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ABSTRACT OF DISSERTATION 

 
 
 

CHARACTERIZATION AND USE OF PATHOGEN SPECIFIC BACTERIOPHAGES 
TO REDUCE THE VIABILITY OF Escherichia coli O157:H7 CONTAMINATION ON 

FRESH PRODUCE  
 

Fresh produce is one of the most common sources of food-borne outbreaks, 
involving various pathogenic microorganisms such as Escherichia coli. Recent outbreaks 
have clearly shown that post-harvest washing has limited effectiveness on decontaminating 
produce and may contribute to cross-contamination of produce due to various limitations. 
Excessive use of sanitizers and antibiotics has also led to the development of many 
antibiotic-resistant strains of bacteria that have made the food industry more vulnerable. 

Bacteriophages are a bacterial viruses that can selectively infect and replicate 
within bacteria leading to cell lyse and death. Bacteriophages have become widely 
recognized due to their ability to selectively eliminate bacteria. Furthermore, their 
effectiveness in infecting and successfully eradicating various multi-drug resistant strains 
of bacteria has shown promise in a time of antibiotic resistance. It is for these reasons that 
bacteriophages are being proposed as an alternative to antibiotics for treating infections in 
humans, animal production, and as a biocontrol in food for bio-preservation and safety. 

Four bacteriophages (C14s, V9, L1, and LL15) of bovine origin were used against 
E. coli O157:H7 to study their efficacy against the pathogen under a controlled and 
complex environment. A microplate study was used to demonstrate this effectiveness under 
numerous conditions. A significant reduction (P<0.01) in the pathogen was observed. The 
subsequent study challenged the phage cocktail with 100-ppm bleach and 100-ppm 
SaniDate 5.0 respectively for three hours to study the ability of phages to tolerate the 
commercially used sanitizers. The bacteriophages survived the sanitizer concentration and 
significantly reduced (P<0.05) the population of the pathogen. A temperature study was 
conducted to analyze the ability of bacteriophage to withstand varying temperatures as a 
component of produce washes with mild heat treatments. Bacteriophages were subjected 
to 35, 45, and 55°C and were spot tested for effectiveness. The results indicated their 
ability to tolerate an increase in temperature and effectively produce plaques compared 
to the control. 

The success in demonstrating the phage's ability to reduce pathogens in a 
controlled environment led to the development of challenging them in a more complex 
environment, namely a produce wash. Fresh spinach leaves were washed with E. coli 
O157:H7 and bacteriophage cocktail in organic-rich and sterile water. The results 
indicated that there was a significant reduction (P<0.01) in the pathogen under both 
conditions. The successive study tested the same conditions in the presence of both 
sanitizers (100-ppm) and bacteriophage cocktail in sterile and high organic load produce 
wash. The sanitizer made in sterile wash water significantly (P<0.01) reduced the 
pathogen in the presence or absence of a bacteriophage cocktail. However, in the 
presence of an organic load, the data demonstrated that compared to the control, the 
phage cocktail significantly reduced (P<0.01) the contamination of the pathogen on the 



     
 

spinach leaves. These results demonstrate the ability of bacteriophages to be used in a 
produce wash system during post-harvest sanitation to act as a biocontrol in reducing 
pathogen contamination on fresh produce. 
 
KEYWORDS: E. coli O157:H7, Produce-wash, Bleach, SaniDate 5.0, Sanitation, and 
Dunk wash 
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CHAPTER 1. INTRODUCTION 

Fresh fruits and vegetables are considered a good source of vitamins, minerals, and 

other nutrients and are highly recommended by nutritionists and health professionals 

around the globe (Fan et al., 2009). However, fresh produce remains one of the leading 

causes of foodborne outbreaks in comparison to other food products such as meat, seafood, 

and dairy that are considered carriers of pathogens (Center for Disease Control and 

Prevention, 2020a). More than 400 cases of produce-related foodborne outbreaks have 

been recorded since 1990 (Murray et al., 2017). Fresh produce such as tomatoes, leafy 

greens, cantaloupe, and other soft fruits and vegetables are among the top produce that is 

frequently associated with outbreaks along with sprouted seeds such as clover, mung beans, 

and alfalfa (Murray et al., 2017). Since fresh produce are usually grown in open fields, the 

risk associated with exposing the harvestable portion of the crop to enteric pathogens from 

workers, soil, irrigation water, post-harvest water, wildlife, manure, and other sources are 

generally elevated (Fan et al., 2009). Additionally, fresh produce are usually consumed raw 

which in turn increases the risk associated with the consumption of fresh fruits and 

vegetables (Fan et al., 2009). Table 1.1 summarized from CDC (2020) lists the various 

outbreaks that were associated with fresh produce in the United States from 2011 to 2019 

(Center for Disease Control and Prevention, 2020a). 
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Table 1.1 Overview of foodborne illness outbreaks associated with fresh produce in the 

United States from 2011 – 2019 (Center for Disease Control and Prevention, 2020a) 

Year Product Pathogen No. of cases 

2011 Papaya Salmonella enterica Agona 106 

2011 Cantaloupe S. enterica Panama 20 

2011 Romaine Lettuce Escherichia coli O157:H7 58 

2011 Cantaloupe Listeria monocytogenes 147 

2012 Mango S. enterica Braenderup 127 

2012 Cantaloupe S. enterica Typhimurium and Newport 261 

2012 Romaine lettuce E. coli O157:H7 24 

2012 

Organic 

spinach/spring mix 

blend 

E. coli O157:H7 33 

2013 Cucumbers S. enterica Saint paul 84 

2013 Ready to eat salad E. coli O157:H7 33 

2014 Cucumbers  Salmonella Newport 275 

2014 Caramel Apples L. monocytogenes 35 

2014 Bean Sprouts Salmonella Enteritidis 115 

2014 Bean Sprouts L. monocytogenes - 

2014 Raw Clover sprout E. coli O121 19 

2015 Cucumbers Salmonella Poona 907 

2016 Alfalfa sprouts Salmonella Abony 36 

2016 Frozen vegetables L. monocytogenes 9 
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 Table 1.1 (Continued). 

Year Product Pathogen No. of cases 

2016 Alfalfa sprouts E. coli O157 11 

2016 Alfalfa sprouts 
Salmonella Muenchen 

and Salmonella Kentucky 
26 

2016 Packaged salad L. monocytogenes 19 

2017 Leafy greens E. coli O157:H7 5 

2017 Papaya Salmonella infection 2202 

2018 Romaine Lettuce E. coli O157:H7 62 

2018 Pre-cut melons Salmonella Adelaide 77 

2018 Romaine Lettuce E. coli O157:H7 2101 

2018 Raw Sprout Salmonella Montevideo 10 

2019 Cut-Fruit Salmonella Javiana 96 

2019 Romaine Lettuce E. coli O157:H7 167 

2019 Papaya Salmonella Uganda 81 

2019 Pre-cut Melon  Salmonella Carrau 137 
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Figure 1.1 Outbreak percentage on fresh produce from 2000-2015 (Center for Disease 

Control and Prevention, 2018) 

 

 Figure 1.1 summarizes the data obtained from the Center for Disease Control and 

Prevention (2018) which shows the percentage of pathogen contamination associated with 

fresh produce from 2000 - 2015 (Center for Disease Control and Prevention, 2018). These 

outbreaks have signified that commercial techniques that are employed for disinfecting 

produce are not to be relayed on and other novel interventions and strategies are highly 

necessary for further minimizing the risk of pathogen contamination on fresh produce. 
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2.1 Overview 

The Food Safety Modernization Act (FSMA) - Produce Safety Rule (PSR), the first 

set of mandatory federal standards in the United States for growing, harvesting, packaging, 

and handling fruits and vegetables (Bihn E., 2017), was first published in the Federal 

Register on November 27, 2015. The primary objective of the rule was to strengthen the 

current produce food safety system through a prevention-based approach by implementing 

minimum science-based best practices (U.S. Food and Drug Administration, 2015). Fruit 

and vegetable growers in the various categories of the PSR must abide by the rules and 

regulations of FSMA-PSR to fulfill federal regulations. Based on the data obtained from 

the Center for Disease Control and Prevention (CDC), between 2000 and 2016, 17,338 

illness outbreaks were reported, of which 558 were related to produce. These outbreaks led 

to 15,482 recorded illness, 816 hospitalization, and 20 deaths (Center for Disease Control 

and Prevention, 2018).  

Data obtained from the CDC (Table 2.1) clearly shows how outbreaks have been 

decreasing over the past few years, perhaps because of increased food safety awareness, 

buyer requirements (third-party audits), and Good Agricultural Practices (GAP) employed 

by growers. Although the U.S. food safety regulations have made great strides with respect 

to produce safety, various developments, such as challenges in the U.S. regulatory bodies, 

foodborne outbreaks due to new forms of contamination, and increasing costs associated 

with foodborne illnesses, have led to changes in food safety laws and regulations (Belden 

and Orden, 2011). 
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Table 2.1 Produce-related outbreaks in the United States (2000–2016) (Center for Disease 

Control and Prevention, 2018) 

 

2.2 Summary 

It is important to understand that, FSMA – PSR, in general, includes minimum 

science-based standards for growing, harvesting, packing, and holding fruits and 

vegetables intended for human consumption. In addition, it is essential to understand where 

fruits and vegetables come from, including routes of contamination and the microbiology 

not only of fruits and vegetables but also the environment in which they are grown and the 

various resources used to produce them. Although many different routes of pathogen entry 

into fruits and vegetables are possible, soil and water have been the top two routes of 

contamination. Numerous studies have been conducted to understand the way in which 

contamination occurs when produce is exposed to contaminated water, soil, or manure 

during production, harvesting, packing, and storage (Brandl and Mandrell, 2002; Harris et 

al., 2003; Islam et al., 2004; Penteado et al., 2004; Johannessen et al., 2005; Barker-Reid 

et al., 2009; Mootian et al., 2009; Oliveira et al., 2011). 

Foodborne outbreaks in fresh produce have been identified in many parts of the 

world (Lynch et al., 2009). In 2015, the CDC estimated that approximately 48 million new 

Year 2000-2005 2006-2010 2011-2016 

Outbreaks 220 179 159 

Illness 6,305 5,470 3,707 

Hospitalization 169 374 273 

Deaths 3 7 10 
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cases of foodborne illness are reported every year, resulting in 128,000 hospitalizations 

and 3,000 deaths (Center for Disease Control and Prevention, 2018). It was also estimated 

that the average national cost of foodborne illness was around $55.5 billion (Scharff, 2015). 

The proportion of outbreaks linked to fresh produce in the U.S. has been increasing 

significantly, from < 1 % to almost 6 % from 1970 to the 1990s, with 54% of the outbreaks 

linked to known pathogens (Sivapalasingam et al., 2004). Consumption of fruits and 

vegetables has significantly increased in the United States, because of its association with 

a healthy lifestyle (Callejón et al., 2015). Significant amounts of produce are consumed 

raw, and outbreaks associated with these products are growing correspondingly (Buck et 

al., 2003). The complex cycle of bacterial contamination and persistence on plants by 

adhesion of pathogens to the surfaces restricts the usefulness of conventional processing 

and chemical sanitizing methods to prevent the transmission of organisms in produce 

(Lynch et al., 2009). Outbreak investigations conducted over the years have led researchers 

to analyze different opportunities for contamination at the farm level in the farm-to-fork 

network (Lynch et al., 2009). Future achievements in preventing produce-related outbreaks 

depend on understanding the various factors influencing potential contamination, as well 

as maintenance of best practices to reduce and eliminate contamination (Kozak et al., 

2013). Therefore, creating awareness and understanding of pathogen-produce interactions 

are vital for controlling the growth of unwanted microorganisms on fresh produce and 

delivering safe food to the community. 

2.3 Pathogens contaminating fresh produce 

Various pathogenic microorganisms are associated with the contamination of fresh 

produce (Table 2.2). These include Campylobacter spp., Clostridium botulinum, 
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Clostridium perfringens, enterotoxigenic Bacillus cereus, Escherichia coli O157:H7 and 

other Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella spp., 

Shigella spp., enterotoxigenic Staphylococcus aureus, Vibrio cholerae, Yersinia 

enterocolitica, certain viruses, and protozoa (Steele and Odumeru, 2004). The likelihood 

of fruits and vegetables from a field or orchard becoming contaminated with pathogenic 

microorganisms during harvesting, post-harvesting, processing, or distribution was 

analyzed by Beuchat in 1996 (Beuchat, 1996). Beuchat discussed the ability of pathogenic 

microorganisms to cause human diseases and to survive and be present in the water which 

is used for irrigation or in the soil used for growing produce.  

Table 2.2 Sources of pathogenic microorganisms on fresh produce (Beuchat, 1996) 

Harvest Source 

Pre-harvest 

• Feces 

• Soil 

• Irrigation water 

• Green or inadequately composted manure  

• Air (dust) 

• Wild and domestic animals, and 

• Human handling 

Post-harvest 

• Feces 

• Human handling (workers, consumers) 

• Harvesting equipment 

• Transport containers (field to packing shed) 
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Table 2.2 (Continued). 

Harvest Source 

 

• Wild and domestic animals 

• Air (dust) 

• Wash and rinse water 

• Processing equipment (sorting, packing, and cutting) 

• Ice 

• Transport vehicles 

• Improper storage (temperature, physical environment) 

• Improper packaging 

• Cross-contamination (other foods in storage, preparation, 

and display areas) 

• Improper display temperature 

• Improper handling after wholesale or retail purchase 

 

Numerous outbreaks linked to contaminated fruits and vegetables have been 

recorded in recent years (Hussain and Gooneratne, 2017). These outbreaks have called 

attention to the effect of consumption of contaminated produce on human health, 

particularly when produce is consumed raw (Steele and Odumeru, 2004). L. 

monocytogenes outbreaks and prevalence in fresh produce was reviewed in 2017 by Zhu 

et al. (Zhu et al., 2017) who focused on fresh produce-related listeriosis outbreaks, the 

organism’s corresponding prevalence in the environment, contamination levels of fresh 

produce, and challenges associated with fresh produce safety. The author concluded that 
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L. monocytogenes is typically present in most fresh produce and ascribed this finding to 

the crop growing environment, post-harvest processing methods, and the retail setting. 

Measures to enhance produce safety in order to reduce the presence of these pathogenic 

microorganisms on fresh produce, including prevention of biofilm formation through 

effective sanitation methods (Zhu et al., 2017), were highly recommended.  

Another major pathogen contaminating fresh produce is Shiga-toxin producing 

Escherichia coli (E. coli), specifically serotype O157:H7, which has been identified as a 

causative agent in many foodborne outbreaks of gastroenteritis. Even though infections 

with STEC have been associated largely with consuming undercooked beef, several 

outbreaks linked to this pathogen have been traced back to consumption of contaminated 

produce, such as radishes, sprouts, and pre-packaged spinach (Berger et al., 2010). It has 

been demonstrated that these pathogens have the ability to adhere to the leaves of fresh 

produce, such as salad leaves, through alternative mechanisms involving the filamentous 

type III secretion system (Shaw et al., 2008) or through flagella-mediated attachment 

(Shaw et al., 2011). 

Fruits and vegetables have a high potential to act as vehicles for disease 

transmission. Fresh produce can be contaminated with pathogens by coming in contact 

with improperly treated manure, contaminated water or soil, poorly implemented 

washing/sanitizing operations, or food handlers who are infected and who handle produce 

improperly (Steele and Odumeru, 2004). Table 2.3, from Harris et al. (2003), details some 

characteristics of pathogens and their associated contamination sources (Harris et al., 

2003). It is obviously important to review good agricultural and food safety practices 
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periodically to keep up with newly identified microbial problems in order to improve food 

safety standards.  

Table 2.3 Characteristics of some microbial pathogens that have been linked to outbreaks 

of produce-associated illnesses (Harris et al., 2003) 

Microorganism 
Incubation 

period 
Infectious Dose Source 

Clostridium botulinum 
12 to 36 

hours 

Toxin production in 

food 

River, lakes, decaying 

vegetation, 

Escherichia coli 

O157:H7 
2 to 5 days 10 to 1000 

Animal feces, especially 

cattle, deer, and human: 

cross-contamination 

from raw meat, produce 

Salmonella spp. 
18 to 72 

hours 
10 to 100,000 

Raw meat, poultry, or 

eggs 

Shigella spp. 1 to 3 days About 10 Human Feces 

Listeria 

monocytogenes 

1 day to 5 

or more 

weeks 

Unknown, 

dependent upon the 

health of an 

individual 

Food processing 

environments 

Hepatitis A 
25 to 30 

days 
10 to 50 human feces and urine 
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2.4 Agricultural water 

According to the FDA, any water used in covered activities, i.e., where water is 

intended for use on fresh produce or on surface in contact with it, is called agricultural 

water. Agricultural water can be classified into pre- or post-harvest water, depending on its 

application and intended use during production, harvesting, and packaging (Bihn E., 2017). 

2.4.1 Pre-harvest water 

In recent years, many pathogens have been isolated with increasing frequency from 

fresh produce. Wastewater is increasingly employed as a source of irrigation to supplement 

scarce water supplies and to provide nutrients to crops. Improperly treated irrigation water 

can contain high levels of foodborne pathogens, which could adversely impact the quality 

and safety of fruits and vegetables produced using that water. Poor water quality has long 

been associated with fruit and vegetable contamination by various pathogenic 

microorganisms (Solomon et al., 2003). Irrigation water as a potential pre-harvest source 

of bacterial contamination on vegetables was studied by Ikabadeniyi et al. in 2002 

(Ijabadeniyi et al., 2011), who studied the effect of the water source used for irrigation on 

the bacterial load in the water and the subsequent levels of bacterial contamination found 

on fresh produce during a 12-month sampling period. They used logistic regression 

analysis to predict the potential bacterial load of Salmonella spp., L. monocytogenes, and 

intestinal Enterococcus in irrigation water and vegetables. Analysis of variance (P ≤ 0.05) 

was employed to determine whether there were significant differences between the levels 

of turbidity, oxygen demand, aerobic plate count, aerobic spore former counts, and 

anaerobic spore-former counts in 36 water samples. Results indicated that logistic 
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regression of the aerobic colony counts and S. aureus counts were statistically dependable 

in predicting the presence of L. monocytogenes on vegetables. Similarly, a significant 

difference was observed between the aerobic plate counts and the anaerobic spore-former 

counts (Ijabadeniyi et al., 2011). These findings were used to predict the potential presence 

of intestinal Enterococcus and Salmonella, respectively. The data indicated that the water 

used for irrigation was a likely source of contamination in fresh produce. Treatment of pre-

harvest irrigation water was highly recommended, along with good agricultural practices, 

especially in producing ready-to-eat vegetables (Ijabadeniyi et al., 2011). 

 In 2009, Braker-Reid et al. (Barker-Reid et al., 2009) studied the persistence of E. 

coli on injured iceberg lettuce in a field irrigated with contaminated water. The research 

team conducted assays to evaluate the persistence of E. coli on injured lettuce plants 

irrigated with water applied via overhead irrigation and inoculated with nonpathogenic E. 

coli. Specifically, physically damaged plants were treated on day 0 by applying 1 liter of 

inoculum (7 log10 CFU/ml) to each plant head, using a watering can. E. coli was 

subsequently detected on all lettuce head samples, and data analysis demonstrated that 

injury to the leaf prior to E. coli inoculation and harvest (P = 0.00067) significantly 

increased the persistence of the pathogen on lettuce samples, thus significant persistence 

of E. coli was seen on plants that had very recent injuries, and it was concluded that growers 

should avoid using contaminated water for irrigating lettuce crops for a minimum of 2 days 

before harvesting (Barker-Reid et al., 2009), a recommendation that should minimize food 

safety risk, since damage from farm management practices or environmental effects may 

cause pathogen retention on fresh produce. Growers were also advised to consider 



15 
 

chlorination or ozonation of water prior to its use, in order to provide safe irrigation water 

for crops (Barker-Reid et al., 2009).  

Mootian et al. (2009) analyzed (Mootian et al., 2009) the transfer of E. coli 

O157:H7 from the soil, water, and manure to lettuce plants. The main aim of the study was 

to determine whether exposure to low levels of the pathogen in the rhizosphere (near root 

portion) and phyllosphere (above ground portion) of lettuce plants would result in 

detectable levels of pathogen in the phyllosphere. Plants were exposed to different 

concentrations of the pathogen through contaminated soil and manure or through surface 

irrigation with contaminated water. It was observed that 21% of the plants tested positive 

for E. coli O157:H7. Surface sterilization did not result in complete elimination of the 

pathogen, as the bacteria were protected in crevices of lettuce tissue. Contamination of 

produce often increases close to harvest and can increase the risk of pathogens being 

present in the produce at the time of harvest (Mootian et al., 2009). It was concluded that 

future efforts are necessary to avoid human pathogen contamination of produce, rather than 

focusing solely on disinfecting technologies (Mootian et al., 2009). 

 Recovery of Salmonella enterica subsp. Newport, introduced through irrigation 

water, from tomato fruits, stems, and leaves, was studied by Hintz et al. in 2010 (Hintz et 

al., 2010). The objective of the study was to determine whether tomato plants irrigated with 

the target pathogen had the potential to uptake the organisms. The study involved using 

irrigation water containing 7 log10 CFU/ml of S. Newport on commercially-produced 7-

week-old tomato plants. Leaves, roots, stems, and fruits were sampled at different stages 

during development, homogenized, and then enumerated on XLT-4 agar for S. Newport. 

The results indicated that 35 of the 92 obtained samples (65% roots, 40% stems, 10% 

http://jfoodprotection.org/doi/abs/10.4315/0362-028X-72.11.2308
http://jfoodprotection.org/doi/abs/10.4315/0362-028X-72.11.2308
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leaves, and 6% fruits) were positive for S. Newport. Significant differences were observed 

for the presence of S. Newport according to the tissue type sampled, but no association was 

observed between the growth stages and contamination levels (Hintz et al., 2010). 

These studies clearly point out the risks of using contaminated water to irrigate 

crops, especially for fresh produce that may be consumed raw. Recently, the diverse 

opportunities for plants to become exposed to and contaminated with a huge array of 

human pathogens have been the focus of much discussion and research. It was previously 

believed that pathogens exposed to crops during cultivation would not persist through the 

different stages of harvest, post-harvest storage, handling, and transport (Solomon et al., 

2003). The ability of Salmonella spp. to survive on the edible portion of cilantro leaves 

was studied by Brandl and Mandrell in 2002 (Brandl and Mandrell, 2002). Researchers 

demonstrated the ability of S. Thompson to survive on the cilantro plants, despite low water 

availability and dry conditions, for an extended period of time (Brandl and Mandrell, 

2002). This study provides evidence that outbreaks of foodborne illness can result from 

pre-harvest contamination of fresh produce.  

In addition to pathogens remaining on the surface of the edible portions of plants, 

potential internalization and persistent survival inside the plant creates additional produce 

food safety challenges that are yet to be fully investigated. Hence, efforts to reduce 

microbial contamination during pre-harvest, along with proper post-harvest inactivation or 

removal of microorganisms, are likely necessary to reduce the microbial load on fresh 

produce and thereby minimize the incidence of associated foodborne illness outbreaks. 
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2.4.2 Post-harvest water 

 Many outbreaks of human illness related to the consumption of washed produce 

have been reported in the United States. Changes in agronomy, harvesting, distribution, 

processing, and consumption patterns have contributed significantly to an increase in 

foodborne illness (Beuchat and Ryu, 1997). Various pathogens, such as Listeria spp., 

Clostridium spp., Bacillus spp., Escherichia spp., parasites, and viruses, are likely to 

contaminate fresh produce, not only through infected manure, irrigation water, or soil, but 

also through contaminated wash water employed during post-harvest washing (Beuchat 

and Ryu, 1997). Fresh cut produce processors usually rely on wash water, along with 

sanitizers, to reduce the risk of microbial contamination of their products. Employing wash 

water with sanitizers is used specifically to prevent cross-contamination and to improve 

the hygiene of produce by eliminating soil particles and debris (Gil et al., 2009). Despite 

the use of sanitizers with wash water for reduction of microorganisms during washing, 

epiphytic organisms are capable of growing rapidly during storage. The main problems 

encountered with using wash water are the type and concentration of sanitizers employed. 

Treatment with chlorinated water, one of the most common post-processing methods for 

washing fresh produce, reduces the population of pathogenic and other microorganisms 

but cannot eliminate them completely. It is clear that current concentrations of chlorine 

employed by the industry to wash produce cannot be relied upon to eliminate all pathogens 

(Beuchat and Ryu, 1997). The multitude of alternative methods and sanitizers now 

available for produce washing highlight the problems encountered in using chlorine and 

suggests that many industries may benefit from supplementing, if not replacing, the 

traditionally used disinfectant. In addition, many European countries are now using potable 
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water instead of chemical disinfecting agents for washing fresh-cut vegetables and fruits 

(Gil et al., 2009).   

Evidence of Salmonella internalization into fresh mangos during a simulated post-

harvest procedure was analyzed by Penteado et al. in 2004 (Penteado et al., 2004). The 

research team investigated a nationwide recall on mangos in the United States that was due 

to possible contamination with Salmonella, even though the crop had been disinfected with 

chlorine. Salmonella enterica S132, which expresses a green fluorescence protein, was 

used as the target microorganism for the study. Mangos (immature and ripe) were 

processed according to the post-harvest handling procedure. Enumeration of the 

microorganism was carried out on processed mangos by sectioning the fruits into stem-

end, middle-side, and bottom-end segments. Samples were homogenized, plated on BHI 

agar and incubated at 37°C for 18–24 hours. Overnight incubated plates were then 

examined, using UV light to enumerate colonies. Both the immature and ripened mangos 

tested positive for Salmonella internalization. The degree of ripeness had no significant 

effect on the frequency of contamination. Internalization was significantly higher (P < 

0.05) on the stem-end segment (83%) than on the middle (19%) or the blossom end (9%). 

Salmonella levels inside the pulp varied greatly between treatments, and the pathogen was 

detected within the pulp after 1 week of incubation at various temperatures. The study 

concluded that poor-quality wash water that was not properly chlorinated or was 

contaminated during processing may have served as the contamination route. Employing 

high-quality water for post-harvesting processing is a necessity to minimize the likelihood 

of contamination. Additional studies are required to establish the effectiveness of existing 
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disinfestation procedures on preventing internalization of pathogens during post-harvesting 

processes (Penteado et al., 2004).  

Pathogens have long been observed to have the ability to be transferred from 

different sources onto the edible portions of plants at any point from harvest to 

consumption. Employing high-quality wash water free of organic matter, along with an 

effective sanitizer, is highly recommended to avoid cross-contamination, especially if the 

water is recycled. The impact of wash water quality on E. coli cross-contamination of fresh-

cut escarole was studied by Allende et al. in 2008 (Allende et al., 2008), who employed 

different types of wash water (such as potable, recirculated, and diluted recirculated water) 

inoculated with microorganisms to study the ability of bacteria to cross-contaminate 

produce. A significant amount of transmission of E. coli from the inoculated to the un-

inoculated samples occurred during washing. It was concluded that the contamination level 

may impact water quality and the efficacy of added sanitizers for reducing the 

concentration of waterborne pathogens. It was also shown that cross-contamination of 

fresh-cut produce can occur if even a small amount of contaminant is present during 

washing, thus demonstrating the need for using good quality wash water with an effective 

sanitizer to control or prevent contamination (Allende et al., 2008). In 2004, Rodgers et al. 

compared chemical sanitizers for inactivating E. coli O157:H7 and L. monocytogenes on 

apples, lettuce, strawberries, and cantaloupe (Rodgers et al., 2004). They employed ozone 

(3 ppm), chlorine dioxide (3 and 5 ppm), chlorinated trisodium phosphate (100 and 200 

ppm) and peroxyacetic acid (80 ppm) with regard to their effect on reduction of E. coli 

O157:H7 and L. monocytogenes in an aqueous system. Pathogens employed for the study 

were prepared by using three different strains of each organism, resulting in a cocktail 
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mixture prepared at a concentration of approximately 6 log CFU/ml. Four sanitizers were 

prepared at the appropriate concentrations, using distilled water (wash water), which was 

also employed as a control, at 21° and 23°C. Samples were homogenized and plated on 

various media to quantify mesophilic bacteria, E. coli O157:H7, L. monocytogenes, yeasts, 

and molds. Significant reductions in both pathogens occurred, with ozone being the most 

effective treatment, followed by chlorine dioxide, chlorinated trisodium phosphate, and 

peroxyacetic acid (in decreasing order of efficacy). Quantification of organisms yielded 

relatively similar results for all nine days of sampling, although toward the end of the study, 

mold and yeast populations were significantly higher for samples treated with chlorine 

dioxide and ozone. It was concluded that chlorine dioxide, chlorinated trisodium 

phosphate, and ozone all effectively reduced the counts of E. coli O157:H7 and L. 

monocytogenes (Rodgers et al., 2004).  

Plain water can be used for reducing the probability of contamination during 

washing, but it also can transfer pathogenic microorganisms (Gil et al., 2009). Washing 

fresh produce with an effective sanitizer is therefore important to obtaining products free 

of organic matter and especially to preventing cross-contamination between clean and 

contaminated products. The aforementioned experiments clearly demonstrate the 

importance of employing good-quality post-harvest wash water along with a sanitizer to 

reduce pathogens and spoilage organisms on fresh produce. 

2.5 Soil and Manure 

Soil has long been known to provide essential nutrients for the growth and 

development of plants (Bezdicek et al., 1996). Soil and manure have both played major 

roles in exposing plants to a diverse array of microflora comprised of both beneficial and 
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harmful microorganisms. Many foodborne outbreaks have been linked to consumption of 

fruits and vegetables grown in soil contaminated with manure or polluted irrigation water 

(Oliveira et al., 2011). Contamination of produce with improperly treated or contaminated 

soil, manure, or compost on the farm can cause pre-harvest contamination of fresh produce 

(Islam et al., 2005). Although competition from natural soil flora and unexpected 

environmental conditions may hinder the growth and development of pathogens (Islam et 

al., 2005), the potential of pathogens to persist and survive has led researchers to study 

their ability to adapt to extreme environmental conditions. Islam et al. in 2004 studied the 

fate of Salmonella enterica serovar Typhimurium on field-grown carrots and radishes 

exposed to different types of compost inoculated with the target organism (Islam et al., 

2004). The three types of compost employed (poultry manure, dairy cattle manure, and 

alkaline-pH stabilized dairy cattle manure), along with irrigation water, were inoculated 

with 107 and 105 CFU/ml of Salmonella. Crops were grown in the contaminated field, and 

samples were withdrawn to study the persistence of Salmonella, which was shown to 

survive for an extended time and was detectable in the soil for 203 to 231 days (Islam et 

al., 2004). Similar results were observed in the case of contaminated irrigation water. The 

team concluded that employing either contaminated manure or irrigation water could play 

a major role in contaminating the soil, leading to prolonged persistence of the pathogen, 

which could eventually contaminate produce, especially root vegetables (Islam et al., 

2004).  

Transfer of Listeria innocua from contaminated compost and irrigation water to 

lettuce leaves was studied by Oliveira et al. in 2011 (Oliveira et al., 2011). The objective 

was to determine the transfer of the pathogen from contaminated compost and water to the 
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edible portion of the plants as well as the survival of the pathogen through two seasons, 

fall and spring. Viable L. innocua were retrievable from the field for up to 9 weeks, at a 

concentration of 105 CFU/gdw in fall and 103 gdw (gram by weight) in spring (Oliveira et 

al., 2011). The team was also able to successfully demonstrate the transfer of the pathogen 

from contaminated soil and water to the edible portion of the plant, especially the outer 

leaves. It was concluded that the pathogen survived better in fall than in spring, which 

indicates that temperature and humidity play major roles in regulating growth of the 

bacteria. In general, employing contaminated compost and irrigation water will contribute 

to the presence of foodborne pathogens on vegetables (Oliveira et al., 2011).  

Johannessen et al. in 2005 studied the potential uptake of E. coli O157:H7 from 

organic manure into crisp head lettuce (Johannessen et al., 2005). Lettuce seedlings were 

planted in soil which was fertilized with contaminated bovine manure containing 104 

CFU/g of E. coli O157:H7 and grown in a climate-controlled greenhouse for 50 days, after 

which samples were withdrawn randomly and tested for the presence of the pathogen. The 

pathogen was not detected on the edible portion, the outer leaves, or the roots of the lettuce 

harvest, despite the persistence of the pathogen in the soil for almost 8 weeks. It was 

concluded that the E. coli O157:H7 was not transmitted from contaminated manure to 

lettuce under the test conditions (Johannessen et al., 2005). 

  Large quantities of animal manure are applied to agricultural lands in the 

U.S., with an estimated 1.36 billion tons being applied annually, 90% of which consists of 

cattle manure (US Senate Agriculture Committee, 1998). Although application of manure 

or compost improves soil fertility, applying improperly treated or contaminated manure 

and compost, especially of animal origin, which contains various enteric pathogens, could 
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allow pathogens to enter the food chain (Islam et al., 2005). Pathogens may be introduced 

into the soil from contaminated manure, compost, irrigation water, and surface runoff water 

from production operations such as those used for raising cattle, swine, or poultry. On the 

basis of results of the aforementioned studies, it can be concluded that application of 

manure to production fields may result in persistence of microorganisms in the 

environment for extended periods of time, thereby increasing the risk of contamination of 

the produce 

2.6 Conclusion 

Increases in production, distribution, and consumption of fresh produce, along with 

inconsistent agricultural practices and varying production methods, may explain the high 

incidence of produce-associated foodborne illness outbreaks. In the past decade, food 

safety has become a major concern, and the frequency of outbreaks has reduced consumer 

confidence, which has led the food industry to take steps necessary to produce safe food 

and thus rebuild consumer acceptance. Various environmental factors during pre- and post-

harvest may contribute significantly to contamination of fresh produce by spoilage 

organisms and potential pathogens. It is clear that microorganisms, including human 

pathogens, have the ability to survive in water, soil, and manure, and on fresh produce, for 

prolonged periods of time because of their ability to adapt to extreme conditions. 

Illnesses associated with produce are sporadic. Although numerous studies have 

demonstrated the ability of pathogens to contaminate fresh produce, experimental studies 

do not mimic real farm environments, and their implications are “one size fits all;” 

prescriptive and reactive approaches have not, to date, provided adequate solutions. 

Microbial contamination is difficult to remove and can easily become internalized through 
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natural features such as stem scars or leaf injury. Employing effective sanitation plays a 

major role in eliminating pathogens; however, it is evident that the current options 

employed for sanitizing produce are insufficient to combat the sporadic contaminations 

that may occur in a produce growing and handling environment. Emphasis must be placed 

on employing multi-level sanitation processes that use hurdle technology to make produce 

safer for human consumption. Because of the numerous routes and weak links in 

production, storage, and distribution of fresh produce, complete elimination of pathogens 

is difficult, since contamination can occur at any point along the chain. To prevent produce-

related contamination, we need to look at the entire food chain from field to consumption 

with an eye to identifying major control points and establishing essential risk-based 

prevention steps. Prevention of produce related outbreaks also requires a collaborative 

effort from industry, government, health agencies, and academia (Howard and Gonzalez, 

2001).  

The majority of produce-related outbreaks in the past were associated with leafy 

greens (25%), sprouts (25%), and melons (10%) (Bihn E., 2017), leading many people to 

think that the focus of food safety programs should be only such high-risk commodities. 

However, restricting food safety practices to these high-risk commodities does not meet 

the overall purpose of producing safe food for human consumption, because every crop 

produced in the field has a chance to become contaminated with human pathogens. Thus, 

employing proactive and prevention-based food safety programs such as those described 

in GAP/GHP and the FSMA Produce Safety Rule should be most effective in reducing 

food safety risks.  
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CHAPTER 3. BACTERIOPHAGE 

3.1 Introduction 

Bacteriophages are bacterial viruses that can infect and replicate within the host 

bacterium, leading to cell lysis and death. In 1896, Ernest Hanbury Hankin discovered a 

bactericidal action from an unknown entity within the waters of the Ganges and Jumna 

rivers in India (Abedon et al., 2011). Years later, in 1971, the term “bacteriophage” was 

coined by microbiologist Felix d’Herelle upon successful isolation of this unknown virus 

from human stool samples (O'Sullivan et al., 2019). Bacteriophages (phage) are considered 

one of the most widely distributed entities, with an estimated global population of more 

than 1031 particles (Hendrix, 2003). Phages are considered an obligate intracellular parasite 

and require a living host for growth and propagation (O'Sullivan et al., 2019). Although 

phages are ubiquitous, they are usually found in places where their corresponding host 

bacteria thrive. Some phages are considered a persistent threat to specific food industries, 

especially the fermentation and dairy industries, as they can infect and inhibit the growth 

of starter cultures (O'Sullivan et al., 2019). Alternatively, other phages are used to control 

spoilage and eliminate pathogenic bacteria from contaminating food; thus, reducing food 

waste and foodborne illnesses (O'Sullivan et al., 2019).  

3.2 Morphology 

A wide range of morphological characteristics is observed in bacteriophages that are 

isolated from environmental samples. Typically, bacteriophages have a defined protein 

coat enclosing their genetic material, which is either RNA or DNA (Clark and March, 

2006). Most phages have a head which is polyhedral in structure, except for particular 

filamentous phage (Ackermann, 1998). The head of the phage is attached to a connector, 
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with or without fibers, that is referred to as the tail or collar. The tail typically carries 

specific receptors, used for host identification and attachment (Haq et al., 2012). 

 Based on the nucleic acid composition, bacteriophages are divided into four families: 

Caudovirales, Microviridiae, Leviviridae, and Cystoviridae (Dias et al., 2013). 

Caudovirales carry double-stranded DNA (ds DNA) and are commonly characterized by 

the presence of a tail (Dias et al., 2013). The characteristics of the tail can further divide 

these phages into three sub-categories: Siphoviridae (long flexible tail), Myoviridae 

(contractile tail), and Podoviridae (short tail) (Dias et al., 2013). Caudovirales represent 

almost 96% of the total phages identified to date (Dias et al., 2013). In contrast, 

Microviridiae typically contains single-stranded DNA (ss DNA), Leviviridae contains 

single-stranded RNA (ss RNA), and Cystoviridae contains double-stranded RNA (ds 

RNA) (Dias et al., 2013). 

 

Figure 3.1 A - Caudovirales (dsDNA), B - Microviridiae (ssDNA), C - Leviviridae 

(ssRNA), and D - Cystoviridae (dsRNA) (Dias et al., 2013). 
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3.3 Mechanisms of the Infection Cycle 

Like all viruses, phages go through several steps during the infection cycle, 

including absorption, injection, expression, and replication of the viral genome. Following 

the entry into the cytoplasm of the host cell, bacteriophages can follow the lytic or 

lysogenic pathways (Dias et al., 2013; O'Sullivan et al., 2019). If the viral genome 

integrates itself with the host chromosome or remains as a non-expressed plasmid in the 

host cytoplasm, the pathway is referred to as a lysogenic cycle (Figure 3.2). During this 

phase, the genetic material is passed on to the progeny of the host cell. On the other hand, 

if the genome, after integration with the host chromosome, results in active replication of 

the phage particle, then the pathway is referred to as the lytic cycle (Figure 3.2) (Dias et 

al., 2013). Apart from the two main pathways, bacteriophages can also perform other 

infection cycles such as pseudolysogenic or chronic. In the pseudolysogenic cycle, only a 

certain fraction of the phage multiplies within the host while the rest act as a strict carrier 

of the plasmid (Dias et al., 2013). In the chronic cycle, the progeny of the phage is 

constantly released from the host through the process of budding or extrusion (Dias et al., 

2013). 
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Figure 3.2 The phage life cycle (Doss et al., 2017).  

3.4 Phage therapy 

Before the discovery of antibiotics, bacteriophage was used to successfully treat 

infections (Hanlon, 2007). Phage therapy was short-lived due to a lack of understanding 

about the basic phage biology and the rapid development of new antibiotics (Hanlon, 

2007). Decades of using antibiotics and various synthetic antimicrobials have led to the 

development of multiple-drug resistant bacteria, which results in a serious issue in 

controlling infections with the use of commercially available antibiotics and other 

antimicrobials (Dias et al., 2013). Current research and funding agencies are now focusing 

on finding alternative resources that are cheap, easy, safe, and effective to employ (Dias et 

al., 2013).  

Phage therapy has several advantages over conventional antibiotic therapy (Doss et 

al., 2017). The isolation of phage is considered comparatively simple, fast, and inexpensive 

(Parasion et al., 2014). Phages tend to be infective under extreme conditions and have a 
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tendency to replicate until the host bacterial population has been significantly reduced 

(Schmelcher and Loessner, 2014). Bacteria also tend to develop resistance to phage 10 

times slower than developing resistance to an antibiotic (Parasion et al., 2014). Most 

phages have shown a high specificity to their host bacteria. This eliminates the possibility 

of them infecting humans since phages do not display an affinity for eukaryotic cells 

(Parasion et al., 2014).  

Phages have successfully been used in animal models to treat infections (O'Sullivan 

et al., 2019). Pathogenic E. coli strains are considered common causes of colibacillosis in 

avian species. This infection can lead to a decrease in egg production, carcass rejection at 

slaughter, and even pre-mature mortality (Guabiraba and Schouler, 2015). Huff et al. 

(2003) successfully demonstrated the ability of phages to decrease the E. coli infection in 

broiler chickens when administered either through aerosol or intramuscular injection (Huff 

et al., 2003). The study indicated that the aerosol spray administration and intramuscular 

injection resulted in a significant reduction in the mortality rate from 50% to 20% and 53% 

to 17% respectively (Huff et al., 2003). The results demonstrated the ability to utilize 

bacteriophages as an alternative to traditional antibiotics in order to control bacterial 

infections in animal production (Huff et al., 2003). Bovine mastitis, caused by 

Staphylococcus aureus, is a leading cause of decreased milk yield and quality in the dairy 

industry (Breyne et al., 2017). Overuse of antibiotics is considered one of the major 

problems faced by the industry, due to occasional non-curative results and potential 

antibiotic residues found in the milk (Breyne et al., 2017). Breyne et al. (2017) 

demonstrated the use of a S. aureus phage cocktail against S. aureus in a murine model. 

The study successfully showed the ability of the phage cocktail (mixture of equal volume 
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of phage) to reduce the bacterial population from 8.70 log CFU/gland to 4.43 log 

CFU/gland and revealed an reduced pathological changes in the mastitic mammary gland 

via histopathological analysis (Breyne et al., 2017). 

Phage therapy has been utilized to treat bacterial infections in human models. 

Sarker et al. (2015) performed oral phage therapy of two coliphages against E. coli (ETEC) 

infections as a randomized trial in children from Bangladesh (Sarker et al., 2016). The 

primary objective concluded the safety of the phage since no undesirable events were 

observed in the children treated with the phage. Although an increase in fecal coliphage 

was observed in comparison to the control children, the phage titer did not show any 

increase in intestinal phage replication. The authors concluded that even though coliphages 

showed a relatively safe gut transit, they failed to improve any diarrheal symptoms. It was 

suggested that a higher phage titer with increased oral dosage and additional in-vivo studies 

might help in a broader understanding of the phage-bacterial interaction in a complex 

system (Sarker et al., 2016). 

3.5 Phage mediated control of spoilage and foodborne pathogens 

A variety of food products are known to pose a risk to human health due to common 

bacterial contamination, which can result in serious illness and death (World Health 

Organization, 2015). These foods include meats, seafood, dairy products, poultry meat, and 

vegetables, which are usually mass-produced through non-diversified farming, bulk co-

packing, and multi-product transportation, resulting in an increased risk of contamination 

(O'Sullivan et al., 2019). Phages have been shown to have a wide application in reducing 

bacterial contamination on food products leading to improved food safety (O'Sullivan et 

al., 2019).  
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3.5.1 Pre-harvest spoilage  

Preharvest spoilage of foods, both plant and animal origin, is considered a primary 

issue in the food industry. Several studies have been conducted concerning the use of 

phages as a biocontrol for several bacterial plant pathogens (Buttimer et al., 2017). For 

instance, tomatoes and peppers are susceptible to bacterial infections caused by 

Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato, which 

cause soft rot on fruits and vegetables leading to spoilage and economic loss (Gitaitis et 

al., 1987; O'Sullivan et al., 2019). The Environmental Protection Agency (EPA) in 2005 

approved the use of a phage-based product called AgriPhageTM, which can be used 

commercially to control the pathogens from infecting young tomato and pepper plants 

(O'Sullivan et al., 2019).  

Berchieri et al. (1991) administered Salmonella Typhimurium phage, isolated from 

sewage, into newly hatched chickens infected with the pathogenic bacteria (Berchieri et 

al., 1991). The results showed a considerable decrease in the mortality rate among the 

young chicks, as well as a reduction of the pathogen in the crop, caeca, and small intestine 

of birds for up to 12 hours (Berchieri et al., 1991). These studies show the capability of 

phages to be employed as a preventive tool to impede the transfer of disease between 

animals or plants during the initial processing; thus, acting as an effective biocontrol that 

can significantly thwart spoilage and economic loss. Phages have also been evaluated for 

their ability to control infections in foods of animal origin such as lambs, pigs, cattle, and 

fish (Greer, 2005).  Table 3.1, from Greer (2005) summarizes studies conducted on crops 

and animals using bacteriophage to control preharvest bacterial pathogens. 
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Table 3.1 - Preharvest bacterial pathogen control using bacteriophages (Greer, 2005) 

Food production system Disease/clinical sign Bacteriophage host strain 

Cultivated mushrooms Bacterial blotch Pseudomonas tolaasii 

Tomatoes Bacterial spot Xanthomonas campestris pv. 
vesicatoria 

Apples Fire blight Erwinia amylovara 

Stone fruits Prunus bacterial spot X. campestris pv. pruni 

Sprouts Seed contamination Salmonella enteritidis 

Fish Redfin disease Aeromonas hydrophila 

Beef cattle Bacterial shedding E. coli O157:H7 

Calves, piglets, and 
lambs 

Diarrhea, lethal 
infection Enteropathogenic E. coli 

Sheep Bacteria in rumen, feces, 
colon E. coli O157:H7 

Dairy cattle Mastitis Staphylococcus aureus 

Pigs Tonsil and cecal 
Salmonella Salmonella typhimurium 

 

3.5.2 Post-harvest spoilage  

Bacteriophages have been successfully used for controlling bacterial contamination 

during post-harvest processing and storage of food products. The fresh-cut produce 

industry is one of the rapidly growing produce markets, which offers products of 

convenience (Leverentz et al., 2001). However, the absence or cutting off the peel or rind 

increases the food safety concerns of fresh-cut fruits and vegetables as this damage can 

encourage colonization by pathogenic bacteria (Leverentz et al., 2001). Various pathogenic 

bacteria grow and multiply on the surface of fresh-cut produce such as melons, and lettuce, 

tomatoes, and apples (Harris et al., 2003). Leverentz et al. (2001) analyzed a biocontrol 
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method of Salmonella on fresh-cut produce using bacteriophages. Lytic Salmonella-

specific phages were applied to fresh-cut melons in order to demonstrate their ability to 

reduce the population of the inoculated pathogen. The results indicated that the phage 

mixture achieved a 3.5 log reduction of the pathogen on the melons (Leverentz et al., 2001). 

Magnone et al. (2013) studied the capability of a bacteriophage cocktail to inactivate 

Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fruits and 

vegetables during a produce wash (Magnone et al., 2013). All the three pathogens were 

inoculated on broccoli, cantaloupe, and strawberries that were then washed using a 

bacteriophage cocktail, levulinic acid, or combination of both. The combined produce wash 

of bacteriophage and levulinic acid achieved more than a 4.0 log reduction of the pathogen 

even in the presence of a high organic load (Magnone et al., 2013). The findings indicated 

that a bacteriophage treatment, in combination with a commercial produce wash, could be 

an effective method in controlling contamination in produce despite the presence of high 

organic load.  

Surprisingly, there is substantially more information published regarding the 

application of bacteriophage on foods of animal origin. Atterbury et al. (2003) studied the 

effectiveness of host-specific bacteriophages in reducing Campylobacter jejuni 

contamination on the surface of chicken skin stored at either 4oC or - 20oC (Atterbury et 

al., 2003b). When a high phage titer of 107PFU was applied, a significant reduction in the 

pathogen was observed at each sampling until the end of the study. The difference was 

clearly evident in the case of chicken skins stored frozen as a log reduction of 2.3 - 2.5CFU 

was observed in comparison to the control (Atterbury et al., 2003b). The study concluded 

that the bacteriophages effectively reduced the population of C. jejuni on chicken skin even 
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in the absence of host growth and suggested that further study could help determine more 

controlling measures for chickens contaminated with this pathogen (Atterbury et al., 

2003b). A study conducted by O'Flynn et al. (2004) showcased the most effective use of a 

bacteriophage cocktail in reducing E. coli O157:H7 contamination on beef steaks (O'Flynn 

et al., 2004). A bacteriophage cocktail containing three different phages was applied to the 

contaminated beef and reduced the initial pathogen load from 3.0 log CFU to an 

undetectable level. This study supports the use of bacteriophage as a biocontrol method for 

reducing E. coli O157:H7 contamination on meat and the use of phage therapy as a viable 

method for controlling pathogens in food (O'Flynn et al., 2004).  

The aforementioned studies emphasize the effective use of bacteriophages in 

reducing the contamination of both spoilage and pathogenic microorganisms of plant and 

animal origin. Additional studies have also emphasized the ability of phages to control and 

reduce contamination of different food products listed in Table 3.2 that was summarized 

from (Greer, 2005) 

Table 3.2 Postharvest bacterial pathogen control using bacteriophages (Greer, 2005) 

Foods Bacteriophage host strain 

Melon and apple slices Listeria monocytogenes and Salmonella enteritidis 

Milk Staphylococcus aureus and Pseudomonas fragi 

Cheese Salmonella enteritidis 

Retail chicken Salmonella typhimurium DT104 

Chicken frankfurters Salmonella typhimurium DT104 

Vacuum-packed beef L. monocytogenes 

Pork fat Brochothrix thermosphacta (spoilage control) 

 



35 
 

3.6 Consideration of bacteriophage as a biocontrol strategy 

Bacteriophages have been praised for their extraordinary application in reducing 

pathogens; however, several issues must be considered before developing a novel 

application and using them as a biocontrol strategy in food products. Table 3.3 summarized 

by Greer (2005), lists the various advantages and disadvantages of employing 

bacteriophages as an effective technique in controlling foodborne pathogens. Employing 

bacteriophages as a biocontrol strategy must be marketed as a more natural way of food 

safety and preservation (Greer, 2005). The various studies discussed have demonstrated 

the use of bacteriophage during pre- and post-harvest phases of food production and have 

achieved a reduction in both pathogenic and spoilage bacteria.  

Table 3.3 Considerations for developing techniques to use bacteriophage as a biocontrol 

against foodborne pathogens (Greer, 2005) 

Advantages Disadvantages 

1. Self-perpetuating 1. Limited host range 

2. Selective modification of bacterial 
flora (specificity) 2. Phage-resistant bacterial mutants 

3. Stable in foods and able to survive 
processing 3. Requires large numbers of target bacteria 

4. Natural 4. Barriers in food environments 

5. Ubiquitous and readily isolated 5. Transduction of undesirable characteristics 

6. Cost-effective 6. Lysogenic conversion (temperate phages) 

7. Ease of preparation and application 7. Antigenicity (immune response, 
allergenicity) 

8. Nontoxic to eukaryotic cells 8. Consumer perception of adding viruses to 
foods 

9. No effect on food quality - 
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At this time, most experiments that have been carried out using bacteriophages have 

occurred on a laboratory level and typically focus on using phage for spot treatments on 

the contaminated surface of the produce. In contrast to the laboratory techniques, the dunk 

tank method for washing produce is a commonly employed technique in the produce 

industry. Examining the effectiveness of bacteriophages in a simulated dunk tank for 

washing contaminated produce could help determine the biocontrol aspect of 

bacteriophages in controlling foodborne pathogens on fresh produce. 
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CHAPTER 4. ISOLATION AND ASSESSMENT OF BACTERIOPHAGES OF 

BOVINE ORIGIN AGAINST E. COLI O157:H7 

4.1 Introduction 

Foodborne illness of microbial origin can range from being mild to life-threatening, 

depending on the source and type of contamination (Global and Local, 2005). 

Numerous outbreaks linked to contaminated fruits and vegetables have emerged in 

recent years (Hussain and Gooneratne, 2017). Outbreaks, particularly associated with 

raw produce, are a major concern because raw produce harbor foodborne pathogens 

(Steele and Odumeru, 2004). Several environmental factors contribute to 

contaminating fresh produce with spoilage and pathogenic microorganisms during pre- 

and post-harvest processing (Jagannathan and Vijayakumar, 2019). These pathogenic 

microorganisms include Campylobacter spp., Clostridium botulinum, Clostridium 

perfringens, enterotoxigenic Bacillus cereus, Escherichia coli O157:H7 and other 

Shiga toxin-producing E. coli, Listeria monocytogenes, Salmonella spp., Shigella spp., 

enterotoxigenic Staphylococcus aureus, Vibrio cholerae, Yersinia enterocolitica, 

certain viruses, and protozoa (Steele and Odumeru, 2004). Among those listed above, 

Enterohemorrhagic Escherichia coli (E. coli), specifically serotype O157:H7, is a 

significant pathogen that contaminates fresh produce and is among the leading causes 

of foodborne outbreaks of gastroenteritis. Although Shiga toxin-producing E. coli is 

primarily associated with the consumption of beef, several outbreaks have been traced 

back to the consumption of contaminated sprouts and pre-packaged spinach (Berger et 

al., 2010). 
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Antibiotics have been used for years against bacterial infections; however, serious 

medical and social problems have emerged due to the development of antibiotic-

resistant strains (World Health Organization, 2014). Prior to the discovery and 

prevalent use of antibiotics, it was suggested that various bacterial infections could be 

prevented and/or treated by the administration of bacteriophages (Sulakvelidze et al., 

2001). Bacteriophages, informally known as a phage, are bacterial viruses that invade 

and replicate within bacteria and, in the case of the lytic phage, disrupt bacterial 

metabolism that causes the bacterium to lyse (Sulakvelidze et al., 2001). Historically, 

the study of phages suffered from conflicting observations, misinterpretation, and 

incomplete understanding. Currently, phages are being increasingly used for various 

purposes, especially in the food industry, due to their antimicrobial potential (Summers, 

2012; Zaczek et al., 2015). 

In order to meet the growing demand for consumer convenience and variety, fresh 

produce retail industries have increased their production of pre-packaged salad and fruit 

(Berger et al., 2010). As a result, there is a parallel increase in foodborne outbreaks 

linked to the consumption of fresh produce (Berger et al., 2010). Due to the increase in 

foodborne outbreaks caused by these pathogens, it appears that current technologies 

employed to prevent the contamination in the food industry are not reliable (García et 

al., 2008). Additionally, the extensive use of sanitizers has led to the development of 

resistant bacteria, which has rendered various sanitation procedures less effective 

(García et al., 2008). Alternatively, some approaches traditionally used in the food 

industry to reduce contamination by pathogens cannot be directly applied to fresh fruit 

and vegetables due to their delicate nature and raw consumption. Hence, despite recent 
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advances to avoid transmission of bacterial pathogens throughout the food chain, novel 

strategies are still required to fulfill consumer demands for minimally processed foods 

with fewer chemical preservatives (García et al., 2008). 

Optical density measurement, using a microplate reader, is a technique that is 

widely used to determine the inhibitory effects of antimicrobial agents obtained from 

plants, spices, and other foods (Vijayakumar and Muriana, 2015). Knezevic and 

Petrovic (2008) used the microplate technique with crystal violet staining and 

measurements of optical density to evaluate the ability of Pseudomonas aeruginosa 

phages to inhibit and eradicate biofilm formation (Knezevic and Petrovic, 2008). 

The first objective of the current study was to isolate bacteriophages of bovine 

origin specific to E. coli O157:H7 and evaluate their ability, in a cocktail, to infect and 

kill pathogenic E. coli O15:H7; thus, controlling the growth of the pathogen. The 

second objective was to determine the potential of using bacteriophages in combination 

with commercial sanitizers such as chlorine and hydrogen peroxide (SaniDate 5.0) at 

100-ppm (parts per million) concentration to reduce E. coli O157:H7 contamination. 

4.2 Materials and Method 

4.2.1 Bacteriophage screening, purification, and amplification 

Bacteriophages were isolated from the environment by taking a swab of bovine 

feces collected from the Auburn University College of Veterinary Medicine dairy herd 

pastures and placing it in brain heart infusion broth (BHI; Bacto Brain Heart Infusion, 

Becton, Dickinson, and Company, Sparks, MD) containing 20µg/ml novobiocin, and 

2.5µg/ml potassium tellurite. After incubation overnight at 37 degrees Celsius (oC), 1ml of 

the bacterial suspension in the broth was centrifuged at 12,500 times gravity (x g) for 15 
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minutes, and the resulting supernatant was filter sterilized through a 0.2µm filter (Sterile 

Syringe Filter with 0.2µm Polyethersulfone Membrane, VWR International). To generate 

phage plaques, a bacterial lawn of Escherichia coli (E. coli) O157:H7 (ATCC 43895) was 

prepared by culturing the strain in a bacteriological incubator with aeration at 37oC to log 

phase in Luria-Bertani broth (LB; Difco LB Broth, Miller, Becton, Dickinson, and 

Company, Sparks, MD) containing 1mM magnesium (LBM). The media was then diluted 

to an absorbance, optical density, measured at a wavelength of 620 nm (OD620) of 0.8 to 

1.0 E. coli (ATCC 43895) (0.2ml). The diluted media containing the E. coli (ATCC 43895) 

was then mixed with the phage supernatant, incubated at 37ºC for 20 minutes to allow 

phage adsorption to the cells, and then mixed with 3.0ml of molten soft agar (LBM with 

0.7% Bacto agar). The molten LBM soft agar with E. coli (ATCC 43895) and the 

supernatant were poured onto the LBM underlay, or bottom agar plates (LBM with 1.5% 

agar-agar), using the double agar overlay technique (Kropinski et al., 2009). The plates 

were allowed to solidify for one hour prior to overnight incubation at 37ºC. From each 

plate that showed plaque formation, two plaques were cored using a sterile Pasteur pipette. 

The cored section was placed in 0.5 ml salts-magnesium (SM) buffer, stored at 5oC, and 

allowed to diffuse out of the agar and into the buffer for a minimum of 5 hours (Kropinski 

et al., 2009). For bacteriophage plaque purification, E. coli (ATCC 43895) cells were 

cultured to log phase, then diluted to an OD620 of 0.8 to 1.0. Serial dilutions of each 

bacteriophage solution were performed, and 0.2ml of the E. coli (ATCC 43895) cells were 

mixed with 10µl of the bacteriophage solution. The cells were incubated with the 

bacteriophage for twenty minutes before adding 3ml soft agar and pouring the mixture onto 

an LBM agar plate. The plates were allowed to solidify and were incubated overnight at 
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37oC. Isolated bacteriophage plaques were cored, and the cores were placed in 0.5ml SM 

buffer, stored at 5oC, and allowed to diffuse for at least 5 hours. The plaque purification 

procedure was repeated in order to achieve a pure culture of the bacteriophage. To amplify 

bacteriophage growth to produce high titer stocks, 50ml of log-phase E. coli (ATCC 43895) 

cells growing in LBM broth was inoculated with 0.5ml of the purified phage solution. The 

lysate was incubated overnight at 37oC and was then pelleted at 12,500xg for 15 minutes. 

The resulting supernatant was filter sterilized through a 0.2μm filter. To enumerate the 

phage in each supernatant, a double agar overlay method was used for titration. E. coli 

(ATCC 43895) cells were cultured to log phase, then diluted to an OD620 of 0.8 to 1.0. 

Serial dilutions of each phage solution were performed, and 0.2ml of the E. coli (ATCC 

43895) cells were mixed with 10μl of the phage solution. The cells were incubated with 

the phage for ten minutes before adding 3ml LBM soft overlay or top agar and pouring the 

mixture onto an LBM underlay (bottom agar). Phage plaques were then enumerated to 

obtain the plaque-forming units per ml (PFU/ml). Bacteriophage isolates were amplified 

to titers > 108PFU/ml (Kropinski et al., 2009). Dimethyl sulfoxide (DMSO) was added to 

each bacteriophage stock solution until a final concentration of 7% volume to volume was 

reached. Bacteriophage stocks were then stored at -80oC (Sambrook and Russell, 2006). 

4.2.2 Bacteriophage morphology determination 

Bacteriophages were concentrated and purified with Polyethylene Glycol (PEG) 

(Carlson, 2005). Samples were stained with 2% aqueous (w/v) uranyl acetate adjusted to 

pH 4.2 and examined with a Philips EM 301 Transmission Electron Microscope operated 

at 60kV. Bacteriophages were observed at high magnification (x71,000). The images were 

edited with ImageJ software. 
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4.2.3 Bacterial culture for microplate study 

Pathogenic Escherichia coli O157:H7 (ATCC 35150) was obtained from ATCC. 

Stock cultures were prepared by resuspending cells on to skim - milk media (Difco, Becton-

Dickenson Labs) and stored at -25°C. E. coli (ATCC 35150) were grown in tryptic soy 

broth (TSB, Difco, Becton-Dickenson Labs), supplemented with 5 mM of Magnesium 

sulfate (MgSO4, Fisher Scientific) and Calcium chloride (CaCl2, Fisher Scientific). All 

(working stock) cultures were held at refrigeration temperature (4°C) for short term storage 

and -25°C for long term storage. 

4.2.4 Bacteriophage titer 

Bacteriophage titer was measured before the study for each bacteriophage used in 

the experiments to measure phage activity. The host strain for all the bacteriophages was 

E. coli (ATCC 35150). Phage titer ranged approximately 109PFU/ml for the phage cocktail. 

4.2.5 Microplate turbidometric growth inhibition assays and plate count study 

E. coli (ATCC 35150) was used as the indicator microorganism for the microplate 

inhibition assay. An equal volume of C14s, L1, LL15, and V9 phages were mixed in a 

sterile tube to obtain a phage cocktail. Fresh sterile TSB and TSB in combination with 

100µl of E. coli (ATCC 35150) were used as a positive control treatment. TSB with a 

phage cocktail acted as a negative control to prove that bacteriophages do not contribute 

to turbidity at 660 nm. A volume of 100 µl of overnight grown E. coli (ATCC 35150) (~ 

1 x 108CFU/ml) was inoculated in TSB broth which was distributed to wells in a 96-well 

flat-bottom microtiter plate (Thermo Fisher Scientific). A bacteriophage cocktail (100µl) 

was added and mixed by aspiration using a multi-channel micro-pipette contributing to an 
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MOI (multiplicity of infection) of 1. The settings for the turbidity analysis using a 

microplate reader (BioTek, Synergy 4) was developed from Vijayakumar, P.P. and P.M. 

Muriana (2015) (Vijayakumar and Muriana, 2015). The settings for the turbidity analysis 

were as follows: temperature: 37°C (range: 36.5-37°C); number of flashes: 1; 

measurement mode: absorbance; measurement wavelength: 660 nm; start kinetic (run: 

3:00:00, interval 00:30:00); shake duration (orbital): 10 seconds (s); shake intensity: 

medium; total measurement time: 24 hours (h); and unit: optical density (OD). In order to 

prevent evaporation of the liquid and well-to-well contamination, the 96-well plate was 

sealed with the lid. The OD660 values obtained were plotted against time and were used to 

illustrate the antimicrobial activity of the phage cocktail preparations against E. coli 

(ATCC 35150). Samples from the microplate wells were also collected every three hours 

in a sterile manner for both control and treatment for up to 12 hours. The obtained samples 

were then diluted (1:10) using peptone water and plated on pre-made tryptic soy agar 

(TSA) plates supplemented with 5 mM Calcium chloride and Magnesium sulfate in 

triplicate. The plates were then incubated overnight at 37°C and the colonies were counted. 

4.2.6 Microplate turbidometric growth inhibition assays of bleach/SaniDate 5.0 
treated bacteriophage cocktail 

The bacteriophage cocktail was exposed to 100-ppm bleach (Sodium hypochlorite, 

Clorox regular) water for 0, 1, 2, and 3 h. Fresh bleach water (100-ppm) solution was 

prepared using sterile double distilled water. The concentration of the available chlorine in 

the bleach water was verified using chlorine test strips (Franklin machine products). A 

volume of 500µl bacteriophage cocktail (109PFU/ml) was added to 5ml of 100-ppm sterile 

bleach water and the mixture allowed to sit at room temperature for 3, 2, 1, and 0h. (Fresh 

bleach water was prepared for every hour of the study). Sterile deionized water (10µl) was 
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supplemented with Sodium thiosulfate (Na2S2O3, Fisher Scientific) (0.5mg/ml) before 

adding the 100µl of bleach treated phages to the broth, in order to eliminate the effect of 

bleach on the pathogen from the results. A volume of 100µl E. coli O157:H7 (109CFU/ml) 

was added to appropriate wells contributing to an MOI of 1. The microplate study was 

conducted as previously described and the OD660 values were plotted against time and 

were used to illustrate the antimicrobial activity of bleach treated phage cocktail 

preparations against E. coli (ATCC 35150). The experiment was repeated with 100-ppm 

organic sanitizer SaniDate 5.0 (Hydrogen peroxide, Biosafe systems) to determine the 

ability of the cocktail to survive the organic sanitizer. A study with E. coli (ATCC 35150) 

alone in 100-ppm of each of the sanitizer was performed to determine the ability of the 

pathogen to survive the sanitizers. 

4.2.7 Heat tolerance of bacteriophage cocktail 

The effect of temperature on the bacteriophage preparations was studied to 

understand the ability of the phages to produce plaques under the effects of heat stress. 

Phage preparations (150µl) were transferred into a sterile Eppendorf tube and placed in a 

heating block (Techne, DRI- Block, DB-2A) at 35, 45, and 55°C; range±0.2°C in 

triplicates. An Eppendorf tube containing TSB and a temperature probe acted as a control 

and was also used for monitoring the temperature. The first phage tube preparations were 

heated to 35°C, were immediately removed from the heating block, and placed in an ice 

bath. The phage second tube preparation was allowed to sit at 35°C for 15 min and was 

then placed in the ice bath. A similar procedure was repeated at temperatures of 45 and 

55°C. All the samples were then spotted along with a control (no temperature treatment) 

onto a lawn of E. coli (ATCC 35150).  
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4.2.8 Statistical Analysis 

Generalized estimating equations with Huber-White standard error estimates were used 

to approximate the mean response for all outcomes. Studies were considered as 

independent clusters with repeated measures on wells. Because of the non-linear trends of 

the response over time, time was treated as a categorical factor and Tukey's HSD (Honest 

Significant Difference) was used to compare treatments at each time point. 

4.3 Results 

4.3.1 Bacteriophage screening, isolation, and amplification  

Four wild bacteriophages (C14s, L1, LL15, and V9) with strong lytic activity for 

E. coli O157:H7 (ATCC 43895) were isolated from dairy calf feces (Auburn College of 

Veterinary Medicine dairy herd). Examination by transmission electron microscopy (TEM) 

revealed phenotypic morphology for the four bacteriophages (Figure 4.1). Bacteriophages 

L1 and LL15 appear as typical members of the family Siphoviridae of dsDNA 

bacteriophages (Ackermann, 2003), similar to the T5 and T1 morphotype (Ackermann, 

2007; Kim and Ryu, 2011; Dalmasso et al., 2016). Bacteriophages C14s and V9 appear as 

members of the family Myoviridae of dsDNA bacteriophages (Ackermann, 2003), similar 

to the T4 morphotype and 01 morphotype, respectively (Ackermann, 2007; Yap and 

Rossmann, 2014; Dalmasso et al., 2016). 
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Figure 4.1 Electron microscopic image of the isolated bacteriophages from bovine origin. 

 

4.3.2 Microplate growth inhibition assay and plate count study of bacteriophage 
cocktail against E. coli O157:H7  

Positive controls of E. coli O157:H7 demonstrated a typical growth pattern. 

Significant inhibition of the pathogen was observed in the treatment wells containing the 

bacteriophage cocktail (Figure 4.2); thus, the bacteriophage cocktail preparation decreased 

the growth of E. coli (P < 0.01) in a controlled environment. The percent reduction of E. 

coli in the presence of the bacteriophage cocktail at the end of three hours was 99.99%. 

The bacteriophage cocktail maintained the 5-log reduction (99.99%) until the end of 6 

hours; after which there was a subsequent decrease in the reduction percentage to 4-logs (9 

hours) and 2-logs (12 hours), achieving 99.93% and 95.81% reduction respectively (P < 

0.01) (Table 4.1). 
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Figure 4.2 Microplate growth inhibition assay showing the activity of bacteriophage 

cocktail against E. coli O157:H7 (ATCC 35150). The data points represent the means of 

triplicate replication and the error bars represent the standard deviations of three 

independent experiments. The bacteriophage cocktail reduced the population of E. coli 

O157:H7 (ATCC 35150) significantly (P < 0.01) compared to the control. 

 

 

 

 



48 
 

Table 4.1 Reduction of E. coli O157:H7 (ATCC 35150) population in the presence of 

bacteriophage cocktail (C14s, V9, L1, and LL15). Significant reduction (P < 0.01) in the 

population of E. coli O157:H7 (ATCC 35150) was observed between control and 

treatment. 

Hours Bacterial populations (log CFU/ml) Percentage reduction 
(%) 

Control Treatment 

3 8.99 3.81 99.99 

6 9.07  4.68  99.99 

9 9.14  5.68  99.93 

12 9.31  7.64  95.81 

 

4.3.3 Microplate growth inhibition of bleach / SaniDate 5.0 treated bacteriophage 
cocktail against E. coli O157:H7 

A microplate inhibition assay was performed to study the efficacy of a bleach 

treated bacteriophage cocktail against E. coli over time. In spite of the exposure to bleach, 

the phage cocktail showed inhibition against the indicator microorganism (Figure 4.3) with 

a significant reduction (P < 0.05). At the same time, the pathogen without the phage 

cocktail, demonstrated a classic growth curve, indicating that 100-ppm bleach had little to 

no effect against the pathogen (Figure 4.3). In 2002, Vijayakumar and Wolf-Hall studied 

the bactericidal concentration of bleach on different strains of E. coli. They determined that 

the minimum bactericidal concentration of bleach to be effective against the pathogen was 

between the range of 1.7 – 2.5% available chlorine in the water. It was also concluded that 

certain strains of E. coli were more resistant to bleach than others (Vijayakumar and Wolf-

Hall, 2002). This explains the reason behind the growth of the pathogen in the presence of 

100-ppm bleach (Figure 4.3). In the case of the organic sanitizer, 100-ppm SaniDate 5.0 at 
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0 h resulted in statistically significant inhibition of the pathogen. However, as exposure 

time increased, the pathogen recovered in the presence of the sanitizer (Figure 4.4). 

Alternatively, the SaniDate 5.0 treated phage cocktail gave a consistent reduction in the 

population of E. coli compared to control, irrespective of being treated at different time 

intervals in the presence of the sanitizer (Figure 4.4). These results indicated the ability of 

the phage cocktail to survive and contribute to the reduction of E. coli, despite being 

exposed to the commercially used sanitizers. These experiments demonstrate the potential 

of using the bacteriophage cocktail in combination with sanitizers, especially when 

washing produce where the combination can act as a hurdle technology to reduce the 

contamination of E. coli O157:H7 on fresh produce.  

 

 

 

 



50 
 

 

Figure 4.3 Microplate growth inhibition assay showing the activity of E. coli O157:H7 

(ATCC 35150) in the presence of 100-ppm bleach and 100-ppm bleach treated phages at 

A) 0-hour, B) 1- hour, C) 2-hours, and D) 3-hours. The data points represent the means of 

triplicate replication and the error bars represent the standard deviations of three 

independent experiments. The 100-ppm bleach treated bacteriophage cocktail significantly 

(P < 0.05) reduced the population of E. coli O157:H7 (ATCC 35150) at 0, 1, 2, and 3 hours 

compared to the controls. 
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Figure 4.4 Microplate growth inhibition assay showing the activity of E. coli O157:H7 

(ATCC 35150) in the presence of 100-ppm SaniDate 5.0 and 100-ppm SaniDate 5.0 treated 

phages at A) 0-hour, B) 1-hour, C) 2-hours, and D) 3-hours. The data points represent the 

means of triplicate replication and the error bars represent the standard deviations of three 

independent experiments. The 100-ppm SaniDate 5.0 treated bacteriophage cocktail 

significantly (P < 0.05) reduced the population of E. coli O157:H7 (ATCC 35150) at 0, 1, 

2, and 3 hours compared to the controls. 

 



52 
 

4.3.4 Heat tolerance of bacteriophage cocktail 

  Bacteriophage preparations were examined for heat resistance, both as a potential 

replacement for filter sterilization and as an indication that the preparations would survive 

warm environment applications, especially those used on produce during wash treatments. 

No difference in bacteriophage activity was observed when centrifuged/heat treated 

bacteriophage preparations were compared to filter-sterilized preparations (Figure 4.5). In 

subsequent heating trials, temperatures were increased to 45 and 55°C for 0-15 min, with 

similar results (Figure 4.6). Temperature not only plays a vital role in survivability, but 

also helps in attachment, penetration, and multiplication of bacteriophages (Jończyk et al., 

2011). The ability to survive these heat treatments demonstrates that these bacteriophages 

may be added to a produce wash or used in combination with mild heat treatment and still 

retain their ability to infect and reduce the population of E. coli.  
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Figure 4.5 Double agar plate showing the plaques of bacteriophages (C14s, V9, L1, and 

LL15) against E. coli O157:H7 (ATCC 35150). 

 

Figure 4.6 Effectivity of heat challenged bacteriophage against E. coli O157:H7 (ATCC 

35150) at A) 35, B) 45, and C) 55oC at 0 and 15 mins respectively. 
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4.4 Discussion 

Bacteriophages, specifically those infecting E. coli O157:H7, were successfully 

isolated and identified from bovine feces. The initial microplate study verified the 

efficacy of the bacteriophage cocktail against the pathogen, which indicates its 

potential to be used as an antimicrobial. The following study demonstrated that the 

bacteriophage cocktail could survive 100-ppm SaniDate 5.0 and 100-ppm bleach. 

Allwood et al. (2005) studied the ability of F-specific RNA coliphage to survive 50-

ppm concentration of bleach maintained at different temperatures (4, 25, and 37°C) for 

up to 28 days. The study demonstrated that F-RNA coliphage had a greater survival 

rate for 7 to 14 days in 50-ppm chlorine-treated water at all temperatures. It was 

concluded that the coliphages were relatively resistant to chlorine and can be used 

as an indicator for virological risk associated with products that are subjected to a 

high concentration of chlorine-based sanitizers (Allwood et al., 2005). The ability of 

bacteriophages to survive in the presence of these sanitizers opens new avenues for 

bacteriophage and sanitizers to be utilized, in combination, by the produce industry. 

The post-harvest wash process is considered a critical control point in the fresh produce 

processing industry for removing field-accrued contamination (Warriner and Namvar, 

2014). It is well known that the produce industries rely on wash water sanitation to 

reduce the microbial load, maintain quality, and give an extended shelf life to products 

(Gil et al., 2009). Many alternative techniques have encouraged the food industries to 

move away from bleach, due to various issues with maintaining its efficacy, and health 

problems that are associated with employing this longstanding disinfectant (Gil et al., 

2009). The current study also demonstrated the efficacy issue related to long term 
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sanitizers. The sanitizer solution containing SaniDate 5.0 had a lower disinfectant effect 

compared to the one at 0h when left to sit at room temperature for 1-3h. In the case of 

bleach, the 100-ppm concentration had little to no effect on the pathogen’s growth. For 

this reason, continuous monitoring of sanitizer concentration was deemed the most 

important component of the produce wash procedure (Banach et al., 2015). In contrast, 

the bacteriophage cocktail gave a consistent reduction in E. coli O157:H7 populations 

from 0-3h irrespective of being exposed to these sanitizers. Therefore, if a deviation 

occurs, with respect to the concentration of the sanitizer being employed during the 

produce wash with bacteriophage cocktail/sanitizer combination, the phages would still 

be able to contribute a reduction of the pathogen population resulting in a safe product.    

Dunk/dip/immersion tank washing for produce has been considered one of the most 

significant practices requiring investigation in the produce industries. Several 

foodborne outbreaks related to fresh produce have been traced back to improper post-

harvest handling. Thus, poor wash water quality and improper sanitation may 

contribute to the contamination of produce when washed in dunk tanks. It is for this 

reason that bacteriophages are a promising antimicrobial for use in the food system as 

an effective bio-preservative, especially in ready-to-eat produce such as spinach, 

lettuce, and other leafy greens. Due to their ability to act as a natural antimicrobial, they 

can be integrated as a part of a multi-level sanitation process along with commercially 

used sanitizers to selectively eliminate pathogens of concern. Crude screening methods, 

such as plaque and microplate assays, would not be sufficient to forecast their 

effectiveness in a more complex system such as a produce wash. Therefore, future 
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studies involving a wash system with a bacteriophage and sanitizer cocktail must be 

performed to understand their true potential in real-world environments. 
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CHAPTER 5. EFFICACY OF BACTERIOPHAGE COCKTAIL TO CONTROL E. COLI 

O157:H7 CONTAMINATION ON BABY SPINACH 

5.1 Introduction 

Fresh fruit and vegetable consumption are often encouraged by government agencies 

in many countries as an important part of a balanced diet and healthy lifestyle (Berger et 

al., 2010). Recently, fresh fruits and vegetables that are consumed raw, such as leafy 

greens, are being recognized as potential vehicles for human pathogens traditionally 

associated with foods of animal origin (Berger et al., 2010). Current food safety systems 

are being strengthened by both developed and developing countries around the world to 

face both real and perceived food safety challenges encountered by their food industries 

(Henson and Caswell, 1999). Each year, Escherichia coli O157:H7 causes 73,000 illnesses 

in the United States resulting in an estimated 2,168 hospitalizations and 61 deaths (Mead 

et al., 1999). Infections with Escherichia coli O157:H7 are often associated with 

consumption of meat or meat products. Several outbreaks have been traced back to 

consumption of contaminated produce such as radishes and pre-packaged spinach (Berger 

et al., 2010). The first outbreak associated with Escherichia coli O157:H7 in produce was 

reported in 1991(Rangel et al., 2005). Since then, raw produce has been viewed as a 

potential vehicle for causing various foodborne illnesses. Decontaminating fruits, 

vegetables, and meat products has always been considered a challenge in the food industry 

(Abuladze et al., 2008). The most common ways of limiting microbial growth on fruits and 

vegetables are to wash them with water or to rinse them with a solution containing 

antimicrobials such as chlorine-based chemicals (Abuladze et al., 2008). Washing produce 

is considered a vital aspect of post-harvest processing that has a significant influence on 
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maintaining product quality and safety (Gómez-López, 2012). Wash water quality is one 

of the most important parameters and plays a crucial role in reducing contamination during 

post-harvest washing, cooling, and sanitizing operations (Ofor et al., 2009). Although 

water is a useful tool in reducing contamination, it can also aid in pathogen transfer through 

cross-contamination during post-harvest activities (Gil et al., 2009). It is well known that 

produce industries, especially those that handle fresh-cut produce, rely on wash water 

quality and sanitizers to minimize microbial count and achieve an extended shelf-life for 

their products (Gil et al., 2009). Chlorine-based sanitizers have long been used by the food 

industry to maintain the safety of their products (Ölmez and Kretzschmar, 2009). However, 

recent outbreaks associated with produce have raised concern for traditional sanitizer 

efficacy in ensuring the safety of the products. Additionally, various concerns over 

environmental implications and health risks have also risen; (Ölmez and Kretzschmar, 

2009) thus, current investigations are seeking alternatives to chlorine based sanitizers, 

which could provide safety to the products without compromising the quality and shelf life 

(Ölmez and Kretzschmar, 2009). Bacteriophages (commonly called phage) are bacterial 

viruses that selectively infect bacteria and disrupt their metabolism resulting in lysis of the 

host bacterial cell (Sulakvelidze et al., 2001). Since phages are highly specific, they can be 

used to target a specific pathogen without harming any beneficial microorganisms 

(Magnone et al., 2013). Phages have been proven to act as a natural antimicrobial to fight 

against bacterial infections in humans, animals, and crops (Brüssow, 2005). Several studies 

have focused on phages as a promising alternative that can be used in the food industry to 

eliminate bacterial contamination, especially on produce (Harris et al., 2001; Leverentz et 

al., 2003; García et al., 2008; Gragg and Brashears, 2010). The focus of this research was 
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to investigate the ability of a bacteriophage cocktail to lyse E. coli O157:H7 on spinach 

leaves during a simulated dunk tank wash in the presence and absence of an organic load. 

 

5.2 Materials and method 

5.2.1  Bacterial culture for microplate and produce wash study 

Pathogenic Escherichia coli O157:H7 (ATCC 35150) was obtained from a freezer 

stock. Working stock cultures were prepared by resuspending cells into tryptic soy broth 

(TSB, Difco, Becton-Dickenson Labs) and incubated for 48 hours at 37°C before streaking 

the cultures on MacConkey Agar (MAC, Difco, Becton-Dickenson Labs) and Sorbitol 

MacConkey Agar (SMAC, Difco, Becton-Dickenson Labs) for isolation. After incubation 

for 24 hours at 37°C, the characteristics of the colonies were observed and individual 

colonies picked from SMAC into TSB tubes (supplemented with 5mM of Magnesium 

sulfate (MgSO4, Fisher Scientific) and Calcium chloride (CaCl2, Fisher Scientific)) using 

sterile technique. Cultures were grown for 24 hours at 37°C and then stored at refrigeration 

temperature, 4°C, until needed for propagation. Frozen stock cultures were made and stored 

at -25°C in skim milk media (Difco, Becton-Dickenson Labs) cryogenic vials for long term 

storage. 

5.2.2 Bacteriophage cocktail preparation 

Four bacteriophages (C14s, V9, L1, and LL15), specific to E. coli O157:H7, were 

obtained from bovine feces. The dairy herd bacteriophages were isolated and characterized 

by the Auburn University College of Veterinary Medicine. Bacteriophages were grown for 

24 hours at 37°C with host E. coli. Phages were then separated via centrifugation at 20,000 
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rpm for 20 min in the presence of chloroform. The phages were then filter sterilized through 

a 0.22µ filter (Miller - Gs) into working stock containers. Equal volumes of individual 

bacteriophage types were mixed in a sterile test tube and the required volume was pipetted 

right before every experiment to make the phage cocktail. 

5.2.3 Bacteriophage titer 

A bacteriophage titer was confirmed prior to ensuring phage activity. The host strain 

for all the bacteriophages was E. coli O157:H7 (ATCC 35150). The phage titer ranged 

from 7.00 x 106 to 1.20 x 1010PFU/ml. 

5.2.4 Turbidometric growth inhibition assays in the presence of organic load 

An equal volume of C14s, L1, LL15, and V9 phages were mixed in a sterile tube to 

obtain a phage cocktail. Sterile DE neutralizing buffer broth (Difco, Becton-Dickenson) 

and DE broth with 100µl of E. coli O157:H7 (ATCC 35150) were used as control 

treatments. DE broth with 100µl phage cocktail acted as a negative control to show that the 

bacteriophages do not contribute turbidity at 660nm. 100µl of E. coli O157:H7 (ATCC 

35150) (~ 1.00 x 108CFU/ml) was inoculated into DE broth and distributed to wells in a 

96-well flat-bottom microtiter plate (Thermo Fisher Scientific). 100µl bacteriophage 

cocktail was added to the wells and mixed by aspiration using a multi-channel micro-

pipette. This ration contributed to an MOI (Multiplicity of Infection) of 1. The settings for 

the turbidity analysis, using a microplate reader, (BioTek, Synergy 4) was developed from 

a previously determined procedure (Vijayakumar and Muriana, 2015). The settings for the 

turbidity analysis were as follows: temperature: 37°C (range: 36.5 – 37°C), number of 

flashes: 1, measurement mode: absorbance, measurement wavelength: 660 nm, start kinetic 
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(run: 3:00:00, interval 00:30:00), shake duration (orbital): 10 seconds (s), shake intensity: 

medium, total measurement time: 24h, and unit: optical density (OD). To prevent 

evaporation of the liquid and well-to-well contamination, a lid was used to seal the 96-well 

plate. The OD660 values were plotted against time to illustrate the antimicrobial activity of 

the phage cocktail preparations against E. coli O157:H7. Samples from the microplate 

wells were collected at the end of three hours for both the control and treatment. These 

samples were then diluted using sterile peptone water (1:10) and plated (100µl) on premade 

TSA plates supplemented with 5mM Calcium chloride and Magnesium sulfate in 

triplicates. The plates were then incubated overnight at 37°C. 

5.2.5 Initial produce rinse to reduce background microbial contamination on 
spinach leaves 

Fresh baby spinach leaves were purchased from a local grocery chain. Spinach leaves 

were transferred into a sterile filter bag (Fisher brand – blender bags) and treated with a 

2% Lactic acid solution (Fisher Scientific) for 20 mins. The leaves were then treated with 

100-ppm bleach water (Clorox) for 20 mins. Leaves were then set under UV light for 20 

mins to reduce the background population of microorganisms as well as to dissipate any 

residual chlorine present on the leaves (Figure 5.1). 
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Figure 5.1 Schematic flow of initial produce rinse and dunk wash of spinach leaves. 
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5.2.6 Wash solution for the simulated dunk tank 

20ml double-distilled deionized sterile water was used for the initial experiment to 

study the efficacy of the bacteriophage cocktail against E. coli O157:H7 in the absence of 

an organic load. For the following study, 20ml of sterilized DE broth containing 

approximately 9810-ppm of dissolved organic matter (Casein – 1660-ppm, Yeast extract – 

830-ppm, Dextrose – 3330-ppm, Tween 80 – 1660-ppm, and Lecithin – 2330-ppm) was 

used as a wash solution to determine the ability of the bacteriophage cocktail to infect E. 

coli O157:H7 in the presence of an organic load. Control samples were treated similarly 

with organic load wash water without the bacteriophage cocktail. In both studies, the 

samples were immersed in the wash solution for the full contact time of 10 minutes. 

5.2.7 Application of sterile wash water solution containing E. coli O157:H7 and 
bacteriophage cocktail in a simulated dunk tank 

Fresh spinach leaves, after the initial produce rinse step, were separated into three 

different treatments: Negative control (NC), Positive control (PC), and Bacteriophage 

cocktail treatment (BCT). The NC had washed spinach without any other treatment. This 

was used to enumerate the efficacy of the initial wash to observe if any background 

microorganisms were still present on the leaves. The PC sample had leaves that were dunk 

washed for 10 min in 20ml sterile water containing 1500µl of E. coli O157:H7 (~ 1.0 x 108 

CFU/ml). The BCT sample had leaves dunk washed in 20ml sterile water with a 

combination of 1500 µl of E. coli O157:H7 (~ 1.0 x 108CFU/ml) and 3000µl of 

bacteriophage cocktail (MOI – 2.3). All of the samples were placed in a sterile sampling 

bag and sampled 0, 3, 6, 9, and 12 hours. 
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5.2.8 Application of sterile wash solution containing 9810 ppm of organic load 
comprising E. coli O157:H7 and bacteriophage cocktail in a simulated dunk 

tank 

A similar procedure from the above study was applied with DE broth instead of the 

sterile water to mimic an organic load present in the wash water. All the samples were 

packed in a sterile sampling bag and were sampled at 0 and 3 hours. 

5.2.9 Recovery of bacteria 

Produce was rinsed with 1 ml sterile phosphate buffer. Samples were massaged for 

one minute and serial dilutions of the sample rinse were made in phosphate buffer (pH 

7.4 - 7.5). The dilutions were then plated on pre-made TSA plates, supplemented with 

5mM Magnesium sulfate (MgSO4, Fisher Scientific) and 5mM Calcium chloride (CaCl2, 

Fisher Scientific). 

5.2.10 Statistical Analysis 

The data were analyzed using the GLIMMIX procedure in SAS 9.4. A linear mixed 

model was used where the response variable was Readings_in_Log10 and the fixed effects 

were treatment, time and the interaction between treatment and time. Time was treated as 

categorical since there were two-time points. A random intercept for the subject defined by 

the spinach with a specific treatment within a study was included in the model. The 

difference between the Readings_in_Log10 for the treatment at time 0 and time 3, and the 

difference between the Readings_in_Log10 for the control at time 0 and time 3 were tested 

using the LSMEANS statement with the slicediff option. The p-values were adjusted for 

multiple comparisons using the Tukey-Kramer method. 
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5.3 Results 

5.3.1 Microplate growth inhibition assay and plate count study of bacteriophage 
cocktail against E. coli O157:H7 in the presence of organic load 

Positive controls of E. coli O157:H7 demonstrated a typical logarithmic growth pattern 

over the test period. The bacteriophage cocktail demonstrated significant inhibition of the 

pathogen (Figure. 5.2). The bacteriophage cocktail preparation decreased the growth of E. 

coli O157:H7 (P < 0.01) in a controlled environment in the presence of a 9810-ppm organic 

load. The percent reduction of E. coli O157:H7, in the presence of the bacteriophage 

cocktail, at the end of three hours, was 99.99% (Table 5.1). The study demonstrated that 

phages are highly specific to the host-pathogen despite being in a relatively concentrated 

organic load. The phages specifically targeted the bacteria, infected, and reduced the host 

population. This is in contrast to commercially used sanitizers, such as bleach, which are 

less effective in the presence of an organic load. This is because the chlorine has a higher 

affinity towards the organic matter, thus, depleting its effectiveness against 

microorganisms.  
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Figure 5.2 Microplate growth inhibition assay showing the activity of bacteriophage 

cocktail against E. coli O157:H7 (ATCC 35150) in the presence of organic load. The data 

points represent the means of triplicate replication and the error bars represent the standard 

deviations of three independent experiments. The bacteriophage cocktail reduced the 

population of E. coli O157:H7 (ATCC 35150) significantly (P < 0.05) compared to the 

control. 
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 Table 5.1 Reduction of E. coli O157:H7 (ATCC 35150) population in the presence of 

bacteriophage cocktail (C14s, V9, L1, and LL15) in a sample containing 9810 ppm of 

organic load. Significant reduction (P < 0.01) in the population of E. coli O157:H7 (ATCC 

35150) was observed between control and treatment. 

 
 

5.3.2 Effect of bacteriophage on sterile water wash solution containing E. coli 
O157:H7 inoculated spinach in a simulated dunk tank 

The initial produce rinse successfully inhibited the growth of background flora on 

fresh spinach. The plate count (<1.00 CFU/ml) on the NC indicated that the initial rinse 

was effective at rinsing the background microflora. Table 5.2 shows the efficacy of the 

bacteriophage cocktail in the reduction of E. coli O157:H7 on spinach washed in potable 

water containing the phage cocktail compared with the control wash. The 10-minute 

contact time for the wash solution resulted in a significant reduction (P < 0.05) of the 

pathogen at the end of three hours compared to the PC. A gradual recovery of the pathogen 

numbers occurred in the samples obtained from BCT after three hours until 12 hours. The 

statistical analysis indicated that despite the recovery, the BCT was still significantly 

different from the PC. Therefore, the disinfectant treatment (BCT) was significantly 

effective (P < 0.05) in reducing the population of E. coli O157:H7 on the spinach leaves.  

Hours Bacterial populations (log CFU/ml) Percentage reduction 
(%) 

Control Treatment 

0                  6.82 - 

3 9.00  3.26  99.99 
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Table 5.2 Reduction of E. coli O157:H7 (ATCC 35150) on spinach via postharvest 

pathogen control measures of using bacteriophage cocktail wash solution made with 

potable water in a simulated dunk tank. 

 

 

 

Wash treatment Wash time 
(min) 

Sampling time 
(h) 

E. coli O157:H7 
population 

 (log CFU/ml) 

Negative Control 
(NC) - 

0 <1.00 

3 <1.00 

6 <1.00 

9 <1.00 

12 <1.00 

Positive Control 
(PC) 10 

0 6.22 

3 6.42 

6 7.10 

9 7.34 

12 7.37 

Produce wash + 
Bacteriophage 
cocktail (BCT) 

10 

0 5.81 

3 3.78 

6 4.93 

9 5.30 

12 5.22 
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5.3.3 Effect of sterile wash solution containing 9810 ppm of organic load 
comprising E. coli O157:H7 and bacteriophage cocktail in a simulated dunk 

tank 

The initial produce rinse was once again effective in reducing the background 

microflora of the spinach (<1.00CFU/ml). Table 5.3 shows the efficacy of the 

bacteriophage cocktail in the reduction of E. coli O157:H7 on spinach washed in the 

challenge water (9810 ppm organic load) containing the phage cocktail compared with the 

control wash. The 10-minute contact time for the wash solution resulted in a significant 

reduction (P < 0.01) of 99.99% of the pathogen at the end of three hours compared to the 

PC. This study also illustrates the specificity of bacteriophage and its ability to effectively 

reduce E. coli O157:H7 despite being in an environment with a high organic load. 

Table 5.3 Reduction of E. coli O157:H7 (ATCC 35150) on spinach via postharvest 

pathogen control measures of using bacteriophage cocktail wash solution made with water 

containing 9810 ppm of organic load in a simulated dunk tank 

 

 

Wash treatment Wash time 
(min) 

Sampling time (h) E. coli O157:H7 
population 

 (log CFU/ml) 

Negative Control 
(NC) - 

0 <1.00 

3 <1.00 

Positive Control 
(PC) 10 

0 6.46 

3 7.16 

Produce wash + 
Bacteriophage 
cocktail (BCT) 

10 
0 6.14 

3 2.94 
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5.4 Discussion  

The post-harvest wash procedure is considered a critical control point (CCP) for 

removing any field-assimilated contamination in the fresh produce industry (Warriner and 

Namvar, 2014). Chlorine is one of the most commonly used sanitizers in the produce 

industry. The internationally recommended concentration for chlorine-based compounds 

used for rinsing produce is between 50 - 100 ppm of free chlorine (World Health 

Organization, 2008). This range is reported to achieve a pathogen reduction of 

approximately 1 - 2 log CFU/g (Ruiz-Cruz et al., 2007). The effectiveness of chlorine-

based sanitizers decreases in the presence of organic matter in produce wash water (Park 

et al., 2009). Thus, pre-treatment removal of organic matter, along with continuous 

monitoring of sanitizer concentration, is suggested for the effective use of sanitizer in the 

food industry (Park et al., 2009; Banach et al., 2015). Despite these efforts, bacterial 

outbreaks in the fresh produce industry continue to be on the rise. 

Bacteriophage, as an antimicrobial, has proven to be efficient in reducing the 

population of E. coli O157:H7 in foods. Previous studies have evaluated the effectiveness 

of bacteriophage cocktails, specific to different pathogens, such as Salmonella, E. coli 

O157:H7, and Listeria. Leverentz et al. (Leverentz et al., 2001) observed a reduction in the 

Salmonella enteritidis population on fresh-cut honeydew melon after spot treating the 

infected portion with a bacteriophage cocktail. The pathogen population was reduced 3.5 

and 2.5 log CFU/wound after the treated melons were stored at 5-10, and 20oC respectively 

(Leverentz et al., 2001). Similarly, fresh-cut honeydew melons treated (spray or aliquots) 

with Listeria monocytogenes specific bacteriophages reduced the population of L. 

monocytogenes by 2 to 4.6 log units compared to the untreated controls when stored at 
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10oC (Leverentz et al., 2003). Most of these studies either spot or spray treated the samples 

with bacteriophage to demonstrate their effectiveness against the pathogen. 

Although the previous studies demonstrated the efficacy of using bacteriophages 

against pathogens, they did not apply the results to real-time scenarios. It is for this reason 

that this study sought to determine the efficacy of bacteriophages in dunk tanks, a 

commonly used wash procedure. Dunk tanks, also referred to as immersion or dip tanks, 

carry a significantly higher risk of cross-contamination of pathogens between contaminated 

and clean produce (Banach et al., 2015). Immersion washers employ techniques such as 

dumping, submerging, or floating produce in wash water with or without sanitizer (Gómez-

López, 2012). The potential of pathogen uptake by produce through infiltration is a major 

concern for the food industries that use dunk tanks or other immersion techniques (Gómez-

López, 2012). Pathogen infiltration can occur through the stem scare, calyx, or other 

surface openings that are naturally present on fresh produce. Apart from this, if the washing 

procedure is not monitored or managed properly, it can create produce injury, cross-

contamination, or internalization of the pathogen (Gómez-López, 2012). For instance, from 

2000-2002, the United States faced a multistate outbreak of Salmonella serotype Ponna 

that was associated with the consumption of cantaloupe imported from Mexico. An on-

farm investigation of the outbreak revealed that the melons were washed and cooled in 

contaminated wash water which could have been the possible source for the 

contamination(Centers for Disease Control and Prevention, 2002; Gómez-López, 2012). A 

multistate outbreak of Salmonella enterica serotype Newport, associated with consumption 

of mangoes, in the United States led to 78 confirmed cases of salmonellosis in 13 states. 

Penteado et al. 2004, investigated the recall by recreating the washing scenarios to study 
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the ability of the pathogen to contaminate the fruit during the washing process. The team 

tested the ability of Salmonella to internalize in fresh mangoes, during a simulated 

postharvest insect disinfection procedure. Pathogen internalization was observed when 

heat-disinfected mangoes were cooled using the contaminated water. The study concluded 

that poor wash water quality and improper chlorination could have served as a vector for 

contaminating the mangoes (Penteado et al., 2004). These outbreaks emphasize the need 

for an effective technique during production and post-harvest activities that can mitigate 

the risk for pathogen contamination on fresh produce. Employing commercial sanitizers 

alone have not solved the problem of pathogen contamination, since only 1-2 log CFU 

reduction, under specified conditions, is expected. Employing bacteriophage as a 

disinfectant has been shown to be effective in reducing the population of E. coli O157:H7 

in fresh produce without the use of chemical sanitizers. Abuladze et al. 2008, studied the 

ability of a bacteriophage cocktail to reduce E. coli O157:H7 contamination on broccoli, 

spinach, tomato, and ground beef. Treatment with the bacteriophage cocktail resulted in a 

significant reduction (P ≤ 0.05) on the pathogen with a minimal recovery as incubation 

time increased. The percent reduction on broccoli was 99.5%, 99%, 97%; tomatoes – 99%, 

94%, 96%; spinach – 100%, 99.6%, 91% at 24, 120, and 168 hours respectively. Data 

obtained in the current study were similar wherein the bacteriophage cocktail in sterile 

wash water reduced the population of E. coli O157:H7 by 2.64-log CFU/ml at the end of 3 

hours which contributed to 99.77% reduction of the pathogen compared to the control. In 

the case of wash water containing high organic load, the bacteriophages contributed to a 4-

log CFU/ml reduction of the pathogen which corresponds to a 99.99% reduction at the end 

of 3 hours. The sterile wash water study indicated a minimal recovery of the pathogen as 
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incubation time increased. The emergence of phage-resistant bacterial mutants, 

transduction of undesirable characteristics among bacteria and environmental conditions 

have been suggested as problems that can potentially reduce the effectiveness of a phage 

treatment (Vidaver, 1976). However, several studies have suggested that employing a 

cocktail of different bacteriophages could potentially reduce the likelihood of generating a 

mutant (Kutter and Sulakvelidze, 2004; Tanji et al., 2004). One possible explanation could 

be the mechanism of phage attachment. Phages tend to attach to different receptors found 

on the host bacteria, and the mutation of one specific phage receptor would not alter the 

attachment site for another phage (Tanji et al., 2004). Because phages are ubiquitous, 

isolating new phages, specific to the pathogen that exhibits a difference in the attachment 

mechanism, can be used to update phage cocktails to make them effective against the 

development of phage-mutant strains. 

 Numerous foodborne outbreaks of E. coli O157:H7 have been caused by < 20.00 

CFU/g or even < 1.00 CFU/g of the pathogen (Meng, 2001). However, in a real-life 

scenario, a very high load of E. coli O157:H7 contamination on produce is very unlikely 

to occur (Abuladze et al., 2008). The amount of E. coli O157:H7 that was used in this 

experiment was several thousand-fold higher than that associated with an outbreak. This 

was performed to better study and visualize the efficacy of the bacteriophage cocktail. 

Several studies reported by other investigators concluded that a lower bacteria-phage ratio 

can yield a better reduction of the pathogen (Goode et al., 2003; Abuladze et al., 2008). 

Therefore, increasing the concentration of the phage might help in achieving a greater 

reduction in the pathogen during produce wash. Phages employed for the study have also 

shown to be resistant to 100-ppm chlorine or 100-ppm SaniDate 5.0 for up to three hours. 
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Thus, developing a multilevel sanitation system that employs both a sanitizer and 

bacteriophage combination might be one of the solutions to reduce pathogen contamination 

on fresh produce. Future studies involving combination treatment methods or hurdle 

technology on large-scale trials might be required to verify this possibility and could help 

mitigate the exposure of foodborne pathogens on fresh produce. 
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CHAPTER 6. APPLICATION OF A BACTERIOPHAGE – SANITIZER 
COMBINATION IN POST-HARVEST CONTROL OF E. COLI O157:H7 

CONTAMINATION ON SPINACH LEAVES IN THE PRESENCE OR ABSENCE 
OF A HIGH ORGANIC LOAD PRODUCE WASH 

6.1 Introduction 

Consumption of fresh fruits and vegetables continues to increase in the United States 

due to its association with a healthy lifestyle. Fresh produce remains one of the leading 

causes of foodborne illness due to contamination with various pathogens such as 

Salmonella, Listeria monocytogens, and Shiga Toxin producing Escherichia coli (Callejón 

et al., 2015). A significant portion of the produce is consumed raw and the number of 

outbreaks associated with it has been increasing correspondingly. The open nature of how 

raw produce is handled in the food supply chain implies that the contamination can be 

introduced at any point during production, harvest, and processing (Nüesch-Inderbinen and 

Stephan, 2016). Hence, disinfecting produce after harvesting is considered an essential step 

for the post-harvest handling of fruits and vegetables (Feliziani et al., 2016). The minimum 

requirement for a produce handling facility is to have a disinfection procedure that ensures 

the commodity is free from fungal and bacterial pathogens (Feliziani et al., 2016). This is 

usually achieved by using disinfectants such as chlorine, chlorine dioxide, ozone, ethanol, 

hydrogen peroxide, organic acids, and electrolyzed water (Feliziani et al., 2016). Despite 

using disinfectants, there continues to be a rise in foodborne outbreaks involving whole 

and fresh-cut produce. In 2019, a foodborne outbreak of E. coli O157:H7 was linked to the 

consumption of romaine lettuce produced from the Salinas Valley growing region in 

California (Center for Disease Control and Prevention, 2020b). The outbreak resulted in 

167 infections and 85 hospitalizations. A foodborne outbreak of Salmonella Carrau linked 

to the consumption of pre-cut melon left 137 people infected and required 38 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/organic-peroxide
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hospitalizations in the United States (Center for Disease Control and Prevention, 2020b). 

The rise in foodborne outbreaks in recent years has made the regulatory agencies, 

producers, and public increasingly concerned regarding the microbial safety of fresh fruits 

and vegetables (Sapers, 2001). Washing is defined as rinsing, scrubbing, rubbing, or 

dipping produce to remove any field acquired contamination from the surface of the 

product (Gómez-López, 2012). Washing produce is primarily done to improve the physical 

appearance of produce, but is also used to reduce any microbial or chemical residues which 

can hasten spoilage, cause product recalls, or result in human illness (Gómez-López, 2012). 

Immersion washers are one of the widely used techniques for washing produce such as 

melons, tomatoes, cucumbers, and loose greens (Gómez-López, 2012). Dunk tank 

immersion washers are mainly employed for removing large debris, biological 

contaminants, and to reduce physical impact and tissue damage. One significant safety 

issue with the dunk tank technique of produce washing is the infiltration of water (Gómez-

López, 2012). Various factors such as temperature, depth of water, soaking time, 

wound/scarring, and maturity of the products have to be taken into consideration to avoid 

cross-contamination or infiltration of contaminated water (Higgins, 2018). It was 

previously assumed that post-harvest wash/sanitation was adequate to clean and sanitize 

the produce of potential contaminants (Feliziani et al., 2016). Recent outbreaks and 

subsequent research have shown that post-harvest washing, under commercial conditions, 

has a limited efficacy in decontamination of produce and might even lead to cross-

contamination of produce during the wash step (Barrera et al., 2012; Gombas et al., 2017). 

The focus of this research was to investigate the ability of bacteriophages to reduce E. coli 
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O157:H7 contamination on baby spinach in the presence or absence of an organic load 

along with 100-ppm bleach and SaniDate 5.0. 

6.2 Materials and Methods  

6.2.1 Bacterial culture for microplate and produce wash study 

Pathogenic Escherichia coli O157:H7 (ATCC 35150) was obtained from a freezer 

stock. Working stock cultures were prepared by resuspending cells into tryptic soy broth 

(TSB, Difco, Becton-Dickenson Labs) and incubated for 48 hours at 37°C before streaking 

the cultures on MacConkey Agar (MAC, Difco, Becton-Dickenson Labs) and Sorbitol 

MacConkey Agar (SMAC, Difco) for isolation. After incubation for 24 hours at 37°C, the 

characteristics of the colonies were observed and individual colonies picked from SMAC 

into TSB tubes (supplemented with 5mM of Magnesium sulfate (MgSO4, Fisher Scientific) 

and Calcium chloride (CaCl2, Fisher Scientific)) using sterile technique. Cultures were 

grown for 24 hours at 37°C and then stored at refrigeration temperature, 4°C, until needed 

for propagation. Frozen stock cultures were made and stored at -25°C in skim milk media 

(Difco, Becton-Dickenson Labs) cryogenic vials for long term storage. 

6.2.2 Bacteriophage cocktail preparation 

Four bacteriophages (C14s, V9, L1, and LL15), specific to E. coli O157:H7, were 

obtained from bovine feces. The dairy herd bacteriophages were isolated and characterized 

by the Auburn University College of Veterinary Medicine. Bacteriophages were grown for 

24 hours at 37°C with host E. coli O157:H7. Phages were then separated via centrifugation 

at 20,000 rpm for 20 min in the presence of chloroform. The phages were then filter 

sterilized through a 0.22µ filter (Miller - Gs) into working stock containers. Equal volumes 
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of individual bacteriophage types were mixed in a sterile test tube and the required volume 

was pipetted just before every experiment to make the phage cocktail. 

6.2.3 Bacteriophage titer 

A bacteriophage titer was confirmed before each experiment to ensure phage activity. The 

host strain for all the bacteriophages was E. coli O157:H7 (ATCC 35150). The phage titer 

ranged from 7.00 x 106 to 1.20 x 1010PFU/ml. 

6.2.4 Initial produce rinse to reduce background microbial contamination on 
spinach leaves 

Fresh baby spinach leaves were purchased from a local grocery chain. Spinach leaves 

were transferred into a sterile filter bag (Fisher brand – blender bags) and treated with a 

2% Lactic acid solution (Fisher Scientific) for 20 mins. The leaves were then treated with 

100-ppm bleach water (Clorox) for 20 mins. Leaves were then set under UV light for 20 

mins to reduce the background population of microorganisms, as well as to dissipate any 

residual chlorine present on the leaves. Samples (NC) were collected after the initial rinse 

to analyze whether the wash successfully reduced the background flora.  

6.2.5 Wash solution for the simulated dunk tank 

Wash solutions were made to simulate the produce industry wash water. The first set 

of wash solutions were made with 20 ml of sterile doubled deionized water containing 100-

ppm bleach (T1) and 100-ppm SaniDate 5.0 (T2). These washes were used to determine 

their effect against E. coli O157:H7, as well as their effect with the addition of the phage 

cocktail (T3 and T4) (Figure 6.1). Control samples were treated similarly with water and 
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E. coli O157:H7 (PC). In all of the treatments, the samples were completely immersed in 

the wash solution for the full contact time of 10 minutes. 

 

Figure 6.1 Schematic flow of initial produce rinse and dunk wash of spinach in sterile 

water in combination with the sanitizers and bacteriophage cocktail. NC – No treatment, 

PC – Leaves washed with E. coli O157:H7 (ATCC 35150), T1 – Leaves washed with E. 

coli O157:H7 (ATCC 35150) in water containing 100-ppm bleach, T2 - Leaves washed 

with E. coli O157:H7 (ATCC 35150) in water containing 100-ppm SaniDate 5.0, T3- 

Leaves washed with E. coli O157:H7 (ATCC 35150) in water containing 100-ppm bleach 

and phage cocktail, T4 - Leaves washed with E. coli O157:H7 (ATCC 35150) in water 

containing 100-ppm SaniDate 5.0 and phage cocktail 
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6.2.6 Wash solution for the simulated dunk tank with high organic load water 

Wash solutions were made similarly with 100-ppm bleach (T1) and 100-ppm SaniDate 

5.0 (T2) in 20ml of sterilized DE broth containing approximately 9810-ppm of dissolved 

organic matter (Casein – 1660-ppm, Yeast extract – 830-ppm, Dextrose – 3330-ppm, 

Tween 80 – 1660-ppm, and Lecithin – 2330-ppm). These washes were used to determine 

the effect of the sanitizers against the pathogen, as well as with the addition of the phage 

cocktail (T3 and T4) to infect E. coli O157:H7 in the presence of high organic load (Figure 

6.2). Control samples (NCO) were treated similarly with organic load wash water without 

the bacteriophage cocktail. In all of the treatments, the samples were completely immersed 

in the wash solution for the full contact time of 10 minutes. 

 

 



81 
 

 

Figure 6.2 Schematic flow of initial produce rinse and dunk wash of spinach in high 

organic load water in combination with the sanitizers and bacteriophage cocktail. NC – No 

treatment, NCO – Leaves washed in high organic load water, PC - Leaves washed in 

organic water containing E. coli O157:H7 (ATCC 35150), T1 – Leaves washed in organic 

water containing E. coli O157: H7 (ATCC 35150) + volume of bleach to contribute 100-

ppm, T2 - Leaves washed in organic water containing E. coli O157: H7 (ATCC 35150) + 

volume of SaniDate 5.0 to contribute 100-ppm, T3- Leaves washed in organic water 

containing E. coli O157: H7 (ATCC 35150) + volume of bleach to contribute 100-ppm and 

phage cocktail, T4 - Leaves washed in organic water containing E. coli O157: H7 (ATCC 

35150) + volume of SaniDate 5.0 to contribute 100-ppm and phage cocktail  
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6.2.7 Recovery of bacteria 

 Leaves were rinsed with 1 ml sterile phosphate buffer. Samples were massaged for 

one minute and serial dilutions of the sample rinse were made in phosphate buffer (pH 7.4 

- 7.5). The dilutions were then plated on pre-made TSA plates, supplemented with 5mM 

Magnesium sulfate (MgSO4, Fisher Scientific) and 5mM Calcium chloride (CaCl2, Fisher 

Scientific). 

6.2.8 Statistical analysis 

A linear mixed model was used to analyze the response of log value as a factor of the 

treatment group, the time (hours 3 and 6), the interaction of treatment and time, and the 

baseline of log value. Random effects for the subject and study were included in the model. 

Tukey’s method for multiple comparisons was used to test the differences between average 

treatment means and treatment means at each hour. All analysis was conducted using 

PROC GLIMMIX in SAS 9.4. 

6.3 Results 

6.3.1 Effect of bacteriophage on sterile water wash solution containing E. coli 
O157:H7 inoculated spinach in a simulated dunk tank with 100-ppm bleach 

The initial produce rinse successfully inhibited the growth of background flora on 

fresh spinach leaves. The plate count (<1.00 CFU/ml) on the NC indicated that the initial 

rinse was effective at reducing the background microflora. Table 6.1 shows the efficacy of 

100-ppm bleach and 100-ppm bleach/bacteriophage cocktail combination in the reduction 

of E. coli O157:H7 on spinach compared to the control wash. The 10-minute contact time 

for the wash solution resulted in a significant reduction (P < 0.01) of the pathogen at the 
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end of 3 hours on both the treatments compared to the PC. The 100-ppm bleach treatment 

by itself contributed to 3.00 log CFU/ml (99.9%) reduction at the end of 3 hours and 

maintained it until the end of 6 hours despite some recovery. Since there was a parallel 

increase in the number of the PC at 6 hours, the gradual recovery of the pathogen numbers 

in T1 still reflected a 3.00 log CFU/ml at the end of 6 hours. In the case of leaves washed 

with the sanitizer bacteriophage combination, there was a 5.00 log CFU/ml (99.999%) 

reduction at the end of 3 hours and maintained it until the end of 6 hours. Similar to T1, 

the T3 reflected a gradual recovery, but a parallel increase to the PC maintained the 5.00 

log CFU/ml reduction at the end of 6 hours. The statistical analysis indicated that, despite 

the recovery, the treatments were significantly different from the PC. Therefore, the 

disinfectant treatments (T1 and T3) were significantly effective (P < 0.01) in reducing the 

population of E. coli O157:H7 on the spinach leaves compared to PC (Figure 6.3 - A).  

6.3.2 Effect of bacteriophage on sterile water wash solution containing E. coli 
O157:H7 inoculated spinach in a simulated dunk tank with 100-ppm 

SaniDate 5.0 

The initial produce rinse successfully inhibited the growth of background flora on 

fresh spinach. The plate count (<1.00 CFU/ml) on the NC indicated that the initial rinse 

was effective at reducing the background microflora. Table 6.1 shows the efficacy of the 

bacteriophage cocktail in the reduction of E. coli O157:H7 on spinach washed in water 

containing 100-ppm SaniDate 5.0 along with the phage cocktail compared to the control 

wash. The 10-minute contact time for the wash solution resulted in a significant reduction 

(P < 0.01) of the pathogen at the end of 3 hours compared to the PC on both the treatments. 

Recovery of the pathogen was not observed in both the treatments at 0, 3, and 6 hours. The 

statistical analysis indicated that both treatments (T2 and T4) were significantly different 
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from the PC. Therefore, treatments T2 and T4 were significantly effective (P < 0.01) in 

reducing the population of E. coli O157:H7 on the spinach leaves (Figure 6.3 - B).  

6.3.3 Effect of sterile wash solution containing 9810 ppm of organic load 
comprising E. coli O157:H7 and bacteriophage cocktail in a simulated dunk 

tank with 100-ppm bleach  

The initial produce rinse was once again effective in reducing the background 

microflora of the spinach (<1.00CFU/ml). The secondary negative control (NCO) also had 

no recovery (<1.00CFU/ml) on the studies which indicated that the organic load did not 

influence the growth of any underlying microflora. Table 6.2 shows the efficacy of the 

bacteriophage cocktail in the reduction of E. coli O157:H7 on spinach washed in the 

challenge water (9810 ppm organic load) containing the phage cocktail compared with the 

control wash. The 10-minute contact time for the wash solution resulted in a significant 

reduction (P < 0.01) (99.99%) of the pathogen at the end of 3 and 6 hours. Compared to 

T1 and PC, the bacteriophage treatment (T3) resulted in 4.00 log CFU/ml and 5.00 log 

CFU/ml reduction and the end of 3 and 6 hours respectively. In the case of T1, the obtained 

data were not significantly different from PC and the pathogen had a similar growth pattern. 

This study illustrates the specificity of bacteriophage and its ability to effectively reduce 

E. coli O157:H7 despite being in an environment with a high organic load (Figure 6.3 - C). 

6.3.4 Effect of sterile wash solution containing 9810 ppm of organic load 
comprising E. coli O157:H7 and bacteriophage cocktail in a simulated dunk 

tank with 100-ppm SaniDate 5.0 

The initial produce rinse was once again effective in reducing the background 

microflora of the spinach (<1.00CFU/ml). Table 6.2 shows the efficacy of the 

bacteriophage cocktail in the reduction of E. coli O157:H7 on spinach washed in the 
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challenge water (9810 ppm organic load) containing the phage cocktail compared with the 

control wash. The 10-minute contact time for the wash solution resulted in a significant 

reduction (P < 0.01) (99.99%) of the pathogen at the end of 3 and 6 hours. Compared to 

T2 and PC, the bacteriophage treatment (T4) resulted in 3.00 log CFU/ml and 5.00 log 

CFU/ml reduction and the end of 3 and 6 hours respectively. In the case of T2, the obtained 

data were not significantly different from PC and the pathogen had a similar growth pattern. 

This study also illustrates the specificity of bacteriophage and its ability to effectively 

reduce E. coli O157:H7 despite being in an environment with a high organic load (Figure 

6.3 – D). 
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Table 6.1 Reduction of E. coli O157:H7 (ATCC 35150) on spinach via postharvest 

pathogen control measures of using bacteriophage cocktail in combination with 

commercially used sanitizer wash solution made with potable water in a simulated dunk 

tank. 

 

Wash treatment Wash time  

(min) 

Sampling time 

 (h) 

E. coli O157:H7 
population 

 (log CFU/ml) 

Negative Control  

(NC) 
- 

0 <1.00 

3 <1.00 

6 <1.00 

Positive Control  

(PC) 
10 

0 6.43 

3 6.62 

6 7.42 

Treatment 1 - 100-
ppm bleach water 

 (T1) 
10 

0 3.24 

3 3.49 

6 4.04 

Treatment 2 - 100-
ppm SaniDate 5.0 

water 

 (T2) 

10 

0 <1.00 

3 <1.00 

6 <1.00 

Treatment 3 - 100-
ppm bleach water + 

bacteriophage 
cocktail (T3) 

10 

0 4.35 

3 1.11 

6 2.10  

Treatment 4 - 100-
ppm SaniDate 5.0 

water + 
bacteriophage 
cocktail (T4) 

10 

0 <1.00 

3 <1.00 

6 <1.00 
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Figure 6.3 Reduction of E. coli O157:H7 contamination of spinach leaves treated with 

bacteriophage cocktail in combination with sanitizer. (A) 100-ppm bleach and 100-ppm 

bleach + bacteriophage cocktail in sterile wash water, (B) 100-ppm SaniDate 5.0 and 100-

ppm SaniDate 5.0 + bacteriophage cocktail in sterile wash water, (C) 100-ppm bleach and 

100-ppm bleach + bacteriophage cocktail in high organic wash water, (D) 100-ppm 

SaniDate 5.0 and 100-ppm SaniDate 5.0 + bacteriophage cocktail in high organic wash 

water  
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Table 6.2 Reduction of E. coli O157:H7 (ATCC 35150) on spinach via postharvest 

pathogen control measures of using bacteriophage cocktail in combination with 

commercially used sanitizer wash solution made with high organic load water in a 

simulated dunk tank. 

 

Wash treatment Wash 
time 

(min) 

Sampling 
time 

 (h) 

E. coli O157:H7 
population  

(log CFU/ml) 

Negative Control 

 (NC) 
- 

0 <1.00 

3 <1.00 

6 <1.00 

Negative Control Organic  

(NCO) 
10 

0 <1.00 

3 <1.00 

6 <1.00 

Positive Control  

(PC) 
10 

0 6.35 

3 7.00 

6 7.62 

Treatment 1 - 100-ppm bleach in organic 
water  

(T1) 
10 

0 6.46 

3 7.20 

6 7.63 

Treatment 2 - 100-ppm SaniDate 5.0 in 
organic water  

(T2) 
10 

0 6.25 

3 6.94 

6 7.52 

Treatment 3 - 100-ppm bleach in organic 
water  

+ bacteriophage cocktail  

(T3) 

10 

0 5.70 

3 3.17 

6 2.32 
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Table 6.2 (Continued). 

 

6.4 Discussion 

Increased microbial contamination in vegetables has led to several foodborne 

outbreaks which have created a growing concern for producers, consumers, and public 

health organizations with regards to the safety of the products that are being produced. 

Water is considered as one of the major routes through which pathogens can cross-

contaminate produce. Hence, treating wash water with sanitizer is necessary to prevent the 

accumulation of pathogens during produce wash. Proper sanitation, especially during post-

harvest washing of produce, in a recirculated wash water system, such as dunk tanks, is 

crucial for producing safe food for consumers (Sargent et al., 2000). Chlorine-based 

sanitizers are deemed as one of the most commonly used sanitizers in the fresh produce 

industry (Chen and Hung, 2017). Although bleach is relatively inexpensive and can 

eliminate a broad range of microorganisms, it is also considered highly corrosive and has 

a greater affinity to bind with available organic load (Sargent et al., 2000). Consequently, 

maintaining an adequate concentration of free chlorine in produce wash water, especially 

in the presence of high organic load, is a great challenge for the produce industry (Chen 

and Hung, 2017). The recommended concentration for chlorine-based compounds used for 

rinsing produce is between the range of 50 - 100 ppm free chlorine (World Health 

Wash treatment Wash 
time 

(min) 

Sampling 
time 

 (h) 

E. coli O157:H7 
population 

 (log CFU/ml) 

Treatment 4 - 100-ppm SaniDate 5.0 in 
organic water + bacteriophage cocktail  

(T4) 
10 

0 5.50 

3 3.17 

6 2.35 
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Organization, 2008). Akbas and Olmez (2007), studied the effect of chlorine solution on 

reducing the population E. coli and L. monocytogens on contaminated lettuce (Akbas and 

Ölmez, 2007). The lettuce samples were dipped in 100 mg/L of free chlorine water for 2 

and 5 minutes. The results indicated that the treatment resulted in 1.0 and 2.0 log CFU/g 

reduction of the population of L. monocytogens and E. coli respectively. Chen and Hung 

(2017), studied the effect of organic load on the chlorine demand for fresh produce wash 

water system using romaine lettuce. The team studied the chlorine demand on wash water 

with different organic loads, pH, and concentrations of chlorine. The results indicated that 

chlorine demand significantly increased with an increase in organic load (Chen and Hung, 

2017). Additionally, various studies have also supported the presence of organic matter 

reduces the efficacy of any chlorine-based sanitizers (Park et al., 2009). Similar to these 

results, bleach and SaniDate 5.0 were both capable of reducing the population of E. coli 

O157:H7. The 100-ppm bleach treatment in sterile wash water gave a 3.13 and 3.38 log 

CFU/ml reduction of the pathogen at 3, and 6 hours on the spinach leaves. In contrast, the 

100-ppm bleach and phage cocktail in sterile wash water gave a 5.51 and 5.32 log CFU/ml 

reduction of the pathogen at 3 and 6 hours respectively. The phage-bleach combination 

achieved a 2.38 log CFU/ml more on the reduction of the pathogen compared to bleach 

treatment alone at the end of 3 hours. The 100-ppm SaniDate 5.0 in sterile wash water, 

both in the presence or absence of the phage cocktail, led to an undetectable amount on the 

pathogen. However, once the organic load was introduced into the wash water, both the 

sanitizers were severely limited in reducing the pathogen. The 100-ppm bleach and 100-

SaniDate 5.0 in organic water had an extremely restricted effect on the growth of the 

pathogen. Despite the presence of a high organic load, the 100-ppm bleach - phage cocktail 



91 
 

treatment gave a 3.83 and 5.30 log CFU/ml reduction of the pathogen at 3 and 6 hours 

respectively and the 100-ppm SaniDate 5.0-phage cocktail treatment gave a 3.83 and 5.27 

log CFU/ml reduction at the end of 3 and 6 hours respectively. This corresponds to a 4.03 

and 5.31 log CFU/ml more reduction on the bleach-phage combination treatment and 3.77 

and 5.17 log CFU/ml more reduction on the SaniDate 5.0-phage combination treatment. 

Despite the presence or absence of the sanitizer, the phage cocktail demonstrated a 

consistent reduction (99.99%) of E. coli O157:H7 at 3 and 6 hours. This study 

demonstrated the phage's ability to selectively eliminating the contamination despite being 

subjected to a complex wash solution. 

 Survival of the phage cocktail in the presence of sanitizers might open new avenues 

of using phage-sanitizer combination as an effective method in eliminating select 

pathogens in the food industry. The emergence of phage-resistant bacterial mutants, 

transduction of undesirable characteristics among bacteria, and environmental conditions 

are potential problems that can reduce the effectiveness of phage treatment. The discovery 

of new phage and rotational phage application might help to prevent the formation of any 

phage-resistant mutants. Phages are one of the most abundant microorganisms with an 

estimated range > 1030 particles found in our biosphere (Brüssow and Hendrix, 2002). 

Phages are also found in food and water that are commonly consumed by humans 

(Abuladze et al., 2008). For instance, phages have been isolated from a variety of food 

products such as pork sausage, poultry, ground beef, freshwater fish, marine fish, oysters, 

cheese, and raw skim milk (Whitman and Marshall, 1971; Kennedy et al., 1984; Kennedy 

et al., 1986; Gautier et al., 1995; Atterbury et al., 2003a). Therefore, the technique of using 

phage to reduce contamination on food products might be one of the most natural ways of 
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eliminating specific pathogens. Apart from its application on food products, phages can 

also be used selectively for eliminating spoilage microorganisms, cleaning food and non-

food contact surfaces, and equipment naturally, or in combination with sanitizers. The data 

presented in this report suggest that a phage-based approach might help prevent disease 

caused by foodborne bacteria, such as E. coli O157:H7. Additionally, the study supports 

their ability to reduce the pathogen in the presence of a high organic load; thus, ultimately 

lowering the possibility of bacterial related foodborne outbreaks in the produce industry. 
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CHAPTER 7. CONCLUSION 

The incidence of foodborne outbreaks involving fresh fruits and vegetables is a concern 

for consumers worldwide. Developing a novel technique and frequently updating 

sanitation methods are necessary for not only controlling pathogens, but also to prevent the 

occurrence of foodborne outbreaks. The microplate technique used in this study helped in 

analyzing the effect of the phage cocktail on E. coli O157:H7 that resulted in a 4 log 

CFU/ml (99.99%) reduction of the pathogen for up to 9 hours. The ability of the phage 

cocktail to survive 100-ppm bleach and 100-ppm SaniDate 5.0, opened new avenues for 

testing the sanitizer treated phage cocktail on E. coli O157:H7. The results indicated the 

efficacy of the phage cocktail to eliminate the pathogen was significantly different despite 

being subjected to a 100-ppm concentration of the sanitizers. The temperature study proved 

that phages were capable of withstanding a temperature of 45°C and 55°C for 0-15 minutes. 

The ability to survive these heat treatments demonstrates that the phages could be added to 

a produce wash, or used in combination with mild heat treatment, and still retain their 

ability to infect and reduce the population of the pathogen. The produce wash study proved 

their effectiveness in reducing the contamination both in the presence and absence of 

sanitizer, even when subjected to a complex wash system containing a high organic load. 

Results from these studies indicate that bacteriophages can be effectively used in reducing 

E. coli O157:H7 contamination on fresh produce that is exclusively washed in dunk tanks. 

It is possible that with further optimization of the dosage, delivery mechanism, and 

formulation, the effectiveness of phage can be further improved in specifically reducing E. 

coli O157:H7 contamination on fresh produce. The ability of phages to selectively infect 

bacteria can be utilized to formulate cocktails which can then be selectively used against 
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pathogens or spoilage microorganisms depending on the type of food products. A 

bacteriophage biocontrol strategy would be an acceptable technique and a natural 

alternative to food safety and preservation. 
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APPENDICES 

 

Figure A1. Spot assay of bacteriophages C14s, V9, L1, and LL15 against E. coli 

O157:H7  

 

 

Table A1. Plaque forming units (PFU) of bacteriophages C14s, V9, L1, and LL15 

against E. coli O157:H7 

Phage Countable dilution range Plaque Forming Unit* 

C14s 105 7.00 x 106 PFU/ml 

V9 105 2.20 x 107 PFU/ml 

L1 108 1.20 x 1010 PFU/ml 

LL15 106 1.48 x 109 PFU/ml 

* PFU Calculation : Example - Plaques formed = 148, Dilution factor = 106, Inoculum 
volume = 0.1 ml ( or 100 µl) 

Titer = Plaque formed x Dilution factor / inoculum volume 

= 1.48 x 109 PFU/ml 
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Table A2. Phage Score based on plaque appearance  

Phage Scores 

C14s 4 

V9 3 

L1 4 

LL15 4 

 

Figure A2. Microplate growth inhibition assay showing the activity of bacteriophage 

C14s against E. coli O157:H7 (ATCC 35150) 
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Figure A3. Microplate growth inhibition assay showing the activity of bacteriophage 

V9 against E. coli O157:H7 (ATCC 35150) 
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Figure A4. Microplate growth inhibition assay showing the activity of bacteriophage 

L1 against E. coli O157:H7 (ATCC 35150) 
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Figure A5. Microplate growth inhibition assay showing the activity of bacteriophage 

LL15 against E. coli O157:H7 (ATCC 35150) 
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Figure A6. Spot assay of 100-ppm bleach treated phage at 0, 1, 2, 3 hours 

 

 

 

Figure A7. Spot assay of 100-ppm SaniDate 5.0 treated phage at 0, 1, 2, 3 hours 
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Figure A8. Spot assay of 100-ppm bleach treated phage cocktail at 0 hour 

 

 

 

Figure A9. Spot assay of 100-ppm SaniDate 5.0 treated phage cocktail at 0 hour 
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