mixture (pickle) usually 

made up of water, salt, sugar, nitrite, sodium erythorbate and/ or ascorbate, and phosphate. 

Each of the ingredients in the brine mixture has a specific function. Water serves as the 

carrier for all the ingredients. Salt helps as a flavor enhancer and as a microbial inhibitor, 
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while the sugar helps to moderate the taste intensity of the salt in the product (Mandigo, 

2009). Nitrite, with a permitted limit (FSIS, 2011) of not more than 120ppm, helps with 

inhibiting bacteria, flavor and color enhancement. Sodium erythorbate and/ or ascorbate is 

a cure accelerator and color stabilizer with a limit of 550ppm according to the United States 

Department of Agriculture (FSIS, 2011). Sodium phosphate cannot exceed 5000ppm in the 

United States (FSIS, 2011) and it helps with moisture retention during bacon processing 

and cooking (Mandigo, 2009). The order to which ingredients are added to water and 

dissolved is crucial in pickle formation. Necessarily, phosphate is adequately dissolved 

first followed by ascorbates, then salt, sugar and other flavorings, and nitrites come last. 

The pumping level of bellies is usually around 112 to 115% (FSIS, 2011) of the belly’s 

green weight (fresh, pre-pumped). The belly is then allowed to equalize for a few hours 

before heating to prevent inconsistent color and streak marks.  

1.6.3 Smoking and Pressing  

Mass-produced bacon is heat processed in large convection ovens. It is much faster to 

mass produce bacon using a convection oven (as little as 6 hours) than by traditional 

smoking (many days). Bacon receives its smoke flavor and color from natural smoke 

obtained by smoldering wood chips or by spraying the bacon with a liquid smoke extract 

(FSIS, 2011). Aside from the flavor that smoke impacts to bacon, it also adds aroma and 

color and serves as a means of preservation, resulting from the heating, drying and the 

chemical components of the smoke, for example acetic acid, formaldehyde and creosote, 

among others (Young, 2008). Proper hanging of the bellies on bacon combs prior to transfer 

for smoking is also an important step to ensure a more regular belly shape that will 

subsequently aid high slicing yield. The target core temperature for bacon during smoking 
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ranges between 46 and 53°C, while the smokehouse schedule may be dependent on belly 

size, smokehouse air velocity, facility and internal temperature (Young, 2008). After 

smoking, bacon slabs are chilled and tempered. Bacon slabs are rapidly cooled to 4 to 5°C, 

within 24 hours, and then slowly chilled to -12°C to allow for proper fat setting (FSIS, 

2011). Then they will be tempered in another refrigerated area, -5.5 to -3.3°C, in 

preparation for pressing. The chilled bacon is then pressed hydraulically into rectangular 

shaped bacon with width between 24 to 28 cm and varying length depending on the extent 

of trim. During pressing, bacon slabs should be at a temperature ranging from -2 to -1°C. 

This will facilitate a better shape that eventually results in better slicing and increased 

slicing yields (Rocha, 2011).  

1.6.4 Slicing and Packaging 
 

During slicing, bacon slabs should be at a temperature between -5 and -4°C. Slice 

breakage or fat smearing can occur if bacon slabs are too cold or too warm, respectively 

(Rocha, 2011). Usually bacon is sliced, and vacuum packaged as thin (> 17 strips per 

pound), regular (7 to 16 slices per pound) or thick (4 to 6 slices per pound) slices (Knipe 

and Beld, 2014). 

1.6.5 Bacon Quality  

The majority of the highest quality slices of bacon originate from the center slice or the 

slices nearest to the center on the posterior end (Mandigo, 2002). Bacon is evaluated 

according to lean content and slice thickness to identify premium quality slices. The bacon 

ranking system described by Person et al. (2005) is divided into three classifications: type 

#1, #2, and #3 slices. Type #1 bacon slices (Figure 1.6) will have the M. cutaneous trunci 

extending greater than 50% the length of bacon slice and its profile is no less than 1.9 cm 
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in thickness.  Type #2 bacon slices would have a profile thickness no less than 1.9 cm or 

would have the M. cutaneous trunci not extending greater than 50% of the length of the 

bacon slice.  Type #3 bacon slices are slices that do not meet any of the previously 

mentioned characteristics.  Pieces falling into the type #3 category generally come from 

the shoulder or ham ends and are generally described as “ends and pieces” (Person et al., 

2005). Outside of this grading system, there has been an increasing amount of research on 

belly firmness to evaluate bacon quality. 

 

 
Figure 1.6 Diagram and nomenclature for dimensions and musculature used to 

characterize slices of bacon. 
A) Type #1 Bacon. B) Type #2 Bacon. 

(Person et al. 2005) 

1.6.6 Belly Firmness  

Consumers’ desire for leaner meat has driven the reduction in the fat content of 

pork belly from 74% (Smith et al., 1975) to today’s 45 to 55% (Scramlin et al., 2008), with 

a corresponding increase in the percentage of unsaturated fatty acids (Trusell et al., 2011). 

Pork belly softness is a major quality defect that has been reported to reduce processors’ 

and packers’ profitability because of its overall effect on fabrication efficiency, bacon shelf 

stability, sensory quality and bacon slicing yield. Generally, softer bellies may lead to oily 
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appearance and poor slice definition in bacon retail package, fat and lean separation, 

reduced slicing efficiency and yield of bacon slabs, and reduced product shelf life due to 

poor oxidative stability (Benz et al., 2010; Correa et al., 2008; Larsen et al., 2009). 

Iodine value (IV) is an important quality factor used in studies of fat sources 

focusing on pork quality (Kellner et al., 2016). Iodine value refers to the grams of iodine 

taken up by 100 grams of fat. This measurement can reflect the degree of saturation of a 

fat source by indication of the relative content of double bonds within the constituent fatty 

acids (AOAC, 1990). The higher IV indicates that fat is more unsaturated and softer. 

Although IV has been widely used as an indication of belly firmness, the appropriateness 

of this measurement has been criticized due to its destructive and time-consuming nature, 

as well as the difficulty in deciding on a unique site of sampling for analysis on pig 

carcasses (Trusell et al., 2011). Furthermore, fat samples may have the same IV but are 

structurally different (Gatlin et al., 2005).  

To quantify belly firmness, the following methods have been employed among 

different research groups: visual firmness scoring (Weber et al., 2006), finger pressure 

testing (Maw et al., 2003), compression and puncture test using texture analyzers (Apple 

at al., 2011), iodine value (Seman et al., 2013), and belly-flop testing. For the belly-flop 

test, the belly is centered over a bar at the midpoint of the length of the belly. Rentfrow et 

al. (2003) affixed a 7.6 cm diameter polyvinyl chloride pipe perpendicular to a board that 

had a 2.54 cm grid matrix drawn on it. Firmness was quantified by counting the boxes 

between the ham and shoulder ends. A larger distance between ends represented a firmer 

belly while a smaller distance signified a softer belly (Figure 1.7).  
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Figure 1.7 Measuring lateral and vertical belly flex. 

(a) Illustrates a lower lateral, higher vertical flex; firmer belly. (b) Illustrates a 
higher lateral, lower vertical flex; softer belly. (Rentfrow et al., 2003) 

 

1.6.7 Bacon Shattering 

Bacon shattering, or fracture analysis, is defined as the incidence of breaks in the fat 

of a slice of bacon perpendicular to the length of the slice (Mandingo, 1998). Shatter marks 

do not include the natural separation of fat tissue or the separation between fat and lean 

tissue. Mandingo (1998) classified shatter marks into five categories depending on their 

length: 5mm, (1-10 mm), 15mm (11-20 mm), 25mm (21-30 mm), 35mm (31-40 mm), 41 

and up mm. In another study, Rentfrow et al. (2002) divided a bacon slab, containing only 

commercially acceptable slices, into five separate sections and labeled as A, B, C, D and 

E. The first two slices from the cranial end are evaluated for fracture analysis. A trained 

person evaluates the bacon slice by rolling it over the forefinger. Subjective fracture 

analysis is found by dividing the slice into four quadrants along the length of the bacon 

slice and averaging the number of shatters. A score of 0 indicated that no visual cracks or 
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shattering could be detected, the scoring increased in severity with 2, 3, 4, 5 and a score of 

6 indicative of a “spider-web” consistency of shattering within the fat of the bacon slice 

(Mandigo, 1998).  

 

1.7      Conclusion 

The market weight of pigs has continuously risen over the past decade and will 

continue to increase to an estimated 150 kg in 2032. To reduce the challenges associated 

with an increased market weight, research evaluating the potential outcomes of the 

heavier SLW including the size of primal cuts, meat quality, shelf life and bacon quality 

would be necessary. Furthermore, the cost pressure from the increasing ingredient price is 

causing producers to explore by-products, such as DDGS, which can result in soft pork 

with potential for oxidative problems. Using different fat sources that have a high 

saturated fatty acid contents (such as beef tallow) and supplementing diets with vitmain E 

could reduce peroxidation of pork fat. Additionally, supplementing different isoforms of 

VE (such as γ-tocopherol) could impact the rate of oxidation.  

 Therefore, the objective of the study was to evaluate the effect of two fat sources 

that differed in FA profile on carcass characteristics, meat quality, and belly/ bacon 

attributes of pigs grown to heavy slaughter weights and its potential interaction with the 

form and level of vitamin E.  
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Chapter 2 CARCASS CHARACTERISTICS AND FRESH MEAT QUALITY OF 
HEAVY WEIGHT (>150KG) PIGS FED DIFFERENT FAT SOURCES AND 

SUPPLEMENTATION OF VITAMIN E 
2.1   Abstract 

The objective of this study was to evaluate the effect of supplementing alpha-

tocopheryl-acetate (ATA) and gamma-tocopherol (γ-T) vitamin E (VE) isoforms with corn 

oil (CO) and tallow (TW) on carcass characteristics, meat quality and sensory 

characteristics of pigs grown to heavier weights (>150kg). Individually fed pigs (n=72; 36 

barrows, 36 gilts; 28.55 ± 1.16 kg) were randomly assigned to 12 dietary treatments in a 2 

× 6 factorial arrangement. Fat treatments were TW and CO. The VE treatments included 

four levels of ATA (11, 40, 100, and 200 ppm) and two levels of mixed tocopherols 

(primarily γ-T; 40 and 100 ppm). Pigs were humanely slaughtered at approximately 150 

kg. Carcass characteristics, pH, primal cuts, meat quality measurements and sensory 

characteristics were collected. Data analysis were performed by PROC GLM in SAS. 

There were no differences in dressing percentage, 45 min pH, 24 h pH, backfat depth, loin 

muscle area, primal cuts, purge loss, drip loss, objective color, TBARS and sensory 

analysis between the VE isoforms. Fat treatments did not affect 45-min and 24-h pH, 

backfat depth, loin muscle area, primal cuts, purge loss, drip loss, objective and subjective 

color, and sensory analysis. Slaughter weight (P = 0.04) increased with increasing dietary 

ATA VE. Dressing percentage was lower (P = 0.04) for pigs fed corn oil. Increasing dietary 

ATA VE had a quadratic effect on 45 min pH (P = 0.02) and 24-hour pH (P = 0.02). Fresh 

bellies from pigs fed fat sources with higher saturated fat acids displayed a greater belly 

depth (P = 0.04), a larger belly angle (P < 0.01), a higher lateral (P < 0.05) and a lower 

vertical (P < 0.05) belly flex. Pigs fed γ-T VE supplementation tended to have a higher L* 

value (P < 0.05) and a higher a/b ratio (P < 0.05) during shelf life. The shelf life of loin 
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muscle measured as TBARS content was also improved (P < 0.01) when dietary ATA 

increased over 40 ppm. During extended shelf life measurements, TW supplemented pigs 

tended to have a higher L* (P < 0.05) and b* (P < 0.05). Pork sensory attributes such as 

tenderness (P < 0.01), juiciness (P < 0.01) and overall approval (P < 0.01) increased with 

increasing dietary ATA VE. Also, γ-T VE chops exhibited less of an off-flavor (P = 0.05) 

during sensory analysis.  

Keywords: fat, vitmain E, heavy slaughter weight pigs, tocopherol, isoforms 
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2.2 Introduction 

A question that arises in almost all discussions about the future of agriculture is – “How 

will we feed a growing population in the future?” According to the Food and Agricultural 

Organization (2014), the meat of choice worldwide is pork except for those countries that 

do not eat pork for religious reasons. The increasing demand for pork can only be met by 

increasing the number of pigs produced or by increasing slaughter weight (SLW). Given 

the pressure of total food supple on finite land mass, it is obvious that increased market 

weights will be a large part of meeting demand. While it is relatively easy to slaughter at a 

heaver weight, there has been very little research on the pork quality.  

The increasing price of feed ingredients has driven producers to explore more and more 

by-products. This has led to the increasing use of dried distillers grains with solubles 

(DDGS). Some producers have added as much as 30% of DDGS in the diet, which has 

created some pork quality issues. The main quality concern is soft pork fat due to the high 

content of unsaturated fatty acids (UFA) present in DDGS. Ellis and Hankins (1925) first 

reported the relationship between dietary FA composition and pork carcass firmness, and 

it is now widely accepted that pork carcass fat is closely related to dietary FA profile 

(Kellner et al., 2014; Kellner et al., 2017). Reduction in pork quality and product value 

may occur when increasing pig SLW due to the longer feeding periods of high 

polyunsaturated oils. 

Vitamin E is an antioxidant that may contribute to reducing oxidative stress and 

improve the oxidative stability of pork while prolonging fresh pork shelf life (Bolar et al., 

2009). Wang et al. (2012) found that supplementation with high levels of vitamin E 

decreased the TBARS value of meat produced with high DDGS diet (30% highest) on d 4, 
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7, 10 and 13 post slaughter. Therefore, improving dietary vitamin E levels could increase 

lipid stability of pork produced with increasing unsaturated FAs caused by the change in 

dietary FAs (Guo et al., 2006). Additionally, recent studies indicate that γ-tocopherol may 

be important to human health and that it possesses unique features that distinguish it from 

α-tocopherol. Although the absorption rate α-tocopherol and γ-tocopherol is similar, the 

elimination of γ-tocopherol from plasma is faster, which might imply either faster excretion 

or faster incorporation into tissue; more rapid incorporation into tissue could be extremely 

positive in improving meat quality, especially in preventing lipid oxidation in meat. 

However, the interaction between VE and fat sources are rarely reported.  

Therefore, the objective of the study was to evaluate the effect of two fat sources that 

differed in FA profile on carcass characteristics and meat quality of pigs grown to heavy 

slaughter weights and its potential interaction with the form and level of vitamin E.  

 

2.3   Materials and Methods 

The growth and feeding phase of the experiment was carried out in environmentally 

controlled rooms at the University of Kentucky Swine Research Center. The slaughter and 

sample collection were performed at the University of Kentucky Meats Science Laboratory. 

The experiment was conducted under protocols approved by the Institutional Animal Care 

and Use Committee of the University of Kentucky. The study was a collaborative research 

project evaluating meat quality from the same set of pigs by Wang (2019). 

2.3.1 Animals, Diet and Experimental Design 

A total of 72 individually fed pigs (half barrows and gilts; initial BW ~24-30 kg) 

were blocked by sire, body weight, and sex, and then randomly assigned to individual pens. 
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Pens were randomly assigned to 1 of 12 dietary treatments in a 2 x 6 factorial arrangement. 

Fat treatments included Tallow and Corn Oil. Vitamin E treatments included four levels α-

tocopheryl-acetate (11, 40, 100 and 200 ppm) and two levels of mixed tocopherols 

(primarily γ-tocopherol; 40 and 100 ppm). The diets were corn-soybean meal (SBM) based 

diets in mash form and fed for five weight phases including 25-50 kg, 50-75 kg, 75-100 

kg, 100-125 kg, and 125-150 kg, respectively. All experimental diets were formulated to 

meet or exceed NRC (2012) nutrient requirement estimates for grow-finishing pigs. 

Formulas for each phase are listed in Table 2.1. Treatment diets were fed to pigs up until 

slaughter, and slaughter weight was ~150 kg.   

The ATA was suppled in the form of DL (all-rac)-α-tocopheryl acetate (ROVIMIX 

E 50 ADS, DSM Nutritional Products, Inc., GA US) in a dry form. The mixed tocopherols 

were supplied as Mixed Tocopherols 95 (DSM Nutritional Products, Inc., NJ US) in liquid 

form, which contained 0-15% α-tocopherol, less than 5% β-tocopherol, 55-75% γ-

tocopherol, and 20-30% δ-tocopherol.
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Table 2.1 Basal diet composition of diets with different fat sources1 and VE 
isoform/levels2 from Phase 1 to Phase 5 (as-fed basis) 

Ingredient, % Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
Corn 62.85 69.55 73.81 77.04 80.17 
Soybean meal, 48% CP 28.50 22.00 18.00 15.00 12.00 
Fat (tallow or corn oil) 5.00 5.00 5.00 5.00 5.00 
L-Lysine HCL 0.22 0.24 0.21 0.17 0.22 
DL-Methionine 0.12 0.09 0.04 0.01 0.01 
L-Threonine 0.09 0.09 0.06 0.04 0.05 
Limestone 1.08 0.99 0.88 0.77 0.68 
Dicalcium phosphate 0.92 0.82 0.78 0.75 0.65 
Salt 0.50 0.50 0.50 0.50 0.50 
Vitamin premix3 0.02 0.02 0.02 0.02 0.02 
Trace mineral premix4 0.15 0.15 0.15 0.15 0.15 
Choline5 0.03 0.03 0.03 0.03 0.03 
Santoquin6 0.02 0.02 0.02 0.02 0.02 
AB-207 0.50 0.50 0.50 0.50 0.50 

Total 100.00 100.00 100.00 100.00 100.00 
      

Calculated nutrient level, % Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
ME, Mcal/kg 3.47 3.49 3.50 3.50 3.51 
CP, % 19.13 16.58 14.94 13.70 12.59 
SID Lys 1.04 0.90 0.78 0.67 0.64 
SID Lys/ME 2.99 2.58 2.22 1.92 1.82 
SID Met 0.38 0.32 0.26 0.21 0.20 
SID Cys 0.26 0.24 0.22 0.21 0.19 
SID M+C 0.65 0.55 0.47 0.42 0.39 
SID Arg 1.13 0.94 0.82 0.73 0.65 
SID His 0.45 0.39 0.35 0.33 0.30 
SID Ile 0.69 0.58 0.51 0.46 0.41 
SID Leu 1.43 1.28 1.19 1.12 1.05 
SID Phe 0.81 0.70 0.62 0.57 0.52 
SID Tyr 0.53 0.45 0.40 0.37 0.33 
SID P+T 1.34 1.15 1.03 0.94 0.85 
SID Thr 0.67 0.58 0.50 0.44 0.41 
SID Trp 0.20 0.17 0.14 0.13 0.11 
SID Val 0.75 0.64 0.58 0.53 0.48 
SID Ca 0.7 0.62 0.56 0.51 0.44 
Total P 0.54 0.49 0.46 0.45 0.41 
STTD P 0.32 0.29 0.27 0.26 0.23 
1 Fat treatment included corn oil and tallow    
2 Dietary VE treatments including four levels of ATA (11, 40, 100, and 200 ppm) and two 
levels of mixed tocopherols (40 and 100 ppm) were applied to each basal diet. 
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3 Supplied the following per kg of diet: 7,000 IU of vitamin A; 1,500 IU of vitamin D3; 2.0 mg 
of vitamin K; 0.03 mg of vitamin B12; 7.0 mg of riboflavin; 25.0 mg of pantothenic acid; 20.0 
mg of niacin; 1.0 mg of folic acid; 2.5 mg of vitamin B6; 2.0 mg of thiamin; and 0.15 mg of 
biotin. 
4 Supplied the following per kg of added fat diet: 50 mg of Mn as manganese hydroxychloride; 
100 mg of Fe as ferrous sulfate monohydrate; 125 mg of Zn as zinc hydroxychloride; 20 of Cu 
as tribasic copper chloride; 0.35 mg of I as calcium iodate; and 0.30 mg of Se as sodium 
selenite. 
5 Provided 150 mg per kg of choline to the final diet. 
6 Santoquin (Monsanto, St. Louis MO) supplied 130 mg/kg ethoxyquin to the final diet. 
7 Clay product from Prince Agri Products, Inc., Quincy IL. 
 

 

2.3.2 Slaughter and Carcass Fabrication 

 Pigs were humanely slaughtered at ~150 kg live weight at the University of 

Kentucky (UK) Meat Lab under USDA inspection according to standard industry practice. 

Pigs to be slaughtered were weighed (BW) and then loaded and transported to the UK Meat 

Lab (~20km, ~ 40 minutes). Pigs were then slaughtered after resting for at least 30 minutes. 

Pigs were slaughtered under the supervision of the Food Safety and Inspection Service of 

the United States Department of Agriculture (USDA). At 45 min, pH between the 10th and 

11th rib was recorded with an Accumet 50 pH meter (Fisher Scientific, Fairlawn, NJ, USA) 

and hot carcass weights were taken to calculate dressing percentage [(HCW/BW) × 100)]. 

All carcass measurements were performed according to the methods described by 

McClelland et al. (2012). Following a 24-h chill (4°C), cold carcass weight, fat depth at 

the 10th rib, 1st rib, last rib, and last lumbar were measured on the left side of each carcass. 

Carcass length was measured from the anterior edge of the symphysis pubic to the recess 

of the first rib. The Boston butt (IMPS #406), shoulder picnic (IMPS #405), loin (IMPS 

#412), and belly (IMPS #408; squared at each end) and spareribs were removed and 

weighed individually according to Institutional Meat Purchasing Specifications (North 
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American Meat Processors Association, 2010). Primal cuts were recorded in absolute 

weight (weight in kg of the primal) and relative weight ((primal cut, kg/HCW) × 100). 

After weighing the loin, it was deboned, and chops were cut anterior to the 10th rib location 

for further analysis. The first chop at the 10th rib (~2.54cm) was used for subjective and 

objective color, the second (~2.54cm) was used for drip loss, the third (~2.54cm) for 

sensory evaluation, and the remaining loin section was used to measure purge loss. Belly 

depth was measured in 6 locations that were evenly divided into rectangles from the 

shoulder to flank end before being measured for belly flex. Longissimus dorsi muscle area 

(LMA) and 24-hour pH (Accumet 50 pH meter Fisher Scientific, Fairlawn, NJ, USA); were 

also measured from the left side of each carcass according to methods described by NPPC 

(2000). 

Belly flex was measured to determine belly firmness using an objective test 

developed by Rentfrow et al. (2003). The detailed procedure for this measurement was 

previously described by Cromwell et al. (2011). The spareribs, related cartilage and 

remaining leaf fat were removed, and the bellies were squared. The fresh bellies with the 

skin on were then centered, skin side down, on a 7.5-cm diameter polyvinyl chloride pipe 

mounted perpendicular to a board marked with a 2.54-cm grid matrix. Lateral and vertical 

flexes were determined from the degree of belly flex relative to the grid matrix. A vertical 

belly flex of zero meant the belly was parallel to the floor and completely stiff. A lateral 

belly flex of 10 cm meant that the belly flexed to a point where there was 10 cm between 

the end of the squared belly and a vertical line directly below the center of the supporting 

polyvinyl chloride pipe. Thus, a lower lateral flex and a higher vertical flex indicated a 
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softer, more flexible, belly. The belly flex measurements were determined in a room 

maintained at 7°C. The bellies were boxed, and then frozen (-22°C) until further analyses. 

 

2.3.3 Meat Quality Measurements 

2.3.3.1 48-hr Drip Loss and Purge Loss 

A chop (~1.3cm) from the Longissimus thoracis was obtained that was anterior to the 

10th rib. Drip loss was determined by suspending the sample from a hook covered by a 

plastic bag and stored at 4°C for 48 hours. The samples were weighed before and after 

hanging, drip loss percentage was determined by the following equation: 

Drip loss (48 hr, %) = (Initial weight – 48 hr weight) / Initial weight × 100 

For purge loss, a 10cm section of Longissimus thoracis, anterior to the 10th rib, was 

obtained and weighed prior to being vacuum packaged, boxed and stored under 

refrigeration (4°C) for 30 days to simulate the period between the packing plant and the 

retail grocery store. Loin samples were reweighed at day 7, 14, and 30 to determine purge 

loss at each stage to help determine when the majority of weight is lost during storage. 

Before reweighing the samples, they were taken out of the vacuum package and surface 

water was removed with a paper towel. The samples were vacuum packaged, reweighed 

and stored in the same conditions. All sample handling was conducted at 4°C. 

2.3.3.2 Subjective and Objective Meat Color Evaluation 

For subjective color measurements, a 2.54 cm chop was cut from the Longissimus 

thoracis immediately after the 24 hr primal weight and placed on foam trays which were 

then overwrapped in Polyvinyl Chloride (PVC) film. Subjective color, marbling score, and 

firmness (NPPC, 1999) were evaluated by a single trained individual. National Pork 
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Producers Council (NPPC) color scale (1-5, 1= pale pinkish to white; 5= dark purplish), 

NPPC marbling scale (1-5, percentage of fat in the loin muscle), and NPPC firmness scale 

(1-5; 1=very soft; 5= very firm) were used.  

The overwrapped chops were also analyzed for objective color using a HunterLab 

LabScan XE colorimeter (Hunter Associated Laboratory, Reston, VA) with a 2.54cm 

diameter aperture, illuminant A, and 10° standard observer was used to measure CIE 

lightness (L*), redness (a*) and yellowness (b*) values from 3 random locations on the 

light-exposed surfaces (American Meat Science Association, 2012). The instrument was 

standardized before the analysis with black and white tilers that had been overwrapped 

with PVC film to adjust for the PVC over the chop. Spectral reflectance was determined 

every 10 nm over the 400-700nm range. Observations were made at retail display days (1, 

3, 5, and 7; 1300 Lax) to determine shelf-life. The a*/b* ratio, hue angle (tan−1(b*/a*)) 

and chroma (√𝑎𝑎∗2 + b∗2) were calculated to help indicate shifts in color over time toward 

discoloration. Additionally, after the loin sections underwent the 30-day purge loss period, 

a 2.54cm chop was taken to examine the shelf-life after the period between the packing 

plant and the retail grocery store. The chop was overwrapped with PVC film and objective 

color measurements were taken at 30, 32, 34 and 37 days post-slaughter.  

2.3.3.3 Oxidative Stability 

Lipid oxidation was determined utilizing the distillation method to analyze TBARS as 

described by Yin et al. (1993). Samples (5g) from the Longissimus thoracis were 

homogenized with 22.5mL of 11% trichloroacetic acid solution (TCA) and filtered through 

Whatman no. 1 paper. Two mL filtrate was mixed with two mL of aqueous solution of 

thiobarbituric acid (20 mM), and incubated at room temperature for 20 hr. The absorbance 
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values at 532 nm were then measured utilizing a UV-1800 spectrophotometer (Shimadzu 

Corporation, Kyoto, Japan). The value of concentration of TBARS was calculated from a 

standard line based on known concentration of a standard malondialdehyde (Cayman, Ann 

Arbor, MI).  

2.3.3.4 Hedonic Sensory Analysis 

A trained 8-member panel of University of Kentucky students/staff (male and female) 

agreed to participate in the sensory evaluation for the entire length of the study. The 

evaluation was split into multiple day sessions and was conducted in the University of 

Kentucky sensory lab using American Meat Science Association Guidelines (2015). The 

panelists evaluated five sensory attributes and ranked them on the following scale: 

tenderness 1-6 (1= extremely tough; 6= extremely tender), juiciness 1-6 (1= extremely dry; 

6= extremely juicy), off-flavor 1-6 (1=none; 6=intense off-flavor), pork intensity 1-6 

(1=none; 6= extremely intense), and overall liking 1-6 (1=extremely dislike; 6=extremely 

like).  

The previously cut ~2.54cm chops for sensory evaluation were taken out of the freezer 

and thawed at 4°C for 24 hr. Each individual chop was assigned at three-digit number that 

was written on the plates served to the panelist and each plate contained six samples. The 

chops were cooked on George Foreman Basic Plate grills (George Foreman, Spectrum 

Brands, Inc., Madison, WI). Internal temperature of each chop was monitored using a 

thermocouple positioned in the geometric center of each chop. Chops were removed from 

the grills at 69.5°C in order to reach a target endpoint temperature of 71°C. Samples were 

immediately cut into ~1.27cm × 1.27cm cubes and served warm to the panel for evaluation.  
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2.3.4 Statistical Analysis 

Prior to analyses, all data was evaluated to identify any potential statistical outliers 

according to the test published by Barnett and Lewis (1974). To summarize, outliers can 

be tested by the following procedure. First, calculate the statistic T: T = (XH -Mean)/s for 

a high value, or T = (XL – Mean)/s for the low value (XH, high value; XL, low value; s, 

standard deviation). Second, compare the value of T with the value from critical values for 

95% confidence interval (under condition of this study, the critical value is 2.03.) If the 

calculated T is larger than the critical value for the measurement, then the XL or XH is an 

outlier at the level of 5% significance. Potential outliers are listed in Appendix 1. 

Data analysis was performed in SAS (SAS Inst. Inc., Gary, NC) by least squares 

analysis of variance using the generalized linear model (GLM) as a randomized complete 

block design. The individual pig served as the experimental unit. When interaction between 

main effect and other factors was significant, further contrasts between each two treatments 

were performed to analyze the treatment effects. In addition, shelf life data was also 

analyzed as repeated measures to determine the response trends over time. Regression and 

contrasts were also performed as necessary when interactions between time and main effect 

were observed.   

Statistical differences were established at P ≤ 0.05, tendencies were established at P ≤ 

0.10. Sex effect was expected but is not discussed in the results in this chapter. P-values 

for sex and related interactions are listed in Appendix 2 (values greater than 0.10 are 

replaced as “-”). In the results table, all P-values greater than 0.20 were replaced as “-”. 

For evaluation of ATA levels and fat sources, P-values for main effects are provided, 

significant interactions (P ≤ 0.05) between levels of dietary ATA and fat sources are 
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superscripted in the table. For evaluation of isoforms, because P-values for effects of 

dietary VE level and fat sources and their interactions have been provided previously, only 

P-values for effects of isoform and its interaction with main effects including levels of 

dietary VE and fat sources are provided in the tables. 

2.4   Results and Discussion  

2.4.1 Carcass Traits and Primal Cuts 

The results of carcass traits are listed in Table 2.2. There were no differences in 

HCW, CCW, shrink loss, carcass length, back fat depth and loin muscle area among 

different treatments. Increasing dietary levels of ATA from 11 to 200 ppm affected the 

SLW (linear, P= 0.04), 45-min pH (quadratic, P= 0.02) and 24-hour pH (quadratic, P= 

0.02). Interactions between isoforms of VE and fat sources was observed for the difference 

in pH (P = 0.03) between 45-min and 24-hr. γ-T increased in ΔpH from 40 ppm to 100 

while ATA decreased between the levels, additionally, corn oil appeared to cause a larger 

difference between the levels. Pigs fed TW had higher dressing percentages (P = 0.04) and 

greater belly depth (P = 0.04) than pigs fed CO.  

Results of primal cut weights are provided in Table 2.3. There were no differences 

in ATA level for absolute weight (primal cut, kg) and relative weight (primal cut, 

percentage of HCW). Pigs fed γ-T had a lower belly weight (IMPS #408; squared at each 

end) in relative weight (P = 0.02) than pigs fed ATA. Interactions between fat and dietary 

ATA VE level were observed for absolute and relative weight for picnic shoulder (IMPS 

#405) (P < 0.05). No other effects of dietary treatment were observed on primal cuts.  
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0.35 
 

- 
- 

- 
 

0.19 
- 

0.03 
 

C
O

 
0.33 

0.54 
0.32 

0.38 
 

0.34 
0.43 

 
 

C
. Length, cm

8 
TW

 
82.07 

84.14 
83.71 

83.82 
 

82.55 
82.44 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

82.42 
85.25 

82.80 
84.24 

 
85.09 

82.02 
 

 

B
ack fat depth, cm

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

First R
ib 

TW
 

4.17 
4.93 

5.13 
4.88 

 
4.85 

4.61 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
4.93 

4.51 
4.62 

4.78 
 

4.74 
5.03 

 
 

Last Rib 
TW

 
3.35 

3.71 
3.43 

3.24 
 

3.60 
3.77 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

3.33 
3.40 

3.43 
3.43 

 
3.26 

3.56 
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Table 2.2 C

ontinued. 
10th R

ib 
TW

 
2.69 

2.90 
3.01 

2.60 
 

3.05 
3.22 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

3.15 
2.86 

3.22 
2.90 

 
2.67 

2.69 
 

 

Last Lum
bar 

TW
 

2.34 
2.72 

2.12 
1.73 

 
2.29 

2.18 
 

0.11 
- 

- 
 

- 
- 

- 
 

C
O

 
2.29 

2.48 
2.46 

2.41 
 

2.58 
1.98 

 
 

B
elly D

epth, 
cm

 
TW

 
5.15 

5.23 
5.13 

4.94 
 

5.21 
5.05 

 
- 

- 
0.04 

 
- 

- 
- 

 
C

O
 

4.63 
4.95 

4.81 
4.83 

 
4.85 

4.42 
 

 

Loin M
uscle D

im
ension

9, cm
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

V
ertical 

TW
 

7.37 
7.01 

7.75 
7.21 

 
7.62 

7.28 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
7.16 

7.18 
6.86 

7.58 
 

7.26 
7.57 

 
 

H
orizontal 

TW
 

10.82 
10.57 

10.58 
10.41 

 
10.29 

10.80 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
10.21 

10.61 
10.46 

11.01 
 

10.29 
10.26 

 
 

A
rea

10, cm
2 

TW
 

61.04 
58.84 

58.52 
59.49 

 
62.05 

61.40 
 

- 
- 

0.17 
 

- 
- 

- 
  

C
O

 
56.39 

57.64 
56.00 

58.58 
  

54.30 
57.87 

  
  

1 V
alues are average of 6 replicates. SLW

, slaughter w
eight; H

C
W

, hot carcass w
eight; C

C
W

, cold carcass w
eight; C

. Length, carcass length. P-
values for sex interactions are listed in A

ppendix Table A
 2.1 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
 3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).   
4 C

old C
arcass W

eight (C
CW

) w
as recorded 24 hours post slaughter. 

5 D
ressing Percentage w

as calculated by ((H
C

W
/B

W
) × 100). 

6 Shrink Loss w
as calculated by (((H

C
W

-C
C

W
)/ H

C
W

) × 100). 
7 ΔpH

 w
as calculated by (45 m

in pH
-24 hr pH

). 
8 C

arcass Length w
as m

easured from
 the anterior edge of the sym

physis pubic to the recess of the first rib. 
9 V

ertical distance refers to depth vertical to the 10
th rib; H

orizontal distance refers to w
idth horizontal to the 10

th rib. 
10 A

rea w
as m

easured w
ith a plastic standard grid as described by N

PPC
 (2000).  

 
 



45 
 Table 2.3 Effect of different fat sources and V

E supplem
entation on prim

al cuts of pigs 1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

A
TA

, ppm
 

 
γ-T, ppm

  
 

Level 
 

 
Isoform

s 3 

Item
s 

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
Prim

al cuts 4, kg 
  B

oston B
utt 

TW
 

5.15 
4.68 

4.88 
4.93 

 
4.91 

4.96 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
5.14 

4.63 
5.07 

4.58 
 

5.08 
4.98 

 
 

  Picnic Shoulder 
TW

 
5.11 

5.60 
5.44 

4.83 
 

5.63 
4.85 

 
- 

- 
I 

 
- 

- 
0.17 

 
C

O
 

4.93 
5.17 

5.08 
5.57 

 
5.22 

5.08 
 

 

  Loin 
TW

 
12.96 

12.37 
12.71 

12.41 
 

12.27 
12.58 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

12.07 
11.83 

12.51 
12.51 

 
12.69 

12.59 
 

 

  Spare R
ibs 

TW
 

2.20 
2.04 

1.99 
1.91 

 
2.10 

2.07 
 

0.14 
- 

- 
 

- 
- 

- 
 

C
O

 
1.89 

2.15 
1.95 

1.93 
 

1.97 
1.91 

 
 

  H
am

 
TW

 
12.49 

12.87 
12.68 

12.84 
 

12.40 
12.36 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

12.54 
12.37 

12.76 
13.06 

 
12.69 

12.73 
 

 

  B
elly 

TW
 

9.75 
9.52 

9.41 
9.36 

 
8.88 

9.53 
 

- 
- 

- 
 

0.11 
0.14 

- 
 

C
O

 
10.03 

9.95 
9.36 

9.49 
 

9.49 
9.12 

 
 

Prim
al cuts 5, %

 hot carcass w
eight 

  B
oston B

utt 
TW

 
4.57 

4.26 
4.33 

4.37 
 

4.24 
4.37 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

4.51 
4.07 

4.69 
4.02 

 
4.50 

4.38 
 

 

  Picnic Shoulder 
TW

 
4.51 

5.06 
4.83 

4.28 
 

4.86 
4.29 

 
- 

0.06 
I 

 
0.07 

- 
- 

 
C

O
 

4.32 
4.55 

4.72 
4.88 

 
4.60 

4.46 
 

 

  Loin 
TW

 
11.45 

11.22 
11.24 

11.00 
 

10.53 
11.13 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

10.57 
10.40 

11.60 
10.99 

 
11.20 

11.08 
 

 
  Spare R

ibs 
TW

 
1.87 

1.85 
1.77 

1.69 
 

1.82 
1.84 

 
- 

- 
- 

 
- 

- 
0.17 

 
C

O
 

1.65 
1.89 

1.89 
1.70 

 
1.73 

1.68 
 

 

  H
am

 
TW

 
11.03 

11.66 
10.87 

11.44 
 

10.71 
10.94 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

10.98 
11.39 

11.46 
11.68 

 
11.19 

11.21 
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 Table 2.3 C

ontinued  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  B

elly 
TW

 
8.61 

8.63 
8.34 

7.99 
 

7.67 
8.06 

 
0.11 

- 
- 

 
0.02 

- 
- 

  
C

O
 

8.80 
8.74 

8.68 
8.34 

  
8.36 

8.08 
  

  
1 V

alues are average of 6 replicates. P-values for sex interactions are listed in A
ppendix Table A

 2.1 
2 Statistical analysis used 8 treatm

ents w
ith a 4×2 factorial arrangem

ent of four levels of A
TA

 and tw
o fat sources (data colum

ns 1, 2, 3 and 4). 
L, linear; Q

, quadratic. I Interaction betw
een fat and dietary V

E level, P < 0.05. 
 3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).   
4 Prim

al cuts w
ere m

ade according to Institutional M
eat Purchasing Specifications (N

A
M

PA
, 2010). 

5 Prim
al cuts percentage of hot carcass w

eight (H
CW

) w
as m

easured by ((prim
al cut w

eight/ H
C

W
) × 100). 

 
 



47 
 

2.4.2 Meat Quality 

The water holding capacity was not affected by dietary treatments when measured 

by drip loss and purge loss in Table 2.4, however, an increase in purge loss (linear and 

quadratic, P < 0.01) was observed with increasing retail display. Subjective meat quality 

measurements were not affected by dietary treatments. The γ-tocopherol supplementation 

tended to have a lighter subjective color (P=0.06).  As expected, belly flex was affected by 

dietary fat sources but not dietary vitamin E supplementation. Pigs fed tallow diets had a 

higher lateral distance (P < 0.05) and a lower vertical distance (P < 0.05) then pigs fed corn 

oil diets. Pigs fed tallow diets also had a greater belly flex than pigs fed corn oil diets (P < 

0.01). Bellies from pigs fed TW fat sources tended to have firmer bellies, as anticipated 

since TW is higher in saturated fatty acids.  

Shelf life samples were measured at retail times of 1, 3, 5, 7 days (Table 2.5 and 

2.6), vacuum packaged and then measured again at 30, 32, 34, and 36 days (Table 2.7 and 

2.8). No interactions between levels of dietary ATA supplementation and fat sources were 

observed on meat color. Increases in L* (lighter; linear and quadratic, P < 0.01), a* (redder, 

linear and quadratic, P < 0.01), b* (more yellow; linear and quadratic, P < 0.01), a/b (more 

red; linear and quadratic, P < 0.01), and chroma (more saturated; linear and quadratic, P < 

0.01) were observed with increasing retail display. Hue angle decreased (more red; linear 

and quadratic; P < 0.01) with time. No interaction between time and level of ATA or fat 

sources were observed, which reflected the lack of effect of dietary ATA on the developing 

of the color loss with time under retail display. 

Interactions between isoforms and level of VE were observed on L* (Day 1, P = 

0.04; Day 3, P < 0.01; Day 5, P < 0.01; Day 7, P < 0.01), a* (Day 3, P = 0.06; Day 3, P = 
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0.01; Day 7, P = 0.05), b* (Day 3, P = 0.04), a/b (Day 1, P = 0.08; Day 3, P = 0.02; Day 

5, P = 0.02; Day 7, P = 0.05), hue angle (Day 1, P = 0.08; Day 3, P = 0.02; Day 5, P = 

0.02; Day 7, P = 0.05) and chroma (Day 3, P <0.01; Day 5, P = 0.03; Day 7, P = 0.06). 

Additionally, differences between the two isoforms were detected on L* (Day 1, P = 0.02; 

Day 3, P = 0.07), b* (Day 1, P < 0.01), a/b (Day 1, P = 0.03), hue angle (Day 1, P = 0.03), 

and chroma (Day 1, P = 0.02). Interactions between time and isoforms of VE (P < 0.01) 

was observed for b* and chroma. No interactions between isoforms of VE and fat sources 

were observed on meat color during the first shelf life period.  

Decreases in L* (darker; quadratic, P < 0.01), a* (less red; linear and quadratic, P 

< 0.01), a/b (less red; linear and quadratic, P < 0.01), and chroma (less saturated; linear and 

quadratic, P < 0.01) were observed with increasing retail time after 30 days vacuum 

packaged. However, b* (less yellow; quadratic, P < 0.01) and hue angle (less red; linear, 

P < 0.01) increased with time. Pigs fed tallow had a higher L* value (Day 1, P = 0.01; Day 

32, P = 0.06; Day 34, P = 0.03; Day 26, P = 0.06), higher b* value (Day 30, P = 0.05; Day 

32, P = 0.04; Day 34, P = 0.02), lower a/b ratio (Day 32, P = 0.02; Day 34, P = 0.08), and 

higher hue angle (Day 32, P = 0.07; Day 34, P = 0.08). However, further comparison of 

the slopes of color development with time showed no interactions between time and fat 

sources or dietary VE treatments (isoforms and levels). No interactions between isoforms 

of VE and dietary level or fat sources were observed on meat color during the second shelf 

life period.  

TBAR results, adapted from Wang (2019) in a collaborative study, were also 

measured to assess oxidative stability and the results are provided in Table 2.9. No 

interactions between fat sources and levels of dietary VE treatments (isoforms or levels) 
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were observed in this measurement. While numerical effects of increasing dietary ATA 

were present, levels of ATA did not affect lipid oxidation from day 1 to day 5 as measured 

by TBARS, however increasing dietary ATA decreased TBARS at day 7 (linear, P < 0.01). 

TBARS content in the loin muscle increased with time (linear and quadratic, P < 0.01), 

interaction between time and levels of ATA was observed (P < 0.05). Further comparison 

of the slopes for the development of TBARS along with time indicated that the TBARS in 

the loin muscle from pigs fed 11 ppm increased in a greater (P < 0.05) slope compared to 

that from pigs fed 40, 100 and 200 ppm ATA.   

No effect of isoform was observed on the lipid oxidation in this study. Dietary fat 

sources affected (P < 0.05) lipid oxidation from day 1 to day 7. When measured as TBARS 

content, the lipid oxidation development with time was affected by fat sources as indicated 

by the interaction between time and fat sources (P < 0.01). Further comparison of the slopes 

for the development of TBARS along with time also confirmed this effect, where the 

TBARS content from pigs fed CO diets increased in a greater (P < 0.05) slope compared 

to those from pigs fed TW diets.
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Table 2.4 Effect of different fat sources and V
E supplem

entation on m
eat quality of pork

1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

A
TA

, ppm
 

 
γ-T, ppm

  
 

Level 
 

 
Isoform

s 3 

Item
s 

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
D

rip Loss 4, %
 

TW
 

5.99 
4.56 

7.40 
5.21 

 
5.85 

7.19 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
7.38 

5.20 
5.20 

5.36 
 

6.62 
8.97 

 
 

Purge Loss 5, %
 

 
 

 
 

 
 

 
 

   D
ay 7 

TW
 

3.60 
4.50 

4.12 
4.43 

 
3.03 

4.40 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
4.65 

3.88 
4.34 

4.51 
 

3.92 
5.30 

 
 

   D
ay 14 

TW
 

8.13 
9.14 

8.94 
8.90 

 
8.42 

9.71 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
9.22 

9.73 
9.43 

9.36 
 

9.85 
7.98 

 
 

   D
ay 30 

TW
 

12.02 
12.89 

10.98 
11.71 

 
13.43 

13.60 
 

- 
- 

- 
 

0.14 
- 

- 
 

C
O

 
11.42 

13.54 
12.00 

13.82 
 

12.78 
13.55 

 
 

Subjective M
eat C

olor 6 
 

 
 

 
 

 
 

 

   C
olor 

TW
 

2.60 
3.20 

2.67 
2.40 

 
2.67 

2.17 
 

- 
- 

- 
 

0.06 
- 

- 
 

C
O

 
3.00 

3.00 
2.50 

2.83 
 

2.67 
2.20 

 
 

   M
arbling 

TW
 

1.40 
2.00 

2.00 
2.20 

 
1.83 

1.50 
 

- 
0.18 

- 
 

0.12 
- 

- 
 

C
O

 
1.80 

2.00 
2.17 

1.33 
 

1.50 
1.40 

 
 

   Firm
ness 

TW
 

2.40 
2.80 

2.50 
2.20 

 
2.17 

2.33 
 

0.10 
- 

- 
 

0.15 
- 

- 
 

C
O

 
2.60 

2.75 
2.17 

1.83 
 

2.33 
1.60 

 
 

B
elly Flex

7, cm
 

 
 

 
 

 
 

 
 

   Left Side 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
      Lateral  

TW
 

18.03 
14.29 

16.09 
17.15 

 
15.49 

15.75 
 

- 
- 

<0.01 
 

- 
- 

- 
 

C
O

 
11.68 

10.48 
11.01 

11.26 
 

10.16 
9.14 

 
 

      V
ertical 

TW
 

29.53 
27.94 

27.73 
27.94 

 
28.36 

27.18 
 

- 
- 

0.04 
 

- 
- 

- 
 

C
O

 
31.50 

31.05 
29.85 

29.13 
 

32.17 
31.24 
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Table 2.4 C
ontinued. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   R

ight Side 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

      Lateral  
TW

 
16.51 

13.97 
13.34 

15.24 
 

15.49 
13.46 

 
- 

0.17 
<0.01 

 
- 

- 
- 

 
C

O
 

10.41 
10.41 

11.01 
11.18 

 
10.37 

9.40 
 

 
      V

ertical 
TW

 
29.85 

29.46 
30.23 

29.72 
 

30.48 
28.15 

 
- 

- 
0.15 

 
- 

- 
- 

 
C

O
 

32.26 
30.16 

31.33 
31.88 

 
30.48 

31.24 
 

 
B

elly A
ngle

8, o 
 

TW
 

52.75 
44.31 

47.18 
48.28 

 
50.69 

44.45 
 

- 
- 

<0.01 
 

- 
- 

- 
C

O
 

31.65 
34.26 

34.94 
34.08 

  
33.48 

29.52 
  

  
1 V

alues are average of 6 replicates. P-values for sex interactions are listed in A
ppendix Table A

 2.2 
2 Statistical analysis used 8 treatm

ents w
ith a 4×2 factorial arrangem

ent of four levels of A
TA

 and tw
o fat sources (data colum

ns 1, 2, 3 and 4). 
L, linear; Q

, quadratic. N
o interaction betw

een fat sources and dietary A
TA

 levels w
as observed. 

 3 Statistical analysis used 8 treatm
ents w

ith a 2×2×2 factorial arrangem
ent of tw

o isoform
s of V

E, tw
o levels of V

E and tw
o fat sources (data 

colum
ns 2, 3, 5, and 6).  

4 D
rip loss = ((Initial w

eight – 48 hr w
eight) / Initial w

eight) × 100. 
5 Purge loss = ((Initial w

eight – D
ay 7, 14, 30) / Initial w

eight) × 100. Tim
e effect, linear and quadratic, P < 0.01; no interaction betw

een tim
e 

and fat sources or tim
e and dietary V

E treatm
ents w

as observed. 
6 Subjective N

ational Pork Producers C
ouncil; color scale 1-6 (1 = light, 6 = dark); m

arbling scale (estim
ated %

 intram
uscular fat); firm

ness 1-5 
(1 = soft, 5 = firm

).  
7 B

elly flex w
as m

easured as the sum
m

ation of each lateral and vertical from
 right and left ends of the belly. A

 zero lateral w
ould be a com

plete 
folding of the belly and a zero vertical w

ould be flat. A
 higher lateral flex w

ould be a firm
er belly. A

 low
er vertical w

ould be a firm
er belly. 

8 B
elly angle w

as calculated as: arctangent (left side lateral distance/ left side vertical distance) + arctangent (right side lateral distance/ right 
side vertical distance).   
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Table 2.5 Effect of different fat sources and V
E supplem

entation on L*a*b* objective color of Longissim
us thoracis in sim

ulated retail 
display

1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

A
TA

, ppm
 

 
γ-T, ppm

 
 

Level 
 

 
Isoform

s 3 

Item
s 

Fat 
11 

40 
100 

200 
 

40 
100 

 
L 

Q
 

Fat 
 

IF 
IF*Level 

IF*Fat 
L*

4 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
D

ay 1 
TW

 
59.10 

53.89 
60.60 

58.12 
 

58.99 
59.34 

 
- 

- 
0.13 

 
0.02 

0.04 
- 

 
C

O
 

57.01 
55.10 

57.31 
56.01 

 
58.96 

59.58 
 

 

D
ay 3 

TW
 

60.32 
54.74 

61.67 
61.47 

 
57.77 

58.59 
 

- 
- 

- 
 

- 
<0.01 

- 
 

C
O

 
60.44 

55.73 
58.96 

58.00 
 

60.05 
57.98 

 
 

D
ay 5 

TW
 

61.08 
54.68 

61.90 
61.29 

 
59.37 

58.85 
 

- 
- 

- 
 

0.07 
<0.01 

- 
 

C
O

 
61.10 

55.74 
58.64 

59.89 
 

60.67 
58.24 

 
 

D
ay 7 

TW
 

60.53 
55.16 

62.32 
61.38 

 
59.90 

59.23 
 

0.06 
- 

- 
 

0.15 
<0.01 

- 
 

C
O

 
58.41 

56.89 
59.45 

60.18 
 

61.23 
58.18 

 
 

a*
5 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 1 

TW
 

8.71 
9.57 

8.62 
8.86 

 
9.11 

9.15 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
10.20 

8.58 
9.36 

9.33 
 

8.92 
9.86 

 
 

D
ay 3 

TW
 

11.67 
14.68 

12.53 
12.15 

 
13.03 

13.52 
 

- 
- 

0.17 
 

- 
0.06 

- 
 

C
O

 
13.51 

13.96 
13.21 

13.10 
 

12.99 
13.53 

 
 

D
ay 5 

TW
 

10.97 
14.63 

11.65 
11.60 

 
12.56 

12.67 
 

- 
- 

- 
 

0.15 
0.01 

- 
 

C
O

 
12.17 

13.41 
12.47 

12.60 
 

12.07 
12.68 

 
 

D
ay 7 

TW
 

10.63 
13.82 

11.57 
10.70 

 
12.05 

11.81 
 

- 
- 

- 
 

0.08 
0.05 

- 
 

C
O

 
11.48 

12.55 
11.55 

11.54 
 

11.45 
11.71 

 
 

b*
6 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 1 

TW
 

16.26 
14.47 

15.72 
15.68 

 
16.14 

16.57 
 

- 
- 

- 
 

<0.01 
- 

- 
 

C
O

 
16.74 

14.14 
15.62 

15.62 
 

16.18 
16.71 

 
 

D
ay 3 

TW
 

17.92 
18.46 

17.86 
17.66 

 
18.19 

18.30 
 

- 
- 

- 
 

- 
0.04 

- 
 

C
O

 
18.03 

18.59 
17.57 

18.17 
 

17.88 
18.10 
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Table 2.5 C
ontinued. 

D
ay 5 

TW
 

17.58 
18.05 

17.35 
17.39 

 
17.42 

17.81 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
17.67 

18.05 
17.67 

17.99 
 

18.11 
17.74 

 
 

D
ay 7 

TW
 

17.08 
17.79 

17.18 
16.80 

 
17.12 

17.29 
 

- 
- 

- 
 

- 
- 

0.17 
 

C
O

 
17.10 

17.47 
17.03 

17.24 
 

17.74 
17.42 

 
 

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 2.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
 3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 L* values are a m

easure of lightness (higher value indicated a lighter color). Tim
e effect, linear and quadratic, P < 0.01. N

o interaction 
betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
5 a* values are a m

easure of redness (higher values indicated a redder color). Tim
e effect, linear and quadratic, P < 0.01; N

o interaction betw
een 

tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
6 b* values are a m

easure of yellow
ness (higher value indicated a m

ore yellow
 color); Tim

e effect, linear and quadratic, P < 0.01; interaction 
betw

een tim
e and isoform

s of V
E, P <0.01. N

o interaction betw
een tim

e and fat sources or tim
e and dietary V

E level w
as observed. 
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Table 2.6 Effect of different fat sources and V
E supplem

entation on derivatives of L*a*b* objective color of Longissim
us Thoracis in 

sim
ulated retail display

1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

A
TA

, ppm
 

 
γ-T, ppm

 
 

Level 
 

 
Isoform

s 3 

Item
s 

Fat 
11 

40 
100 

200 
 

40 
100 

 
L 

Q
 

Fat 
 

IF 
IF*Level 

IF*Fat 
a/b

4 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
D

ay 1 
TW

 
0.56 

0.66 
0.57 

0.57 
 

0.62 
0.55 

 
- 

- 
0.16 

 
0.03 

0.08 
- 

 
C

O
 

0.61 
0.61 

0.59 
0.59 

 
0.55 

0.59 
 

 

D
ay 3 

TW
 

0.65 
0.82 

0.69 
0.69 

 
0.73 

0.74 
 

- 
- 

- 
 

- 
0.02 

- 
 

C
O

 
0.73 

0.75 
0.73 

0.72 
 

0.70 
0.75 

 
 

D
ay 5 

TW
 

0.63 
0.80 

0.67 
0.67 

 
0.72 

0.71 
 

- 
- 

- 
 

- 
0.02 

- 
 

C
O

 
0.69 

0.74 
0.70 

0.70 
 

0.68 
0.71 

 
 

D
ay 7 

TW
 

0.62 
0.77 

0.63 
0.64 

 
0.71 

0.68 
 

- 
- 

- 
 

- 
0.05 

- 
 

C
O

 
0.67 

0.72 
0.68 

0.67 
 

0.64 
0.68 

 
 

H
ue A

ngle
5 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 1 

TW
 

1.06 
0.99 

1.05 
1.06 

 
1.02 

1.07 
 

- 
- 

0.15 
 

0.03 
0.08 

- 
 

C
O

 
1.02 

1.03 
1.04 

1.04 
 

1.07 
1.04 

 
 

D
ay 3 

TW
 

0.99 
0.89 

0.97 
0.97 

 
0.94 

0.94 
 

- 
- 

- 
 

- 
0.02 

- 
 

C
O

 
0.94 

0.93 
0.94 

0.97 
 

0.96 
0.93 

 
 

D
ay 5 

TW
 

1.01 
0.90 

0.98 
0.98 

 
0.95 

0.95 
 

- 
- 

- 
 

- 
0.02 

- 
 

C
O

 
0.97 

0.93 
0.96 

0.96 
 

0.98 
0.95 

 
 

D
ay 7 

TW
 

1.02 
0.92 

1.01 
1.01 

 
0.96 

0.97 
 

- 
- 

- 
 

- 
0.05 

- 
 

C
O

 
0.98 

0.95 
0.98 

0.98 
 

1.00 
0.98 

 
 

C
hrom

a
6 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 1 

TW
 

18.48 
17.35 

17.95 
18.03 

 
18.19 

18.93 
 

- 
- 

- 
 

0.02 
- 

- 
 

C
O

 
19.62 

16.54 
18.22 

17.59 
 

18.48 
19.41 

 
 

D
ay 3 

TW
 

21.40 
23.86 

21.99 
21.46 

 
22.07 

22.77 
 

- 
- 

- 
 

- 
<0.01 

- 
 

C
O

 
22.84 

23.26 
21.67 

22.42 
 

21.76 
22.61 
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Table 2.6 C
ontinued.  

D
ay 5 

TW
 

21.02 
23.00 

20.63 
20.93 

 
21.49 

21.88 
 

- 
- 

- 
 

- 
0.03 

- 
 

C
O

 
20.98 

22.49 
21.65 

21.99 
 

21.51 
21.83 

 
 

D
ay 7 

TW
 

20.15 
22.43 

20.32 
19.95 

 
20.97 

20.97 
 

- 
- 

- 
 

- 
0.06 

- 
 

C
O

 
20.12 

21.51 
20.60 

20.77 
 

21.13 
21.10 

 
 

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 2.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). L, 

linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 a/b is calculated as a*/b* (larger ratios indicated m

ore redness and less discoloration). Tim
e effect, linear and quadratic, P < 0.01. N

o interaction 
betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
5 H

ue angle represents the change from
 the true red axis (larger num

ber indicated shift from
 red to yellow

). Tim
e effect, linear and quadratic, P < 

0.01. N
o interaction betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
6 C

hrom
a is a m

easure of total color (larger num
ber indicated a m

ore vivid color). Tim
e effect, linear and quadratic, P < 0.01; interaction betw

een 
tim

e and isoform
s of V

E, P < 0.01. N
o interaction betw

een tim
e and fat sources or tim

e and dietary V
E A

TA
  treatm

ent level 
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Table 2.7 Effect of different fat sources and V
E supplem

entation on L*a*b* objective color of Longissim
us Thoracis in extended 

sim
ulated retail display

1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

A
TA

, ppm
 

 
γ-T, ppm

 
 

Level 
 

 
Isoform

s 3 

Item
s 

Fat 
11 

40 
100 

200 
 

40 
100 

 
L 

Q
 

Fat 
 

IF 
IF*Level 

IF*Fat 
L*

4 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
D

ay 30 
TW

 
60.44 

58.10 
59.33 

59.09 
 

57.54 
60.15 

 
- 

- 
0.01 

 
- 

- 
- 

 
C

O
 

55.64 
57.68 

57.12 
57.26 

 
58.55 

58.21 
 

 

D
ay 32 

TW
 

59.37 
60.27 

60.06 
59.16 

 
57.51 

61.36 
 

- 
- 

0.06 
 

- 
0.17 

- 
 

C
O

 
57.92 

58.14 
57.67 

57.33 
 

58.83 
57.56 

 
 

D
ay 34 

TW
 

59.09 
59.78 

59.48 
59.52 

 
57.60 

60.53 
 

- 
- 

0.03 
 

- 
0.19 

- 
 

C
O

 
55.98 

58.47 
57.81 

57.80 
 

59.63 
59.46 

 
 

D
ay 36 

TW
 

58.35 
59.56 

59.75 
59.27 

 
57.77 

60.77 
 

- 
- 

0.06 
 

- 
- 

0.16 
 

C
O

 
57.15 

56.55 
58.03 

56.98 
 

58.82 
60.89 

 
 

a*
5 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 30 

TW
 

10.58 
11.45 

11.56 
11.37 

 
10.14 

10.95 
 

- 
- 

- 
 

0.08 
- 

- 
 

C
O

 
10.85 

10.05 
11.47 

10.32 
 

11.08 
9.98 

 
 

D
ay 32 

TW
 

11.08 
11.72 

11.24 
11.46 

 
11.49 

11.12 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
12.09 

11.86 
12.42 

11.66 
 

11.83 
11.18 

 
 

D
ay 34 

TW
 

9.80 
10.18 

9.77 
9.78 

 
10.22 

9.80 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
10.44 

10.62 
10.56 

10.15 
 

10.12 
9.85 

 
 

D
ay 36 

TW
 

8.72 
9.06 

8.90 
8.60 

 
9.07 

9.35 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
8.08 

9.83 
9.31 

8.77 
 

9.41 
8.87 

 
 

b*
6 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 30 

TW
 

15.72 
16.27 

16.09 
16.03 

 
15.49 

16.02 
 

- 
0.17 

0.05 
 

0.19 
- 

- 
 

C
O

 
15.43 

15.44 
15.88 

15.13 
 

15.75 
14.98 

 
 

D
ay 32 

TW
 

16.36 
16.85 

16.61 
16.70 

 
16.14 

16.49 
 

- 
- 

0.04 
 

0.18 
- 

- 
 

C
O

 
16.19 

16.26 
16.30 

16.11 
 

16.62 
15.97 
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Table 2.7 C
ontinued. 

D
ay 34 

TW
 

16.04 
16.39 

16.39 
15.92 

 
15.97 

16.06 
 

- 
0.03 

0.02 
 

0.06 
0.05 

0.09 
 

C
O

 
15.66 

15.71 
16.07 

15.97 
 

16.39 
15.65 

 
 

D
ay 36 

TW
 

15.73 
15.82 

15.94 
15.92 

 
15.35 

15.95 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
15.59 

15.75 
15.62 

15.56 
 

15.60 
15.59 

 
 

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 2.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 L* values are a m

easure of lightness (higher value indicated a lighter color). Tim
e effect, quadratic, P < 0.01. N

o interaction betw
een tim

e and 
fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
5 a* values are a m

easure of redness (higher values indicated a redder color). Tim
e effect, linear and quadratic, P < 0.01. N

o interaction betw
een 

tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
6 b* values are a m

easure of yellow
ness (higher value indicated a m

ore yellow
 color). Tim

e effect, quadratic, P < 0.01. N
o interaction betw

een 
tim

e and fat sources or tim
e and dietary V

E treatm
ents (isoform

s and levels) w
as observed. 
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Table 2.8 Effect of different fat sources and V
E supplem

entation on derivatives of L*a*b* objective color of Longissim
us Thoracis in 

extended sim
ulated retail display

1 
 

 
Isoform

s 
 

P-value 
 

 
 

A
TA

2 
 

 
 

 
 

 
A

TA
, ppm

 
 

γ-T, ppm
 

 
Level 

 
 

Isoform
s 3 

Item
s 

Fat 
11 

40 
100 

200 
 

40 
100 

 
L 

Q
 

Fat 
 

IF 
IF*Level 

IF*Fat 
a/b

4 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
D

ay 30 
TW

 
0.67 

0.72 
0.71 

0.71 
 

0.66 
0.67 

 
- 

- 
- 

 
0.03 

- 
- 

 
C

O
 

0.72 
0.71 

0.72 
0.68 

 
0.70 

0.67 
 

 

D
ay 32 

TW
 

0.68 
0.70 

0.68 
0.69 

 
0.73 

0.66 
 

- 
- 

0.04 
 

0.10 
 

0.18 
 

C
O

 
0.75 

0.73 
0.76 

0.72 
 

0.72 
0.70 

 
 

D
ay 34 

TW
 

0.61 
0.62 

0.60 
0.62 

 
0.65 

0.59 
 

- 
- 

0.08 
 

- 
- 

- 
 

C
O

 
0.67 

0.68 
0.66 

0.63 
 

0.62 
0.63 

 
 

D
ay 36 

TW
 

0.56 
0.58 

0.54 
0.54 

 
0.59 

0.59 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
0.52 

0.62 
0.60 

0.57 
 

0.60 
0.57 

 
 

H
ue A

ngle
5 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 30 

TW
 

0.98 
0.95 

0.96 
0.96 

 
0.97 

0.98 
 

- 
- 

- 
 

0.04 
- 

- 
 

C
O

 
0.95 

0.95 
0.95 

0.98 
 

0.96 
0.98 

 
 

D
ay 32 

TW
 

0.98 
0.93 

0.98 
0.97 

 
0.94 

0.99 
 

- 
- 

0.07 
 

0.18 
- 

- 
 

C
O

 
0.93 

0.94 
0.92 

0.95 
 

0.93 
0.96 

 
 

D
ay 34 

TW
 

1.02 
1.01 

1.03 
1.02 

 
0.99 

1.04 
 

- 
- 

0.08 
 

- 
- 

- 
 

C
O

 
0.98 

0.98 
0.99 

1.01 
 

1.02 
1.01 

 
 

D
ay 36 

TW
 

1.07 
1.01 

1.08 
1.08 

 
1.04 

1.04 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
1.10 

1.01 
1.04 

1.06 
 

1.03 
1.05 

 
 

C
hrom

a
6 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
ay 30 

TW
 

18.98 
19.53 

19.45 
19.66 

 
18.53 

19.70 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
18.90 

17.92 
19.61 

18.35 
 

19.28 
18.02 

 
 

D
ay 32 

TW
 

19.80 
20.44 

20.08 
20.26 

 
20.05 

20.13 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
19.84 

20.13 
20.51 

19.90 
 

20.28 
19.51 
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Table 2.8 C
ontinued. 

D
ay 34 

TW
 

18.83 
19.24 

19.09 
18.70 

 
19.13 

19.26 
 

- 
0.16 

- 
 

- 
- 

- 
 

C
O

 
18.52 

18.97 
18.88 

18.93 
 

19.29 
18.50 

 
 

D
ay 36 

TW
 

18.05 
18.18 

18.13 
18.14 

 
17.84 

18.50 
 

- 
- 

- 
 

- 
- 

- 
  

C
O

 
17.64 

18.58 
18.24 

17.89 
 

18.33 
17.94 

  
  

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 2.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 a/b is calculated as a*/b* (larger ratios indicated m

ore redness and less discoloration). Tim
e effect, linear and quadratic, P < 0.01. N

o 
interaction betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
5 H

ue angle represents the change from
 the true red axis (larger num

ber indicated shift from
 red to yellow

). Tim
e effect, linear, P < 0.01. N

o 
interaction betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
6 C

hrom
a is a m

easure of total color (larger num
ber indicated a m

ore vivid color). Tim
e effect, linear and quadratic, P < 0.01. N

o interaction 
betw

een tim
e and fat sources or tim

e and dietary V
E treatm

ents (isoform
s and levels) w

as observed. 
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Table 2.9 Effect of different fat sources and V
E supplem

entation on shelf life of Longissim
us Thoracis m

easured as TB
A

R
S (µg M

D
A

/kg 
w

et m
eat) 1 

 
 

 
 

 
 

 
 

 
 

P-value 
 

 
Isoform

s 
 

A
TA

2 
 

 
 

 
 

 
A

TA
, ppm

 
 

γ-T, ppm
  

 
Level 

 
 

Isoform
s 3 

Item
s 

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
D

ay 1 
TW

 
0.28 

0.23 
0.22 

0.22 
 

0.26 
0.25 

 
- 

- 
0.02 

 
- 

- 
0.18 

 
 

C
O

 
0.26 

0.29 
0.29 

0.29 
 

0.27 
0.28 

 
 

D
ay 3 

TW
 

0.32 
0.31 

0.29 
0.30 

 
0.32 

0.30 
 

- 
- 

<0.01 
 

0.18 
0.17 

- 
 

C
O

 
0.37 

0.33 
0.36 

0.34 
 

0.39 
0.35 

 
 

D
ay 5 

TW
 

0.41 
0.35 

0.33 
0.39 

 
0.34 

0.33 
 

0.15 
0.12 

0.09 
 

- 
- 

- 
 

C
O

 
0.44 

0.39 
0.43 

0.37 
 

0.41 
0.46 

 
 

D
ay 7 

TW
 

0.74 
0.59 

0.53 
0.56 

 
0.63 

0.64 
 

<0.01 
0.15 

<0.01 
 

- 
- 

0.07 
 

C
O

 
0.87 

0.75 
0.78 

0.65 
 

0.61 
0.73 

 
 

1 A
dapted from

 W
ang et al. (2019). V

alues are average of 6 replicates. Tim
e effect, linear and quadratic, P < 0.01; interaction betw

een tim
e and 

dietary A
TA

 levels, P < 0.05; interaction betw
een tim

e and fat sources, P < 0.01. N
o interaction betw

een tim
e and isoform

s of V
E w

as 
observed. P-values for sex and other interactions are listed in A

ppendix Table A
. 2.2. 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 w

as observed.  
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 Tim

e effect on TB
A

R
S, linear and quadratic, P < 0.0001, w

ith interaction w
ith both fat sources and levels of A

TA
 (P < 0.05).  
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2.4.3 Sensory Analysis  
Five sensory attributes were evaluated and ranked on the following scale: tenderness 

1-6 (1= extremely tough; 6= extremely tender), juiciness 1-6 (1= extremely dry; 6= 

extremely juicy), off-flavor 1-6 (1=none; 6=intense off-flavor), pork intensity 1-6 (1=none; 

6= extremely intense), and overall liking 1-6 (1=extremely dislike; 6=extremely like) the 

results are provided in Table 2.10. Increasing dietary levels of ATA from 11 to 200 ppm 

increased Tenderness (P < 0.01), Juiciness (P < 0.01), and Overall approval (P < 0.01). 

There were no differences in dietary VE levels for off-flavor and flavor intensity. An 

interaction between fat and dietary ATA VE level for juiciness (P < 0.05) was observed, 

juiciness increased more for CO across ATA levels. The γ-T isoform displayed a less 

intense off-flavor (good flavor; P = 0.05) and less flavor intensity (P = 0.06) compared to 

ATA. No other effects of dietary treatment were observed on sensory analysis. 
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Table 2.10 Effect of different fat sources and V
E supplem

entation on sensory characteristics of the Longissim
us Thoracis

1 
 

 
 

 
 

 
 

 
 

 
P-value 

 
 

Isoform
s 

 
A

TA
2 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

A
TA

, ppm
 

 
γ-T, ppm

  
 

Level 
 

 
Isoform

s 3 

Item
s  

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
Tenderness 4 

TW
 

3.23 
3.65 

3.71 
4.00 

 
3.85 

3.70 
 

<0.01 
- 

- 
 

- 
- 

- 
 

C
O

 
3.00 

3.53 
3.88 

4.00 
 

3.90 
3.83 

 
 

Juiciness 5 
TW

 
3.30 

2.58 
3.10 

3.40 
 

3.19 
3.00 

 
<0.01 

- 
I 

 
- 

- 
0.09 

 
C

O
 

2.22 
3.34 

3.25 
3.73 

 
2.75 

2.88 
 

 
O

ff-Flavor 6 
TW

 
2.00 

1.91 
1.88 

1.70 
 

1.81 
1.68 

 
- 

- 
- 

 
0.05 

- 
- 

 
C

O
 

1.70 
1.81 

1.75 
1.75 

 
1.77 

1.55 
 

 
Flavor Intensity

6 
TW

 
3.30 

3.20 
3.33 

3.25 
 

3.17 
2.98 

 
- 

- 
- 

 
0.06 

- 
- 

 
C

O
 

3.31 
3.25 

3.33 
3.30 

 
3.00 

3.13 
 

 
O

verall A
pproval 7 

TW
 

3.13 
2.93 

3.15 
3.48 

 
3.31 

3.10 
 

<0.01 
- 

- 
 

- 
- 

- 
  

C
O

 
2.56 

3.44 
3.40 

3.65 
  

3.33 
3.33 

  
  

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 2.3. 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. I Interaction betw

een fat and dietary V
E level, P < 0.05. 

3 Statistical analysis used 8 treatm
ents w

ith a 2×2×2 factorial arrangem
ent of tw

o isoform
s of V

E, tw
o levels of V

E and tw
o fat sources (data 

colum
ns 2, 3, 5, and 6).  

4 Evaluated on a 6-point hedonic scale w
ith 1 = “extrem

ely tough” and 6 = “extrem
ely tender” used as anchors. 

5 Evaluated on a 6-point hedonic scale w
ith 1 = “extrem

ely dry” and 6= “extrem
ely juicy” used as anchors. 

6Evaluated on a 6-point hedonic scale w
ith 1 = “none” and 6 = “intense” used as anchors.  

7 Evaluated on a 6-point hedonic scale w
ith 1 = “extrem

ely dislike” and 6 = “extrem
ely like” used as anchors. 
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2.5  Conclusion 
 The results of the study demonstrated the interaction of dietary fat sources and VE 

supplementation on carcass characteristics, primal cuts, meat quality, oxidative stability 

and sensory characteristics of pigs grown to 150kg. Increasing dietary levels of ATA had 

beneficial impacts on carcass traits and sensory characteristics. Compared to dietary CO, 

pigs fed dietary TW had a greater belly depth and belly angle which could lead to poor 

bacon slicing yield. Feeding γ-T at 40 ppm, compared to ATA, resulted in a higher L*, 

lower a*, lower a/b, higher hue and lower chroma (paler less red color) while feeding at 

100 ppm resulted in a lower L*, higher a*, higher a/b, lower hue and higher chroma 

(darker redder color) for the first 7 days of retail display. Compared to CO, pigs fed TW 

displayed higher L* and b* values (Darker yellow color) for extended retail display. 

Tenderness, juiciness and overall approval increased with the increasing level of dietary 

vitamin E. Pigs fed γ-T had less of an off-flavor than pigs fed ATA. Overall, feeding a 

higher percentage of statured fatty acids leads to a more desirable pork belly. Also, 

supplementing higher levels of γ-T could improve shelf life color and improve consumer 

sensory analysis.  
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Chapter 3 BELLY/ BACON CHARACTERISTICS OF HEAVY WEIGHT 
(>150KG) PIGS FED DIFFERENT FAT SOURCES AND SUPPLEMENTATION 

OF VITAMIN E 
 

3.1  Abstract 

Two separate studies were conducted to evaluate the effect of dietary fat source and 

vitamin E supplementation on belly/bacon characteristics and quality of pigs grown to 

heavier weights (>150kg). For the first study, 64 individually fed pigs (half barrows and 

gilts; initial BW ~24-30 kg) were blocked by body weight and sex, and then randomly 

assigned to individual pens, pens were randomly assigned to 1 of the 8 dietary treatments 

in a 4 × 2 factorial arrangement. Fat treatments included cornstarch (CS), tallow (TW), 

corn oil (CO) and coconut oil (CN). Vitamin E (VE) supplementation was at 11 IU/kg 

(NRC, 2012) and 200 IU/kg in the form of DL (all-rac)-α-tocopheryl acetate. For the 

second study, individually fed pigs (n=72; 36 barrows, 36 gilts; 28.55 ± 1.16 kg) were 

randomly assigned to 12 dietary treatments in a 2 × 6 factorial arrangement. Fat treatments 

were tallow and corn oil. The vitamin E treatments included four levels of α-tocopheryl-

acetate (ATA; 11, 40, 100, and 200 ppm) and two levels of mixed tocopherols (primarily 

γ-tocopherol; 40 and 100 ppm). Pigs were humanely slaughtered at approximately 150 kg 

for both studies. Fresh belly characteristics were recorded 24 hrs post-slaughter. Bellies 

were then frozen and stored until commercial processing for bacon characteristics and 

quality measurements. Data analysis was performed by using PROC GLM in SAS. Pigs 

fed fat diets higher in saturated fatty acids (SFA) had a greater belly angle (P < 0.01) than 

pigs fed higher unsaturated fatty acid due to a higher lateral distance (P < 0.05) and a lower 

vertical distance (P < 0.05). Also, the shatter score was higher (P < 0.05) for pigs fed diets 
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higher in saturated fatty acids. For study 1, slicing yield decreased (P = 0.04) when dietary 

VE level was increased from 11 to 200ppm.  

For study 2, pigs fed ATA vitamin E had increased belly green weight (P = 0.04), pump 

weight (P = 0.02), pump percentage (P = 0.05), smoke weight (P = 0.02), chill weight (P 

= 0.02), and bacon slice weight (P = 0.04). CO had a higher slice shrink than TW (P = 

0.02) 

 

Keywords: vitamin E, isoforms, bacon, fat, heavy slaughter weight, pig 
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3.2 Introduction 

Due to the rising cost of feed ingredients, producers are considering alternative 

feedstuffs, such as dried distillers’ grains with solubles (DDGS) that are higher in 

unsaturated fatty acids. Additionally, the American Heart Association recommends 

limiting saturated fats because they can raise LDL-Cholesterol which can cause a higher 

risk for heart disease (AHA, 2015). The swine industry has responded to these challenges 

by developing leaner genotype pigs by supplementing swine diets with unsaturated fat 

sources which leads to higher polyunsaturated fatty acids (PUFA) in pork because the 

changes of the dietary fatty acid profile are able to be expressed in pork (Gatlin et al., 

2002). The increase of unsaturated fatty acids results in soft pork, which is associated with 

greater potential for oxidative problems and poor belly quality. The meats industry 

considers soft belly fat undesirable because it leads to poor bacon slicing.  

Several vitamins and minerals have been evaluated as dietary ingredients to enhance 

the growth of pigs and the quality of pork. Dietary inclusion of vitamin E has been reported 

to reduce lipid oxidation in pork and improve meat color (Guo et al., 2006; Lahucky et al., 

2007). Even with an observed trend of increased fatty acid unsaturation in pork with α-

tocopherol acetate inclusion in swine diets, lipid oxidation is still observed to be reduced 

(Guo et al., 2006). The effects of vitamin E supplementation on bacon are less pronounced, 

probably due to the presence of nitrite which can also act as an antioxidant (Bucklet and 

Connolly, 1980).  

Therefore, the objective of the two separate studies was to evaluate the effect of 

different dietary fat sources and variable vitamin E supplementation on belly/ bacon 

characteristics and quality of pigs grown to heavy slaughter weights. 
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3.3  Materials and Methods 

The growth and feeding phase of these experiments were carried out in environmentally 

controlled rooms at the University of Kentucky Swine Research Center. The slaughter and 

sample collection were performed at the University of Kentucky Meats Science Laboratory. 

The experiments were conducted under protocols approved by the Institutional Animal 

Care and Use Committee of the University of Kentucky. 

 

3.3.1  Animals, Diet and Experimental Design 

In study 1, a total of 64 individually fed pigs (half barrows and gilts; initial BW 

~24-30 kg) were blocked by body weight and sex, and then randomly assigned to individual 

pens, pens were randomly assigned to 1 of the 8 dietary treatments in a 4 × 2 factorial 

arrangement. Fat treatments included cornstarch (CS), tallow (TW), corn oil (CO) and 

coconut oil (CN). Vitamin E (VE) supplementation was at 11 IU/kg (NRC, 2012) and 200 

IU/kg in the form of DL (all-rac)-α-tocopheryl acetate (PROVIMIX D 50 SD, DSM 

Nutritional Products Inc., NJ). As defined in NRC (2012), one IU VE equals to 1 mg of 

DL- α-tocopheryl acetate.  

In study 2, which was a result of study 1, a total of 72 individually fed pigs (half 

barrows and gilts; initial BW ~24-30 kg) were blocked by sire, body weight, and sex, and 

then randomly assigned to individual pens. Pens were randomly assigned to 1 of the 12 

dietary treatments in a 2 x 6 factorial arrangement. Fat treatments included TW and CO. 

Vitamin E treatments included four levels α-tocopheryl-acetate (11, 40, 100 and 200 ppm) 

and two levels of mixed tocopherols (primarily γ-tocopherol; 40 and 100 ppm). The ATA 
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was suppled in the form of DL (all-rac)-α-tocopheryl acetate (ROVIMIX E 50 ADS, DSM 

Nutritional Products, Inc., GA US) in a dry form. The mixed tocopherols were supplied as 

Mixed Tocopherols 95 (DSM Nutritional Products, Inc., NJ US) in liquid form, which 

contained 0-15% α-tocopherol, less than 5% β-tocopherol, 55-75% γ-tocopherol, and 20-

30% δ-tocopherol. 

For both studies, the diets were corn-soybean meal (SBM) based diets in mash form 

and all experimental diets were formulated to meet or exceed NRC (2012) nutrient 

requirement estimates for grow-finishing pigs (Table 3.1 and 3.2). Treatment diets were 

fed to pigs up until slaughter, and slaughter weight was ~150 kg.
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Table 3.1 Study 1 diet com
position of diets w

ith different fat sources and V
E levels1 from

 Phase 1 to Phase 5 (as-fed basis) 
 

Phase 1 
 

  
Phase 2 

 
  

Phase 3 
 

  
Phase 4 

 
  

Phase 5 
 

Ingredient, %
 

C
S 

Fat 
C

S 
Fat 

C
S 

Fat 
C

S 
Fat 

C
S 

Fat 
C

orn 
60.08 

62.85 
66.48 

69.55 
70.55 

73.81 
73.64 

77.04 
76.75 

80.30 
Soybean m

eal, 48%
 C

P 
27.24 

28.50 
21.03 

22.00 
17.21 

18.00 
14.34 

15.00 
11.47 

12.00 
Fats 2 

- 
5.00 

- 
5.00 

- 
5.00 

- 
5.00 

- 
5.00 

C
orn starch 

9.19 
- 

9.19 
- 

9.19 
- 

9.19 
- 

9.19 
- 

L-Lysine H
C

l 
0.21 

0.22 
0.23 

0.24 
0.20 

0.21 
0.16 

0.17 
0.12 

0.13 
D

L-M
ethionine 

0.11 
0.12 

0.08 
0.09 

0.04 
0.04 

0.01 
0.01 

0.00 
0.00 

L-Threonine 
0.09 

0.09 
0.08 

0.09 
0.06 

0.06 
0.03 

0.04 
0.02 

0.03 
Lim

estone 
1.03 

1.08 
0.95 

0.99 
0.84 

0.88 
0.74 

0.77 
0.65 

0.68 
D

icalcium
 phosphate 

0.88 
0.92 

0.79 
0.82 

0.75 
0.78 

0.72 
0.75 

0.62 
0.65 

Salt 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
V

itam
in prem

ix 3 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 

M
ineral prem

ix 4 
0.14 

0.15 
0.14 

0.15 
0.14 

0.15 
0.14 

0.15 
0.14 

0.15 

C
holine 5 

0.03 
0.03 

0.03 
0.03 

0.03 
0.03 

0.03 
0.03 

0.03 
0.03 

Santoquin 6 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 
0.02 

0.02 

A
B

-20 7 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
0.48 

0.50 
Total 

100.00 
100.00 

100.00 
100.00 

100.00 
100.00 

100.00 
100.00 

100.00 
100.00 

C
alculated nutrient level, %

 
M

E, M
cal/kg 

3.32 
3.47 

3.33 
3.49 

3.34 
3.50 

3.35 
3.50 

3.36 
3.51 

C
P 

18.31 
19.13 

15.87 
16.58 

14.31 
14.94 

13.12 
13.70 

11.96 
12.48 

SID
 Lys 

0.99 
1.04 

0.86 
0.90 

0.74 
0.78 

0.64 
0.67 

0.54 
0.56 

SID
 Lys/M

E 
2.99 

2.99 
2.58 

2.58 
2.22 

2.22 
1.92 

1.92 
1.61 

1.61 
SID

 M
et 

0.37 
0.38 

0.30 
0.32 

0.25 
0.26 

0.20 
0.21 

0.18 
0.19 

SID
 C

ys 
0.25 

0.26 
0.22 

0.24 
0.21 

0.22 
0.20 

0.21 
0.18 

0.19 
SID

 M
+C

 
0.62 

0.65 
0.53 

0.55 
0.45 

0.47 
0.40 

0.42 
0.37 

0.38 
SID

 Thr 
0.64 

0.67 
0.56 

0.58 
0.48 

0.50 
0.42 

0.44 
0.37 

0.39 
SID

 Trp 
0.19 

0.20 
0.16 

0.17 
0.14 

0.14 
0.12 

0.13 
0.11 

0.11 
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Table 3.1 continued 
SID

 A
rg 

1.08 
1.13 

0.90 
0.94 

0.79 
0.82 

0.70 
0.73 

0.62 
0.65 

SID
 H

is 
0.43 

0.45 
0.37 

0.39 
0.34 

0.35 
0.31 

0.33 
0.29 

0.30 
SID

 Ile 
0.66 

0.69 
0.55 

0.58 
0.49 

0.51 
0.44 

0.46 
0.39 

0.41 
SID

 Leu 
1.37 

1.43 
1.23 

1.28 
1.14 

1.19 
1.07 

1.12 
1.01 

1.05 
SID

 Phe 
0.77 

0.81 
0.66 

0.70 
0.60 

0.62 
0.55 

0.57 
0.50 

0.52 
SID

 Tyr 
0.50 

0.53 
0.43 

0.45 
0.39 

0.40 
0.35 

0.37 
0.32 

0.33 
SID

 P+T 
1.28 

1.34 
1.10 

1.15 
0.98 

1.03 
0.90 

0.94 
0.81 

0.85 
SID

 V
al 

0.72 
0.75 

0.62 
0.64 

0.55 
0.58 

0.51 
0.53 

0.46 
0.48 

C
a 

0.67 
0.70 

0.59 
0.62 

0.54 
0.56 

0.48 
0.51 

0.42 
0.44 

STTD
 P 

0.31 
0.32 

0.28 
0.29 

0.26 
0.27 

0.25 
0.26 

0.22 
0.23 

Total P 
0.52 

0.54 
0.47 

0.49 
0.45 

0.46 
0.43 

0.45 
0.40 

0.41 
1 D

ietary V
E levels (11 and 200 ppm

) w
ere applied to each basal diet. 

2 Fat treatm
ent included corn starch, corn oil, tallow

 and coconut oil. 
3 Supplied the follow

ing per kg of diet: 7,000 IU
 of vitam

in A
; 1,500 IU

 of vitam
in D

3 ; 2.0 m
g of vitam

in K
; 0.03 m

g of vitam
in B

12 . 
7.0 m

g of riboflavin; 25.0 m
g of pantothenic acid; 20.0 m

g of niacin; 1.0 m
g of folic acid; 2.5 m

g of vitam
in B

6 ; 2.0 m
g of thiam

in; and 
0.15 m

g of biotin. 
4 Supplied the follow

ing per kg of added fat diet: 50 m
g of M

n as m
anganese hydroxychloride; 100 m

g of Fe as ferrous sulfate m
onohydrate; 

125 m
g of Zn as zinc hydroxychloride; 20 of C

u as tribasic copper chloride; 0.35 m
g of I as calcium

 iodate; and 0.30 m
g of Se as sodium

 selenite. 
5 Provided 150 m

g per kg of choline to the final diet. 
6 Santoquin (M

onsanto, St. Louis, M
O

) supplied 130 m
g/kg ethoxyquin to the final diet. 
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Table 3.2 Study 2 Basal diet composition of diets with different fat sources1 and VE 
isoform/levels2 from Phase 1 to Phase 5 (as-fed basis) 

Ingredient, % Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
Corn 62.85 69.55 73.81 77.04 80.17 
Soybean meal, 48% CP 28.50 22.00 18.00 15.00 12.00 
Fat (tallow or corn oil) 5.00 5.00 5.00 5.00 5.00 
L-Lysine HCL 0.22 0.24 0.21 0.17 0.22 
DL-Methionine 0.12 0.09 0.04 0.01 0.01 
L-Threonine 0.09 0.09 0.06 0.04 0.05 
Limestone 1.08 0.99 0.88 0.77 0.68 
Dicalcium phosphate 0.92 0.82 0.78 0.75 0.65 
Salt 0.50 0.50 0.50 0.50 0.50 
Vitamin premix3 0.02 0.02 0.02 0.02 0.02 
Trace mineral premix4 0.15 0.15 0.15 0.15 0.15 
Choline5 0.03 0.03 0.03 0.03 0.03 
Santoquin6 0.02 0.02 0.02 0.02 0.02 
AB-207 0.50 0.50 0.50 0.50 0.50 

Total 100.00 100.00 100.00 100.00 100.00 
      

Calculated nutrient level, % Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
ME, Mcal/kg 3.47 3.49 3.50 3.50 3.51 
CP, % 19.13 16.58 14.94 13.70 12.59 
SID Lys 1.04 0.90 0.78 0.67 0.64 
SID Lys/ME 2.99 2.58 2.22 1.92 1.82 
SID Met 0.38 0.32 0.26 0.21 0.20 
SID Cys 0.26 0.24 0.22 0.21 0.19 
SID M+C 0.65 0.55 0.47 0.42 0.39 
SID Arg 1.13 0.94 0.82 0.73 0.65 
SID His 0.45 0.39 0.35 0.33 0.30 
SID Ile 0.69 0.58 0.51 0.46 0.41 
SID Leu 1.43 1.28 1.19 1.12 1.05 
SID Phe 0.81 0.70 0.62 0.57 0.52 
SID Tyr 0.53 0.45 0.40 0.37 0.33 
SID P+T 1.34 1.15 1.03 0.94 0.85 
SID Thr 0.67 0.58 0.50 0.44 0.41 
SID Trp 0.20 0.17 0.14 0.13 0.11 
SID Val 0.75 0.64 0.58 0.53 0.48 
SID Ca 0.7 0.62 0.56 0.51 0.44 
Total P 0.54 0.49 0.46 0.45 0.41 
STTD P 0.32 0.29 0.27 0.26 0.23 
1 Fat treatment included corn oil and tallow  
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2 Dietary VE treatments including four levels of ATA (11, 40, 100, and 200 ppm) and two 
levels of mixed tocopherols (40 and 100 ppm) were applied to each basal diet. 
3 Supplied the following per kg of diet: 7,000 IU of vitamin A; 1,500 IU of vitamin D3; 2.0 mg 
of vitamin K; 0.03 mg of vitamin B12; 7.0 mg of riboflavin; 25.0 mg of pantothenic acid; 20.0 
mg of niacin; 1.0 mg of folic acid; 2.5 mg of vitamin B6; 2.0 mg of thiamin; and 0.15 mg of 
biotin. 
4 Supplied the following per kg of added fat diet: 50 mg of Mn as manganese hydroxychloride; 
100 mg of Fe as ferrous sulfate monohydrate; 125 mg of Zn as zinc hydroxychloride; 20 of Cu 
as tribasic copper chloride; 0.35 mg of I as calcium iodate; and 0.30 mg of Se as sodium 
selenite. 
5 Provided 150 mg per kg of choline to the final diet. 
6 Santoquin (Monsanto, St. Louis MO) supplied 130 mg/kg ethoxyquin to the final diet. 
7 Clay product from Prince Agri Products, Inc., Quincy IL. 
 

 

3.3.2  Slaughter and Fresh Belly Measurements  

 Pigs were humanely slaughtered at ~150 kg live weight at the University of 

Kentucky (UK) Meat Lab under USDA inspection. Pigs to be slaughtered were weighed 

(BW) then loaded onto a transport vehicle and transferred to the UK Meat Lab following a 

trip of 20km which was around 40 minutes. Pigs were then slaughtered after a resting 

period of at least 30 minutes. The slaughter process used humane normal commercial 

processing procedures including electrical stunning, exsanguination, dehairing, 

evisceration and carcass washing.   

The bellies (IMPS #408; squared at each end) were removed and weighed 

individually according to Institutional Meat Purchasing Specifications (North American 

Meat Processors Association, 2010). Bellies were divided into six sections then belly depth 

was measured in the geographic middle of each section. Belly flex was measured to 

determine belly firmness using an objective test developed by Rentfrow et al. (2003). The 

detailed procedure for this measurement was previously described by Cromwell et al. 

(2011). The spareribs, related cartilage and remaining leaf fat were removed, and the bellies 
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were squared. The fresh bellies with the skin on were then centered, fat side down, on a 

7.5-cm diameter polyvinyl chloride pipe mounted perpendicular to a board marked with a 

2.54-cm grid matrix. Lateral and vertical flexes were determined from the degree of belly 

flex relative to the grid matrix. A vertical belly flex of zero meant the belly was parallel to 

the floor and completely stiff. A lateral belly flex of 10 cm meant that the belly flexed to a 

point where there was 10 cm between the end of the squared belly and a vertical line 

directly below the center of the supporting polyvinyl chloride pipe. Thus, a lower lateral 

flex and a higher vertical flex indicated a softer, more flexible, belly. The belly flex 

measurements were determined in a room maintained at 7°C. The bellies were boxed, and 

then frozen (-22°C) until further analyses.  

 

Figure 3.1 Apparatus used to quantify belly flex measurements. 

3.3.3 Bacon Processing  

Bellies were thawed (4°C) for 24hr and skinned at the University of Kentucky Meat 

Science Laboratory. Due to temperature abuse and freezer burn some of the bellies were 

excluded from the study (Appendix Table A. 3.1). The bellies were then transported 420km 

to a commercial packing plant where they were weighed before (green weight) and after 
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injection (pumped weight). The bellies were pumped fat side down using a Townsend 

multi-needle bacon injection pump (Townsend INC., Des Monies, IA). The proprietary 

commercial brine was injected to 117% of the bellies green weight and allowed to drain to 

110% of the green weight. Bellies were hung on a bacon tree by a bacon comb attached at 

the flank end and heat processed according to the plants proprietary commercial protocol. 

Following heat processing, bacons were removed from the smokehouse, chilled overnight 

at 4°C, and then placed in a tempering cooler (-4°C) to facilitate optimal pressing and 

slicing. The weights of the bacon trees were taken after injection, after smoking and after 

chill. Smokehouse yield was calculated as (Individual pump weights × (bacon tree 

smokehouse weight/bacon tree injection weight)). The individual chill weights of each 

belly were calculated as (Individual pump weights × (bacon tree chill weight/bacon tree 

injection weight)). Full bacon slabs were pressed using a commercial bacon press 

(Hoegger, Provisur Technologies, Inc, Chicago, IL) and then sliced by a high-speed slicer 

(IBS 2000 Vision, Marel, Norwich, UK) at 12 slices/cm. An average of 24 slices of bacon 

were placed on slip-sheets (complete with all ends and pieces) and placed in boxes. Boxes 

were sealed and properly labeled for delivery to the University of Kentucky Meat Science 

Laboratory.  

 

3.3.4 Bacon Measurements 

Slicing yield was determined by weighing the center portions of the bacon slab after 

the removal of comb marks and all incomplete slices. The remaining bacon slab, containing 

only commercially acceptable slices, was divided into five separate sections and labeled as 

A, B, C, D, and E (Rentfrow et al., 2002; Mandigo, 1998). A slice from each section was 



 

75 
 

removed and evaluated for fracture analysis. A trained person evaluated fracture analysis 

by rolling the bacon slice and assigning a score for each quadrant. The scores were then 

averaged for each slice. A score of 0 indicated that no visual cracks in the fat or shattering 

could be detected, the scoring increased in severity with 2, 3, 4, 5 and a score of 6 being 

indicative of a “spider-web” consistency of shattering within the fat of the bacon slice 

(Mandigo, 1998).  

 

3.3.5 Cooking and Shelf-Life Measurements 

The five slices of bacon, representing one slice from each section, were cooked on a 

George Foreman Basic Plate Grill (George Foreman, Spectrum Brands, Inc., Madison, WI) 

to determine cooking loss and shrink. Preliminary testing was conducted to verify the 

degree of doneness (golden brown; not crisp). Each slice was weighed (Carolina Compact 

Balance, Burlington, NC) before and after cooking to the nearest 0.1g. After cooking, slices 

cooled for 10 min at room temperature on absorbent paper towels.  Cooking loss was 

calculated as ((raw weight-cooked weight)/raw weight) ×100. Bacon slice length was 

measured to the nearest 0.5 cm before and after cooking. Bacon slice cooking shrink was 

calculated as ((raw length-cooked length)/raw length) ×100. Subjective evaluation of 

cooked slice visual distortion was evaluated using a 5-point distortion scale where 1 

represented a mostly flat slice, and as severity of curling increased samples were rated 2, 

3, 4, and 5, where 5 (Figure 3.2) indicated a slice that completely curled with no flat areas 

on the slice (Rentfrow et al., 2002).  

For a shelf-life study, seven slices from the same section of the bacon slab were taken 

and measured to the nearest 0.5 cm. The slices were vacuum sealed for seven days then 
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placed on a foam tray and overwrapped with PVC film. The trays were kept at 4 °C for an 

additional seven days. The slices were then removed from the trays and measured (cm) 

again. The shelf-life stretch was calculated from the difference between day seven and day 

one.  

 

Figure 3.2 Numeric scale and examples for subjective visual evaluation of cooked 
bacon slice distortion. 

(Rentfrow, 2002) 

3.3.6 Statistical Analysis 

Prior to analyses, all data were evaluated to identify any potential statistical outliers 

according to the test published by Barnett and Lewis (1974). To summarize, outliers can 

be tested by the following procedure. First, calculate the statistic T: T = (XH -Mean)/s for 

a high value, or T = (XL – Mean)/s for the low value (XH, high value; XL, low value; s, 

standard deviation). Second, compare the value of T with the value from critical values for 

95% confidence interval (under condition of this study, the critical value is 2.03.) If the 
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calculated T is larger than the critical value for the measurement, then the XL or XH is an 

outlier at the level of 5% significance. Potential outliers are listed in Appendix 3. Data 

analysis was performed in SAS (SAS Inst. Inc., Gary, NC) by least squares analysis of 

variance using the generalized linear model (GLM) as a randomized complete block 

design. The individual pig served as the experimental.  

Statistical differences were established at P ≤ 0.05, tendencies were established at P ≤ 

0.10. Sex effect was expected but is not discussed in the results in this chapter. P-values 

for sex and related interactions are listed in Appendix 4 (values greater than 0.10 are 

replaced as “-”). In the results table, all P-values greater than 0.20 were replaced as “-”. 

For evaluation of ATA levels and fat sources, P-values for main effects are provided, 

significant interactions (P ≤ 0.05) between levels of dietary ATA and fat sources are 

superscripted in the table. For evaluation of isoforms, because P-values for effects of 

dietary VE level and fat sources and their interactions have been provided previously, only 

P-values for effects of isoform and its interaction with main effects including levels of 

dietary VE and fat sources are provided in the tables. 

 

3.4  Results and Discussion  

3.4.1  Fresh Belly Quality 

For Study 1 (Table 3.3), belly depth differed (P < 0.01) among pigs from different 

fat treatments but not different VE treatments. Belly flex was significantly affected by 

dietary fat sources, as expected, but not by dietary VE supplementation. Pigs fed CO diet 

had the lowest lateral distance (P < 0.01), highest vertical distance (P < 0.01), and 

smallest belly angle making it the softest belly. Pigs fed CN had the highest lateral 
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distance (P < 0.01), lowest vertical distance (P < 0.01), and largest belly angle compared 

to the other groups (P < 0.01), making it the firmest belly. As anticipated, firmness 

increased with the increasing content of SFA in the diet.  

For Study 2 (Table 3.4), pigs fed γ-T had a lower belly weight (IMPS #408; squared 

at each end) in relative weight (P = 0.02) than pigs fed ATA. Pigs fed TW had a greater 

belly depth (P = 0.04) than pigs fed CO. As expected, belly flex was affected by dietary fat 

sources but not dietary vitamin E supplementation. Pigs fed tallow diets had a higher lateral 

distance (P < 0.05) and a lower vertical distance (P < 0.05) then pigs fed corn oil diets. 

Pigs fed tallow diets had a greater belly angle than pigs fed corn oil diets (P < 0.01) due to 

the larger percentage of SFA.
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Table 3.3 Effect of different fat sources and V
E supplem

entation on Study 1 bacon processing
1 

 
V

E, ppm
: 

11 
 

200 
SE 

P-value 
  

Fat Source: 
C

S 
TW

 
C

O
 

C
N

 
 

C
S 

TW
 

C
O

 
C

N
 

V
E 

Fat 
V

E*Fat 
B

elly depth, cm
 

5.49 
5.44 

5.16 
5.94 

 
5.21 

4.88 
4.93 

5.79 
0.17 

0.03 
<0.01 

- 
A

bsolute prim
al cut 4, kg 

   B
elly 

8.46 
8.55 

9.77 
8.65 

 
8.85 

9.05 
9.16 

9.01 
0.30 

- 
0.08 

- 
R

elative prim
al cut, %

 live w
eight 

   B
elly 

5.77 
5.78 

6.46 
5.84 

 
5.93 

6.06 
6.07 

6.04 
0.18 

- 
0.16 

- 
B

elly Flex
5, cm

 
   Left side 
     Lateral 

21.29 
21.41 

13.03 
32.66 

 
19.69 

20.32 
11.43 

32.72 
1.51 

0.19 
<0.01 

- 
     V

ertical 
25.1 

24.31 
29.85 

13.79 
 

25.4 
23.7 

32.23 
16.51 

1.70 
- 

<0.01 
- 

   R
ight side 

 
 

 
 

 
 

 
 

 
 

 
 

 
     Lateral 

21.29 
19.96 

10.31 
30.84 

 
15.88 

19.05 
10.16 

31.12 
1.76 

0.13 
<0.01 

- 
     V

ertical 
27.31 

25.76 
33.17 

16.69 
 

28.91 
27.51 

33.81 
18.11 

1.88 
- 

<0.01 
- 

B
elly angle

6, o 
79.05 

79.66 
40.70 

130.64 
 

70.00 
66.97 

36.53 
122.49 

6.72 
0.10 

<0.01 
- 

1 V
alues are an average of 8 replicated; P-values for sex interactions are listed in A

ppendix Table A
 4.1. C

S, corn starch; TW
, tallow

; CO
, corn 

oil; C
N

, coconut oil. P-values for sex interactions are listed in A
ppendix Table A

 1.2 
2 Pum

p percentage = ((pum
p w

eight – green w
eight)/green w

eight) × 100. 
3 Slice yield = (slice w

eight/final w
eight) × 100. 

4 Prim
al cuts w

ere m
ade according to Institutional M

eat Purchasing Specifications (N
A

M
PA

, 2010). 
5 B

elly flex w
as m

easured as the sum
m

ation of each lateral and vertical from
 right and left ends of the belly. A

 zero lateral w
ould be a com

plete 
folding of the belly and a zero vertical w

ould be flat. A
 higher lateral flex w

ould be a firm
er belly. A

 low
er vertical w

ould be a firm
er belly. 

6 B
elly angle w

as calculated as: arctangent (left side lateral distance/ left side vertical distance) + arctangent (right side lateral distance/ right 
side vertical distance).   
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Table 3.4 Effect of different fat sources and V
E supplem

entation on study 2 belly characteristics
1 

 
 

 
 

 
 

 
 

 
 

P-value 
 

 
Isoform

s 
 

A
TA

2 
 

 
 

 
 

 
A

TA
, ppm

 
 

γ-T, ppm
 

 
Level 

 
 

Isoform
s 3 

Item
s 

Fat 
11 

40 
100 

200 
 

40 
100 

  
L 

Q
 

Fat 
 

IF 
IF*Level 

IF*Fat 
B

elly D
epth, cm

 
TW

 
5.15 

5.23 
5.13 

4.94 
 

5.21 
5.05 

 
- 

- 
0.04 

 
- 

- 
- 

 
C

O
 

4.63 
4.95 

4.81 
4.83 

 
4.85 

4.42 
 

 
Prim

al cuts 4, kg 
 

 
 

 
 

 
 

 
  B

elly 
TW

 
9.75 

9.52 
9.41 

9.36 
 

8.88 
9.53 

 
- 

- 
- 

 
0.11 

0.14 
- 

 
C

O
 

10.03 
9.95 

9.36 
9.49 

 
9.49 

9.12 
 

 
Prim

al cuts, %
 hot carcass w

eight 
 

 
 

 
 

 
 

 
  B

elly 
TW

 
8.61 

8.63 
8.34 

7.99 
 

7.67 
8.06 

 
0.11 

- 
- 

 
0.02 

- 
- 

  
C

O
 

8.80 
8.74 

8.68 
8.34 

 
8.36 

8.08 
 

 
B

elly Flex
5, cm

 
 

 
 

 
 

 
 

 
   Left Side 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

      Lateral  
TW

 
18.03 

14.29 
16.09 

17.15 
 

15.49 
15.75 

 
- 

- 
<0.01 

 
- 

- 
- 

 
C

O
 

11.68 
10.48 

11.01 
11.26 

 
10.16 

9.14 
 

 
      V

ertical 
TW

 
29.53 

27.94 
27.73 

27.94 
 

28.36 
27.18 

 
- 

- 
0.04 

 
- 

- 
- 

 
C

O
 

31.50 
31.05 

29.85 
29.13 

 
32.17 

31.24 
 

 
   R

ight Side 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

      Lateral  
TW

 
16.51 

13.97 
13.34 

15.24 
 

15.49 
13.46 

 
- 

0.17 
<0.01 

 
- 

- 
- 

 
C

O
 

10.41 
10.41 

11.01 
11.18 

 
10.37 

9.40 
 

 
      V

ertical 
TW

 
29.85 

29.46 
30.23 

29.72 
 

30.48 
28.15 

 
- 

- 
0.15 

 
- 

- 
- 

 
C

O
 

32.26 
30.16 

31.33 
31.88 

 
30.48 

31.24 
 

 
B

elly A
ngle

6, o  
TW

 
52.75 

44.31 
47.18 

48.28 
 

50.69 
44.45 

 
- 

- 
<0.01 

 
- 

- 
- 

  
C

O
 

31.65 
34.26 

34.94 
34.08 

 
33.48 

29.52 
 

  
1 V

alues are average of 6 replicates. P-values for sex interactions are listed in A
ppendix Table A

 4.2 
2 Statistical analysis used 8 treatm

ents w
ith a 4×2 factorial arrangem

ent of four levels of A
TA

 and tw
o fat sources (data colum

ns 1, 2, 3 and 4). 
L, linear; Q

, quadratic. N
o interaction betw

een fat sources and dietary A
TA

 levels w
as observed. 
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Table 3.4 C
ontinued. 

3 Statistical analysis used 8 treatm
ents w

ith a 2×2×2 factorial arrangem
ent of tw

o isoform
s of V

E, tw
o levels of V

E and tw
o fat sources (data 

colum
ns 2, 3, 5, and 6).  

4 Prim
al cuts w

ere m
ade according to Institutional M

eat Purchasing Specifications (N
A

M
PA

, 2010).  

5 B
elly flex w

as m
easured as the sum

m
ation of each lateral and vertical from

 right and left ends of the belly. A
 zero lateral w

ould be a com
plete 

folding of the belly and a zero vertical w
ould be flat. A

 higher lateral flex w
ould be a firm

er belly. A
 low

er vertical w
ould be a firm

er belly. 
6 B

elly angle w
as calculated as: arctangent (left side lateral distance/ left side vertical distance) + arctangent (right side lateral distance/ right 

side vertical distance).   
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3.4.2  Bacon Processing  

For study 1, no differences were observed across treatments for green weight, 

pump weight, pump percentage, smoke weight, chill weight, final weight and slice weight 

as shown in Table 3.5. Slicing yield decreased (P = 0.04) for every fat source when 

dietary VE level was increased from 11 to 200 ppm. No interactions between dietary 

levels of VE and fat sources were observed for bacon processing.  

For study 2, bacon processing characteristics were not affected by dietary ATA 

level or fat sources. The results are provided in Table 3.6. Differences between the two 

isoforms were observed for green weight (P =0.04), pump weight (P = 0.02), pump 

percentage (P = 0.05), smoke weight (P = 0.02), chill weight (P = 0.07), and slice weight 

(P = 0.04). The bellies with ATA isoform were heavier than the γ-T bellies, however, 

there was no difference in slicing yield between the two isoforms. No interaction between 

isoforms of VE and dietary level or isoforms of VE and fat source was detected for bacon 

processing.  
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Table 3.5 Effect of different fat sources and V
E supplem

entation on study 1 bacon processing
1 

 
V

E, ppm
: 

11 
 

200 
SE 

P-value 
  

Fat Source: 
C

S 
TW

 
C

O
 

C
N

 
  

C
S 

TW
 

C
O

 
C

N
 

V
E 

Fat 
V

E*Fat 
G

reen W
eight, kg 

5.64 
5.60 

6.11 
5.86 

 
6.05 

6.00 
5.96 

6.25 
0.79 

- 
- 

- 
Pum

p W
eight, kg 

6.55 
6.54 

7.23 
7.13 

 
6.90 

7.01 
7.05 

7.06 
0.85 

- 
- 

- 
Pum

p
2, %

 
16.07 

15.86 
18.18 

16.42 
 

16.19 
16.95 

18.25 
14.84 

2.53 
- 

0.18 
- 

Sm
oke W

eight, kg 
5.93 

5.92 
6.54 

6.45 
 

6.24 
6.34 

6.38 
6.39 

0.77 
- 

- 
- 

C
hill W

eight, kg 
5.24 

5.15 
5.77 

5.47 
 

5.80 
5.97 

5.58 
5.73 

0.77 
- 

- 
- 

Final W
eight, kg 

5.81 
5.71 

6.40 
6.07 

 
6.43 

6.62 
6.19 

6.36 
0.86 

- 
- 

- 
Slice W

eight, kg 
5.53 

5.08 
5.65 

5.55 
 

5.75 
5.52 

5.47 
5.77 

0.90 
- 

- 
- 

Slicing Y
ield

3, %
 

94.98 
95.68 

93.27 
91.70 

  
89.62 

89.18 
88.69 

91.53 
5.52 

0.04 
- 

- 
1 V

alues are an average of 8 replicated; P-values for sex interactions are listed in A
ppendix Table A

 4.1. C
S, corn starch; TW

, 
tallow

; C
O

, corn oil; C
N

, coconut oil.  
2 Pum

p percentage = ((pum
p w

eight – green w
eight)/green w

eight) × 100. 
3 Slice yield = (slice w

eight/final w
eight) × 100. 

 
 

 



 

84  

Table 3.6 Effect of different fat sources and V
E supplem

entation on study 2 bacon processing
1 

 
 

 
 

 
 

 
 

 
 

P-value 
 

 
Isoform

s 
 

A
TA

2 
 

 
 

 
 

 
A

TA
, ppm

 
 

γ-T, ppm
  

 
Level 

 
 

Isoform
s 3 

Item
s 

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
G

reen W
eight, kg 

TW
 

6.09 
6.31 

6.28 
5.82 

 
5.77 

5.82 
 

0.15 
- 

- 
 

0.04 
- 

- 
 

C
O

 
6.33 

6.21 
6.09 

5.58 
 

6.00 
5.50 

 
 

Pum
p W

eight, kg 
TW

 
7.17 

7.41 
7.28 

6.83 
 

6.72 
6.78 

 
- 

- 
- 

 
0.02 

- 
- 

 
C

O
 

7.36 
7.31 

7.30 
6.62 

 
7.13 

6.04 
 

 

Pum
p

4, %
 

TW
 

17.59 
17.51 

17.46 
17.17 

 
14.38 

16.21 
 

0.15 
- 

- 
 

0.05 
- 

- 
 

C
O

 
18.88 

17.87 
18.43 

16.57 
 

18.74 
15.10 

 
 

Sm
oke W

eight, kg 
TW

 
6.67 

6.90 
6.77 

6.35 
 

6.25 
6.30 

 
- 

- 
- 

 
0.02 

- 
- 

 
C

O
 

6.84 
6.80 

6.79 
6.16 

 
6.63 

5.62 
 

 

C
hill W

eight, kg 
TW

 
6.64 

6.86 
6.74 

6.32 
 

6.22 
6.28 

 
- 

- 
- 

 
0.02 

- 
- 

 
C

O
 

6.81 
6.77 

6.76 
6.13 

 
6.60 

5.59 
 

 

Final W
eight, kg 

TW
 

6.25 
6.48 

6.38 
5.98 

 
5.92 

5.90 
 

- 
- 

- 
 

0.07 
0.14 

- 
 

C
O

 
6.48 

5.67 
6.41 

5.79 
 

6.28 
5.33 

 
 

Slice W
eight, kg 

TW
 

5.95 
6.14 

5.98 
5.45 

 
5.53 

5.31 
 

0.08 
- 

- 
 

0.04 
- 

- 
 

C
O

 
6.38 

5.93 
5.79 

5.40 
 

5.80 
5.25 

 
 

Slicing Y
ield

5, %
 

TW
 

95.41 
94.75 

93.76 
94.20 

 
93.37 

94.89 
 

- 
- 

- 
 

- 
- 

- 
  

C
O

 
94.23 

91.73 
92.57 

92.94 
  

92.65 
93.73 

  
  

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 4.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
4 Pum

p percentage = ((pum
p w

eight – green w
eight)/green w

eight) × 100. 
5 Slice yield = (slice w

eight/final w
eight) × 100. 
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3.4.3  Bacon Quality 
For experiment 1, no differences between dietary level of VE or interactions 

between dietary VE level and fat sources were observed for bacon quality as shown in 

Table 3.7.  No differences were observed between fat sources for raw weight, cooked 

weight, slice cook loss, raw length, cooked length, slice shrink, distortion or stretch. As 

expected, shatter (P < 0.01) was different between fat sources. Corn starch displayed a 

higher shatter score for both dietary levels of VE, coconut oil had the lowest shatter for 11 

ppm dietary VE and tallow had the lowest shatter for 200 ppm dietary VE.  

For experiment 2, there were no differences among dietary levels of VE for bacon 

quality as shown in Table 3.8. Tallow had a higher shatter (P = 0.02) score than corn oil 

across the dietary VE treatments. Bacon slice raw length (P = 0.02) was longer for corn oil 

than for tallow. Bacon slice shrink (P = 0.02) was higher for corn oil than for tallow. No 

other difference in fat sources was detected. Differences between the two isoforms were 

observed for raw weight (P = 0.03) and cooked weight (P = 0.01). Bacon slices from the 

ATA isoform weighed more for raw and cooked weight than γ-T slices, however, there 

was no difference between the isoforms for slice cook loss. No interactions were observed 

between dietary levels of VE and isoforms of VE and between isoforms of VE and fat 

sources for bacon quality. 
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Table 3.7 Effect of different fat sources and V
E supplem

entation on study 1 bacon quality
1 

 

 
 

 
V

E, ppm
: 

11 
 

200 
SE 

P-value 
  

Fat Source: 
C

S 
TW

 
C

O
 

C
N

 
  

C
S 

TW
 

C
O

 
C

N
 

V
E 

Fat 
V

E*Fat 
Shatter 2 

4.00 
3.63 

3.78 
3.24 

 
3.80 

3.37 
3.53 

3.66 
0.31 

0.07 
<0.01 

0.09 
R

aw
 W

eight, kg 
0.03 

0.03 
0.03 

0.03 
 

0.03 
0.03 

0.03 
0.03 

0.00 
- 

0.11 
0.15 

C
ooked W

eight, kg 
0.01 

0.01 
0.01 

0.01 
 

0.01 
0.01 

0.01 
0.01 

0.00 
- 

- 
- 

Slice C
ook Loss 3 

59.96 
62.51 

63.97 
58.73 

 
60.86 

65.67 
62.96 

60.40 
5.69 

- 
- 

- 
R

aw
 Length, cm

 
23.64 

23.95 
25.85 

24.50 
 

24.40 
24.53 

25.50 
24.17 

1.14 
- 

0.05 
- 

C
ooked Length, cm

 
14.28 

14.04 
13.44 

15.03 
 

14.53 
14.07 

14.28 
14.73 

1.21 
- 

- 
- 

Slice Shrink
4 

39.60 
42.18 

45.80 
36.67 

 
40.53 

42.74 
44.21 

39.98 
5.53 

- 
0.12 

- 
D

istortion
5 

2.90 
2.60 

2.79 
2.30 

 
2.67 

2.67 
2.13 

1.88 
0.84 

- 
0.09 

- 
Stretch

6, cm
 

0.47 
0.48 

0.90 
0.81 

  
0.43 

0.36 
0.90 

0.28 
0.55 

- 
- 

- 
1 V

alues are an average of 8 replicated; P-values for sex interactions are listed in A
ppendix Table A

 4.1. C
S, corn starch; TW

, tallow
; CO

, corn 
oil; C

N
, coconut oil. P-values for sex interactions are listed in A

ppendix Table A
 1.2 

2 Subjective evaluation of slice integrity (fracture) from
 0 to 6 w

here 0=intact slice possessing no shatter and 6= “spider-w
eb” fracture. 

3 B
acon slice cooking loss = ((raw

 w
eight – cooked w

eight) / raw
 w

eight) × 100. 
4 B

acon slice cooking shrink = ((raw
 length – cooked length) / raw

 length) × 100. 
5 Subjective evaluation of slice appearance (curling, cooked distortion) from

 0 to 5 w
here 0 = flat slice w

ith no distortion and 5 = extrem
e 

curling and distortion. 
6 B

acon slice stretch = (shelf life day 7 length – shelf life day 1 length)  
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Table 3.8 Effect of different fat sources and V
E supplem

entation on study 2 bacon quality
1 

 
 

 
 

 
 

 
 

 
 

P-value 
 

 
Isoform

s 
 

A
TA

2 
 

 
 

 
 

 
A

TA
, ppm

 
 

γ-T, ppm
  

 
Level 

 
 

Isoform
s 3 

Item
s 

Fat 
11 

40 
100 

200 
  

40 
100 

  
L 

Q
 

Fat 
  

IF 
IF*Level 

IF*Fat 
Shatter 4 

TW
 

2.93 
3.58 

3.26 
3.41 

 
3.33 

3.23 
 

- 
- 

0.02 
 

- 
- 

- 
 

C
O

 
2.64 

3.01 
3.03 

2.97 
 

2.98 
3.23 

 
 

R
aw

 W
eight, kg 

TW
 

0.04 
0.04 

0.04 
0.04 

 
0.03 

0.04 
 

0.13 
- 

- 
 

0.03 
- 

- 
 

C
O

 
0.04 

0.04 
0.04 

0.03 
 

0.04 
0.03 

 
 

C
ooked W

eight, kg 
TW

 
0.02 

0.02 
0.02 

0.02 
 

0.02 
0.02 

 
- 

- 
0.10 

 
0.01 

- 
- 

 
C

O
 

0.02 
0.02 

0.01 
0.02 

 
0.02 

0.01 
 

 
Slice C

ook Loss 5 
TW

 
54.76 

49.33 
50.42 

50.86 
 

51.98 
49.22 

 
- 

- 
- 

 
- 

- 
- 

 
C

O
 

57.08 
48.99 

58.75 
52.43 

 
56.22 

57.76 
 

 
R

aw
 Length, cm

 
TW

 
24.70 

25.56 
24.63 

24.84 
 

23.82 
25.85 

 
- 

- 
0.02 

 
- 

0.09 
- 

 
C

O
 

26.18 
26.45 

26.33 
25.58 

 
25.98 

25.54 
 

 
C

ooked Length, cm
 

TW
 

15.48 
15.38 

17.07 
16.24 

 
15.57 

17.72 
 

- 
- 

- 
 

- 
- 

- 
 

C
O

 
15.64 

16.03 
14.32 

16.36 
 

16.78 
14.90 

 
 

Slice Shrink
6 

TW
 

37.47 
35.58 

30.87 
34.89 

 
34.73 

31.32 
 

- 
- 

0.02 
 

- 
- 

- 
 

C
O

 
41.89 

40.06 
45.78 

39.29 
 

36.00 
41.80 

 
 

D
istortion

7 
TW

 
2.20 

2.40 
2.67 

2.40 
 

2.17 
3.17 

 
- 

- 
- 

 
- 

- 
0.12 

 
C

O
 

2.20 
2.50 

2.50 
2.50 

 
2.00 

2.00 
 

 
Stretch

8, cm
 

TW
 

0.09 
0.16 

0.27 
0.24 

 
0.06 

0.19 
 

- 
- 

0.15 
 

- 
- 

- 
  

C
O

 
0.71 

0.50 
0.52 

0.11 
  

0.74 
0.19 

  
  

1 V
alues are average of 6 replicates. P-values for sex interactions are listed in A

ppendix Table A
 4.2 

2 Statistical analysis used 8 treatm
ents w

ith a 4×2 factorial arrangem
ent of four levels of A

TA
 and tw

o fat sources (data colum
ns 1, 2, 3 and 4). 

L, linear; Q
, quadratic. N

o interaction betw
een fat sources and dietary A

TA
 levels w

as observed. 
3 Statistical analysis used 8 treatm

ents w
ith a 2×2×2 factorial arrangem

ent of tw
o isoform

s of V
E, tw

o levels of V
E and tw

o fat sources (data 
colum

ns 2, 3, 5, and 6).  
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Table 3.8 C
ontinued 

4 Subjective evaluation of slice integrity (fracture) from
 0 to 6 w

here 0=intact slice possessing no shatter and 6= “spider-w
eb” fracture. 

5 B
acon slice cooking loss = ((raw

 w
eight – cooked w

eight) / raw
 w

eight) × 100.  

6 B
acon slice cooking shrink = ((raw

 length – cooked length) / raw
 length) × 100. 

7 Subjective evaluation of slice appearance (curling, cooked distortion) from
 0 to 5 w

here 0 = flat slice w
ith no distortion and 5 = extrem

e 
curling and distortion. 
8 B

acon slice stretch = (shelf life day 7 length – shelf life day 1 length)  
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3.5  Conclusion  

The results of these studies demonstrated the importance of dietary fat sources and 

vitamin E supplementation on belly and bacon quality in pigs grown up to 150 kg. These 

results showed that dietary fat sources with more saturated fatty acids could improve the 

firmness of bellies and quality of bacon compared to those fats with higher poly-

unsaturated fatty acids. Additionally, bellies from pigs fed ATA weighed more before and 

after bacon processing compared to gamma-tocopherol bellies. Dietary supplementation in 

the form of ATA also showed an increase in raw and cooked weight for individual bacon 

slices. However, there were no interactions between vitamin E isoforms and dietary fat 

sources or vitamin E isoforms and level of vitamin E.  
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A
PPE

N
D

IC
E

S 
A

ppendix 1. N
um

ber of excluded outliers and m
issing values in C

hapter 2 
 Table A

. 1.1 N
um

ber of excluded outliers and m
issing values for carcass traits and prim

al cuts 

Fat sources 
Tallow

 
 

C
orn oil 

Isoform
 

A
TA

 
 

γ-T 
 

A
TA

 
 

γ-T 
Level, ppm

 
11 

40 
100 

200 
  

40 
100 

  
11 

40 
100 

200 
  

40 
100 

C
arcass traits 

   SLW
, kg 

0 
0 

0 
1 

 
0 

1 
 

1 
0 

0 
0 

 
0 

0 
   H

C
W

, kg 
0 

0 
0 

1 
 

0 
1 

 
1 

0 
0 

0 
 

0 
0 

   C
C

W
, kg 

0 
0 

0 
1 

 
0 

1 
 

1 
0 

0 
0 

 
0 

0 
   D

ressing, %
 

0 
0 

0 
0 

 
1 

0 
 

0 
0 

1 
0 

 
0 

0 
   Shrink loss, %

 
0 

0 
1 

0 
 

0 
1 

 
0 

1 
0 

1 
 

2 
0 

   45-m
in pH

 
0 

0 
1 

0 
 

0 
0 

 
1 

0 
0 

0 
 

0 
0 

   24-hr pH
 

0 
0 

0 
1 

 
0 

0 
 

0 
0 

0 
0 

 
1 

0 
   ΔpH

 
0 

0 
1 

0 
 

1 
0 

 
0 

0 
1 

0 
 

0 
0 

   C
.Length 

1 
1 

0 
0 

 
0 

0 
 

0 
0 

1 
0 

 
0 

0 
   First rib 

0 
0 

1 
0 

 
0 

0 
 

0 
0 

1 
1 

 
0 

0 
   Last rib 

0 
0 

0 
1 

 
0 

0 
 

0 
0 

0 
1 

 
0 

1 
   10th rib 

0 
0 

0 
1 

 
0 

0 
 

0 
0 

0 
0 

 
0 

0 
   Last lum

bar 
0 

0 
0 

0 
 

1 
1 

 
0 

0 
0 

0 
 

0 
0 

   B
elly depth, cm

 
0 

0 
1 

1 
 

0 
0 

 
0 

0 
0 

0 
 

0 
1 

   V
ertical 

0 
0 

0 
0 

 
1 

0 
 

0 
0 

0 
0 

 
1 

1 
   H

orizontal 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
1 

0 
 

0 
0 

   A
rea, cm

2 
0 

0 
1 

1 
 

0 
0 

 
0 

1 
1 

1 
 

0 
0 

Prim
al cuts, kg 

   B
oston butt 

1 
0 

0 
0 

 
0 

1 
 

1 
0 

0 
0 

 
1 

0 
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Table A
. 1.1 C

ontinued  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   Picnic Shoulder 
0 

0 
0 

0 
 

0 
0 

 
0 

1 
0 

1 
 

0 
0 

   Loin 
0 

0 
1 

0 
 

1 
0 

 
0 

0 
0 

0 
 

0 
0 

   Spare ribs 
2 

0 
0 

0 
 

1 
0 

 
0 

0 
1 

0 
 

0 
0 

   H
am

  
0 

0 
0 

1 
 

0 
1 

 
0 

1 
0 

1 
 

0 
0 

   B
elly 

0 
0 

0 
1 

 
0 

1 
 

0 
0 

0 
0 

 
0 

1 
Prim

al cuts, %
 

   B
oston butt 

1 
0 

0 
0 

 
0 

1 
 

1 
0 

0 
0 

 
1 

0 
   Picnic Shoulder 

0 
0 

0 
0 

 
0 

0 
 

0 
1 

0 
1 

 
0 

0 
   Loin 

0 
0 

1 
0 

 
1 

0 
 

0 
0 

0 
0 

 
0 

0 
   Spare ribs 

0 
0 

0 
0 

 
1 

0 
 

0 
0 

0 
0 

 
0 

0 
   H

am
  

0 
0 

1 
1 

 
0 

1 
 

0 
0 

1 
0 

 
0 

0 
   B

elly 
0 

0 
0 

0 
  

0 
0 

  
0 

0 
0 

0 
  

1 
0 
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Table A
. 1.2 N

um
ber of excluded outliers and m

issing values for m
eat quality 

Fat sources 
Tallow

 
 

C
orn oil 

Isoform
 

A
TA

 
 

γ-T 
 

A
TA

 
 

γ-T 
Level, ppm

 
11 

40 
100 

200 
  

40 
100 

  
11 

40 
100 

200 
  

40 
100 

M
eat Q

uality 
   D

rip Loss 
1 

0 
0 

0 
 

1 
1 

 
0 

0 
0 

0 
 

0 
1 

   Purge loss D
7 

0 
0 

0 
0 

 
1 

1 
 

0 
0 

0 
0 

 
0 

1 
   Purge loss D

14 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
0 

0 
 

0 
0 

   Purge loss D
30 

0 
0 

1 
0 

 
1 

0 
 

0 
0 

0 
0 

 
0 

0 
   Left-Lateral 

0 
1 

0 
1 

 
1 

1 
 

0 
0 

0 
0 

 
0 

0 
   Left-V

ertical 
1 

0 
0 

1 
 

0 
1 

 
0 

0 
0 

0 
 

0 
0 

   R
ight-Lateral 

1 
1 

2 
0 

 
1 

1 
 

0 
0 

0 
0 

 
0 

0 
   R

ight-V
ertical 

1 
0 

1 
0 

 
2 

0 
 

0 
0 

0 
0 

 
0 

0 
   B

elly angle 
1 

1 
1 

0 
 

1 
1 

 
0 

0 
0 

0 
 

0 
0 

Shelf life  
   L* 

0 
0 

0 
0 

 
3 

1 
 

2 
0 

0 
2 

 
0 

0 
   a* 

0 
2 

3 
0 

 
1 

0 
 

3 
0 

1 
0 

 
0 

0 
   b* 

1 
3 

0 
0 

 
2 

0 
 

0 
0 

2 
2 

 
2 

1 
   a/b 

1 
0 

4 
0 

 
0 

0 
 

3 
0 

0 
1 

 
0 

1 
   H

ue 
1 

0 
4 

0 
 

0 
0 

 
3 

0 
0 

2 
 

0 
1 

   C
hrom

a 
1 

3 
2 

0 
 

0 
0 

 
1 

0 
2 

0 
 

1 
1 

Extended shelf life 
   L* 

3 
0 

1 
0 

 
0 

0 
 

2 
4 

0 
0 

 
0 

3 
   a* 

0 
3 

1 
0 

 
0 

0 
 

3 
1 

0 
0 

 
1 

0 
   b* 

0 
1 

1 
0 

 
2 

4 
 

1 
0 

0 
0 

 
0 

0 
   a/b 

0 
3 

2 
0 

 
0 

0 
 

2 
0 

0 
0 

 
1 

0 
   H

ue 
0 

1 
2 

0 
 

1 
0 

 
2 

0 
0 

0 
 

0 
0 

   C
hrom

a 
0 

3 
1 

0 
  

2 
0 

  
1 

1 
1 

0 
  

1 
0 
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Appendix 2. P-values of sex effect and their interactions for Chapter 2 
 
Table A. 2.1 P-values of sex effect and their interactions for carcass traits and primal cuts 
 ATA levels × Fat (4×2)   Isoforms × levels × fat (2×2×2) 

Items sex sex*level sex*fat   sex sex*isoform sex*level sex*fat 
Carcass traits 
   SLW, kg - - 0.04  - - - - 
   HCW, kg - - -  - - - - 
   CCW, kg - - -  - - - - 
   Dressing, % - - -  - - - - 
   Shrink loss, % - - -  0.04 - - - 
   45-min pH - - -  - - - - 
   24-hr pH - - -  - - - - 
   ΔpH - - -  - - - - 
   C.Length - - -  - - - - 
   First rib - - -  - - - - 
   Last rib - - -  - - - - 
   10th rib - - 0.04  - - - - 
   Last lumbar - - -  - - - - 
   Belly depth, cm - - -  0.08 - - - 
   Vertical 0.04 - 0.03  - - - - 
   Horizontal - - 0.02  - - 0.03 0.09 
   Area, cm2 - - -  - - - - 
Primal cuts, kg 
   Boston butt - - -  - - - - 
   Picnic Shoulder - - -  - - - - 
   Loin - - -  0.07 0.10 - - 
   Spare ribs - - -  0.08 - - - 
   Ham  - - -  - - - - 
   Belly - 0.10 -  - - <0.01 - 
Primal cuts, % 
   Boston butt - - -  - - - - 
   Picnic Shoulder - - -  - - - - 
   Loin - - -  - 0.04 - - 
   Spare ribs - - -  - - - - 
   Ham  - - -  - - - - 
   Belly - - -   - - <0.01 - 
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Appendix 2.2 P-values of sex effect and their interactions for meat quality 

 ATA levels × Fat (4×2)   Isoforms × levels × fat (2×2×2) 
Items sex sex*level sex*fat   sex sex*isoform sex*level sex*fat 

Meat Quality 
   Drip Loss - 0.05 -  - - <0.01 - 
   Purge loss D7 - - -  - - - - 
   Purge loss D14 0.03 - -  - 0.04 - - 
   Purge loss D30 0.06 - -  - 0.07 - - 
   Color - 0.04 -  0.05 - - - 
   Marbling - - -  - - - - 
   Firmness - - -  - - - - 
   Left-Lateral - - 0.09  0.03 - - 0.02 
   Left-Vertical - - -  0.09 - - 0.04 
   Right-Lateral - - -  - - - - 
   Right-Vertical - - -  - - - - 
   Belly angle - - -  - - - - 
Shelf Life 
   L* Day 1 - 0.04 -  - - 0.07 - 
   L* Day 3 0.06 <0.01 -  - - - - 
   L* Day 5 0.06 0.02 0.07  - - - - 
   L* Day 7 0.02 <0.01 -  - - - - 
   a* Day 1 - - -  - - 0.07 - 
   a* Day 3 - - -  - - - - 
   a* Day 5 - - -  - - - - 
   a* Day 7 0.09 - -  - - - - 
   b* Day 1 - 0.05 -  - - - - 
   b* Day 3 - - -  - - - - 
   b* Day 5 - - -  - - - - 
   b* Day 7 - - -  - - - - 
   a/b Day 1 0.04 - -  - - <0.01 - 
   a/b Day 3 - - -  - - - - 
   a/b Day 5 0.10 - -  - - - - 
   a/b Day 7 0.04 - -  - - - - 
   Hue Day 1 0.03 - -  - - <0.01 - 
   Hue Day 3 - - -  - - - - 
   Hue Day 5 0.10 - -  - - - - 
   Hue Day 7 0.04 - -  - - - - 
   Chroma Day 1 - 0.06 -  - - - - 
   Chroma Day 3 - - -  - - - - 
   Chroma Day 5 - - -  - - - - 
   Chroma Day 7 - - -  - - - - 
Extended Shelf Life 
   L* Day 30 - - -  - - - - 
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Table A. 2.2 Continued 
   L* Day 32 - 0.05 -  - - 0.05 - 
   L* Day 34 - 0.03 -  - - - - 
   L* Day 36 - 0.03 -  - - - 0.08 
   a* Day 30 - - -  - - - - 
   a* Day 32 - 0.06 -  - 0.06 0.02 - 
   a* Day 34 - 0.04 -  - 0.02 <0.01 - 
   a* Day 36 - - -  - - 0.03 - 
   b* Day 30 - - -  - 0.06 - - 
   b* Day 32 - - -  - - 0.06 - 
   b* Day 34 0.05 - -  - - 0.01 - 
   b* Day 36 - - -  - - - - 
   a/b Day 30 - - -  0.09 - - - 
   a/b Day 32 - 0.04 -  - <0.01 <0.01 0.01 
   a/b Day 34 - 0.05 -  - <0.01 0.03 - 
   a/b Day 36 - 0.04 -  - 0.06 0.03 - 
   Hue Day 30 - - -  - - - - 
   Hue Day 32 - 0.04 -  - - <0.01 - 
   Hue Day 34 - 0.06 -  - 0.01 0.04 - 
   Hue Day 36 - 0.08 -  - - 0.02 - 
   Chroma Day 30 - - -  - - - - 
   Chroma Day 32 - - -  - - 0.07 - 
   Chroma Day 34 0.06 0.02 -  - - 0.03 - 
   Chroma Day 36 - - -   - - 0.02 - 
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Table A. 2.3  P-values of sex effect and their interactions for sensory characteristics 
 ATA levels × Fat (4×2)   Isoforms × levels × fat (2×2×2) 

Items sex sex*level sex*fat   sex sex*isoform sex*level sex*fat 
Tenderness - - -  - - - - 
Juiciness - - -  - - - - 
Off-Flavor 0.02 - -  <0.01 - 0.01 0.10 
Flavor Intensity - - 0.07  - 0.10 - - 
Overall Approval - - -   0.04 - - - 
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A
ppendix 3. N

um
ber of excluded outliers and m

issing values in C
hapter 3 

Table A
. 3.1  N

um
bers of excluded outliers and m

issing values for bacon processing and quality (Study 1) 

V
E, ppm

: 
11 

 
200 

Fat Source: 
C

S 
TW

 
C

O
 

C
N

 
  

C
S 

TW
 

C
O

 
C

N
 

Excluded B
ellies 

3 
2 

1 
2 

 
2 

3 
4 

0 

G
reen W

eight, kg 
0 

1 
1 

0 
 

0 
0 

0 
2 

Pum
p W

eight, kg 
0 

1 
1 

0 
 

0 
0 

0 
2 

Pum
p, %

 
0 

0 
0 

1 
 

1 
0 

0 
1 

Sm
oke W

eight, kg 
0 

1 
1 

0 
 

0 
0 

0 
2 

C
hill W

eight, kg 
0 

1 
1 

0 
 

0 
0 

0 
2 

Final W
eight, kg 

0 
1 

1 
0 

 
0 

0 
0 

2 

Slice W
eight, kg 

0 
0 

1 
0 

 
0 

0 
0 

2 

Slicing Y
ield, %

 
0 

1 
1 

0 
 

0 
1 

0 
0 

Shatter 
1 

0 
1 

0 
 

0 
0 

0 
2 

R
aw

 W
eight, kg 

0 
0 

0 
0 

 
0 

0 
0 

0 

C
ooked W

eight, kg 
0 

0 
0 

0 
 

0 
0 

0 
0 

Slice C
ook Loss 

0 
0 

2 
0 

 
0 

0 
0 

0 

R
aw

 Length, cm
 

0 
1 

1 
0 

 
0 

0 
0 

1 

C
ooked Length, cm

 
0 

0 
0 

1 
 

0 
0 

0 
1 

Slice Shrink 
0 

1 
2 

0 
 

0 
0 

0 
0 

D
istortion 

0 
0 

0 
0 

 
0 

0 
0 

0 

Stretch, cm
 

0 
1 

1 
0 

  
0 

0 
1 

0 
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Table A
. 3.2  N

um
ber of excluded outliers and m

issing values for bacon processing and quality (Study 2) 
Fat sources 

Tallow
 

 
C

orn oil 
Isoform

 
A

TA
 

 
γ-T 

 
A

TA
 

 
γ-T 

Level, ppm
 

11 
40 

100 
200 

  
40 

100 
  

11 
40 

100 
200 

  
40 

100 
G

reen W
eight, kg 

0 
0 

0 
0 

 
0 

1 
 

0 
1 

0 
0 

 
0 

1 
Pum

p W
eight, kg 

0 
0 

0 
0 

 
0 

1 
 

1 
1 

0 
0 

 
0 

0 
Pum

p, %
 

0 
0 

1 
0 

 
1 

0 
 

1 
0 

1 
1 

 
0 

0 
Sm

oke W
eight, kg 

0 
0 

0 
0 

 
0 

1 
 

1 
1 

0 
0 

 
0 

0 
C

hill W
eight, kg 

0 
0 

0 
0 

 
0 

1 
 

2 
1 

0 
0 

 
0 

0 
Final W

eight, kg 
0 

0 
0 

0 
 

0 
1 

 
2 

2 
0 

0 
 

0 
0 

Slice W
eight, kg 

0 
0 

0 
0 

 
0 

0 
 

1 
1 

0 
0 

 
0 

1 
Slicing Y

ield, %
 

0 
0 

0 
1 

 
0 

0 
 

0 
0 

1 
0 

 
0 

1 
Shatter 

1 
0 

0 
0 

 
0 

0 
 

1 
0 

0 
0 

 
0 

0 
R

aw
 W

eight, kg 
0 

0 
0 

0 
 

0 
1 

 
0 

0 
0 

0 
 

0 
1 

C
ooked W

eight, kg 
0 

1 
0 

0 
 

0 
0 

 
0 

1 
0 

0 
 

1 
0 

Slice C
ook Loss 

0 
0 

0 
0 

 
0 

0 
 

0 
0 

0 
0 

 
1 

0 
R

aw
 Length, cm

 
0 

0 
0 

0 
 

0 
0 

 
1 

0 
0 

0 
 

0 
0 

C
ooked Length, cm

 
0 

0 
0 

0 
 

0 
0 

 
0 

1 
0 

1 
 

1 
0 

Slice Shrink 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
0 

0 
 

1 
0 

D
istortion 

0 
0 

0 
0 

 
0 

0 
 

0 
0 

0 
0 

 
0 

0 
Stretch, cm

 
0 

0 
0 

0 
  

0 
0 

  
0 

0 
0 

0 
  

0 
0 
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A
ppendix 4. P-values of sex effect and their interactions for C

hapter 3 
 Table A

. 4.1 P-values of sex effect and their interactions for bacon processing and quality (Study 1) 

 
P-value 

Item
s 

sex 
sex*V

E 
sex*fat 

G
reen W

eight, kg 
- 

- 
- 

Pum
p W

eight, kg 
- 

- 
- 

Pum
p, %

 
- 

- 
- 

Sm
oke W

eight, kg 
- 

- 
- 

C
hill W

eight, kg 
- 

- 
- 

Final W
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- 
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Table A
. 4.2 P-values of sex effect and their interactions for bacon processing and quality (Study 2) 
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