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ABSTRACT OF THESIS 

MICROBIAL INTERACTIONS BETWEEN COMPOST BEDDED PACK BARN 
BEDDING AND TEAT EXPOSURE IN TRANSITION DAIRY CATTLE 

Compost bedded pack barns utilize composting methods which provide a soft surface for 
dairy cows to lie on. This requires optimal microbial growth, which may increase the 
exposure of mastitis-causing pathogens to the teats of early lactation animals. Bedding 
characteristics, bedding bacteria, and bacterial counts on the teat skin, teat ends, and in 
the milk of early lactation dairy cows housed on a compost bedded pack were assessed 
over a 6-month time. The main objective was to determine the relationship between 
environmental effects (bedding characteristics and weather conditions) and cow-level 
(teat skin, teat end, milk) bacteria counts over time in transition cows. A secondary 
objective was to assess CBP characteristics across time and what environmental factors 
influence bedding bacteria counts. The final objective was to determine if various stages 
of the transition period (2-weeks prepartum, 72-hours postpartum, 60 days in milk) 
influenced the cow-level microbial populations. 
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CHAPTER 1. REVIEW OF LITERATURE 
1.1 Introduction 

This literature review will discuss research to date on Compost Bedded Pack 

(CBP) barn management, mastitis, and the relationships found between bacteria in 

bedding, on teat skin and/or ends, and mastitis in dairy cattle. I will begin briefly with the 

history and key management factors associated with housing dairy cows in CBP barns. I 

will then review the literature on mastitis, with emphasis on environmental pathogens. 

Lastly, I will discuss literature on bacteria found in different bedding types and its 

associations with bacteria found on the teat skins, teat ends, and udder health parameters. 

Where possible I will point out gaps in the literature and include recommendations for 

future research. 

1.2 Compost Bedded Pack Barns 

In the U.S., the first compost bedded pack (CBP) barn was developed by Virginia 

dairy producers in the 1980s (Wagner, 2002). The goal was to increase cow comfort and 

longevity. Compost bedded pack barns are a loose housing system, similar to a traditional 

straw-bedded pack (without the usage of large amounts of straw bedding material). They 

are characterized by a large, open resting area without any stalls or partitions (Galama, 

2011). Without stalls, the cows’ resting and exercise areas are combined (Barberg et al., 

2007b, Janni et al., 2007, Black et al., 2013). This combination of resting and exercise 

space for animals can reduce greenhouse gas emissions and cost compared with freestall 

barns while maintaining cow health and well-being (Galama, 2011). Through frequent 

tillage and addition of organic bedding material (such as sawdust), the system utilizes a 

semi-composting process to break down the organic material by aerobic microorganisms 
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(Black et al., 2013). The main goal is to provide a soft surface for cows to lie on which is 

obtainable through maintaining a well-managed pack. Today, CBP barns can be found in 

many states in the US, including Kentucky, Minnesota, Ohio, and New York. 

Additionally, other countries have adapted to this type of housing system, including 

Israel, Germany, the Netherlands, Denmark, Italy, Austria, South Korea, Brazil, 

Argentina, and Colombia (Bewley et al., 2017).  

1.2.1 Pack management 

It has been recommended that the composting areas of a CBP barns are tilled twice-

daily with a roto-tiller or deep-tillage tool (Barberg et al., 2007b, Janni et al., 2007, Black 

et al., 2013). However, CBP barns in Israel and Denmark are generally only tilled once 

per day (Klaas et al., 2010), and some US producers till up to 3 times per day (Black et 

al., 2014). The depth of tilling varies by producer and the tillage tool used, but is 

recommended to reach depths of 18 to 30 cm (Barberg et al., 2007b, Janni et al., 2007) 

Aeration (tilling) incorporates manure and air (oxygen) into the pack which promotes 

aerobic microbiological activity, heating, and drying of the pack (Shane et al., 2010). 

Tilling also exposes increased pack surface area for quicker drying (Janni et al., 2007).  

Frequency of bedding addition to the pack is influenced by multiple factors. Cow 

density, ambient weather conditions, and air flow are major factors that affect the need 

for new bedding addition (Barberg et al., 2007b, Janni et al., 2007). In Minnesota, for 

example, it was recommended that 14 to 16 metric tons should be added when moisture 

content enables bedding to stick to the cows (when bedding moisture percentage reaches 

>60%); this occurs every 1 to 5 weeks in those conditions (Barberg et al., 2007b, Endres

and Barberg, 2007, Janni et al., 2007). 
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Research on stocking density recommendations in a CBP barn varies by region in 

the U.S. as well as countries outside the United States. Minnesota researchers suggested 

7.4m2/cow for a 540-kg Holstein cow (Janni et al., 2007). Kentucky researchers found 

that producers within the state (n= 47) had a mean stocking density of 9.0 ± 2.2 m2 per 

cow (Black et al., 2014). Recent studies from the United States suggest a minimum of 9.3 

m2/cow because higher cow density on a CBP may increase pack compaction and cause 

excessive moisture (Leso et al., 2019). In Brazil, Favero et al. (2015) reported a range of 

11 to 19 m2 per cow, whereas Klaas et al. (2010) suggested 15 m2 per cow for CBP barns 

in Israel. The differences seen for space per cow are due to several factors, all of which 

relate to the drying rate of the pack with the goal of provide a soft surface area of the 

bedding. One factor is the type of bedding material used which varies by cost and 

availability around the world. In CBP systems that utilize wood materials, such as in the 

US, the pack can reach relatively high temperatures, which facilitates evaporation, thus 

reducing the area need to keep the bedding dry (Leso et al., 2019). Another factor to 

consider is climate conditions. In warm, dry, and windy weather, rapid drying of the pack 

is likely to occur, resulting in the reduced space allowance per cow. On the other hand, 

cold and humid weather conditions limit  water evaporation rate,  and consequently pack 

drying rate, which may require a larger area per cow to reduce moisture (Smits and 

Aarnink, 2009). Regardless of climate, CBP barns require other management practices 

and the measurement of various characteristics that help ensure an effective housing 

system. 

1.2.2 Bedding material. 
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The CBP barn managers use organic bedding material, such as fine wood shavings 

or sawdust, which improves mixing, aeration, and microbial activity from increased 

surface area-to-volume ratio compared with straw and woodchips (Janni et al., 2007). 

This increases the ability of microorganisms to breakdown manure and urine, while also 

preventing excessive compaction of the bedding between tillage (Janni et al., 2007). 

Inorganic bedding, such as sand or crushed limestone, typically hinders bacterial growth 

within bedding material through a lack of nutrients compared with organic bedding 

materials (Fairchild et al., 1982, Hogan et al., 1989, Zdanowicz et al., 2004, LeJeune and 

Kauffman, 2005). Because a CBP system utilizes the composting process, bacteria must 

proliferate which requires a carbon source (the organic bedding), thus making inorganic 

bedding an impractical choice for use in CBP barns (Black et al., 2014).  

1.2.3 Temperature.  

The internal temperature of the pack is one of the main bedding characteristics that 

must be monitored in order to maintain an effective compost bedding system. The 

optimal internal temperature for a CBP at a depth of 15-31 cm ranges from 43.3 to 

65.0°C (Janni et al., 2007, Bewley et al., 2013). However, internal temperature ranges 

reported by researchers have varied significantly. Zhao et al. (2012) reported Ohio farms 

had internal pack temperatures from 32.2 to 48.9°C, whereas Galama (2011) found that 

compost barns in the Netherlands had ranges most commonly at 25 to 30°C. Increased 

internal temperatures have been linked to areas on the pack that visually appeared fluffy 

and loose (Shane et al., 2010). Areas of the barn that appeared to be chunky and 

compacted after stirring indicated pockets of anaerobic microbial activity and lower 

internal temperatures (Janni et al., 2007). Increased stirring depth, tilling frequency, and 
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space per cow have been shown to increase pack internal temperature (Black et al., 

2013). Temperatures reaching above 65.0°C would typically result in bedding sanitation, 

or microbial death, however research has not reported temperatures above the 

recommended range. Measuring the internal temperature is just one tool producers can 

utilize to ensure their CBP barn is working properly.  

1.2.4 Moisture. 

Moisture content is another bedding characteristic that should be closely 

monitored to ensure effective composting. Bewley et al. (2013) recommended the ideal 

moisture content of a CBP should range between 40 to 60%. The more recent suggested 

moisture benchmark was 55% moisture (Eckelkamp et al., 2016a). The influx of moisture 

in compost barns comes from manure, urine, and drying rate of the pack (Janni et al., 

2007). Increased stirring depth, space per cow, and drying rate of the CBP have been 

shown to decrease CBP moisture (Black et al., 2013). Ambient temperature has also been 

shown to influence the moisture content of a CBP. Barberg et al. (2007b) and Eckelkamp 

et al. (2016b) found that the moisture content increases over the cooler months of the 

year, likely due to a slower drying rate. Moisture content typically has an inverse 

relationship with internal temperature. Determining the moisture content and making the 

necessary management adjustments to get levels back within the recommended range of 

40-60% is likely to increase internal pack temperature to its range as well. Moreover,

specific bedding nutrients play a key role in adjustment of management strategies. 

1.2.5 Carbon-to-Nitrogen (C:N) Ratio.  

Calculating the C:N ratio is a critical component when determining the 

effectiveness of a composting system. This is because carbon and nitrogen are the most 
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important elements for microbial decomposition. Carbon provides both an energy source 

and the basic building block making up about 50% of the mass of microbial cells. 

Nitrogen is a crucial component of the proteins, nucleic acids, amino acids, enzymes and 

co-enzymes necessary for cell growth and function (Dickson et al., 1991). In a CBP barn 

housing system, the amount of carbon required for composting (the main source being 

organic bedding material added) is directly dependent on the amount of nitrogen present 

(the main source being cow urine and manure). The recommended range for optimal 

composting has been reported at 25:1 to 30:1 (Rynk et al., 1992). Minnesota farms had a 

mean C:N ratio of 19.5 ± 7.5 (Barberg et al., 2007a), whereas Kentucky farms had a 

higher mean C:N ratio of 26.7 ± 7.8 (Black et al., 2014). New York CBP barns exhibited 

a large range of C:N ratios, at 29.1, 21.5 to 45.1 (Petzen et al., 2009). Due to the various 

management factors associated with the amount of carbon and nitrogen in the pack, this 

is likely the reason for the large range of C:N ratio seen throughout the United States. 

However, carbon and nitrogen are key components for the proliferation of bacteria, which 

is how a composting system works in the first place.  

1.2.6 Compost Bedding Bacteria. 

It was originally suggested that maintaining high enough internal bedding 

temperature (54 to 65°C) in the composting system had the potential to inactivate 

mastitis-causing pathogens. However, research by Black et al. (2014) and Eckelkamp et 

al. (2016b) showed that samples from well-managed CBP barns had ample growth of 

Coliforms, Staphylococcus spp., Streptococcus spp., and Bacillus spp. in the pack.  

Similarly, Petzen et al. (2009) isolated Streptococcus spp., Staphylococcus spp., gram-
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negative and gram positive-bacillus species, Klebsiella spp., and Escherichia coli from 

CBP samples. 

It is evident that CBP barns maintain high microbial populations. Researchers 

wanted to investigate the quantity of those previously stated microbial species. When 

conducting laboratory analysis on microorganisms, the method of plating the sample on 

Plate Count Agar gives the total bacteria count (TBC) of the sample. The mean TBC 

observed on Minnesota farms was 7.0 ± 6.8 log10 cfu/g DM (Barberg et al., 2007a). In 

Kentucky, the mean TBC observed was at 8.2 ± 0.4 log10 cfu/g DM (Black et al., 2014). 

Like Kentucky, farms in Brazil were found to have a mean TBC of 8.7 ± 0.4 log10 cfu/g 

DM (Fávero et al., 2015).   

Coliform is described as gram-negative, rod-shaped bacteria commonly found in 

the environment, such as E. coli and Klebsiella species. Coliform counts were found to be 

relatively stable over the year, with a mean count of 6.2 ± 0.6 log10 cfu/g DM (Eckelkamp 

et al., 2016b). Similarly, Fávero et al. (2015) reported a mean coliform count of 6.5 ± 0.7 

log10 cfu/g DM and Black et al. (2014) reported a mean coliform count of 6.3 ± 0.6 log10 

cfu/g DM. Streptococcus spp. and Staphylococcus spp. are other species of bacteria 

commonly found in the dairy environment. Additionally, Staphylococcus spp. 

microorganisms are common habitants to mammalian skin microbiota.  Streptococcus 

spp. counts were found to have a mean count of 6.5 ± 0.8 log10 cfu/g DM (Fávero et al., 

2015), whereas other researchers reported mean counts of 7.2 ± 0.7 log10 cfu/g DM 

(Eckelkamp et al., 2016b) and 7.2 ± 0.7 log10 cfu/g DM (Black et al., 2014). 

Staphylococcus spp. counts of CBP barns in Kentucky varied from 6.3 ± 0.5 log10 cfu/g 

DM (Eckelkamp et al., 2016b) to 7.9 ± 0.5 log10 cfu/g DM(Black et al., 2014). Italy CBP 
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barns reported Staphylococcus spp. counts of 5.6 ± 0.5 log10 cfu/g DM (Biasato et al., 

2019). Black et al. (2014) and Eckelkamp et al. (2016b) reported similar Bacillus spp. 

counts of 7.6 ± 0.5 log10 cfu/g DM and 7.7 ± 0.6 log10 cfu/g DM, respectively. Overall, 

bacterial population quantity differences may be due to the environment and management 

differences not only by states in the U.S. but also compared to other countries.  

It is important to consider different compost bedding characteristics and their 

influence on the bacterial population, specifically internal temperature and moisture 

content. Eckelkamp et al. (2016b) found that as compost internal temperature increased, 

coliform species growth increased. Black et al. (2014) reported similar findings, with 

internal temperature positively correlated with coliform count (r = 0.42, P < 0.05) and 

pack moisture negatively correlated with coliform count (r = -0.34, P < 0.05). Barberg et 

al. (2007b) described similar results with coliforms increasing in the summer (5.3 log10 

cfu/g) compared to the winter (4.6 log10 cfu/g), consistent with warmer internal pack 

temperatures and lower moisture content in the summer. When discussing E.coli 

separately, Black et al. (2014) found that E. coli counts were strongly positively 

correlated with ambient temperature (r = 0.46; P < 0.05). 

Additionally, Eckelkamp et al. (2016b) found that as compost internal 

temperature increased, Staphylococcus spp., Streptococcus spp., and Bacillus spp. growth 

in the pack area decreased. Regarding Bacillus spp., Black et al. (2014) reported Bacillus 

spp. counts were reduced with increasing CBP moisture, C:N ratio, and ambient 

temperature. Staphylococcus spp. counts showed a strong positive correlation with 

ambient temperature (r = 0.53; P < 0.05) and strong negative correlations with moisture (r 

= −0.44; P < 0.05) and C:N ratio (r = −0.52; P < 0.05) (Black et al., 2014). Overall, lower 
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CBP moisture and high CBP temperature reduced bacteria concentrations in the bedding 

(Eckelkamp et al., 2016b). While compost bedding bacterial levels will not be eliminated, 

well-managed CBP barns optimize bedding characteristics (decreasing moisture and 

increasing internal temperature), consequently reducing bedding bacterial concentrations. 

1.2.7 Udder Health/ Hygiene. 

Udder hygiene is one of many useful ways to monitor animal health, as hygiene 

scores have been linked to Somatic Cell Count (SCC) and mastitis incidence in dairy 

cattle (Schreiner and Ruegg, 2003, Reneau et al., 2005). Because proper cow hygiene 

management can reduce mastitis risk (Neave et al., 1969, Philpot, 1979, Schreiner and 

Ruegg, 2003, Reneau et al., 2005), much research has been done to evaluate udder 

hygiene in relation to CBP barns and its bedding characteristics. Barberg et al. (2007b) 

observed a mean hygiene score of 2.66, where 1 = clean and 5 = very dirty (Reneau et al., 

2005), for 12 CBP barns visited, whereas Shane et al. (2010) observed a mean hygiene 

score of 3.1 for 6 CBP barns. More recently, Eckelkamp et al. (2016a) observed no 

differences between mean herd hygiene score between CBP and sand-bedded freestalls. 

Similarly, Costa et al. (2018) reported no differences between udder hygiene scores for 

cows housed on a CBP compared to freestalls. Interestingly, Lobeck et al. (2011) found 

that increased hygiene score showed no effect on mastitis prevalence on compost, 

naturally ventilated, and cross-ventilated freestall, respectively. When well-managed 

CBP and well-managed sand freestall barns were compared, no differences were found 

between SCC, clinical mastitis incidence, or bulk tank SCC (Eckelkamp et al., 2016a). 

Research has also been conducted looking at mastitis prevalence when cows are moved 

from one type of housing system to another. Barberg et al. (2007b) found that the average 
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prevalence of mastitis and SCC decreased after moving into the CBP from previous 

housing facilities. This may be due to improved cow comfort, as seen by a low 

prevalence of lameness reported for cows housed in this type of housing system 

(Burgstaller et al., 2016, Costa et al., 2018). Improved cow comfort results in less 

stressed cows and likely an improved immune system which reduces the risk of mastitis. 

Ideal management strategies have been developed to help maintain clean udders 

on cows housed in CBP barns. Black et al. (2013) found that drier CBP surface layers 

resulted in cleaner cow legs and udders, which was accomplished through a high drying 

rate, deep CBP stirring, and adequate space per cow. Barberg et al. (2007b) and Janni et 

al. (2007) suggested that tilling the pack area, drying the surface and incorporating 

manure could potentially improve cow comfort and decrease mastitis in CBP barns unlike 

conventional bedded pack barns. 

Monitoring bulk tank SCC on farms has been a common approach when 

determining udder health. Researchers out of Minnesota found that the SCC values were 

below the state average in cows after they transitioned to a CBP barn (Barberg et al., 

2007b). Additionally, the mean SCC of cows housed in CBP in Italy was at 51,510 

cells/mL which was significantly lower than cows housed in free stalls (Biasato et al., 

2019). Astiz et al. (2014) found positive effects of CBP-systems compared to sand 

freestalls on udder health [lower incidence of first mastitis-cases, 22.1 vs. 35% of second-

mastitis cases, 6.8 vs. 15%]. However, no differences in relation to bulk tank SCC were 

found between CBP-housed animals and those in sand free stalls (Eckelkamp et al., 

2016a). Klaas et al. (2010) reported a mean SCC of 192,000 cells/mL for 3 CBP barns in 

Denmark, whereas Black et al. (2014) observed a mean SCC of 252,860 cells/mL for 
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CBP barns in Kentucky. With the U.S. dairy industry’s continuous goal of reducing bulk 

tank SCC, it’s imperative to note that cows housed in well-managed CBP barns can 

maintain low SCC values and having healthy udders.  

1.3 Mastitis 

History reveals that cows have been milked since 3100 BC (Nemet-Nejat, 1998) 

and bovine mastitis has likely existed since that time (Ruegg, 2017). Mastitis is defined 

as the inflammation of the mammary gland and continues to be the costliest disease in the 

dairy industry. Murphy (1947) described it as a 3-phase process in which there is (1) 

invasion of an organism (with or without the establishment of infection), (2) infection 

(the bacteria become established in the gland), and (3) inflammation. The inflammatory 

response is responsible for destroying the invading organisms; however, it may also 

occur when there is physical damage or chemical irritation to that specific location. 

Bacterial agents likely enter the udder via the teat end and teat canal (Jain, 1979). Once 

inside the udder, these microorganisms multiply in the secretory tissue, resulting in toxin 

production and damage to the mammary gland (Bramley et al., 1996). The severity and 

outcome of mastitis varies tremendously, which is why it has deemed the title of a 

multifactorial disease.  

Mastitis can be categorized as either a clinical or subclinical infection. Clinical 

mastitis is characterized by abnormal milk and swelling or pain in the udder and may be 

accompanied by systemic signs such as elevated rectal temperature, lethargy and anorexia 

(Harmon, 1994). Liang et al. (2017) found that the average cost per clinical mastitis case 

was $325.76 ± 71.12 for primiparous (1st lactation) cows and $426.50 ± 80.27 for 

multiparous (>1 lactations) cows. Subclinical mastitis is the form in which there is no 
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detectable change in the udder and there are no observable abnormalities in the milk. 

However, milk production decreases, bacteria are present in the secretion, and 

composition is altered (Harmon, 1994). Halasa et al. (2007) found that the average cost 

per subclinical mastitis case was $116 for primiparous cows and $325 for multiparous 

cows. The cost of milk loss and treatment are the 2 most expensive cost categories 

associated with total mastitis cost. 

The National Mastitis Council (NMC) developed a mastitis control program 

known as the “5-Point Plan” that is the basis for controlling contagious mastitis and 

includes (1) effective post-milking teat dipping, (2) use of antibiotic dry cow therapy in 

every quarter at the end of each lactation, (3) appropriate treatment of clinical cases, (4) 

culling of chronically affected cows, and (5) maintenance of milk equipment to ensure 

stable teat end vacuum (Ruegg, 2017). However, with an emphasis on decreasing 

subclinical mastitis (largely due to contagious organisms), there has been a relative 

increase in the incidence of environmental organisms, showing an increase in clinical 

mastitis (Bradley, 2002). 

1.3.1 Mastitis Detection: Somatic Cell Count (SCC) 

Somatic cells are leukocytes whose purpose is to phagocytize and destroy 

microbes that are present in the body, as a result of an infection. In the case of dairy 

cows, the focus is on the presence of these microorganisms in the infected quarter. Milk 

SCC is often used to measure mammary inflammation and an increase in SCC is strongly 

correlated with increased probability of intramammary infection (IMI) (Eberhart et al., 

1979, Dohoo and Leslie, 1991). Milk from healthy mammary glands contains <100,000 

somatic cells/ml. If the SCC in milk is >200,000 cells/ml, it has been suggested that an 
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inflammatory response has been elicited and that a mammary quarter is infected or is 

recovering from an infection (Nickerson and Oliver, 2014). Thus, an increase in milk 

SCC is a good indicator of mastitis (Nickerson and Oliver, 2014). Dairy producers utilize 

bulk tank somatic cell counts (BTSCC) as an indicator of the prevalence of IMI within a 

dairy herd and as a key indicator of milk quality (Wenz et al., 2007).  A lower BTSCC is 

likely indicative of a healthier herd and may also lead to economic benefits for producers. 

Ott and Novak (2001) reported herds attained significantly more profit per cow when 

their BTSCC was < 200,000 cells/mL compared to herds that had BTSCC ≥ 400,000 

cells/mL. Many processors pay quality premiums for low-BTSCC milk because there is a 

negative relationship between SCC and casein composition and shelf life of processed 

fluid milk (Ali et al., 1980, Ma et al., 2000). In order to remain competitive in the global 

market, U.S. dairy producers must maintain a positive image while continuing to lower 

their BTSCC. 

1.3.2 Mastitis Causing Pathogens  

Although many bacteria are recognized as being able to cause an IMI, initial 

emphasis of mastitis control was directed at contagious pathogens, specifically 

Streptococcus agalactiae and Staphylococcus aureus (Ruegg, 2017). Contagious 

pathogens are transferred from cow to cow by contact with infected quarters, per example 

via contaminated milking machine inflations, the hands of milkers, or dirty towels. 

Between 1994 and 2001, isolation of Streptococcus agalactiae and Staphylococcus 

aureus from milk samples submitted to the Wisconsin Veterinary Diagnostic Laboratory 

declined dramatically (Makovec and Ruegg, 2003) and gram-negative pathogens (or 

culture-negative results) have become the predominant results of milk samples obtained 
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from cows (Oliveira et al., 2013). Today, a diversity of opportunistic pathogens (i.e., 

Streptococcus spp., coagulase-negative Staphylococcus spp. (CNS), Prototheca spp., and 

others) are responsible for a significant portion of IMI (Bradley and Green, 2001, 

Oliveira et al., 2013). Of importance is the group of microorganisms that fall under the 

term CNS. Staphylococcus spp. microorganisms are divided into two classifications 

according to laboratory identification as coagulase positive or coagulase negative. 

Coagulase positive species are predominantly Staphylococcus aureus, and the rest 

(majority) fall under this term CNS. They were once considered minor pathogens and are 

ubiquitous to the environment and to the skin microbiota; they are now recognized as the 

major cause of subclinical mastitis, can cause clinical mastitis, and are associated with 

elevated SCC (Piepers et al., 2007, Oliveira et al., 2013). 

1.3.2.1 Environmental microorganisms.  
As the name states, environmental pathogens are commonly found in the 

environment. Environmental risk factors include bacteria level, pathogen nature, 

environmental condition, and cow exposure (Jain, 1979, Bramley et al., 1996, Breen et 

al., 2009). Typical environmental microorganisms that are known to cause mastitis 

include Streptococcus uberis, Streptococcus dysgalactiae, and coliforms (which include 

Klebsiella pneumoniae, Klebsiella oxytocia, Escherichia coli, Serratia spp., and 

Enterobacter aerogenes) (Smith et al., 1985, Bramley et al., 1996). Both environmental 

streptococcal and coliform infection rates increased with increasing parity (from the 1st to 

≥ 6th lactation; (Smith et al., 1985)). Additionally, both have been reported to cause 

subclinical mastitis, typically with no extensive damage or decrease in milk production 

(Smith et al., 1985). On the other hand, Hogan et al. (1989) found that herds with low 
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SCC (usually indicative of successful control of contagious mastitis) could experience 

serious mastitis problems, specifically higher rates of clinical cases.  

1.3.2.2 Coagulase-negative Staphylococcus (CNS). 
In mastitis diagnostics, staphylococci are divided into coagulase-positive 

staphylococci and coagulase-negative staphylococci (CNS) based on the ability to 

coagulate plasma. The major pathogen, Staphylococcus aureus, is generally coagulase-

positive although coagulase-negative strains do occur (Fox et al., 1996). CNS have 

traditionally been considered normal skin microbiota that can cause mastitis as 

opportunistic bacteria (Devriese and De Keyser, 1980). Many studies have determined 

that the following four species of CNS were most frequently isolated in bovine milk 

samples: Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus 

hyicus, and Staphylococcus simulans (Devriese and De Keyser, 1980, Trinidad et al., 

1990, Jarp, 1991, Waage et al., 1999, Taponen et al., 2006, Thorberg et al., 2006, 

Taponen and Pyörälä, 2009). 

Researchers have classified CNS as minor mastitis-causing pathogens, with many 

considering their importance to udder health very limited. Studies on CNS have given 

mixed results, thus now making this group of microorganisms more difficult to deem 

‘minor’ pathogens. Hogan and Smith (1997) reported that CNS rarely caused clinical 

mastitis, but are the most frequent cause of an IMI in lactating cattle. Jarp (1991) found 

that CNS IMI’s have been associated with an increase SCC of affected cows. Others have 

indicated that CNS infections provide a means of preventing an IMI from other major 

pathogens (White et al., 2001). Moreover, CNS infections have been studied in pre-

partum treatment trials in heifers and bacteriological cure was associated with decreased 
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SCC (Borm et al., 2006). Additionally, Schukken et al. (2009) concluded that in herds 

with low BTSCC, CNS infections may be an important contributor to the total BTSCC. 

On the other hand, herds with milk quality problems would not attribute CNS infections 

to increased BTSCC. Interestingly, CNS are the most prevalent pathogens causing IMI in 

heifers (Taponen and Pyörälä, 2009), with up to 54% of quarters being infected by CNS 

at calving (Trinidad et al., 1990).  

These conflicting results as to the importance of CNS have likely been due to the 

failure to acknowledge variations within and between species (Fry et al., 2014). With this 

idea coming to light, researchers have begun identifying effects of specific CNS species 

on udder health parameters. Researchers have reported that Staphylococcus chromogenes, 

Staphylococcus haemolyticus, Staphylococcus epidermidis, and Staphylococcus simulans 

have been associated with persistent infections (Piessens et al., 2011, Supré et al., 2011). 

Fry et al. (2014) reported similar findings, that Staphylococcus chromogenes and 

Staphylococcus simulans were associated with persistent IMI which suggested that those 

species were better host-adapted, whereas others may have an environmental reservoir. 

Nyman et al. (2018) found that there was a significant association between different CNS 

species and SCC of udder quarters, but different CNS species had no effect on milk yield. 

Similarly, Tomazi et al. (2015) reported Staphylococcus chromogenes as the most 

prevalent CNS species that caused an IMI, which showed an increase in SCC but had no 

effect on milk yield or composition at the quarter level. Identifying mechanisms to reduce 

exposure to IMI caused by opportunistic organisms, particularly CNS, while also finding 

suitable interventions for affected cows will continue to be a challenge (Ruegg, 2017).  

1.4 Interaction Between Bedding Bacteria, Teat Exposure, and Mastitis 
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Intramammary infections (IMI) caused by environmental pathogens have likely 

occurred from bacteria invading the teat canal and multiplying in the gland (Hogan and 

Smith, 2012). Because cows lay for 12 to 14 hours a day, their teats are in direct contact 

with the bedding or other materials where they lay down. Populations of the bacteria in 

bedding have been reported to be related to the number of bacteria on teat ends and rates 

of clinical mastitis for cows housed in freestall barns (Hogan et al., 1989, Zdanowicz et 

al., 2004). Investigating and potentially reducing the number of bacteria in different 

bedding types has been the goal in hopes of decreasing environmental mastitis. 

1.4.1 Bacterial species in various types of bedding material. 

1.4.1.1 Organic bedding. 
Bacteria proliferate more easily in organic bedding (gram-negatives: 7.1 log10 

cfu/g; coliforms: 6.2 log10 cfu/g; Klebsiella spp.: 4.3 log10 cfu/g; Streptococci spp.: 7.5 

log10 cfu/g) compared with inorganic bedding (gram-negatives: 6.41 log10 cfu/g; 

coliforms: 5.7 log10 cfu/g; Klebsiella spp.: 3.4 log10 cfu/g; Streptococci spp.: 6.8 log10 

cfu/g) because organic bedding supplies the adequate amounts of nutrients, temperature, 

and moisture for microorganisms to survive (Hogan et al., 1989). It’s been well 

researched that organic materials such as straw and sawdust, when used as bedding, often 

contain >106 cfu/g of coliform bacteria (Bramley and Neave, 1975). Additionally, 

bacteria counts differ within these organic bedding materials. Wood products are known 

to contain the greatest number of coliform bacteria (Rendos et al., 1975). Sawdust and 

shavings are known to have an increased amount of Klebsiella species (Newman, 1973). 

Manure solids bedding were found to be generally associated with higher bacteria counts 

compared with organic non-manure materials or sand bedding materials (Patel et al., 

2019). Streptococcus spp. counts and coliform bacteria counts were found in the greatest 
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quantities in manure solids bedding material (2.1 × 108 cfu/g and 2.2 × 106 cfu/g, 

respectively) (Rowbotham and Ruegg, 2016). Additionally, recycled manure solids were 

found to have the greatest quantities of gram-negative bacteria (16.3 ln cfu/ml), followed 

by straw (at 13.8 ln cfu/ml) and wood (at 10.3 ln cfu/ml) (Robles et al., 2019).  

1.4.1.2 Inorganic bedding. 
Materials such as new sand or recycled sand are considered types of inorganic 

bedding material. Inorganic materials lack organic nutrients which are required for the 

growth of microorganisms. Since microbes are unable to proliferate in inorganic bedding 

materials, this results in the decreased exposure to environmental mastitis-causing 

pathogens. Rowbotham and Ruegg (2016) found that Streptococcus spp. and coliform 

bacteria counts were the least in new sand bedding material (8.6 × 106 cfu/g and 3.6 × 103 

cfu/g, respectively). Robles et al. (2019) reported sand bedding was the driest (highest 

dry matter (DM%)) compared to straw and wood, and recycled manure solids; where 

higher DM% was associated with lower Streptococcus spp. counts, Staphylococcus spp. 

counts, and gram-negative bacteria counts. Additionally, some studies have reported that 

the use of inorganic bedding (vs. organic bedding) was associated with reduced clinical 

mastitis risk (Hogan et al., 1989) or lower SCC measures (Wenz et al., 2007, Rowbotham 

and Ruegg, 2015). 

1.4.2 Relationship between Bedding Bacteria and Udder Health Parameters. 

The teat canal is the first barrier that microorganisms face when invading the 

cow’s mammary gland (Jain, 1979, Paulrud, 2005). Extensive research has been 

conducted to find relationships between bacterial counts in bedding and on the teat ends 

of dairy cattle. In turn, indirect conclusions have been made regarding the negative effect 
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on udder health, such as mastitis prevalence and incidence rates. Common mastitis-

causing pathogens have been isolated from teat canals which included CNS, 

Staphylococcus aureus, Streptococcus uberis and coliform bacteria (Zecconi et al., 1992, 

Paduch et al., 2012, Quirk et al., 2012). A direct correlation has been found between 

bacterial counts in bedding and bacterial counts on the teat ends (Hogan and Smith, 1997, 

Zdanowicz et al., 2004) and clinical mastitis rates (Hogan et al., 1989). Paduch et al. 

(2013) reported associations between bacteria counts in sawdust bedding and bacteria 

counts in the teat canal; Streptococcus uberis had a strong correlation (r = 0.49), E. coli a 

moderate correlation (r = 0.33), and other coliform bacteria also were found to be 

associated. For Staphylococcus aureus, no associations were found. Researchers have 

also looked at relationships between bedding bacteria counts and bacteria counts on the 

teat skin rather than the teat ends/ teat canals. Positive correlations were found between 

bedding bacteria counts and bacterial counts on teat skin for Gram-negative bacteria, 

coliforms, Klebsiella spp., and Streptococci spp. (Hogan and Smith, 1997, Hogan et al., 

1999, Zdanowicz et al., 2004). Another study reported that heifers with Staphylococcus 

chromogenes, Staphylococcus simulans, and Staphylococcus xylosus isolated from their 

teat skin prepartum were at increased odds of having an IMI with the same species 

postpartum (Adkins et al., 2018). 

Interestingly, many studies have not found strong associations between teat end or 

teat skin bacteria counts and mastitis. Consequently, there is a lack of consistent evidence 

to support the widely held belief that high bedding bacteria counts are a risk factor for 

IMI and mastitis (Rowe et al., 2019). Recent studies, however, had the goal of 

determining associations between bedding bacteria counts and different udder health 
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outcomes. Patel et al. (2019) found that a 1-log10 increase in unused bedding 

Staphylococcus spp. counts were associated with an estimated (SE) increase in IMI (%) 

and chronic IMI of 0.62 (0.33) and 0.66 (0.21), respectively. Patel et al. (2019) also found 

that a 1-log10 increase in bedding Streptococcus spp. counts were associated with an 

estimated increase in IMI of 0.50 (0.23), and that a 1-log10 increase in bedding coliform 

counts were associated with an estimated increase in IMI and chronic IMI of 1.04 (0.30) 

and 0.48 (0.20), respectively. The same research group reported only modest differences 

in IMI prevalence observed between 4 bedding material types (manure solids, organic 

non-manure, new sand, and recycled sand) (Rowe et al., 2019). A positive association 

was observed for Streptococcus spp. counts in unused bedding and Streptococcus-IMI 

(Odds ratios = 1.09) (Rowe et al., 2019). In conclusion, it is evident that bedding bacteria 

counts influence the bacterial loads on the teat skins and ends of dairy cows, however 

more research is needed to investigate the relationship between bacteria in bedding and if 

that is a risk factor for mastitis. 

1.5 Conclusions 

Compost bedded pack barns require unique management practices for dairy cows 

to reap the many benefits associated with this type of housing system. Tilling twice-daily, 

addition of sawdust bedding as needed, and appropriate cow stocking density allows the 

pack to stay within the correct levels of moisture content (40-60%), internal temperature 

(43.4 – 65 °C), and C:N ratio (25:1 – 30:1). However, producers’ question whether cows 

housed in a CBP are at a higher risk of getting an IMI due to the environmental bacteria 

exposure, since studies have shown that CBP barns have high amounts of bedding 

bacteria (Black et al., 2014). Additionally, bedding bacteria are found to be associated 
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with bacterial counts on the teat ends, and organic bedding materials provide an adequate 

environment for bacterial growth. With many studies conducted looking at these 

relationships, none have looked at CBP bedding and its relationship with milk quality and 

udder health. 
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2.1 Introduction 

Dairy cattle housing systems have been reported to widely influence all aspects of 

the animal, including animal welfare, health, and milk quality (Bewley et al., 2017). 

Because the dairy industry continues to strive for improved cow comfort and well-being, 

the compost bedded pack (CBP) barn was developed to achieve this. The large, combined 

resting and exercise area has yielded promising results, where cows have had a decreased 

somatic cell count (Biasato et al., 2019), lower prevalence of mastitis (Barberg et al., 

2007b), and lower prevalence of lameness (Costa et al., 2018) when compared to freestall 

housing systems. A well-managed CBP barn provides a soft surface for dairy cows to lie 

on. Consequently, it provides the optimal environment for the proliferation of 

microorganisms in the compost bedding (Black et al., 2014). This is due to the ample 

levels of carbon and nitrogen present in compost bedding which are necessary for 

microbial growth and function, as well as moisture content suitable for microbes to 

proliferate more rapidly. Exposure to environmental pathogens found in bedding occurs 

when teats are exposed to the bedding and bacteria are transferred to the teat skin 

(Rowbotham and Ruegg, 2016). Of concern has been the potential increased exposure of 

these mastitis-causing pathogens to the teats of early lactation dairy cattle during the 

transition period (3 weeks pre- to 3 weeks postpartum) (Grummer, 1995). The transition 

period is a stressful time when dairy cows are at an increased risk for a myriad of health 

problems, including mastitis. Svensson et al. (2006) found that during the period of 7 

days before, through the first 305 days of lactation, over 30% of mastitis cases occurred 

in the first week of lactation, and more than half of all cases occurred during the period of 

-7 to 30 days postpartum. Therefore, it is fundamental to provide these vulnerable

animals with an environment that will allow them to thrive. 
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Because mastitis continues to be the costliest disease in the dairy industry, 

research has focused on environmental risk factors associated with this infection. 

Bacterial load relationships between different stall bedding types, teat skin samples, and 

teat end samples with the goal of reducing mastitis risk due to environmental pathogens 

have been investigated in depth (Paduch et al., 2013, Patel et al., 2019, Robles et al., 

2019, Rowe et al., 2019). However, research is lacking when determining this 

relationship when cows are housed on CBP barns. Additionally, it has been reported that 

ambient temperature influences CBP characteristics, resulting in altered pack 

performance throughout the year (Shane et al., 2010, Eckelkamp et al., 2016b). Indeed, it 

could be valuable to producers of CBP barns who experience poorer pack performance in 

colder temperatures (Barberg et al., 2007b) for more specific research on various 

temperature conditions and its influence on both CBP bedding characteristics and 

bacterial levels. 

The main objective of this study was to evaluate the change over time on the 

microbial population of the compost bedding, on teat skin, teat ends, and in the milk of 

dairy cows housed in CBP barns. Research has shown positive correlations between 

bedding bacterial load and bacteria counts on the teat ends (Hogan et al., 1999, 

Zdanowicz et al., 2004), with recent studies connecting clinical mastitis cases to bedding 

bacteria counts. Knowing this, a second objective was to identify potential interactions of 

the microbial populations between the bedding, teat skins, teat ends, and in the milk. The 

last research objective was to investigate the influence of various stages of the transition 

period (2-weeks prepartum, 72-hours postpartum, 60 days in milk (DIM)) on the 

microbial populations of the cow-level variables (teat skin, teat ends, milk). I 
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hypothesized that there would be a positive correlation between the bacterial counts 

found in compost bedding and the microflora found on the teat skin and teat ends. 

Additionally, I hypothesized that the bacteria found on the teat ends were strongly 

correlated to the bacteria counts found in the milk. 

2.2 Materials and Methods 

The study was conducted from December 2018 to May 2019 as a longitudinal 

observational study at the University of Kentucky’s Coldstream dairy research farm 

(2810 Georgetown Road, Lexington, KY, USA, 40511). Twenty-six Holstein dairy cows 

were enrolled (parity: 2.08 ± 1.17 [mean ± SD]) during the study with no cow exclusion 

criteria. Cows were enrolled based on their expected calving dates. Close-up dry cows 

were moved to a smaller pen (155 m2) of the CBP, which remained at 100% stocking 

density (16 cows at 9.7 m2 per cow) for the duration of the study. Once a cow calved, she 

was moved to the adjacent pen (465 m2), which also remained at 100% stocking density 

(48 cows at 9.7 m2 per cow). Cows were fed a TMR formulated following the National 

Research Council guidelines (NRC, 2001) to meet or exceed the requirements of lactating 

dairy cows producing at least 39 kg of milk daily and 680 kg of body weight. 

Composition of the TMR as fed was 40.7% corn silage, 27.8% lactating cow grain mix, 

23.6% alfalfa silage, 5.1% cottonseed, 1.8% alfalfa hay, and 1.0% mineral mix. Milking 

occurred twice daily (0430 and 1530 h.). Tilling of the pack occurred twice/d, at 

approximately 0430 and 1400 h, taking 30 minutes to till each side of the barn. The CBP 

was tilled using a 40-cm penetration capacity rototiller (LVI Bedded Pack Composter, 

model 750, Richland, PA, USA) with the addition of sawdust shavings when needed 

based on bedding moisture level. Each cow remained on the study until nominally 60 
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DIM (59.27 ± 2.01 DIM). All cows enrolled were housed on the left side of the barn, so 

CBP samples were only taken from that side. 

2.2.1 Cow-level sample collection. 

Animals were enrolled in the experiment during the dry period and a baseline teat 

skin and teat end sample was collected at nominally 14 d before parturition (11.96 ± 3.19 

d).  The second sampling occurred nominally 72 h after parturition (61.85 ± 11.86 h). 

Samples were collected biweekly from January 7, 2019 to May 14, 2019. To ensure every 

cow had a final sample of around 60 DIM, an additional sample was collected on an 

individual basis to meet that requirement. All samples were collected at the milking 

parlor and placed in a cooler (temperature remained < 4°C) until transportation to the 

University of Kentucky’s Animal and Food Sciences microbiology laboratory for same-

day bacterial analysis. 

2.2.1.1Teat end condition scores. 
The teat end condition score (scale 0-5) for all teats were determined. Teats were 

scored a “0” indicating a smooth teat with no ring, up to a “5” indicating a very raised, 

rough ring with cracks and bumps (Goldberg et al., 1994, Neijenhuis et al., 2000). 

2.2.1.2 Teat skin sponges. 
Teat skin sponges were aseptically collected for every teat using individually 

packaged pre-moistened sponges (Nasco Whirl-Pak 18-oz hydrated speci-sponge with 

glove, sterile bags, Fort Atkinson, WI, USA). Using a sterile glove, the sponge was 

removed from its bag and gently rubbed downwards on the teat skin surface. This was 

repeated multiple times to ensure the sponge collected contents from the entire teat skin 
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surface. The sponge was aseptically placed back in its original bag and placed in a cooler 

(temperature remained < 4°C) for temporary storage. 

2.2.1.3 Teat end swabs. 
Teat end swabs were collected for every teat using sterile transport swabs (3M Quick 

Swab, St. Paul, MN, USA). Each swab was packaged in its own container with 1ml 

buffer solution. The buffer solution was squeezed into the sterile container to moisten the 

cotton tip prior to sampling. The sterile swab was removed, and the cotton tip was used to 

touch the teat end, rotating the swab and pushing gently up to collect contents inside the 

teat orifice. Swabs were aseptically placed back inside the original container and placed 

in a cooler (temperature remained < 4°C) for temporary storage. 

2.2.1.4 Milk samples. 
Teats were sanitized according to National Mastitis Council (1999) guidelines. 1.0% 

iodine pre-dip (FS-103 II Teat Dip, Millbury, MA, USA) was applied to each teat. After 

30 seconds, iodine was wiped off using a clean dry cloth towel. Using clean, nitrile 

gloves, each teat was scrubbed with a cotton ball soaked in 70% isopropanol. 3 streams 

of milk were discarded, and milk was aseptically collected into a 10ml sterile sample vial 

for each teat. Additionally, individual teat milk samples were collected for same-day 

somatic cell count analysis. Milk was collected into 40ml Bentley tubes, filling the tube 

about half-full. 2-3 drops of Azidiol preservative was added to each milk sample. 

Samples were stored at a temperature of < 4°C until analysis (< 2 wk.) using a Bentley 

Flow Cytometer (Bentley Instruments, Inc., Chaska, MN, USA).  

2.2.2 Compost bedding collection. 
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Compost bedding samples were collected weekly for the duration of the study. The 

pen was divided into 9 evenly distributed sections (as described by Black et al. (2013). 

To explore the tilling effect, samples were obtained both before and after tilling, at 

approximately 1300 and 1500 h. Temperature was collected for each section at 20.3-cm 

deep using an immersion thermocouple-based thermometer (accuracy of ±2.2°C; Model 

87; Fluke Inc., Everett, WA, USA), and the CBP surface using an infrared thermometer 

(accuracy of ± 1°C; Model 62; Fluke Inc., Everett, WA, USA). Compost bedding samples 

were collected individually from each of the 9 sections. A composite sample was 

obtained from each of the 9 sections. Each composite sample was formed by a 

combination of 6 subset bedding samples collected randomly at the top 2 inches of 

bedding material from the inside of each section (shown as green stars in Figure 2.1) 

using a 115 cm3 measuring cup, for an approximated 700 cm3 sample collected in a 3.8-L 

plastic bag (Ziploc, S. C. Johnson & Son Inc., Racine, WI, USA). All bedding samples 

were mixed manually to homogenize contents. Samples were divided in to two equal 

parts and placed in a cooler (temperature remained < 4°C) for transportation. One sample 

was transported to the University of Kentucky’s Animal and Food Sciences microbiology 

laboratory and stored in a -20ºC freezer for later microbiological analysis. 

The duplicate sample was taken to the University of Kentucky Division of Regulatory 

Services Soil Research Laboratory for bedding nutrient analysis. Samples were oven 

dried at 75ºC, ground to pass a 2 mm screen, and stored at room temperature prior to 

analysis. Samples were analyzed following the standard Animal Waste methods 

described by Peters et al. (2003). Briefly, nitrogen was analyzed using a LECO Nitrogen 

Analyzer (LECO, St. Joseph, MI, USA). Two grams of sample was digested with a 
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combination of HCl and H2SO4 acids. The acid digest was analyzed for P, K, Ca, Mg, Zn, 

Cu, Mn, and Fe concentrations using an ICP (Inductive Coupled Plasma Mass 

Spectrometer (ICP-MS)). Moisture content was determined by weight difference of 

sample before and after it was oven dried (at 75°C for 6 hours). The carbon-to-nitrogen 

(C:N) ratio was calculated for all samples. 

Weather data was monitored (Hobo, Onset Computer Corp., Bourne, MA, USA) from 

inside the barn every day which included ambient temperature (ºC), relative humidity 

(RH) (%) and dew point (ºC). 

2.2.3 Cow sample microbial analysis. 

2.2.3.1 Teat skin sponges. 
Once in the laboratory, teat skin sponges were placed in a temperature controlled (4 

°C) walk-in cooler until same-day analysis. Sponges were immediately removed from the 

cooler and diluted in 15-ml of phosphate buffer solution (stock phosphate buffer solution 

was made with 24 mL of PO4 stock, 95 mL MgCl2 stock, and 19 L double deionized 

water; pH of 7.4-7.5) for enumeration. To obtain total bacteria count (TBC), 50 µl of the 

solution was added in duplicate on Plate Count Agar (PCA) (Difco™ Plate Count Agar. 

Becton, Dickinson and Company. Sparks, MD, USA) and spiral plated (Eddy Jet 2W; 

Neutec Group Inc., IUL Instruments I.K.S., Leerdam, the Netherlands) onto each plate. 

Coliforms were enumerated by pipetting 1-ml onto a 3M Petrifilm E. coli/Coliform 

Count Plate (3M Microbiology Products, St. Paul, MN, USA). To enumerate 

Staphylococcus spp., 0.1ml was plated on the selective media Mannitol Salt Agar (MSA) 

(Mannitol Salt Agar, Criterion, Hardy Diagnostics. Santa Maria, CA, USA) using the 

surface spread plate method. Similarly, 0.1ml of the same sample was plated on non-
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selective media, 5% Sheep Blood Agar (BD BBL Stacker Plate, Becton, Dickinson and 

Company, Sparks, MD, USA) to account for Streptococcus spp. growth. All medium was 

incubated at 35ºC for 24h. The TBC was counted automatically using a colony plate 

reader (Flash & Go plate reader; Neutec Group Inc., IUL Instruments I.K.S., Leerdam, 

the Netherlands) as colony-forming units (cfu) per gram. Coliforms were counted 

manually and reported as cfu/ml. Staphylococcus spp. colonies and Streptococcus spp. 

colonies were counted manually, reported as cfu/ml, and the genus verified using the 

Vitek 2 Compact analyzer (Biomerieux, Hampshire, UK; Vitek 2 Gram Positive card kit, 

20 cards; Vitek 2 Gram Negative card kit, 20 cards). 

2.2.3.2 Teat end swabs. 
Once in the laboratory, teat end swabs were placed in a temperature controlled (4 °C) 

walk-in cooler until same-day analysis. Once removed from the cooler, the cotton tip 

used to collect the sample was placed into a sterile tube that contained 9ml phosphate 

buffer, thus creating a 1:10 dilution. Tubes were vortexed to homogenize the solution 

with the sample contents. The procedure described for teat skin sponges was followed to 

enumerate TBC, coliform, Staphylococcus spp., and Streptococcus spp. for all teat end 

swabs. 

2.2.3.3 Milk samples. 
Once in the laboratory, milk samples were placed in a temperature controlled (4 °C) 

walk-in cooler until same-day analysis. Each milk sample was analyzed in duplicates for 

TBC and coliform counts using previously described enumeration methods. Briefly, 50 µl 

was directly taken from each milk sample and plated on PCA using the spiral plater. 

Coliforms were enumerated by pipetting 1-ml on 3M Petrifilm E. coli/ coliform Count 
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Plates. Non-selective 5% Sheep Blood Agar was quartered and using a 0.01ml sterile 

loop, milk samples were streaked onto the blood agar with one sample per quarter plate 

(1 blood plate per cow). All plates were incubated at 35ºC for 24h. TBC was 

automatically counted using a colony plate reader (Flash & Go plate reader). Coliforms 

were manually counted, and colony morphology was determined from the blood agar.  

Milk samples were classified as contaminated as described by Parker et al. (2008), 

where >2 distinct colony types present on any plate of the same sample was considered 

contaminated and discarded. An intramammary infection (IMI) was defined as the 

isolation of 100 cfu/mL of identical colonies on the same plate. For all IMI, a colony was 

picked using a sterile 0.01ml sterile loop and placed into Brain Heart Infusion (BHI) agar. 

Isolates were incubated at 35ºC for 24h, gram stained, and bacterial identification to the 

species level was determined using a Vitek 2 Compact Analyzer (Biomerieux, 

Hampshire, UK; Vitek 2 Gram Positive card kit, 20 cards; Vitek 2 Gram Negative card 

kit, 20 cards) 

2.2.4 Compost bedding microbial analysis. 

Bedding samples were moved from a -20ºC freezer to a 4 °C cooler the day before 

analysis to allow for gradual thawing. Samples were mixed by hand and a subsample of 

25 g was added aseptically to a sterile stomacher bag (Standard bags; Homogenizers; 

Atkinson, NH, USA) followed by 225 g of 0.1% peptone solution (1g/1L Sigma Peptone 

from Animal Tissue powder (autoclave media cycle: 15-min at 121°C to be made 

sterile); pH of 7.4). Contents of the bag were hand mixed for 1min until bedding was 

thoroughly suspended in the peptone solution, creating a 1:10 dilution. The pH of each 

sample was recorded from the original 1:10 dilution bag using a pH meter (Accumet 
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AB150 pHmV. Fisher Scientific Company, Ottawa, Ontario, K2E 7L6). A subsample of 

1ml was added to a test tube containing 9ml 0.1% peptone and vortexed creating a 102 

dilution. A subsample of 1ml of solution from the 102 tube was added to a new test tube 

containing 9ml 0.1% peptone and vortexed creating a 103 dilution. All bedding samples 

were diluted to 103 for enumeration.  

2.2.4.1 Coliform counts. 
Bedding coliforms were enumerated by pipetting 1ml of the 103 sample in 

duplicate on 3M Petrifilm E. coli/Coliform Count Plates and incubated at 35°C for 24h. 

Colonies were counted manually to obtain coliform counts as cfu per gram. 

2.2.4.2 TBC, Streptococcus spp., and Streptococcus spp.  
To enumerate TBC, 50 µL of the appropriate dilution of bedding sample was 

added in duplicate on PCA. The same procedure was followed to enumerate 

Staphylococcus spp. on the selective media MSA and for Streptococcus spp. on non-

selective 5% Sheep Blood agar. All bedding samples were spiral plated onto each plate 

and incubated at 35°C for 24h. Colony-forming units per gram were counted 

automatically using a colony plate reader. All bacterial counts were converted to a DM 

basis by dividing the wet matter basis count by the moisture percentage of the sample, 

resulting in cfu/g of DM. 

2.3 Conclusions 

For the ease of analyzing data and interpreting results, the results of this study are 

divided into two chapters. Chapter 3 discusses the results of CBP bedding characteristics, 

nutrient analysis, and bacterial counts, as well as weather data. Chapter 4 discusses the 

results of all cow-level variables. Additionally, chapter 4 includes the results of the 
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interactions between cow-level variables and environmental (i.e. bedding and weather) 

variables.  
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Figure 2.1 Diagram of the 9 even-distributed sections of the compost bedded pack barn used 
for bedding sampling, adapted from Black et al., (2013). The green stars represent 
the 6 superficial samples collected to create a composite sample of each of the 9 
locations. 
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3.1 Introduction 

Improvement of dairy cattle housing management to increase cow comfort has led 

producers to develop a unique housing system, the compost bedded pack (CBP) barn. 

Without stalls, the cows’ resting and exercise areas are combined such that cows have 

free access to a large, open space that helps to maintain cow health and well-being 

(Galama, 2011). Twice-daily tilling of the pack and addition of sawdust bedding as 

needed are essential practices to maintain a well-managed pack. Ideal bedding 

characteristics have been determined to help promote microbial growth through the 

increase in bedding internal temperature and a decrease in moisture content. It is 

recommended to keep CBP internal temperature at depths of 15-31 cm between 43.3 – 

65.0 °C (Janni et al., 2007, Bewley et al., 2013), bedding moisture content between 40 – 

60% (Bewley et al., 2013, Eckelkamp et al., 2016b), and a carbon-to-nitrogen (C:N) ratio 

between 25:1 to 30:1 (Rynk et al., 1992). In turn, this ensures the cows have a soft, 

comfortable semi-composted material to lie on.  

Potential environmental risk factors associated with mastitis have been studied 

extensively, as research has shown that mastitis, a complex multifactorial disease, 

continues to be the costliest disease in the dairy industry. One area to consider is the 

bedding bacteria, as dairy cows spend 40 to 65% of their time lying down where teats 

come in direct contact with those environmental microbes (Hogan and Smith, 2012). 

Research is needed to determine what environmental factors contribute to bacterial 

growth and population over time in CBP barns. Additionally, it has been reported that 

ambient temperature influences CBP characteristics, resulting in altered pack 

performance throughout the year (Shane et al., 2010, Eckelkamp et al., 2016b). It could 

be valuable to producers of CBP barns who experience poorer pack performance in 
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colder temperatures (Barberg et al., 2007b) for more specific research on the influence of 

ambient temperature on both CBP bedding characteristics and bacterial counts. 

To the author’s knowledge, no study that investigates the change over time of 

CBP barn bedding characteristics and bacterial counts currently exists. It’s important to 

identify specific bedding characteristics that influence bacterial load more than others, as 

well as pinpoint specific timeframes over the winter to spring seasonal change that may 

attribute to changes in the CBP. This in turn may help producers manage their CBP barn 

more effectively throughout various seasonal changes. The objectives of the study were 

to (1) evaluate changes in the CBP bedding characteristics and bedding bacteria over time 

(from Winter to Spring), (2) determine the effects of compost bedding characteristics on 

the different groups of bedding bacteria, and (3) the effects of tillage and sample location 

within the pack have on the bedding characteristics and bedding bacteria. I hypothesized 

that the main CBP bedding characteristics (internal temperature, moisture, and C:N ratio) 

and ambient temperature conditions would strongly influence bedding bacteria counts. 

3.2 Materials and Methods 

Detailed bedding sampling protocols and laboratory analysis for this study can be 

found in Chapter 2. Briefly, surface layer CBP bedding samples were collected weekly 

from December 2018 – May 2019. Samples were collected individually from each of the 

9 evenly distributed sections of the pack (Black et al., 2013), both before and after tilling. 

Surface (infrared thermometer; Model 62; Fluke, Inc., Everett, WA, USA) and internal 

(immersion thermocouple-based thermometer; Model 87; Fluke Inc., Everett, WA, USA) 

bedding temperature was measured for each section at the time of collection. All bedding 

samples (n = 396) were mixed manually to homogenize the content, then divided into two 

equal parts. One sample was transported to the University of Kentucky Division of 
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Regulatory Services Soil Research Laboratory for bedding nutrient analysis and moisture 

content. The duplicate sample was taken to the University of Kentucky’s Animal and 

Food Sciences microbiology laboratory and stored in a -20°C freezer until 

microbiological analysis was conducted. Microbial analysis (total bacteria count (TBC), 

coliform count, Staphylococcus spp. (Staph.) counts, and Streptococcus spp. (Strep.) 

counts) for all bedding samples required serial dilutions to 103 for bacterial enumeration. 

All samples were spiral plated (Eddy Jet 2W; Neutec Group Inc., IUL Instruments I.K.S., 

Leerdam, the Netherlands) onto each plate and incubated at 35°C for 24h. Colony-

forming units (cfu) per gram were counted automatically using a colony plate reader 

(Flash & Go plate reader; Neutec Group Inc., IUL Instruments I.K.S., Leerdam, the 

Netherlands). All bacteria counts were converted to a DM basis by dividing the wet 

matter basis count by the moisture percentage of the sample, resulting in cfu/g of DM. 

Additionally, weather data was monitored (Hobo, Onset Computer Corp., Bourne, MA, 

USA) from inside the barn every day. 

3.3 Statistical Analysis.

Compost bedding TBC, coliforms, Strep. counts, and Staph. counts were 

logarithmically transformed (log10 cfu/g DM) to produce normally distributed values. The 

SUMMARY procedure of SAS (Version 9.4; SAS Institute Inc., Cary, NC, USA) was 

used to determine the mean (± SD) categorized by week (0-24) of the following 

variables: bedding moisture (%), internal temperature (at depths of 20 cm), surface 

temperature, pH, carbon-to-nitrogen (C:N) ratio, phosphorous (%), potassium (%), 

calcium (%), magnesium (%), zinc (ppm), copper (ppm), manganese (ppm), iron (ppm), 

bedding TBC, coliform count, Staph. counts, Strep. counts, ambient temperature, dew 

point, and relative humidity (RH). The variable “Week” was described by the values 0-
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24, where each number indicating one week of the study. Week 0 was the week of 

December 2, 2018 – December 8, 2018. Week 1 was the week of December 9, 2018 – 

December 15, 2018…, etc. Week 24 was the week of May 19, 2019 – May 25, 2019. 

Pearson correlation coefficients were calculated to find simple correlations among 

all continuous variables (ambient temperature, RH, dew point, bedding moisture, surface 

temperature, internal temperature, C:N ratio, pH, TBC, coliforms, Staph. counts, and 

Strep. counts) using the CORR procedure of SAS. Relationships were considered 

statistically significant at p < 0.05. Correlations were used as a guideline for what 

explanatory variables to include in the regression models to avoid confounding variables.  

Regression models (MIXED procedure of SAS) were performed to determine the 

effect of time on each of the following response variables: bedding moisture, internal 

temperature, C:N ratio, pH, TBC, coliforms, Staph. counts, and Strep counts. Regression 

models were then constructed to determine what effect does both time and bedding 

characteristics have on the response variables (bedding TBC, coliforms, Staph. counts, 

and Strep. counts). The variables included in the model were week, surface temperature, 

internal temperature, moisture, C:N ratio, pH, P, K, Ca, Mg, Zn, Cu, Mn, and Fe. 

Variables were subject to removal using a stepwise backward elimination process if p > 

0.10. Week remained in the model regardless of significance. Overall statistical 

significance for main effects was declared at p < 0.05. 

3.3.1 Effects of tillage and sample location. 

The TTEST procedure of SAS was used to determine if there was a true 

difference between means of all variables from before versus after tillage. Due to no 
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statistical significance (p < 0.05) for any bedding characteristic or bacteria variable, the 

effects of tillage were deemed insignificant and removed from all further analysis.  

The MIXED procedure of SAS was used to determine the relationships between 

the explanatory variables (week, sample location (sections 1-9), and the interaction 

between week and sample location) and the following bedding dependent variables: 

moisture, internal temperature, C:N ratio, pH, TBC, coliforms, Staph. counts, and Strep. 

counts. Overall statistical significance for main effects was declared at p < 0.05. The 

LSMeans (± SE) of each of the 9 sample locations were compared, and the Bonferroni 

correction factor was used to adjust the p-value to perform multiple contrasts among the 9 

sample locations. 

3.4 Results and Discussion 

3.4.1 Description of Bedding Characteristics, Bedding Bacteria, and Weather. 

The mean CBP bedding characteristics and bacteria data were stratified by week, 

as shown in Table 3.1. Each week comprised of n = 18 bedding samples (with the total 

being n = 396). The bedding internal temperature at a depth of 20.3-cm remained below 

the recommended range of 43.3 to 65.0°C (Bewley et al., 2013) from December through 

the middle of March, where the mean (± SD) ranged from 31.27 ± 2.63 °C to 40.43 ± 

3.60°C. The internal temperature reached the optimal range in the middle of March (week 

15) at 46.23 ± 6.00°C and remained within the recommended range through the end of

May. The CBP internal temperature reached its highest at the beginning of May (week 

22), at 53.21 ± 5.02 °C. Overall, 36.11% (n = 143 out of 396) of all bedding samples 

collected were within the recommended range. The moisture content of the CBP, on 

average, stayed within the recommended range of 40 to 60% (Bewley et al., 2013, 
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Eckelkamp et al., 2016b), except for the months of January and February where it 

consistently remained above 60%. The highest moisture recorded was 63.06 ± 1.63% 

which occurred in the middle of February (week 11). Overall, 70.45% (n = 279 out of 

396) of all bedding samples collected were within the recommended range. As shown in

previous studies, CBP moisture and internal temperature have an inverse relationship 

because moisture percentage largely depends on the drying rate of the pack. The quicker 

the drying rate, influenced by higher internal temperature (among other management 

practices such as tilling frequency and bedding addition), the lower the moisture content 

will be. However, these numbers must remain within their recommended ranges for 

optimal composting. The inverse relationship, at the recommended ranges for both 

internal temperature and moisture content, was seen from April (week 17) through the 

end of the study. At week 17, the internal temperature was 45.34 ± 3.24°C and the 

moisture content was 51.94 ± 4.19%. Interestingly, most of February (weeks 8-11) not 

only had the highest moisture content observed (62.00 ± 3.97 to 63.06 ± 1.63%), but also 

experienced low internal temperatures (33.80 ± 4.42°C to 40.43 ± 3.60°C). During this 

time, it was likely that additional bedding was needed to help increase the drying rate of 

the pack. The mean C:N ratio fluctuated without much of a trend compared with the 

previous bedding characteristics. From February through March, the C:N ratio remained 

within the recommended range of 25:1 to 30:1 (Rynk et al., 1992). Interestingly, the C:N 

ratio was at its lowest from December through January, as well as May, which ranged 

from 22.70 ± 1.60 to 24.92 ± 1.36. Moreover, C:N ratio above 30:1 was observed in 

April, with the highest being 35.25 ± 5.03. Overall, 46.45% (n = 184 out of 396) of the 

bedding samples had a C:N ratio within the recommended range. The ratio is affected by 
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the amount of manure and urine output (nitrogen source), the addition of sawdust bedding 

(carbon source), and the effectiveness of the microbes to proliferate. The mean pH of the 

CBP by each week ranged from 9.12 ± 0.14 in March to 9.62 ± 0.26 in May. The pH 

levels were exceedingly alkaline compared to the recommended range of 6.5 – 8.0 

(Bewley and Taraba, 2009). The pH should decrease when the C:N ratio of the CBP was 

higher, which was only observed at week 14 (mid-March). When the C:N ratio is higher, 

there is less ammonia present in the bedding, thus the environment is more acidic and less 

alkaline. Since the pH remained consistent for the duration of the study, it is not entirely 

understood why it was much higher than normal CBP ranges. Weather data was stratified 

by week, where week 0 = December 2-8, 2018 through Week 24 = May 19-25, 2019 

(Table 3.2). January (weeks 4-8) had the coldest mean ambient temperature of 4.42 ± 

3.89°C and the highest mean relative humidity at 80.52 ± 8.05%. Additionally, Figure 

3.1. depicts a visual representation of the weather data over time. As expected, ambient 

temperature and dew point followed a similar trend, whereas relative humidity fluctuated 

between 60 to 89% but a drastic change was not observed during this study. 

Overall, the mean surface bedding TBC, coliforms, Staph., and Strep. counts were 

6.58 ± 0.20 log10 cfu/g DM, 5.05 ± 0.39 log10 cfu/g DM, 5.56 ± 0.27 log10 cfu/g DM, and 

6.06 ± 0.36 log10 cfu/g DM, respectively. Bedding TBC were reported in highest amounts 

in May, from 7.13 ± 0.29 to 7.20 ± 0.28 log10 cfu/g DM (Table 3.1). Similarly, bedding 

coliforms and Staph. counts were reported in highest amounts in May, from 5.51 ± 0.49 

to 5.50 ± 0.49 log10 cfu/g DM for coliforms, and 5.79 ± 0.21 to 6.56 ± 0.24 log10 cfu/g 

DM for Staph. counts. On average, bedding Strep. counts were the highest each week, 

followed by Staph. counts and coliforms (Figure 3.2). Similar trends were observed in 
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previous studies, where coliform counts were the lowest in compost bedding compared to 

Staph. counts, Strep. counts, and Bacillus spp. counts. (Barberg et al., 2007a, Black et al., 

2014, Eckelkamp et al., 2016b). Interestingly, most have reported CBP bedding TBC 

ranging from 7.0 to 8.2 log10 cfu/g DM (Barberg et al., 2007a, Black et al., 2014). 

Additionally, reported mean CBP bedding coliforms ranged from 6.0 to 7.0 log10 cfu/g 

DM (Barberg et al., 2007b, Shane et al., 2010). Results from this study show that surface 

bedding bacteria counts were relatively lower than previously reported levels, with the 

lowest count reported in February (TBC of 6.06 ± 0.15 log10 cfu/g DM and coliforms at 

4.67 ± 0.42 log10 cfu/g DM). Organic bedding generally has a coliform count of 106 cfu/g 

DM (Bramley and Neave, 1975), which this study continuously stays below. 

Furthermore, bedding containing >106 cfu/g is believed to increase IMI risk (Jasper, 

1980). The results from this study show that CBP bedding, while require high bacteria 

counts to achieve effective composting and degradation of the material, are not at counts 

at the surface level that exceedingly contribute to an increase IMI risk. It is important to 

note that CBP bacteria population changes with depth. That change is largely driven by 

the internal temperature gradient, where the deeper parts of CBP bedding would have 

much higher internal temperature levels, which would favor more thermotolerant and 

thermophilic microbes. However, since dairy cows are exposed to the top-layer of the 

CBP, that is what this study focused on. Compost bedded pack barns must be well-

managed to keep internal temperature, moisture, and C:N ratio within recommended 

ranges. This is achieved through twice-daily tilling, the addition of sawdust bedding, and 

proper stocking density, all of which improve drying rate of the pack, increase microbial 

populations and result in soft, comfortable bedding material. Compost bedding 
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characteristics, however, have been shown to interact with one another and the ambient 

weather conditions, which can complicate this housing system. Knowing the general 

trends of all individual variables, it was essential to determine relationships between all 

measured variables.  

3.4.2 Relationships Between Bedding Characteristics and Bacteria Over Time. 

Pearson correlations between the bedding characteristics (surface temperature, 

internal temperature, moisture, C:N ratio, and pH) and the 4 bacteria groups are presented 

in Table 3.3. Besides Strep. counts, bedding moisture content had a moderately to 

strongly negative correlation with bedding TBC, coliforms, and Staph. counts (r = -0.61, 

-0.30 and -0.43 at p < 0.001, respectively). Similar correlations were observed by Black

et al. (2014), where moisture had a strong negative relationship with Staph. counts and 

coliforms. Additionally, compost internal temperature had a moderate to strong positive 

correlation with bedding TBC, coliforms, and Staph. counts (r = 0.41, 0.23 and 0.23 at p 

< 0.001, respectively). The bedding C:N ratio was found to have a moderate to weak 

negative relationship with bedding TBC, coliforms, and Staph. counts (r = -0.26, -0.16, 

and -0.14, respectively). Similarly, bedding pH was found to have moderate to weak 

positive correlations with bedding TBC, coliforms, and Staph. counts (r = 0.36, 0.11, and 

0.26, respectively). 

Table 3.4 depicts the Pearson correlation coefficients between weather data and 

the previously described bedding characteristics/bacteria. As expected, correlations 

between all variables with both ambient temperature and dew point followed the same 

trend due to the strong positive relationship between ambient temperature and dew point 

(r = 0.98, p < 0.001). Ambient temperature had a strong positive correlation with bedding 
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TBC (r = 0.44; p < 0.001), coliforms (r = 0.21; p < 0.001), and Staph. counts (r = 0.38; p 

< 0.001), but weak with Strep. counts (r = 0.10; p = 0.04). Black et al. (2014) reported 

similar relationships between ambient temperature and bedding Staph. counts (r = 0.53). 

Relationships between ambient temperature and the following bedding characteristics 

(moisture, surface temperature, internal temperature, and pH) were the strongest, at r = -

0.70, 0.78, 0.74, and 0.53 at p < 0.001, respectively. At the simplest level, the results 

suggest that as ambient temperature increased, moisture content decreases and surface 

temperature, internal temperature, pH, and all bedding bacteria increased. Relative 

humidity (RH) had a weak positive relationship with bedding TBC, at r = 0.13 (p < 

0.001). Additionally, The RH had a moderate to strong negative relationship with 

compost surface temperature, internal temperature, and C:N ratio (r = -0.23, -0.37, and -

0.41 at p < 0.001, respectively). Conversely, RH has a moderate positive relationship 

with bedding moisture, at r = 0.29 (p < 0.001).  

Additionally, correlations were determined between each of the previously 

described bedding characteristics (Table 3.5). Bedding surface and internal temperature 

had a strong positive correlation (r = 0.60, p < 0.001). Bedding internal temperature had a 

strong negative relationship with moisture (r = -0.61, p < 0.001), a weak positive 

relationship with C:N ratio (r = 0.10, p = 0.05), and a strong positive relationship with pH 

(r = 0.48, p < 0.001). Interestingly, bedding pH had a moderately negative correlation 

with moisture (r = -0.37, p < 0.001) and C:N ratio (r = -0.34, p < 0.001). Results 

validated what was to be expected for bedding characteristic relationships. The bedding 

pH and C:N ratio had an inverse relationship, where the higher the pH (more alkaline) the 

lower the C:N ratio, or the more ammonia present. Moreover, as the bedding internal 



46 

temperature at 20.3-cm increased, the moisture content decreased. This is likely due to an 

increased drying rate of the pack which would decrease moisture content. This was 

observed by Eckelkamp et al. (2016b), where an increase in compost internal temperature 

was related to an increase in ambient temperature (also observed in this study). This 

ultimately drove the drying rate of the pack, which reduced bedding moisture. 

All described correlations were used as a guide for what explanatory variables to 

include in the mixed models, as strongly correlated explanatory variables may be 

confounding. For that reason, the ambient temperature was the only weather variable that 

was used in all mixed models (RH and dew point were not included). It is important to 

note that relative humidity is an important component of the drying rate of the pack 

(Black et al., 2013). However, for the purpose of this study, only ambient temperature 

was included, as that variable had more significant correlations with all other CBP 

variables. Results from the regression models indicated that the following bedding 

variables were influenced by week: bedding moisture, internal temperature, C:N ratio, 

pH, TBC, coliforms, Staph. counts, and Strep. counts (Tables 3.6 and 3.7).  In December, 

bedding moisture was reported at 55% and internal temperature at 20.3-cm depth was at 

31.27°C. In February, bedding moisture reached a peak of 63%, whereas internal 

temperature was at 40.43°C. At the end of May, moisture decreased to 48% and internal 

temperature increased to 48.83°C. The bedding C:N ratio fluctuated over time, at 25.60 in 

December, up to 31.66 in March, and down to 23.95 at the end of May. Additionally, 

bedding TBC fluctuated around 6.76 to 6.06 log10 cfu/g DM from December through 

April and increased to 7.18 log10 cfu/g DM in May. Boxplots were constructed for the 

dependent variables’ moisture (Figure 3.3), internal temperature (Figure 3.4), C:N ratio 
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(Figure 3.5), bedding TBC (Figure 3.6), and pH (Figure 3.7) which provided visual 

representations of the univariate models. 

Compost bedded pack moisture, internal temperature, C:N ratio, pH, bedding 

TBC, coliforms, Staph. counts, and Strep. counts all changed over time. As ambient 

temperature increased, bedding moisture decreased and internal temperature at 20.3-cm 

depth increased. All bedding bacteria counts increased as seasons changed from winter to 

spring, which was also seen in previous studies (Black et al., 2014). These results suggest 

that when seasons begin to shift (in this case, winter to spring), producers should pay 

particular importance to their management strategies to ensure compost bedding 

effectiveness, because the environment which we cannot control, strongly influences 

these bedding characteristics. 

Results from the final mixed models indicated what bedding characteristics 

influence each bedding bacteria group (Table 3.8). Moisture content was the only 

bedding characteristic that significantly influenced all bedding bacteria groups. 

Regression coefficients were reported, such that as bedding moisture increased by 1%, 

TBC, coliforms, and Staph. counts decreased by 2.35 (0.30 (SE); p < 0.001) log10 cfu/g 

DM, 1.68 (0.55; p < 0.001) log10 cfu/g DM, and 1.89 (0.65; p < 0.001) log10 cfu/g DM, 

respectively whereas Strep. counts increased by 3.07 (0.58; p < 0.001) log10 cfu/g DM. 

These results were confirmed from the Pearson correlations reported between moisture 

and bedding bacteria groups. Interestingly, bedding internal temperature only influenced 

Staph. counts. As the bedding internal temperature increased by 1°C, Staph. counts had 

the tendency to decrease by 0.01 (0.01, p = 0.07) log10 cfu/g DM. However, while these 

values were statistically significant, a bacterial count change > 1-log would not be 
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considered practically significant. Eckelkamp et al. (2016b) reported similar findings, 

that internal temperature influenced Staph. counts (p = 0.01). Conversely, Black et al. 

(2014) noted that internal temperature did not remain in the final model, indicating that 

internal temperature did not influence Staph. counts when other variables were involved. 

For the current study, while bedding internal temperature had relatively strong 

correlations with bedding TBC and coliforms, these relationships were not maintained 

when other variables were accounted for in the final models. This may be due to the 

confounding variables of internal temperature and moisture (correlation coefficient of r = 

-0.61). As both bedding characteristics have been shown to affect overall pack

performance, both needed to remain in all models originally to determine their overall 

influence on the bedding bacteria population. Furthermore, bedding pH influenced 

coliforms and Strep. counts. As the bedding pH increased by 1.0, coliforms and Strep. 

counts decreased by 0.51 (0.18, p = 0.004) log10 cfu/g DM and 0.64 (0.19, p = 0.001) 

log10 cfu/g DM, respectively. Similarly, C:N ratio only coliforms, such that as the C:N 

ratio increased by 1.0, coliforms decreased by 0.03 (0.01, p = 0.004) log10 cfu/g DM. 

Results of the effect of pH and C:N ratio on bacteria counts are as expected, as a higher 

C:N ratio is indicative of low nitrogen levels (which would also result in a higher pH 

value, as observed in this study). When there is insufficient nitrogen, this does not allow 

for optimal microbial growth, so the degradation rate would slow down, ultimately 

resulted in poorer pack performance.   

Similar to previous studies, CBP moisture, internal temperature, and C:N ratio 

levels, when other variables were included, did not all equally contribute to a change in 

the bedding bacteria levels. Moisture was the only bedding characteristic that 
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significantly influenced all bedding bacteria levels. As moisture content increased, 

coliforms and Staph. counts decreased, whereas Strep. counts increased. It is not entirely 

understood why moisture affected the bacteria groups in different ways. Moisture content 

does not necessarily tell researchers much regarding ideal environmental conditions for 

microbial growth or degradation. Water activity (Aw) of the bedding, however, may be a 

more effective measurement of the contributions that moisture would have on microbial 

growth. This is because Aw explains how exactly the water content would react with 

microorganisms. The higher the Aw (closest to 1.0), the faster microorganisms can 

proliferate, given other environmental characteristics are within optimal conditions for 

those microbes (such as temperature). For future research, it may be useful to measure the 

water activity of bedding rather than using moisture, if looking specifically at microbial 

growth. Compost bedded pack pH has not been largely reported, nor has it been 

considered a key bedding characteristic for CBP barns (where internal temperature, 

moisture, and C:N ratio are considered key CPB characteristics). However, results from 

this study indicated that pH was influential, where an increase in pH (more alkaline 

environment) resulted in a reduction of bedding coliforms and Strep. counts. Similarly, 

Hogan et al. (1999) reported a reduction in coliforms and Streptococcus spp. counts due 

to an alkaline conditioner in manure solids bedding material. Moreover, the internal 

temperature only slightly decreased Staphylococcus spp. counts and C:N ratio only 

slightly decreased coliforms. Knowing the effect of moisture on bacterial counts, it may 

be of benefit to ensure the moisture content is within the recommended 40-60% when 

seasons are changing, as that is when the moisture fluctuated the greatest.  

3.4.3 Effects of Sample Location on Bedding Characteristics and Bedding 
Bacteria.  
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For all variables, the sample location remained statistically significant in the 

models. The LS means (SE) of all dependent variables by sample location are displayed 

in Table 3.9. Sample locations 1, 4 and 7 represented the bedding area at the 3 pack 

entrances from the feed alley. Internal temperature (LS means (SE)) was the lowest at the 

entrances at 36.98 (0.49) °C, 39.07 (0.48) °C, and 36.36 (0.49) °C for locations 1, 4, and 

7, respectively. The remaining six locations had an internal temperature of > 41.0°C. 

Bedding moisture followed a similar trend to internal temperature, with the pack 

entrances (locations 1, 4, and 7) having the highest moisture content at 59.52  (0.35) %, 

59.52 (0.35) %, and 55.22 (0.34) % for locations 1, 4, and 7, respectively. This may be 

due to the increased amount of cow traffic at those locations and the proximity to the feed 

alley. Interestingly, bedding TBC was the highest in locations 3 and 9, which were the 

outer corners of the CBP, at 6.66 (0.02) log10 cfu/g DM and 6.74 log10 cfu/g DM, 

respectively. Results suggest that the biggest problem-areas throughout the CBP were the 

entrances from the feed alleys and the two outer corners. Producers should be aware of 

these problem-areas and adjust accordingly, such as the addition of bedding material 

more specifically to those locations and ensuring the pack is being adequately tilled in 

those locations.  

Results showed that week and the interaction between the week and sample 

location influenced all the dependent bedding variables. This interaction took into 

consideration not only the sample location within the pack but also the effect of the 

season, such as differences seen between December and May. Mean bedding moisture of 

the 9 sample locations over time (Figure 3.3) showed there was variation among each of 

the 9 locations, but overall they followed a general trend of increased levels from 
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December 2018 – mid-February 2019, then decreased as weeks progressed into 

Springtime. Similar graphs were constructed for internal temperature, C:N ratio, bedding 

TBC, and pH (Figures 3.4, 3.5, 3.6, and 3.7), where each colored dot indicated the sample 

location of that given week. Interestingly, the variation among the 9 locations for internal 

temperature and C:N ratio over time was much greater than moisture. However, the 

bedding TBC and pH did not have as much variation when compared to internal 

temperature and the C:N ratio. The bedding TBC at sample location 9 (shown as a yellow 

dot in Figure 3.6), however, had the highest bacteria counts for nearly every week of the 

study. It is not entirely understood why that location had the highest bacteria levels.   

Tilling of the pack, while an important tool for incorporating oxygen throughout 

the bedding, thus ensuring an effective composting system, did not have any effect on 

bedding moisture, internal temperature, C:N ratio, or any bedding bacteria counts. 

However, location within the pack strongly affected all bedding characteristics and 

bacteria counts. As expected, bedding located at the entrances from the feed alley had the 

highest moisture content and lowest internal temperature. Additionally, corner locations 

of the pack had increased bacteria counts and moisture. These results conclude that not 

every surface that dairy cows have access to lay on are equal. Producers should be aware 

of this and adjust management strategies as needed, such as increased addition of bedding 

material at entrance locations and ensure tilling of the pack occurs in those specific 

locations. Tilling improves pack performance by increasing the drying rate of the pack, 

which would result in a decrease in moisture content and an increase in internal 

temperature. Specifically, in colder or rainy weather conditions, the incorporation of side 

curtains to the barn may be an effective tool to help keep out excess moisture and 
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increase the pack drying rate. This would likely reduce the large variation seen in 

bedding internal temperature, moisture, and C:N ratio based on bedding location. 

3.5 Conclusions 

Compost bedded pack barns require well-executed management techniques 

throughout the year to produce a soft surface for cows to lie on. The goal of these 

management techniques (which include twice-daily tilling, the addition of new bedding 

as needed, and proper stocking density) is to increase the bedding internal temperature, 

reduce moisture content, and provide the correct C:N ratio (25:1 to 30:1) throughout the 

entire year. However, results from this study suggest that there should be more emphasis 

on management strategies during colder weather conditions and when seasons begin to 

change (in this case, from winter to spring) because weather conditions strongly influence 

the compost bedding characteristics. Results found that there were large fluctuations seen 

in the moisture content and internal temperature during March in Kentucky (i.e. the time 

when seasons were shifting from winter to spring), which may contribute to poorer pack 

performance. Interestingly, results indicated that bedding moisture had the strongest 

effect on all bedding bacterial counts compared to other bedding characteristics. 

Additionally, bedding pH influenced the microbial population more than expected, where 

a higher pH decreased bacterial counts. Keeping this in mind, however, producers should 

not look at one specific bedding characteristic to determine the effectiveness of their CBP 

barn, but rather look at the whole environmental picture.  

This study also concluded that not every surface that the cows have access to lie 

on is equal, in that the entrances to the pack and the outer corners had the highest 

moisture and lowest internal temperature. Producers should ensure adequate tilling has 
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occurred in those locations and simply add more bedding material in those specific areas. 

Both management adjustments would help reduce bedding moisture and increase internal 

temperature while promoting microbial growth. Furthermore, the addition of side curtains 

to the barn design may be a more permanent but effective tool to help improve overall 

pack performance, especially during colder and rainy weather conditions. This is because 

the side curtains would act as a barrier to prevent excess moisture in the pack but also aid 

in reducing the temperature difference between bedding temperature and ambient 

temperature. Reducing the temperature difference would increase the drying rate of the 

pack, which results in an overall improved pack performance. 

Compost bedded pack barn bedding characteristics and weather conditions are all 

inter-related and the complex interaction ultimately drives bedding bacterial population. 

Further research is needed to investigate these interactions during other seasonal changes 

(fall to winter) and in different regions to consider climate effects (i.e. in very high or low 

humidity regions to see the effects of drying rate and microbial population). Research is 

also needed to determine the microbiome of CBP barn bedding, through the enumeration 

of other common environmental microorganisms found in compost bedding (such as 

Bacillus spp. or Klebsiella spp.). While CBP barns are an effective alternative housing 

system for dairy cows, they must be consistently well-managed year-round to achieve a 

very soft, comfortable bedding surface for dairy cows to lie on. 
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Table 3.1. Mean ± standard deviation of compost bedded pack barn bedding characteristics, bacterial counts, and nutrient content 
stratified by week, with each week had n = 18. 

CST1 CIT2 Moisture C:N3 pH TBC*4 Coliforms* Staph.*5 Strep.*6 

Week Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
0 3.76 ± 7.63 31.27 ± 2.63 55.33 ± 2.74 25.60 ± 2.04 9.21 ± 0.09 6.76 ± 0.20 5.11 ± 0.29 5.35 ± 0.22 5.35 ± 0.38 
1 8.88 ± 4.51 33.58 ± 1.57 57.28 ± 2.52 22.70 ± 1.60 9.32 ± 0.11 6.73 ± 0.29 5.01 ± 0.54 5.79 ± 0.14 6.04 ± 0.26 
2 13.68 ± 3.58 36.67 ± 1.28 56.72 ± 2.87 23.48 ± 1.70 9.28 ± 0.07 6.60 ± 0.13 5.14 ± 0.33 5.74 ± 0.17 5.69 ± 0.38 
4 8.67 ± 4.50 32.31 ± 3.24 61.50 ± 2.28 23.25 ± 2.21 9.32 ± 0.09 6.53 ± 0.13 4.84 ± 0.33 5.75 ± 0.12 6.26 ± 0.23 
5 -1.44 ± 3.37 35.93 ± 2.58 58.06 ± 1.98 24.22 ± 1.34 9.32 ± 0.09 6.45 ± 0.09 4.94 ± 0.29 5.50 ± 0.16 5.75 ± 0.15
6 8.94 ± 9.34 33.46 ± 3.24 62.06 ± 1.59 24.92 ± 1.36 9.27 ± 0.04 6.54 ± 0.16 4.91 ± 0.28 5.38 ± 0.32 5.94 ± 0.32 
7 9.65 ± 1.92 34.57 ± 2.57 61.11 ± 2.61 26.83 ± 1.55 9.33 ± 0.08 6.40 ± 0.09 4.93 ± 0.29 5.58 ± 0.15 6.20 ± 0.23 
8 -8.91 ± 5.72 33.80 ± 4.42 62.22 ± 2.05 26.95 ± 1.58 9.22 ± 0.10 6.34 ± 0.21 4.76 ± 0.22 5.47 ± 0.14 6.18 ± 0.21
10 8.42 ± 5.44 37.25 ± 8.02 62.00 ± 3.97 27.30 ± 1.70 9.29 ± 0.06 6.30 ± 0.13 4.89 ± 0.16 5.33 ± 0.10 6.20 ± 0.28 
11 12.57 ± 4.53 40.43 ± 3.60 63.06 ± 1.63 25.96 ± 1.52 9.33 ± 0.11 6.16 ± 0.20 4.96 ± 0.34 4.28 ± 1.89 5.54 ± 0.40 
12 12.52 ± 2.71 32.56 ± 5.05 57.89 ± 2.47 27.29 ± 1.66 9.33 ± 0.08 6.06 ± 0.15 4.67 ± 0.42 5.32 ± 0.20 6.20 ± 0.19 
13 3.83 ± 5.60 35.4 ± 6.46 59.33 ± 2.20 29.20 ± 1.95 9.19 ± 0.08 6.85 ± 0.47 5.53 ± 0.35 5.51 ± 0.21 6.87 ± 0.38 
14 16.04 ± 1.77 39.85 ± 5.61 57.28 ± 3.69 31.66 ± 4.93 9.12 ± 0.14 6.19 ± 0.22 4.96 ± 0.44 5.40 ± 0.16 6.28 ± 0.44 
15 8.87 ± 4.07 46.23 ± 6.00 60.44 ± 2.53 25.69 ± 1.68 9.31 ± 0.11 6.43 ± 0.17 5.19 ± 0.24 5.36 ± 0.20 5.62 ± 0.34 
16 13.91 ± 2.43 38.36 ± 6.76 56.83 ± 3.33 30.59 ± 2.96 9.29 ± 0.08 6.17 ± 0.14 4.33 ± 0.40 5.31 ± 0.20 5.62 ± 0.37 
17 15.10 ± 2.98 45.34 ± 3.24 51.94 ± 4.19 35.25 ± 5.03 9.24 ± 0.11 6.51 ± 0.16 5.17 ± 0.29 5.45 ± 0.17 6.07 ± 0.32 
18 16.79 ± 2.90 51.79 ± 3.19 51.83 ± 3.31 30.24 ± 1.99 9.42 ± 0.11 6.52 ± 0.13 4.82 ± 0.35 5.49 ± 0.21 5.40 ± 0.49 
19 21.09 ± 1.99 46.79 ± 3.86 52.78 ± 6.01 23.22 ± 1.78 9.43 ± 0.09 6.83 ± 0.28 5.45 ± 0.33 5.57 ± 0.21 6.14 ± 0.37 
21 22.47 ± 1.00 50.43 ± 2.41 50.56 ± 5.25 23.62 ± 1.71 9.46 ± 0.13 6.78 ± 0.17 4.79 ± 0.49 6.18 ± 0.21 6.64 ± 0.61 
22 24.23 ± 2.57 53.21 ± 5.02 48.06 ± 5.95 26.45 ± 2.65 9.42 ± 0.07 7.20 ± 0.28 5.59 ± 0.49 6.56 ± 0.24 6.54 ± 0.75 
23 21.04 ± 1.27 50.31 ± 3.66 50.61 ± 5.10 23.65 ± 1.06 9.62 ± 0.26 7.13 ± 0.29 5.51 ± 0.49 5.76 ± 0.21 6.62 ± 0.26 
24 25.00 ± 1.40 48.83 ± 4.37 47.61 ± 5.39 23.95 ± 1.61 9.59 ± 0.12 7.18 ± 0.25 5.54 ± 0.49 6.18 ± 0.27 6.13 ± 0.64 

Overall 12.05 ± 3.69 40.38 ± 4.03 56.57 ± 3.35 26.46 ± 2.07 9.33 ± 0.10 6.58 ± 0.20 5.05 ± 0.39 5.56 ± 0.27 6.06 ± 0.36 
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 P (%) K (%) Ca (%) Mg (%) Zn (ppm) Cu (ppm) Mn (ppm) Fe (ppm) 
Week Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

0 0.55 ± 0.11 1.20 ± 0.24 1.61 ± 0.49 0.54 ± 0.12 144.52 ± 115.16 28.22 ± 10.63 283.67 ± 70.85 3457.64 ± 1532.89 
1 0.65 ± 0.07 1.46 ± 0.16 1.87 ± 0.29 0.66 ± 0.07 161.81 ± 103.22 37.70 ± 7.96 461.94 ± 232.12 5652.47 ± 4154.21 
2 0.59 ± 0.06 1.38 ± 0.10 1.62 ± 0.14 0.63 ± 0.06 111.46 ± 19.46 34.17 ± 9.90 344.05 ± 109.03 3719.27 ± 2128.57 
4 0.63 ± 0.05 1.52 ± 0.12 1.83 ± 0.21 0.67 ± 0.07 135.55 ± 47.71 45.34 ± 13.99 356.84 ± 92.37 4152.78 ± 2047.04 
5 0.58 ± 0.05 1.37 ± 0.10 1.82 ± 0.23 0.62 ± 0.05 151.84 ± 104.02 39.26 ± 10.07 324.15 ± 95.78 3828.57 ± 1910.43 
6 0.62 ± 0.05 1.57 ± 0.13 1.95 ± 0.50 0.66 ± 0.05 117.50 ± 15.54 46.73 ± 12.02 325.35 ± 50.88 3530.66 ± 925.50 
7 0.56 ± 0.05 1.40 ± 0.09 1.59 ± 0.22 0.60 ± 0.06 104.98 ± 10.66 42.93 ± 7.05 280.75 ± 45.83 2974.88 ± 681.83 
8 0.57 ± 0.05 1.41 ± 0.10 1.75 ± 0.52 0.61 ± 0.05 127.52 ± 89.65 36.45 ± 10.00 293.94 ± 92.52 3254.26 ± 1281.04 

10 0.52 ± 0.04 1.41 ± 0.10 1.56 ± 0.21 0.57 ± 0.07 99.24 ± 10.79 34.53 ± 7.87 282.95 ± 67.52 2931.51 ± 714.05 
11 0.57 ± 0.04 1.52 ± 0.08 1.68 ± 0.14 0.61 ± 0.03 154.97 ± 69.64 38.72 ± 7.00 277.14 ± 50.63 2966.20 ± 1120.66 
12 0.54 ± 0.04 1.22 ± 0.09 1.57 ± 0.46 0.55 ± 0.04 130.24 ± 90.93 30.69 ± 8.00 272.09 ± 108.71 2794.99 ± 1305.71 
13 0.48 ± 0.04 1.11 ± 0.08 1.37 ± 0.24 0.47 ± 0.04 128.43 ± 112.48 26.19 ± 7.53 223.30 ± 46.89 2159.21 ± 800.41 
14 0.47 ± 0.07 1.30 ± 0.20 1.42 ± 0.27 0.51 ± 0.07 173.47 ± 94.97 31.28 ± 7.05 223.70 ± 47.01 2068.22 ± 708.99 
15 0.55 ± 0.04 1.40 ± 0.11 1.62 ± 0.13 0.60 ± 0.04 145.83 ± 68.19 40.12 ± 8.83 251.07 ± 58.25 2205.66 ± 767.31 
16 0.52 ± 0.07 1.25 ± 0.15 1.44 ± 0.20 0.55 ± 0.07 126.41 ± 64.11 31.84 ± 6.77 222.50 ± 36.35 1819.88 ± 462.50 
17 0.43 ± 0.07 1.20 ± 0.17 1.14 ± 0.19 0.47 ± 0.08 88.27 ± 17.57 28.59 ± 8.56 189.68 ± 40.04 1422.02 ± 404.46 
18 0.53 ± 0.07 1.44 ± 0.14 1.47 ± 0.46 0.58 ± 0.08 113.87 ± 24.63 41.07 ± 9.20 219.37 ± 41.43 1723.11 ± 423.40 
19 0.59 ± 0.03 1.70 ± 0.09 1.71 ± 0.20 0.69 ± 0.04 134.49 ± 38.10 46.34 ± 11.35 234.58 ± 18.35 1811.97 ± 238.75 
21 0.66 ± 0.04 1.83 ± 0.08 2.09 ± 0.29 0.79 ± 0.04 182.92 ± 72.89 53.68 ± 7.72 260.34 ± 22.18 2098.95 ± 359.04 
22 0.64 ± 0.06 1.93 ± 0.16 1.76 ± 0.22 0.73 ± 0.07 139.71 ± 25.56 53.38 ± 12.49 249.43 ± 28.14 1880.26 ± 270.17 
23 0.64 ± 0.08 1.88 ± 0.23 1.95 ± 0.54 0.70 ± 0.10 174.74 ± 73.09 52.53 ± 11.44 239.81 ± 36.87 1931.75 ± 516.80 
24 0.74 ± 0.04 2.03 ± 0.09 1.91 ± 0.34 0.78 ± 0.05 188.22 ± 56.21 57.97 ± 10.15 266.50 ± 32.41 2166.56 ± 477.90 

Overall 0.57 ± 0.05 1.48 ± 0.13 1.67 ± 0.30 0.62 ± 0.06 130.00 ± 59.75 39.90 ± 9.34 276.51 ± 64.73 2752.31 ± 1055.98 
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*log10 cfu/g DM 
1 CST = Compost surface temperature (°C) 
2 CIT = Compost internal temperature (°C) at depth of 20 cm. 
3 C:N = Carbon-to-nitrogen ratio 
4 TBC = Total bacteria count 
5 Staph. = Staphylococcus spp. counts 
6 Strep. = Streptococcus spp. counts 
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Table 3.2. Descriptive statistics of weather data (ambient temperature, relative humidity, and dew point) stratified by week, with Week 
0 = December 2-8, 2018 and Week 24 = May 19-25, 2019. 

  Ambient Temperature [°C] Relative Humidity [%] Dew Point [°C] 
Week Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S. D. Min. Max. 

0 2.22 2.59 -2.73 8.15 78.97 8.78 54.57 89.4 -1.14 2.38 -5.43 3.74 
1 3.5 5.36 -5.36 14.1 73.54 9.7 45.57 90.5 -0.93 4.8 -7.53 9.08 
2 6.73 3.16 -0.47 13.63 81.44 9.4 48.43 90.97 3.6 2.89 -2.27 9.87 
3 5.23 4.46 -1.37 15.32 83.22 6.34 62.53 91.07 2.56 4.26 -2.71 13.25 
4 6.4 3.84 0.54 18.25 85.16 5.49 61.7 91.6 4.06 3.82 -1.61 16.15 
5 5.16 6.83 -6.01 18.28 74.19 11.28 40.97 90.6 0.77 6.6 -9.9 12.83 
6 1.74 2.15 -3.51 6.7 89.31 2.17 71.5 92.17 0.15 2.17 -4.81 5.08 
7 -0.91 7.18 -12.74 12.6 78.04 11.46 46.93 91.4 -4.4 7.53 -14.95 10.44 
8 -3.42 6.59 -15.68 11.42 75.87 9.84 53.57 90.87 -7.14 7.14 -21.39 4.59 
9 10.77 6.98 -5.25 21.6 80.24 10.36 49.4 92.17 7.36 7.2 -9.19 18.54 
10 4.59 5.85 -8.09 15.28 73.41 13.97 30.9 91.7 -0.07 5.82 -10.5 11.76 
11 3.3 3.6 -3.33 13.53 80.78 7.64 57.73 91.5 0.25 3.75 -5.56 10.89 
12 5.78 5.06 -2.34 17.86 72.21 15.76 38.4 91.8 0.8 5.25 -9.82 13.68 
13 -1.29 4.58 -11.65 6.96 79.01 11.93 49.7 91.37 -4.59 5.56 -14.4 4.83 
14 10.66 5.64 1.46 23.94 66.94 14.49 37.93 90.53 4.4 5.09 -2.73 16.67 
15 6.62 3.78 -0.74 15.49 64.1 17.01 32.27 89 -0.23 2.78 -4.95 7.44 
16 10.28 5.59 -1.24 20.74 60.78 17.22 28.77 90.4 2.44 5.21 -5.39 12.96 
17 10.26 6.53 -2.45 22.6 63.62 16.43 30.57 91.03 3.16 6.03 -5.94 14.71 
18 17.66 3.59 8.43 27.87 70.97 15.45 37.23 89.6 11.92 3.39 3.33 18.28 
19 15.32 6.41 3.59 26.34 68.13 14.79 36.3 90.4 9.02 4.23 -0.67 18.26 
20 15.63 5.94 4.26 26.59 73.24 13.12 44.9 88.57 10.53 4.51 1.83 18.73 
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21 18.5 5.48 6.4 28 73.95 11.4 42.47 90.33 13.54 4.71 3.37 21.28 
22 18.94 3.93 10.34 28.31 75.24 10.5 48.63 86.27 14.22 2.78 7.44 19.23 
23 16.43 4.79 8.46 29.69 75.36 10.28 47.87 87.83 11.83 3.79 5.48 22.25 
24 21.81 4.77 11.21 30.59 71.55 11.75 46.57 87.33 16.17 2.71 9.11 20.91 

Overall 8.48 4.99 -1.13 18.95 74.77 11.46 45.82 90.34 3.93 4.58 -4.37 13.42 
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Table 3.3. Pearson correlation coefficients between compost bedding characteristics 
(moisture, surface temperature, internal temperature, C:N ratio, and pH) and 
bedding bacteria groups (total bacteria count, coliforms, Staphylococcus spp. 
counts, and Streptococcus spp. counts) where n = 396. Relationships were 
deemed statistically significant at p < 0.001. Correlations were considered (±) 
strong when r ≥ 0.40 and (±) moderate at r ≤ 0.39 - ≥ 0.20. 

*log10 cfu/g DM 
a TBC = Total bacteria count 
b Staph. = Staphylococcus spp. counts 
c Strep. = Streptococcus spp. counts  
d CST = Compost surface temperature [°C] 
e CIT = Compost internal temperature [°C] 
f C:N = Carbon-to-nitrogen ratio

  Bedding Characteristics 

 Moisture CSTd CITe C:Nf pH  

Bedding 
Bacteria* 

TBCa -0.61 
<0.001 

0.39 
<0.001 

0.41 
<0.001 

-0.26 
<0.001 

0.36 
<0.001 

r 
p-value 

Coliforms -0.30 
<0.001 

0.20 
<0.001 

0.23 
<0.001 

-0.16 
0.001 

0.11 
0.04 

r 
p-value 

Staph.b -0.43 
<0.001 

0.30 
<0.001 

0.23 
<0.001 

-0.14 
0.005 

0.26 
<0.001 

r 
p-value 

Strep.c 0.04 
0.42 

0.09 
0.07 

0.05 
0.34 

-0.09 
0.07 

0.06 
0.21 

r 
p-value 
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Table 3.4. Pearson correlation coefficients between weather data (ambient temperature, 
relative humidity, and dew point) and compost bedding characteristics/ bacteria 
groups (moisture, surface temperature, internal temperature, C:N ratio, pH, total 
bacteria count, coliforms, Staphylococcus spp. counts, and Streptococcus spp. 
counts) where n = 396. Relationships were deemed statistically significant at p < 
0.001. Correlations were considered (±) strong when r ≥ 0.40 and (±) moderate at 
r ≤ 0.39 - ≥ 0.20. 

*log10 cfu/g DM 
a TBC = Total bacteria count 
b Staph. = Staphylococcus spp. counts 
c Strep. = Streptococcus spp. counts  
d CST = Compost surface temperature [°C] 
e CIT = Compost internal temperature [°C] 
f C:N = Carbon-to-nitrogen ratio 
g Amb. Temp. = Ambient temperature [°C] 
h RH = Relative humidity [%] 
 

 

 Weather 
 Amb. Tempg RHh Dew Point  
Bedding 
Bacteria* 

TBCa 0.44 
<0.001 

0.13 
<0.001 

0.50 
<0.001 

r 
p-value 

Coliforms 0.21 
<0.001 

0.06 
0.27 

0.24 
<0.001 

r 
p-value 

Staph.b 0.38 
<0.001 

-0.01 
0.78 

0.41 
<0.001 

r 
p-value 

Strep.c 0.10 
0.04 

0.08 
0.13 

0.13 
0.01 

r 
p-value 

Bedding 
Characteristics 

Moisture -0.70 
<0.001 

0.29 
<0.001 

-0.69 
<0.001 

r 
p-value 

CSTd 0.78 
<0.001 

-0.23 
<0.001 

0.77 
<0.001 

r 
p-value 

CITe 0.74 
<0.001 

-0.37 
<0.001 

0.71 
<0.001 

r 
p-value 

C:Nf -0.04 
0.49 

-0.41 
<0.001 

-0.14 
0.01 

r 
p-value 

pH 0.53 
<0.001 

-0.03 
0.57 

0.56 
<0.001 

r 
p-value 



 

61 

Table 3.5. Pearson correlation coefficients between compost bedding characteristics 
(moisture, surface temperature, internal temperature, C:N ratio, and pH) where n 
= 396. Relationships were deemed statistically significant at p < 0.001. 
Correlations were considered (±) strong when r ≥ 0.40 and (±) moderate at r ≤ 
0.39 - ≥ 0.20. 

a CST = Compost surface temperature [°C] 
b CIT = Compost internal temperature [°C] 
c C:N = Carbon-to-nitrogen ratio 
 

 

 

 

 

Bedding Characteristics 

 CSTa CITb C:Nc pH  

Moisture -0.58 
<0.001 

-0.61 
<0.001 

-0.13 
0.01 

-0.37 
<0.001 

r 
p-value 

CSTa 1.00 0.60 
<0.001 

0.003 
0.96 

0.41 
<0.001 

r 
p-value 

CITb  1.00 0.10 
0.05 

0.48 
<0.001 

r 
p-value 

C:Nc  
 

 1.00 -0.34 
<0.001 

r 
p-value 
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Table 3.6. Least squares means (SE) for the effect of week on CBP bedding characteristics (moisture, internal temperature [°C], 
carbon-to-nitrogen [C:N] ratio, and pH), where n = 396. All values were significant at p < 0.001. Week 0 = December 2-8, 
2018 and Week 24 = May 19-25, 2019. 

 

  Moisture (%) Internal Temperature (°C) C:N Ratio pH 
Week Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

0 55.0 (1.0) 31.27 (1.03) 25.60 (0.54) 9.21 (0.03) 
1 57.0 (1.0) 33.58 (1.03) 22.70 (0.54) 9.32 (0.03) 
2 57.0 (1.0) 36.67 (1.03) 23.48 (0.54) 9.28 (0.03) 
4 62.0 (1.0) 32.32 (1.03) 23.25 (0.54) 9.32 (0.03) 
5 58.0 (1.0) 35.93 (1.03) 24.22 (0.54) 9.32 (0.03) 
6 62.0 (1.0) 33.46 (1.03 24.92 (0.54) 9.27 (0.03) 
7 61.0 (1.0) 34.57 (1.03) 26.83 (0.54) 9.33 (0.03) 
8 62.0 (1.0) 33.80 (1.03) 26.95 (0.54) 9.22 (0.03) 
10 62.0 (1.0) 37.25 (1.03) 27.30 (0.54) 9.29 (0.03) 
11 63.0 (1.0) 40.43 (1.03) 25.96 (0.54) 9.33 (0.03) 
12 58.0 (1.0) 32.56 (1.03) 27.29 (0.54) 9.33 (0.03) 
13 59.0 (1.0) 35.40 (1.03) 29.20 (0.54) 9.19 (0.03) 
14 57.0 (1.0) 39.85 (1.03) 31.66 (0.54) 9.12 (0.03) 
15 60.0 (1.0) 46.24 (1.03) 25.69 (0.54) 9.31 (0.03) 
16 57.0 (1.0) 38.36 (1.03) 30.59 (0.54) 9.29 (0.03) 
17 52.0 (1.0) 45.34 (1.03) 35.25 (0.54) 9.24 (0.03) 
18 52.0 (1.0) 51.79 (1.03) 30.24 (0.54) 9.42 (0.03) 
19 53.0 (1.0) 46.79 (1.03) 23.22 (0.54) 9.43 (0.03) 
21 51.0 (1.0) 50.43 (1.03) 23.62 (0.54) 9.46 (0.03) 
22 48.0 (1.0) 53.21 (1.03) 26.45 (0.54) 9.42 (0.03) 
23 51.0 (1.0) 50.31 (1.03) 23.65 (0.54) 9.62 (0.03) 
24 48.0 (1.0) 48.83 (1.03) 23.95 (0.54) 9.59 (0.03) 
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Table 3.7. Least squares means (SE) for the effect of week on bedding bacteria (total bacteria count, coliforms, Staphylococcus spp. 
counts, and Streptococcus spp. counts).  All values were significant at p < 0.001. Week 0 = December 2-8, 2018 and Week 24 
= May 19-25, 2019. 

*log10 cfu/g DM

  Total bacteria count* Coliforms* Staphylococcus spp.* Streptococcus spp.* 
Week Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

0 6.76 (0.05) 5.12 (0.09) 5.35 (0.11) 5.35 (0.09) 
1 6.73 (0.05) 5.01 (0.09) 5.79 (0.11) 6.04 (0.09) 
2 6.60 (0.05) 5.14 (0.09) 5.74 (0.11) 5.69 (0.09) 
4 6.53 (0.05) 4.84 (0.09) 5.75 (0.11) 6.26 (0.09) 
5 6.45 (0.05) 4.94 (0.09) 5.50 (0.11) 5.75 (0.09) 
6 6.54 (0.05) 4.91 (0.09) 5.38 (0.11) 5.94 (0.09) 
7 6.40 (0.05) 4.93 (0.09) 5.58 (0.11) 6.20 (0.09) 
8 6.34 (0.05) 4.76 (0.09) 5.47 (0.11) 6.18 (0.09) 
10 6.30 (0.05) 4.89 (0.09) 5.33 (0.11) 6.21 (0.09) 
11 6.16 (0.05) 4.96 (0.09) 4.28 (0.11) 5.54 (0.09) 
12 6.06 (0.05) 4.67 (0.09) 5.32 (0.11) 6.20 (0.09) 
13 6.85 (0.05) 5.53 (0.09) 5.51 (0.11) 6.87 (0.09) 
14 6.19 (0.05) 4.96 (0.09) 5.40 (0.11) 6.28 (0.09) 
15 6.43 (0.05) 5.19 (0.09) 5.36 (0.11) 5.62 (0.09) 
16 6.17 (0.05) 4.33 (0.09) 5.31 (0.11) 5.62 (0.09) 
17 6.52 (0.05) 5.17 (0.09) 5.45 (0.11) 6.07 (0.09) 
18 6.52 (0.05) 4.82 (0.09) 5.49 (0.11) 5.40 (0.09) 
19 6.83 (0.05) 5.45 (0.09) 5.57 (0.11) 6.14 (0.09) 
21 6.78 (0.05) 4.79 (0.09) 6.18 (0.11) 6.64 (0.09) 
22 7.20 (0.05) 5.59 (0.09) 6.56 (0.11) 6.54 (0.09) 
23 7.13 (0.05) 5.51 (0.09) 5.76 (0.11) 6.62 (0.09) 
24 7.18 (0.05) 5.54 (0.09) 6.18 (0.11) 6.13 (0.09) 
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Table 3.8. Final mixed models of relationships found between the explanatory bedding characteristics (moisture, surface temperature 
(°C), internal temperature (°C), C:N ratio, pH, P, K, Ca, Mg, Zn, Cu, Mn, and Fe) with the response variables (bedding total 
bacteria count, coliforms, Staphylococcus spp. counts, and Streptococcus spp. counts), where n = 396 and values were 
statistically significant at p < 0.05. Week was included in the model as a fixed effect.  

*log10 cfu/g DM 
β (SE)1 = Regression coefficients (standard error) 
a CST = Compost surface temperature (°C) 
b CIT = Compost internal temperature (°C) 
c C:N = Carbon-to-nitrogen ratio 
d Variables showed a tendency with statistical significance of 0.10 ≤ p > 0.05 
NSe = not significant.

 
Total Bacteria Count* Coliforms* Staphylococcus spp.* Streptococcus spp.* 

Variables β (SE)1 P-value β (SE)1 P-value β (SE)1 P-value β (SE)1 P-value 
Moisture -2.35 (0.30) <0.001 -1.68 (0.55) 0.002 -1.89 (0.65) 0.004 3.07 (0.58) <0.001 
CSTa 0.005 (0.003) 0.06d NS 

 
NS 

 
NS 

 

CITb NSe 
 

NS 
 

-0.01 (0.01) 0.07d NS 
 

C:Nc NS 
 

-0.03 (0.01) 0.004 NS 
 

NS 
 

pH NS 
 

-0.51 (0.18) 0.004 NS 
 

-0.64 (0.19) 0.001 
Phosphorus -0.81 (0.36) 0.02 NS 

 
NS 

 
-1.21 (0.67) 0.07d 

Potassium 0.44 (0.14) 0.002 NS 
 

NS 
 

0.46 (0.26) 0.07d 
Calcium NS 

 
NS 

 
NS 

 
NS 

 

Magnesium NS 
 

NS 
 

NS 
 

NS 
 

Zinc NS 
 

NS 
 

0.001 (0.0003) 0.07 NS 
 

Copper NS 
 

NS 
 

NS 
 

0.01 (0.003) <0.001 
Manganese NS 

 
0.001 (0.0002) 0.03 -0.001 (0.001) 0.02 NS 

 

Iron NS 
 

NS 
 

0.0001 (0.00004) 0.03 0.0001 (0.00002) 0.002 
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Table 3.9. LS means (SE) of the dependent bedding variables (moisture, internal temperature, C:N ratio, TBC, coliforms, 
Staphylococcus spp. counts, and Streptococcus spp. counts) with the explanatory variables week, sample location, and 
week*sample location interaction included in all models, where n = 396. The sample location within the CBP barn was 
statistically significant (p <0.05) for all dependent variables. 

*log10 cfu/g DM 
1 CIT = Compost internal temperature (°C) 
2 C:N = Carbon-to-nitrogen ratio 
3 TBC = Total bacteria count 
4 Staph. = Staphylococcus spp. counts 
5 Strep. = Streptococcus spp. counts 
 

Sample Location Moisture CIT1 C:N2 pH TBC*3 Coliforms* Staph.*4 *Strep.*5 
1 59.52 (0.35) 36.98 (0.49) 24.91 (0.28) 9.33 (0.01) 6.49 (0.03) 5.07 (0.05) 5.44 (0.07) 6.19 (0.04) 
2 58.25 (0.34) 41.06 (0.49) 25.62 (0.28) 9.36 (0.01) 6.51 (0.03) 5.03 (0.05) 5.43 (0.07) 6.19 (0.04) 
3 56.90 (0.34) 41.21 (0.49) 25.12 (0.28) 9.40 (0.01) 6.66 (0.02) 5.13 (0.05) 5.62 (0.06) 6.26 (0.04) 
4 59.52 (0.35) 39.07 (0.48) 26.99 (0.28) 9.33 (0.01) 6.47 (0.03) 4.93 (0.05) 5.52 (0.06) 6.08 (0.04) 
5 57.80 (0.34) 41.12 (0.49) 27.95 (0.28) 9.35 (0.01) 6.45 (0.03) 4.84 (0.04) 5.38 (0.07) 6.12 (0.04) 
6 56.30 (0.34) 42.60 (0.49) 26.49 (0.28) 9.39 (0.01) 6.59 (0.03) 4.90 (0.04) 5.60 (0.07) 6.00 (0.04) 
7 55.22 (0.34) 36.36 (0.49) 26.41 (0.28) 9.20 (0.01) 6.67 (0.02) 5.29 (0.05) 5.69 (0.07) 6.10 (0.04) 
8 54.19 (0.34) 41.25 (0.49) 27.07 (0.28) 9.25 (0.01) 6.60 (0.02) 5.21 (0.05) 5.59 (0.07) 5.91 (0.04) 
9 51.41 (0.35) 43.76 (0.49) 27.54 (0.28) 9.38 (0.01) 6.74 (0.03) 5.02 (0.05) 5.75 (0.07) 5.69 (0.04) 
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Figure 3.1. Mean weather data (ambient temperature [°C], dew point [°C], and relative humidity [%]) stratified by week, where Week 
0 = December 2-8, 2018 and Week 24 = May 19-25, 2019. Relative humidity was divided by 5 in order to visually compare on 
the same graph. 
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Figure 3.2 Mean bedding bacteria counts separated by bacteria group (coliforms, Staphylococcus (Staph.) spp., and Streptococcus (Strep.) 
spp.) stratified by week, where Week 0 = December 2-8, 2018 and Week 24 = May 19- 25, 2019. 
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Figure 3.3. Bedding moisture percent over time, where the boxplots indicate the mean moisture by week and the colored dots indicate 
the moisture percentage for each of the 9 individual sample locations by week. Week 0 = December 2-8, 2018 and Week 24 = 
May 19-25, 20  19. The yellow shaded area indicates the recommended CBP moisture (40-60%). 
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Figure 3.4. Bedding internal temperature (°C) over time, where the boxplots indicate the mean internal temperature by week and the 
colored dots indicate the internal temperature for each of the 9 individual sample locations by week. Week 0 = December 2-8, 
2018 and Week 24 = May 19-25, 2019. The green shaded area indicates the recommended CBP internal temperature (43.3-
65.0°C).  
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Figure 3.5. Bedding carbon-to-nitrogen (C:N) ratio over time, where the boxplots indicate the mean C:N ratio by week and the colored 
dots indicate the C:N ratio for each of the 9 individual sample locations by week. Week 0 = December 2-8, 2018 and Week 24 = 
May 19-25, 2019. The blue shaded area indicates the recommended CBP C:N ratio (25:1 – 30:1). 



 

71 

 

Figure 3.6. Bedding total bacteria count (TBC) over time, where the boxplots indicate the mean TBC by week and the colored dots 
indicate the TBC for each of the 9 individual sample locations by week. Week 0 = December 2-8, 2018 and Week 24 = May 
19-25, 2019. 
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Figure 3.7.  Bedding pH over time, where the boxplots indicate the mean pH by week and the colored dots indicate the pH for each of 
the 9 individual sample locations by week. Week 0 = December 2-8, 2018 and Week 24 = May 19-25, 2019.  
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4.1 Introduction 

The detrimental effects of mastitis in the dairy industry have prompted continued 

research into how it can be controlled and prevented. One area to consider is the cow’s 

environment. Improvement of dairy cattle housing management to increase cow comfort 

has led producers to develop a unique housing system, the compost bedded pack (CBP) 

barn. Key management practices such as twice-daily tilling of the pack and addition of 

organic bedding material are necessary for microbial growth. Optimal microbial activity is 

achieved by maintaining a CBP environment that has a moisture content of 40 – 60%, an 

internal temperature of 43.3°C – 65.0°C, and a carbon-to-nitrogen (C:N) ratio of 25:1 to 

30:1. This environment ultimately produces a soft, comfortable material for dairy cows to 

lie on. However, Black et al. (2014) found that there are high amounts of mastitis-causing 

pathogens in compost bedding. Exposure to environmental pathogens found in bedding 

occurs when teats are exposed to the bedding and bacteria are transferred to the teat skin 

(Rowbotham and Ruegg, 2016). In turn, extensive research has been conducted to look at 

various bedding material and the bacteria associated with it as possible risk factors for 

mastitis. Studies have reported positive correlations between bacterial populations in 

bedding and on teat ends (Hogan et al., 1999, Zdanowicz et al., 2004). 

However, many studies have not found strong relationships between teat end or teat 

skin bacteria counts and mastitis. Consequently, there is a lack of evidence to support the 

widely held belief that high bedding bacteria counts are a risk factor for IMI and mastitis 

(Rowe et al., 2019). More recently, researcher have begun attempting to prove or disprove 

that belief. Several research groups have investigated bacteria counts in common bedding 
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types such as new sand, recycled sand, recycled manure solids, and wood bedding 

(sawdust, shavings), and their impact on udder health parameters (Patel et al., 2019, Robles 

et al., 2019, Rowe et al., 2019). Rowe et al. (2019) reported that the IMI prevalence in late-

lactation dairy cows was low in the US, indicating that high bedding bacteria may not be a 

risk factor for IMI prevalence in late lactation. Research is needed that investigates the 

effects of CBP barn bedding bacteria counts on udder health parameters, since the compost 

bedding to which cows are exposed to is home to an increased microbial population. 

Additionally, research is needed that specifically looks at bedding bacteria and its effects 

on transition cow health, which is the time period of 3 weeks pre- through 3 weeks 

postpartum (Grummer, 1995).  During this time, cows are at a higher risk for mastitis due 

to a compromised immune system such that it’s imperative to reduce exposure to 

environmental factors that would add to that risk.  

To the author’s knowledge, no study that investigates the relationships between 

CBP barn bedding characteristics, bacterial counts, and seasonal change (winter to 

spring) on the microbial population change of teat skin, teat ends, and milk samples 

currently exist. The objectives of this study were to (1) investigate the direct relationships 

between bacteria counts on the teat skin, teat ends, and in the milk, and if different stages 

within the transition period effect these bacteria counts. Objective (2) was to determine 

what environmental factors (previously described in Chapter 3) effect cow-level bacterial 

counts when both time and the transition period time points were considered. I 

hypothesized that there would be a positive correlation between the bacterial counts 

found in compost bedding and the microflora found on the teat skin and teat ends. 
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Additionally, I hypothesized that the bacterial counts on the teat ends were strongly 

correlated to the bacteria found in the milk. 

4.2 Materials and Methods 

Detailed cow-level sampling protocols and laboratory analysis for this study can 

be found in Chapter 2. Briefly, the observational study occurred from December 2018 to 

May 2019 at the University of Kentucky’s Coldstream Dairy research farm. Twenty-six 

Holstein dairy cows were enrolled (parity: 2.08 ± 1.17 [mean ± SD]) during the study 

with no cow exclusion criteria. All cows were housed on a twice-daily tilled CBP barn 

and were enrolled based on their expected calving dates. Samples were collected at 

specific time points within the transition period for each cow, which was deemed the 

term Experimental Week, “Expt week”. Each cow had samples collected for Expt weeks 

-1, 0, and 1-8. Experimental week -1 represented the sample collection time at about 2 

weeks prepartum, which included teat end scores, teat skin total bacteria count (TBC), 

teat end TBC, teat skin coliforms, teat end coliforms, teat skin Staphylococcus spp. 

(Staph.) counts, teat end Staph. counts, teat skin Streptococcus spp. (Strep.) counts, and 

teat end Strep. counts. The Expt week 0 represented samples collected at 48-72h 

postpartum, which included the previously stated samples as well as milk TBC, milk 

coliform count, and somatic cell count (SCC). Expt week 1 represented the first biweekly 

set of samples that were collected, followed by Expt week 2-8 which were the 

continuation of biweekly sampling. Expt week 8 represented the last set of samples 

collected, which was at 60 ± 7 days in milk (DIM) for each individual cow.   
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All teat skin sponges, teat end swabs, and milk samples were collected 

aseptically. All samples were transported in a cooler (remained at < 4°C) to the 

University of Kentucky’s Animal and Food Science microbiology laboratory where 

microbial analysis was conducted within 24h of collection. Previously described 

enumeration methods were used on the teat skin sponges and teat end swabs to obtain 

TBC, coliforms, Staph. counts, and Strep counts. Milk samples were analyzed for the 

presence or absence of bacteria and enumeration methods were used to determine TBC 

and coliform count in each sample. Furthermore, milk samples were classified as 

contaminated as described by Parker et al. (2008), where >2 distinct colony types present 

on any plate of the same sample was considered contaminated and discarded. An 

intramammary infection (IMI) was defined as the isolation of 100 cfu/mL of identical 

colonies on the same plate. For all IMI, bacterial identification to the species level was 

determined using a Vitek 2 Compact Analyzer (Biomerieux, Hampshire, UK; Vitek 2 

Gram Positive card kit, 20 cards; Vitek 2 Gram Negative card kit, 20 cards) 

4.3 Statistical Analysis 

4.3.1 Cow-level information. 

The MEANS procedure of SAS (Version 9.4; SAS Institute Inc., Cary, NC, USA) 

was used to determine the mean (± SD) of the following cow variables: parity, teat end 

scores, milk TBC, milk coliforms, SCC, teat skin TBC, teat end TBC, teat skin coliforms, 

teat end coliforms, teat skin Staph. counts, teat end. Staph. counts, teat skin Strep. counts, 

teat end Strep. counts. Every sample was analyzed on an individual, quarter-level basis, 

with n = 532 for all milk-related samples and n = 639 for all teat skin & teat end samples.  
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Pearson correlation coefficients were calculated to find associations among the 

continuous variables (parity, milk TBC, milk coliforms, SCC, teat skin TBC, teat end 

TBC, teat skin coliforms, teat end coliforms, teat skin Staph. counts, teat end Staph. 

counts, teat skin Strep. counts, and teat end Strep. counts) using the CORR procedure of 

SAS. Relationships were considered statistically significant at p < 0.05. Univariate mixed 

models (proc MIXED of SAS) were used to investigate the direct relationship of the 

effect of experimental week on the response variables: Milk TBC, SCC, teat skin TBC, 

teat end TBC, teat skin coliforms, teat end coliforms, teat skin Staph. counts, teat end 

Staph. counts, teat skin Strep. counts, and teat end Strep. counts. 

Mastitis-causing pathogens isolated from milk samples. Due to the large portion 

of milk samples that came back as culture-negative (no growth), the analysis of 

pathogens isolated in the milk samples was limited. The SUMMARY procedure of SAS 

was used to determine the mean SCC of each of the mastitis-causing pathogens isolated 

from the milk samples. Mastitis prevalence by each experimental week was calculated by 

dividing the number of culture-positive milk samples by the total number of milk samples 

within each time point. 

4.3.2 Interactions between environmental factors and cow over time. 

Pearson correlation coefficients were calculated to find relationships between the 

continuous cow variables and environmental variables (ambient temperature, relative 

humidity, dew point, bedding moisture, internal temperature, surface temperature, 

carbon-to-nitrogen (C:N) ratio, pH, bedding TBC, bedding coliforms, bedding Staph. 

counts, and bedding Strep. counts). Relationships were considered statistically significant 
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at p < 0.05. Correlations were used as a guideline for what explanatory variables to 

include in the regression models to avoid confounding variables. 

The MIXED procedure of SAS was used to investigate how the explanatory 

variables (week, experimental week, ambient temperature, bedding moisture, internal 

temperature, surface temperature, C:N ratio, pH, bedding TBC, parity, and teat end 

scores) effect the cow response variables (milk TBC, SCC, teat skin TBC, teat end TBC, 

teat skin coliforms, teat end coliforms, teat skin Staph. counts, teat end Staph. counts, teat 

skin Strep. counts, and teat end Strep. counts). The explanatory variables week, 

experimental week, and the week*experimental week interaction remained in every 

mixed model regardless of significance. All other explanatory variables were subject for 

removal using backward stepwise elimination process if p > 0.10. Overall statistical 

significance for main effects was declared at p ≤ 0.05. The experimental week variable 

was included as a repeated measure. Quarter nested within cow was included as the 

subject. Least squares means (SE) of the experimental weeks were compared, and the 

Bonferroni correction factor was used to adjust the p-value to perform multiple contrasts 

among the experimental weeks. Similarly, the LS means of parity were compared, but 

only on the response variables that kept parity in their final mixed model.  

The final mixed model results were interpreted in two specific ways: (1) the 

explanatory variables were statistically significant in that the p-value < 0.05. This follows 

the same interpretation as any other study that utilizes statistical analysis. However, (2) 

was to interpret the numerical change observed by the response variables due to the 



80 

statistically significant explanatory variables, which we called practically significant. 

Because the response variables were microbiological bacteria counts, while the change in 

the bacteria counts would have p < 0.05, the numerical change was considered negligible 

if it was lower than 1-log difference. This was simply due to what we were measuring. 

For example, if the bacteria counts only changed by 0.07 log10 cfu/g due to one of the 

explanatory variables at p < 0.05; we would conclude that this was statistically significant 

but not practically significant. This interpretation will be used for the results of this 

chapter. 

4.4 Results and Discussion 

4.4.1 Cow-level information. 

Mean cow-level variables (parity, milk TBC, milk coliforms, SCC, teat end 

scores, teat skin TBC, teat end TBC, teat skin coliforms, teat end coliforms, teat skin 

Staph., teat end Staph., teat skin Strep., and teat end Strep. counts) were described in 

Table 4.1, where n = 532 for milk-related samples, n = 639 for teat skin/end samples, and 

n = 26 for parity. Cows in the study ranged from first lactation heifers (parity = 1) to sixth 

lactation cows (parity = 6), with a mean of 2.13 ± 1.24.  

For all bacteria types, the teat skin samples had nearly double the bacteria load 

compared to the teat end swabs. The mean teat skin TBC was at 5.93 ± 0.51 log10 cfu/g, 

whereas the mean teat end TBC was at 3.46 ± 1.26 log10 cfu/g. Moreover, the mean teat 

skin Staph. counts were at 5.07 ± 1.64 log10 cfu/g compared to the mean teat end Staph. 

counts at 2.63 ± 1.20 log10 cfu/g. The large difference was likely due to the surface area 

between teat skin samples and teat end swabs.  
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The mean milk TBC was 0.54 ± 1.15 log10 cfu/ml. This value can be explained 

due to the large portion of milk samples with no growth (0.00 log10 cfu/ml) at 81.58% 

(434 out of 532 milk samples). Results showed that many culture-positive milk samples 

occurred at the 48-72h sampling time, with the mastitis prevalence at 27.88% (Table 4.2). 

For the remainder of the study, mastitis prevalence fluctuated between 14.29% to 33.33% 

with no apparent trend. Of the milk samples that had bacterial growth, the following 

microorganisms were those identified as the source of infection: Escherichia coli, 

Streptococcus spp., Staphylococcus aureus, Bacillus licheniformis, Staphylococcus 

chromogenes, Staphylococcus warneri, Staphylococcus hyicus, Staphylococcus 

epidermidis, and Staphylococcus lugdunensis. Staphylococcus chromogenes was isolated 

the most frequently (n = 60), followed by Staphylococcus aureus (n =15). The mean SCC 

for CNS species (all Staphylococcus species identified except Staphylococcus aureus) 

was 4.76 (log10), or 57,544 somatic cells/ml compared with a SCC of 3.38 (log10) or 

2,399 cells/ml for culture negative quarters (Figure 4.1). Of the CNS species, 

Staphylococcus chromogenes was the most prevalent and had a mean SCC of 4.40 (log10) 

or 25,119 cells/ml. Interestingly, Staphylococcus warneri, another CNS species, had a 

mean SCC of 5.64 (log10) or 436,516 cells/ml.  Previous research has provided mixed 

results on the effects of CNS species on milk SCC (Jarp, 1991, Borm et al., 2006) , which 

was also seen in this study when CNS species were identified to the genus level. Results 

suggest that the usage of the umbrella term “CNS” mastitis may be an inaccurate 

interpretation, as the severity of each Staphylococcus species varies significantly. 

Conversely, Staphylococcus aureus had a slightly higher mean SCC at 5.06 (log10), or 
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114,815 somatic cells/ml and E. coli had a mean SCC of 5.74 (log10), or 549,541 cells/ml. 

These results were expected due to the pathogenic nature of both Staphylococcus aureus 

and E. coli infections, likely resulting in more severe inflammation as seen by an elevated 

milk SCC.  

Pearson correlation coefficients of all continuous cow variables helped determine 

relationships between bacteria counts on the teat skin, teat end, and in the milk samples 

(Table 4.3). Milk coliforms were excluded from the table due to no statistical significance 

with any other variable. Milk TBC had a weak positive relationship with teat end TBC (r 

= 0.18; p < 0.001), teat end Staph. counts (r = 0.24; p < 0.001), and teat end Strep. counts 

(r = 0.16; p =0.001). Interestingly, the relationship between milk TBC and teat skin TBC 

was very weak (r = 0.10; p = 0.02). Moreover, milk TBC had a moderately positive 

correlation with SCC (log10) (r =0.27; p < 0.001).  The correlation between milk bacteria 

count and SCC may be thought to have a stronger relationship, however, depending on 

the pathogen and the immune response of each individual cow, the somatic cells present 

in the udder may have a slight delay or may fluctuate over time. Thus, the SCC reported 

at the same time the milk sample was collected may not be as correlated as one would 

believe. As expected, teat skin TBC had a strong positive correlation with teat end TBC 

(r = 0.42; p < 0.001). Similarly, teat skin and teat end coliform counts had a strong 

positive correlation (r = 0.46; p < 0.001), teat skin and teat end Staph. counts had a 

moderately positive correlation (r = 0.22; p < 0.001), and teat skin and teat end Strep. 

counts had a moderately positive correlation (r = 0.22; p < 0.001). Interestingly, 

relationships were found between various bacteria types (coliforms, Staph., and Strep. 
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counts) within each sample type (teat skin or teat ends). Teat skin coliforms had a 

positive relationship with teat skin Staph. counts (r = 0.21; p < 0.001) and with teat skin 

Strep. counts (r = 0.38; p < 0.001). Similarly, teat end coliforms had a positive 

relationship with teat end Staph. counts (r = 0.14; p = 0.001) and with teat end Strep. 

counts (r = 0.22; p < 0.001). It is not entirely understood why these correlations were 

found, because coliforms do not normally inhabit the skin, environment whereas 

Staphylococcus spp. and Streptococcus spp. do. This relationship may also be possible if 

the sample sites were covered in feces, for example. This would lead to an overall 

increase in bacterial population. However, correlation coefficients do not account for 

other factors that may contribute to the relationship or lack-there-of. In turn, these results 

were used a guideline for expected relationships that should be seen in later statistical 

analyses.  

4.4.2 Effect of experimental weeks on cow variables. 

Results from the univariate models indicated that most cow variables changed (p 

< 0.05) depending on the time within the transition period (expt week), with the 

exception of milk TBC which had a tendency (p = 0.06) to change (Table 4.4). 

Interestingly, milk SCC was reported highest immediately postpartum, with the LS 

means (SE) of 5.31 (0.17) log10. Over the following week, the SCC significantly 

decreased to 4.13 (0.24) log10 and continued a slow decrease with time. The high SCC 

observed at 48-72h postpartum may be due to some milk samples still containing 

colostrum. Since colostrum is comprised of many immune cells, the SCC would reflect 

that which would result in a higher SCC. This could make the results potentially 
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inaccurate if SCC was the only udder health parameter measured. In turn, it was 

important to interpret results by the milk TBC and not the SCC alone. 

Effect of experimental week on teat skin bacterial counts. The least squares means 

(SE) of teat skin coliforms and teat skin Staph. counts were statistically significant (p < 

0.05) from expt week -1 (prepartum) to expt week 0 (48-72h postpartum). When cows 

calved, teat skin coliform counts increased from 2.09 (0.07) to 2.75 (0.07) log10 cfu/g and 

teat skin Staph. counts decreased from 5.67 (0.16) to 4.53 (0.16) log10 cfu/g. However, as 

cows progressed through early lactation to 60 DIM (expt weeks 1-8), the mean teat skin 

coliforms and Staph. counts fluctuated slightly but stabilized with time (Figure 4.2). 

Moreover, teat skin Strep. counts were not significantly affected by expt week. Post-dip 

teat disinfectant is implemented once cows calve and aid in the prevention of new 

infections in the udder. While the target of teat disinfectant is primarily the teat end, 

results suggest that it may also contribute to the change seen in bacterial load at the teat 

skin.  

Effect of experimental week on teat end bacterial counts. The least squares means 

(SE) of teat end coliforms, Staph., and Strep. counts were statistically significant (p < 

0.05) from prepartum to postpartum (expt weeks -1 to 0). When cows calved, teat end 

coliforms increased from 1.19 (0.04) to 1.46 (0.04) log10 cfu/g. However, at the same 

time, Staph. counts decreased from 4.08 (0.09) to 2.63 (0.09) log10 cfu/g, and Strep. 

counts decreased from 2.85 (0.06) to 2.46 (0.06) log10 cfu/g. Similar to what was 

observed for teat skin bacteria counts, as cows progressed through early lactation to 60 
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DIM (expt weeks 1-8), there was no significant changes for any of the teat end bacteria 

groups, and with little fluctuation, as shown in Figure 4.3. This suggests that the cow’s 

microflora at the teat ends stabilize once her body gets past the first few stressful days 

immediately after calving. Additionally, teat end disinfectant post-milking is 

implemented immediately postpartum. This proper milking procedure step is likely a 

major contributor to the decrease in total bacteria counts at the teat ends, which decreased 

from 4.54 (0.11) to 3.65 (0.11) log10 cfu/g (Table 4.4). These results provide evidence 

that post-dipping is an effective management tool in reducing bacterial load at the teat 

end level.  

Relationships were found between milk bacteria counts and teat end bacteria 

counts, suggesting that the bacterial load and bacteria species found on the teat ends may 

contribute to the presence or absence of an IMI. Additionally, strong correlations between 

teat skin and teat end bacteria counts were evident, such that as the bacterial load on the 

teat skin increased, the bacterial load on the teat end increased. These relationships, 

however, may vary significantly when environmental factors are taken into consideration. 

Results from this study also indicated that various stages in the transition period affected 

all bacteria counts. The transition period, or the time period 3 weeks pre- to 3 weeks 

postpartum (Grummer, 1995), has been noted to increase oxidative stress in dairy cows, 

resulting in increased risk of  metabolic diseases and mastitis. Significant changes were 

observed from prepartum to 72 postpartum, where teat skin and teat end coliforms 

increased and Staph. counts decreased. It is not entirely understood why the changes 

varied by bacteria species. It does suggest that the heightened oxidative stress at time of 
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calving may affect the microbial population and quantity found on the teat skin and teat 

end. Moreover, the observed stabilization of teat skin and teat end bacterial counts after 

1-2 weeks postpartum may be a consequence of effective teat disinfectant during the

milking procedure. However, it may take >3 days of daily disinfectant use (i.e. the first 

3+ days of lactation) to see noticeable teat bacteria changes. Future research is needed to 

measure stress at parturition and determine what mechanism may contribute to alterations 

of teat microbial population. 

4.4.3 Interactions between cow and environmental measures. 

 Pearson correlation coefficients were measured to determine associations 

between the cow and environmental (bedding and weather) variables (Tables 4.5 and 

4.6). Not all variables were listed in either table; only relationships that were statistically 

significant (p < 0.05). Bedding internal temperature at a depth of 20.3-cm had moderately 

negative relationships (p < 0.001) with the following variables: milk TBC (r = -0.19), 

SCC (r = -0.30), teat skin TBC (r = -0.24), teat end TBC (r = -0.25), teat end Staph. 

counts (r = -0.26), and teat end Strep. counts (r = -0.23). Similarly, bedding surface 

temperature had a moderately negative relationship SCC (r = -0.27), teat skin TBC (r = -

0.32), teat end TBC (r = -0.20), teat end Staph. counts (r = -0.26), and teat end Strep. 

counts (r = -0.18). Milk TBC, however, had no correlation with bedding surface 

temperature. Bedding moisture had significant (p < 0.001) weak relationships with the 

following variables: milk TBC (r = 0.13), teat skin TBC (r = 0.18), teat end TBC (r = 

0.15), teat end Staph. counts (r = 0.16), and teat end Strep. counts (r = 0.18). Moreover, 

bedding moisture had a moderately positive correlation with SCC (r = 0.32; p < 0.001). 
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The bedding pH was negatively associated with SCC (r = -0.25; p < 0.001) and teat end 

Staph. counts (r = -0.13; p < 0.001). Interestingly, no relationships were found between 

any of the cow variables and the following environmental measures: bedding C:N ratio, 

bedding coliform counts, and bedding Strep. counts. Additionally, bedding TBC and 

bedding Staph. counts were only moderately correlated with SCC, at r = -0.27 and r = -

0.20; p < 0.001, respectively. There were no statistically significant relationships found 

between bedding bacterial counts and the cow-level bacterial counts. These results 

contradict previous statements that a direct correlation exists between bedding bacteria 

counts and bacteria counts on the teat ends (Hogan and Smith, 1997, Zdanowicz et al., 

2004).   

Correlations between weather variables and the cow variables were reported in 

Table 4.6. Ambient temperature had a moderately negative relationship (at p < 0.001) for 

with the following variables: SCC (r = -0.29), teat skin TBC (r = -0.23), teat end TBC (r 

= -0.21), teat end Staph. counts (r = -0.25), and teat end Strep. counts (r = -0.18). The 

relative humidity (RH) had a moderate to weak association (p < 0.001) with the following 

variables: teat skin TBC (r = 0.25), teat end TBC (r = 0.24), teat end Staph. counts (r = 

0.16), teat end coliforms (r = 0.19), and teat end Strep. counts (r = 0.22).  

Pearson correlations were used as a guide for what explanatory variables to 

include in the final mixed models to avoid confounding variables. This became difficult 

to determine what environmental (both bedding and weather) variables to include or 

exclude, as many were strongly correlated with each other.  For weather variables, RH 
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was excluded due to the strongly association with ambient temperature. For bedding 

bacteria, only the bedding TBC was included in the final models, thus bedding coliforms, 

Staph. counts, and Strep. counts were excluded. Results from the previous chapter 

indicated strong associations with the remaining bedding characteristics (moisture, 

internal temperature, surface temperature, C:N ratio, and pH), such that when bedding 

internal temperature increased, moisture decreased (at r = -0.61), for example. This would 

inevitably result in confounding variables in the final mixed models; however, none were 

excluded. Results of the final mixed models described the environmental effects on cow 

bacterial counts, shown in Table 4.7.  

4.4.3.1 Final mixed models of udder health measures. 
Interestingly, the only variables that effected milk TBC were teat end scores (p = 

0.004) parity (p < 0.001), and bedding C:N ratio had the tendency to influence milk TBC 

(p = 0.09) (Table 4.7). Since parity remained in the final model, the differences between 

least squares means by parity were compared (Table 4.8). Results showed that the milk 

TBC LSMeans (SE) of parity 1 cows was 0.73 (0.19) log10 cfu/ml, whereas parity 2 cows 

had a milk TBC of 0.06 (0.24) log10 cfu/ml. Moreover, there was a significant (p < 0.001) 

difference between milk TBC of parity 1 cows compared to parity 2, 3, and 6, but no 

differences between the latter 3 parities. The low milk bacterial counts observed were due 

to the regression model which included all milk samples in the study, most of which were 

culture negative. To verify the drastic difference between milk TBC of parity 2 versus the 

others, the mean milk TBC by parity was determined for only milk samples that had a 

milk TBC of > 0.00 log10 cfu/ml (Figure 4.4). Results were confirmed that parity 1 had a 
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higher mean milk TBC of infected quarters at 2.83 log10 cfu/ml compared to parity 2 at 

1.94 log10 cfu/ml, parity 3 at 2.09 log10 cfu/ml, and parity 6 at 1.41 log10 cfu/ml. This 

suggests that first lactation heifers experienced more IMI than 2+ parity cows. These 

findings contradict previous research that higher parity (older cows) were at greater risk 

of getting an IMI compared to primiparous cows (Hertl et al., 2011, Jamali et al., 2018) . 

The other udder health parameter measured was the milk SCC. Results indicated that the 

SCC increased by 4.93 (1.60) log10 at p = 0.002 as bedding moisture increased by 1% and 

decreased by 1.59 (0.56) log10 at p = 0.01 as bedding pH increased by 1.0. It is not 

entirely understood why bedding pH had such a large influence on SCC, but more 

research is needed to investigate that specific relationship. The bedding moisture 

influence on SCC may be explained in that a CBP environment with high moisture tends 

to adhere to the cows’ udders more which would increase udder hygiene score, an 

indirect measure of an IMI (Lobeck et al., 2011, Eckelkamp et al., 2016b). Additionally, 

the milk SCC was significantly influenced by the week * expt week interaction (p = 

0.001). The week * expt week interaction explained the effect of both the stage within the 

transition period and the time when the cows were enrolled, which could have been 

January – February, March – April, etc. Since both variables were previously shown to 

separately influence all other variables, it was important to keep the interaction between 

the two in all final mixed models. 

4.4.3.2 Final mixed models of teat skin bacterial counts. 
 Environmental variables influenced the teat skin bacterial counts differently, 

which varied by bacteria species (Table 4.7). Regression coefficients (SE) indicated that 
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as bedding moisture increased by 1%, teat skin TBC had a tendency (p = 0.07) to 

decrease by 1.06 (0.59) log10 cfu/g. Bedding internal temperature at a depth of 20.3-cm 

only influenced teat skin Staph. counts (p = 0.01), in that as the internal temperature 

increased by 1°C, teat skin Staph. counts decreased by 0.03 (0.01) log10 cfu/g. The impact 

of CBP moisture and internal temperature characteristics on the teat skin bacterial load 

was not expected, as both variables had relatively strong correlations with teat skin 

bacteria counts. Bedding C:N ratio was the only other bedding characteristic that 

influenced teat skin TBC, teat skin coliforms, and teat skin Strep. counts. As the C:N 

ratio increased by 1.0, teat skin TBC, coliforms, and Strep. counts decreased by 0.02 

(0.01) log10 cfu/g, 0.02 (0.01) log10 cfu/g, and 0.04 (0.02) log10 cfu/g, respectively (at p = 

0.02, p < 0.001, and p = 0.01, respectively). This suggests that bedding C:N ratio was a 

major factor that influences teat skin bacterial load. However, the changes observed were 

so negligible that while statistically significant, the bacteria change was not practically 

significant. Results determined that bedding TBC was statistically significant in the final 

mixed models of teat skin TBC and teat skin coliforms. As bedding TBC increased by 1.0 

log10 cfu/g DM, teat skin TBC and teat skin coliforms increased by 0.14 (0.06) log10 cfu/g 

and 0.34 (0.08) log10 cfu/g, respectively (at p = 0.02 and p < 0.001). Interestingly, while 

Pearson correlations reported no significant relationship between teat skin bacterial 

counts and bedding bacteria counts, the final models suggested that when all variables 

were taken into consideration, bedding TBC did affect the teat skin TBC and coliform 

count. The effect of bedding TBC specifically on teat skin coliforms was likely due to the 

similar environmental origins of the bedding bacteria and teat skin coliforms, as 
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coliforms are not considered natural skin microflora (whereas Staph. species are). 

Because of this, the environmental bedding bacteria specifically effected the 

environmental-type bacteria species that were observed on the teat skins of the cows. 

Moreover, similar results were reported by Hogan et al. (1999) in that there were positive 

relationships between bedding bacteria counts and teat skin coliform counts. Moreover, 

ambient temperature influenced teat skin TBC and Staph. counts. As the ambient 

temperature increased by 1°C, teat skin TBC decreased by 0.02 (0.01) log10 cfu/g and teat 

skin Staph. counts decreased by 0.07 (0.02) log10 cfu/g. Similar to the C:N ratio results, 

the bacteria change was statistically significant but not practically significant. This 

suggests that ambient temperature does effect teat skin bacterial counts, but to a level of 

degree that should be of concern is debatable.  

Interestingly, the week * expt week interaction significantly influenced teat skin 

TBC (p = 0.03), teat skin coliforms (p = 0.04), teat skin Staph. counts (p < 0.001), and 

teat skin Strep. counts (p = 0.001). Additionally, the effect of parity remained significant 

in all teat skin bacteria counts. The differences between least squares means by parity 

were compared (Table 4.8). Results showed that in general, all teat skin bacteria counts 

were at the lowest in first lactation cows (parity 1) and increased as parity increased. 

Specifically, the LSMeans of the teat skin TBC for parity 1 cows was 5.70 (0.05) log10 

cfu/g compared to parity 6 cows at 6.23 (0.13) log10 cfu/g. This suggests that first 

lactation cows have a lower bacterial population on the teat skins compared to second and 

greater lactation cows. This was the opposite of what was observed for milk TBC by 

parity. These findings suggest that first lactation cows had higher IMI but lower teat skin 
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bacterial counts, whereas parity 2+ cows had lower IMI but higher teat skin bacterial 

counts. 

4.4.3.3 Final mixed models of teat end bacterial counts. 
Results indicated that no environmental variables significantly affected teat end 

TBC, coliform count, or Strep counts (Table 4.7). The ambient temperature did impact 

teat end Staph. counts (p = 0.003), in that as the ambient temperature increased by 1°C, 

teat end Staph. counts decreased by 0.04 (0.01) log10 cfu/g. The change observed for 

Staph. counts, however, was not practically significant. Additionally, the bedding internal 

temperature at a depth of 20.3-cm had the tendency (p = 0.10) to increase teat end Staph. 

counts by 0.01 (0.01) log10 cfu/g for every 1°C increase. The week * expt week 

interaction only influenced teat end TBC (p < 0.001) and teat end Staph. counts (p = 

0.01).  Results suggest that environmental factors don’t seem to have much influence on 

the bacterial load at the teat ends. These results contradicted the Pearson correlations 

previously described, as bedding internal temperature and moisture had, in fact, no effect 

on teat end bacteria counts when all other environmental factors were included. 

Different environmental measures influenced the various bacteria species on the 

teat skins and teat ends. We determined that all bedding characteristics changed with 

time; we also determined that cow-level bacterial counts changed based on the stage of 

the transition period. The interaction between the week and stage of the transition period, 

which remained in all final models, allowed for a more accurate representation of what 

bedding and weather characteristics influenced cow bacterial counts.  
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4.5 Conclusions 

The environmental measures (bedding and weather) effected teat skin bacteria 

species differently and had limited influence on the teat end microbial population. 

Specifically, the CBP bedding bacteria counts were not practically significant in effecting 

any cow-related measurements. This suggests that while the compost bedding had 

relatively high bacteria counts, that was not a major factor effecting the microbial 

population on the teat skins, teat ends, or in the milk. These findings suggest that when a 

CBP barn is well-managed, the complex environmental interactions produce a soft, 

comfortable bedding material that does not increase the risk of mastitis in dairy cows. 

Effective bedding management practices must occur to prevent bedding characteristics, 

such as moisture, to get out of the recommended range. When drastic changes begin 

occurring in the compost bedding, that is likely when cows would have a higher risk of 

mastitis. 

The teat skin and teat end bacteria counts were more influenced by specific times 

during the transition period than environmental factors. From pre- to postpartum, teat 

skin Staph. counts decreased and coliforms increased. This was likely due to proper post-

dipping management practices in the parlor which seemed to effectively decrease natural 

skin microflora bacteria species (such as Staph. species). Additionally, parity was a much 

greater factor that contributed to teat skin bacteria counts and milk bacteria counts. Older 

cows had more bacteria species present on the teat skin but fewer IMI, compared to first 

lactation heifers which had much fewer bacteria counts on the teat skin but experienced 

much more IMI. Results also showed moderately positive relationship between teat skin 
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and teat end bacteria counts, and a weak positive relationship between teat end and milk 

bacteria counts. It’s important to note the relationships found between the cow-level 

variables were only simple associations, thus more research is needed to determine the 

complex microbial relationship and causations. To conclude, the microbial population 

transfer from bedding to the teat skins does not occur when a CBP barn is well-managed. 

The microbial population transfer from the teat skin to the teat end was relatively strong, 

as expected. However, the teat end bacteria counts were not strongly associated with milk 

bacterial counts. Thus, there is enough evidence to state that high CBP bedding bacteria 

counts are not a risk factor for mastitis when the CBP barn is well-managed. 
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Table 4.1 Descriptive statistics of cow variables (parity, milk TBC, milk coliforms, 
somatic cell count, teat end scores (0-5; 0.5 scoring system), teat skin TBC, 
coliforms, Staph. and Strep counts, and teat end TBC, coliforms, Staph. and Strep. 
counts), where n = 352 for milk-related samples, n = 639 for teat skin/end-related 
samples and n = 26 for parity. 

1 log10 cfu/ml 
* log10 cfu/g  
2 SCC = somatic cell count 
a TBC = total bacteria count 
b Strep. = Streptococcus spp. counts 
c Staph. = Staphylococcus spp. counts 

 
Mean Std Dev Min Q1 Median Q3 Max 

Parity 2.13 1.24 1.00 1.00 2.00 3.00 6.00 
Milk TBC1 a 0.54 1.15 0.00 0.00 0.00 0.00 4.79 
Milk coliforms1 0.03 0.19 0.00 0.00 0.00 0.00 2.40 
SCC2 (log10) 3.61 1.95 0.00 3.30 4.08 4.89 6.88 
Teat End Scores 1.23 0.64 0.00 1.00 1.50 1.50 3.50 
Teat Skin TBC * 5.93 0.51 4.24 5.55 5.95 6.28 7.16 
Teat End TBC * 3.46 1.26 1.00 3.01 3.61 4.09 6.53 
Teat Skin coliforms * 2.38 0.74 1.00 1.90 2.42 2.94 3.40 
Teat End coliforms * 1.28 0.43 1.00 1.00 1.00 1.30 3.40 
Teat Skin Strep.b * 4.44 1.69 2.00 3.18 3.70 6.76 6.76 
Teat End Strep. * 2.37 0.68 2.00 2.00 2.00 2.48 6.76 
Teat Skin Staph.c * 5.07 1.64 2.00 3.57 4.03 6.76 6.76 
Teat End Staph. * 2.63 1.20 2.00 2.00 2.00 2.74 6.76 
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Table 4.2 Mastitis prevalence (percentage of culture-positive quarters) by experimental 
week, where Experimental Week 0 = 48-72h postpartum and Experimental Week 
8 = 60 ± 7 DIM 

Experimental Week Mastitis Prevalence 
0 27.88% 
1 20.93% 
2 25.93% 
3 15.87% 
4 23.08% 
5 14.29% 
6 33.33% 
7 18.60% 
8 17.48% 
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Table 4.3 Pearson correlation coefficients between cow variables (parity, milk TBC, somatic cell count (SCC), teat skin TBC, 
teat end TBC, teat skin coliforms, teat end coliforms, teat skin Staph. counts, teat end Staph. counts, teat skin Strep. 
counts, and teat end Strep. counts) where n = 352 for milk samples, n = 639 for teat skin/end samples and n = 26 for 
parity. Relationships were deemed significant at p < 0.05. Correlations were considered (±) strong when r ≥ 0.40 and 
(±) moderate at r ≤ 0.39 - ≥ 0.20. 

1 log10 cfu/ml 

 Milk 
TBC1 a 

SCC2 
(log10) 

Skin 
TBC* 

End 
TBC* 

Skin 
coliforms * 

End 
coliforms* 

Skin 
Staph.b* 

End 
Staph.* 

Skin 
Strep.c* 

End 
Strep.* 

 

Parity -0.23 
<0.001 

-0.09 
0.03 

0.25 
<0.001 

-0.02 
0.65 

0.21 
<0.001 

0.08 
0.05 

0.15 
<0.001 

-0.05 
0.25 

0.05 
0.23 

-0.05 
0.30 

r 
p-value 

Milk 
TBC1 a 

1.00 0.27 
<0.001 

0.10 
0.02 

0.18 
<0.001 

0.08 
0.08 

0.07 
0.09 

0.02 
0.72 

0.24 
<0.001 

0.06 
0.17 

0.16 
0.001 

r 
p-value 

SCC 
(log10) 

 1.00 0.07 
0.11 

0.08 
0.06 

0.11 
0.01 

0.14 
0.001 

-0.05 
0.29 

0.09 
0.03 

0.03 
0.47 

0.07 
0.08 

r 
p-value 

Skin 
TBC* 

  1.00 0.42 
<0.001 

0.53 
<0.001 

0.28 
<0.001 

0.47 
<0.001 

0.25 
<0.001 

0.37 
<0.001 

0.21 
<0.001 

r 
p-value 

End TBC*    1.00 0.15 
<0.001 

0.17 
<0.001 

0.24 
<0.001 

0.54 
<0.001 

0.22 
<0.001 

0.45 
<0.001 

r 
p-value 

Skin 
coliforms* 

    1.00 0.46 
<0.001 

0.21 
<0.001 

0.03 
0.50 

0.38 
<0.001 

0.11 
0.005 

r 
p-value 

End 
coliforms* 

     1.00 0.13 
0.001 

0.14 
0.006 

0.19 
<0.001 

0.22 
<0.001 

r 
p-value 

Skin 
Staph.* 

      1.00 0.22 
<0.001 

0.24 
<0.001 

0.16 
<0.001 

r 
p-value 

End 
Staph.* 

       1.00 0.16 
<0.001 

0.57 
<0.001 

r 
p-value 

Skin 
Strep.* 

        1.00 0.22 
<0.001 

r 
p-value 
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*log10 cfu/g 
2 SCC = Somatic cell count 
a TBC = Total bacteria count 
b Staph. = Staphylococcus spp. counts 
c Strep. = Streptococcus spp. counts 
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Table 4.4 Univariate mixed models of the cow variables (milk TBC, SCC, teat (T.) skin TBC, teat end TBC, teat skin 
coliforms, teat end coliforms, teat skin Staph., teat end Staph., teat skin Strep., and teat end Strep. counts) where 
Estimate (Est.) is the LSMeans of each variable by experimental week (-1 = prepartum; 0 = 48-72h postpartum, 1-8 = 
biweekly samples through 60DIM). 

a-d: LS means (SE) within a column with a different superscript are statistically different at p ≤ 0.05 
1log10 cfu/ml 
*log10 cfu/g 
2 SCC = Somatic cell count 

 Milk 
TBC1, A 

SCC2 
(log10) 

T. Skin 
TBC*A 

T. End 
TBC* 

T. Skin 
coliforms* 

T. End 
coliforms* 

T. Skin 
Staph.*C 

T. End 
Staph.* 

T. Skin 
Strep.*D 

T. End 
Strep.* 

Expt 
Wk3 

Est.(SE) Est.(SE) Est.(SE) Est.(SE) Est.(SE) Est.(SE) Est.(SE) Est.(SE
) 

Est.(SE) Est.(SE) 

-1 . . 6.07 
(0.05)a 

4.54 
(0.11)b 

2.09 
(0.07)a 

1.19 
(0.04)a 

5.67 
(0.16)a 

4.08 
(0.09)b 

4.72 
(0.16)a 

2.85 
(0.06)b 

0 0.76 
(0.11)a 

5.31 
(0.17)a 

6.11 
(0.05)a 

3.65 
(0.11)a 

2.75 
(0.07)b 

1.46 
(0.04)b 

4.53 
(0.16)b 

2.63 
(0.09)a 

4.66 
(0.16)a 

2.46 
(0.06)a 

1 0.59 
(0.15)a 

4.13 
(0.24)cd 

5.89 
(0.07)ac 

3.15 
(0.17)ac 

2.32 
(0.11)a 

1.30 
(0.06)ab 

5.06 
(0.24)ab 

2.28 
(0.15)a 

3.81 
(0.25)a 

2.25 
(0.09)a 

2 0.50 
(0.19)a 

4.01 
(0.30)cd 

6.02 
(0.09)ac 

3.46 
(0.22)ac 

2.32 
(0.13)ab 

1.39 
(0.08)ab 

5.62 
(0.30)a 

2.45 
(0.19)a 

5.01 
(0.32)a 

2.39 
(0.12)a 

3 0.48 
(0.14)a 

3.26 
(0.21)bcd 

5.72 
(0.06)bc 

3.03 
(0.14)c 

2.23 
(0.09)a 

1.25 
(0.05)ab 

4.65 
(0.19)b 

2.33 
(0.13)a 

4.37 
(0.21)a 

2.18 
(0.08)a 

4 0.42 
(0.16)a 

3.37 
(0.25)bcd 

5.88 
(0.08)ac 

3.07 
(0.18)ac 

2.55 
(0.11)b 

1.28 
(0.07)ab 

4.82 
(0.25)ab 

2.19 
(0.16)a 

4.59 
(0.26) 

2.32 
(0.10)a 

5 0.43 
(0.14)a 

2.91 
(0.21)bd 

5.89 
(0.06)ac 

3.19 
(0.14)ac 

2.41 
(0.09)ab 

1.26 
(0.05)ab 

5.43 
(0.20)a 

2.32 
(0.13)a 

4.16 
(0.21)a 

2.18 
(0.08)a 

6 0.78 
(0.16)a 

3.08 
(0.25)bcd 

5.84 
(0.08)ac 

3.04 
(0.18)ac 

2.46 
(0.11)ab 

1.20 
(0.07)ab 

5.53 
(0.25)a 

2.19 
(0.16)a 

3.99 
(0.26)a 

2.16 
(0.10)a 

7 0.46 
(0.16)a 

2.40 
(0.25)b 

5.96 
(0.08)ac 

3.26 
(0.18)ac 

2.55 
(0.11)b 

1.25 
(0.07)ab 

4.98 
(0.25)ab 

2.24 
(0.16)a 

4.48 
(0.26)a 

2.33 
(0.10)a 

8 0.43 
(0.11)a 

2.94 
(0.17)b 

5.82 
(0.05)bc 

3.23 
(0.11)ac 

2.27 
(0.07)a 

1.20 
(0.04)a 

4.94 
(0.16)b 

2.26 
(0.09)a 

4.40 
(0.17)a 

2.23 
(0.06)a 
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3 Expt Wk = Experimental Week (-1 = prepartum; 0 = 48-72h postpartum; 1-8 = biweekly samples through 60DIM) 
A TBC = Total bacteria count 
B Staph. = Staphylococcus spp. counts 
C Strep. = Streptococcus spp. counts 
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Table 4.5 Pearson correlation coefficients between cow variables (milk TBC, SCC, teat skin TBC, teat end TBC, teat end 
Staph. counts, teat end Strep. counts) and bedding variables (internal temperature, surface temperature, moisture, pH, 
bedding TBC, bedding Staph. counts). All relationships displayed were statistically significant at p < 0.05. Variables 
were excluded from table that had no significant relationships. Correlations were considered (±) strong when r ≥ 0.40, 
(±) moderate at r ≤ 0.39 - ≥ 0.20 and (±) weak at r ≤ 0.19 - > 0.12. 

*log10 cfu/g 
1 log10 cfu/ml 
2 NS = Not statistically significant; values not displayed. 
a TBC = Total bacteria count 
b SCC = Somatic cell count 
c Staph. = Staphylococcus spp. counts 
d Strep. = Streptococcus spp. counts 
 

  Bedding characteristics 
 

 
Internal 

temp.(°C) 
Surface 

temp.(°C) 
Moisture 

(%) 
pH Bed 

TBC* a 
Bed 

Staph.* c 

Cow-level 
variables 

Milk TBC1 a r = -0.19 NS2 r = 0.13 NS2 NS2 NS2 

SCCb (log10) r = -0.30 r = -0.27 r = 0.32 r = -0.25 r = -0.27 r = -0.20 
Teat Skin TBC* a r = -0.24 r = -0.32 r = 0.18 NS2 NS2 NS2 

Teat End TBC* a r = -0.25 r = -0.20 r = 0.15 NS2 NS2 NS2 

Teat End Staph.* c r = -0.26 r = -0.26 r = 0.16 r = -0.13 NS2 NS2 

Teat End Strep.* d r = -0.24 r = -0.18 r = 0.15 NS2 NS2 NS2 
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Table 4.6 Pearson correlation coefficients between cow variables (SCC, teat skin TBC, 
teat end TBC, teat end Staph. counts, teat end coliforms, teat end Strep. counts) 
and weather variables (ambient temperature, relative humidity). All relationships 
displayed were statistically significant at p < 0.05. Variables were excluded from 
table that had no significant relationships. Correlations were considered (±) strong 
when r ≥ 0.40, (±) moderate at r ≤ 0.39 - ≥ 0.20 and (±) weak at r ≤ 0.19 - > 0.12. 

  Weather variables 
 

 
Ambient temperature (°C) Relative Humidity (%) 

Cow-level 
variables 

SCC1 (log10) r = -0.26 NS2 

Teat Skin TBC* a r = -0.23 r = 0.25 
Teat End TBC* a r = -0.21 r = 0.24 

Teat End Staph.* b r = -0.25 r = 0.16 
Teat End coliforms* NS2 r = 0.19 
Teat End Strep.* c r = -0.18 r = 0.22 

1 SCC = Somatic cell count 
2 NS = Not statistically significant; values not displayed. 
*log10 cfu/g 
a TBC = Total bacteria count 
b Staph. = Staphylococcus spp. counts 
c Strep. = Streptococcus spp. counts 
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Table 4.7 Final mixed model results of the relationship between the environmental variables (bedding moisture, compost 
internal temperature, C:N ratio, pH, bedding TBC, ambient temperature, and the week*experimental week interaction 
(Wk*ExptWk)) with the following cow response variables (Milk TBC, teat skin TBC, teat end TBC, teat skin 
coliforms, teat end coliforms, teat skin Staph., teat end Staph., teat skin Strep., teat end Strep, and SCC). Explanatory 
variables were removed from the models at p > 0.10. Week, experimental week, and Wk*ExptWk were included in all 
models regardless of significance. 

β (SE) = regression coefficients, where NS = not significant, and were not included in the final mixed models. 
The last italicized row (Wk*ExptWk) represents a categorial variable, where “Yes” indicates it was statistically significant at p < 0.05. 
 

 

 

 

 

 Milk TBC* c Teat Skin TBC* a Teat End TBC* a Teat Skin coliforms* Teat End coliforms* 

Variables β1(SE) P-
value 

β1(SE) P-value β1(SE) P-value β1(SE) P-value β1(SE) P-
value 

Amb. Temp.2 NS  -0.02 (0.01) 0.001 NS  NS  NS  

Moisture3 NS  -1.06 (0.59) 0.07g NS  NS  NS  
CIT4 NS  NS  NS  NS  NS  
C:N5 -0.02 (0.01) 0.09g -0.02 (0.01) 0.001 NS  -0.02 (0.01) 0.004 NS  
pH NS  NS  NS  NS  NS  
Bed TBC* b NS  0.14 (0.06) 0.02 NS  0.34 (0.08) <0.001 NS  
Wk*ExptWk7 NS 0.25 Yes 0.03 Yes <0.001 Yes 0.04 NS 0.31 
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Table 4.7 Continued. 

*log10 cfu/g 
1 β = Regression coefficients 
2 Amb. Temp. = Ambient temperature (°C) 
3 Moisture = Bedding moisture (%) 
4 CIT = Compost internal temperature (°C) 
5 C:N = Bedding carbon-to-nitrogen ratio 
6 Wk*ExptWk = Interaction between the week and experimental weeks 
a TBC = Total bacteria count 
b Bed TBC = Bedding total bacteria count at log10 cfu/g of DM 
c log10 cfu/ml 
d Staph. = Staphylococcus spp. counts 
e Strep. = Streptococcus spp. counts 
f SCC = Somatic cell count 
g Variables showed a tendency with statistical significance at 0.10 ≤ p > 0.05 
 

 Teat Skin Staph.*d Teat End Staph.*d Teat Skin Strep.*e Teat End Strep.*e SCCf (log10) 
Variables β1(SE) P-

value 
β1(SE) P-

value 
β1(SE) P-

value 
β1(SE) P-

value 
β1(SE) P-

value 
Amb. Temp.2 -0.07 (0.02) 0.003 -0.04 (0.01) 0.003 NS  NS  NS  
Moisture3 NS  NS  NS  NS  4.93 (1.60) 0.002 
CIT4 0.03 (0.01) 0.01 0.01 (0.01) 0.10g NS  NS  NS  
C:N5 NS  NS  -0.04 (0.02) 0.01 NS  NS  
pH NS  NS  NS  NS  -1.59 (0.56) 0.01 
Bed TBC*b NS  NS  NS  NS  NS  
Wk*ExptWk6 Yes <0.001 Yes 0.01 Yes 0.001 NS 0.80 Yes 0.001 
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Table 4.8 Least square means of the cow variables (milk TBC, teat skin TBC, teat skin coliforms, teat skin Staph. counts, and 
teat skin Strep. counts) by parity.  The response variables that had the explanatory variable “parity” in the final mixed 
models were further analyzed to determine the difference between least squares means by parity.  

a-c = Difference between the LSMeans (SE) in a column with a different superscript are statistically different at p ≤ 0.05    
* log10 cfu/ml (milk) or log10 cfu/g (teat skin samples) 
1 TBC = Total bacteria count 
2 Staph. = Staphylococcus spp. counts 
3 Strep. = Streptococcus spp. counts 
 

 Milk TBC*1 Teat skin TBC*1 Teat skin coliforms* Teat skin Staph.*2 Teat skin Strep.*3 

Parity LSMeans 
(SE) 

P-value LSMeans 
(SE) 

P-value LSMeans 
(SE) 

P-value LSMeans 
(SE) 

P-value LSMeans 
(SE) 

P-value 

1 0.73 (0.19)a 0.001 5.70 (0.05)a < 0.001 2.32 (0.06)a < 0.001 4.59 (0.15)a < 0.001 4.15 (0.14)a < 0.001 
2 0.06 (0.24)b 0.81 6.02 (0.07)b < 0.001 2.43 (0.09)ac < 0.001 5.61 (0.21)b < 0.001 4.05 (0.21)a < 0.001 
3 0.02 (0.20)b 0.91 5.91 (0.05)b < 0.001 2.58 (0.07)bc < 0.001 5.27 (0.16)b < 0.001 4.58 (0.16)a < 0.001 
6 0.14 (0.46)b 0.76 6.23 (0.13)b < 0.001 2.99 (0.19)b < 0.001 5.66 (0.42)ab < 0.001 4.42 (0.42)a < 0.001 
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Figure 4.1 Mean somatic cell count (SCC) (log10) of milk samples (n = 532) by each pathogen identified and culture-negative 
(no growth), where the n-value at the end of each bar indicates the number of samples in each group. The blue vertical 
line is at the SCC of 5.30 log10 (equal to 200,000 cells/ml), where >200,000 cells/ml is considered an intramammary 
infection. 
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Figure 4.2 Mean teat skin bacteria counts of the three types of bacteria measured (coliforms, Staphylococcus spp. (Staph.), 
and Streptococcus spp. (Strep.)) by the experimental weeks (stages within the transition period/early lactation), 
where Week -1 = two weeks prepartum, Week 0 = 48-72h postpartum, and Weeks 1-8 = samples through 60 DIM. 
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Figure 4.3 Mean teat end bacteria counts of the three types of bacteria measured (coliforms, Staphylococcus spp. (Staph.), 
and Streptococcus spp. (Strep.)) by the experimental weeks (stages within the transition period/early lactation), 
where Week -1 = two weeks prepartum, Week 0 = 48-72h postpartum, and Weeks 1-8 = samples through 60 DIM. 
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Figure 4.4. Mean milk TBC by parity of only culture-positive samples, where culture-positive was indicative of an 
intramammary infection. Samples with a milk TBC of 0 log10 cfu/ml were not included. 
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 The purpose of this study was to begin understanding the transfer of microbial 

populations from the bedding environment into the milk of dairy cows, which would 

indicate an intramammary infection. It is well understood that compost bedded pack 

(CBP) barns require microbial growth to achieve desired bedding characteristics, and 

cows’ teats are exposed to that environment since they spend much of their time laying 

down. So, at the microbial level, what is occurring (or not occurring) that would lead to 

the conclusion that this type of housing system does not impose an increased risk of 

mastitis for cows living this way? To answer this, it was important to determine a 

“pathway” by which the microbes could transfer from bedding to milk, which was 

decided as the following: surface bedding samples, teat skin sponge samples, teat end 

swabs, and milk samples. Since this was an observational study, additional measurements 

were taken to account for environmental variation. This specifically included weather 

conditions and various time points within the transition and early lactation period. 

Ultimately, the results showed promise that a well-managed compost bedded pack barn 

poses no increased risk of mastitis in transition dairy cows. 

 One of the key take-aways from this study is the emphasis on good CBP 

management practices, specifically during colder weather conditions and when seasons 

begin to change (in this case, from winter to spring). This is because weather conditions 

strongly influence the compost bedding characteristics and can result in adverse pack 

performance. During March (i.e. the time when seasons were shifting from winter to 

spring), there were large fluctuations seen in the moisture content and bedding internal 

temperature. Additionally, the bedding characteristic variation observed was not only 
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ambient temperature-sensitive but also varied on the location within the pack. 

Specifically, the entrances to the pack and the outer corners had the highest moisture and 

lowest internal temperature. Keeping both in mind, producers should ensure adequate 

tilling throughout the entire pack, especially those locations. Moreover, adding more 

bedding material to those specific areas would be an effective way to increase internal 

temperature and decrease moisture. These strategies should be a top priority to producers 

during the winter and seasonal-shift timeframes, as uncontrollable environmental factors 

may attribute to poorer pack performance. CBP barn bedding characteristics and weather 

conditions are all inter-related and the complex interaction ultimately drives bedding 

bacterial population.  

The environmental measures (bedding and weather) affected teat skin bacteria 

species differently and had limited influence on the teat end microbial population. 

Specifically, the CBP bedding bacteria counts were not practically significant in effecting 

any cow-related measurements. This suggests that while the compost bedding had 

relatively high bacteria counts, that was not a major factor affecting the microbial 

population on the teat skins, teat ends, or in the milk. When a CBP barn is well-managed, 

the complex environmental interactions produce a soft bedding material that does not 

increase the risk of mastitis in dairy cows.  

Finally, the teat skin and teat end bacteria counts were more influenced by 

specific times during the transition period than environmental factors. From pre- to 

postpartum, teat skin Staph. counts decreased and coliforms increased. This was likely 
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due to proper post-dipping management practices in the parlor which seemed to 

effectively decrease natural skin microflora species (such as Staph. species). 

Additionally, parity was a much greater factor that contributed to teat skin bacteria counts 

and milk bacteria counts. Older cows had more bacteria present on the teat skin but fewer 

IMI, compared to first lactation heifers which had much fewer bacteria counts on the teat 

skin but experienced more IMI. Moreover, the microbial population transfer from the teat 

skin to the teat end had a relatively strong relationship, as expected. However, the teat 

end bacteria counts were not strongly associated with milk bacterial counts. Thus, there is 

enough evidence to state that high CBP bedding bacteria counts are not a risk factor for 

mastitis when the CBP barn is well-managed. 

A major study limitation was that the relationships found between the cow-level 

variables were only simple associations, thus more research is needed to determine the 

microbial interactions and causations. This was largely due to the number of confounding 

variables that limited the statistical analysis and made the results difficult to interpret. 

Confounding variables were a common theme with all the statistical analyses, so 

interpretation of the data was not simply cause and effect. Additional research is needed 

to determine the microbiome of CBP barn bedding, with the inclusion of other common 

environmental microorganisms (such as Bacillus spp. or Klebsiella spp.). Research is also 

needed that looks deeper into the influence of bedding bacteria on mastitis through 

culture-positive, microbial identification measures rather than herd-level SCC or udder 

hygiene. It is clear that those parameters don’t tell the whole story and that bedding 

bacteria load may not be as large of a risk factor for mastitis as previously suggested. 
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