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rats
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Wileya, Chad J. Reissigd, and Kia J. Jacksond

aRTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 USA

bCollege of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA

cCenter for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536-0509 
USA

dU.S. Food and Drug Administration, Center for Tobacco Products, 10903 New Hampshire Ave., 
Silver Spring, Maryland 20993 USA

Abstract

Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides 

nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation 

of these constituents and their contribution to tobacco dependence is less well developed than for 

nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and 

rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), 

anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and 

place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine 

release at both ages, and anatabine and myosmine increased dopamine release in adults, but not 

adolescents. The dopamine release results were not related to place conditioning, as nicotine and 

cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion 

in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening 

drug-context associations following initiation of drug use, it may have little involvement in the 

motivational effects of tobacco constituents once these associations have been acquired. Effects of 

myosmine and anatabine on dopamine release may require a fully developed dopamine system, 

since no effects of these tobacco alkaloids were observed during adolescence. In summary, while 

anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in 

tobacco dependence in adults, the nature of that role remains to be elucidated.
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1.0 Introduction

Tobacco products are commonly used psychoactive drugs that have led to a high public 

health toll (HHS, 2014; WHO, 2013). Although nicotine is believed to be the primary 

addictive constituent in tobacco, there are >8,400 other constituents in tobacco smoke 

(Rodgman and Perfetti, 2008), and the contribution of these constituents to tobacco 

dependence is not yet understood. In addition to nicotine, other tobacco constituents 

evaluated for addictive potential include nicotine metabolites and minor alkaloids (e.g., 

cotinine, myosmine, and anatabine) (Clemens et al., 2009; Hall et al., 2014), flavor additives 

(e.g., menthol) that enhance nicotine’s pharmacological effects (Alsharari et al., 2015; 

Biswas et al., 2016), and β-carbolines that inhibit monoamine oxidase (Smith et al., 2015). 

Pharmacological effects of tobacco products are mediated by this chemical cocktail 

(Henningfield and Zeller, 2003). Since initiation of tobacco use often occurs during 

adolescence (Lydon et al., 2014), it is important to understand the pharmacological effects of 

tobacco constituents during this developmental period.

Nicotine activates the mesolimbic dopamine reward pathway. Nicotine-evoked dopamine 

release in the nucleus accumbens (NAc) depends on activation of nicotinic receptors in the 

midbrain ventral tegmental area (Nisell et al., 1994). Moreover, the stimulant and rewarding 

effects of nicotine depend on ventral tegmental area-mediated dopamine release in the NAc 

(Gotti et al., 2010). In contrast to nicotine, however, no studies have examined the dose-

effect relationships for other tobacco constituents on dopamine release in the NAc in 

rodents.

Nicotine-evoked dopamine release in NAc is thought to be the primary mechanism leading 

to hyperactivity and reward. To measure reward, place conditioning is often used to evaluate 

the degree of association between the rewarding (conditioned place preference, CPP) or 

aversive (conditioned place aversion, CPA) properties of a drug and the environment in 

which these properties are experienced repeatedly (Carr et al., 1989; Tzschentke, 1998). 

Tobacco constituent cues (e.g., rewarding, aversive, smell, taste) may become associated 

with environmental and social conditions in which tobacco is consumed, leading to 

associations that may persist in the tobacco-free state. This associative learning may impede 

attainment and maintenance of abstinence.

Nicotine CPP has been demonstrated in adult and adolescent rats (Le Foll and Goldberg, 

2005; Natarajan et al., 2011; Vastola et al., 2002); however, negative findings also have been 

reported (Belluzzi et al., 2004; Shoaib et al., 1994; Shram et al., 2006; Vastola et al., 2002). 

To date, no studies have reported tobacco constituent CPP; however, nicotine CPP is less 

likely to develop in rats pre-exposed to tobacco smoke compared to rats pre-exposed to 

nicotine alone (de la Pena et al., 2014). This suggests that non-nicotine constituents may 

diminish the rewarding effects of tobacco.

While it is known that nicotine activates the mesolimbic dopamine reward system, it is 

unclear if other tobacco constituents have similar or different effects, or if dopamine 

activation differs between adolescence and adulthood. This study was designed to reduce 

this gap. Furthermore, locomotor activity and CPP were assessed to determine if age-

Marusich et al. Page 2

Eur J Pharmacol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependent differences in dopamine activation among tobacco constituents were associated 

with differences in dopamine-relevant behaviors.

2.0 Materials and Methods

2.1 Subjects

Male Sprague-Dawley rats, obtained from Harlan Laboratories (Indianapolis, IN, USA), 

were housed in age-matched pairs in polycarbonate cages. Rats arrived at two ages: adult 

[postnatal day (PND) 60 or greater] and adolescent (PND 21–23). Rats were maintained in a 

temperature-controlled environment with a 12-hour light-dark cycle, and had free access to 

rodent chow and water in their home cages. All studies were carried out in accordance with 

guidelines published in the Guide for the Care and Use of Laboratory Animals (National 

Research Council, 2011), the ARRIVE guidelines, and in accordance with the Institutional 

Animal Care and Use Committee (IACUC) of the Food Drug Administration (FDA) and 

with other federal and state regulations. Additionally, place conditioning and in vivo 

microdialysis studies were performed in accordance with the IACUCs associated with RTI 

and the University of Kentucky, respectively.

2.2 Drugs

(−)-Nicotine, (−)-cotinine, myosmine, and (+)-methamphetamine were purchased from 

Sigma-Aldrich (St. Louis, MO). (±)-Anatabine was purchased from Matrix Scientific 

(Columbia, SC). These compounds were dissolved in sterile saline (USP grade), and the pH 

was adjusted to approximately neutral (pH ~ 7), as necessary. Doses of tobacco constituents 

were expressed as mg/kg of free base, and methamphetamine was expressed as mg/kg of the 

HCl salt. Nicotine, cotinine, myosmine, anatabine, and methamphetamine were injected in a 

volume of 1 ml/kg. Acepromazine, xylazine, and ketamine were obtained from Butler 

Schein (Dublin, OH). Carprofen and isoflurane were obtained from Merritt (Ridgefield, CT) 

and Cardinal Health (Dublin, OH), respectively.

2.3 Equipment

Microdialysis experiments were conducted in Plexiglas chambers with a pine bedding floor 

measuring 25 cm × 44 cm × 38 cm for the experiments using adults, and measuring 25 cm × 

44 cm by 24 cm for experiments using adolescents. A swivel and tether system (BAS, 

Indianapolis, IN) was attached to the side of the chamber and connected to a microsyringe 

pump (KD Scientific, Holliston, MA, Model KDS250). Microdialysis samples were 

analyzed for dopamine using high performance liquid chromatography coupled with 

electrochemical detection (HPLC-ECD, ESA Inc., Chelmsford, MA) as previously described 

(Meyer et al., 2013). The computer-controlled HPLC-EC system consisted of a solvent 

delivery pump (ESA model 582), a Coulochem III 5200A electrochemical detector, and an 

ESA 542 HPLC autosampler and a 5014B analytical cell and 5020 guard cell. The guard cell 

was set at +350 mV, electrode 1 at −150 mV, and electrode 2 at +220 mV. The mobile phase 

consisted of 90 mM NaH2PO4 H2O, 50 mM citric acid, 1.7 mM 1-octanesulfonic acid, 50 

μM EDTA, and 10% acetonitrile (pH 3.0 adjusted with phosphoric acid; flow rate was 0.6 

ml/min). Samples (20 μl) were auto-injected onto an analytical column (ESA MD 150 × 3, 
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150 mm × 3.2 mm) and peaks were compared with external standards using an ESA 

Chromatography Data System (EZChrom Elite, ESA Chelmsford, MA).

Place conditioning sessions were conducted in an automated system comprised of three-

compartment chambers, with each side measuring 27.5 cm × 22 cm × 31.5 cm and the center 

measuring 14 cm × 22 cm × 31.5 cm. Chambers were surrounded by an array of 4 × 16 

photocell infrared beams. The equipment was interfaced with San Diego Systems software 

(model 6610–001-A, San Diego, CA). Compartments were separated from each other by 

removable doors, and each compartment had distinct environmental cues. The equipment 

was verified to be unbiased for both adolescent and adult rats before conditioning sessions 

began, i.e., when averaged across animals of either age, amount of time spent was not 

different between side compartments, indicating lack of systematic side preference.

2.4 Experimental Design

Upon arrival, rats were assigned to a single dose of a single compound or saline (n=8–

14/age/group). Nicotine (0.2–0.8 mg/kg), cotinine (0.5–5.0 mg/kg), anatabine (0.5–5.0 mg/

kg), and myosmine (5.0–20.0 mg/kg) were evaluated. Also, methamphetamine (0.3–1.0 

mg/kg) served as a positive control in the place conditioning study. Nicotine doses were 

chosen based on their ability to induced CPP in rats (Le Foll and Goldberg, 2005), and 

increase dopamine release in rat NAc (Adermark et al., 2015; Rahman et al., 2008; Silvagni 

et al., 2008). Minor tobacco alkaloid doses were chosen based on their ability to alter 

locomotor activity or intracranial self-stimulation (ICSS) threshold (Harris et al., 2015; 

Wiley et al., 2015), or substitute for nicotine in drug discrimination (Goldberg et al., 1989). 

Subcutaneous (s.c.) administration was used for all tobacco constituents to minimize first 

pass metabolism (Matta et al., 2007). Methamphetamine was administered intraperitoneally 

(i.p.).

2.5 Microdialysis Surgery

Surgeries for microdialysis were performed under aseptic conditions on PND 76–77 (adults) 

or PND 30–31 (adolescents), using previously described methods (Meyer et al., 2013; 

Rahman et al., 2007). Anesthetic cocktails were based on age differences in pharmacokinetic 

effects of ketamine and xylazine (Veilleux-Lemieux et al., 2013). Adult rats were 

anesthetized by administering (i.p.) 0.44–0.54 ml/kg body weight of a cocktail containing 

0.75 mg/kg acepromazine, 7.5 mg/kg xylazine, and 75 mg/kg ketamine. Adolescent rats 

were anesthetized by administering (i.p.) 0.15 ml of a cocktail containing 8 mg/kg xylazine 

and 60 mg/kg ketamine. Depth of anesthesia was monitored by eye blink response to corneal 

stimulation and muscle twitch response to strong pinch of the toe and tail. If responses were 

observed, supplementary anesthetic 1–4% isoflurane/oxygen inhalant was employed until 

responses were absent. Rats were placed in a stereotaxic apparatus (Stoelting, Wood Dale, 

IL), and a guide cannula (MD-2251, 22 gauge, BAS, Indianapolis, IN) was implanted 

unilaterally in the NAc shell, with coordinates adjusted for each age (Paxinos and Watson, 

1986). For adults, coordinates were A/P +1.6, L +0.8 and D/V −6.0; for adolescents, 

coordinates were A/P +1.6; L +1.0 and D/V −4.8. The guide cannula was secured to the 

skull with dental acrylic and jeweler’s screws. To minimize discomfort and pain, rats were 

Marusich et al. Page 4

Eur J Pharmacol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



given carprofen (5 mg/kg, s.c., once daily) on the day prior to surgery and for a minimum of 

3 days after the surgery. Following surgery, rats were allowed to recover for 2 days.

2.6 Microdialysis Procedure

On PND 79 (adults) or PND 33 (adolescents), a microdialysis probe was connected to a 

microsyringe pump via PE10 tubing that perfused (1.2 μl/min) artificial cerebral spinal fluid 

(aCSF; consisting of 145 mM NaCl, 2.7mM KCl, 1 mM MgCl2, 1.2 CaCl2 and 2 mM 

Na2HPO4 pH adjusted to 7.4) at a continuous flow rate. Probes were inserted into the guide 

cannula and rats were connected to a swivel system by a flexible leash attached to a neck 

collar. Rats were habituated to the Plexiglas chamber for at least 3 h prior to collection of the 

baseline dialysate samples. Baseline samples were collected into polyethylene microfuge 

tubes containing 5 μl of 0.1 N perchloric acid at 20 min intervals for 60 min, prior to 

administration of drug or saline. Sample collection continued for 3 h following injection, 

which was sufficient for extracellular dopamine to return to baseline levels (Rahman et al., 

2007; Rahman et al., 2008). Following each microdialysis experiment, brains were removed 

and flash frozen in Chromasolv® (Sigma-Aldrich, St. Louis MO). Brains were sectioned 

into coronal slices, mounted onto slides, and stained for visualization. Microdialysis probe 

placement in the NAc was confirmed, and data from rats with misplaced probes were 

excluded from analysis.

2.7 HPLC Analysis of Dopamine

Samples (25 μl) were loaded into a sample loop and injected onto a reverse-phase analytical 

column (MD-150 × 3.2 mm, C18 column; ThermoScientific, PA, USA). The mobile phase 

consisted of 90 mM NaH2PO4 H2O, 50 mM citric acid monohydrate, 1.7 mM 1-

octanesulfonic acid, 50 μM EDTA, and 13% acetonitrile (pH 3.0 adjusted with 2N NaOH; 

flow rate was 0.5 ml/min). Retention times of dopamine standards were used to identify the 

dopamine peak. Chromatograms were integrated, compared with the standards and analyzed 

using an ESA Chromatography Data System (EZChrom Elite, Chelmsford, MA).

2.8 Place Conditioning Procedure

The place conditioning procedure was adapted from previous work that evaluated CPP with 

nicotine in adult and adolescent rats (Le Foll and Goldberg, 2005; Natarajan et al., 2011; 

Vastola et al., 2002) and contained three phases: pre-conditioning (habituation), conditioning 

(acquisition), and post-conditioning (expression). The pre-conditioning phase occurred on 

Day 1, during which rats were allowed to explore all compartments of the CPP apparatus 

during a 15-min session. Adults were tested on PND 66 (Day 1) and adolescents were tested 

on PND 27 (Day 1). Time spent in each compartment was recorded and initial preference 

was defined as the side compartment in which the rat spent the greatest amount of time.

The conditioning phase occurred on Days 2–9, with 30 min sessions conducted each day. 

During this phase, rats were injected with their assigned tobacco constituent on 4 days and 

with saline on the alternating 4 days. The group of saline control rats was injected with 

saline on all 8 days. Half the rats in each group were assigned randomly to receive an 

injection of the designated tobacco constituent on the first day of the conditioning phase, and 

the other half received a saline session on the first day. During conditioning sessions, rats 
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were confined to a single side compartment immediately after injection. Assignment to 

conditioning compartments was biased; i.e., injection of saline was associated with the side 

of the chamber that the individual rat preferred during the pre-conditioning session and 

injection of the constituent was associated with the non-preferred side. The post-

conditioning phase was conducted on Day 10, and consisted of a single 15-min session that 

was identical to the pre-conditioning session. Amount of time spent in each compartment 

was recorded. In addition, locomotor activity was recorded during all pre-, post-, and 

conditioning sessions.

2.9 Microdialysis Data Analysis

Dopamine levels at baseline were calculated by comparing peak heights from samples taken 

prior to any pretreatment with external standard curves. Data were recorded as peak height 

for dopamine for each sample collected following administration of tobacco constituent or 

saline. Data obtained following injection were expressed as a percent of baseline (average of 

pretreatment samples) and analyzed using a mixed model ANOVA (age × dose × time), with 

age and dose as between-subjects factors, and time as a repeated measures factor. 

Subsequently, time course data were analyzed for each group using separate one-factor 

repeated measures ANOVAs, with follow up Dunnett’s tests. To determine the effects of 

each dose of tobacco constituent, Dunnett’s tests were conducted between each dose of 

tobacco constituent and vehicle at each time point. In some cases, to probe individual time 

points between adolescent and adult rats, independent two-tailed t-test comparisons were 

performed. Also, data were calculated for dopamine as area under the curve (AUC) using the 

trapezoidal rule (GraphPad Prizm 5.0 Software Inc., San Diego, CA), and expressed as 

percent change from baseline following administration of the tobacco constituent. AUC 

values were analyzed by two-factor ANOVA (Age × Dose) followed by post hoc t-tests.

2.10 Place Conditioning Data Analysis

Time spent in each compartment during the pre- and post-conditioning tests was recorded, 

and the number of Y-axis photocell beam breaks during all sessions was collected. Number 

Cruncher Statistical Systems software (Hintze, 2004) was used for all analyses. The post-

conditioning only CPP/CPA index was used as the primary measure of preference, and was 

calculated as the time spent in the tobacco constituent- or methamphetamine-associated 

compartment minus time spent in the saline-associated compartment during post-

conditioning (Kota et al., 2007; Natarajan et al., 2011). CPP was indicated by a positive 

number and CPA was indicated by a negative number. For each constituent, a separate 

factorial (age × dose) ANOVA was used to compare the CPP/CPA measure across ages and 

doses. Tukey-Kramer post hoc tests were used to compare means as appropriate.

Locomotor activity during drug conditioning sessions was analyzed by separate two-way 

mixed model ANOVAs for each constituent, with dose as the between-subjects factor and 

number of tobacco constituent exposures (1–4) as the repeated measures factor. Tukey-

Kramer post hoc tests were used to compare means. Significance level for all ANOVAs and 

post hoc tests was α = 0.05.
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3.0 Results

3.1 Baseline dopamine levels

Dopamine recovered from NAc dialysate was measured in both adults and adolescents 

injected with saline. Dopamine concentration (mean ± S.E.M.) in dialysate across the first 3 

sampling periods prior to the saline injection was 4.53 ± 0.60 pg/25 μl for adults and 4.86 

± 0.20 pg/25 μl for adolescents. There was no significant difference in baseline dopamine 

concentration between ages.

3.2 Nicotine-induced dopamine release

The time course of the effect of nicotine on dopamine release from the NAc is shown in 

Figure 1a and b. Nicotine increased dopamine release [main effect of drug: F(1,45) = 

22.044, P < 0.05]. While the time course of nicotine-induced dopamine release appeared 

visually different for each age (Fig. 1a and b), the time × age × nicotine interaction was not 

significant. Separate within-age analyses revealed that nicotine increased dopamine release 

for both ages [main effect of drug; adults: F(1,23) = 8.31, P < 0.05; adolescents: 

F(1,22)=13.71, P < 0.05]. Further analyses of dose revealed an effect of nicotine in both ages 

[adults: t(22) = −3.88, P < 0.05; adolescents: t(22) = −2.45, P < 0.05]. Thus, there was an 

overall nicotine-induced increase in extracellular dopamine concentration in the NAc at both 

ages. Although there was a strong trend for adults to show a greater nicotine-induced 

dopamine response than adolescents at the 20 min time point, this difference did not reach 

statistical significance using a post hoc independent t-test [t(22)=1.81, P = 0.08], likely due 

to the high variability associated with the adults.

The effect of nicotine on NAc dopamine release expressed as AUC is shown in Figure 1c. 

Nicotine significantly increased release compared to saline [main effect of drug: F(1,47) = 

20.57, P < 0.05], with no significant drug × age interaction. Thus, no reliable age-related 

difference in nicotine-induced dopamine release was found.

3.3 Cotinine-induced dopamine release

There were no significant main effects of cotinine dose or age on dopamine release, and no 

significant dose × age interaction (data not shown). Thus, under these conditions, cotinine 

was inactive in both adults and adolescents. When dopamine release was expressed as AUC, 

there was no main effect of cotinine dose, age, or dose × age interaction (data not shown). 

Thus, cotinine was inactive.

3.4 Anatabine-induced dopamine release

The time course of effects of anatabine on dopamine release from the NAc is shown in 

Figure 2a and b. Anatabine increased dopamine release [main effect of drug: F(3,75)=5.55, P 
< 0.05]. Collapsed across age, 1 and 5 mg/kg significantly increased dopamine release. 

Separate analyses for each age group showed that anatabine increased dopamine release in 

adults [F(3,37) = 5.18, P < 0.05] at 1 and 5 mg/kg, but did not increase dopamine in 

adolescents.
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The dose effect of anatabine on dopamine release expressed as AUC is shown in Figure 2c 

and d. Anatabine increased dopamine release [main effect of dose: F(3,82) = 4.33, P < 0.05]. 

Collapsed across age, 1 and 5 mg/kg anatabine increased dopamine release. Similar to the 

time course results, separate within-age comparisons showed that anatabine increased 

dopamine release in adults [F(3,40) = 4.17, P < 0.05], but not in adolescents.

3.5 Myosmine-induced dopamine release

The time course of effects of myosmine on dopamine release from the NAc is shown in 

Figure 3a and b. The overall ANOVA revealed a significant main effect of dose [F(3,75) = 

3.109, P < 0.05], but no significant dose × age interaction. Collapsed across age, post hoc 

comparisons revealed no significant effect at any dose. Separate analyses within each age 

showed a significant effect of dose in adults [F(3,37) = 3.49, P < 0.05], but not adolescents.

The dose effect of myosmine on dopamine release from the NAc expressed as AUC is shown 

in Figure 3c and d. There was no effect of dose or dose × age interaction in the overall 

ANOVA; however, separate within-age analyses revealed a significant main effect of dose in 

adults [F(3,40) = 3.23, P < 0.05], but not in adolescents. In adults, 20 mg/kg increased 

dopamine release. Thus, similar to the time course results, a myosmine-induced increase in 

dopamine release from the NAc was obtained in adults, but not in adolescents.

3.6 Preference

Comparisons of the post-conditioning only CPP/CPA index between ages for all tobacco 

constituents are shown in Figure 4. For nicotine, adolescents showed overall higher 

preference scores than adults [main effect of age: F(1,76) = 7.73, P < 0.05], but nicotine did 

not induce CPP or CPA for either age (compared to respective saline only condition) (Fig. 

4a). Cotinine did not produce any significant effects for age or dose (Fig. 4b). In contrast, 

both anatabine and myosmine produced significant CPA for both ages [main effect of 

anatabine: F(3,72) = 12.42, P < 0.05; main effect of myosmine: F(3,72) = 10.41, P < 0.05] 

(Figs. 4c and 4d).

3.7 Locomotor Activity

For tobacco constituents, locomotor activity during drug conditioning sessions is shown in 

Figures 5-6. Initial exposure to 0.4–0.8 mg/kg nicotine decreased activity for adults 

compared to the saline group [dose × session interaction: F(9,108) = 8.20, P < 0.05] (Fig. 

5a). Activity remained suppressed during session 2 for 0.8 mg/kg nicotine compared to the 

saline group; however, across sessions, all doses of nicotine successively increased activity 

in adult rats [main effect of session: F(3,108) = 36.53, P < 0.05]. While activity was 

relatively stable over time in the saline group, nicotine produced significant increases in 

activity during later drug sessions compared to session 1 [dose × session interaction: 

F(9,108) = 8.20, P < 0.05] (Fig. 5a).

As with adults, activity for adolescents administered saline was stable across sessions (Fig. 

5c). In contrast to adults, nicotine did not decrease activity during initial sessions in 

adolescents; rather, 0.2–0.4 mg/kg nicotine significantly increased activity for all sessions, 

and 0.8 mg/kg increased activity during sessions 2–4 (compared to saline) [dose × session 
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interaction: F(9,120) = 2.01, P < 0.05]. Furthermore, 0.4–0.8 mg/kg nicotine produced 

sensitization, with increased activity across sessions [dose × session interaction: F(9,120) = 

2.01, P < 0.05].

Cotinine produced few effects on locomotor activity (Figs. 5b and 5d). For adults (Fig. 5b), 

5.0 mg/kg cotinine decreased activity during session 3 compared to the saline group [dose × 

session interaction: F(9,108) = 2.34, P < 0.05] and 1.0–5.0 mg/kg cotinine decreased activity 

across sessions [dose × session interaction: F(9,108) = 2.34, P < 0.05] (Fig. 5b). While 

statistically significant, the magnitude of these differences was small compared to activity 

following nicotine. In adolescents (Fig. 5d), cotinine did not have any significant effects on 

activity.

Effects of anatabine on activity during the four conditioning sessions are shown in Figures 

6a and c. In adults (Fig. 6a), 5.0 mg/kg anatabine produced a sustained decrease in activity 

(compared to saline) [dose × session interaction: F(9,108) = 5.37, P < 0.05]. Injection of 

0.5–1.0 mg/kg also decreased activity during some sessions. In addition, the initial reduction 

in activity induced by 1.0 mg/kg anatabine was augmented during subsequent sessions [dose 

× session interaction: F(9,108) = 5.37, P < 0.05]. Anatabine’s effects in adolescents (Fig. 6c) 

were similar to those observed in adults, but less pronounced and not as sustained. In 

adolescents, 5.0 mg/kg decreased activity (compared to saline) during some sessions [dose × 

session interaction: F(9,108) = 4.54, P < 0.05]. Other doses did not alter activity compared 

to saline, although 1.0 mg/kg anatabine produced greater decrements in activity over time 

[dose × session interaction: F(9,108) = 4.54, P < 0.05].

Figure 6 also shows the effects of myosmine in adult and adolescent rats (Figs. 6b and 6d, 

respectively). In adults, myosmine significantly decreased activity (compared to saline) 

during all sessions [main effect of dose: F(3,36) = 30.32, P < 0.05]. In addition, session 3 

decreased activity compared to session 1 [main effect of session: F(3,108) = 4.0, P < 0.05]. 

Similar to the other constituents, effects of myosmine on activity were less prominent in 

adolescents than in adults. In adolescents, 20.0 mg/kg myosmine decreased activity 

compared to saline, but only during session 4 [dose × session interaction: F(9,108) = 6.75, P 
< 0.05]. In contrast, 5.0 mg/kg increased activity, but only during session 1. Activity 

significantly decreased across sessions for 5.0 mg/kg, suggesting tolerance developed to the 

acute activating effects of myosmine [dose × session interaction: F(9,108) = 6.75, P < 0.05].

3.8 Methamphetamine CPP

Because nicotine did not produce significant CPP in this study, methamphetamine was 

evaluated as a positive control. Preference data for methamphetamine are presented in 

Figure 7a. Both doses of methamphetamine produced significant CPP (compared to saline) 

in adolescent and adult rats [main effect of dose: F(2,46) = 7.79, P < 0.05].

Effects of methamphetamine on locomotor activity during conditioning sessions are shown 

in Figure 7b and c. In both ages, methamphetamine increased activity compared to the saline 

group [adult: F(2,23) = 60.88, P < 0.05; adolescent: F(2,23) = 92.76, P < 0.05]. The effect of 

1.0 mg/kg methamphetamine was augmented across sessions in adolescents, indicating the 
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development of locomotor sensitization [dose × session interaction: F(6,69) = 3.45, P < 

0.05].

4.0 Discussion

As expected, nicotine increased extracellular dopamine in NAc in both adults and 

adolescents in the present study. Age differences in this effect were not apparent, which was 

surprising because early adolescent rats (PND 25) show lower plasma nicotine 

concentrations than adults when administered the same nicotine doses (Craig et al., 2014); 

however, only a single dose of nicotine was tested in the present study, and adolescents were 

tested later than in the previous study (PND 33 in the present study), which may have 

limited a full comparison of potential age differences. The present study is the first to 

examine effects of anatabine and myosmine on dopamine release in NAc in adult or 

adolescent rodents. Both constituents produced dose-dependent increases in extracellular 

dopamine in the NAc in adults, but not adolescents.

In contrast to nicotine, cotinine did not alter extracellular dopamine in the NAc in either age. 

These results contrast with a previous study showing that cotinine evokes dopamine release 

from striatal slices via a nicotinic receptor-mediated mechanism (Dwoskin et al., 1999; 

O’Leary et al., 2008). This discrepancy may be due to different cotinine levels in the brain 

following in vivo versus in vitro administration of cotinine. Further, cotinine binds to 

nicotinic receptors, although at a substantially lower potency and lower affinity than nicotine 

(Anderson and Arneric, 1994; O’Leary et al., 2008; Sloan et al., 1984; Vainio and 

Tuominen, 2001). Interestingly, cotinine also inhibits nicotine-induced dopamine release in 

the NAc in adult rats (Sziraki et al., 1999). Thus, cotinine appears to act as a partial agonist 

at nicotinic receptors in the mesolimbic system.

In the present study, nicotine produced neither preference nor aversion in adult rats, which is 

consistent with some studies (Belluzzi et al., 2004; Lenoir et al., 2015; Shoaib et al., 1994; 

Shram et al., 2006; Vastola et al., 2002), but not others (Dewey et al., 1999; Fudala and 

Iwamoto, 1986; Fudala et al., 1985; Le Foll and Goldberg, 2004; Le Foll and Goldberg, 

2005; Le Foll et al., 2005). Additionally, nicotine did not induce place preference in 

adolescent rats. Differences in methodologies, such as larger sample sizes, exclusion of the 

most biased subjects, or individual subject housing, may account for the lack of place 

preference found in the present study compared to previous studies. More specifically, 

comparison of the present study to a seminal study by Le Foll and Goldberg (2005) that 

found nicotine-induced CPP suggests that nicotine-induced CPP may be dependent on a 

larger sample size, a shorter conditioning phase, and analysis of CPP between-groups 

instead of within-group. Therefore, nicotine CPP is likely dependent on the specific 

methods, doses, and age ranges employed (Le Foll and Goldberg, 2005; Tzschentke, 2007). 

The present study used methods and analyses that traditionally produce nicotine CPP. 

Despite this, nicotine CPP was not found. While studies of nicotine-induced CPP show 

inconsistent results, nicotine has produced more consistent effects on ICSS. Nicotine shifts 

brain stimulation reward thresholds in the ICSS procedure (Wise, 1996), with low and 

moderate doses reducing the threshold for maintenance of ICSS, and high doses elevating 

ICSS thresholds (Harris et al., 2015; Huston-Lyons and Kornetsky, 1992; LeSage et al., 
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2016; Spiller et al., 2009). These results suggest that low doses of nicotine are rewarding 

while high doses are aversive.

Methamphetamine was evaluated to confirm that the present methods could detect CPP, 

since methamphetamine and amphetamine reliably induce CPP in adult and adolescent 

rodents (Mathews et al., 2010; Yates et al., 2013; Zakharova et al., 2009a; Zakharova et al., 

2009b). In accordance with previous work, methamphetamine produced CPP in rats of both 

ages, which increases confidence that the procedures used in the present study were sensitive 

enough to detect the rewarding properties of stimulants that are readily self-administered by 

rats (Anker et al., 2012; Brennan et al., 2010; Kitamura et al., 2006).

Interestingly, nicotine’s locomotor effects in adolescents resembled those of 

methamphetamine, with both drugs producing locomotor sensitization. In contrast, adult rats 

exhibited a biphasic locomotor response to nicotine, with decreased activity initially, and 

increased activity later. Hence, although initial nicotinic effects differed across ages, 

sensitization occurred in both ages. Sensitization is associated with activation of brain 

reward pathways (Vanderschuren and Kalivas, 2000; Vezina et al., 2007). Therefore, given 

the present results, the abuse liability of nicotine may be more related to psychostimulant 

effects than place conditioning effects.

Like nicotine, cotinine did not induce CPP or CPA in either age; however, the highest dose 

of cotinine decreased locomotor activity in adults, in accordance with past research (Wiley et 

al., 2015). Cotinine shares interoceptive effects with nicotine, as evidenced in drug 

discrimination studies (Goldberg et al., 1989; Takada et al., 1989). Collectively, these results 

show that, while the pharmacological profiles of cotinine and nicotine are overlapping, they 

are not identical.

In contrast to nicotine, anatabine and myosmine produced pronounced CPA, suggesting that 

they are aversive at the doses tested. Furthermore, both compounds dose-dependently 

decreased locomotor activity in adult rats, in accordance with past research (Wiley et al., 

2015). Although anatabine increased dopamine release in adults, it does not maintain 

reliable self-administration when substituted for nicotine in rodents (Caine et al., 2014) or 

non-human primates (Desai et al., 2016; Mello et al., 2014), nor does it show rewarding 

effects in CPP (present study) or ICSS (Harris et al., 2015). While myosmine has not been 

examined for self-administration, it has aversive effects in CPP (present study) and ICSS 

(Harris et al., 2015). Combined, these results suggest that increases in dopamine release in 

the NAc produced by the minor tobacco alkaloids anatabine and myosmine were not 

sufficient to produce CPP or locomotor sensitization. Alternatively, it is possible that some 

non-dopaminergic mechanism of action of anatabine and myosmine, such as anatabine’s 

interaction with nicotinic acetylcholine receptors (Maciuk et al., 2008), may override the 

dopamine-releasing effect, thus obscuring any potential rewarding effect. Unfortunately, any 

neuropharmacological action of these tobacco constituents beyond an interaction with 

nicotinic receptors remains largely unknown.

Dopamine release is involved in drug reward (Di Chiara, 1999; Spanagel and Weiss, 1999), 

and is a necessary component in initiation of drug taking (Kalivas and Volkow, 2005). Thus, 
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there is a contradiction between the current microdialysis and CPP results for nicotine, and 

for myosmine and anatabine (in adult rodents). At least two factors may explain this 

discrepancy. First, in the present study, dopamine release was measured in the NAc shell. 

Dopamine D1 receptors in this region play a role in the acquisition of nicotine-induced CPP 

(Acquas et al., 1989; Spina et al., 2006), and lesions in the medial shell reduce expression of 

nicotine-induced CPP (Sellings et al., 2008), suggesting that dopamine release in the shell 

may contribute to nicotine’s rewarding effects. However, other brain areas may modulate the 

rewarding and aversive properties of nicotine. For example, lesions in the NAc core 

increased CPP magnitude and abolished conditioned taste aversion (Sellings et al., 2008), 

suggesting that this area may regulate nicotine’s aversive effects. Thus, performance in the 

place preference procedure may be influenced by a balance of rewarding and aversive 

processes mediated differentially in the shell and core of the NAc. Further work is needed 

targeting the NAc core in adults and adolescents to definitively address this question.

Second, the apparent disconnect between increased dopamine release in the NAc shell and 

expression of drug reward in the present study may be due to the different conditions under 

which these outcomes were evaluated. Dopamine release was measured immediately after an 

acute injection of the tobacco constituent, whereas place conditioning was measured in a 

drug-free state after repeated administration of the tobacco constituent. Dopamine release in 

the NAc shell is activated by unconditioned stimuli, but not conditioned stimuli (Di Chiara, 

1999), both of which are key factors in place conditioning. Moreover, the NAc shell is 

hypothesized to strengthen drug-context associations following acute drug exposure, as in 

microdialysis, while it only plays a minor role in mediating the direct rewarding drug effects 

following repeated exposure, as in place conditioning (Di Chiara, 1999; Spanagel and Weiss, 

1999). Consistent with this explanation, intracranial microinjection of dopamine receptor 

antagonists into NAc shell blocks acquisition, but not expression, of nicotine-induced CPP 

(Spina et al., 2006).

5.0 Conclusion

In summary, each of the tobacco constituents examined here produced a unique, age-related 

neurochemical and behavioral profile. In general, dopamine release results did not parallel 

the locomotor and place conditioning results. Differential age-related responses in accumbal 

dopamine release are likely due to ongoing adolescent brain development, with adults being 

more sensitive than adolescents to anatabine- and myosmine-induced release. In contrast, 

anatabine and myosmine produced CPA in both ages. Cotinine was relatively inactive, 

producing no change in either dopamine release or place preference in either age. These data 

suggest that adolescents, while behaviorally sensitive to these tobacco constituents, are less 

sensitive neurochemically, at least in NAc shell.

Future research should examine whether exposure to these constituents in adolescence 

manifests in neurobehavioral effects in adulthood. Tobacco constituent combinations should 

also be examined for their rewarding and dopamine releasing effects to further determine if 

these minor tobacco alkaloids play a role in tobacco dependence and inform the regulation 

of tobacco products. Interestingly, comparisons of self-administration of tobacco alkaloid 

combinations to self-administration of nicotine alone have shown mixed results, ranging 
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from increased responding compared to nicotine alone to no effect compared to nicotine 

alone (Clemens et al., 2009; Smith et al., 2015). Therefore, anatabine and myosmine may 

play a role in tobacco dependence, but the nature of that role remains to be elucidated.
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Figure 1. 
Mean (± S.E.M.) dopamine concentration in NAc dialysate in adults (panel A) and 

adolescents (panel B) as a percent of baseline for each time point following administration 

of saline or nicotine (n=13/group except adult saline n=11 and adolescent saline n=12). 

Arrow indicates time of injection. Dashed line represents baseline, expressed as 100%. Panel 

C shows area under the curve (AUC) following nicotine administration for each group 

expressed as a change from saline. * indicates significant difference from saline control.
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Figure 2: 
Mean (± S.E.M.) dopamine concentration in NAc dialysate in adults (panel A) and 

adolescents (panel B) as a percent of baseline for each time point following administration 

of saline or anatabine (ANA) (n=10/group except adult saline n=11 and adolescent saline 

n=12). Arrow indicates time of injection. Dashed line represents baseline, expressed as 

100%. Panels C and D show mean (± S.E.M.) area under the curve (AUC) in adults (panel 

C) and adolescents (panel D) following anatabine administration expressed as a change from 

saline. Dashed lines represent S.E.M. for saline. * indicates significant difference from 

saline control.
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Figure 3: 
Mean (± S.E.M.) dopamine concentration in NAc dialysate in adults (panel A) and 

adolescents (panel B) as a percent of baseline for each time point following administration 

of saline or myosmine (MYO) (n=10/group except adult saline n=11 and adolescent saline 

n=12). Arrow indicates time of injection. Dashed line represents baseline, expressed as 

100%. Panels C and D show mean (± S.E.M.) area under the curve (AUC) in adults (panel 

C) and adolescents (panel D) following myosmine administration expressed as a change 

from saline. Dashed lines represent S.E.M. for saline. * indicates significant difference from 

saline control.
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Figure 4. 
Preference for each tobacco constituent, calculated as time spent in drug side minus time 

spent in vehicle side during the post-conditioning test (n=10/group except adolescent 0.2 

nicotine n=14). Values below the horizontal line indicate aversion whereas values above the 

horizontal line indicate preference. # indicates significant main effect of age compared to 

adult; $ indicates significant main effect of dose compared to vehicle. Sal stands for saline 

vehicle.
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Figure 5. 
Effects of nicotine and cotinine on locomotor activity during conditioning sessions. Data 

from adults are shown in panels A-B, and data from adolescents are shown in panels C-D 

(n=10/group except adolescent 0.2 nicotine n=14). * indicates a significant difference from 

the saline group (dose × session interaction), and # indicates a significant difference from 

the first session for the same dose group (dose × session interaction). Numbers in 

parenthesis highlight doses with significant effects. Pre stands for pre-conditioning and post 

stands for post-conditioning.
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Figure 6. 
Effects of anatabine and myosmine on locomotor activity during each conditioning session. 

Data from adults are shown in panels A-B, and data from adolescents are shown in panels C-

D (n=10/group). * indicates a significant difference from the saline group (dose × session 

interaction), and # indicates a significant difference from the first session for the same dose 

group (dose × session interaction). $ indicates a significant main effect of dose or session as 

shown in the legend and x axis, respectively. Numbers in parenthesis highlight doses with 

significant effects.
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Figure 7. 
Panel A shows preference for methamphetamine calculated as time spent in drug side minus 

time spent in vehicle side during the post-conditioning test. Panels B and C show effects of 

methamphetamine on locomotor activity during conditioning sessions for adults and 

adolescents, respectively (n=8/group except that sal n=10/group). $ indicates a significant 

difference from saline (main effect of dose). # indicates a significant difference from the first 

session for the same dose group (dose × session interaction).
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