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Neurovascular astrocyte degeneration in the 
hyperhomocysteinemia model of vascular cognitive impairment 
and dementia (VCID)

Tiffany L. Sudduth1, Erica M. Weekman1,2, Jennifer L. Gooch1,2, Abigail Woolums1, 
Christopher M. Norris1,3, and Donna M. Wilcock1,2,*

1University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536 USA

2University of Kentucky, Department of Physiology, Lexington, KY 40536 USA

3University of Kentucky, Department of Pharmacology and Nutritional Sciences, Lexington, KY 
40536 USA

Abstract

Vascular cognitive impairment and dementia (VCID) is the second leading cause of dementia 

behind Alzheimer’s disease (AD) and is a frequent co-morbidity with AD. Despite its prevalence, 

little is known about the molecular mechanisms underlying the cognitive dysfunction resulting 

from cerebrovascular disease. Astrocytic end-feet almost completely surround intraparenchymal 

blood vessels in the brain and express a variety of channels and markers indicative of their 

specialized functions in the maintenance of ionic and osmotic homeostasis and gliovascular 

signaling. These functions are mediated by end-foot enrichment of the aquaporin 4 water channel 

(AQP4), the inward rectifying potassium channel Kir4.1 and the calcium-dependent potassium 

channel MaxiK.

Using our HHcy model of VCID we examined the time-course of astrocytic end-foot changes 

along with cognitive and neuroinflammatory outcomes. We found that there were significant 

astrocytic end-foot disruptions in the HHcy model. AQP4 becomes dislocalized from the end-feet, 

there is a loss of Kir4.1 and MaxiK protein expression, as well as a loss of the Dp71 protein 

known to anchor the Kir4.1, MaxiK and AQP4 channels to the end-foot membrane. 

Neuroinflammation occurs prior to the astrocytic changes, while cognitive impairment continues 

to decline with the exacerbation of the astrocytic changes.

We have previously reported similar astrocytic changes in models of cerebral amyloid angiopathy 

(CAA) and therefore, we believe astrocytic end-foot disruption could represent a common cellular 

mechanism of VCID and may be a target for therapeutic development.
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Introduction

Vascular contribution to cognitive impairment and dementia (VCID) is widely considered to 

be the second most common cause of dementia after Alzheimer’s disease (AD), accounting 

for 20–30 percent of cases (Levine and Langa, 2011). In addition, VCID occurs as a co-

morbidity with other common dementias including AD, where it is estimated to occur in as 

many as 40% of all cases (Bowler et al., 1998, Kammoun et al., 2000, Langa et al., 2004, 

Snyder et al., 2015). Over twenty years ago, hyperhomocysteinemia (HHcy) was identified 

as an independent risk factor for stroke and vascular disease (Refsum et al., 1998). HHcy is 

also associated with pathologically-confirmed VCID and AD (Clarke et al., 1998) and is 

now accepted as a risk factor for AD (Beydoun et al., 2014). We have established a 

hyperhomocysteinemia (HHcy) model of VCID in wildtype, C57BL6, mice. Dietary 

induction of HHcy is achieved by the elimination of B6, B12 and folate from the diet and 

enrichment with methionine (Troen et al., 2008). The mice develop cognitive impairment, 

cerebral microhemorrhages and neuroinflammation in response to the diet (Sudduth et al., 

2013).

Astrocytes compose 50% of the cells of the brain and play several key roles in maintaining 

the health of the neurons. In particular, they buffer potassium to regulate the excitability of 

the neurons (Newman et al., 1984, Simard and Nedergaard, 2004, Wallraff et al., 2006). This 

potassium buffering is also thought to contribute, at least in part, to the process of 

neurovascular coupling; i.e., the process of matching local cerebral blood flow to the local 

neuronal activity (Dunn and Nelson, 2010, Witthoft et al., 2013), however, the potassium 

buffering role in neurovascular coupling remains disputed (Metea et al., 2007). To perform 

the critical function of potassium buffering and osmotic homeostasis, astrocytes ensheath the 

cerebrovasculature with specialized processes called end-feet. The astrocytic end-feet 

express a variety of channels and markers indicative of their specialized functions in the 

maintenance of ionic and osmotic homeostasis and gliovascular signaling (Simard and 

Nedergaard, 2004). The channels enriched at the astrocytic end-feet are the aquaporin 4 

water channel (AQP4) (Amiry-Moghaddam et al., 2003), the inward rectifying potassium 

channel Kir4.1 (Butt and Kalsi, 2006) and the calcium-dependent potassium channel MaxiK 

(also known as the BK channel) (Price et al., 2002). AQP4 and Kir4.1 are almost exclusively 

expressed by astrocytic end-feet (Simard and Nedergaard, 2004). The MaxiK channel is 

primarily in the astrocytic end-feet, with some expression by astrocyte processes that are not 

associated with the vasculature (Farr and David, 2011).

We have previously shown that cererbral amyloid angiopathy (CAA) results in AQP4 

dislocalization from the astrocytic end-foot, and loss of Kir4.1 and MaxiK channels. These 

findings were observed in both the APPSwDI mouse model of CAA and human AD with 

high CAA (Wilcock et al., 2009). In the current study we examine the astrocytic end-foot 

markers in our HHcy mouse model of VCID along a time-course. We find that astrocytic 

end-feet are significantly disrupted in the HHcy model. These changes are not apparent after 

6 weeks of HHcy induction, but are after 10 weeks, and are significantly worse after 14 

weeks of induction. Along a similar time-course, cognitive impairment is not observed until 

10 weeks after HHcy induction, and performance is worse 14 weeks after HHcy induction.
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Materials and Methods

Animals

Seventy-two C57BL6 wildtype mice aged 3 months were placed on diet with low levels of 

folate, vitamins B6 and B12 and enriched with methionine (N=12/time-point) (Harlan 

Teklad TD97345; Harlan Teklad, Madison, WI) or a control diet that nutritionally matched 

the experimental diet with normal levels of methionine, folate, vitamins B6 and B12 (N=12/

time-point) (Harlan Teklad 5001C; Harlan Teklad, Madison, WI). Mice received diet for 6, 

10 and 14 weeks. Mice were weighed weekly to ensure no significant malnourishment was 

occurring due to the diet. The study was approved by the University of Kentucky 

Institutional Animal Care and Use Committee and conformed to the National Institutes of 

Health Guide for the Care and Use of Animals in Research.

Behavior testing

The two-day radial-arm water maze protocol was performed during the week prior to tissue 

harvest as previously published (Alamed et al., 2006). Briefly, a six-arm maze was 

submerged in a pool of water, and a platform was placed at the end of one arm (equipment 

and tracking software from Noldus Information Technology Inc., Leesburg VA). Each mouse 

received 15 trials per day for 2 days. The mouse began each trial in a different arm while the 

arm containing the platform remained the same. The numbers of errors (incorrect arm 

entries) were counted over a one-minute period. The errors were averaged over three trials, 

resulting in 10 blocks for the two-day period (blocks 1–5 are day 1 while blocks 6–10 are 

day 2).

Tissue processing and histology

After injection with a lethal dose of beuthanasia-D, blood was collected for plasma and the 

mice were perfused intracardially with 25ml normal saline. Brains were rapidly removed 

and bisected in the mid-sagittal plane. The left half was immersion fixed in 4% 

paraformaldehyde for 24 hours, while the right half was dissected into anterior cerebral 

cortex, posterior cerebral cortex, striatum, hippocampus, thalamus, cerebellum and rest of 

brain. The posterior cerebral cortex and rest of brain were combined and immediately 

homogenized in PBS for zymography (see detailed method below). The remaining pieces 

were flash frozen in liquid nitrogen and stored at −80°C. The left hemibrain was passed 

through a series of 10, 20 and 30% sucrose solutions as cryoprotection and 25μm frozen 

horizontal sections were collected serially using a sliding microtome and stored floating in 

PBS containing sodium azide at 4°C. Plasma samples were analyzed for Hcy levels by the 

clinical laboratories of the University of Kentucky.

Eight sections equally spaced 600mm apart were selected for free floating 

immunohistochemistry for GFAP (Rat anti-GFAP, clone 2.2B10; Invitrogen, Camarillo, CA; 

1:3,000), AQP4 (Rabbit polyclonal anti-AQP4; Millipore, Temecula, CA; 1:5,000) and Dp71 

(Rabbit polyclonal anti-dystrophin 1, cross-reacting with Dp71; Abcam, Cambridge MA; 

1:3,000). The method for free-floating immunohistochemistry has been described previously 

(Wilcock et al., 2008). Sixteen sections equally spaced 300mm apart were mounted on slides 

and stained for Prussian blue as described previously (Wilcock et al., 2004).

Sudduth et al. Page 3

Neuroscience. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quantitative real-time RT-PCR

RNA was extracted from the right hippocampus using the E.Z.N.A. Total RNA kit (Omega 

Bio-Tek, Norcross, GA, USA) according to the manufacturer’s instructions. RNA was 

quantified using the Biospec nano spectrophotometer (Shimaduz, Japan). cDNA was 

produced using the cDNA High Capacity kit (ThermoFisher, Grand Island, NY, USA) 

according to the manufacturer’s instructions. Real-time PCR was performed using the Fast 

TaqMan Gene Expression assay (ThermoFisher, Grand Island, NY, USA). In each well of a 

96-well plate, 0.5μL cDNA (100ng, based on the RNA concentrations) was diluted with 

6.5μL RNase-free water. One microliter of the appropriate gene probe was added along with 

10μL of Fast TaqMan to each well. Target amplification was performed using the ViiA7 

(Applied Biosystems, Grand Island, NY, USA). All genes were normalized to 18S rRNA and 

the fold change was determined using the −ΔΔCt method (Livak and Schmittgen, 2001).

Western Blot

Approximately 60mg of the brain powder was homogenized and protein lysates were 

prepared in M-per lysis buffer (Thermo Scientific, Rockford, IL) containing 1% complete 

protease/phosphatase inhibitor (Thermo Scientific, Rockford IL). Protein concentrations 

were assessed using the BCA protein assay kit (Thermo Scientific, Rockford, IL), according 

to manufacturer’s instructions. 15μg protein from each lysate was run on a denaturing 4–

20% SDS-PAGE gel. The gel was transferred onto a PVDF membrane using the iBlot 

system (Invitrogen, Carlsbad CA), and Western blots were performed for Kir4.1 (Rabbit 

polyclonal anti-Kir4.1; Millipore, Temcula, CA; 1:3,000) and MaxiK (Rabbit polyclonal 

anti-MaxiK channel; Bioss, Wolburn, MA; 1:500). The blots were stripped using 5X New 

Blot Nitro Stripping Buffer (Licor, Lincoln NE) and re-probed using the above protocol for 

with β-actin as loading control (Rabbit monoclonal anti-b-actin, clone 13E5; Cell Signaling 

Technology, Danvers, MA; 1:10,000). Semi-quantitative densitometry analysis was 

performed using the Odyssey Imaging Software (Licor, Lincoln, NE). Individual 

densitometry values were normalized to the β-actin densitometry value on the same blot.

Image analysis

Individuals who were blinded to the study, treatment groups and genotype of the animals 

performed the image analysis. Images were collected using the Zeiss AxioScan slide 

scanner. Frontal cortex and hippocampus were outlined maintaining uniformity through the 

use of neuroanatomical landmarks. Eight sections for frontal cortex and between four and 

six sections for hippocampus were analyzed per animal. To assess astrogliosis and 

microgliosis, we examined frontal cortex, and the hippocampus for percent area occupied by 

positive stain was analyzed using the Elements AR Image Analysis System (Nikon 

Instruments, Melville, NY). To assess AQP4 and Dp71 staining, we counted the numbers of 

vessels per region. A blinded investigator collected images in the same way as above, 

however, this time, numbers of vessels were counted by manually clicking on vessels using 

the same image analysis system. Eight sections for frontal cortex and 4–6 sections for 

hippocampus were analyzed per animal.
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Statistical analysis

Data are presented as mean ± standard error of mean (SEM). Statistical analysis was 

performed using the JMP statistical analysis program (SAS, Cary NC). Radial-arm water 

maze data and rotarod was analyzed by repeated measures ANOVA to assess overall effect 

of diet. For the radial-arm water maze data, we also performed student’s t-test on individual 

block data. For other data, one-way ANOVA and student’s t test were performed. Statistical 

significance was assigned where the P-value was lower than 0.05.

Results

Elevated Hcy levels were achieved in all groups with no significant difference between the 6, 

10 and 14 weeks on diet. The levels ranged from 60–105μmol/L with no difference between 

any of the HHcy groups. The mice receiving the control diet all came in below the detection 

range of the clinical laboratory assay, which is also a finding on the normal mouse chow of 

our animal facilities. The two-day radial-arm water maze was performed immediately prior 

to sacrifice. All mice, regardless of diet administration or duration of diet administration, 

began the two days of testing making a high number of errors, as expected given all mice 

were naïve to the task (figure 1A–C). After 6 weeks on diet, the HHcy and control mice 

were virtually indistinguishable with the exception of block 8, where the HHcy mice made 

significantly more errors than the control mice (figure 1A). Following 10 weeks of diet 

administration, there are clear deficits in the two-day radial-arm water maze. The deficits are 

mostly apparent on the second day. On the first block of day 2, the HHcy mice make 

significantly more errors than the control mice, indicating a lack of consolidation between 

days. Further, by the end of the second day the HHcy mice are still making significantly 

more errors than the control mice (figure 1B). After 14 weeks of diet administration, HHcy 

mice are significantly impaired across both days 1 and 2, indicating impairment in both 

acquisition and consolidation (figure 1C).

We have previously shown that HHcy results in significant cerebrovascular pathology, as 

evidenced by the occurrence of multiple microhemorrhages (Sudduth et al., 2013). In the 

current study we find that microhemorrhage occurrence is dependent on duration of diet 

administration. Microhemorrhages are apparent after only 6 weeks of diet administration, 

but this is increased and shows statistical significance with 10 weeks of diet administration. 

There is a further significant increase after 14 weeks of diet administration (figure 2). Across 

the time-course of the current study we do not see any increase in the apparent size of the 

microhemorrhages, but rather their numbers (examples of microhemorrhages are shown in 

the images of figure 2).

In the current study, we focused on the astrocytes of the neurovascular unit, in particular, any 

changes in the astrocytic end-foot markers that may indicate a dysfunctional neurovascular 

unit. We first examined astrocytes by performing GFAP immunohistochemistry. There is no 

apparent astrogliosis in response to HHcy, even after 14 weeks following diet administration, 

where we see significant cerebrovascular pathology (figure 3).

AQP4 is a passive water channel that is highly polarized to the astrocytic end-foot. 

Immunolabeling for AQP4 shows cerebrovascular labeling throughout the brain. Figure 4 
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shows representative images of AQP4 immunolabeling of the frontal cortex of 14 weeks of 

control diet administration (figure 4), or 6, 10 and 14 weeks of HHcy inducing diet 

administration (figure 4). It is clear from the images that there is a decrease in AQP4 

labeling of blood vessels with increasing duration of HHcy induction. We quantified the 

numbers of AQP4 positive vessels immunolabeled. As can be seen from figure 4E, there is 

no significant difference between control and HHcy with 6 weeks of diet administration, 

however, AQP4 positive vessels are decreased in the frontal cortex and CA3 region of the 

hippocampus of HHcy mice compared to control mice after 10 weeks of diet administration. 

These same changes are apparent with 14 weeks of diet administration, however there is also 

a significant decrease in AQP4 positive vessels in the CA1 region of the hippocampus as 

well as the CA3 and the frontal cortex with 14 weeks of diet administration.

The Dp71 short form of dystrophin 1 is known as a key anchoring protein for the AQP4 

channel (Connors and Kofuji, 2002, Amiry-Moghaddam et al., 2003). Immunolabeling for 

Dp71 shows the same distribution as AQP4, with labeling of cerebral blood vessels (Figure 

5). In mice on control diet for 14 weeks, there are numerous blood vessels labeled for Dp71 

throughout the brain (frontal cortex shown in figure 5). Six weeks of diet administration to 

induce HHcy does not significantly alter Dp71 expression as detected by immunolabeling 

(figure 5). However, we found a significant decrease in blood vessel labeling with Dp71 

after both 10 and 14 weeks of diet administration to induce HHcy (figure 5).

Co-anchored with the AQP4 channel, are the potassium channels Kir4.1 and the MaxiK 

channel. These channels are crucial to the astrocyte function of potassium buffering. We 

have quantified both the mRNA and protein levels of these two channels in the current study. 

We found that gene expression levels of Kir4.1 were unchanged with 6 weeks of diet, but 

decreased with 10 and 14 weeks of diet administration to induce HHcy (figure 6A). 

Similarly, levels of MaxiK gene expression were also decreased at the 10 and 14-week time 

points, but an intriguing significant increase in gene expression occurred at the 6-week time-

point (figure 6A). However, we observed an increase in MaxiK gene expression following 6 

weeks of diet administration to induce HHcy (figure 6A). Protein expression of Kir4.1 and 

MaxiK, as assessed by Western blot, showed similar reductions in expression with 10 and 14 

weeks of diet administration to induce HHcy, but there was no change with only 6 weeks of 

diet administration. The increase at the 6 week time-point in MaxiK gene expression did not 

translate to an increase in protein expression (figure 6B and C).

Neuroinflammation is another phenomenon observed in our HHcy model. Microglial 

activation, as measured by CD11b immunohistochemistry, is observed in HHcy mice and 

this increase remains across all time-points examined, with no difference between the three 

time-points studied (Figure 7). Pro-inflammatory mediators IL-1β, IL-6, IL-12 and TNFα 
are all significantly increased in our HHcy model at all time-points studied (Figure 8). 

However, the time-course of each is different. TNFα shows a steady state increase across all 

time-points. However, IL-1β increases gradually over the time-points studied. IL-6 increased 

quite sharply between the 10 and 14-week time-points. IL-12 appears to peak at the 10 week 

time-point, however, due to the high variability there was no difference between any of the 

time-points.
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Discussion

VCID is the second most common cause of dementia behind AD. More critically, VCID is 

also a frequent co-morbidity in sporadic AD cases, and also other dementias. Studies on 

VCID have been hindered by the lack of animal models to study mechanistic underpinnings 

of the vascular contribution to dementia. We have previously shown that CAA pathology is 

associated with astrocytic end-foot dysfunction in AD and in CAA mouse models (Wilcock 

et al., 2009). We hypothesized that astrocytic end-foot dysfunction may also be a key 

pathological process in VCID. To test this we performed a time-course study in our HHcy 

mouse model of VCID. This model reproduces aspects of VCID including 

neuroinflammation, cognitive impairment and blood-brain barrier breakdown culminating in 

microhemorrhages throughout the cerebral cortex and, less frequently, hippocampus 

(Sudduth et al., 2013). In the current study, we examined mice on HHcy-inducing diet for a 

period of 6, 10 and 14 weeks. We then did a careful histological and biochemical assessment 

of astrocytic end-foot markers, as well as behavior and neuroinflammation.

The cererbovasculature of the brain, primarily arterioles and capillaries, are almost 

completely ensheathed by astrocytic processes called astrocytic end-feet. The astrocytic end-

foot is a specialized unit that functions to maintain the ionic and osmotic homeostasis of the 

brain. To perform this function, the end-feet are enriched with aquaporin 4 (AQP4) water 

channels, as well as the potassium channels Kir4.1 and MaxiK (Newman et al., 1984, 

Simard and Nedergaard, 2004, Bay and Butt, 2012). The anchoring proteins responsible for 

maintaining these channels in the end-foot are the syntrophin-dystrophin 1 complex 

(Connors and Kofuji, 2002, Amiry-Moghaddam et al., 2003, Amiry-Moghaddam et al., 

2004a, Amiry-Moghaddam et al., 2004b, Camassa et al., 2015). In the current study, HHcy 

diet mice showed a reduction in DP71 labeling concurrent with reduced vascular labeling for 

AQP4, and lower protein/mRNA levels for Kir4.1 and MaxiK potassium channels. These 

observations suggest that HHcy leads to astrocyte end-feet disruption, which is likely to have 

significant implications for both potassium homeostasis and neurovascular coupling.

The astrocytic end-foot is anchored to the vascular basement membranes via the α-β 
dystroglycan complex (Noell et al., 2011, Gondo et al., 2014). Matrix metalloproteinase 9 

(MMP9) (Michaluk et al., 2007), which shows high expression levels in astrocytes (ref?*), 

appears to be a major degrading enzyme of the dystroglycans, specifically β-dystroglycan. 

Because MMP9 is regulated through the neuroinflammatory response we examined the 

neuroinflammatory state of the HHcy mice. We found microglial activation, as assessed by 

CD11b immunohistochemistry, at all time-points examined, including the earliest, 6-week 

time-point. While microglial activation remains elevated and steady across the time-course 

studied, we found that the expression of pro-inflammatory mediators had different time-

courses of changes. IL-1β and TNFα are known to be the primary regulators of MMP9 

expression (Chakrabarti et al., 2006, Loesch et al., 2010, Klein and Bischoff, 2011). We 

found that TNFα expression peaks at the earliest time-point examined; 6 weeks. While there 

was a slight decline at the 10 and 14-week time-points, these changes were not significantly 

lower than the 6-week expression and remained significantly elevated compared to the mice 

on control diet. IL-1b showed a steady increase in expression over the time-course, with a 

modest increase at the 6-week time-point, a significant increase at the 10 week time-point 
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and a further increase at the 12-week time-point. Both IL-12 and IL-6 were also significantly 

increased as a result of HHcy at all time-points examined. These data are consistent with our 

previous reports of induction of a pro-inflammatory state by HHcy (Sudduth et al., 2013, 

Sudduth et al., 2014). Given that neuroinflammation precedes the astrocytic changes and 

cerebrovascular pathology it is possible that neuroinflammatory responses are key mediators 

of these later pathologies.

When we assessed cognition using the two-day radial water maze test of spatial memory, we 

found that significant impairment was only apparent at the 10 and 14-week time-points, with 

only one block of trials showing a deficit in the 6-week time-point. We can therefore 

conclude that the presence of neuroinflammation alone, in the absence of cerebrovascular/

astrocyte pathologies or other changes we have examined, is insufficient to induce a 

significant cognitive impairment. Only when other pathological events occur, specifically 

microhemorrhages and astrocytic end-feet degeneration, do we see cognitive impairment. 

While neuroinflammatory changes have been associated with cognitive impairment in the 

past, this has typically been associated with sub-chronic administration of the potent 

immune stimulator lipopolysaccharide (Semmler et al., 2007, Czerniawski et al., 2015, Sun 

et al., 2015). The HHcy diet does not appear to generate as robust an inflammatory response 

as that seen with LPS. However, based on our observations, we hypothesize that astrocytic 

end-foot degeneration and blood-brain barrier leakage are downstream consequences of the 

inflammatory response, and proximal causes of cognitive impairment.

Potassium buffering is a key function of the astrocyte, and the astrocytic expression of 

Kir4.1 and AQP4 at the end-foot is considered a critical component of this function. It has 

been shown that deletion of the KCNJ10 gene, (Kir4.1), results in impaired potassium 

buffering after synaptic activation and is associated with epilepsy (Haj-Yasein et al., 2011, 

Larsen and MacAulay, 2014). AQP4 deletion is also associated with impaired potassium 

buffering, likely through the altered osmotic balance (Strohschein et al., 2011). Cognitive 

impairment worsens with increasing time on the HHcy-inducing diet. Only when the 

astrocytic end-foot changes are present do we observe significant cognitive impairment in 

the two-day radial arm water maze. We predict that it is impaired potassium buffering that is 

mediating the cognitive impairment in the HHcy mouse model.

In conclusion, our HHcy model of VCID shows significant astrocytic end-foot degeneration 

including loss of the Dp71 anchoring protein, dislocalization of the AQP4 channel, and 

decreased expression of the two key potassium channels Kir4.1 and MaxiK. These events 

occur at the same time as cerebrovascular pathology is present. These events are preceded in 

the time-course by a pro-inflammatory response in the brain and microglial activation. 

Despite the early inflammatory response, cognitive impairment is only apparent when we 

find astrocytic end-foot changes and cerebrovascular pathology. Intriguingly, the same 

astrocytic changes were previously reported by ourselves in the CAA mouse model and in 

human AD with CAA (Wilcock et al., 2009). We therefore hypothesize that astrocytic end-

foot degeneration is a common pathological entity in VCID disorders. Future studies will 

test this hypothesis in other VCID models and human samples.
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Figure 1. The two-day radial arm water maze task shows progressive cognitive deficits in HHcy 
mice relative to mice on control diet
Panels A–C show mean number of errors per trial for mice receiving either control diet (red 

lines) or HHcy-inducing diet (blue lines). Each block number is the average of errors for 

three individual trials. Individual groups of mice were tested after being on diet for 6 weeks 

(A), 10 weeks (B), and 14 weeks (C). * indicates P<0.05; ** indicates P<0.01 for the given 

block comparison between mice on control diet for the same time.
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Figure 2. Microhemorrhages are increased in number after 10 and 14 weeks on HHcy inducing 
diet
The images show representative Prussian blue positive microhemorrhages from either mice 

on control diet for 14 weeks, or mice on HHcy inducing diet for 6, 10 and 14 weeks. 

Microhemorrhages are shown as blue staining on the neutral red counterstained background. 

The graph shows the mean number of microhemorrhages per section for each group of 

animals. The mean is calculated from counts of 16 sections per animal. * indicates P<0.05; 

** indicates P<0.01 when compared to mice on control diet for the same time.
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Figure 3. HHcy does not induce a significant astrogliosis in the brain
The images show representative GFAP immunohistochemistry in the dentate gyrus of the 

hippocampus from either mice on control diet for 14 weeks, or mice on HHcy inducing diet 

for 6, 10 and 14 weeks. The graph shows percent area occupied by GFAP-positive 

immunostaining in the frontal cortex and hippocampus of mice receiving control diet (red 

bars) or HHcy-inducing diet (blue bars).
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Figure 4. Astrocytic end-foot expression of AQP4 is significantly reduced following 10 and 14 
weeks of HHcy-inducing diet
The images show representative AQP4 immunohistochemistry in the frontal cortex from 

either mice on control diet for 14 weeks, or mice on HHcy inducing diet for 6, 10 and 14 

weeks. The graph shows mean number of AQP4-positive vessels in the frontal cortex (FCX) 

and hippocampus (CA3 and CA1 regions) of mice receiving control diet (red bars) or HHcy-

inducing diet (blue bars). * indicates P<0.05; ** indicates P<0.01 when compared to mice 

on control diet for the same time.
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Figure 5. Astrocytic end-foot expression of Dp71 is significantly reduced following 10 and 14 
weeks of HHcy-inducing diet
The images show representative Dp71 immunohistochemistry in the frontal cortex from 

either mice on control diet for 14 weeks, or mice on HHcy inducing diet for 6, 10 and 14 

weeks. The graph shows mean number of Dp71-positive vessels in the frontal cortex (FCX) 

and hippocampus (CA3 and CA1 regions) of mice receiving control diet (red bars) or HHcy-

inducing diet (blue bars). ** indicates P<0.01 when compared to mice on control diet for the 

same time.
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Figure 6. Expression of Kir4.1 and MaxiK is decreased after 10 and 14 weeks of HHcy induction
The hippocampus was used for gene expression analysis and the frontal cortex for the 

protein analysis. The graph in A shows fold-change from the mice on control diet of Kir4.1 

and MaxiK gene expression analysis by qPCR. The image in B show representative images 

of Western blots for MaxiK, Kir4.1 and b-actin. These are the same samples for all 3 images. 

The graph in C shows the quantification of band density for Kir4.1 and MaxiK normalized 

to the density of the corresponding b-actin band. Each bar is the average of all animals for 

each time-point. For graphs, * indicates P<0.05; ** indicates P<0.01 when compared to 

mice on control diet for the same time.
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Figure 7. HHcy activates microglia at all time-points examined
The images show representative CD11b immunohistochemistry in the dentate gyrus of the 

hippocampus from either mice on control diet for 14 weeks, or mice on HHcy inducing diet 

for 6, 10 and 14 weeks. The graph shows percent area occupied by CD11b-positive 

immunostaining in the frontal cortex and hippocampus of mice receiving control diet (red 

bars) or HHcy-inducing diet (blue bars). * indicates P<0.05; ** indicates P<0.01 when 

compared to mice on control diet for the same time.
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Figure 8. Pro-inflammatory mediators are increased by HHcy
qPCR analysis for TNFα, IL-1β, IL-12A and IL-6 was performed and the graphs show the 

fold change at 6, 10 and 14 weeks relative to mice on control diet for the same amount of 

time. * indicates P<0.05; ** indicates P<0.01 when comparing HHcy mice to mice on 

control diet for the same time.
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