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ABSTRACT OF DISSERTATION 

EVALUATING USED FARM MACHINERY AND ASSESSING THE 

SUSTAINABILITY OF TILE DRAINAGE INSTALLATION 

 

This dissertation comprises three essays regarding the impacts of tile 

drainage implementation in row crop production and the evaluation of the farm 

machinery markets of combine harvesters and tractors. The second chapter focuses 

on tile drainage in traditional row crop agricultural systems. Although tile drain 

systems have been used for many years, recently, their popularity has increased. 

This increase has led to questions about these systems' costs and environmental 

impacts. These concerns have left many operations and individuals questioning if 

the system’s benefits outweigh the costs. This dissertation presents a life cycle 

cost (LCC) and carbon footprint (CF) Analysis for implementing a new tile drain 

system into a traditional row crop operation. This model presents an LCC and CF 

for a tile drain system and will provide the needed baseline to compare different 

system designs and materials for implementing a tile drain system.  
Chapters three and four focus on used farm machinery markets for combine 

harvesters and tractors. Despite previous research evaluating the cost of farm 

machinery, much of the research is outdated or lacks a comprehensive view of the 

market, including limitations in evaluating newer machinery technologies. Couple 

these gaps with recent market shifts from the pandemic and supply chain 

shortages, and the literary work related to farm machinery falls short. Chapter 

three addresses the limitations of new machinery technologies by evaluating 

factors related to precision technologies and their effect on used combined prices. 

This chapter uses a hedonic pricing model with historical auction data to estimate 

used combined values. The full results from this chapter will provide a 

comprehensive evaluation of both precision agriculture technologies and brands 

and will assist in further understanding the factors and impacts of precision 

agriculture on combine harvesters.    
The fourth chapter addresses the issue of evaluating machinery prices after 

a major market shift. Similar to the third chapter, a hedonic model was developed 

to assess the impacts of the Covid-19 pandemic on the used tractor market. The 

model included various control variables for the industry, including age, auction 

specifies, use, horsepower, and machinery specifics. Results suggest that a 16.3% 

increase in tractor prices can be attributed to the pandemic. Overall, this study will 

evaluate the pandemic's impact on the farm machinery sector and produce 

valuable estimations to assist operators in valuing machinery for both buying and 

selling. 

 
KEYWORDS: Farm Machinery, Tile Drainage Systems, Life Cycle Cost, Hedonic Model, 

COVID-19, Precision Agriculture Technologies  
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CHAPTER 1. INTRODUCTION  

Net farm income in the United States hit an all-time high at $185 billion in 2022 

even with declining production for corn and soybeans (Munch, 2023; USDA/NASS 

QuickStats, n.d.). Since then, a sharp decline is projected, 2023 is expected to see a decrease 

of almost 20%, with 2024 forecasting an additional decrease of 27% (Kassel, 2024). When 

factoring in the additional decrease of 4 billion in government payments, operations will 

likely have to optimize their decision-making for the farm (Munch, 2023). Farmed acres 

saw yet another decrease in 2022 for row crop operations specifically. Although yield per 

acre has increased over time, acres planted are at an all-time low (Shahbandeh, 2024), 

further complicating the situation for farmers who must grow more crops on fewer acres. 

Farmers aiming to increase their net farm income require either an increase in yields or a 

decrease in expense. This landscape requires producers to stay current with their 

knowledge and skills, as well as new trends and updating older ones. One possible option 

for increasing yields is implementing tile drainage systems on cropland.  

Tile drainage systems are not new and have been used in row crop agriculture 

production for decades. Utilizing these systems, farmers can increase the number of acres 

farmed by moving excess water offsite after rainfall and allowing higher saturated areas to 

be farmable. Additionally, tile drains can allow soils to have higher water availability for 

crop intake and have been shown to increase yields by 20% or more in some cases (Geist, 

2018). However, their popularity has not significantly increased in the past few years, 

remaining around 14% of cropland (Zulauf & Brown, 2019). Tile drains are not expected 

to be implemented on all cropland, but with the decrease in crop acres, farmers will likely 

have to push further into less suitable lands now more than ever.  
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Given the positives of implementing tile drain systems, the downside historically 

has been the installation cost. Numerous Extension publications have been published on 

the returns needed for the economic feasibility of tile drainage systems (Hofstrand et al., 

2023; Schnitkey et al., 2022), but the methodology of how the cost of the system was 

determined is not included. Other works have provided guidance or principles for installing 

a system (Mahoney et al., 2010; Panuska, 2018) but fail to include how their per-acre costs 

were calculated. More recent concerns have focused around the environmental impact of 

system implementation (Bowman, 2020; Stika, 2019). Chapter 2 of this dissertation aims 

to address these concerns for farmers in the US by performing a carbon footprint analysis 

and life cycle cost analysis for a tile drainage system. The work not only aims to fill the 

gaps in the methodology of the installation cost but also provides a breakdown of the 

carbon footprint and system costs for various system designs and soil types. Additionally, 

a breakeven analysis was performed to provide a further understanding for farmers looking 

to add a system to their fields. Although farmers cannot control the field layout or soil type 

for installing a system, the results from this chapter provide guidelines and suggestions for 

the cost and emission estimates for implementing a system in various fields.  

The third and fourth chapters focus on production expenses for row crop operations 

by evaluating the second-largest expense for grain farms, machinery (Ibendahl, 2015). 

Machinery for a farming operation is considered a long-term investment and is often spread 

across the operation to calculate the per-acre machinery cost. It is estimated that machinery 

costs comprise over 40% of the total per-acre production expense for row crop operations 

(Ibendahl, 2015). Utilizing these per-acre expenses allows operations to compare their 

current machinery and evaluate if they are over or under-capitalized. Given that each 
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farming enterprise uses different machinery types, chapter three focuses on harvesting 

operations by estimating the values of used combines and the impact of various precision 

agriculture technologies on the value.  

Although precision agriculture has been used for many years, recently, it seems to 

have developed into every component of a combine. With the advancements in technology, 

and connectability, newer combines now have to be compared with various precision 

agriculture technologies. Utilizing auction data from 2010 through 2022, the first model 

estimates the factors that impact the overall secondary combine market and provides results 

that allow producers to estimate their combine’s value accurately. Building upon this 

model, the second model evaluates the impact of different precision agricultural 

technologies on the value of the secondary combine market. In this model, various 

technologies were grouped to represent the precision agriculture function and avoid any 

increase from branding. Additionally, variables were developed to represent technology 

brand to allow the model to estimate the value of these brands separately from the 

individual technology. The study estimates the value increase from different brands, 

provides new estimates for depreciation related variables, and suggests which technologies 

are more valuable. Results can be used by buyers and sellers as average guidelines for 

comparing used combine options.  

 Moving to a broader range of production practices, tractors are the most used 

machinery across all farm types. Recently, the Covid-19 pandemic impacted every industry 

sector in the world, and farming was no different. Tractor values skyrocketed during the 

shutdown and continued to rise after shutdown restrictions were lifted. Government 

assistance has also increased rapidly, allowing many farmers to use the extra income to 
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combat the rise in prices. Moving forward, government payments are projected to decrease, 

leaving operations with higher prices and lower available funds. In order to prepare for the 

change, an outlook on the impacts of the pandemic is overdue for the tractor market. 

Chapter four utilizes an auction dataset for US used tractors sales between 2010 and 2022. 

Two models were developed, with the first aimed to estimate the total impact of the 

pandemic on used tractors, and the second using lead and lag variables to evaluate the 

impact change for the ten months before and after the pandemic started. Results illustrate 

the impacts of factors such as brand, usage, condition, sale location, sale timing, and sale 

type, along with the pandemic estimates. Altogether, producers can use the estimates from 

this model to assist in evaluating tractors used in their operations and more accurately 

estimate values when buying and selling machinery.   

Farming continues to project tighter margins and less government assistance, with 

the projection of decreasing net farm income in the coming years. Farmers need to optimize 

their operations to remain profitable in the future. Addressing two possible options of either 

increasing yields or decreasing expenses, this work presents an evaluation for 

implementing tile drainage and provides an updated analysis for combine and tractor 

machinery. Overall, this is just a beginning step in solving the industry issues even so the 

results presented here should assist operators, industry experts, and decision-makers to 

make informed decisions about farmland and farm machinery. 
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CHAPTER 2. EVALUATING REAL-WORLD TILE DRAINAGE SYSTEMS USING LIFE CYCLE 

COST AND CARBON FOOTPRINT ANALYSIS  

2.1 Introduction 

A tile drainage system is a network of subsurface pipes that collects excess water 

from the soil and moves it offsite. These systems can benefit farming operations by 

allowing historically higher saturated acres to be placed into row crop production. In 

addition, they allow more flexibility for farmers with crop operation practice dates while 

potentially increasing crop yields and soil health. Along with these potential benefits, the 

innovation of new pipe materials provides a more cost-effective and environmentally 

friendly system than the traditional clay drain tiles previously used (Bowman, 2020; Stika, 

2019).  Despite these positive benefits, the use of tile drainage systems is still low, with 

only 14% of U.S. cropland utilizing tile drainage and most of that land is found in the 

Midwest states of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin 

(Zulauf & Brown, 2019).  

Opportunities exist to replace older systems to minimize environmental concerns 

from leaching into the water system, soil erosion, and loss of wetland habitats. However, 

even with the lower risk compared to the older system, the newer tile systems present 

emission concerns from installation and material construction. Given the uncertainty, this 

project performed a carbon footprint and life cycle cost, along with a design analysis, to 

add a tile drainage system to an existing row crop field to address. The objectives for this 

study are to 1) establish the parameters for four representative row crop fields that are being 

considered for adding tile drainage, 2) design tile drainage systems for each field with the 

ability to change each design based on soil type, 3) evaluate the carbon footprint from 
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installation of different system combinations of field and soil type, 4) estimate the costs of 

installation on the various systems, and 5) evaluate and compare the results between soil 

types to fields and provide comparison for the farming operations.   

Tile drainage for agricultural use in the U.S. dates to 1838, when the systems were 

first brought over from England (Young, 2014). However, systems similar to the ones in 

use today were not introduced until the 1940s when polyethylene plastics were invented. 

The new material led to corrugated pipes, which further developed in the 1960s into 

perforated plastic pipes (Young, 2014). Additionally, the installation process is more 

efficient now with the use of GPS machinery, and computer models for system design. 

With the new evaluations of tile drainage and the rising concern for environmental impact, 

estimating the carbon footprint from implementation is a starting point in understanding 

the impacts of these systems. Furthermore, using the different soil types and system designs 

should allow for the model to estimate the carbon footprint differences between various 

regions of the country since tile systems are field-specific.  

With better materials, installation equipment, and dual wall piping being 

introduced, there is potential for older systems to be replaced and the new modern tile 

drainage system’s use to increase. For farmers wanting to either add or replace tile 

drainage, the economics can be unclear, with most of the cost estimates not providing clear 

reasoning for the estimate (Hofstrand et al., 2023; Mahoney et al., 2010; Panuska, 2018; 

Schnitkey et al., 2022). Additionally, these publications do not illustrate the known 

differences in system cost based on the soil type of the field. Utilizing the life cycle cost 

approach, this chapter presents a model that can estimate various soil types on each field 

and provide insight into the cost impact of each soil type. Since, in real-life practice, a 
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farmer cannot change the soil type of the field, the estimates are not directly compared but 

instead are guidelines for farmers from various regions, unlike the previous estimates that 

do not discuss soil type estimates. To provide an even further understanding of system cost, 

a breakeven analysis was performed to calculate the net present value for various systems. 

2.2 Field Description and System Design 

2.2.1 Field Design 

A tile drainage system’s design is based on the topography, soil type, location, and 

desired farming practices (McCain, 2022; Panuska, 2018; Wright & Sands, 2018) of the 

specific field. Given the goal of this study to provide real-world suggestions, an industry 

expert supplied information about four fields suitable for tile drainage systems (McCain, 

2022). The selection of the four fields is to represent a typical row crop field in the southern 

Indiana, Kentucky, and Tennessee region as determined by the industry expert (McCain, 

2022). Additionally, the study was set up to consider a scenario in which two fields have 

obstructions present, such as tree lines or waterways, to represent typical obstructions seen 

when installing a system (Easton et al., 2016; Sands, 2015). Tile drainage systems have 

three common system layouts: parallel, herringbone, or double main, while many fields 

can require a mix of the three (Panuska, 2018; Wright & Sands, 2018). The type of layout 

is often chosen based on considerations of field obstructions. It should be noted that often 

when implementing on an entire field, if possible, a parallel design is used due to its 

simplicity and economic efficiency. However, often a system is designed using the mixed 

type if any obstructions are present (McCain, 2022). Locations, field perimeters, 

obstruction perimeters, and system outlet locations for the four specific fields were 
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provided by McCain (2022). Field descriptions for each of the four fields can be found in 

Table 2.1, and overhead pictures with field and obstruction perimeters outlined for each 

field can be found in Figures 2.1, 2.2, 2.3, and 2.4.  

Field 1 (Figure 2.1) represents a field with an obstruction, thus preventing a parallel 

tile drain system from running the entire field width. For this field, a mixed design system 

of parallel and herringbone is used to cover the entire area. Furthermore, a second main 

line is introduced to move the water into the outlet from the opposite side of the obstruction. 

Field 2 (Figure 2.2) also provided the need for a mixed system type of a double main, 

parallel, and herringbone system. This field has a waterway that splits the field into two 

sections. Since the waterway runs through the entire field, a double main line is required 

for both field sections. Additionally, the perimeter of the field does not allow for a parallel 

system to cover all areas of the field adequately. Therefore, a mix of parallel and 

herringbone is used to drain the entire field. Field 2 also provides the largest area among 

the four fields presented. Field 3 (Figure 2.3) provided a rectangular field shape similar to 

a field in the Midwest, this field was a perfect fit for implementing a parallel system since 

no obstructions are present, and the field perimeter allows for proper runoff. Lastly, field 

4 (Figure 2.4) evaluated a field with only perimeter issues. This field did not have any field 

obstructions, but due to the perimeter of the field, a parallel system would not reach all 

areas of the field. A mixed parallel and herringbone system was used to design this field. 

It should be noted upon mapping field 4 that there was a waterway along the field's 

parameter, which required two outlets for proper drainage. This change was confirmed by 

McCain (2022) for accuracy.  
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2.2.2 Mapping Tile Drainage System onto Fields 

Given the provided field information, the next step was to digitally map the four 

fields to extract latitude and longitude coordinates to design each tile drainage system. Each 

field was individually added to Map Maker© (Map Maker, 2008), an online mapping 

system that calculated digital areas based on Google Maps© images. This software allowed 

for the recreation of each field and provided longitude and latitude coordinates for field 

obstructions, perimeters, and outlets. Utilizing the information from McCain (2022), 

additional points were added to divide each field into sections to allow each system design 

to change when the soil type changes (Section 2.2.3). The additional dividing of each field 

maintained a consistent outlet location, field coverage, and pipe slope throughout all 

system designs. Lateral pipelines were plotted by starting at the outlet end of the mainline, 

half of the lateral spacing distance from the edge of the field to maintain proper draining 

coverage (Ghane, n.d.). Then a new lateral was plotted at the lateral spacing distance from 

the previous lateral line. This process continued until a final lateral was plotted within half 

of the lateral spacing distance from the opposite edge of the field. Lastly, the elevation of 

outlets and laterals were checked using the Bulk Point Query Service (V 2.0) (The National 

Map, 2023), which provides elevation measurements based on longitude and latitude 

coordinates uploaded into the software. The corresponding elevation measure for each 

point was added to the model to ensure each pipeline maintained a downward slope of 1-

2% while remaining within the proper lateral pipeline depth range for each soil type (Table 

2.2) 
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2.2.3 Tile System Design Model 

The points from mapping the fields, along with the respective latitude, longitude, 

and elevation measurements, were uploaded into the tile system design model to allow the 

model to design a tile system for each field, soil type, and pipe size combination. The tile 

system design model was developed in Excel to combine inputs of the digital layout of the 

fields from Map Maker (Map Maker, 2008), the elevation information from Bulk Point 

Query Service (V 2.0) (The National Map, 2023), and the required system design 

specifications. The design specifications required the pipe spacing and depth to be 

consistent throughout the field, the entire field to be covered, and all lateral pipes must 

allow water to flow through the main pipe by gravity. Pipe spacing and depth were updated 

based on the field's soil type and can be found in Table 2.2. The spacing and depths for the 

given soil type were based on the Hooghoudt Equation (Panuska, 2018) (Table 2.3). The 

equation uses a drainage coefficient, soil permeability, water table depth, and confining 

layer to calculate the appropriate drain spacing for a field. These variables will change not 

only with soil type but also with location. For this reason, some states have developed 

recommendations to assist with system installation (L. O. Anderson et al., 1984). However, 

Kentucky does not have recommendations for all soil types considered. To accomplish the 

goal of this study, required drain spacing and depths for each soil type were compiled from 

other state’s suggestions (Ghane, n.d.; Panuska, 2018; Sands, 2015), as well as calculated 

using the online software IGrow to reflect the soil characteristics of the southeast 

(Drainage Calculators, 2014).  The suggested results from the four sources were compiled 

and presented to the industry expert McCain (2022), where they were adjusted to reflect 

realistic numbers to represent fields in Kentucky and the southeast (McCain, 2022). This 
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approach allows for the results of this study to be used across the southeast region of the 

US instead of solely based in one state. All system design equations used a drainage 

coefficient of half an inch per day for consistency between the fields. The half an inch per 

day was based on a system providing "Excellent" drainage, as Wright & Sands (2018) 

defined. Precipitation history will differ by county within each state; for example, central 

Kentucky has not had a day that averages over 0.2 inches per day (National Weather 

Service, 2023). 

The design specifications requiring the system to cover the entire field width were 

achieved by requiring that the end of each lateral pipe must be within half the length of the 

given pipe spacing for each design combination. The end measurement of half the length 

of the pipe spacing was used to allow for end drainage and is consistent with calculations 

from IGrow (Drainage Calculators, 2014) and Drainage Design Tool (Ghane, n.d.). 

Additionally, the tile system design model was developed to plot lateral lines based on the 

pipe spacing from the outlet point to within half of the lateral spacing of the edge of the 

field. This requirement ensured that the last two requirements for covering the entire field 

and maintaining the same outlet location were satisfied. 

Combining the digital field layout with the previously mentioned specifications, the 

tile system design model developed different systems for each field and soil type pair. The 

model mapped each lateral pipe by calculating the distance from the outlet location and 

calculated the number of lateral pipelines needed for each combination. Then the length of 

each lateral pipeline was determined by taking the distance needed to cover the width of 

the field or section at that pipe's location. Once all lateral pipe lengths were calculated, the 

model totaled the pipe needed to implement the designed system for the entire field. The 
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main pipelines were simple to calculate since the outlet location did not change between 

combinations. For the main pipelines, the model calculated the total length of pipe needed 

to drain all the laterals throughout the field back to the outlet point. Given the fields used 

in the study, the size of the main pipeline was not a limitation for drainage. All four fields 

were able to satisfy water runoff using an 8-inch main pipe. However, scenarios using a 

10-inch main pipeline were calculated to provide estimates for fields that would need to 

use a larger main pipe size. The total pipe length needed for each system's lateral and main 

pipeline was then used to determine the associated life cycle cost and carbon footprint.  

2.3 Methods 

The goal of the carbon footprint and life cycle cost (LCC) analyses was to estimate 

the embedded carbon emissions and financial cost of implementing a tile drainage system 

on the previously mentioned four crop fields. The system boundaries for the carbon 

footprint and LCC included the construction of the system (e.g., excavating and 

backfilling) and manufacturing of the materials (e.g., piping) used. The study did not 

include operation, maintenance, or end-of-life within the system boundaries. Additionally, 

a breakeven analysis was performed to provide applicable results for farmers considering 

installing tile drainage systems (Section 2.3.4).  

2.3.1 Design Options 

In total, twelve combinations were evaluated; this included all combinations of pipe 

material (single-wall corrugated or dual-wall corrugated), lateral line pipe sizes (3-inch, 4-

inch, or 6-inch), and mainline pipe sizes (8-inch or 10-inch). The results are presented 

across various soil types and system layout design types.  The industry standard is a single-
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wall pipe with 4-inch lateral lines, and 8-inch mainlines when applicable due to the cheaper 

cost of the material (McCain, 2022; Panuska, 2018; Wright & Sands, 2018). In some cases, 

a dual-wall pipe is needed to maintain water flow in systems that require low pipe slopes 

or longer pipelines due to the installation field. Therefore, the decision to include both was 

made to provide comprehensive results for tile drainage system implementation. Pipe 

sizing will change based on the design and needs of a system, often increasing pipe size to 

handle additional water from longer laterals or heavier rain areas. During this study using 

the calculations described in Section 2.2, it was determined that a 4-inch lateral and 8-inch 

main pipe would satisfy the needs of each of the four fields presented. Therefore, the study's 

evaluation of the other pipe size options is to provide a comparison for fields that would 

need an increase in pipe sizing.  

The inventory for analyzing construction and pipe manufacturing for tile drainage 

systems starts with the material. The material and installation equipment required was 

determined by Panuska (2018) and Wright et al. (2018). Since this study does not aim to 

implement a system in one specific location, transportation requirements assumed that 

materials would be transported fifteen miles using a commercial vehicle. The functional 

unit of one acre was used for comparison of the results presented in this study since it is 

the standard unit used across row crop agricultural work.  

2.3.2 Carbon Footprint 

Inventory data for each item for installation was acquired through Ecoinvent v3.5 

(Wernet et al., 2016) database accessed through SimaPro v9.0.0.49. Additionally, the 

inventory of emissions from Ecoinvent was converted into climate change impacts 

(measured in kg CO2 eq) using the Tool for the Reduction and Assessment of Chemicals 
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and Other Environmental Impacts (TRACI) v2.1 developed by the United States 

Environmental Protection Agency (Bare, 2012), accessed through SimaPro v9.0.0.49. A 

list of inventory items and their associated unit impacts can be found in Table 2.4.     

The excavating process used a tile plow and tractor (McCain, 2022; Panuska, 2018; 

Wright & Sands, 2018). Given the assumption that a farm will have the appropriate tractor 

on hand to pull the tile plow, only the fuel required for the tractor to operate the tile plow 

was considered. For the tractor portion, the model calculated the amount of diesel needed 

per foot based on the tractor fuel consumption per hour of use (Laughlin & Spurlock, n.d.-

a) divided by the distance covered per hour for operating a tile plow (Schmidt, 2013). The 

number of gallons needed per foot was then converted into the total kilograms per foot of 

the trench excavated. The tile plow implement was outside of the system boundaries since 

it is an attachment to the tractor during installation and does not require any additional fuel.    

2.3.3 Life Cycle Cost 

The cost of materials and equipment for system installation were found using R.S. 

Means data (R.S.Means, 1997), except for the cost of excavation, which was calculated 

using MSBG (Laughlin & Spurlock, n.d.) since a tile plow estimate was not available 

through R.S. Means. The pipe cost estimates used the unit cost (per foot) of each pipe given 

that pipe's diameter (Table 2.5). These unit costs for the lateral and main pipelines were 

multiplied by the total length of the pipe calculated in the tile drain system design model 

previously mentioned (Section 2.2). The backfilling of the trenches used a per cubic yard 

estimate from RSMeans multiplied by the total volume of backfill in each system. The 

transportation costs were determined using the assumed distance of 15 miles to the field 

using a freight vehicle with a per mile cost of $0.67 (R.S.Means, 1997). 
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The cost of excavation considered the tractor’s use for installation and the 

purchasing of a tile plow. The required use of the tractor for installation was determined 

by finding the average amount of pipe installed per hour (Schmidt, 2013) combined with 

the per-hour cost of using that tractor from MSBG (Laughlin & Spurlock, n.d.). The unit 

cost for the tractor was then converted to a per linear foot estimate for the LCC model. A 

225-horsepower tractor was used for the estimate with a per-hour labor cost of $20 per 

hour and a fuel cost of $3.75 per gallon, all of which are suggested by MSBG (Laughlin & 

Spurlock, n.d.)  It should be noted that tractor diesel is off-road fuel and will not be the 

same price as the fuel used for the freight transport vehicles. The tile plow cost per acre 

was calculated by combining information from MSBG (Laughlin & Spurlock, n.d.) and the 

tile plow online price (AgToGo | Precision Ag | Crary Tile Plow | Crary PRO® Tile Plow 

– AG TO GO, n.d.). Since the plow is an implement and connected to the tractor, all fuel 

and labor costs were captured in the tractor per acre cost. Using similar earth-moving type 

machinery, MSBG suggested a repairs and maintenance percentage of 65%, a useful life 

of 12 years, and an annual use of 150 hours per year (Laughlin & Spurlock, n.d.). These 

estimates were combined with the purchase price of $37,000 for a new tile plow, resulting 

in a per-hour estimate of $29.40. The tile plow cost per hour was added to the tractor’s per 

hour cost of $100.24 and then divided by the feet per hour installed, resulting in a per-foot 

cost estimate for the installation of the tile drain.    

2.3.4 Breakeven Analysis  

A breakeven analysis was performed to estimate what production changes would 

be needed for the system to be economically feasible. The breakeven model was 

constructed to compare each combination of soil type, system design, or field. 
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Additionally, an average for each soil type across all four fields in each system design 

combination was included to minimize the impact of “economies of scale” with field size 

on the results. To represent a realistic row crop operation, the model utilized a yearly corn-

soybean crop rotation. 

Given a combination, the model calculated the net present value (NPV), and 

payback period for a tile drainage system. The calculation is based on key variables that 

include the discount rate of 8%, estimated crop yield percentage increase of 20%, expected 

price and yield for corn and soybeans, and desired 50-year term of payback for NPV. Corn 

and soybean price and yield estimates for 2023 through 2033 were taken from FAPRI (U.S. 

Agricultural Market Outlook, 2023). However, no estimates are provided for years after 

2033. Since crop yields have historically suggested a linear upward trend, a linear trendline 

was used to estimate crop yields after 2033. The trendline was based on actual crop yields 

from 2003 through 2021 and the estimated yields from 2022 through 2023 (U.S. 

Agricultural Market Outlook, 2023). As for crop prices, a linear relation has not been 

shown historically. Therefore, years after 2033 use a five-year price average based on 

prices observed between 2018 to 2022 (U.S. Agricultural Market Outlook, 2023). Previous 

literature suggests a potential yield increase for tile drainage acres of up to 25% compared 

to non-drainage acres (Kladivco, 2020; Schilling, 2022). Since these yield increases are 

field specific, the model uses a 20% increase for the break-even analysis.  

In addition to the key variables, cost increase estimates for corn and soybeans were 

added to the model to account for the cost increases from the additional yields. The 

increased cost estimates are based on Kentucky located operations (Halich, 2023) and 

included costs for seed, fertilizer, drying, storage, transport, machinery, and labor. Each 
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cost was calculated at the per bushel level to allow the model to accurately estimate the 

changes from the additional yield. The calculation was based on the per acre cost and then 

divided by the yield per acre estimate (Halich, 2023). Cost increase estimates for the break-

even model are located in Table 2.6. 

2.4 Results 

Soil types and system design combinations cannot be directly compared to one 

another since each combination will depend on the field in which the tile drainage system 

is installed. Even though the systems cannot be compared across different soil types, this 

study generated an average carbon footprint and life cycle cost estimate for each soil type 

across all four fields to provide an additional estimate that limits the impact of “economies 

of scale” from larger fields. The functional unit for this study was one acre to reflect the 

common unit used in farming practice. As expected, the model suggested using the smallest 

pipe size possible for both the carbon footprint and LCC results. Since all four fields were 

able to properly remove the water with the smallest pipe option, the results suggested the 

use of the 3-inch lateral pipe with the 6-inch main pipe for all scenarios. Although the 

model found no issues with the 3-inch pipes’ ability to handle the needed runoff amounts, 

due to years of perception within the industry, producers will often choose the 4-inch lateral 

pipe over the 3-inch pipe (McCain, 2022). As for the main pipelines, there were no issues 

with industry perception against using the 8-inch pipe size. To illustrate the results in terms 

of the industry practices, the study used the combination of a 4-inch lateral pipe and an 8-

inch main pipe as the “base case” scenario. Additionally, the soil type for the “base case” 
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scenario was Silt Loam to provide a consistency in results between fields and represents 

the majority of the soil in the four selected fields in this study.  

2.4.1 Carbon Footprint Results   

The full carbon footprint results can be found in Tables 2.11, 2.12, 2.13, and 2.14. 

Carbon emissions from tile drainage installation were estimated as kg CO2eq the standard 

unit of measurement for carbon footprints. For comparison, one gallon of diesel fuel would 

have a carbon footprint of 1.7 kg CO2 eq (Table 2.4). 

Sil loam soils averaged a carbon footprint of 551.3 kg CO2 eq across the four fields, 

with field 2 holding the lowest estimate followed by fields 4, 3, and 1 for a base case of a 

4-inch lateral pipe and 8-inch main pipe. When the model dropped to a 3-inch lateral pipe 

with an 8-inch main, the average emission was 401.5 kg CO2 eq, with the field order from 

lowest to highest as field 2,3,4, then 1. For fields that would require larger pipe sizing for 

heavier water runoff, results from the combination of a 4-inch lateral and a 10-inch main 

pipe averaged an emission of 588 kg CO2 eq with the lowest emission estimate held in field 

2. Following field 2, field 3 was estimated at 686 kg CO2 eq, followed by field 4 at 688 kg 

CO2 eq, and field 1 at 713.6 kg CO2 eq. The largest capacity option presented in this study 

was a 6-inch lateral and 10-inch main pipe and was estimated to have an average emission 

of 1149.1 kg CO2 eq for silt loam soils with the field order of 2,3,4, and 1 from lowest to 

highest estimated carbon footprint. As mentioned previously, dual-wall piping estimates 

were calculated to provide comprehensive results, although it is unlikely a system would 

consist fully of dual-wall piping. Nevertheless, the results for dual-wall piping in silt loam 

soils for the base case piping size averaged an emission estimate of 767.6 kg CO2 eq. Field 

2 was again the lowest estimate, with fields 1,3, and 4 holding closer estimates to each 
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other than field 2 with an order of field 4,3, then 1 from lowest to highest. Since dual-wall 

piping is not commonly used for an entire system, comparing the change from the base 

case pipe sizes to the other combinations is presented as a percent change in the discussion 

Section 2.5 below to illustrate the changes in a more effective way.  

 For all combinations, field 2 held the lowest carbon footprint among the four fields 

in the study due to the larger overall size of the field allowing for longer lateral pipelines 

which would decrease the per acre estimates presented. On average field 4 held the second 

lowest carbon footprint estimates, followed by field 3, and then field 1. Although the results 

for fields 1, 3, and 4 were relatively close to each other, the order between fields 3 and 4 

did switch between different combinations. Soil types followed expectations due to the 

pipe spacing difference with lower carbon footprints for systems in sandy soils and higher 

for systems in clay soils. 

2.4.2 Life Cycle Cost Results   

The full life cycle cost results can be found in Tables 2.7, 2.8, 2.9, and 2.10. Results 

from the life cycle cost portion of the study were converted to a per-acre cost for all four 

fields since per-acre is the common unit of measurement within the industry. The base case 

scenario was estimated at $3,640.57 per-acre, much higher than previous studies (Mahoney 

et al., 2010; Schnitkey et al., 2022). Field 2 held a substantially lower estimate at just 

$1,599, while the other three fields were over double. A comparison and further 

investigation of the differences seen between the fields and soil types is discussed in the 

following Section 2.5.4. For the 4-inch lateral and 8-inch main pipe base case, Field 4 was 

estimated to have the second lowest cost, followed by Field 3, then Field 1. As expected, 

dropping lateral pipe size down to a 3-inch pipe resulted in lower cost estimates with an 
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average of $1,912 per acre. Cost order remained the same for the four fields with Field 2 

holding the lowest estimate for the 3-inch lateral piping at $852. Fields 4,3, and 1 again 

resulted in similar estimates to one another at $2,215, $2,263, and $2,319 respectively. On 

the other hand, when the model moved to a 4-inch lateral and 10-inch main pipe, the 

average cost was $3,788. Field 2 resulted in the lowest cost at $1,676, followed in order of 

lowest to highest Field 4, 3, and 1. For fields with larger amounts of water runoff, 

increasing the lateral pipe size to 6-inch, while maintaining the 10-inch main pipe, would 

result in the average cost of $5,940 per-acre, a 56% increase in the cost of the system. 

Similar to the carbon footprint results, the use of dual-wall piping drastically increased the 

cost. As mentioned previously, dual-wall piping is not likely to be used for an entire system 

and is mostly used in sections of a system where water flow needs to be increased to 

maintain flow rates of the system. Therefore, the cost of an entire system is not useful and 

results were converted to a percent change and presented in the discussion Section 2.5. For 

8-inch main pipe systems, Field 2 held the lowest estimated cost followed by Field 4, 3, 

and 1. The order of fields remained the same for systems with a 10-inch main pipe and 

either a 4-inch or 6-inch lateral. However, systems that used a 3-inch lateral and 10-inch 

main pipe resulted in the order of Field 2, 3, 4, and 1 from lowest to highest average cost.  

2.5 Discussion  

In the agriculture setting, a system’s design will be based on the specific field of 

implementation. Tradeoffs between the carbon footprint and the cost of the system will be 

completely dependent on the individual farmer’s preferences and will likely be heavily 

weighted towards the lowest cost system (McCain, 2022). Instead of providing a 
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recommended or “best” system, this section discusses the differences seen between designs 

investigated and aims to provide guidance for industry understanding of how carbon 

footprint and cost of tile drainage systems change based on the variables of a field.    

2.5.1 Carbon Footprint Discussion 

Starting with the base case scenario of 4-inch lateral and 8-inch main piping on a 

silt loam soil, the carbon footprint was estimated at an average of 551 kg CO2 eq per acre. 

When looking at the average across all fields and all soil types, the average system would 

produce 554 kg CO2 eq for the 4-inch lateral and 8-inch main piping system. Similar to the 

base case, Field 2 held the lowest carbon footprint with an average of 325 kg CO2 eq, 

followed by Field 4 at 612 kg CO2 eq, Field 3 at 625 kg CO2 eq, and Field 1 at 652 kg CO2 

eq. When the lateral pipe size decreased to 3 inches, an average decrease of 26% across all 

fields and soil types was found. Comparing the decrease in cost by field illustrated a closer 

grouping of the results with all four Fields estimating a change within 3% of one another 

across all soil types. On the other hand, increasing to a 6-in lateral pipe drastically increased 

the cost of the system by nearly double at an average of 97%. Although the carbon footprint 

changed for all inventory groups, the largest portion of the change was in the pipe material. 

For the single-wall piping, the increase in material was over double for the 6-inch pipe 

compared to the 4-inch. Similarly, the transportation of the material is also based on the 

weight of the pipe resulting in over double the emissions for the 6-inch pipe. However, the 

carbon emissions for transportation were significantly lower than the material. Therefore, 

the results suggest that the major driving factor of the carbon emissions is the pipe. An 

increase to a 10-inch main pipe did not increase the carbon footprint as much as the change 

in lateral due lower distance of mainline pipes in the system. On average an increase of 7% 
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was estimated for implementing a 10-inch pipe instead of the 8-inch. Like the increase in 

emissions with the lateral piping, the major increase was seen with emissions related to the 

piping material. When the model required the use of a dual-wall pipe, carbon footprint 

increased by 48% on average across all combinations of fields and soil types. Although the 

increase was smaller than expected compared to the increase seen in piping sizing changes, 

the magnitude of the increase was heavily variable depending on the lateral pipe size, 

ranging from 77% in the 3-inch later systems to 28% in the 6-inch systems. Nevertheless, 

the percent increase seen for the use of a dual-wall pipe should be used for producers to 

estimate the emission increases for portions of a system that will require high flow rates. 

When results were discussed with an industry expert, producers will only utilize dual-wall 

piping in specific cases where flow rate is an issue and will only use dual-wall pipes for 

the specific section of the system (McCain, 2022). 

2.5.2 Carbon Footprint Comparing Fields 

Carbon footprint per-acre estimates varied across the four fields, with a close 

grouping for fields 1,3 and 4; while field 2 consistently held a lower estimate. Although 

the fields presented different combinations of the common tile drainage system layout, the 

size of field 2 was able to outweigh the obstruction challenges within the field. Since each 

field design was specific to the actual field, it is not possible to determine if an estimated 

increase was due to the system design or field parameters. The middle obstruction 

presented in field 1, estimated results were 2.2% to 4.9% higher in the base case than fields 

3 and 4. By definition of the system design, the presence of a middle obstruction would 

increase a field’s carbon footprint from incorporating a tile drain system, this comparison 

suggests that the magnitude could be fairly small if all other variables are equal. When 
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moving to the smaller lateral pipe size of 3-inch the difference for field 1 compared to 

Fields 3 and 4 is between 3.8% and 3.9%, while moving to the larger 6-inch lateral pipe 

results in a larger range of –0.1% and 6.5%. Although these comparisons are only 

suggestions of estimate changes from a field with a middle obstruction, the ranges and 

differences shown from changing the pipe size illustrates the magnitude difference of the 

additional material needed for the larger pipe and the change in impact for larger sized pipe 

systems will have because of the obstruction.  

Field 4 was the closest system layout to field 2 with the presence of a waterway 

though the entire field. On the other hand, field 3 presented the simplest layout with the 

entire field having a lateral system design and one main pipeline. Although a comparison 

of field estimates cannot determine the exact reason for an increase, comparing fields 2 and 

4 provides a suggestion for an increase from a middle of the field waterway. Across all soil 

types and 8-inch main pipe systems, an average change of 2.4% was observed for moving 

from field 4 to field 3. Further investigation illustrated a similar change in the magnitude 

of comparisons as field 1. For the 4-inch and 6-inch lateral piping, all combinations found 

that field 4 would hold a lower carbon footprint than field 3. However, for the 3-inch lateral 

piping, field 3 was estimated to have lower estimates than field 4 on average across all soil 

types. The model estimated that field 4 is lower than field 3 in soils with higher 

permeability, but field 3 estimates a lower carbon footprint in soils with lower lateral 

spacing for the 3-inch piping resulting in the lower average for field 3 over all soil types. 

Although this result is troubling at first, the change in the order of fields 3 and 4 was due 

to the scale differences of the emissions estimate of the 3-inch piping compared to the other 

two options. In each case field 3 required less main piping than field 4 due to the lack of 
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field obstructions and lateral system design. For the lateral piping needed, field 4 required 

less than field 3 due to field layout having the main line run though the center of the field. 

The amount of piping for the lateral and main lines does not change when pipe sizing is 

changed since it is solely based on the soil type. Therefore, the estimated carbon footprint 

for 3-inch piping is low enough to outweigh the additional piping amount used in field 3 

in the lower permeable soils resulting in a lower emission estimate than the mainline pipe 

carbon footprint difference between the two fields. The carbon footprint estimate for the 4-

inch and 6-inch piping was not low enough to shift the order of the two fields but did 

estimate a lower difference between the fields in lower permeable soils.  

2.5.3 Carbon Footprint Soil Type Differences 

Soil types are also field specific and will depend on the location of where a tile 

drainage system is installed. Although producers do not have control over the soil type, the 

results of this study provide a better understanding of the carbon footprint of installing a 

system and its relationship with different soil types. As expected, sandy soils held the 

lowest carbon footprint estimate across all combinations and silty clay soils held the 

highest. Since both the tile depth and spacing are changing based on soil type using either 

as the sole explanation for the emissions differences would not be appropriate. Comparing 

changes between soil types, carbon footprints were higher in soils with low permeability 

on average.  

2.5.4 Life Cycle Cost Discussion 

The base case scenario was estimated to have an installation cost of $3,641 per acre 

on average across all four fields. Across all soil types, the 4-inch lateral and 8-inch main 

pipe system held an average cost of $3,661 per acre. As expected, due to the size of field 2 
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was less than half of the cost seen in the other three fields at $1,599 per-acre. fields 1,3, 

and 4 all held close estimates to each other, with the order from lowest to highest as field 

4, field 3, then field 1. For the 3-inch lateral piping options, the cost of the system dropped 

immensely from the base case to an average cost of $1,912 on silt loam soils with field 2 

estimated at $852 per-acre. On the other hand, the increase of moving to a 6-inch lateral 

pipe resulted in the average cost increasing by over $2,000 per-acre from the base case. 

The larger change seen with the 6-inch lateral systems is due to the piping material increase. 

Moving to the larger 10-inch main pipe had less of an impact of the cost as the change in 

lateral piping, on average the cost only increased by $148 per-acre in the base case scenario.  

Similar to the carbon footprint results, fields 4 was the second lowest cost estimate 

except for a few soil types. For 3-inch lateral systems, field 3 estimated a lower cost than 

field 4 for soil types sandy clam loam, clay loam, silty clay loam, and sandy loam. The 

lower estimate is due to the field parameters and the system layout to satisfy those 

parameters. field 4’s parameters required the model to estimate a higher increase in the 

amount of piping used per-acre with these soil types compared to the other soil types. Since 

field 3 did not present the same parameters, the model did not estimate the large increase 

in pipe per acre, resulting in a slightly lower cost. When moving up to the 4-inch or 6-inch 

piping only clay loam and sandy clam soils illustrated a higher cost form field 4. In these 

cases, the increase in the amount of piping needed to satisfy the parameters, the additional 

cost of the piping was not enough to outweigh the increased cost. The cost increase from 

requiring a dual-wall pipe to be used was well above the change seen in the carbon footprint 

results, with an average increase of 449% across all combinations. Comparing the changes 

seen for the lateral pipe sizes, 6-inch lateral piping held a lower percent increase from the 
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dual-wall, followed by 4-inch, then 3-inch piping. Since the use of a dual-wall pipe is not 

likely to be used across an entire system, the estimated change suggests farmers are 

expected to have 4.5 times more for the portion of a system that needs dual-wall piping.  

2.5.5 Life Cycle Cost by Field 

The initial expectation was that fields with no obstructions would hold cost 

estimates well below other layouts, followed by fields with waterways through the middle, 

then fields with obstructions. The per-acre findings of this study suggested otherwise with 

the lowest estimates coming from fields with waterways. As mentioned, the order of the 

fields was not consistent throughout all scenarios. The order change seen between fields 3 

and 4 demonstrates the limitations of providing a comprehensive tile drain cost model for 

all fields. The increase in piping per-acre is not related to the soil permeability since field 

4 is the second lowest cost for both clay and silty clay soil types. Due to the dimensions of 

field 4, the spacing of the few soil types resulted in the model having to place extra lateral 

piping to ensure drainage would reach the edge of the field.  

2.5.6 Life Cycle Cost by Soil Type 

Soil type results followed expectations due to the underlying design equations 

calculating the pipe amounts. Higher permeable soils were estimated to have lower per-

acre cost suggesting that field design could not outweigh the cost savings from wider 

spacing requirements of soils such as sand.  

2.5.7 Breakeven Analysis  

Utilizing Kentucky crop budgets for 2023, the breakeven analysis estimated a 

negative NPV for all of the base case scenarios. Similarly, if the lateral pipe size was 
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increased to 6-inch, all four fields were negative. Moving to a silt loam soil with a 3-inch 

lateral pipe suggested a NPV of $68.97 for Field 2, but was negative for the other three 

fields. Across all soil types and pipe sizes, only field 2 illustrated positive NPV with higher 

permeability soils. Investigating these results would suggest that the fields represented in 

this work are too small in size to be profitable at the given prices of the breakeven model. 

Therefore producers looking to install systems on smaller fields will either need higher 

crop prices or higher yields for installation to have a positive NPV.  

2.6 Conclusion 

Tile drainage systems have been used in agriculture for decades (Young, 2014); 

however, recent cost estimates are lacking from scientific literature (Hofstrand et al., 2023; 

Mahoney et al., 2010; Panuska, 2018; Schnitkey et al., 2022). Additionally, new materials 

and installation improvements along with the environmental concerns of modern-day 

agriculture, provide the need for a carbon footprint analysis to be performed for installing 

these systems. The model considers four different crop fields representing common layouts 

for a tile drain system. Those fields were digitally mapped using online mapping software 

to determine critical points, which were then fed into Excel to design tile systems for each 

field with the ability to redesign a layout when soil type changed. An LCC and carbon 

footprint model utilized the Excel outputs, R.S. Means database, and Ecoinvent database 

for each design and calculated each combination's cost and carbon emission. The results 

suggest that using a single-wall pipe will have the lowest cost and environmental impact. 

The base case scenario used a 4-inch lateral pipe, 8-inch main pipe on silt loam soils for 

consistency. For the fields used in the study, the use of a 3-inch lateral pipe showed no 
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issues, while suggestions producers could save up to one-third of the cost compared to the 

4-inch lateral pipe.  

Given this study's objectives, parameters, and design, the base case tile system 

would average a cost of $3,641 per acre and have a carbon footprint of 551 kg CO2 eq per 

acre across all four fields. Economies of scale were illustrated with the larger field in the 

study estimated at $1,599 per acre in the base case scenario, showing the cost per acre 

reduction when scaling a system. The breakeven analysis suggest larger fields will be more 

financially suitable for tile drainage system. Nevertheless, the full results provide estimates 

across soil types that producers can use as guidelines for their specific field and system. 

Although this study provides much-needed information such as updated cost 

estimates, carbon footprint impact estimates, and comparing different soil types for 

implementing tile drain systems, limitations were found. These include machinery used for 

excavating. Since the R.S. Means database provided estimates for tractors or tile plows, 

utilizing the Mississippi State Budget Generator (MSBG) did help to mitigate some of these 

limitations. This limitation carried over to the carbon footprint by needing a complete 

estimate for the machinery used and having to use the diesel burned as the best possible 

option. It should be noted that if a tractor is purchased specifically for implementation, the 

estimates would increase drastically. Furthermore, we are only considering four different 

field configurations in this study.  

Further work on tile drain systems should focus on better estimates for the 

excavating and backfilling portions of the model. Additionally, more work needs to be 

done on accurately predicting the per-acre cost of a system by adding larger fields. The 

literature estimates have remained relatively unchanged since the early 2010’s (Mahoney 
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et al., 2010; Schnitkey et al., 2022), while the installation process has dramatically changed. 

This gap has led to an extreme underestimation of cost, which this study addresses. 

Introducing more fields and better estimations on specific tile drainage pipe costs could 

help fill the gap even more. Lastly, this accounts for labor costs in the LCC model; 

however, some of the literature views tile installation as self-installation or "free 

labor"(Post, 2021). This could further underestimate the cost of these systems. Although 

labor costs were addressed in this work, a further evaluation of the labor used would be 

helpful in the literature. Overall, this project fills a gap within the literature and provides 

recommendations for installing a tile drain system. While there are limitations to the study, 

the results and recommendations should be used for further research in this area.   
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2.7 Chapter 2 Tables and Figures  

Table 2-1 – Field Descriptions 

Field Number Total Acres  System Design Type Field Slope 

Field 1 36.3 Lateral and Herringbone 0-2% 

Field 2 127 Herringbone 0-2% 

Field 3 34 Lateral 0-1% 

Field 4 32.9 Lateral and Herringbone 0-1% 
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Table 2-2 – Pipe Spacing and Depth by Soil Type 

Soil Type Target Lateral Depth (inches) Lateral Spacing (feet) 

Sand 63 350 

Loamy sand 57 250 

Sandy loam 51 190 

Silt loam 45 85 

Loam 45 85 

Sandy clay loam 42.6 80 

Clay loam 39 45 

Silty clay loam 39 40 

Sandy clay 39 45 

Silty clay 39 30 

Clay 39 35 
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Table 2-3 – Equations and Assumptions for Pipe Design 

Name Equation Description Reference 

Drainage 

Coefficient 

(in/day) 

DC = volume (depth(in) 

x area (ac)) of water to 

be removed from field in 

24 hours. 

The desired water removal rate 

(Dc) 
Panuska,2018 

Hooghoudt 

Equation  

DC = ((8*K2*d*h)/L2) + 

((4*K1*h2)/L2) 

K is the soil permeability, d is 

the distance between the 

drainpipe and the confining 

layer below, h is the distance 

between the water table and 

the drainpipe, and L is the 

drain spacing. 

Panuska,2018 

Flow 

Capacity 

Q = [area in acres * DC] 

/ 23.8 
Q = Flow Capacity Wright, 2018 
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Table 2-4 – Carbon Footprint of Included Materials and Processes Estimates  

Item Unit Process 
Impact 

Estimate 
Unit  Database 

Single Wall 

Material 

High density, granulate 

{GLO}| market for | 

APOS, U 

2.0071 
(kg CO2 

eq/kg) 

Ecoinvent 

3 

Single Wall 

Pipe 

Processing 

Extrusion, plastic pipes 

{GLO}| market for | 

APOS, U 

0.4463 
(kg CO2 

eq/kg) 

Ecoinvent 

3 

Dual Wall 

Material 

High density, granulate 

{GLO}| market for | 

APOS, U 

2.0071 
(kg CO2 

eq/kg) 

Ecoinvent 

3 

Dual Wall Pipe 

Processing 

Extrusion, plastic pipes 

{GLO}| market for | 

APOS, U 

0.4463 
(kg CO2 

eq/kg) 

Ecoinvent 

3 

Diesel  
Diesel {GLO}| market 

group for | APOS, U 
0.5284 

(kg CO2 

eq/kg of 

Fuel) 

Ecoinvent 

3 

Backfill 

Skid-steer loader 

{GLO}| market for | 

APOS, U 

0.5195 
(kg CO2 

eq/m3) 

Ecoinvent 

3 

Transportation 

Light commercial 

vehicle {GLO}| market 

group for transport, 

freight, light 

commercial vehicle | 

APOS, U 

1.891 

(kg CO2 

eq/metric 

ton-km) 

Ecoinvent 

3 
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Table 2-5 – Piping Unit Cost by Pipe Size 

Item Cost  Unit Reference 

Single Wall Lateral Pipe 

Costs  

(0.8463*Pipe Diameter) 

- 0.7354 
($/ft) RS Means 

Single Wall Main Pipe 

Costs 

(3.0788*Pipe Diameter) 

+ 2.1737 
($/ft) RS Means 

Dual Wall Lateral Pipe 

Costs 

(1.6721*Pipe Diameter) 

- 7.6171 
($/ft) RS Means 

Dual Wall Main Pipe 

Costs 

(7.525*Pipe Diameter) - 

34.4 
($/ft) RS Means 

Excavation Costs  $0.02  ($/Linear ft) MSGB 

Backfill Costs  $2.53  ($/yd3) RS Means 

Transportation to Jobsite 

Costs 
$0.67  ($/Mile) RS Means 

Tile Plow Costs Breakdown 

Tile Plow 

(Purchase 

Price*R&M%)/(Annual 

Hr*Useful Life) 

($/Acre) MSGB 

Tile Plow ($28,000*.65)/(150*12) ($/Acre) MSGB 
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Table 2-6 – Breakeven Cost Estimates for Yield Increase 

Item 
Cost Increases 

(Cost per bushel) 
Reference 

Corn Seed $0.57  UKY (Halich,2023) 

Corn Nitrogen $0.73  UKY (Halich,2023) 

Corn P, K, and Lime $0.50  UKY (Halich,2023) 

Corn Drying, Storage, 

Transport 
$0.23  UKY (Halich,2023) 

Machinery and Labor $0.99  UKY (Halich,2023) 

Totals per bushel of corn  $3.02    

Soybean Seed $1.30  UKY (Halich,2023) 

Soybean P, K, and Lime $1.22  UKY (Halich,2023) 

Soybean Drying, Storage, 

Transport 
$0.13  UKY (Halich,2023) 

Machinery and Labor $2.41  UKY (Halich,2023) 

Totals per bushel of soybeans $5.06    
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Table 2-7 – Life Cycle Cost for 8-inch Mainline Pipe 

LCC Single 3 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $1,778.22  $300.70  $1,671.69  $1,417.88  $1,292.12  

Loamy sand $1,951.12  $363.98  $1,851.05  $1,676.75  $1,460.72  

Sandy loam $2,077.79  $450.56  $1,979.28  $1,887.08  $1,598.67  

Silt loam $2,319.29  $851.79  $2,262.73  $2,215.24  $1,912.26  

Loam $2,319.29  $851.79  $2,262.73  $2,215.24  $1,912.26  

Sandy clay loam $2,333.44  $895.85  $2,225.16  $2,249.46  $1,925.98  

Clay loam $2,429.98  $1,495.07  $2,269.48  $2,394.93  $2,147.36  

Silty clay loam $2,422.69  $1,665.48  $2,298.74  $2,357.53  $2,186.11  

Sandy clay $2,429.98  $1,495.07  $2,269.48  $2,394.93  $2,147.36  

Silty clay $2,404.99  $2,182.98  $2,363.62  $2,314.07  $2,316.41  

Clay $2,415.33  $1,893.78  $2,326.30  $2,325.29  $2,240.17  

Average $2,262.01  $1,131.55  $2,161.84  $2,131.67  $1,921.77  

LCC Single 4 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $3,293.47  $464.42  $3,182.98  $2,508.88  $2,362.44  

Loamy sand $3,650.29  $594.54  $3,552.41  $3,041.50  $2,709.69  

Sandy loam $3,912.36  $772.73  $3,817.04  $3,474.78  $2,994.23  

Silt loam $4,411.08  $1,598.75  $4,401.42  $4,151.04  $3,640.57  

Loam $4,411.08  $1,598.75  $4,401.42  $4,151.04  $3,640.57  

Sandy clay loam $4,440.95  $1,689.68  $4,324.58  $4,221.95  $3,669.29  

Clay loam $4,640.89  $2,924.06  $4,416.59  $4,522.24  $4,125.94  

Silty clay loam $4,625.89  $3,274.98  $4,476.83  $4,445.23  $4,205.73  

Sandy clay $4,640.89  $2,924.06  $4,416.59  $4,522.24  $4,125.94  

Silty clay $4,589.44  $4,340.68  $4,610.45  $4,355.72  $4,474.07  

Clay $4,610.72  $3,745.13  $4,533.58  $4,378.84  $4,317.07  

Average $4,293.37  $2,175.25  $4,193.99  $3,979.40  $3,660.50  

LCC Single 6 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $5,181.42  $668.41  $5,066.00  $3,868.22  $3,696.01  

Loamy sand $5,766.94  $881.75  $5,671.80  $4,741.56  $4,265.51  

Sandy loam $6,197.19  $1,173.98  $6,105.83  $5,452.15  $4,732.29  

Silt loam $7,015.68  $2,528.84  $7,064.42  $6,561.42  $5,792.59  

Loam $7,015.68  $2,528.84  $7,064.42  $6,561.42  $5,792.59  

Sandy clay loam $7,064.91  $2,678.05  $6,938.46  $6,677.80  $5,839.81  

Clay loam $7,393.23  $4,702.99  $7,089.50  $7,170.50  $6,589.06  

Silty clay loam $7,368.62  $5,278.63  $7,188.31  $7,044.19  $6,719.94  

Sandy clay $7,393.23  $4,702.99  $7,089.50  $7,170.50  $6,589.06  

Silty clay $7,308.84  $7,026.79  $7,407.50  $6,897.35  $7,160.12  

Clay $7,343.75  $6,049.86  $7,281.41  $6,935.28  $6,902.57  

Average $6,822.68  $3,474.65  $6,724.29  $6,280.04  $5,825.41  
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Table 2-8 – Life Cycle Cost for 10-inch Mainline Pipe 

LCC Single 3 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $1,959.19  $377.69  $1,798.24  $1,620.92  $1,439.01  

Loamy sand $2,132.29  $441.09  $1,978.11  $1,880.29  $1,607.95  

Sandy loam $2,259.16  $527.79  $2,106.85  $2,091.12  $1,746.23  

Silt loam $2,500.87  $929.15  $2,390.80  $2,419.78  $2,060.15  

Loam $2,500.87  $929.15  $2,390.80  $2,419.78  $2,060.15  

Sandy clay loam $2,515.10  $973.26  $2,353.44  $2,454.20  $2,074.00  

Clay loam $2,611.76  $1,572.55  $2,398.06  $2,599.97  $2,295.59  

Silty clay loam $2,604.48  $1,742.96  $2,427.32  $2,562.58  $2,334.33  

Sandy clay $2,611.76  $1,572.55  $2,398.06  $2,599.97  $2,295.59  

Silty clay $2,586.78  $2,260.46  $2,492.20  $2,519.11  $2,464.64  

Clay $2,597.11  $1,971.26  $2,454.88  $2,530.34  $2,388.40  

Average $2,443.58  $1,208.90  $2,289.89  $2,336.19  $2,069.64  

LCC Single 4 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $3,474.44  $541.41  $3,309.54  $2,711.92  $2,509.33  

Loamy sand $3,831.47  $671.65  $3,679.48  $3,245.04  $2,856.91  

Sandy loam $4,093.74  $849.97  $3,944.61  $3,678.82  $3,141.78  

Silt loam $4,592.66  $1,676.11  $4,529.49  $4,355.58  $3,788.46  

Loam $4,592.66  $1,676.11  $4,529.49  $4,355.58  $3,788.46  

Sandy clay loam $4,622.61  $1,767.09  $4,452.86  $4,426.69  $3,817.31  

Clay loam $4,822.67  $3,001.54  $4,545.17  $4,727.28  $4,274.17  

Silty clay loam $4,807.67  $3,352.46  $4,605.40  $4,650.28  $4,353.95  

Sandy clay $4,822.67  $3,001.54  $4,545.17  $4,727.28  $4,274.17  

Silty clay $4,771.22  $4,418.16  $4,739.03  $4,560.77  $4,622.30  

Clay $4,792.51  $3,822.61  $4,662.16  $4,583.89  $4,465.29  

Average $4,474.94  $2,252.61  $4,322.04  $4,183.92  $3,808.37  

LCC Single 6 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $5,362.38  $745.40  $5,192.56  $4,071.26  $3,842.90  

Loamy sand $5,948.11  $958.86  $5,798.86  $4,945.10  $4,412.73  

Sandy loam $6,378.57  $1,251.21  $6,233.40  $5,656.19  $4,879.84  

Silt loam $7,197.26  $2,606.19  $7,192.50  $6,765.96  $5,940.48  

Loam $7,197.26  $2,606.19  $7,192.50  $6,765.96  $5,940.48  

Sandy clay loam $7,246.57  $2,755.46  $7,066.74  $6,882.55  $5,987.83  

Clay loam $7,575.02  $4,780.47  $7,218.07  $7,375.55  $6,737.28  

Silty clay loam $7,550.41  $5,356.12  $7,316.89  $7,249.23  $6,868.16  

Sandy clay $7,575.02  $4,780.47  $7,218.07  $7,375.55  $6,737.28  

Silty clay $7,490.62  $7,104.27  $7,536.08  $7,102.40  $7,308.34  

Clay $7,525.53  $6,127.34  $7,409.99  $7,140.33  $7,050.80  

Average $7,004.25  $3,552.00  $6,852.33  $6,484.55  $5,973.28  
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Table 2-9 – Life Cycle Cost for Dual Wall 8-inch Mainline Pipe 

LCC Dual 3 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $12,454.10  $1,845.06  $11,952.64  $9,599.63  $8,962.86  

Loamy sand $13,777.87  $2,326.32  $13,323.16  $11,570.78  $10,249.53  

Sandy loam $14,753.45  $2,985.57  $14,308.42  $13,177.53  $11,306.24  

Silt loam $16,604.09  $6,038.05  $16,475.69  $15,683.46  $13,700.32  

Loam $16,604.09  $6,038.05  $16,475.69  $15,683.46  $13,700.32  

Sandy clay loam $16,718.42  $6,375.42  $16,196.01  $15,949.36  $13,809.80  

Clay loam $17,463.23  $10,938.99  $16,542.12  $17,065.03  $15,502.34  

Silty clay loam $17,407.79  $12,235.71  $16,764.72  $16,780.48  $15,797.17  

Sandy clay $17,463.23  $10,938.99  $16,542.12  $17,065.03  $15,502.34  

Silty clay $17,273.12  $16,173.67  $17,258.47  $16,449.72  $16,788.74  

Clay $17,351.75  $13,973.00  $16,974.44  $16,535.15  $16,208.59  

Average $16,170.10  $8,169.89  $15,710.32  $15,050.87  $13,775.30  

LCC Dual 4 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $16,486.53  $2,280.75  $15,974.54  $12,503.03  $11,811.21  

Loamy sand $18,300.29  $2,939.97  $17,851.42  $15,203.10  $13,573.69  

Sandy loam $19,636.81  $3,843.15  $19,200.27  $17,403.76  $15,021.00  

Silt loam $22,172.75  $8,026.58  $22,169.22  $20,836.87  $18,301.35  

Loam $22,172.75  $8,026.58  $22,169.22  $20,836.87  $18,301.35  

Sandy clay loam $22,329.21  $8,488.84  $21,785.26  $21,200.70  $18,451.00  

Clay loam $23,349.72  $14,743.62  $22,258.72  $22,728.93  $20,770.25  

Silty clay loam $23,273.73  $16,520.96  $22,563.82  $22,338.91  $21,174.36  

Sandy clay $23,349.72  $14,743.62  $22,258.72  $22,728.93  $20,770.25  

Silty clay $23,089.14  $21,918.49  $23,240.58  $21,885.56  $22,533.44  

Clay $23,196.93  $18,902.16  $22,851.28  $22,002.66  $21,738.25  

Average $21,577.96  $10,948.61  $21,120.28  $19,969.94  $18,404.20  

LCC Dual 6 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $22,509.73  $2,931.54  $21,982.02  $16,839.81  $16,065.78  

Loamy sand $25,055.40  $3,856.57  $24,615.25  $20,628.69  $18,538.98  

Sandy loam $26,931.10  $5,124.12  $26,507.21  $23,716.47  $20,569.72  

Silt loam $30,490.67  $10,996.85  $30,673.67  $28,534.54  $25,173.93  

Loam $30,490.67  $10,996.85  $30,673.67  $28,534.54  $25,173.93  

Sandy clay loam $30,710.08  $11,645.67  $30,133.95  $29,044.65  $25,383.59  

Clay loam $32,142.41  $20,426.64  $30,797.65  $31,189.14  $28,638.96  

Silty clay loam $32,035.74  $22,921.88  $31,225.98  $30,641.59  $29,206.30  

Sandy clay $32,142.41  $20,426.64  $30,797.65  $31,189.14  $28,638.96  

Silty clay $31,776.59  $30,499.58  $32,176.10  $30,005.12  $31,114.35  

Clay $31,927.90  $26,264.89  $31,629.55  $30,169.51  $29,997.96  

Average $29,655.70  $15,099.20  $29,201.15  $27,317.56  $25,318.41  
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Table 2-10 – Life Cycle Cost for Dual Wall 10-inch Mainline Pipe 

LCC Dual 3 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $13,431.51  $2,260.87  $12,636.18  $10,696.23  $9,756.20  

Loamy sand $14,756.59  $2,742.89  $14,009.58  $12,670.32  $11,044.84  

Sandy loam $15,733.48  $3,402.90  $14,997.72  $14,280.03  $12,103.53  

Silt loam $17,585.43  $6,456.13  $17,167.85  $16,788.90  $14,499.58  

Loam $17,585.43  $6,456.13  $17,167.85  $16,788.90  $14,499.58  

Sandy clay loam $17,700.28  $6,793.81  $16,889.33  $17,055.99  $14,609.85  

Clay loam $18,445.88  $11,357.83  $17,237.17  $18,173.43  $16,303.58  

Silty clay loam $18,390.44  $12,654.55  $17,459.76  $17,888.88  $16,598.41  

Sandy clay $18,445.88  $11,357.83  $17,237.17  $18,173.43  $16,303.58  

Silty clay $18,255.77  $16,592.51  $17,953.52  $17,558.12  $17,589.98  

Clay $18,334.41  $14,391.84  $17,669.49  $17,643.55  $17,009.82  

Average $17,151.37  $8,587.93  $16,402.33  $16,156.16  $14,574.45  

LCC Dual 4 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $17,463.94  $2,696.56  $16,658.08  $13,599.63  $12,604.55  

Loamy sand $19,279.01  $3,356.54  $18,537.83  $16,302.65  $14,369.01  

Sandy loam $20,616.84  $4,260.48  $19,889.56  $18,506.25  $15,818.28  

Silt loam $23,154.09  $8,444.66  $22,861.38  $21,942.32  $19,100.61  

Loam $23,154.09  $8,444.66  $22,861.38  $21,942.32  $19,100.61  

Sandy clay loam $23,311.07  $8,907.23  $22,478.58  $22,307.33  $19,251.05  

Clay loam $24,332.37  $15,162.46  $22,953.76  $23,837.33  $21,571.48  

Silty clay loam $24,256.39  $16,939.80  $23,258.86  $23,447.31  $21,975.59  

Sandy clay $24,332.37  $15,162.46  $22,953.76  $23,837.33  $21,571.48  

Silty clay $24,071.80  $22,337.33  $23,935.62  $22,993.96  $23,334.68  

Clay $24,179.58  $19,321.00  $23,546.32  $23,111.06  $22,539.49  

Average $22,559.23  $11,366.65  $21,812.29  $21,075.22  $19,203.35  

LCC Dual 6 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand $24,179.58  $3,347.36  $22,665.56  $17,936.40  $17,032.23  

Loamy sand $23,487.14  $4,273.14  $25,301.67  $21,728.23  $18,697.55  

Sandy loam $26,034.12  $5,541.44  $27,196.50  $24,818.96  $20,897.76  

Silt loam $27,911.13  $11,414.93  $31,365.83  $29,639.99  $25,082.97  

Loam $31,472.02  $11,414.93  $31,365.83  $29,639.99  $25,973.19  

Sandy clay loam $31,472.02  $12,064.06  $30,827.27  $30,151.28  $26,128.65  

Clay loam $31,691.95  $20,845.48  $31,492.69  $32,297.54  $29,081.91  

Silty clay loam $33,125.06  $23,340.72  $31,921.02  $31,749.99  $30,034.20  

Sandy clay $33,018.39  $20,845.48  $31,492.69  $32,297.54  $29,413.53  

Silty clay $33,125.06  $30,918.42  $32,871.14  $31,113.52  $32,007.04  

Clay $32,759.24  $26,683.73  $32,324.59  $31,277.91  $30,761.37  

Average $29,843.25  $15,517.25  $29,893.16  $28,422.85  $25,919.13  
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Table 2-11 – Carbon Footprint for Single Wall 8-inch Mainline Pipe 

CF Single 3 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 386.3 71 357.8 315.1 282.5 

Loamy sand 419 83.6 391.9 366.1 315.2 

Sandy loam 441.9 100.7 415.1 406.4 341 

Silt loam 487.2 180.4 468.8 469.5 401.5 

Loam 487.2 180.4 468.8 469.5 401.5 

Sandy clay loam 488.7 188.7 460 475.1 403.1 

Clay loam 505.8 306.5 466.8 502.1 445.3 

Silty clay loam 504.4 340.3 472.6 494.7 453 

Sandy clay 505.8 306.5 466.8 502.1 445.3 

Silty clay 500.9 442.7 485.4 486.1 478.8 

Clay 502.9 385.5 478 488.3 463.7 

Average 475.5 235.1 448.4 452.3 402.8 

CF Single 4 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 519.4 85.4 490.6 411 376.6 

Loamy sand 567.7 103.8 540.7 485.5 424.4 

Sandy loam 601.7 128.8 575.1 544.7 462.6 

Silt loam 668.6 245.1 654.3 637.4 551.3 

Loam 668.6 245.1 654.3 637.4 551.3 

Sandy clay loam 671.2 257.4 641.7 645.9 554 

Clay loam 696.7 429.9 652.2 685.7 616.1 

Silty clay loam 694.6 479.2 660.6 674.9 627.4 

Sandy clay 696.7 429.9 652.2 685.7 616.1 

Silty clay 689.5 629 679.4 662.3 665.1 

Clay 692.5 545.3 668.6 665.6 643 

Average 651.6 325.4 624.5 612.4 553.5 

CF Single 6 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 1015.1 138.9 985 767.9 726.7 

Loamy sand 1122.1 179 1095.9 930.8 832 

Sandy loam 1198.8 233.6 1173.3 1061.5 916.8 

Silt loam 1347.7 487.6 1348.6 1265.8 1112.4 

Loam 1347.7 487.6 1348.6 1265.8 1112.4 

Sandy clay loam 1354.6 514.8 1322.6 1285.5 1119.4 

Clay loam 1412.6 892.6 1347.4 1374.6 1256.8 

Silty clay loam 1408 1000.4 1365.9 1350.9 1281.3 

Sandy clay 1412.6 892.6 1347.4 1374.6 1256.8 

Silty clay 1396.8 1327.7 1406.9 1323.4 1363.7 

Clay 1403.3 1144.8 1383.3 1330.5 1315.5 

Average 1310.9 663.6 1284.1 1211.9 1117.6 

 

 



41 

 

Table 2-12 – Carbon Footprint for Single Wall 10-inch Mainline Pipe 

CF Single 3 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 431 90 389.1 365.4 318.9 

Loamy sand 463.9 102.7 423.3 416.5 351.6 

Sandy loam 486.8 119.9 446.7 456.9 377.6 

Silt loam 532.2 199.5 500.5 520.2 438.1 

Loam 532.2 199.5 500.5 520.2 438.1 

Sandy clay loam 533.7 207.8 491.8 525.8 439.8 

Clay loam 550.9 325.7 498.7 552.9 482 

Silty clay loam 549.4 359.5 504.4 545.5 489.7 

Sandy clay 550.9 325.7 498.7 552.9 482 

Silty clay 545.9 461.9 517.3 536.9 515.5 

Clay 548 404.7 509.9 539.1 500.4 

Average 520.5 254.3 480.1 502.9 439.4 

CF Single 4 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 564.2 104.4 521.9 461.3 412.9 

Loamy sand 612.5 122.9 572.2 535.9 460.9 

Sandy loam 646.6 147.9 606.7 595.2 499.1 

Silt loam 713.6 264.3 686 688 588 

Loam 713.6 264.3 686 688 588 

Sandy clay loam 716.2 276.6 673.5 696.6 590.7 

Clay loam 741.8 449.1 684 736.6 652.9 

Silty clay loam 739.7 498.4 692.5 725.7 664.1 

Sandy clay 741.8 449.1 684 736.6 652.9 

Silty clay 734.5 648.2 711.3 713.2 701.8 

Clay 737.5 564.5 700.5 716.4 679.7 

Average 696.5 344.5 656.2 663 590.1 

CF Single 6 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 1059.9 158 1016.3 818.2 763.1 

Loamy sand 1167 198.1 1127.4 981.2 868.4 

Sandy loam 1243.7 252.8 1204.9 1112 953.3 

Silt loam 1392.7 506.8 1380.3 1316.5 1149.1 

Loam 1392.7 506.8 1380.3 1316.5 1149.1 

Sandy clay loam 1399.6 534 1354.4 1336.3 1156.1 

Clay loam 1457.7 911.8 1379.3 1425.4 1293.5 

Silty clay loam 1453.1 1019.6 1397.8 1401.7 1318 

Sandy clay 1457.7 911.8 1379.3 1425.4 1293.5 

Silty clay 1441.9 1346.9 1438.8 1374.2 1400.4 

Clay 1448.4 1164 1415.2 1381.3 1352.2 

Average 1355.8 682.8 1315.8 1262.6 1154.3 
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Table 2-13 – Carbon Footprint for Dual Wall 8-inch Mainline Pipe 

CF Dual 3 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 667.5 106.3 633.7 523.9 482.8 

Loamy sand 732.8 130.7 701.4 623.1 547 

Sandy loam 779.7 163.9 748.9 702.8 598.8 

Silt loam 870.6 318.3 855.8 827.4 718 

Loam 870.6 318.3 855.8 827.4 718 

Sandy clay loam 874.9 334.9 840.2 839.6 722.4 

Clay loam 910.4 564.6 855.6 894 806.2 

Silty clay loam 907.6 630.1 866.9 879.6 821.1 

Sandy clay 910.4 564.6 855.6 894 806.2 

Silty clay 900.8 829.1 891.8 862.9 871.1 

Clay 904.8 717.9 877.5 867.2 841.8 

Average 848.2 425.3 816.7 794.7 721.2 

CF Dual 4 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 713.5 111.2 679.6 557 515.4 

Loamy sand 783.5 137.5 752.1 663.8 584.2 

Sandy loam 833.4 173.3 802.6 749.2 639.6 

Silt loam 930.5 339.7 917.1 882.9 767.6 

Loam 930.5 339.7 917.1 882.9 767.6 

Sandy clay loam 934.9 357.5 900 895.7 772 

Clay loam 972.6 604.8 916 953.8 861.8 

Silty clay loam 969.6 675.4 928.1 938.3 877.8 

Sandy clay 972.6 604.8 916 953.8 861.8 

Silty clay 962.2 889.7 955 920.3 931.8 

Clay 966.5 769.9 939.5 924.9 900.2 

Average 906.4 454.9 874.8 847.5 770.9 

CF Dual 6 inch lateral and 8 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 1289.7 173.5 1254.3 971.9 922.4 

Loamy sand 1428.3 225 1397.8 1181.7 1058.2 

Sandy loam 1528.2 295.4 1498.7 1350.6 1168.2 

Silt loam 1721.3 622.1 1725.6 1614.6 1420.9 

Loam 1721.3 622.1 1725.6 1614.6 1420.9 

Sandy clay loam 1730.9 657.3 1692.9 1640.7 1430.5 

Clay loam 1806.7 1143.9 1726 1756.3 1608.2 

Silty clay loam 1800.8 1282.6 1749.8 1725.9 1639.8 

Sandy clay 1806.7 1143.9 1726 1756.3 1608.2 

Silty clay 1786.4 1703.7 1802.6 1690.5 1745.8 

Clay 1794.8 1468.4 1772.2 1699.6 1683.8 

Average 1674.1 848.9 1642.9 1545.7 1427.9 
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Table 2-14 – Carbon Footprint for Dual Wall 10-inch Mainline Pipe 

CF Dual 3 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 727.9 132 675.9 591.6 531.9 

Loamy sand 793.3 156.4 743.8 691 596.1 

Sandy loam 840.3 189.7 791.5 770.9 648.1 

Silt loam 931.2 344.2 898.6 895.7 767.4 

Loam 931.2 344.2 898.6 895.7 767.4 

Sandy clay loam 935.6 360.8 883.1 907.9 771.9 

Clay loam 971.2 590.5 898.6 962.5 855.7 

Silty clay loam 968.4 656 909.8 948.1 870.6 

Sandy clay 971.2 590.5 898.6 962.5 855.7 

Silty clay 961.6 854.9 934.8 931.4 920.7 

Clay 965.6 743.8 920.4 935.7 891.4 

Average 908.9 451.2 859.4 863 770.6 

CF Dual 4 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 773.9 136.9 721.9 624.8 564.4 

Loamy sand 843.9 163.3 794.6 731.7 633.4 

Sandy loam 893.9 199.1 845.2 817.4 688.9 

Silt loam 991.2 365.6 959.9 951.2 817 

Loam 991.2 365.6 959.9 951.2 817 

Sandy clay loam 995.6 383.4 942.8 964.1 821.5 

Clay loam 1033.3 630.7 958.9 1022.3 911.3 

Silty clay loam 1030.3 701.3 971 1006.8 927.3 

Sandy clay 1033.3 630.7 958.9 1022.3 911.3 

Silty clay 1023 915.6 997.9 988.8 981.3 

Clay 1027.3 795.8 982.5 993.4 949.7 

Average 967 480.7 917.6 915.8 820.3 

CF Dual 6 inch lateral and 10 inch main  

Soil Type Field 1 Field 2 Field 3 Field 4 Average 

Sand 1350.1 199.2 1296.5 1039.6 890.7 

Loamy sand 1488.8 250.8 1440.3 1249.7 1072.7 

Sandy loam 1588.8 321.2 1541.3 1418.7 1192.5 

Silt loam 1781.9 647.9 1768.4 1683 1422 

Loam 1781.9 647.9 1768.4 1683 1470.3 

Sandy clay loam 1791.6 683.2 1735.8 1709.1 1477.5 

Clay loam 1867.4 1169.8 1769 1824.8 1638.8 

Silty clay loam 1861.5 1308.5 1792.8 1794.4 1690.8 

Sandy clay 1867.4 1169.8 1769 1824.8 1656.3 

Silty clay 1847.1 1729.6 1845.6 1759 1800.4 

Clay 1855.5 1494.3 1815.2 1768.1 1731.2 

Average 1734.7 874.7 1685.6 1614 1458.5 
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Table 2-15 – Breakeven Results for Single Wall 8-inch Mainline Pipe 

3 inch lateral/8 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $ (813.41) $ 664.11  $ (706.87) $ (453.07) $ (327.31) 

Loamy sand $ (986.31) $ 600.84  $ (886.23) $ (711.94) $ (495.91) 

Sandy loam $(1,112.97) $ 514.26  $(1,014.46) $ (922.26) $ (633.86) 

Silt loam $(1,354.48) $ 113.02  $(1,297.91) $(1,250.42) $ (947.45) 

Loam $(1,354.48) $ 113.02  $(1,297.91) $(1,250.42) $ (947.45) 

Sandy clay loam $(1,368.63) $ 68.97  $(1,260.35) $(1,284.64) $ (961.16) 

Clay loam $(1,465.16) $ (530.26) $(1,304.67) $(1,430.11) $(1,182.55) 

Silty clay loam $(1,457.88) $ (700.66) $(1,333.92) $(1,392.72) $(1,221.29) 

Sandy clay $(1,465.16) $ (530.26) $(1,304.67) $(1,430.11) $(1,182.55) 

Silty clay $(1,440.18) $(1,218.16) $(1,398.81) $(1,349.25) $(1,351.60) 

Clay $(1,450.51) $ (928.97) $(1,361.48) $(1,360.48) $(1,275.36) 

4 inch lateral/8 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $(2,328.66) $ 500.39  $(2,218.17) $(1,544.07) $(1,397.62) 

Loamy sand $(2,685.48) $ 370.28  $(2,587.60) $(2,076.69) $(1,744.87) 

Sandy loam $(2,947.55) $ 192.08  $(2,852.23) $(2,509.97) $(2,029.41) 

Silt loam $(3,446.26) $ (633.94) $(3,436.60) $(3,186.22) $(2,675.76) 

Loam $(3,446.26) $ (633.94) $(3,436.60) $(3,186.22) $(2,675.76) 

Sandy clay loam $(3,476.14) $ (724.87) $(3,359.77) $(3,257.13) $(2,704.48) 

Clay loam $(3,676.07) $(1,959.24) $(3,451.77) $(3,557.42) $(3,161.13) 

Silty clay loam $(3,661.07) $(2,310.16) $(3,512.01) $(3,480.42) $(3,240.92) 

Sandy clay $(3,676.07) $(1,959.24) $(3,451.77) $(3,557.42) $(3,161.13) 

Silty clay $(3,624.63) $(3,375.87) $(3,645.63) $(3,390.90) $(3,509.26) 

Clay $(3,645.91) $(2,780.31) $(3,568.77) $(3,414.02) $(3,352.25) 

6 inch lateral/8 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $(4,216.60) $ 296.41  $(4,101.18) $(2,903.41) $(2,731.20) 

Loamy sand $(4,802.13) $ 83.07  $(4,706.98) $(3,776.74) $(3,300.70) 

Sandy loam $(5,232.38) $ (209.16) $(5,141.02) $(4,487.33) $(3,767.47) 

Silt loam $(6,050.86) $(1,564.02) $(6,099.61) $(5,596.60) $(4,827.77) 

Loam $(6,050.86) $(1,564.02) $(6,099.61) $(5,596.60) $(4,827.77) 

Sandy clay loam $(6,100.10) $(1,713.24) $(5,973.65) $(5,712.99) $(4,874.99) 

Clay loam $(6,428.42) $(3,738.18) $(6,124.68) $(6,205.69) $(5,624.24) 

Silty clay loam $(6,403.81) $(4,313.82) $(6,223.50) $(6,079.37) $(5,755.12) 

Sandy clay $(6,428.42) $(3,738.18) $(6,124.68) $(6,205.69) $(5,624.24) 

Silty clay $(6,344.02) $(6,061.97) $(6,442.69) $(5,932.54) $(6,195.31) 

Clay $(6,378.93) $(5,085.04) $(6,316.60) $(5,970.47) $(5,937.76) 
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Table 2-16 – Breakeven Results for Single Wall 10-inch Mainline Pipe 

3 inch lateral/10 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $ (994.37) $ 587.12  $ (833.43) $ (656.10) $ (474.20) 

Loamy sand $(1,167.48) $ 523.73  $(1,013.30) $ (915.48) $ (643.13) 

Sandy loam $(1,294.35) $ 437.02  $(1,142.03) $(1,126.31) $ (781.42) 

Silt loam $(1,536.06) $ 35.66  $(1,425.99) $(1,454.97) $(1,095.34) 

Loam $(1,536.06) $ 35.66  $(1,425.99) $(1,454.97) $(1,095.34) 

Sandy clay loam $(1,550.29) $ (8.44) $(1,388.62) $(1,489.39) $(1,109.19) 

Clay loam $(1,646.95) $ (607.74) $(1,433.25) $(1,635.16) $(1,330.77) 

Silty clay loam $(1,639.66) $ (778.15) $(1,462.50) $(1,597.77) $(1,369.52) 

Sandy clay $(1,646.95) $ (607.74) $(1,433.25) $(1,635.16) $(1,330.77) 

Silty clay $(1,621.96) $(1,295.65) $(1,527.39) $(1,554.30) $(1,499.82) 

Clay $(1,632.30) $(1,006.45) $(1,490.06) $(1,565.53) $(1,423.58) 

4 inch lateral/10 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $(2,509.63) $ 423.41  $(2,344.73) $(1,747.10) $(1,544.51) 

Loamy sand $(2,866.65) $ 293.16  $(2,714.66) $(2,280.23) $(1,892.09) 

Sandy loam $(3,128.92) $ 114.85  $(2,979.79) $(2,714.01) $(2,176.97) 

Silt loam $(3,627.84) $ (711.30) $(3,564.68) $(3,390.77) $(2,823.65) 

Loam $(3,627.84) $ (711.30) $(3,564.68) $(3,390.77) $(2,823.65) 

Sandy clay loam $(3,657.80) $ (802.28) $(3,488.04) $(3,461.88) $(2,852.50) 

Clay loam $(3,857.86) $(2,036.73) $(3,580.35) $(3,762.47) $(3,309.35) 

Silty clay loam $(3,842.86) $(2,387.65) $(3,640.59) $(3,685.46) $(3,389.14) 

Sandy clay $(3,857.86) $(2,036.73) $(3,580.35) $(3,762.47) $(3,309.35) 

Silty clay $(3,806.41) $(3,453.35) $(3,774.21) $(3,595.95) $(3,657.48) 

Clay $(3,827.69) $(2,857.80) $(3,697.35) $(3,619.07) $(3,500.48) 

6 inch lateral/10 inch mains 

Soil Type Field 1 Field 2 Field 3 Field 4 Average  

Sand $(4,397.57) $ 219.42  $(4,227.74) $(3,106.44) $(2,878.08) 

Loamy sand $(4,983.30) $ 5.95  $(4,834.05) $(3,980.28) $(3,447.92) 

Sandy loam $(5,413.75) $ (286.40) $(5,268.59) $(4,691.38) $(3,915.03) 

Silt loam $(6,232.44) $(1,641.38) $(6,227.68) $(5,801.15) $(4,975.66) 

Loam $(6,232.44) $(1,641.38) $(6,227.68) $(5,801.15) $(4,975.66) 

Sandy clay loam $(6,281.76) $(1,790.65) $(6,101.93) $(5,917.74) $(5,023.02) 

Clay loam $(6,610.20) $(3,815.66) $(6,253.26) $(6,410.74) $(5,772.46) 

Silty clay loam $(6,585.59) $(4,391.30) $(6,352.07) $(6,284.42) $(5,903.35) 

Sandy clay $(6,610.20) $(3,815.66) $(6,253.26) $(6,410.74) $(5,772.46) 

Silty clay $(6,525.81) $(6,139.46) $(6,571.26) $(6,137.59) $(6,343.53) 

Clay $(6,560.72) $(5,162.53) $(6,445.18) $(6,175.51) $(6,085.98) 
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Figure 2-1 – Overhead Picture of Field 1 
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Figure 2-2 – Overhead Picture of Field 2 
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Figure 2-3 – Overhead Picture of Field 3 
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Figure 2-4 – Overhead Picture of Field 4 
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CHAPTER 3. EVALUATING THE EFFECT OF PRECISION AGRICULTURE TECHNOLOGIES ON 

HARVESTING COMBINE VALUES IN NORTH AMERICA. 

3.1 Introduction  

The relationship between a growing population and the decrease in the portion of 

the population in agriculture has continued to remain a topic of interest over recent decades. 

Additionally, public perception centered around environmental and natural resources 

concerns has further increased production stress on the agriculture industry. At the same 

time, producers have faced higher costs of production with labor, equipment, and inputs. 

Precision agricultural technology (PAT) has become a vital component of farming to 

combat the rising concerns and costs, with many row crop farmers utilizing some form of 

PAT (Mcfadden et al., 2023). Although adoption has increased for PAT, so has machinery 

cost, leading to its label as the second largest farm expense, accounting for more than 40 

percent of total production expense (Ibendahl, 2015). 

For grain operations, a large portion of production expense is contributed to the 

combine harvester. For harvesting practices, farm owners must make choices ranging from 

owning vs. leasing equipment, custom hiring, or a combination. Farmers must consider 

new or used equipment, size, age, and condition if they choose to purchase equipment. 

Additionally, the market for combine sales has seen the number of combines sold through 

online outlets increase, leading to rising costs of combines ranging from $350,000 to 

$500,000 without add-ons (Dodson, 2019). The increase in online sales has further 

increased the number of used combines on the market. Unlike the new combine market, 

many of the used combines include add-ins and technologies that aren’t easily valued, 
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leaving producers questioning how to properly evaluate these machines and how to 

compare value differences between a variety of PAT elements. 

Precision Agriculture started as a concept that farming practices are not consistent 

across operations and fields; instead, it includes a high rate of variability in crop production 

(Precision Agriculture Technology, n.d.). When the concept is put into practice, operations 

aim to increase accuracy and control for growing crops (Schmaltz, 2017). From the initial 

concept, the term Precision Agricultural Technologies is used further to indicate the type 

of component used. For combines, PAT includes harvest-related items such as yield 

monitors, moisture trackers, and grain loss, operator-related items such as guidance 

systems and displays, and data-related components such as data sharing and receivers.  

This study builds upon the previous work from Ellis et al. (2022) that investigated 

what factors drove combine prices and aimed to provide estimates for combine various 

combines. Although the work was one of the first to evaluate the used combine market, 

this work utilizes a much larger dataset and further incorporates precision agricultural 

technologies into the analysis. The goal of this study was to provide additional information 

for producers questioning how to evaluate combines, and PAT add-ons by providing a 

comprehensive evaluation of the factors that affect used combine values in the United 

States. To complete this goal, the objectives of this paper were 1) estimate the factors that 

impact used combine values, 2) compare the change between different manufacturers, and 

3) evaluate which precision agriculture technologies are most impactful for the buyers and 

sellers of the combines.  

The objectives were accomplished using an auction dataset from North America's 

largest farm machinery auction site, Machinery Pete. The data included used combine sales 



52 

 

for the United States between 2010 and 2022 and included characteristics related to the 

sale information and machinery specifics. Additionally, variables were generated to 

represent the various PAT components represented within the data.  The dataset was paired 

with econometric models to estimate the various factors that affect the combine's value. 

Results suggest that combines sold in the Midwest regions during the winter season held 

the highest values, while John Deere held the highest values for any manufacturer. 

Furthermore, precision technologies related to data sharing were estimated to have the 

highest impact on the combine's value for the PAT variables.  

3.2 Background 

3.2.1 Hedonic Models  

To evaluate the secondary combine market, a hedonic model was chosen due to its 

use in previous agricultural research to estimate cattle, commodity, land, and machinery 

values (Allison et al., 2022; Borchers et al., 2014; Davis & Ethridge, 1982; Martinez et al., 

2021; Miranowski & Hammes, 1984). Hedonic pricing models were initially developed by 

Griliches (1961) to analyze the quality of cars. The approach was further developed by 

Rosen (1974) to investigate product differentiation. The hedonic model estimates the effect 

of multiple independent variables on the dependent variable. For agriculture, models are 

often used in estimating land values (Borchers et al., 2014; Miranowski & Hammes, 1984); 

recent work has illustrated that machinery values can be estimated in a similar fashion 

(Allison et al., 2022; R. Ellis et al., 2022). Allison et al. (2022) looked at estimating values 

of row crop planters and aimed at examining the key factors that drive the price of planters. 

Even though the work resulted in significant findings to help answer this question, there 



53 

 

are a few issues with the study. Furthermore, the dataset was limited to observations 

between 2015 and 2018. Ellis et al. (2022) evaluated combine values and compared the 

impact change between different manufacturers. However, the dataset only included 

observations from 2015 to 2018 and excluded variables to differentiate between potential 

value-added technologies. 

 

3.2.2 Farm Machinery 

Most of the previous literature on agricultural machinery has focused on assessing 

the value of tractors. One of the first studies to assess tractor values did so by focusing on 

comparing different qualities of tractors and developing a price index to explain the 

changes in tractor prices. Further work in the 1980s examined the effects of the change in 

the interest rate on the investment in agricultural machinery using duality to compare 

tractor values (Diekmann et al., 2008; Fettig, 1963; Leblanc & Hrubovcak, 1985). Fettig’s 

(1963) study found fundamental factors will affect a tractor's value are the type of engine 

and horsepower level. While Leblanc & Hrubovcak (1985) determined that input and 

output prices have a larger effect on tractor values than interest rates. More recently, the 

type of sale for tractors was investigated (Diekmann et al., 2008). This study evaluated the 

price differences for tractors sold online or in-person.  Cross and Perry (1995) found a 

significant relationship between value and depreciation factors for planters. This would 

suggest that a machine's age, hours, and useful life are important factors in determining the 

value of a planter. More recently, a hedonic model was developed to evaluate planter values 

which found that make, condition, row spacing, and sale specifics were all significant in 

planter values (Allison et al., 2022). 
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3.2.3 Combine Harvesters 

Previous research relating to combines has focused primarily on the operation or 

machinery costs of using the combines. Many studies have compared the costs of owning 

a combine with the cost of custom hiring for harvesting (Edwards & Hanna, 2009; 

Ibendahl, 2015; Lattz & Schnitkey, 2021; Swanson et al., 2020). This approach is similar 

to Cross and Perry (1995), who valued the machinery based on the useful life or level of 

work needed to justify the combine's cost. Although this is a valuable question related to 

an operation’s profitability, this approach does not evaluate the value of the combine 

because of issues around over or under-capitalization of the operation. Other studies have 

taken a risk analysis approach to combine values from both standpoints of a custom 

harvesting operation or a farming operation. Concerning a custom hiring operation, a 

simple enterprise risk analysis was performed comparing different combines and their 

effect on the operation’s profitability (Mimra et al., 2017). From the farming operation 

side, a minimum annual value use was found based on the combine’s value (Mimra & 

Kavka, 2017). In both studies, the value of the combine was based on a listed purchase 

price of the combine, which can differ from the actual price paid for the machine.  

Another relevant study applied both multilinear and linear regressions to a combine 

dataset to evaluate the factors that determine combine costs (Yezekyan et al., 2020). The 

research used key characteristics for the various combines such as model, functional 

mechanism, threshing type, leveling system, and other equipment, to explain the combine's 

listing price. Similar to both Mimra (2017) and Mimra & Kavka (2017), there is an inherent 

flaw in using the list price of the combines since the list price can be drastically different 

from the actual price paid to purchase the combine due to sellers often offering different 
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types of discounts. Nevertheless, this work does illustrate the importance of other combine 

parameters on price. Other notable studies focused on fuel efficiency (Rogovskii et al., 

2021), comparing domestic and foreign combines (Vinevsky et al., 2020), and the 

management efficiency of a combine fleet (Olt et al., 2019). Although all these studies 

help to provide insight into evaluating combines, all are limited by either the number of 

manufacturers or the number of combines evaluated. To provide estimates for combine 

value, an evaluation of multiple models and various combines needs to be used. The use 

of a comprehensive data set would allow for an estimate of the changes and impacts on the 

entire combine market instead of only a few combines.  

Recently, a study looked at a combine sales dataset that included multiple 

manufacturers and multiple years of data (R. Ellis et al., 2022). This study used a dataset 

of auction sales of used combines from 2015 through 2018 and investigated the impact of 

precision agriculture technologies on combine values. The major finding for non-precision 

agriculture technologies variables was that 100 combine separator hours would decrease 

the value by 2.14% (R. Ellis et al., 2022). At the same time, a one-year increase in age 

would result in a 10.9% decrease in value. Another important finding of the study lead to 

value change estimations for location, time of sale, and combine condition, where the 

highest values were found in the Great Lakes and Upper Midwest production regions (R. 

Ellis et al., 2022). Additionally, combines sold during the winter season held higher 

expected values, followed by the spring, summer, and fall seasons. As for combine 

condition, results illustrate the expected order in value from excellent down to poor (R. 

Ellis et al., 2022). 
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For the precision agriculture technology (PAT) variables, the study classified 

technologies by function and then ran three models, one with all manufacturers, one for 

John Deere only combines, and one for Case IH only combines. Separating the 

technologies this way allowed for a clearer understanding and evaluation since the model 

would see one variable for each function and not a different variable for each brand and 

function of the technology. Furthermore, since most of the technologies are manufacturer-

specific, running a John Deere and Case IH only model would allow manufacturer-specific 

estimates to be calculated. The major PAT results were the value added from technologies 

such as Auto Steer, Receiver, Yield Monitor, Moisture Tracker, and Displays (R. Ellis et 

al., 2022). While the findings are interesting, the issues of the study start with the dataset. 

Again, only having a relatively limited sample of three years of combine sales is not enough 

to estimate major market impacts. The data cleaning process was not sound for eliminating 

vintage combines and outliers that might influence the results. Moreover, some of the PAT 

variables were not properly separated to ensure the correct functional unit was represented, 

nor avoiding variables being correlated from the data cleaning process. Even though the 

recent work from Ellis et al. (2022) falls short, it provides a starting point and insight for 

this study.  

3.2.4 Current Combine Market 

An investigation of the recent combine market is needed to build on the previous 

research. Starting back in 2012, North American grain operations saw an industry-wide 

drought resulting in the increase of commodity prices for procedures. These increases in 

price led to increases in planted acres of grain crops in the following years, resulting in 

price drops that drove net farm income downward from 2013 through 2016 (Farm Income 
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and Wealth Statistics, 2023). Net farm income remained relatively flat between 2016 and 

2020 (Figure 3.1)(Farm Income and Wealth Statistics, 2023). Along with these lower years 

of net farm income, two major changes in the combine market happened with an order 

policy change, as well as the introduction of precision agriculture technologies. In 2013, 

combine manufacturers shifted to an order-only policy for producing new combines. This 

means that manufacturers were no longer producing a set number of machines. Instead, 

they would only produce combines that had been ordered by a specific operator, leading to 

further customization of specific combines. The market also saw a major influx of precision 

agriculture technologies. PAT technologies saw major increases in adoption. For the first 

time, Guidance was over 45% in both corn and soybeans, soil mapping saw an increase of 

over 20% in corn and soybeans, and variable rate input application was pushing closer to 

25% in corn and soybean planted acres (Mcfadden et al., 2023). Suggesting that PAT 

adoption was steadily on the rise. Couple this with the order policy change, and combines 

have become extremely farm-specific. Joining all three of these factors together left 

operators with less income to upgrade machinery, plus a lack of available income to place 

orders for new machinery, resulting in operators having to move into the secondary market 

to upgrade machinery or simply continue to use the machinery they have as it ages and 

becomes more expensive to maintain.  

The effects can be seen in combine prices. Between 2008 and 2015, combine prices 

increased by up to 30% (Mimra et al., 2017), leaving operations struggling with 

profitability from the increased ownership costs. Furthermore, new combine price in 2015 

ranged between $330,000 to $500,000 without headers or add-ons (Dodson, 2019) leading 

to corn and soybean operations spending well over half of a million dollars to purchase a 
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new machine. These high costs have resulted in many operations upgrading their 

equipment by buying used machinery. However, the used equipment market has a much 

broader range in price and add-on options (Dodson, 2019). Leading operations to need help 

with estimating equipment values. Some industry experts have gone as far as to suggest 

that buying used equipment is the best option for most operations (S. Ellis, 2021). 

Understanding the current market and the gaps in previous literature has left the industry 

with a long-overdue need to evaluate the value of used combines.  

3.3 Data 

Unique to this study, an auction dataset containing multiple auction companies and 

machinery dealers throughout North America was compiled and accessed through 

Machinery Pete’s “Auction Price Data” database (Used Farm Equipment for Sale, n.d.). 

The raw dataset contains 27,020 secondary combine sales between January 2000 and 

December 2022 and includes variables for the price, make, model, year, hours used, sale 

date, sale type, sale location, and specs. To appropriately use this dataset, a data cleaning 

process was performed to remove missing observations resulting in a final dataset with 

8,487 combine sales.  

One of the major accomplishments of the study was the data-cleaning process that 

allowed the model to estimate the impacts of the PAT variables. A data tree illustrating the 

data learning process is shown in Figure 3.2. The cleaning process started by removing 

any combines manufactured before 2000. This allowed for combines within the analysis 

to have the option of adding a PAT to a combine. In addition, this would remove any 

combine sales that might be inflated due to being a vintage or collectible combine model, 
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resulting in a more accurate estimate of the combine market. Next, combines sold before 

January 2010 were removed to account for PAT investment and to focus on the time period 

of increased PAT usage as stated in the previous work (Mcfadden et al., 2023). The 

remaining data was then processed to remove observations with missing values for price, 

sale date or location, and hours resulting in a final dataset that contained 8,487 combine 

sales.  

The dataset was further developed to add the appropriate variables to analyze the 

various characteristics of each combine. These variables can be categorized into three 

categories: sale variables, standard combine variables, and spec variables. The variable 

descriptions can be found in Tables 3.1 and 3.2. The sale variables include region of the 

sale, type of the sale, season of the sale, and year of the sale. Sale location was grouped 

into 12 US regions based on a USDA breakdown (Figure 3.3) (USDA - National 

Agricultural Statistics Service - Regional Field Offices, n.d.). The sale type was organized 

as Consignment, Dealer, Farm, Online, and Other. Seasonally was accounted for with 

Spring (March 21st-June 20th), Summer (June 20th-September 20th), Fall (September 21st-

December 20th), and Winter (December 21st-March 20th) variables to address the time of 

the year when the sale occurred, and variables for the year of sale.  

The standard combine variable category included a continuous variable for the 

separator hours of use on each combine, a discrete variable representing a combine's age, 

and a series of variables for manufacturer and condition. Combine manufacturers were 

grouped to represent market consolidation that occurred during the time in the dataset. For 

example, AGCO includes Challenger, Gleaner, Massey Ferguson, and White. Therefore, 

all combines representing these manufacturers were placed under the AGCO variable. 
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These consolidations resulted in five variables for manufacturers John Deere, Case IH, 

AGCO, Ford-New Holland, and CLAAS. Machine condition was given in the original 

dataset from Machinery Pete and represented as Excellent, Good, Fair, or Poor condition. 

The individual auctioneer gives condition groups before the combine goes up for auction; 

mechanical correlation was illustrated during the study of the condition variables’ 

structure. To decrease the magnitude of the mechanical correlation, condition types 

Excellent and Good were grouped together, and Fair and Poor combines were grouped 

together. Further explanation of this process is found below in Section 3.4. 

The data presented challenges in illustrating precision agriculture technologies 

(PAT). Within the data set, a column labeled as “specs” where the auctioneer would type 

in the details about the combine at the time of sale. This description contained information 

on the various brands, models, and functions of the technologies. To provide consistency 

among the PAT variables, the “specs” column was processed to account for the functional 

use of the PAT. Additionally, a series of variables for the PAT brand were generated to 

allow for individual brand impacts to be estimated. The PAT variables represented 

functions for auto steer, data sync, display, GPS, grain loss monitor, moisture tracker, 

receiver, row sensor, yield monitor, and yield monitor with moisture tracker. For example, 

a John Deere auto steer package and a Case IH auto steer package would hold one for the 

auto steer variable and one under John Deere PAT and Case IH PAT, respectively. To 

avoid correlation between some of the PAT variables, variables represent a sale that states 

the combine only has that specific PAT variable. For example, the auto steer function, by 

default requires GPS to operate. Therefore, the dataset would illustrate a one under auto 

steer and a zero under GPS so as not to overestimate the impact of GPS. On the other hand, 
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if an observation shows a one under GPS, then no other PAT variables requiring GPS were 

in the “specs” description.  

The full summary of statistics can be found in Tables 3.1 and 3.2. The average 

auction price for combines was just over $102,259, the average separator hours were 2,189, 

and the average age was 8.7 years. The majority of the sales were conditioned as "Excellent 

or Good" machines. Figure 3.4 illustrates the percentage of the dataset held by each 

manufacturer. As expected, John Deere holds the majority of the market share, followed 

by Case IH, Ford-New Holland, AGCO, and Claas. The major areas for sales in this dataset 

came from the Northern Plains, Upper Midwest, Heartland, and Great Plains, which is the 

area traditionally known as the "corn belt" of the US. As for precision agriculture 

technologies, Figure 3.5 shows the breakdown of each technology and the percentage of 

each manufacturer within that technology. 

3.4 Methods 

A hedonic model was employed using the previously mentioned variables to 

evaluate the factors effecting used combine values. The study uses two different models, 

the base model and the precision agricultural technology (PAT) model. The base model 

was developed to evaluate the combine market without PAT variables. This base model 

was developed from the work of Ellis et al. (2022). The model from previous work 

provided insight and allowed for an omitted variable bias and robustness check for the new 

dataset before adding the PAT variables to the model. The base model differed from Ellis 

et al. (2022) by including the Claas manufacture group, better manufacture consolidation, 

and changes in reference groups for better interpretation. The second model is the PAT 
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model, this model built upon the base model and the Ellis et al. (2022) study. The PAT 

model incorporates the PAT variables into the base model for evaluation. Initially, the 

model was run with all of the manufacturers and incorporated variables related to PAT 

brand. Further investigation led to the PAT model being run individually for John Deere, 

Case IH, and AGCO only combines to investigate if the impacts were different for the three 

largest combine manufacturers in North America. 

For both models, multicollinearity was expected due to the data structure and 

variables included. A variance inflation factor test (VIF) was performed to evaluate what 

variables might show multicollinearity. The mean VIF score for the base model was 3.88 

(Table 3.3), while the PAT model was 3.35 (Table 3.4). As mentioned in the previous 

Section 3.3, due to mechanical correlation, the condition scores were grouped into two 

variables Excellent or Good and Fair or Poor. The initial model contained all four 

conditions which resulted in VIF score over 20, which would be considered high. Further 

investigation suggested that only a few variables illustrate and correlation concerns. A 

correlation matrix was estimated on the condition variables resulting in Excellent and Good 

having a high correlation along with Fair and Poor having a high correlation. The condition 

variables were expected to be correlated since other variables such as hours, age, 

manufacture, sale year, and location would likely influence the condition score of the 

combine. However, the matrix results suggested that the majority of the correlation was 

between the condition variables, which is explained as mechanical correction since the data 

requires one of the four variables must have a 1 and all others must be 0. A potential way 

to address this issue would be to remove the condition variables from the model and rerun 

the VIF test. This approach was tested and lowered the mean VIF score to under 5, which 
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would indicate multicollinearity was not an issue for the model. However, based on the 

previous models (Allison et al., 2022; R. Ellis et al., 2022), the condition score needs to be 

part of evaluating the combine’s value. Further investigation of the initial VIF scores 

resulted in the joining of combines labeled as Excellent or Good into one variable and 

combines labeled as Fair or Poor into one variable.   

3.4.1 Equations 

The base model of this study can be expressed as equation one: 

ln(Pit) = β0 + β1Hit + β2Ait + β3Mi + β4Ci + β5Si + β6Ti + ρr +τt + εit 

where the dependent variable lnPit is the natural log of the price of combine i sold in sale 

year t. The independent variables represent the three categories mentioned previously in 

the data section 3.3. Where H is the number of separator hours used, A represents the age 

of the combine, M is the manufacturer of the combine, C is the condition of the machine, 

and S is the season and T is the type of sale. As for the fixed effect portion of the equation, 

ρr illustrated the regional fixed effects of region r, while τt is the fixed effects of sale year 

t. 

Equation two modified equation one by including PAT variables. The precision 

agriculture technology model can be represented by equation two expressed as: 

ln(Pit) = β0 + β1Hit + β2Ait + β3Mi + β4Ci + β5Si + β6Ti + β7PATit + ρr +τt + εit  

where the only change from equation one can be seen with the addition of PAT, which 

represents the variables of precision agriculture technologies mentioned in the data section, 

present on combine i in sale year t. 
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3.4.2 Expectations 

Expectations for the standard and sale variables were the same for both models and 

based on economic principles, market trends, and previous literature discussed in Section 

3.2. Standard variables expectations would be for John Deere, Case IH, Ford New Holland, 

and AGCO to all have positive coefficients with respect to Claas since these manufacturers 

hold the highest market share and yearly sales for the combine market (Combine Harvester 

Cost: Today’s Used Combine Prices, n.d.). The variables of separator hours and age are 

expected to hold negative coefficients since older and more frequently used machines 

should have lower values. Similarly, the condition of the machine should decrease the 

value of the combine as it goes from Excellent or Good to Fair or Poor.  

As for the sale variables, the sale type of “farm” was expected to hold the highest 

value of sale types based on previous work (Allison et al., 2022). It was also expected that 

“online” sales would be the lowest type based on the findings from Diekmann et al. (2008). 

Combines sold during the Winter season were anticipated to have the highest coefficient 

since the timing of on-farm operations would cause issues with the time available to 

purchase machinery. Furthermore, all sale years within the dataset are expected to increase 

gradually due to inflation over the period of the data. For the sales years of 2020 and 2021, 

a potential increase in values from the COVID-19 pandemic could be seen but would be 

beyond the scope of this study. As for the location of the sale, the heartland region would 

be expected to hold the highest coefficient since it represents the prominent grain-

producing area of the US. 

The PAT model expectations were for all technologies to increase the value of the 

combine. Due to the process of incorporating the PAT variables mentioned in the data 
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Section 3.3, the expectation for each PAT variable would be for that specific function. 

Variables related to operator use were expected to be higher due to the ability to increase 

operating hours and harvesting efficiency. These variables included Auto Steer, Displays, 

GPS, and Row Sense. Following operator variables, harvest-related variables, such as 

Yield Monitors and Moisture Trackers, were expected to reflect the potential for increases 

in harvesting efficiency and potential long-term increase in crop returns. This expectation 

was built on the fact that yield monitors would provide locational information within the 

field for areas of lower or higher yields, which the farmer could potentially address the 

following year. While the moisture tracker assists the operator in either not harvesting 

crops with higher moisture content or a better understanding of the drying costs that will 

be incurred if the crop is harvested, resulting in lower moisture deductions when crops 

were sold. Lastly, the expected results for data-related variables were to be lower compared 

to the other PAT variables. The expectation was based on a farmer purchasing the combine 

would be willing to pay more for technologies directly related to operator efficiency or 

revenue increase. Furthermore, the data-related variables, Data Sync, and Receiver were 

technologies centered around data sharing, which the operator could do manually.  

3.5 Results   

The previously mentioned hedonic model and dataset were joined using STATA 

software (StataCorp LLC, 2015) to analyze combine machine values and estimate the 

factors affecting auction price. The base model used to evaluate the market without 

precision agriculture technologies and compare the newer dataset and updated model with 

the previous work of Ellis et al. (2022). Results can be found in Table 3.5. This model held 



66 

 

an R-squared value of 0.88, which illustrated that the model accounts for 88% of the total 

variance within the dataset. Estimated coefficients are shown as both the coefficients as 

well as the percent change in combine value for that coefficient; for the results section, all 

impacts are discussed as the percent impact on a combine's value.  

3.5.1 Base Model Results 

The most notable finding among the standard variables was the impact of separator 

hours and age on the combine’s value. Although both were found to be negative, as 

expected, the magnitude of the two variables was noticeable. Each hour increase in 

separator hours was found to have a -0.02% impact on the combine’s value. In comparison, 

an additional year of age was estimated at -8.6%, both at the 1% level. When separator 

hours were scaled to represent the average number of separator hours per year of 285, an 

estimated impact of –5.7% was found, suggesting that buyers' willingness to pay is 

impacted more by age than by the number of separator hours.  

As for the manufacturer of the combine, the brand order followed expectations, 

with John Deere holding the highest value at 25.3% at the 1% significance level, compared 

to the reference group of CLAAS. Case IH held the second highest value at 15.8%, also at 

the 1% significance level. Conversely, AGCO and Ford New Holland held negative 

estimates of -6.7% at the 5% significance level for AGCO and -11% at the 1% significance 

level for Ford New Holland. To sum up the standard variable group, the condition of the 

combine impacted the value as expected, with Excellent or Good condition combines 

holding a 37% increase over Fair or Poor conditioned combines.  

As expected, the location of the sale had a significant impact on a combine's value. 

Each impact was statistically significant, with the Southern region being significant at the 
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10% level and all others significant at the 1% level. Only four regions held positive impact 

estimates when compared to the reference group of the Heartland region. The highest 

impact estimate was found in the Great Lakes region, which held an increase of 3.9%, 

followed by the Southern, Upper Midwest, and Northern Plains regions, with estimates of 

3.2%, 2.3%, and 1.3%, respectively. The Great Lakes, Heartland, Upper Midwest, and 

Northern Plains were expected to hold higher values due to higher potential returns from 

more productive land. The Southern region also has highly productive lands; however, they 

are more spread out. Thus, the southern region could experience increased prices due to 

lower combine supply. 

 Along with expectations, the remaining regions all held negative impact estimates 

at the 1% significance level. The regions of Northeastern, Mountain, Southern Plains, and 

Eastern Mountains estimated values of -3.8%, -5%, -6.5%, and -6.6%, respectively. Similar 

to the Great Plains, Upper Midwest, and Heartland, the impacts’ magnitude could be 

caused by the lower production potentials in these regions. Interestingly, the Northeastern 

region which was expected to have a large price decrease from the heartland was 

quantitatively, the closest estimate to the Heartland. This result could be caused by the 

close proximity of the region to the higher-value region of the Great Lakes. As our data 

only includes auction locations, we cannot capture where the combine is resold. This 

potential explanation suggests that retailers are willing to pay up to the cost of a combine 

in the Great Lakes region minus the transportation cost to move the machine out of the 

Northeastern region. Other regions held estimates lower than -10%, including the 

Northwest, Delta, and Pacific regions, with impacts of -12.8%, -20.1%, and -65.2%, 

respectively.   
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As for the type of sale, Farm sales held the highest value when compared to the 

reference group of Dealer sales, with a 6.9% increase at the 1% significance level. 

Consignment sales were estimated at -4.5% at the 1% significance level, and Online sales 

were estimated at a decrease of 5.3% at the 1% significance level. The type of sale followed 

expectations and previous work from Allison et al. (2022). Similarly, the season of sale 

followed expectations, sales in the winter season held the highest impact of 3.4% at the 1% 

significance level compared to the fall season. At the same time, the Spring and Summer 

season of sale was not found to be significant. The year of sales variables presented an 

unexpected finding. When compared to the year 2010, the years 2015 through 2018 were 

not found to be significant. Sales occurring from 2011 through 2014 all held negative 

estimates at the 1% significance level, with the lowest estimate found in 2012 of -20.4%. 

As for the years with a positive estimate compared to 2010, 2019 was found to be 

significant at the 10% level with a coefficient of 6%, while the years 2020 and 2021 held 

an estimate of 12.6% and 10%, respectively.  

3.5.2 Precision Agriculture Technology Model Results 

Precision Agriculture Technology variables were added to the base model, 

individual PAT variables were discussed in Section 3.3. The results of the second model, 

referred to as the PAT model, can be found in Table 3.6. The PAT model held an R-squared 

value of 0.882, which illustrated that the model accounts for 88% of the total variance 

within the dataset. Estimated coefficients are again shown as the percent change in combine 

value in Table 3.6. The results section discusses all impacts as the percent impact on  

combine values.  
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When the standard variables are compared between the base model and the PAT 

model, we find all significant variables hold the same significance level and maintain 

estimates within the base model confidence interval. As for the sale variables, type of sale 

and season of sale hold the same significance level and remain within the confidence 

interval from the base model. Conversely, minor changes are found in the location of the 

sale and year of sale results. Significance levels among the location variables were 

consistent with all locations except for the Northeastern, Southern, and Northern Plains 

regions, where Northeastern results fall to the 5% level, the Southern region significantly 

increases to the 1% level from the 10% level, and the Northern Plains is not significant in 

the PAT model. Estimated coefficients for the location of the sale are consistent with all 

regions except the Eastern Mountain and Pacific. The Eastern Mountain region was 

estimated at -5.7%, compared to the Heartland region. At the same time, the Pacific region 

estimated at –73.2% in the PAT model. Variables for the year of sale held consistent in 

terms of the estimated impacts, with only the year 2017 changing significance at the 10% 

level in the PAT model. Sales in 2017 were estimated to be 4.2% higher than sales in 2010, 

at the 10% significance level. In the base model, 2017 was not significant at any level.   

Only one of the manufacturer-specific precision agriculture technology variables 

was found to hold significance, Ag Leader branded technologies held a 10% significance 

level and was estimated to have a –4.8% impact.  The results from the manufacturer-

specific technologies were unexpected with the negative estimates and are further 

examined in the discussion section. (Section 3.6) Five of the precision agricultural 

technology variables presented in the study were found to be significant. For the operator-

related technologies, Row Sense held the highest value of 9.1% at the 10% significance 
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level, followed by Displays with an estimated 2.8% increase at the 1% significance level. 

GPS and Autosteer were not found to be significant. The harvest-related technologies 

found Yield Monitors to have the highest impact on values, with an estimated increase of 

4.1% at the 1% significance level. No other harvest-related technologies were found to be 

significant. The data-related technologies were expected to hold the lowest impact 

estimates among the three categories. Although, results suggested that data-related 

technologies had the highest impact on a combine’s value. Data Sync was the highest at 

13%, followed by Receivers at an impact of 6.7%, both at the 1% significance level. 

3.5.3 Manufacture-Specific Results 

Building upon the PAT model, the model was run individually for each of the three 

major manufacturers in North America John Deere, Case IH, and AGCO. Full results for 

the three manufacturer-specific models can be found in Tables 3.7, 3.8, and 3.9. John Deere 

combines held consistent estimates for the standard variables compared to the PAT model. 

Separator hours were estimated to have a negative impact on value at -0.02% per hour, 

while age was estimated at -8.2% per year increase at the 1% significance level. Condition 

score was significantly lower than the results in the PAT Model with a positive estimate of 

21.8% for combines in the Excellent or Good groups compared to combines in either Fair 

or Poor condition groups. Additionally, combine condition category did drop significance 

to the 5% level with John Deere combines. The sale variables illustrated a loss of 

significance for season of sale variables with the Winter season falling to the 10% level, 

and a lower significance level of 5% for the sale types of consignment and farm sales. Even 

with the change in significance level, the estimated impacts remain within the confidence 

interval of the PAT model.  
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As for the year of sale, no considerable changes were found with the impact 

estimates, although minor differences were found with significance level. The year 2018 

became significant at the 10% level, while the year 2017 increased from a 10% level to a 

5% significance level. A similar story is shown with the location of the sale with most 

regions holding the same significance level as the PAT model. Two regions saw a change 

in significance level, with the Northern Plains holding a 1% level, and the Mountain region 

no longer holding significance at any level. On the other hand, coefficient estimates 

expressed changes in six regions, with all six estimates being positive compared to the PAT 

model. The largest change was seen in the Pacific and Delta regions, where the estimated 

impact for John Deere combines was -37% and -12.8% respectively. The increases seen in 

the Southern and Northeastern regions followed, where the impact estimates were 10.6% 

and 3.8%. The smallest change was seen in the Northwest and Eastern Mountain regions 

at –10.6% and –3.4% respectively. More notable was the change for the Northern Plains 

region of 1.9% for John Deere combines at the 1% level compared to the PAT model that 

was not significant at any level.  

All except for one of the significant precision agriculture technology variables from 

the PAT model returned significant for John Deere combines. Receivers were not found to 

be significant at any level for John Deere combines. Other small changes with significance 

levels were seen with row senses moving to the 5% level, and Data-Sync moving to the 

1% level. As for the coefficient changes, all precision agricultural technology variables 

remained consistent except for yield monitors which increased to an estimate of 6.5%. 

The majority of standard variables for Case IH combines remained consistent with 

the results from the PAT model. Unlike John Deere combines, the Case IH only results 
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held significance for the spring and winter seasons at the 1% level. Compared to the fall 

season, combines sold in the spring season were estimated to have an increase of 5%, while 

the winter season was estimated at a 4.7% increase. For the type of sale, online sales were 

no longer significant for Case IH combines. Consignment and Farm sales dropped in 

significance level to 5% and were estimated at -3% and 8.3%, respectively.  Sale years 

2011 through 2014 held the same significance level as the PAT model with consistent 

estimates.  The sales years of 2017, 2019, and 2020 were not found to be significant with 

Case IH combines, and combines sold in 2021 were estimated within the PAT model 

confidence interval but fell to the 5% significance level. 

The location of the sale illustrates few differences from the PAT and John Deere 

model in terms of variable significance changes, with only the Upper Midwest and 

Northern Plains regions changing. On the other hand, the estimated coefficient changes in 

eight of the regions. The Southern region estimated the first decrease in value for the region 

at –15.6%.  Case IH combines sold in the Northern Plains are estimated to be –5.0% lower 

than those sold in the Heartland region. The regions of Eastern Mountains, Northeastern, 

Northwest, Delta, Southern Plains and Mountain all resulted in estimates lower than the 

PAT model at –21.1%, -16.0%, -31.0%, -26.2%, -8.7%, and –16.5% respectively. The only 

region estimated to have a greater impact than the PAT model was the Pacific region at –

47.4% As for the precision agriculture technology variables, only two held significance 

with Case IH combines. Receivers and Displays held consistent estimated impacts with the 

PAT model. Receivers remained at the 1% significance level, while Displays did increase 

to the 5% significance level. Yield Monitors were not significant in the Case IH model and 

Row Sensors and Data Sync were omitted.   
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The last of the three manufacturer-specific models was AGCO combines. Substantial 

differences were found for the standard variables. Although age remained significant at the 

1% level, separator hours fell to the 5% level and condition no longer held significance. As 

for the impacts, separator hours decreased in magnitude from the PAT model to -0.016% 

per hour, while an increase in age increased the estimate to -10.1% per year. Furthermore, 

sale variables held vastly different estimates from the PAT model, combines sold as farm 

sales help an increased value of 11.6% at the 5% significance level. Online sales estimated 

a decrease of -12.9% at the 1% significance level, and consignment sales followed at -

13.7% both at the 10% significance level. Spring sales were estimated at 14.8% higher than 

fall sales at the 1% significance level, and winter sales increased to 14% at the 5% 

significance level compared to fall sales. For AGCO combines, the only years 2015, 2020, 

and 2021 held significance at the 5% level with all three holding positive coefficients. 2015 

was estimated to have the smallest impact on price at 15.7%, followed by 2020 at 28.6%, 

and 2021 at 23.6%. The location of the sale illustrated major differences from the PAT 

model, with only five regions holding significance. The only positive estimate compared 

to the Heartland regions was the Northern Plains with an impact of 4.1% at the 1% 

significance level. The Eastern Mountain region fell to the 10% significance level and was 

estimated at –8.4%. The Northwest regions showed similar changes with a drop in 

significance to the 5% level and a lower estimated impact of –24% for AGCO combines. 

Combines sold in the Northeastern and Delta regions maintained a significance level of 

1%, but held estimates lower than the PAT model at –49.1% and –34.4%, respectively.  
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3.6 Discussion   

The results from the base and PAT models illustrated similarities with variance 

accounted for and numerous coefficients included in each model. For the standard 

variables, separator hours and age held the most notable finding of the study. Both models 

estimated hours as a -0.02% decrease in value for each additional separator hour of use, 

while age was estimated at -8.6% and -8.4%, respectively. The relationship between the 

two use variables is a notable finding because of the impact on traditional depreciation 

methods of farm machinery. Traditionally depreciation, as shown by Edwards (2015), has 

been calculated based on age, projected annual use in hours, and type of machine. Given 

these variables, index tables are used to find the salvage value of a machine based on the 

purchase price. The findings from this study allow for a more accurate estimation of a 

machine’s depreciation value. They could be used to investigate the depreciated value 

individually from either hours or age instead of the general combination of the two. 

Although the finding is notable, it should serve as the starting point for further work into 

investigating depreciation values on farm machinery. In addition to the depreciation 

method, the relationship between separator hours and age was further investigated in this 

study. To compare the two variables accurately, the estimated separator hours was 

multiplied by the average separator hours per year in the dataset of 285 hours. A decrease 

of -5.7% was estimated for a year’s worth of use in separator hours, suggesting that a year 

increase in age has a larger impact on the value of a combine compared to a year of 

separator hours. Although the result was similar to Ellis et al. (2022), the larger dataset 

allows a better estimate of the findings. For producers looking to buy or sell combines, the 

relationship between separator hours and age could be important when trying to accurately 
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evaluate a combine’s value. From a seller’s perspective, selling a combine with more hours 

and lower age would be expected to hold a higher value. While a buyer would look for 

combines of high age and lower hours to reduce the purchase price. Although a seller might 

not be able to directly control the number of separator hours on the combine, the findings 

would allow for future planning of combine use and when to sell a combine. 

Condition variables were consistent between the two models and estimated that 

Excellent or Good condition combines would hold higher values. Given the previously 

mentioned consolidation of the condition groups, other than Excellent or Good condition 

holding higher values, it is difficult to provide an in-depth analysis of the result. On the 

other hand, the combine manufacturer provided the expected value order with John Deere 

holding the highest value of the combines. Even though the results were similar to Allison 

et al. (2022) and Ellis et al. (2022), the magnitude of the estimates and comparison of the 

coefficients allows for a better understanding of values in the combine market. Based on 

the study, producers can expect to pay around 10% more for John Deere combines than 

Case IH combines. Additionally, the estimated coefficients for AGCO and Ford New 

Holland suggest that Claas is the third highest manufacturer value in the dataset. 

Manufacturers’ order for combine values should be used by producers during the buying 

or selling process and provides a better comparison when determining the difference 

between combine options. Additionally, the estimated values should be part of estimating 

future salvage or resale values for combines.  

Sale variable results outline how, when, and where to buy or sell a combine. 

Combines sold as Farm sales were estimated to have higher values than all other sale types. 

In theory, Online sales should provide the largest pool of buyers and therefore, might be 
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expected to project a higher price compared to the other sale types. However, Diekmann 

et al. (2008) illustrated buyers' willingness to pay differences between in-person or online 

auctions. Similar to their findings, the combine market suggests that buyers may have 

reservations about paying more for online sales due to asymmetric information. Buyers 

are willing to pay more for combines they can see in person and physically inspect rather 

than relying on the information provided online by an individual they do not know.  

Combines sold in the Winter season were expected to hold the highest values, 

followed by the Spring and then Fall season. Similar to Allision et al. (2022) findings, 

machines sold during the season where the major operation occurs will hold the lowest 

values. For planters, that was the spring season, while for combines that would be the fall 

season. Additional investigation found that more combines were on the market during the 

fall season which would suggest greater supply resulting in lower prices. The findings of 

the study did not fully support this hypothesis. Only the Winter season was found to be 

significant when compared to the Fall. Combines sold in the Winter are expected to have 

higher values, but the remaining order of the seasons cannot be determined based on these 

results. Overall year of sale suggested a decrease in values from years 2011 through 2014 

and an increase in the years 2019 through 2021. Given these are historical variables, they 

provide insight into the current trends of the market, but market shifts should be considered 

when using the estimated coefficients. Results for the year of sale suggest that the used 

combine market has recovered from the decrease in the early 2010s and has potentially 

stabilized around 6% to 9% higher than sales in 2010. 

Combines in the Great Lakes region hold the highest value in the base model and 

second highest in the PAT model differing from expectations. Based on the crop production 
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potential in the Heartland, it was expected that combine values in the Heartland would be 

higher than in any other region. Since the results do not support this expectation, further 

examination is needed on the demand side of the combine market. One potential conclusion 

is the Great Lakes region might present more buyers than the Heartland and, therefore, 

cause higher prices due to higher demand and basis. USDA QuickStats (USDA/NASS 

QuickStats, n.d.) data is consolidated from each state within the two regions to compare 

number of operations, acres harvested, and price and yield for corn, soybeans, and wheat. 

However, USDA data does not support this theory since the Heartland region held higher 

values for the number of operations, acres per operation, acres harvested, and average yield 

for corn and soybeans. Additionally, wheat yields are only lower in one Heartland state 

compared to the Great Lakes region, but little difference in wheat acres harvested are found. 

Further investigation is needed to explain why the Great Lakes region holds higher 

combine values. A few possible explanations include the shorter harvesting window in the 

Great Lakes, resulting in the need for larger combines to cover fewer acres. Another reason 

could be limitations in our Machinery Pete dataset. Although Machinery Pete is one of the 

largest auction houses in the country, it could have less of a presence in the Great Lakes, 

leading to a higher estimation of values as less of a presence could include higher auction 

costs in the region, increasing combine prices from our Machinery Pete. Additionally, the 

higher values could be related to transportation costs to move a combine. Given the market, 

it is plausible that the Great Lakes prices reflect the cost of buying a combine in the 

Heartland and transporting it to an operation in the Great Lakes; however, this theory is 

not supported by the coefficients in the other regions.  The remaining significant regions 

hold negative values compared to the Heartland, as expected. In order of decreasing value 
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as Northeastern, Mountains, Southern Plains, Eastern Mountains, Northwest, Delta, and 

Pacific region. The Northeastern region was the closest significant region group to the 

Heartland with an estimated –3.8% decrease in the base model and -3% decrease in PAT 

model. Although the region contained a small number of sales, the estimated value could 

likely be due to the region’s proximity to the higher-value regions, which could cause 

buyers to purchase a combine in the region and transport it back to the higher-value regions.   

 

3.6.1 PAT Variables Discussion  

Precision agricultural technologies were found to have an impact on the overall 

value of the combine. For the PAT model, operator-related technologies did not hold as 

high of an impact as expected, with only Displays and Row Sense having statistical 

significance. At the 1% level, Displays were estimated to increase a combine’s value by 

2.8%, which was much lower than the harvest or data-related technologies. A potential 

reason for the lower impact could be due to displays not impacting the returns or overall 

efficiency as much as the other technologies. Another option could be the use of older and 

cheaper displays since this technology has not seen major updates or changes in recent 

years. As for Row Sense, the variable was significant only at the 10% level and held a low 

number of observations. Given that Row Sense is a similar technology compared to Auto 

Steer, yet Auto Steer was not significant, it is difficult to provide an in-depth reason for the 

estimate and could be related to the lower number of observations in the dataset.  

Harvest-related technologies were the next highest impact group and offered three 

technologies with significance. Yield Monitors without Moisture Trackers were estimated 

at 4.1% at the 1% level. Harvest-related variables were expected to have positive impacts 
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on a combine’s value since each technology should increase the returns for the combine. 

The Yield Monitor technologies allow the operator to increase or decrease the speed of 

harvest based on the crop yields within the area of the field. Overall, the technology allows 

the combine to harvest the crop more efficiently across an entire field rather than having 

one speed for the entire field or relying on operator judgment. Given the benefit of having 

Yield Monitors on the combine, the increase estimate was the value added from the 

increase in harvesting operation.  

Data-related technologies held the highest impact values of the precision 

agricultural technologies investigated in the study. Receivers were found to have an impact 

of 6.7%, while the presence of Data Sync was estimated at an increase of 13% of a 

combine’s value. Receiver’s impact was expected since that the technology allows for 

communication between machines, operators, and data storage to occur. Additionally, 

Receivers were expected to have a higher impact compared to other technologies since a 

receiver is required for a majority of the new technologies related to geographical locations 

within the field. An unexpected result was the magnitude of the estimated increase from 

Data Sync. By far the largest estimated coefficient, Data Sync allows producers to automate 

the transfer of data between machines within the operation. Since this transfer can be and 

has historically been done by the operator, the study did not expect buyers to be willing to 

pay a premium for the technology. The high estimate indicated that buyers are willing to 

pay more to avoid the manual transfer of data and indicated that manual transfer is either 

very time consuming or not reliable. In either case, including the Data Sync technology 

when reselling a combine could drastically increase the price received for the machine. 
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3.6.2 Manufacturers Specific Models Discussion 

Investigating the difference in estimates from different manufacturers could lead to 

a better understanding of how factors impact combine values based on the make and 

potentially illustrate willingness to pay differences in production regions. The John Deere 

specific model held the largest number of operations followed by Case IH and then AGCO. 

Standard variables across the three models illustrated different decreases for the usage 

variables. It was estimated that AGCO combines had the lowest separator hours decrease. 

When scaled to represent one year’s worth of use at 285 hours, AGCO combines estimated 

a negative 4.5%, John Deere followed at negative 5.7%, then Case IH at negative 6.6%. 

On the other hand, age estimations illustrated a different order with AGCO holding the 

highest impact value at negative 10.1%, followed by John Deere at negative 8.2%, then 

Case IH at negative 8.1% per year increase in age. The results illustrated that AGCO 

combines are more likely to hold their value with respect to separator hours, while John 

Deere and Case IH combines are more likely to hold their value when age is increased. 

Contrary to the previous studies on evaluating combine values based on economic 

depreciation or using index tables (Edwards, 2015; Lattz & Schnitkey, 2021), these finding 

suggest decreases in combine values from usage differ based on the manufacturer of the 

machine. Additionally, this could lead to the need for different evaluation structures for 

combines given the manufacturer. Condition of the combine was only significant in the 

John Deere and Case IH models, with John Deere estimating an increase of 21.8% at the 

5% significance level and Case IH estimating an increase of 36.1% at the 1% significance 

level for combines holding an Excellent or Good condition values. Although interesting 

and similar to the findings from Allision et al. (2022) with planters, the joining of Excellent 
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and Good condition groups leads to further work needing to be done to fully understand 

the relationship between condition groups, manufacturer and combine values.  

Sale variables produced different results for each manufacture. The Farm sale type 

was found to have the highest value across all manufacturers, followed by Dealer sales 

having the second highest value. John Deere combines estimated that Consignment sales 

would have a negative impact on value at -4.6%, followed by Online sales at –5.8%. On 

the other hand, AGCO combines estimated that Online sales would have less of a decrease 

in value than Consignment at –12.9% and -13.7%, respectively. Case IH combines only 

found significance with Consignment sales at a -3% compared to Dealer sales, but no 

significance was found for Online sales. The Year of sale was found to have varying 

significance levels across manufacturers. For John Deere and Case IH combines, 2011 

through 2014 found significance, and all illustrated negative impact estimates similar to 

the PAT model. More recent years, 2017 and 2020, estimated significant positive impacts 

for John Deere with a similar magnitude to the PAT model. For 2021, both John Deere and 

Case IH held significant estimates within the confidence interval of the PAT model. 

Although both manufacturers estimated results within the confidence interval of the PAT 

model, all of the John Deere coefficients were, except for 2021, larger in magnitude while 

the Case IH coefficients were all smaller in magnitude.  However, given the factors outside 

of this study, such as the pandemic or supply chain issues, further work is needed on the 

year of sale results. The AGCO model only found significance for the years 2015, 2020, 

and 2021 with all three having a positive estimate. Sales for the 2015 year with AGCO 

combines could be explained by the release of a new line of Massey Ferguson and Gleaner 
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combines, both under the parent company of AGCO (Potter, 2014). As for the 2020 and 

2021 sale years, the pandemic is a possible reason for increased values.  

For the season of sale, only the Winter season was significant with John Deere 

combines similar to the base and PAT models, while both Case IH and AGCO found 

significance in the Spring and Winter seasons compared to the reference group of Fall 

sales. Case IH combines were estimated to have an increase of 5% in the Spring, while 

AGCO combines estimated an increase of 14.8% compared to the Fall season. Winter sales 

also estimated increases in value for both manufacturers, with Case IH estimating an 

increase of 4.7% and AGCO at 14%. The order of season of sale did not follow 

expectations with the finding of Ellis et al. (2022). However, further investigation 

illustrates there is no statistical difference between the Spring and Winter season, 

suggesting that the increase in values could be due to a continuation of the after-harvest 

price increase discussed in the expectations.  

Displays held significance in both the John Deere and Case IH models with 

estimated impacts similar to the PAT model results. Row Sense held a higher significance 

level with John Deere combines compared to the PAT model; however, the estimate was 

not statistically different. Harvest-related technologies were only significant in the John 

Deere model, with Yield Monitors without Moisture Trackers having a higher impact than 

the PAT model at 6.5%.  Similarly, Data Sync was found to be significant in the John Deere 

and AGCO models, with the estimate for the AGCO model slightly above the coefficient 

in the PAT model results. Receivers were not found to be significant with John Deere 

combines and was estimated significantly higher for AGCO combines compared to the 

PAT model. The similarities of John Deere combines with the PAT model were expected 
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due to the market share represented by John Deere in the dataset. Alternatively, the 

differences shown with Case IH and AGCO could illustrate the value differences for adding 

PAT elements to those combines since no manufacture specific brand technology was 

significant. This potential result would suggest that Case IH and AGCO combine owners 

would increase their combines value by adding these technologies, while John Deere 

owners would not experience the same value increase.    

3.7 Conclusion   

The dramatic increase in combine values has had a direct impact on profitability, 

causing farmers to reevaluate machinery purchasing options. For many grain operations, 

buying a used combine could be the best option, but the lack of evaluation methods does 

not provide a clear understanding of pricing used combines. Additionally, the continual 

market changes from the introduction of precision agriculture technologies (PAT) have 

further complicated estimating the true value of a combine.  This study expands on the 

previous work of Ellis et al. (2022) and provides two models that estimate a used combines 

value. Utilizing a Machinery Pete dataset of auction sales between 2010 and 2022, the base 

model estimates values before incorporating PAT variables and helps to compare this study 

to the previous work. The second model builds upon the base model by incorporating PAT 

variables for the combines in the dataset. This study provides three additional models to 

evaluate the impact of precision agricultural technologies on the top three manufacturers 

of combines in North America to estimate different evaluation structures for each 

manufacturer.   
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Usage variables for combines indicated that an increase in the age of the machine 

would decrease the value more than an increase in separator hours. When separator hours 

were scaled to reflect the average years’ worth of use, combined values decreased by 

around 5.7%, while an additional year in age was estimated to have an 8.6% decrease. 

Although seemingly a simple finding, the relationship between age and separator hours 

could change how the industry calculates economic depreciation. Additionally, the study 

estimated combines will hold higher values when sold during the winter season through 

farm auctions. PAT variables were estimated to have the highest value if their function 

related to data communication, followed by harvest-related functions, and lastly, operator-

related functions. This result suggests that operators are willing to pay more for 

technologies that enhance in-field communication and data sharing between machines. The 

major finding of the study provides a starting point for understanding how to evaluate used 

combines in North America, and the full results should be used to assist operators with 

comparing various combine options.   
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3.8 Chapter 3 Tables and Figures 

Table 3-1 – Combine Data Description and Summary Statistics 

Variable Definition 
Number of 

Observations 
Mean   Std. Dev   Range 

Independent                    

  Price  Final Sale Price ($)    8,487    
$102,259.9

0   
  $61,929.61     

$1,750-

$480,00

0  

Dependent                    

Usage Factors                    

  
Hours  

Total separator hours 

of use on the machine     8,487    2,188.83    1,135.25    0-9123  

  
Age  

Total years since 

manufacturing     8,487    8.65    4.80    0-22  

  

Excellent_Go

od  

= 1 if condition score is 

either Excellent or 

Good    8,407    0.99    0.10    0 - 1  

  
Fair_Poor  

= 1 if condition score is 

either Fair or Poor    80    0.01    0.10    0 - 1  

Make                    

  John Deere  

= 1 if John Deere was 

the make    5,698    0.671    0.470    0 - 1  

  Case IH  

= 1 if Case IH was the 

make    1,994    0.235    0.424    0 - 1  

  AGCO  

= 1 if AGCO was the 

make    357    0.042    0.201    0 - 1  

  
Ford New 

Holland  

= 1 if Ford-New 

Holland was the make  
  277    0.033    0.178    0 - 1  

  Claas  

= 1 if Claas was the 

make    161    0.019    0.136    0 - 1  

Sale Variables                    

  
Spring Sale  

= 1 if sale occurred in 

the Spring season    1,257    0.148    0.355    0 - 1  

  

Summer 

Sale  

= 1 if sale occurred in 

the Summer season    3,269    0.385    0.487    0 - 1  

  
Fall Sale  

= 1 if sale occurred in 

the Fall season    2,149    0.253    0.435    0 - 1  

  
Winter Sale  

= 1 if sale occurred in 

the Winter season    1812    0.214    0.410    0 - 1  

  
Dealer  

= 1 if sale occurred at a 

dealership    834    0.098    0.298    0 - 1  

  

Consignment

  

= 1 if sale was for 

consignment    3098    0.365    0.481    0 - 1  

  
Farm  

= 1 if sale occurred on 

farm    1,635    0.193    0.394    0 - 1  
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Online  

= 1 if sale occurred 

online    2,868    0.338    0.473    0 - 1  

  

Other  

= 1 if sale was not 

through Dealer, 

Consignment, Farm, or 

Online  

  52    0.006    0.078    0 - 1  

Year of Sale                    

  
Year 2010  

= 1 if the sale occurred 

in the 2010 sale year    191    0.023    0.148    0 - 1  

  
Year 2011  

= 1 if the sale occurred 

in the 2011 sale year    314    0.037    0.189    0 - 1  

  
Year 2012  

= 1 if the sale occurred 

in the 2012 sale year    478    0.056    0.231    0 - 1  

  
Year 2013  

= 1 if the sale occurred 

in the 2013 sale year    498    0.059    0.235    0 - 1  

  
Year 2014  

= 1 if the sale occurred 

in the 2014 sale year    440    0.052    0.222    0 - 1  
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Table 3.1 Continued – Combine Data Description and Summary Statistics 

   

Year 2015  

= 1 if the sale 

occurred in the 

2015 sale year    657    0.077    0.267    0 - 1  

  

Year 2016  

= 1 if the sale 

occurred in the 

2016 sale year    688    0.081    0.273    0 - 1  

  

Year 2017  

= 1 if the sale 

occurred in the 

2017 sale year    774    0.091    0.288    0 - 1  

  

Year 2018  

= 1 if the sale 

occurred in the 

2018 sale year    630    0.074    0.262    0 - 1  

  

Year 2019  

= 1 if the sale 

occurred in the 

2019 sale year    1089    0.128    0.334    0 - 1  

  

Year 2020  

= 1 if the sale 

occurred in the 

2020 sale year    1116    0.131    0.338    0 - 1  

  

Year 2021  

= 1 if the sale 

occurred in the 

2021 sale year    962    0.113    0.317    0 - 1  

  

Year 2022  

= 1 if the sale 

occurred in the 

2022 sale year    650    0.077    0.266    0 - 1  

Region of Sale                    

  

Eastern 

Mountain  

= 1 if the sale was 

in Eastern 

Mountain 

Region    136    0.016    0.126    0 - 1  

  

Northeastern  

= 1 if the sale was 

in Northeastern 

Region    27    0.003    0.056    0 - 1  

  

Southern  

= 1 if the sale was 

in Southern 

Region    14    0.002    0.041    0 - 1  

  

Upper 

Midwest  

= 1 if the sale was 

in Upper 

Midwest Region    2087    0.246    0.431    0 - 1  

  

Great Lakes  

= 1 if the sale was 

in Great Lakes 

Region    872    0.103    0.304    0 - 1  

  

Heartland  

= 1 if the sale was 

in Heartland 

Region    2137    0.252    0.434    0 - 1  
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Northwest  

= 1 if the sale was 

in Northwest 

Region    32    0.004    0.061    0 - 1  

  

Pacific  

= 1 if the sale was 

in Pacific 

Region    11    0.001    0.036    0 - 1  

  
Delta  

= 1 if the sale was 

in Delta Region    213    0.025    0.156    0 - 1  

  

Northern 

Plains  

= 1 if the sale was 

in Northern 

Plains Region    2,702    0.318    0.466    0 - 1  

  

Southern 

Plains   

= 1 if the sale was 

in Southern 

Plains Region    141    0.017    0.128    0 - 1  

  

Mountain  

= 1 if the sale was 

in Mountain 

Region    115    0.014    0.116    0 - 1  

Controls                    

  
US Cash 

Receipts  

US Cash 

Receipts at time 

of Sale  

  8,487     $211,000,000      $27,300,000     
 $180,000,000-

$286,000,000   

  

PPI  

Producer Price 

index at time of 

sale    8,487    183.32    56.18    119.9-322.7  

  

Region 

Diesel Price  

Region Diesel 

price at time of 

sale     8,487    3.14    0.76    1.9-5.8  
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Table 3-2 – Combine Precision Agriculture Technology Data Description and Summary 

Statistics 

Variable Definition 
Number of 

Observations 
Mean  Std. 

Dev 
 Range 

PAT 

Variables      

 

Yield 

Monitor 

= 1 if Yield Monitor 

was included  276 0.03  0.18  0 - 1 

 

Moisture 

Tracker 

= 1 if Moisture Tracker 

was included  83 0.01  0.10  0 - 1 

 

Yield 

Monitor 

with 

Moisture 

Tracker 

= 1 if Yield Monitor 

with Moisture Tracker 

was included 

 872 0.10  0.30  0 - 1 

 

Grain Loss 

Monitor 

= 1 if Grain Loss 

Monitor was included  91 0.01  0.10  0 - 1 

 GPS = 1 if GPS was included  66 0.01  0.09  0 - 1 

 Auto Steer 

= 1 if Auto Steer was 

included  1637 0.19  0.39  0 - 1 

 Row Sense 

= 1 if Row Sense was 

included  54 0.01  0.08  0 - 1 

 Data Sync 

= 1 if Data Sync was 

included  38 0.00  0.07  0 - 1 

 Receiver 

= 1 if Receiver was 

included  292 0.03  0.18  0 - 1 

 Display 

= 1 if Display was 

included  2089 0.25  0.43  0 - 1 

PAT Manufacturer      

 

John Deere 

PAT 

= 1 if the PAT 

manufacturer was John 

Deere  1320 0.16  0.36  0 - 1 

 

Case IH 

PAT 

= 1 if the PAT 

manufacturer was Case 

IH  78 0.01  0.10  0 - 1 

 

Ag Leader 

PAT 

= 1 if the PAT 

manufacturer was Ag 

Leader  158 0.02  0.14  0 - 1 

 

Ford New 

Holland 

PAT 

= 1 if the PAT 

manufacturer was Ford-

New Holland 

 46 0.01  0.07  0 - 1 

 

  



90 

 

Table 3-3 – Combine Base Model VIF Results  

Variable   VIF 1/VIF 

Usage Factors   

 Hours 2.73 0.366 

 Age 2.95 0.339 

 Excellent_Good 1.04 0.958 

Make   

 John Deere 12.36 0.081 

 Case IH 10.56 0.095 

 AGCO 3.17 0.316 

 Ford New Holland 2.7 0.371 

Sale Variables   

 Spring Sale 1.52 0.657 

 Summer Sale 1.72 0.583 

 Winter Sale 1.52 0.657 

 Consignment 3.46 0.289 

 Farm 2.76 0.362 

 Online 4.46 0.224 

 Other 1.11 0.902 

Year of Sale   

 Year 2011 2.51 0.398 

 Year 2012 2.43 0.411 

 Year 2013 2.11 0.473 

 Year 2014 2.53 0.395 

 Year 2015 4.34 0.231 

 Year 2016 5.29 0.189 

 Year 2017 4.85 0.206 

 Year 2018 3.69 0.271 

 Year 2019 5.65 0.177 

 Year 2020 7.18 0.139 

 Year 2021 4.46 0.224 

Region of Sale   

 Eastern Mountain 1.08 0.926 

 Northeastern 1.03 0.974 

 Southern 1.02 0.980 

 Upper Midwest 1.8 0.554 

 Great Lakes 1.35 0.742 

 Northwest 1.03 0.968 

 Pacific 1.05 0.949 

 Delta 1.14 0.879 

 Northern Plains 1.82 0.549 

 Southern Plains  1.1 0.912 
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 Mountain 1.1 0.913 

Controls   

 US Cash Receipts 11.89 0.084 

 PPI 12.82 0.078 

 Region Diesel Price 16.01 0.062 
   

 Mean VIF 3.88  
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Table 3-4 – Combine PAT Model VIF Results  

Variable VIF 1/VIF 

Usage Factors   

 Hours 2.75 0.364 

 Age 3.2 0.313 

 Excellent_Good 1.05 0.954 

Make   

 John Deere 12.76 0.078 

 Case IH 10.98 0.091 

 AGCO 3.2 0.313 

 Ford New Holland 2.93 0.342 

Sale Variables   

 Spring Sale 1.53 0.654 

 Summer Sale 1.72 0.580 

 Winter Sale 1.63 0.613 

 Consignment 3.48 0.287 

 Farm 2.79 0.359 

 Online 4.5 0.222 

 Other 1.11 0.898 

Year of Sale   

 Year 2011 2.52 0.397 

 Year 2012 2.46 0.407 

 Year 2013 2.12 0.471 

 Year 2014 2.54 0.394 

 Year 2015 4.37 0.229 

 Year 2016 5.31 0.188 

 Year 2017 4.88 0.205 

 Year 2018 3.71 0.269 

 Year 2019 5.72 0.175 

 Year 2020 7.31 0.137 

 Year 2021 4.49 0.223 

Region of Sale   

 Eastern Mountain 1.09 0.922 

 Northeastern 1.03 0.972 

 Southern 1.02 0.978 

 Upper Midwest 1.85 0.541 

 Great Lakes 1.35 0.738 

 Northwest 1.04 0.965 

 Pacific 1.15 0.872 

 Delta 1.15 0.871 

 Northern Plains 1.91 0.523 

 Southern Plains  1.1 0.910 
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 Mountain 1.1 0.907 

Controls   

 US Cash Receipts 12.15 0.082 

 PPI 12.86 0.078 

 Region Diesel Price 16.08 0.062 
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Table 3.4 Continued – Combine PAT Model VIF Results  

PAT Variables   

 Yield Monitor 1.29 0.777 

 Moisture Tracker 1.18 0.845 

 Yield Monitor with Moisture 

Tracker 
1.49 0.672 

 Grain Loss Monitor 1.05 0.954 

 GPS 4 0.250 

 Auto Steer 4.17 0.240 

 Row Sense 1.55 0.644 

 Data Sync 1.63 0.613 

 Receiver 1.13 0.883 

 Display 1.5 0.669 

PAT 

Manufacturer    

 John Deere PAT 1.34 0.744 

 Case IH PAT 1.08 0.927 

 Ag Leader PAT 1.1 0.910 

 Ford New Holland PAT 1.23 0.810 

 Mean VIF 3.35  
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Table 3-5 – Combine Base Model Regression Results 

  R-Squared 0.8794 

Variable   Co Ef.   

Robust Std 

Error 

95% Confidence 

Interval 

Usage 

Factors      

 Hours -0.0002 *** 0.00001 -0.00022 

-

0.00018 

 Age -0.0868 *** 0.002 -0.091 -0.081 

 Excellent_Good 0.3705 *** 0.041 0.280 0.460 

Make      

 John Deere 0.2534 *** 0.030 0.187 0.320 

 Case IH 0.1582 *** 0.037 0.077 0.239 

 AGCO -0.0677 ** 0.027 -0.128 -0.007 

 

Ford New 

Holland -0.1102 *** 0.027 -0.169 -0.051 

Sale 

Variables      

 Spring Sale 0.0213  0.012 -0.005 0.048 

 Summer Sale -0.0089  0.006 -0.023 0.005 

 Winter Sale 0.0339 *** 0.008 0.016 0.052 

 Consignment -0.0455 *** 0.011 -0.071 -0.020 

 Farm 0.0687 *** 0.012 0.041 0.096 

 Online -0.0533 *** 0.014 -0.085 -0.021 

 Other -0.0155  0.038 -0.099 0.068 

Year of 

Sale      

 Year 2011 -0.0940 *** 0.017 -0.132 -0.056 

 Year 2012 -0.2039 *** 0.016 -0.239 -0.169 

 Year 2013 -0.1165 *** 0.019 -0.158 -0.075 

 Year 2014 -0.0906 *** 0.015 -0.123 -0.058 

 Year 2015 -0.0048  0.028 -0.066 0.056 

 Year 2016 0.0081  0.039 -0.077 0.093 

 Year 2017 0.0413  0.026 -0.016 0.099 

 Year 2018 0.0466  0.033 -0.027 0.120 

 Year 2019 0.0597 * 0.030 -0.006 0.126 

 Year 2020 0.1260 *** 0.026 0.069 0.183 

 Year 2021 0.0996 *** 0.021 0.053 0.146 

Region of 

Sale      

 

Eastern 

Mountain -0.0657 *** 0.002 -0.070 -0.062 

 Northeastern -0.0382 *** 0.008 -0.057 -0.020 
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 Southern 0.0316 * 0.015 -0.001 0.064 

 Upper Midwest 0.0234 *** 0.004 0.015 0.032 

 Great Lakes 0.0394 *** 0.004 0.031 0.048 

 Northwest -0.1282 *** 0.010 -0.150 -0.107 

 Pacific -0.6523 *** 0.018 -0.691 -0.613 

 Delta -0.2018 *** 0.005 -0.212 -0.192 

 Northern Plains 0.0131 *** 0.003 0.007 0.020 

 Southern Plains  -0.0649 *** 0.004 -0.074 -0.056 

 Mountain -0.0504 *** 0.012 -0.077 -0.024 

Controls      

 

US Cash 

Receipts 0.0000 *** 0.000 0.000 0.000 

 PPI 0.0005 *** 0.000 0.000 0.001 

 

Region Diesel 

Price 0.0134  0.012 -0.012 0.039 

Constant 10.93146 *** 0.106 10.698 11.164 

*p-value <0.10, **p-value<0.05, ***p-value <0.01 
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Table 3-6 – Combine PAT Model Regression Results 

  R-Squared 0.8815 

Variable   Co Ef. 

  

Robust Std 

Error 

95% Confidence 

Interval 

Usage 

Factors       

 Hours 
-0.0002 

*** 0.00001 

-

0.00022 

-

0.00018 

 Age -0.0838 *** 0.002 -0.089 -0.078 

 Excellent_Good 0.3683 *** 0.043 0.273 0.463 

Make       

 John Deere 0.2462 *** 0.032 0.176 0.317 

 Case IH 0.1371 *** 0.039 0.052 0.223 

 AGCO -0.0760 ** 0.029 -0.139 -0.013 

 Ford New Holland -0.1145 *** 0.026 -0.172 -0.057 

Sale 

Variables  

 

    

 Spring Sale 0.0227  0.013 -0.007 0.052 

 Summer Sale -0.0075  0.006 -0.021 0.006 

 Winter Sale 0.0373 *** 0.008 0.020 0.055 

 Consignment -0.0458 *** 0.013 -0.074 -0.018 

 Farm 0.0660 *** 0.014 0.035 0.097 

 Online -0.0615 *** 0.017 -0.100 -0.023 

 Other -0.0302  0.040 -0.119 0.058 

Year of 

Sale       

 Year 2011 -0.0902 *** 0.019 -0.132 -0.049 

 Year 2012 -0.1948 *** 0.020 -0.239 -0.151 

 Year 2013 -0.1085 *** 0.021 -0.155 -0.062 

 Year 2014 -0.0857 *** 0.013 -0.114 -0.058 

 Year 2015 -0.0078  0.023 -0.058 0.042 

 Year 2016 0.0070  0.033 -0.066 0.080 

 Year 2017 0.0424 * 0.021 -0.004 0.089 

 Year 2018 0.0424  0.031 -0.025 0.110 

 Year 2019 0.0530 * 0.029 -0.010 0.117 

 Year 2020 0.1109 *** 0.025 0.057 0.165 

 Year 2021 0.0905 *** 0.020 0.046 0.135 

Region of 

Sale       

 Eastern Mountain -0.0568 *** 0.002 -0.061 -0.053 

 Northeastern -0.0302 ** 0.010 -0.052 -0.008 

 Southern 0.0486 *** 0.015 0.015 0.083 
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 Upper Midwest 0.0185 *** 0.003 0.011 0.026 

 Great Lakes 0.0381 *** 0.005 0.027 0.049 

 Northwest -0.1288 *** 0.007 -0.145 -0.113 

 Pacific -0.7322 *** 0.039 -0.818 -0.646 

 Delta -0.1930 *** 0.004 -0.201 -0.185 

 Northern Plains 0.0069  0.006 -0.005 0.019 

 Southern Plains  -0.0628 *** 0.006 -0.076 -0.049 

 Mountain -0.0465 *** 0.012 -0.072 -0.021 

Controls       

 US Cash Receipts 0.0000 *** 0.000 0.000 0.000 

 PPI 0.0005 *** 0.000 0.000 0.001 

 Region Diesel Price 0.0145  0.010 -0.008 0.037 
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Table 3.6 Continued – Combine PAT Model Regression Results 

PAT 

Variables       

 Yield Monitor 0.0414 *** 0.009 0.021 0.061 

 Moisture Tracker -0.0132  0.025 -0.069 0.043 

 

Yield Monitor with 

Moisture Tracker 
0.0395 

 0.024 -0.012 0.091 

 Grain Loss Monitor -0.0174  0.011 -0.041 0.006 

 GPS -0.0011  0.020 -0.045 0.043 
 Auto Steer 0.0150  0.023 -0.036 0.066 

 Row Sense 0.0911 * 0.046 -0.010 0.192 

 Data Sync 0.1300 ** 0.056 0.006 0.254 

 Receiver 0.0667 *** 0.019 0.026 0.108 

 Display 0.0283 *** 0.008 0.012 0.045 

PAT Manufacturer       

 John Deere PAT -0.0133  0.008 -0.030 0.003 

 Case IH PAT 0.0126  0.040 -0.076 0.101 

 Ag Leader PAT -0.0483 * 0.024 -0.101 0.005 

 

Ford New Holland 

PAT 
-0.0514 

 0.036 -0.130 0.028 

Constant  10.9784 *** 0.100 10.758 11.199 

*p-value <0.10, **p-value<0.05, ***p-value <0.01 
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Table 3-7 – PAT John Deere Combines Model Regression Results 

  R-Squared 0.9002 

Variable   Co Ef. 
Robust Std Error 

95% Confidence 

Interval 

Usage Factors      

 Hours -0.0002 *** 0.000004 -0.000209 -0.000189 

 Age -0.0817 *** 0.001 -0.084 -0.080 

 Excellent_Good 0.2179 ** 0.073 0.057 0.379 

Sale Variables      

 Spring Sale 0.0040  0.016 -0.032 0.039 

 Summer Sale -0.0120  0.012 -0.040 0.016 

 Winter Sale 0.0251 * 0.012 -0.001 0.051 

 Consignment -0.0455 ** 0.019 -0.088 -0.003 

 Farm 0.0508 ** 0.022 0.003 0.099 

 Online -0.0580 *** 0.017 -0.095 -0.021 

 Other -0.0503  0.046 -0.151 0.051 

Year of 

Sale       

 Year 2011 -0.1150 *** 0.020 -0.159 -0.071 

 Year 2012 -0.2049 *** 0.013 -0.234 -0.176 

 Year 2013 -0.1122 *** 0.025 -0.167 -0.057 

 Year 2014 -0.0773 *** 0.011 -0.102 -0.053 

 Year 2015 0.0123  0.021 -0.033 0.058 

 Year 2016 0.0439  0.027 -0.016 0.104 

 Year 2017 0.0696 ** 0.030 0.004 0.135 

 Year 2018 0.0623 * 0.029 -0.002 0.127 

 Year 2019 0.0699 * 0.037 -0.012 0.152 

 Year 2020 0.1141 *** 0.030 0.048 0.181 

 Year 2021 0.0924 *** 0.017 0.055 0.130 

Region of Sale      

 

Eastern 

Mountain 
-0.0339 

*** 0.006 -0.048 -0.020 

 Northeastern 0.0383 *** 0.006 0.025 0.052 

 Southern 0.1057 *** 0.020 0.061 0.150 

 Upper Midwest 0.0255 *** 0.006 0.013 0.038 

 Great Lakes 0.0425 *** 0.006 0.029 0.056 

 Northwest -0.1055 *** 0.013 -0.135 -0.076 

 Pacific -0.3703 *** 0.013 -0.399 -0.342 

 Delta -0.1280 *** 0.010 -0.149 -0.107 

 Northern Plains 0.0187 *** 0.005 0.008 0.030 

 Southern Plains  -0.0644 *** 0.006 -0.077 -0.052 

 Mountain -0.0231  0.013 -0.052 0.006 
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Controls       

 

US Cash 

Receipts 
0.0000 

*** 0.000 0.000 0.000 

 PPI 0.0006 *** 0.000 0.000 0.001 

 

Region Diesel 

Price 
0.0229 

** 0.008 0.006 0.040 
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Table 3.7 Continued – PAT John Deere Combines Model Regression Results 

PAT Variables      

 

Yield 

Monitor 
0.0651 

*** 0.015 0.031 0.099 

 

Moisture 

Tracker 
-0.0341 

 0.026 -0.092 0.024 

 

Yield 

Monitor with 

Moisture 

Tracker 

0.0364 

 0.026 -0.021 0.094 

 

Grain Loss 

Monitor 
0.0219 

 0.016 -0.013 0.057 

 GPS -0.0065  0.015 -0.039 0.026 

 Auto Steer 0.0113  0.019 -0.031 0.054 

 Row Sense 0.1048 ** 0.036 0.026 0.183 

 Data Sync 0.1216 *** 0.029 0.057 0.186 

 Receiver -0.0120  0.013 -0.041 0.017 

 Display 0.0301 *** 0.007 0.015 0.046 

       
Constant 11.2829 11.2829 0.072 11.124 11.442 

*p-value <0.10, **p-value<0.05, ***p-value <0.01 
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Table 3-8 – PAT CASE IH Combines Model Regression Results 

  R-Squared 0.8807 

Variable   Co Ef. 
Robust Std Error 

95% Confidence 

Interval 

Usage Factors     

 Hours 

-

0.0002 *** 0.00001 -0.00026 -0.00021 

 Age 

-

0.0806 *** 0.004 -0.090 -0.071 

 Excellent_Good 0.3614 *** 0.065 0.219 0.503 

Sale Variables      

 Spring Sale 0.0500 *** 0.011 0.025 0.075 

 Summer Sale 

-

0.0106  0.009 -0.030 0.009 

 Winter Sale 0.0472 *** 0.012 0.021 0.073 

 Consignment 

-

0.0300 ** 0.012 -0.057 -0.003 

 Farm 0.0828 ** 0.029 0.019 0.147 

 Online 

-

0.0351  0.034 -0.109 0.039 

 Other 0.0121  0.033 -0.060 0.085 

Year of Sale      

 Year 2011 

-

0.0765 *** 0.023 -0.127 -0.026 

 Year 2012 

-

0.1783 *** 0.042 -0.272 -0.085 

 Year 2013 

-

0.0846 *** 0.025 -0.140 -0.029 

 Year 2014 

-

0.0798 *** 0.020 -0.124 -0.036 

 Year 2015 

-

0.0452  0.034 -0.120 0.029 

 Year 2016 

-

0.0650  0.054 -0.184 0.054 

 Year 2017 0.0019  0.037 -0.080 0.083 

 Year 2018 

-

0.0127  0.051 -0.124 0.099 

 Year 2019 0.0006  0.031 -0.069 0.070 

 Year 2020 0.0949  0.059 -0.035 0.225 

 Year 2021 0.1040 ** 0.046 0.002 0.206 

Region of Sale      

 

Eastern 

Mountain 

-

0.2105 *** 0.012 -0.237 -0.184 
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 Northeastern 

-

0.1604 *** 0.024 -0.214 -0.107 

 Southern 

-

0.1555 *** 0.032 -0.225 -0.086 

 Upper Midwest 

-

0.0151  0.010 -0.036 0.006 

 Great Lakes 0.0374 *** 0.006 0.025 0.050 

 Northwest 

-

0.3102 *** 0.024 -0.363 -0.257 

 Pacific 

-

0.4738 *** 0.069 -0.626 -0.321 

 Delta 

-

0.2619 *** 0.010 -0.284 -0.239 

 Northern Plains 

-

0.0501 *** 0.009 -0.070 -0.030 

 Southern Plains  

-

0.0870 *** 0.019 -0.128 -0.046 

 Mountain 

-

0.1652 *** 0.008 -0.183 -0.147 

Controls       

 

US Cash 

Receipts 
0.0000 

*** 0.000 0.000 0.000 

 PPI 0.0005 ** 0.000 0.000 0.001 

 

Region Diesel 

Price 

-

0.0056  0.044 -0.101 0.090 
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Table 3.8 Continued – PAT CASE IH Combines Model Regression Results 

PAT Variables      

 Yield Monitor 0.0258  0.027 -0.034 0.085 

 

Moisture 

Tracker 
0.0583 

 0.071 -0.097 0.214 

 

Yield Monitor 

with Moisture 

Tracker 

0.0393 

 0.024 -0.014 0.092 

 

Grain Loss 

Monitor 
0.0227 

 0.030 -0.044 0.089 

 GPS 0.0132  0.023 -0.037 0.064 

 Auto Steer 0.0337  0.024 -0.020 0.087 

 Receiver 0.0670 *** 0.018 0.027 0.107 

 Display 0.0160 ** 0.006 0.002 0.030 

 Row Sense Omitted     

 Data Sync Omitted     
Constant 11.35319 11.3532 0.162 10.998 11.709 

*p-value <0.10, **p-value<0.05, ***p-value <0.01 
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Table 3-9 – PAT AGCO Combines Model Regression Results 

  R-Squared 0.7698 

Variable   Co Ef.  Robust Std Error 

95% Confidence 

Interval 

Usage Factors      

 Hours -0.0002 ** 0.00005 -0.00027 -0.00005 

 Age -0.1009 *** 0.009 -0.122 -0.080 

 Excellent_Good 0.8320  0.612 -0.551 2.215 

Sale Variables      

 Spring Sale 0.1476 *** 0.019 0.105 0.190 

 Summer Sale 0.0472  0.041 -0.045 0.139 

 Winter Sale 0.1396 ** 0.057 0.010 0.269 

 Consignment -0.1374 * 0.064 -0.282 0.007 

 Farm 0.1162 ** 0.045 0.014 0.218 

 Online -0.1292 *** 0.033 -0.204 -0.054 

 Other Omittted     
Year of 

Sale       

 Year 2011 0.0387  0.132 -0.259 0.336 

 Year 2012 0.0914  0.115 -0.168 0.350 

 Year 2013 0.0011  0.032 -0.072 0.075 

 Year 2014 -0.0598  0.047 -0.165 0.046 

 Year 2015 0.1569 ** 0.061 0.019 0.295 

 Year 2016 0.0659  0.098 -0.156 0.288 

 Year 2017 0.0517  0.083 -0.137 0.241 

 Year 2018 0.1515  0.083 -0.037 0.340 

 Year 2019 0.1676  0.091 -0.039 0.374 

 Year 2020 0.2856 ** 0.098 0.065 0.507 

 Year 2021 0.2364 ** 0.101 0.007 0.466 

Region of Sale      

 

Eastern 

Mountain 
-0.0840 

* 0.045 -0.185 0.017 

 Northeastern -0.4912 *** 0.065 -0.637 -0.345 

 Southern Omitted     

 Upper Midwest 0.0037  0.039 -0.084 0.091 

 Great Lakes -0.0082  0.026 -0.067 0.051 

 Northwest -0.2394 ** 0.091 -0.446 -0.033 

 Pacific Omitted     

 Delta -0.3437 *** 0.058 -0.475 -0.213 

 Northern Plains 0.0413 *** 0.010 0.019 0.064 

 Southern Plains  0.0213  0.073 -0.145 0.187 

 Mountain -0.0960  0.054 -0.218 0.026 
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Controls       

 

US Cash 

Receipts 
0.0000 

* 0.000 0.000 0.000 

 PPI -0.0011  0.001 -0.004 0.002 

 

Region Diesel 

Price 
0.1589 

* 0.073 -0.006 0.324 
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Table 3.9 Continued – PAT AGCO Combines Model Regression Results 

PAT Variables      

 Yield Monitor 0.0752  0.163 -0.294 0.444 

 

Moisture 

Tracker 
-0.2139 

 0.273 -0.831 0.403 

 

Yield Monitor 

with Moisture 

Tracker 

-0.0856 

 0.070 -0.244 0.072 

 

Grain Loss 

Monitor 
-0.0402 

 0.087 -0.238 0.157 

 GPS -0.1905 * 0.088 -0.389 0.008 

 Auto Steer 0.1932 * 0.095 -0.023 0.409 

 Row Sense Omitted     

 Data Sync 0.2593 * 0.129 -0.032 0.551 

 Receiver 0.2609 ** 0.110 0.012 0.510 

 Display 0.0635  0.036 -0.018 0.145 

Constant 10.2896 10.2896 0.666 8.783 11.796 

*p-value <0.10, **p-value<0.05, ***p-value <0.01 
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Source: (U.S. and State-Level Farm Income and Wealth Statistics, 2023) 

Figure 3-1 – Historic Net Farm Income Graph by Year 
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Figure 3-2 – Combine Data Cleaning Tree 
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Source: (USDA - National Agricultural Statistics Service - Regional Field Offices, n.d.) 

Figure 3-3 – Regional USDA Map  
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Figure 3-4 – Combine Data Percent of Manufacturer  
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Figure 3-5 – Combine Data Percent of Manufacturer for Each PAT Variable 
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CHAPTER 4. EVALUATING THE IMPACT OF COVID-19 ON THE SECONDARY TRACTOR 

MARKET IN NORTH AMERICA 

4.1 Introduction    

Farm machinery has been a topic in agriculture economics for years. Still, despite 

previous research evaluating the cost of farm machinery, much of the research is outdated 

or lacks a comprehensive view of the market (Daninger, 2017; Edwards, 2015; Lattz & 

Schnitkey, 2021). Furthermore, gaps in pricing evaluation due to a lack of observations, 

exclusion of major brands, or focus on single market locations limit the work's impact. 

Additionally, recent market shifts from the pandemic have further complicated machinery 

decision-making. For today’s farm machinery market, producers must juggle supply chain 

challenges, increases in online auctions, and a drive towards “smart agricultural” practices 

doming agriculture news and USDA headlines. Before the pandemic, operators buying or 

selling machinery had to consider the equipment's size, age, quality, capabilities, and 

compatibility with other implements. However, post-pandemic operators have added 

decisions around machinery availability, changes in precision technology options (due to 

limited availability), and higher repair costs to the equation (Anderson, 2022). 

Unfortunately, such complicated decisions can lead to suboptimal decision-making when 

purchasing equipment. In an effort to provide information for producers and answer the 

previously stated question of what impact the COVID-19 pandemic had on tractor values, 

three objectives were used: 1) identify the key variables that impact a used tractor's value, 

2) estimate the impact of the COVID-19 pandemic on the tractor market, and 3) evaluate 

how the timing of the pandemic shutdown impacted the used tractor market. 



115 

 

To accomplish the objectives, the study evaluated the impact of COVID-19 on used 

tractor values for the United States market. A unique dataset was used from one of North 

America's largest online farm machinery auction companies. The dataset contains auction 

sales from 2010 through 2022 for tractors, including characteristics related to the sale 

information and machinery specifics for each tractor. Additionally, effective state-of-

emergency dates were used as indicators for the start of the pandemic in each state. The 

dataset was paired with two different econometric models, where the base model addressed 

objectives 1 and 2, while the second model addressed objective 3. Initial results estimate 

that John Deere tractors sold in the winter will hold higher values when compared to other 

brands and seasons. Specifically for pandemic impacts, it was estimated that the overall 

impact since the effective dates was 16.3%, with short-term monthly impacts ranging 

between 6% and 16.8%.  

The COVID-19 pandemic sent shockwaves through the world economy and 

impacted every industry with issues around world trade, available workforce, and the 

shutdown of retail locations. Although the order of industry importance is arguable, the 

agriculture industry often holds priority due to its essential label as a vital role in human 

existence. Additionally, the structure of the agricultural industry differs from the other with 

its reliance on seasonal production, global trade, and immigrant workforce. For agricultural 

producers, the pandemic not only resulted in unfavorable prices for commodities and inputs 

but also destroyed the supply of resources vital for production, with tractors being one of 

those vital resources used in nearly all agricultural enterprises. Agriculture operations are 

capital-intensive; behind land, farm machinery is the largest asset for most operations 

(Ibendahl, 2015). Since the pandemic, used machinery prices have continued to increase 



116 

 

even in the headwinds of rising interest rates, diesel prices, and fertilizer. Farm machinery 

saw an estimated cost-per-hour increase between 2.1% and 19.4% from 2019 to 2021 (Lattz 

& Schnitkey, 2021). Although these estimates are shocking, the rise of used tractor prices 

has continued upward. The year-over-year change in used tractor prices from June 2021 to 

June 2022 was between 10% and 13% (Schmidt, 2022). Anderson predicts an increase of 

8.7% to 13.9% for tractors in 2023 (Anderson, 2022). These drastic increases in machinery 

costs, specifically in the used tractor market, have led to the question of what impact the 

COVID-19 pandemic had on tractor values.  

4.2 Background  

A hedonic model was employed to estimate the secondary tractor market.  The 

initial development of hedonic models dates back to the early 1960s when the model was 

used to analyze vehicle quality in car markets (Griliches, 1961), and then further developed 

in the 1970s to investigate differentiation between products under pure competition (Rosen, 

1974). Since then, hedonic models have been commonly used in agriculture to estimate 

various topics such as cattle, commodities, land, and machinery values (Allison et al., 2022; 

Borchers et al., 2014; Davis & Ethridge, 1982; Ellis et al., 2022; Martinez et al., 2021; 

Miranowski & Hammes, 1984; Rosen, 1974). Utilizing monthly auction data Martinez et 

al. (2021), examined the factors that impact feeder cattle prices and premiums. For 

commodities, previous literature investigated the impact of crop quality attributes on 

producer prices (Davis & Ethridge, 1982). Although the previous work on cattle and 

commodity pricing is notable, the majority of hedonic models in agricultural research have 

focused on land values (Borchers et al., 2014; Miranowski & Hammes, 1984). In the 1980s, 
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(Miranowski & Hammes, 1984) investigated the price of soil characteristics on farmland 

in Iowa. This work provided evidence that soil characteristics such as topsoil depth and 

erosion potential both had a significant impact on farmland prices. Furthermore, the study 

was able to provide marginal value estimates and suggestions for buyers and sellers based 

on erosion potential reduction (Miranowski & Hammes, 1984). More recently, (Borchers 

et al., 2014) found that farmland prices were only partially explained by agricultural 

returns. The study determined that a portion of farmland values are determined by 

nonagricultural attributes, such as the development potential of the land (Borchers et al., 

2014).  

4.2.1 Farm Machinery  

Although the majority of the previous work on farm machinery values has focused 

on tractors over other farm machinery types, most have not used hedonic models. Previous 

combine and planter work has focused on evaluating machinery based on the cost of 

ownership, custom hire alternatives, risk analysis, and operation profitability (Edwards & 

Hanna, 2009; Ibendahl, 2015; Kavka et al., 2016; Lattz & Schnitkey, 2021; Mimra & 

Kavka, 2017; Swanson et al., 2020). Cost of ownership of a combine has been estimated 

utilizing the alternative option to owning a combine; custom hiring for harvest (Edwards 

& Hanna, 2009). In this work, the custom hiring rates were used to determine what level 

of use was needed to justify the cost of owning the combine. Using a different approach 

Lattz & Schnithey (2021), provided per-acre cost estimates for harvest cost based on the 

purchase price of the machine, overhead, fuel, and labor. Each study provides a valuable 

estimate for machinery costs; nevertheless, both studies fail to utilize the actual price of 

the combine and only use the purchase price of the machine. Additionally, the studies 
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assume consistent use of the machine over time and do not allow for the cost estimates to 

change in relation to operation size or efficiency.  

Mimra et al. (2017) preformed a risk analysis for business profitability of custom 

hire harvesting companies.  Given that a key variable in the analysis was the value of the 

combine, a combine’s value could be assessed by the profitability the machines output 

attributes to the company. Similarly, Mimra and Kavka (2017) further investigated the risk 

associated with a combine’s annual use. Although both studies focus on custom hiring 

operations, a combine’s value could be assessed based on a company’s profit from the 

machine or through the useful life of the machine. However, the two studies only compare 

a few new John Deere combine models. The lack of combine models, brands, and 

secondary market options leaves the study falling short on providing any evidence for the 

values of combines within the market. 

Similarly, a large portion of previous work related to tractor evaluation has not 

employed econometric models (Edwards, 2015; Fettig, 1963; Laughlin & Spurlock, n.d.; 

Leblanc & Hrubovcak, 1985). Price index and per-acre cost estimations are commonly 

used for evaluating operation machine cost (Edwards, 2015; Lattz & Schnitkey, 2021; 

Laughlin & Spurlock, n.d.). Although these estimates are useful when estimating an 

operation’s profitability, the use of new purchase prices for machinery and theoretical 

salvage value for these calculations does not provide adequate evaluations for machinery 

values. 

Hedonic models for pricing research have seen an uptick recently with machinery 

evaluations. Initially, in the planter market, a national auction dataset of secondary planter 

sales was used to evaluate the key factors impacting planter values (Allison et al., 2022). 
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The work found significance in machinery specifics such as manufacture, age, 

configuration, row number, and row spacing (Allison et al., 2022). Developed further from 

Allison et al. (2022), the combine market was evaluated by Ellis et al. (2022). Similar to 

the planter market findings, the study determined that key factors such as manufacturer, 

age, type of sale, and time of sale all impacted a machine’s value. Additionally, the study 

found factors such as separator hours, condition, and location of the sale to hold 

significance for a combine’s value (Ellis et al., 2022). Although both studies provided a 

further investigation of farm machinery markets, the largest market of tractors still lacks a 

comprehensive evaluation.  

Although both studies provided a much-needed explanation of values, some issues 

should be noted. Most notably, the datasets used for the planter and combine studies are 

limited with respect to the time frame of sales. The Allison et al. (2022) paper only includes 

sales between 2016 and 2018, while the Ellis et al. (2022) is limited to 2015 through 2018. 

Moreover, both studies lack a full evaluation of sale location by only evaluating the 

location of a sale as a region. To provide a full evaluation of the national market for used 

tractors, a larger dataset is needed, as well as a more specific evaluation of the location of 

a sale. 

Fettig (1963) was one of the first to employ an econometric model on tractor values. 

The study used a cross-sectional dataset to estimate the change in tactor prices from quality. 

Quality was found to be significant, leading to potential issues in the accuracy of the price 

indexes used at the time of the study. Limitations of the study included the lack of data 

available and changes in the tractor industry over time would result in the model failing to 

accurately estimate tractor values in the future. Additionally, the data used lacks 
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observations and details needed for estimating tractor values today. Other early studies 

viewed tractors as an investment and evaluated the effect of a changing interest rate on 

tractor prices (Leblanc & Hrubovcak, 1985). With the massive rise in interest rates during 

the 1980s, this study could not have been more time relevant. Expectations were that recent 

changes in interest rates would have influenced farm machinery by lowering the investment 

in machinery and ultimately resulting in shifts in optimal machinery levels. However, 

results indicated that interest rates had little effect on the optimal level of machinery. 

Adjustment rates have a higher sensitivity to input/output price ratio compared to interest 

rate ended up being the major finding of the study. Although the findings are insightful, 

the major limitation of the model is the limited number of manufacturers and models in the 

dataset. s in the dataset.  

Different depreciation values for different manufacturers were investigated by 

Cross and Perry (1995) on combines, tractors, and implements. On tractors specifically, 

the study breaks the data into categories based on horsepower group and performs 

individual analysis on each group separately. Variables for hours and age held different 

coefficients for all groups, illustrating that tractors depreciated at different rates given the 

size of the machine. John Deere was found to hold a price premium, and variables from 

condition and sale type were found to be significant. The sale location was not found to be 

significant. Overall, the study provides insights into the tractor market, given the findings 

for manufacture and model differences. On the other hand, the work lacks a full explanation 

of the manufacturing results and does not provide a full description of the data used.  

Diekman et al. (2008) used an auction dataset to compare willingness to pay for 

tractors to compare the difference between in-person and online auctions. The study found 
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that buyers would actually pay less for online tractor sales than in-person auctions and 

provided evidence that coefficients for horsepower and age would differ with sale type. 

With online sales increasing in use, the study was needed to understand the impact on 

tractor values. Although important, the study only provides insight into the impact of sale 

venue and lacks the needed evaluation of tractor mechanical variables and sale variables 

that have drastically changed in recent years.  

Tractor values have been on the rise in recent years (L. Anderson, 2022; Lattz & 

Schnitkey, 2021; Schmidt, 2022), with the exact impact still up for debate. Nevertheless, 

the cause of the increase has been determined as the effects of the recent COVID-19 

pandemic. There are numerous different reasons, such as supply chain issues, limited raw 

materials, and lack of an available workforce, to name a few (Miller, 2023). Tractor prices 

have increased between 7% and 27% between 2020 and 2021, followed by another increase 

for tractors in 2022 of 10% to 13% (Mowitz, 2021; Schmidt, 2022). Additionally, used 

equipment inventory has declined in recent years, which has furthered the issue of rising 

prices (Garvey, 2022). Although all farm machinery have experienced price increases, the 

tractor market could be the most impactful. Tractors are the most commonly used piece of 

farm equipment due to the number of different enterprises that rely on a tractor for 

operation. Given the recent price increases and inventory issues in the tractor market and 

interruptions from COVID-19, an evaluation of the market and the factors impacting tractor 

values in warranted.   
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4.3 Data  

Building upon the previous work, an auction dataset from one of North America’s 

largest online farm machinery auction companies, Machinery Pete, was used for this study 

(Used Farm Equipment for Sale, n.d.). The original dataset contained 40,579 secondary 

tractor sales occurring between 2000 and 2022, which included information on price, 

manufacturer, model, year, engine hours, sale date, sale type, sale location, and specs. To 

appropriately use the dataset, missing observations, sales prior to 2010, tractors built before 

2000, and tractors with less than 100 horsepower were removed, resulting in a final dataset 

consisting of 14,101 sale observations. 

Cleaning the dataset was a major undertaking to allow the model to estimate 

COVID-19 related impacts. A data tree illustrating the data-cleaning process is shown in 

Figure 4.1. The cleaning process started by removing any tractors manufactured before 

2000, to avoid escalated values from vintage or collectible models. Tractors sold prior to 

January 2010 were removed to focus on the period leading up to the pandemic and to avoid 

estimating impacts from previous market shifts. The remaining data was then processed to 

remove observations with missing values for price, sale data or location, and hours 

resulting in a final dataset that contained 14.101 tractor sales. 

4.3.1 Sale Variables 

Further development of the dataset was done by adding appropriate variables to 

analyze the three categories of variables: sale variables, standard variables, and COVID 

variables. Variable descriptions and summary statistics can be found in Tables 4.1 and 4.2. 

Sale variables included state of sale, type of sale, season of sale, and year of sale. The state 

of sale was addressed through adding the appropriate FIPS code for each state (“Appendix 
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D ‐ USPS State Abbreviations and FIPS Codes : U.S. Bureau of Labor Statistics,” 2005). 

Type of sale included variables for Consignment, Dealer, Farm, Online, and Other. The 

season of sale was broken down by calendar seasons for Spring (March 21st-June 20th), 

Summer (June 20th-September 20th), Fall (September 21st-December 20th), and Winter 

(December 21st-March 20th). Additionally, the year of sale was accounted for through 

variables for each year of sales in the dataset. However, during the reviewing process of 

the study, year of sale was removed from the model due to correlation with the COVID-19 

variables. Since the COVID- 19 variables by definition are derived from the time of sale 

this correlation is not surprising.  

4.3.2 Standard Variables  

The standard variables within the dataset included a continuous variable for engine 

hours and a discrete variable for the age of the tractor. Manufacturers of the tractors were 

consolidated to represent market consolidations seen over the period of the dataset resulting 

in the seven manufacturers of John Deere, Case IH, AGCO, Ford-New Holland, Kubota, 

Mahindra, and Other. Additionally, the condition of the tractor at the time of the sale was 

represented as Excellent, Good, Fair, and Poor condition. For the reason discussed below 

in Section 4.4.1 the final dataset combined the condition groups of Excellent and Good, as 

well as, Fair and Poor.  During the period of this dataset, the EPA required the use of tier-

4 engines in tractors (Nelson, 2018). Tier-4 motors allow for the use of ultra-low sulfur 

diesel fuel to be used and were an effort for the EPA to lower the environmental impact of 

diesel motors. Given that these tractors were resold in the dataset, a variable for tractors 

with tier-4 engines was added to the standard variable category.  
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4.3.3 Covid Section 

The COVID variable group uses each state’s declaration for state of emergency 

date to indicate when pandemic shutdowns occurred. For the first model, one variable was 

generated for tractor sales within a state occurring after that state's date for declaring a state 

of emergency. Additionally, ten lead and ten lag variables were generated for the second 

model. The lead and lag variables indicate one-month intervals before or after each state’s 

declaration for it’s state of emergency date, which allowed the model to estimate immediate 

changes for the months before and after the state of emergency occurred.  

4.3.4 Summary Statistics 

Summary statistics can be found in Table 4.1. Tractors sold in the dataset averaged 

a price of $97,154 with average engine hours of 3,327, and an average age of 8.5 years. 

Tractors with the “Good” condition score represented the majority of the sales. The 

manufacturer’s percentage of total sales is shown in Figure 4.2, as expected, John Deere 

(62.4%) held the largest percentage, followed by Case IH (21.7%), AGCO (7.5%), Ford-

New Holland (6.5%), Kubota (1.4%), Mahindra (0.2%), and Other (0.2%). As for tractor 

engines, most of the sales were with tractors over 175 horsepower, and most of the tractors 

did not have tier 4 engines. Winter sales presented the highest number of sales between the 

four seasons. Sale type saw Online and Consignment sales to have the most observations 

in the dataset. The location of sales was concentrated in the Upper Midwest, and Corn Belt 

areas starting up in North Dakota down to Kansas and Missouri, then ranging over to Ohio 

and back up to Wisconsin and Minnesota. The concentration is not surprising since this is 

the predominant area of crop production in the US and should represent higher returns per 

acre.  
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Although the year of sale was not included in the model, summary statistics were 

included to provide more insight on the dataset. The year of sale illustrated an increasing 

number of sales up until the COVID-19 state of emergency date and then a decreasing 

number of sales after the state of emergency. However, the average price for tractors was 

highest between 2012 and 2014, with a recent uptick in 2021 and 2022. 19% of the sales 

occurred after the COVID shutdown date, with average prices, hours, and age all increasing 

after the shutdown. Although average and maximum price, hours, and age are not 

surprising based on inflation and the year 2000 for manufacture cutoff of the date. Sales 

occurring after the shutdown date held a lower minimum for hours, while minimums for 

price and age did not change.  

4.4 Methods 

Utilizing the previously mentioned dataset, a hedonic model was used to evaluate 

the factors affecting used tractor sales and the impact of the COVID shutdown on the used 

tractor market. Two different models were employed on the dataset. The first model uses 

one variable to indicate if a sale occurred after a state’s COVID state of emergency date. 

Representing all sales after the date, allows the model to evaluate the total impact on the 

used tractor market, and provides insight as to whether or not the second model is needed. 

Model two separates sales into ten lead and ten lag variables based on the months before 

or after a state’s state of emergency date in which the sale occurred. Additionally, sales 

occurring more than ten months before or after a state’s shutdown date will not hold a value 

in any of the lead or lag variables. The second model investigates more precise changes in 
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the market related to the immediate aftermath of the shutdown and will provide insight as 

to if the market has corrected since the shutdown.  

4.4.1 Sale and Standard Variables  

Developed from Ellis et al. (2022) and Allision et al. (2022), the previous combine 

and planter works were used to structure the sale and standard variables for the two tractor 

models presented in this study. For the sale variables, Diekman (2008) found that the type 

of sale would impact the value of a tractor and concluded that in-person sales would hold 

higher values compared to online sales. To test the previous work, the two models include 

the type of sale and provide additional options from just in-person or online sales. 

Similarly, Allision et al. (2022) found significance in the timing of a sale both with the 

season when the sale occurred and the year in which the sale occurred. Although this 

dataset is much larger, the same principle applies, the model was able to estimate impact 

from the season of the sale and the year in which the sale to place. Ellis et al. (2022) 

estimated combine value impacts based on the region of sale since combines are directly 

related to only harvesting operation. As for tractors, both models estimate impacts based 

on the state of sale. Unlike combines, tractors are not tied to one specific farming operation. 

Standard variables included usage variables for engine hours and tractor age based 

on previous literature (Edwards, 2015; Ellis et al., 2022). Tractor manufacturers were 

investigated to compare to the previous findings of Daninger (2017) and based on the 

manufacturer’s impact of value in the combine (Ellis et al., 2022) and planter (Allison et 

al., 2022) markets. Additionally, manufacturers’ inclusion allowed the model to estimate 

potential value differences due to the size of market share. Quality of the tractor was 

included in the model based previous literature (Allison et al., 2022; Ellis et al., 2022). 
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Allison et al. (2022) and Ellis et al. (2022) both include condition variables as Excellent, 

Good, Fair, and Poor. Originally, models included all four condition variables, although 

multicollinearity was an issue. Further investigation, through a pairwise correlation test, 

showed that the Excellent and Good condition variables were highly correlated. It was 

determined that combining the two condition groups together would be a better solution 

than not including condition variables in the models.  

4.4.2 Covid Variables – Difference Between the Two Models  

The importance of this work lies in the estimation of COVID-related impacts. As 

previously mentioned, this study employed two models to evaluate the impact on the used 

tractor market from the COVID pandemic. Start dates for the pandemic were established 

by each date each state declared a state of emergency (Table 4.2) (2020-2021 State 

Executive Orders – COVID-19 Resources for State Leaders, n.d.). Model one used one 

variable to indicate if the sale occurred after the state of emergency was declared and 

estimated the pandemic’s overall impact. The significance of model one’s results illustrated 

the need for further investigation with model two. 

Model two included all the same variables as model one, with the exception of the 

COVID variable. For the second model, ten lag and ten lead variables were generated to 

correspond to tractors sold during a given month before or after a state of emergency was 

declared. Adding the lag and lead variables allowed the model to estimate specific monthly 

changes in the used tractor market and illustrated short-term changes from the pandemic. 

Additionally, model two provides in-depth analysis of the tractor market’s reaction, 

whereas model one illustrates the long-term overview of the pandemic’s effects. Due to the 

structure of the data and the reliance of the interest variables directly developed from the 
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sale dates, the year of sale variables were not used in this study. Although previous work 

(Allison et al., 2022; Ellis et al., 2022) includes the year of sale, preliminary work found 

the correlation to be too high to include these variables with the pandemic related variables. 

The structure of the dataset and multiple time-related variables included in the models led 

to expected multicollinearity which was addressed through a variance inflation factor test 

(VIF). As mentioned above, condition variables initially resulted in higher VIF scores 

which led to the consolidation of condition variables into Excellent or Good and Fair or 

Poor. With only the two condition variables, the mean VIF score in the first model was 

1.63, and 1.44 in the second model, with no scores over 10 (Tables 4.3 and 4.4).  

4.4.3 Equations 

Model one of this study is expressed as equation one: 

ln(Pit) = β0 + β1Hit + β2Ait + β3Mi + β4Ci + β5Si + β6Ti + β7COVIDsm + ρs + τt + εit 

where the dependent variable lnPi is the natural log of the price of tractor i. The 

independent variables represent the three categories mentioned previously in the data 

section. Where H is the number of engine hours used, A represents the age of the tractor, 

M is the manufacturer of the tractor, C is the condition of the machine, S is the season of 

sale, T is the type of sale, and COVID indicated if the sale occurred before or after the 

given state’s effective state of emergency date. As for the fixed effect portion of the 

equation, ρs illustrated the state fixed effects of state s, while τt is the fixed effects of sale 

year t. 

Equation two was modified from equation one by including lead and lag COVID 

variables and is represented as: 
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ln(Pit) = β0 + β1Hit + β2Ait + β3Mi + β4Ci + β5Si + β6Ti + β7LeadLag10COVIDsm+ ρs+ τt + 

εit 

where the change can be seen by the COVID variable from equation one, now illustrated 

as LeadLag10Covid. Equation two expanded the one COVID variable to represent the time 

a sale occurred before or after the given state’s effective state of emergency date. For this 

model, variables representing up to ten months before or after the state’s date were used. 

An example for the state of Alabama, which had an effective state of emergency date of 

March 13, 2020. Sales in Alabama occurring between February 13th, 2020, and March 13th, 

2020, would hold a 1 for the LagCovid1 variable and a 0 in all other lead and lag variables.  

4.4.4 Expectations 

Based on the previous work of Diekmann et al. (2008), sale type was expected to 

illustrate higher values for in-person auction compared to online auction. Allison et al. 

(2022) and Ellis et al. (2022) work further illustrated that “farm” sales are expected to hold 

the highest tractor values, while “online” sales would hold the lowest value among the 

types of sale variables. Season of sale expectations were tractors sold in the Winter season 

would have the highest value, followed by the Spring, Summer, and then Fall seasons based 

on the findings in the planter and combine markets (Allison et al., 2022; Ellis et al., 2022). 

The location of the sale was more complicated for tractors due to their use across more 

agriculture production types. Ellis et al. (2022) divided combine data into production 

regions and estimated values based on the whole region which could lead to misestimating 

for this study given the different COVID dates represented within a region. Therefore, this 

study used FIPS codes to represent each state individually for COVID dates, and to 

estimate impacts for each state. Although states are represented individually, it was still 
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expected that states with higher crop production would hold higher tractor values. This 

expectation was due to the higher revenue per acre present in major grain crop states 

compared to other agricultural enterprises present in non-row crop areas The lowest values 

were expected in the West Coast and Northeast states since tractor usage for crop 

production isn’t as widespread.  

Allison et al. (2022) and Ellis et al. (2022) both suggested the impact of 

manufacture market share on farm machinery values. Therefore, it was expected that John 

Deere would hold the highest values, followed by Case IH, AGCO, Ford-New Holland, 

Kubota, Mahindra, then Other. Use variables for engine hours and tractor’s age should hold 

negative coefficients to reflect the Likewise, the condition variables are expected to have 

the highest value with the Excellent or Good condition group, then decrease for the Fair or 

Poor condition group. 

The singular COVID variable for sales occurring after the effective state of 

emergency date used in the first model was expected to be positive based on the market 

shocks that limited tractor supply, such as factory shutdowns and limitations in acquiring 

raw materials (Mowitz, 2021). Additionally, popular press articles from Garvey and 

Anderson, illustrated rising prices due to limited supply and increases in sales projections 

due to unfilled orders (Anderson, 2022; Garvey, 2022). When the singular COVID variable 

was expanded into the Lead and Lag COVID variables, it was expected that an initial 

decrease would be seen, followed by an increase in tractor values. The initial decrease was 

expected due to the implementation of the COVID-related shutdowns limiting buying and 

selling opportunities, and an immediate market shock would limit buyers' willingness to 

buy machinery due to the uncertainty of the market. Given time, it was expected the market 
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would readjust to open more sales avenues and adapt to COVID restrictions, which would 

lead to a market correction for the previous limit of supply, causing increases in tractor 

values.  

4.5 Results 

The hedonic model and dataset laid out in the previous sections were combined 

using STATA software (StataCorp LLC, 2015) to evaluate tractor values and estimate the 

impact of various factors on auction prices. Two models were used in this study, the first 

model analyzed the tractor market with one variable for the COVID-19 pandemic 

occurring. This first model was shown previously in Equation 1 and is referred to as the 

COVID model, with full results found in Table 4.5. The COVID model held an R-squared 

value of 0.75, which indicated 75% of the variance within the data is accounted for by the 

model. Estimated coefficients are shown as the percent change in tractor value for that 

coefficient; for the results section, all impacts are discussed as the percent impact on a 

tractor's value.  

4.5.1 COVID Model Results 

The standard variables for use of the tractor illustrated a negative relationship with 

tractor values for both engine hours and age as expected. Each additional year in age 

resulted in a decrease of 4.4% in value while every hour in use suggested a decrease of 

0.08% in the tractor’s value, both significant at the 1% level. When hours were scaled to 

represent the average number of hours per year of 358, an estimated impact of -3% was 

found, suggesting that buyers' willingness to pay is impacted more by age than by the 

number of engine hours. Tractor manufacturers followed expectations with John Deere 
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holding the highest value at 32% higher that the reference manufacture of AGCO at the 

1% significance level. Case IH followed as the second highest impact with an increase of 

12.5% at the 1% level. Ford New Holland was not found to be statistically significant when 

compared to AGCO. Kubota, Mahindra, and Other were all estimated to have a negative 

impact on value with Kubota and Mahindra significant at the 1% level and Other significant 

at the 5% level. Kubota was the closest value to AGCO at -13.7%, followed by Other at -

17.9%, then Mahindra at –63.6%. Condition of the tractor variables were consolidated due 

to the large VIF factor discussed in Section 4.4.2. Tractors in Excellent or Good condition 

were estimated to hold an increase of 28.6% in value compared to a Poor or Fair condition. 

To sum up the standard variable category, the lack of a tier four engine was not statistically 

significant in the COVID model. 

Although variables within the sale variables category followed expectations, the 

results provide an updated estimate and further elaborate on the work from Diekmann et 

al. (2008), Allison et al. (2022), and Ellis et al. (2022). Tractors sold at a Farm sale type 

held the highest values of any sale type with an increase of 3.4% at the 1% level compared 

to Online sales. Tractors sold under the Other sale type were not significant, and all other 

sale types were found to have a negative estimate at the 1% level. Dealer sales were the 

closest estimated coefficient to Online sales at -5.3%, followed by Consignment sales at -

9%. Tractors sold during the Winter season held the highest estimated value when 

compared to the Fall season with an impact of 4.5% at the 1% level. Sales occurring in the 

Spring season were found to hold a negative impact of -2.1% at the 5% level compared to 

the Fall season, while summer season sales were not found to be significant.  
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The State of Emergency going into effect represented by the COVID-19 variable 

was estimated to increase tractor sales by 16.3% at the 1% level, for all tractors sold after 

a states given effective date (Table 4.2). Since the variable indicates a sale occurred after 

the effective date, the estimate would apply for all sales between the effective date and the 

end of the 2022 year. Therefore, the increase includes the entire time after the pandemic 

and does not break estimates into groups based on the time after the effective date. Since 

the variable was positive and significantly different from zero, it provides a baseline for 

the second model and suggested further investigation is needed.  

4.5.2 Lead-Lag Model Results 

Model one was further developed as discussed in Section 4.4, to create the second 

model referred to as the Lead-Lag Model. The Lead-Lag Model aimed to further 

investigate the impact from the pandemic and provide results for sales occurring ten months 

before or after a given state’s effective state of emergency date. The full results for the 

Lead-Lag Model can be found in Table 4.6. An R-squared of 0.75 was calculated for the 

Lead-Lag Model, which illustrated that 75% of the total variance in the data is accounted 

for by the model. For the results section, all impacts are discussed as the percent impact on 

a tractor's value.  

When the standard variables from the Lead-Lag model were compared to the 

COVID model, no changes in estimated coefficients outside of the 95% confidence interval 

were found. The sale variables illustrated small changes in estimation, with Spring sales 

no longer holding significance. Additionally, sales occurring during the Winter season 

dropped significance levels to the 5% instead of the 1% level. Sale type estimates remained 

at the same significance level and within the confidence intervals with only slight changes 
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to the estimate with the addition of the Lead and Lag variables. All state estimates 

maintained the same significance level in both models, with only a few estimate changes 

outside of the COVID model confidence interval. California, Colorado, Iowa, Nevada, 

New York, Tennessee and Wyoming all estimated lower negative coefficients in the Lead-

Lag model that were just outside of the 95% confidence intervals from the COVID model. 

Additionally, Montana was estimated to have a higher positive value in the Lead and Lag 

model. The states of Louisiana and Nebraska were estimated to have larger negative values, 

while New Mexico resulted in a lower positive coefficient. The control variable for diesel 

price was significant in the Lead-Lag model at the 1% level. Since the only change between 

the COVID and Lead-Lag models was related to the pandemic variables, the lack of change 

in estimates was expected and was a robustness check for the Lead-Lag model. Although 

a few changes in estimated coefficients were noted, all were minor changes and did not 

raise any concern around the interpretation of the Lead-Lag results.  

The importance of the Lead-Lag model centers around the monthly variables for 

tractors sold ten months before or after a state’s effective state of emergency date that 

estimate the short-term impacts from the pandemic. The lag variables indicating tractors 

sold before the state of emergency effective date estimated a price increase in months seven 

and six (Variables: Covid Lag 7 and Covid Lag 6) of 9.1% and 7.9% at the 5% and 1% 

levels, respectively. Additionally, three and two months prior to the effective date 

estimated tractor value increase at the 5% significance level for month three (Covid Lag 3) 

and 1% significance level for month two (Covid Lag 2) with results illustrating an increase 

of 7.2% and 11%. The month prior to the effective date (Covid Lag 1) estimated an increase 

of 6.7% at the 10% significance level.  
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Tractors sold within the ten months after the effective date denoted through the 

Lead variables. Similar to the Lag variables, not all Lead variables were significant, seven 

of the ten variables held significance at the 1%, 5%, or 10% levels. In chronological order, 

Lead 1 was significant at the 5% level and estimated that tractor values increased by 6.9% 

holding all other variables constant. Tractors sold within one month of the effective dates 

held similar values to tractors sold in the month prior. However, the model did not find a 

statistical difference from zero for Lead variables 2 and 3, with both variables having 

confidence intervals reaching as low as negative 5%. Lead variables 4 and 5 moved 

confidence intervals back above zero and held statistical significance at the 5% and 10% 

levels with both variables estimating an increase of over 6%. Six months after the state of 

emergency dates saw a larger increase in tractor values, thus far, with an estimate of 11.1% 

at the 1% significance level. However, the following month indicated as Lead 7 was not 

significant and estimated a confidence interval below zero similar to months two and three. 

Months eight, nine, and ten after the state of emergency date all held an estimated increase 

of over 10%. Tractors sold eight months after the pandemic dates were estimated to have 

a value increase of 16.2% at the 5% level, followed by an increase of 11.5% at the 1% level 

for tractors sold in the ninth month after the effective date. Finally, month ten estimated an 

increase of 16.8% in tractor values at the 1% significance level.  

4.6 Discussion  

The results for the COVID and Lead-Lag models illustrated similarities with 

variance accounted for and the majority of the standard and sale variables estimated.  For 

the standard variables in both models, hours and age held a notable difference in estimated 
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value decrease. The estimated impact for hours was multiplied by the average hours per 

year for dataset of 358 hours per year, resulting in a decrease of 2.9% in a tractor’s value.  

Additionally, the model estimated that the increase of one year in age would decrease the 

tractor’s value by just over 4%, which suggests that buyer’s willingness to pay is impacted 

more by the tractor’s age than the tractor’s hours. Compared to a similar study on combine 

harvesters, the relationship between age and hours impact of tractor values seems closer 

than that relationship with combine values (Ellis et al., 2022), but further investigation 

shows the magnitude of the decrease in age is around 33% higher than a year‘s worth of 

hours. Tractor depreciation has traditionally been calculated on index tables and used the 

tractor’s purchase price, age, annual hours, and useful life (Edwards, 2015). Although a 

widely used method, all variables are projections and only consider new tractor purchase 

prices. The finding of this work allows for a more accurate estimate of a tractor’s 

depreciation value and can be used for future work on evaluating tractor machinery cost.  

For producers that are selling or buying tractors, the change in the relationship between 

hours and age could serve as an important variable in determining the price of a used 

tractor. When selling a tractor, it is suggested that a machine with higher hours and lower 

age would be expected to hold a higher value compared to a machine with higher age and 

lower hours. With this in mind, sellers can better plan when to sell tractors and how 

additional use would impact the machine’s value. Buyers on the other hand, would have 

the opposite reaction when looking to buy a tractor. Based on the results provided, buyers 

would look to buy machines with higher age and lower hours to pay a lower price. Although 

a buyer will not have control over either variable, the relationship should allow buyers to 

compare tractors and buying options between machines.  
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Tractors listed with the condition of Excellent or Good held higher values as 

expected. Due to the consolidation of the condition types outlined in Section 4.4, further 

in-depth explanation is not realistic. Tractor manufacturer order followed expectations with 

John Deere holding the highest value, followed by Case IH, Ford New Holland, and 

AGCO. Although manufacturers groups of Kubota, Mahindra, and Other did not follow 

the expected in terms of the order of value. Compared to previous studies by Allison et al. 

(2022) and Ellis et al. (2022), the order for John Deere and Case IH were in line with results 

for other machinery types (Allison et al., 2022; Ellis et al., 2022). Although this study found 

a switch in the order between AGCO and Ford New Holland in the tractor market compared 

to combines (Chapter 3), both markets suggest no significant difference between the two 

manufacturers. Although the estimated coefficients cannot be directly compared between 

combines and tractors, the magnitude within each model can provide a better understanding 

of willingness to pay changes among the manufacturers. The magnitude of the increase for 

John Deere tractors suggests that buyers are willing to pay a lot more for a John Deere than 

the others and are estimated to pay a higher percentage compared to Case IH in the tractor 

market than in the combine market (Chapter 3) (Ellis et al., 2022).   Additionally, if the 

magnitude differences were compared for between Case IH in the tractor and combine 

market, the largest difference would be seen with Ford New Holland. Case IH tractors 

would hold an 11% increase in value over Ford New Holland, while combines suggested a 

16.8% difference. The remaining manufacturers all held smaller shares of the tractor 

market and were estimated to hold lower values than those with larger market shares. 

Additionally, the smaller groups of Kubota, Mahindra, and Other all accounted for less 

than 1.5% of the total observations within the dataset, and therefore, more observations are 
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needed to increase the accuracy of the results. Although it was expected that the other 

manufacturers would have lower values, the results could be explained by either industry 

and producer perceptions of better technology, nevertheless these estimated values and 

manufacturers relationships should serve as a foundation for future research examining 

farm machinery resale values.  

Variables within the Sale variable category assist in understanding how, when, and 

where to sell or buy a tractor to obtain a better evaluation for a given producer’s situation. 

The presence of a larger buyer pool presented with Online sales in theory should result in 

higher sale values. Diekmann et al. (2008) found this theory to not be true for online tractors 

sales and estimated that buyers were willing to pay more for tractors sold as in-person sales. 

Further exploration of the study’s results suggest online sales also introduce issues of 

asymmetric information which could be the reason for the decrease in value compared to 

in-person sale types. For this study, more sale type options were included than just in-

person or online. Sale type of Farm sales, which would be considered an in-person sale, 

were found to hold the highest value among the sale types which aliens with the findings 

in the planter and combine markets (Allison et al., 2022; Ellis et al., 2022). The higher 

values are likely due to buyer’s ability to physically inspect a tractor in person rather than 

relying on the provided online information. Although the sale type does not provide 

complete perfect information, it is likely that buyers trust their own inspection rather than 

a third party’s which would result in the transaction falling closer to perfect information 

rather than asymmetric.  

Previous work estimated that machinery sold during the season when the major 

operation occurs would hold the lowest value (Allison et al., 2022; Ellis et al., 2022). 
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Contrary to planters and combines, the versatility and variety of operations that use tractors, 

no one season can truly be singled out as having the majority of operations occurring. 

Results indicated that sales occurring during the Winter season held the highest value in 

both the COVID and Lead-Lag models. While no other season was found to be significant 

with the Lead-Lag model, the COVID model found that sales occurring during the Spring 

season held lower values compared to the Fall. Ellis et al. (2022) suggested that the value 

order for sales was related to the number of sales and the availability of machinery for the 

combine market, which would result in the difference in values being explained by the 

changes in supply (Ellis et al., 2022). Although further investigation showed that the 

Winter season held the most sales for tractors, followed by Fall, Summer, than Spring, 

which contradicts the combine market findings. Since no season is considered to hold the 

major operation for tractors, and the supply of tractors does not explain the results 

presented in the model, further work is needed to understand how season of sale impacts 

the value of a tractor.  

4.6.1 Covid Discussion 

The pandemic having a positive impact on tractor values was expected, given recent 

press articles (Anderson, 2022; Garvey, 2022). Nevertheless, this is the first study aimed 

at estimating the magnitude of those increases. Since the state of emergency order went 

into effect, the tractor market has experienced an increase of 16.3% in secondary tractor 

values. The estimated increase covers tractor values over multiple years, which is not seen 

in other studies (Schmidt, 2022). Therefore, results are compared to similar articles, a 

similar market in Canada estimated farm implement sales increased by 10% in 2021, and 

22.3% in 2022 for manufacturer sales (Anderson, 2022). For tractors specifically, Schmidt 
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found that the average used tractor prices increase by around 12.5% between 2021 and 

2022 (Schmidt, 2022). These studies cannot be directly compared with this study due to 

data timelines and machinery type differences, rather serve as a guideline of magnitude 

seen within the market. The estimated increase found in the COVID model allows 

producers to better estimate tractor values and compare pre-pandemic values with the 

current market. In order to better estimate the impact from the pandemic and fill the time 

gaps between the start of the pandemic and previous work (Schmidt, 2022), the Lead-Lag 

model calculated monthly impacts from the pandemic.  

Prior to the state of emergency effective dates, increases in tractor values were 

estimated for Lag variables sever, six, three, two, and one which correspond with sales 

occurring seven, six, three, two, and one month before the effective date. Of the five 

months, only months seven and two held a statistical significance level of 1%. The increase 

estimated in month seven was not expected and does not correspond to a critical pandemic 

related date. On the other hand, Lag variable two contains sales in January and February 

with the exact date depending on the state in which the sale occurred. This variable includes 

the date in which the first COVID-19 case was reported in the United States on January 

20th (Sencer, 2023). Since the variable includes this date and observes sales occurring after 

this report, it is likely that the increase is the reaction of the market from the report of 

COVID-19 in the US. Although values did not show similar estimated with the Lag one 

variable. Following the first US reported case, sales occurring in Lag One were estimated 

to have lower value than Lag Two and were only significant at the 10% level. The model 

estimated similar results for sales occurring in the month after the effective date at the 5% 

level but did not find significant results for months two or three after the effective date. 
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Joining the three months before and after the pandemic dates better illustrates the rise in 

values seen around the first reported US case, and further suggests that impacts returned to 

zero within the following few months.  

For the remaining Lead variables two separate changes in tractor values were 

illustrated. The first increase was estimated with Lead variables four, five, and six with 

increases of 6%, 6.9%, and 11% respectfully. Lead four and five held statistical 

significance at the 10% and 5% levels, while Lead variable six was significant at the 1% 

level. The variables correspond to June, July, and August tractor sales. During this time 

period, the United States Department of Agriculture (USDA) issued payments for the 

Coronavirus Food Assistance Program (CFAP) (USDA Issues First Coronavirus Food 

Assistance Program Payments, 2020).  The program aimed to provide financial assistance 

for agriculture commodity producers who experienced a price decrease of 5% or more due 

to the pandemic (USDA Issues First Coronavirus Food Assistance Program Payments, 

2020). Although the tractor value increases estimated are likely due to a complex 

combination of issues, part of the increase is likely attributed to the inflow of financial 

assistance from this program. Since newer machinery would provide lower per unit cost 

and better efficiency, producers facing lower prices would likely find an investment in 

machinery could lead to lower production costs therefore resulting better positioning if 

prices remained lower after the pandemic. For this reason, producers could have seen the 

CFAP payment as the opportunity to update machinery and forecast operations profitability 

for the near future. 

The last increase seen in the estimated results was with Lead variables eight, nine, 

and ten, which correspond to sales occurring in October, November, and December. Lead 
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variable eight was estimated to have an increase of 16.2% at the 5% significance level, 

followed by Lead variable nine having an increase of 11.5% and the 1% level, and Lead 

variable ten estimating an increase of 16.8% also at the 1% level. Although the exact reason 

for the increase is not certain, this period followed the application date for the first CFAP 

of September 11th (Coronavirus Food Assistance Program 1, n.d.), with some states having 

an extended deadline into October (Coronavirus Food Assistance Program 1, n.d.). Similar 

to the estimated value increase for Lead variables four, five, and six, the increase is likely 

a response to producer payments from CFAP.  

Secondary tractor values estimated increase of 16.3% in value since the COVID 

state of emergency went into effect and the monthly estimates around that date need further 

research to provide a better understanding of exactly why the increase happened. Although 

the exact reason is not certain, the results presented in this study provide evidence that the 

increases are related to the occurrence of the state of emergency for the pandemic and 

provides evidence that CFAP had an impact on the increases in tractor values. Additionally, 

future work is needed to understand the market landscape and should investigate the role 

of auction availability and supply chain issues in the tractor market on the increase in 

tractor values.  

4.7 Conclusion   

For farming operations, increases in tractor prices are leading to tighter margins 

and an increase in the efforts of machinery expense management. The recent changes 

mentioned in chapter one, with lower net farm income and government payments, have 

even furthered the issue. Unfortunately, farmers must combat these issues to survive a 
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changing agricultural industry, and one of the first steps to doing so is by evaluating the 

second largest operational asset. This chapter provides two models to evaluate the factors 

that impact the used tractor market, estimate the changes in values due to the pandemic, 

and further assess the cause. These results suggest a 16.3% increase in tractor values due 

to the COVID-19 effects, with a range of -5.5% to 16.8% for the ten months before and 

after state shutdowns started. Overall, the results provide a starting point for stakeholders 

to evaluate their current machinery as well as estimate potential buying opportunities.  

Auction data for used tractors sold between 2010 and 2022 from Machinery Pete 

was used to estimate the differences in used tractor sales prices and the impact of COVID-

19. Although full results from this study can be used to aid buyers and sellers in valuing 

used tractors, some specific results were found to be critical in estimating tractor values. 

Estimates for the differences among manufacturers were found, along with suggestions on 

the loss in value from use hours, age, and condition group. Additionally, the impacts of 

location, time, and type on tractor values were explored. The changes related to COVID-

19 were likely due to the supply of tractors at auction. This study addresses a research gap 

in the used tractor market and the magnitude of the market shifts from the pandemic. 
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4.8 Chapter 4 Tables and Figures 

Table 4-1 – Tractor Data Description and Summary Statistics 

Variable Definition 

Number 

of 

Observati

ons Mean   

Std. 

Dev  Range 

Independent  

 Price Final Sale Price ($)  

14,1

01  

$97,154.

35   

57513.8

4  

14,750-

470,100 

Dependent  

Usage Factors  

 Hours 

Total separator hours 

of use on the machine   

14,1

01  3327.22  

2590.00

4  

2-

22,605 

 Age 

Total years since 

manufacturing   

14,1

01  

8.53932

3  

4.95680

2  0-22 

 

Excellent

_Good 

= 1 if condition score 

is either Excellent or 

Good  

13,9

68  

0.99056

8  

0.09666

3  0 - 1 

 Fair_Poor 

= 1 if condition score 

is either Fair or Poor  133  

0.00943

2  

0.09666

3  0 - 1 

Make  

 

John 

Deere 

= 1 if John Deere was 

the make  

8,79

8  

0.62392

7  

0.48441

6  0 - 1 

 Case IH 

= 1 if Case IH was the 

make  

3,06

6  

0.21743

1  

0.41251

3  0 - 1 

 AGCO 

= 1 if AGCO was the 

make  

1,06

3  

0.07538

5  

0.26402

1  0 - 1 

 

Ford New 

Holland 

= 1 if Ford-

NewHolland was the 

make  918  

0.06510

2  

0.24671

4  0 - 1 

 Kubota 

= 1 if Kubota was the 

make  200  

0.01418

3  

0.11825

1  0 - 1 

 Mahindra 

= 1 if Mahindra was 

the make  33  0.00234  

0.04832

1  0 - 1 

 

Make_Ot

her 

= 1 if make was not in 

other groups 23  

0.00163

1  

0.04035

5  0 - 1 

Sale Variables  

 

Spring 

Sale 

= 1 if sale occurred in 

the Spring season  

2,79

2  0.198  

0.39850

6  0 - 1 

 

Summer 

Sale 

= 1 if sale occurred in 

the Summer season  

3,22

5  

0.22870

7  

0.42001

5  0 - 1 

 Fall Sale 

= 1 if sale occurred in 

the Fall season  

3,84

4  

0.27260

5  

0.44531

5  0 - 1 
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Winter 

Sale 

= 1 if sale occurred in 

the Winter season  

4,24

0  

0.30068

8  

0.45857

3  0 - 1 

 Dealer 

= 1 if sale occurred at 

a dealership  943  

0.06687

5  

0.24981

4  0 - 1 

 

Consign

ment 

= 1 if sale was for 

consignment  

4,50

8  

0.31969

4  

0.46637

4  0 - 1 

 Farm 

= 1 if sale occurred 

on farm  

3,81

1  

0.27026

5  

0.44411

2  0 - 1 

 Online 

= 1 if sale occurred 

online  

4,76

9  

0.33820

3  

0.47311

5  0 - 1 

 Other 

= 1 if sale was not 

through other type 70  

0.00496

4  

0.07028

4  0 – 1 

Controls         

 

US Cash 

Receipts 

US Cash Receipts at time 

of Sale 

14,1

01  

210,000,

000  

28,600,

000  

180,000

,000-

286,000

,000 

 PPI 

Producer Price index at 

time of sale 

14,1

01  

177.473

2  

53.7839

4  

119.9-

322.7 

 

Diesel 

Price 

Region Diesel price at 

time of sale  

14,1

01  

3.10951

3  

0.77830

5  

1.873-

6.489 

 

HP 175 

and up 

= 1 if the tractor has 

175 horsepower or 

higher  

10,6

44  0.75484  

0.43019

7  0 - 1 

 Pre-2014 

= 1 if the tractor was 

manufactured prior to 

2014  

11,4

62  0.81285  

0.39004

6  0 - 1 
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Table 4.1 Continued – Tractor Data Description and Summary Statistics 

 

Covid 

Gov 

S.E. 

= 1 if the sale occurred after the 

state in which it was sold 

issued a state of emergency for 

COVID-19 4,258  0.301964  0.459126  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 10 

= 1 if the sale occurred between 

9 and 10 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 138  0.009503  0.097022  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 9 

= 1 if the sale occurred between 

8 and 9 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 119  0.008439  0.09148  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 8 

= 1 if the sale occurred between 

7 and 8 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 107  0.007588  0.086782  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 7 

= 1 if the sale occurred between 

6 and 7 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 111  0.007872  0.088376  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 6 

= 1 if the sale occurred between 

5 and 6 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 168  0.011914  0.108503  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 5 

= 1 if the sale occurred between 

4 and 5 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 62  0.004397  0.066165  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 4 

= 1 if the sale occurred between 

3 and 4 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 140  0.009928  0.099149  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 3 

= 1 if the sale occurred between 

2 and 3 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 314  0.022268  0.147559  0 - 1 
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Covid 

Gov 

S.E. 

Lag 2 

= 1 if the sale occurred between 

1 and 2 months prior to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 162  0.011489  0.106571  0 - 1 

 

Covid 

Gov 

S.E. 

Lag 1 

= 1 if the sale occurred within 

1 month prior to the state in 

which it was sold issued a state 

of emergency for COVID-19 201  0.014254  0.118542  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 1 

= 1 if the sale occurred within 

1 month after to the state in 

which it was sold issued a state 

of emergency for COVID-19 205  0.014538  0.119698  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 2 

= 1 if the sale occurred between 

1 and 2 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 88  0.006241  0.078754  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 3 

= 1 if the sale occurred between 

2 and 3 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 79  0.005602  0.074642  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 4 

= 1 if the sale occurred between 

3 and 4 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 107  0.007588  0.086782  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 5 

= 1 if the sale occurred between 

4 and 5 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 153  0.01085  0.103602  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 6 

= 1 if the sale occurred between 

5 and 6 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 216  0.015318  0.122819  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 7 

= 1 if the sale occurred between 

6 and 7 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 38  0.002695  0.051844  0 - 1 

 

Covid 

Gov 

= 1 if the sale occurred between 

7 and 8 months after to the state 48  0.003404  0.058247  0 - 1 
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S.E. 

Lead 8 

in which it was sold issued a 

state of emergency for 

COVID-19 

 

Covid 

Gov 

S.E. 

Lead 9 

= 1 if the sale occurred between 

8 and 9 months after to the state 

in which it was sold issued a 

state of emergency for 

COVID-19 188  0.013332  0.114698  0 - 1 

 

Covid 

Gov 

S.E. 

Lead 

10 

= 1 if the sale occurred between 

9 and 10 months after to the 

state in which it was sold 

issued a state of emergency for 

COVID-19 218  0.01546  0.123377  0 - 1 
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Table 4.1 Continued – Tractor Data Description and Summary Statistics  

State 

Fips 

Cod

e      

Alabama 1 

= 1 if the sale 

occurred in 

Alabama  115  

0.00815

5  

0.08994

2  0 - 1 

Arizona 4 

= 1 if the sale 

occurred in 

Arizona  22  0.00156  0.03947  0 - 1 

Arkansas 5 

= 1 if the sale 

occurred in 

Arkansas  191  

0.01354

5  

0.11559

7  0 - 1 

California 6 

= 1 if the sale 

occurred in 

California  191  

0.01354

5  

0.11559

7  0 - 1 

Colorado 8 

= 1 if the sale 

occurred in 

Colorado  139  

0.00985

8  

0.09879

8  0 - 1 

Connecticut 9 

= 1 if the sale 

occurred in 

Connecticut  0    0 - 1 

Delaware 10 

= 1 if the sale 

occurred in 

Delaware  3  

0.00021

3  

0.01458

5  0 - 1 

Florida 12 

= 1 if the sale 

occurred in Florida  147  

0.01042

5  

0.10157

2  0 - 1 

Georgia 13 

= 1 if the sale 

occurred in 

Georgia  228  

0.01616

9  0.12613  0 - 1 

Idaho 16 

= 1 if the sale 

occurred in Idaho  79  

0.00560

2  

0.07464

2  0 - 1 

Illinois 17 

= 1 if the sale 

occurred in Illinois  

153

7  

0.10899

9  0.31165  0 - 1 

Indiana 18 

= 1 if the sale 

occurred in Indiana  631  

0.04474

9  

0.20675

9  0 - 1 

Iowa 19 

= 1 if the sale 

occurred in Iowa  

159

5  

0.11311

3  

0.31674

2  0 - 1 

Kansas 20 

= 1 if the sale 

occurred in Kansas  531  

0.03765

7  

0.19037

2  0 - 1 

Kentucky 21 

= 1 if the sale 

occurred in 

Kentucky  95  

0.00673

7  

0.08180

6  0 - 1 
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Louisiana 22 

= 1 if the sale 

occurred in 

Louisiana  85  

0.00602

8  

0.07740

8  0 - 1 

Maryland 24 

= 1 if the sale 

occurred in 

Maryland  23  

0.00163

1  

0.04035

5  0 - 1 

Michigan 26 

= 1 if the sale 

occurred in 

Michigan  281  

0.01992

8  

0.13975

7  0 - 1 

Minnesota 27 

= 1 if the sale 

occurred in 

Minnesota  

160

8  

0.11403

5  

0.31786

4  0 - 1 

Mississippi 28 

= 1 if the sale 

occurred in 

Mississippi  270  

0.01914

8  

0.13704

9  0 - 1 

Missouri 29 

= 1 if the sale 

occurred in 

Missouri  

100

4  

0.07120

1  

0.25716

9  0 - 1 

Montana 30 

= 1 if the sale 

occurred in 

Montana  56  

0.00397

1  

0.06289

6  0 - 1 

Nebraska  31 

= 1 if the sale 

occurred in 

Nebraska   

136

0  

0.09644

7  

0.29521

4  0 - 1 

Nevada 32 

= 1 if the sale 

occurred in Nevada  1  

7.09E-

05  

0.00842

1  0 - 1 

New Jersey 34 

= 1 if the sale 

occurred in New 

Jersey  8  

0.00056

7  

0.02381

3  0 - 1 

New 

Mexico 35 

= 1 if the sale 

occurred in New 

Mexico  7  

0.00049

6  

0.02227

6  0 - 1 

New York 36 

= 1 if the sale 

occurred in New 

York  64  

0.00453

9  

0.06721

9  0 - 1 

North 

Carolina 37 

= 1 if the sale 

occurred in North 

Carolina  41  

0.00290

8  

0.05384

6  0 - 1 

North 

Dakota 38 

= 1 if the sale 

occurred in North 

Dakota  

117

5  

0.08332

7  

0.27638

6  0 - 1 

Ohio 39 

= 1 if the sale 

occurred in Ohio  481  

0.03411

1  

0.18152

1  0 - 1 
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Oklahoma 40 

= 1 if the sale 

occurred in 

Oklahoma  201  

0.01425

4  

0.11854

2  0 - 1 

Oregon 41 

= 1 if the sale 

occurred in Oregon  19  

0.00134

7  

0.03668

4  0 - 1 

Pennsylvani

a 42 

= 1 if the sale 

occurred in 

Pennsylvania  215  

0.01524

7  

0.12253

9  0 - 1 

South 

Carolina 45 

= 1 if the sale 

occurred in South 

Carolina  34  

0.00241

1  

0.04904

6  0 - 1 

South 

Dakota 46 

= 1 if the sale 

occurred in South 

Dakota  532  

0.03772

8  

0.19054

4  0 - 1 

Tennessee 47 

= 1 if the sale 

occurred in 

Tennessee  167  

0.01184

3  

0.10818

4  0 - 1 

Texas 48 

= 1 if the sale 

occurred in Texas  572  

0.04056

5  

0.19728

6  0 - 1 

Utah 49 

= 1 if the sale 

occurred in Utah  15  

0.00106

4  

0.03259

9  0 - 1 

Vermont 50 

= 1 if the sale 

occurred in 

Vermont  6  

0.00042

6  

0.02062

4  0 - 1 

Virginia 51 

= 1 if the sale 

occurred in 

Virginia  10  

0.00070

9  

0.02662

2  0 - 1 

Washington 53 

= 1 if the sale 

occurred in 

Washington  63  

0.00446

8  

0.06669

4  0 - 1 

Wisconsin 55 

= 1 if the sale 

occurred in 

Wisconsin  255  

0.01808

4  

0.13325

9  0 - 1 

Wyoming 56 

= 1 if the sale 

occurred in 

Wyoming  44  0.00312  

0.05577

5  0 - 1 
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Table 4-2– Tractor Data State of Emergency Date by State  

State 

Date 

Declared  

Alabama 3/13/2020 

Arizona 3/11/2020 

Arkansas 3/11/2020 

California 3/4/2020 

Colorado 3/10/2020 

Connecticut 3/10/2020 

Delaware 3/12/2020 

Florida 3/1/2020 

Georgia 3/14/2020 

Idaho 3/13/2020 

Illinois 3/9/2020 

Indiana 3/6/2020 

Iowa 3/9/2020 

Kansas 3/9/2020 

Kentucky 3/6/2020 

Louisiana 3/11/2020 

Maryland 3/5/2020 

Michigan 3/11/2020 

Minnesota 3/13/2020 

Mississippi 3/4/2020 

Missouri 3/13/2020 

Montana 3/12/2020 

Nebraska  3/13/2020 

Nevada 3/12/2020 

New Jersey 3/9/2020 

New Mexico 3/11/2020 

New York 3/7/2020 

North Carolina 3/10/2020 

North Dakota 3/13/2020 

Ohio 3/9/2020 

Oklahoma 3/15/2020 

Oregon 3/8/2020 

Pennsylvania 3/6/2020 

South Carolina 3/13/2020 

South Dakota 3/13/2020 

Tennessee 3/12/2020 

Texas 3/13/2020 

Utah 3/6/2020 

Vermont 3/16/2020 
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Virginia 3/12/2020 

Washington 2/29/2020 

Wisconsin 3/12/2020 

Wyoming 3/12/2020 
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Table 4-3 – Tractor COVID Model VIF Results 

Variable   VIF 1/VIF 

Usage 

Factors    

 Hours 1.69 0.591696 

 Age 2.35 0.426038 

 Excellent_Good 1.02 0.975806 

Make    

 John Deere 3.63 0.27539 

 Case IH 3.13 0.319166 

 Ford New Holland 1.78 0.563318 

 Kubota 1.25 0.799105 

 Mahindra 1.07 0.933522 

 Make_Other 1.03 0.971369 

Sale 

Variables    

 Spring Sale 1.5 0.664804 

 Summer Sale 1.5 0.664701 

 Winter Sale 1.68 0.593847 

 Dealer 1.39 0.721252 

 Consignment 1.88 0.530781 

 Farm 1.62 0.615645 

 Other 1.03 0.971554 

Covid 

Variables    

 Covid Gov S.E. 3.73 0.268114 

Controls    

 US Cash Receipts 8.69 0.115086 

 PPI 5.88 0.170102 

 Region Diesel Price 5.75 0.17384 

 HP 175 and up 1.17 0.8556 

 Pre-2014 1.62 0.61697 
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Table 4.3 Continued – Tractor COVID Model VIF Results 

State    
1 Alabama 1.1 0.911885 

4 Arizona 1.03 0.970045 

5 Arkansas 1.12 0.890282 

6 California 1.18 0.846123 

8 Colorado 1.09 0.915149 

10 Delaware 1 0.995267 

12 Florida 1.14 0.876893 

13 Georgia 1.2 0.836741 

16 Idaho 1.06 0.942635 

17 Illinois 1.82 0.548853 

18 Indiana 1.38 0.725024 

19 Iowa 1.78 0.562573 

20 Kansas 1.31 0.765626 

21 Kentucky 1.06 0.942501 

22 Louisiana 1.06 0.945887 

24 Maryland 1.02 0.981125 

26 Michigan 1.17 0.857076 

28 Mississippi 1.19 0.840234 

29 Missouri 1.59 0.628965 

30 Montana 1.04 0.965658 

31 Nebraska  1.75 0.569934 

32 Nevada 1 0.997537 

34 New Jersey 1.01 0.992038 

35 New Mexico 1.01 0.994041 

36 New York 1.05 0.953728 

37 North Carolina 1.03 0.969713 

38 North Dakota 1.62 0.61778 

39 Ohio 1.28 0.778685 

40 Oklahoma 1.12 0.891423 

41 Oregon 1.03 0.972887 

42 Pennsylvania 1.23 0.816273 

45 South Carolina 1.03 0.973622 

46 South Dakota 1.3 0.770636 

47 Tennessee 1.12 0.894787 

48 Texas 1.41 0.706843 

49 Utah 1.01 0.988583 

50 Vermont 1.01 0.985743 

51 Virginia 1.01 0.991224 

53 Washington 1.06 0.94591 

55 Wisconsin 1.15 0.870113 
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56 Wyoming 1.03 0.967713 

    

 Mean VIF 1.63  
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Table 4-4 – Tractor Lead and Lag Model VIF Results 

Variable   VIF 1/VIF 

Usage 

Factors    

 Hours 1.69 0.590953 

 Age 2.34 0.427141 

 Excellent_Good 1.03 0.973768 

Make    

 John Deere 3.65 0.274266 

 Case IH 3.14 0.31822 

 Ford New Holland 1.78 0.561978 

 Kubota 1.25 0.798169 

 Mahindra 1.08 0.928458 

 Make_Other 1.03 0.969688 

Sale 

Variables    

 Spring Sale 1.82 0.55069 

 Summer Sale 1.84 0.542989 

 Winter Sale 1.87 0.53535 

 Dealer 1.39 0.718539 

 Consignment 1.86 0.536458 

 Farm 1.65 0.605051 

 Other 1.04 0.96398 

Covid 

Variables    

 Covid Gov S.E. Lag 10 1.09 0.916108 

 Covid Gov S.E. Lag 9 1.05 0.949329 

 Covid Gov S.E. Lag 8 1.07 0.932619 

 Covid Gov S.E. Lag 7 1.06 0.945458 

 Covid Gov S.E. Lag 6 1.09 0.915475 

 Covid Gov S.E. Lag 5 1.04 0.958976 

 Covid Gov S.E. Lag 4 1.06 0.944451 

 Covid Gov S.E. Lag 3 1.1 0.906783 

 Covid Gov S.E. Lag 2 1.06 0.940584 

 Covid Gov S.E. Lag 1 1.08 0.927435 

 Covid Gov S.E. Lead 1 1.08 0.927965 

 Covid Gov S.E. Lead 2 1.07 0.935259 

 Covid Gov S.E. Lead 3 1.07 0.936634 

 Covid Gov S.E. Lead 4 1.07 0.93377 

 Covid Gov S.E. Lead 5 1.09 0.919274 

 Covid Gov S.E. Lead 6 1.14 0.880842 

 Covid Gov S.E. Lead 7 1.02 0.976635 
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 Covid Gov S.E. Lead 8 1.06 0.939152 

 Covid Gov S.E. Lead 9 1.14 0.878235 

 Covid Gov S.E. Lead 10 1.1 0.909544 

Controls    

 US Cash Receipts 6.06 0.165092 

 PPI 5.89 0.169825 

 Region Diesel Price 4.25 0.235132 

 HP 175 and up 1.17 0.852821 

 Pre-2014 1.64 0.611153 
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Table 4.4 Continued – Tractor Lead and Lag Model VIF Results 

State    
1 Alabama 1.1 0.90769 

4 Arizona 1.05 0.95603 

5 Arkansas 1.13 0.881744 

6 California 1.18 0.846068 

8 Colorado 1.1 0.911942 

10 Delaware 1 0.99527 

12 Florida 1.16 0.865611 

13 Georgia 1.2 0.830075 

16 Idaho 1.07 0.936653 

17 Illinois 1.84 0.542745 

18 Indiana 1.39 0.720201 

19 Iowa 1.78 0.560775 

20 Kansas 1.31 0.762282 

21 Kentucky 1.06 0.939167 

22 Louisiana 1.06 0.940962 

24 Maryland 1.02 0.980781 

26 Michigan 1.17 0.854324 

28 Mississippi 1.2 0.832402 

29 Missouri 1.6 0.62474 

30 Montana 1.06 0.939328 

31 Nebraska  1.76 0.567437 

32 Nevada 1 0.997501 

34 New Jersey 1.01 0.991664 

35 New Mexico 1.01 0.98944 

36 New York 1.05 0.951838 

37 North Carolina 1.03 0.967788 

38 North Dakota 1.63 0.612734 

39 Ohio 1.29 0.776485 

40 Oklahoma 1.13 0.882183 

41 Oregon 1.03 0.969122 

42 Pennsylvania 1.22 0.819349 

45 South Carolina 1.03 0.966348 

46 South Dakota 1.31 0.765873 

47 Tennessee 1.12 0.892772 

48 Texas 1.42 0.703893 

49 Utah 1.02 0.984048 

50 Vermont 1.01 0.985502 

51 Virginia 1.01 0.990813 

53 Washington 1.06 0.942192 

55 Wisconsin 1.15 0.867306 
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56 Wyoming 1.04 0.964504 

    

 Mean VIF 1.44  
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Table 4-5 – Tractor COVID Model Results 

   R-Squared 0.7482 

Variable   Co Ef.   

Robust Std 

Error 

95% Confidence 

Interval 

Dependent      
Usage 

Factors      

 Hours 

-

0.00008 *** 0.000003 

-

0.000088 

-

0.000077 

 Age -0.0440 *** 0.002 -0.048 -0.040 

 Excellent_Good 0.2861 *** 0.035 0.216 0.356 

Make      

 John Deere 0.3209 *** 0.022 0.276 0.365 

 Case IH 0.1252 *** 0.016 0.092 0.158 

 

Ford New 

Holland 
0.0149 

 0.021 -0.027 0.057 

 Kubota -0.1369 *** 0.032 -0.202 -0.071 

 Mahindra -0.6359 *** 0.050 -0.738 -0.534 

 Make_Other -0.1790 ** 0.081 -0.342 -0.016 

Sale 

Variables      

 Spring Sale -0.0213 ** 0.009 -0.040 -0.002 

 Summer Sale -0.0129  0.013 -0.040 0.014 

 Winter Sale 0.0447 *** 0.010 0.025 0.064 

 Dealer -0.0903 *** 0.018 -0.127 -0.054 

 Consignment -0.0527 *** 0.018 -0.088 -0.017 

 Farm 0.0343 *** 0.008 0.019 0.050 

 Other 0.0278  0.026 -0.026 0.081 

Covid 

Variables      

 Covid Gov S.E. 0.1628 *** 0.015 0.133 0.192 

Controls      

 

US Cash 

Receipts 
0.0000 

 0.000 0.000 0.000 

 PPI 0.0000 *** 0.000 0.000 0.000 

 

Region Diesel 

Price 
0.0158 

 0.013 -0.011 0.043 

 HP 175 and up 0.7517 *** 0.018 0.716 0.787 

 Pre-2014 -0.0015  0.012 -0.026 0.023 
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Table 4.5 Continued – Tractor COVID Model Results 

State of Sale      
State Fips Code     
Alabama 1 -0.4595 *** 0.008 -0.476 -0.443 

Arizona 4 -0.2177 *** 0.017 -0.251 -0.184 

Arkansas 5 -0.2237 *** 0.005 -0.234 -0.213 

California 6 -0.3600 *** 0.011 -0.382 -0.338 

Colorado 8 -0.0636 *** 0.004 -0.072 -0.056 

Delaware 10 -0.2208 *** 0.019 -0.259 -0.183 

Flordia 12 -0.4705 *** 0.013 -0.496 -0.445 

Georgia 13 -0.2769 *** 0.010 -0.298 -0.256 

Idaho 16 -0.1918 *** 0.008 -0.208 -0.176 

Illinois 17 -0.0030  0.006 -0.014 0.008 

Indiana 18 -0.0347 *** 0.004 -0.043 -0.026 

Iowa 19 -0.0218 *** 0.002 -0.025 -0.019 

Kansas 20 -0.0621 *** 0.004 -0.069 -0.055 

Kentucky 21 -0.1123 *** 0.006 -0.125 -0.099 

Louisiana 22 -0.3005 *** 0.005 -0.312 -0.289 

Maryland 24 -0.0608 *** 0.012 -0.084 -0.037 

Michigan 26 -0.1091 *** 0.004 -0.117 -0.101 

Mississippi 28 -0.2448 *** 0.008 -0.260 -0.229 

Missouri 29 -0.0378 *** 0.006 -0.050 -0.026 

Montana 30 0.0318 *** 0.004 0.023 0.040 

Nebraska  31 -0.0495 *** 0.004 -0.057 -0.042 

Nevada 32 -0.1998 *** 0.022 -0.244 -0.156 

New Jersey 34 -0.3276 *** 0.012 -0.352 -0.303 

New Mexico 35 0.0629 *** 0.009 0.045 0.080 

New York 36 -0.1964 *** 0.009 -0.214 -0.179 

North 

Carolina 37 
-0.3061 

*** 0.007 -0.321 -0.291 

North 

Dakota 38 
0.0732 

*** 0.004 0.066 0.081 

Ohio 39 -0.0819 *** 0.004 -0.090 -0.073 

Oklahoma 40 -0.1591 *** 0.004 -0.168 -0.150 

Oregon 41 -0.1856 *** 0.016 -0.219 -0.153 

Pennsylvania 42 -0.2988 *** 0.014 -0.328 -0.270 

South 

Carolina 45 
-0.2804 

*** 0.010 -0.300 -0.261 

South 

Dakota 46 
0.0245 

*** 0.003 0.018 0.031 

Tennessee 47 -0.2218 *** 0.007 -0.236 -0.207 

Texas 48 -0.1785 *** 0.007 -0.192 -0.165 
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Utah 49 -0.5426 *** 0.008 -0.559 -0.526 

Vermont 50 -0.3505 *** 0.024 -0.398 -0.303 

Virginia 51 -0.3594 *** 0.015 -0.390 -0.329 

Washington 53 -0.1355 *** 0.012 -0.160 -0.111 

Wisconsin 55 -0.0874 *** 0.004 -0.096 -0.079 

Wyoming 56 -0.2393 *** 0.008 -0.256 -0.223 

      
Constraint 10.17006 *** 0.065 10.038 10.302 
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Table 4-6 – Tractor Lead and Lag Model Results 

   R-Squared 0.7472 

Variable   Co Ef.   

Robust Std 

Err 

95% Confidence 

Interval 

Dependent      
Usage 

Factors      

 Hours 

-

0.00008 *** 0.000003 

-

0.000089 

-

0.000077 

 Age -0.0432 *** 0.002 -0.047 -0.040 

 Excellent_Good 0.2870 *** 0.034 0.217 0.356 

Make      

 John Deere 0.3204 *** 0.022 0.276 0.365 

 Case IH 0.1234 *** 0.016 0.091 0.155 

 

Ford New 

Holland 
0.0142 

 0.020 -0.027 0.055 

 Kubota -0.1375 *** 0.032 -0.202 -0.073 

 Mahindra -0.6483 *** 0.051 -0.752 -0.544 

 Make_Other -0.1863 ** 0.081 -0.350 -0.023 

Sale 

Variables      

 Spring Sale -0.0076  0.010 -0.027 0.012 

 Summer Sale -0.0136  0.015 -0.044 0.016 

 Winter Sale 0.0277 ** 0.011 0.005 0.050 

 Dealer -0.1050 *** 0.017 -0.140 -0.070 

 Consignment -0.0698 *** 0.017 -0.105 -0.035 

 Farm 0.0256 *** 0.008 0.009 0.043 

 Other 0.0331  0.028 -0.024 0.090 

Covid 

Variables      

 

Covid Gov S.E. 

Lag 10 
-0.0549 

* 0.029 -0.114 0.004 

 

Covid Gov S.E. 

Lag 9 
0.0388 

 0.044 -0.051 0.128 

 

Covid Gov S.E. 

Lag 8 
0.0779 

 0.062 -0.046 0.202 

 

Covid Gov S.E. 

Lag 7 
0.0912 

** 0.039 0.013 0.169 

 

Covid Gov S.E. 

Lag 6 
0.0792 

*** 0.028 0.022 0.136 

 

Covid Gov S.E. 

Lag 5 
-0.0174 

 0.038 -0.094 0.059 
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Covid Gov S.E. 

Lag 4 
0.0424 

 0.026 -0.011 0.096 

 

Covid Gov S.E. 

Lag 3 
0.0718 

** 0.034 0.003 0.141 

 

Covid Gov S.E. 

Lag 2 
0.1097 

*** 0.025 0.060 0.160 

 

Covid Gov S.E. 

Lag 1 
0.0668 

* 0.037 -0.008 0.141 

 

Covid Gov S.E. 

Lead 1 
0.0691 

** 0.031 0.007 0.131 

 

Covid Gov S.E. 

Lead 2 
0.0068 

 0.029 -0.051 0.065 

 

Covid Gov S.E. 

Lead 3 
0.0269 

 0.038 -0.049 0.103 

 

Covid Gov S.E. 

Lead 4 
0.0605 

** 0.025 0.010 0.111 

 

Covid Gov S.E. 

Lead 5 
0.0690 

* 0.034 0.000 0.138 

 

Covid Gov S.E. 

Lead 6 
0.1107 

*** 0.017 0.076 0.146 

 

Covid Gov S.E. 

Lead 7 
0.0289 

 0.035 -0.043 0.100 

 

Covid Gov S.E. 

Lead 8 
0.1619 

** 0.070 0.021 0.303 

 

Covid Gov S.E. 

Lead 9 
0.1153 

*** 0.033 0.049 0.181 

 

Covid Gov S.E. 

Lead 10 
0.1683 

*** 0.011 0.145 0.191 

Controls      

 

US Cash 

Receipts 
0.0003 

 0.000 0.000 0.001 

 PPI 0.0000 *** 0.000 0.000 0.000 

 

Region Diesel 

Price 
-0.0413 

*** 0.013 -0.067 -0.015 

 HP 175 and up 0.7519 *** 0.017 0.717 0.787 

 Pre-2014 -0.0072  0.012 -0.032 0.018 
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Table 4.6 Continued – Tractor Lead and Lag Model Results 

State of Sale      

State 

Fips 

Code     
Alabama 1 -0.4746 *** 0.008 -0.491 -0.458 

Arizona 4 -0.2072 *** 0.017 -0.241 -0.174 

Arkansas 5 -0.2292 *** 0.005 -0.239 -0.220 

California 6 -0.3330 *** 0.011 -0.356 -0.310 

Colorado 8 -0.0492 *** 0.004 -0.058 -0.040 

Delaware 10 -0.1758 *** 0.020 -0.216 -0.136 

Flordia 12 -0.4460 *** 0.014 -0.475 -0.418 

Georgia 13 -0.2721 *** 0.010 -0.291 -0.253 

Idaho 16 -0.1920 *** 0.010 -0.211 -0.173 

Illinois 17 -0.0035  0.006 -0.015 0.009 

Indiana 18 -0.0355 *** 0.005 -0.045 -0.026 

Iowa 19 -0.0175 *** 0.002 -0.021 -0.014 

Kansas 20 -0.0578 *** 0.004 -0.065 -0.050 

Kentucky 21 -0.1200 *** 0.007 -0.134 -0.106 

Louisiana 22 -0.3128 *** 0.006 -0.324 -0.301 

Maryland 24 -0.0544 *** 0.012 -0.078 -0.031 

Michigan 26 -0.1068 *** 0.004 -0.116 -0.098 

Mississippi 28 -0.2476 *** 0.008 -0.263 -0.232 

Missouri 29 -0.0336 *** 0.007 -0.047 -0.020 

Montana 30 0.0404 *** 0.011 0.019 0.062 

Nebraska  31 -0.0571 *** 0.004 -0.065 -0.049 

Nevada 32 -0.1413 *** 0.021 -0.185 -0.098 

New Jersery 34 -0.3154 *** 0.014 -0.344 -0.287 

New Mexico 35 0.0328 ** 0.016 0.001 0.064 

New York 36 -0.1726 *** 0.008 -0.189 -0.156 

North 

Carolina 37 
-0.3122 

*** 0.007 -0.326 -0.298 

North 

Dakota 38 
0.0787 

*** 0.004 0.070 0.087 

Ohio 39 -0.0833 *** 0.004 -0.092 -0.075 

Oklahoma 40 -0.1665 *** 0.004 -0.176 -0.157 

Oregon 41 -0.1557 *** 0.019 -0.195 -0.116 

Pennsylvania 42 -0.2768 *** 0.013 -0.303 -0.251 

South 

Carolina 45 
-0.2950 

*** 0.009 -0.314 -0.276 

South 

Dakota 46 
0.0283 

*** 0.003 0.021 0.035 

Tennessee 47 -0.2061 *** 0.007 -0.220 -0.192 
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Texas 48 -0.1867 *** 0.007 -0.201 -0.172 

Utah 49 -0.5300 *** 0.010 -0.551 -0.509 

Vermont 50 -0.3192 *** 0.024 -0.369 -0.270 

Virginia 51 -0.3597 *** 0.014 -0.388 -0.331 

Washington 53 -0.1492 *** 0.014 -0.177 -0.121 

Wisconsin 55 -0.0871 *** 0.004 -0.096 -0.078 

Wyoming 56 -0.2193 *** 0.009 -0.237 -0.201 

      
Constraint 9.770863 *** 0.058 9.654 9.888 
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Figure 4-1 – Tractor Data Cleaning Tree 
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Figure 4-2 – Tractor Data Percent of Manufacturer  
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Figure 4-3 – Lead and Lag Variable Results and Confidence Intervals  
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CHAPTER 5. SUMMARY CHAPTER  

The recent COVID-19 pandemic radically changed the landscape of major 

industries, and agriculture was no different. For the farming industry, government 

payments have assisted in maintaining operations through the shutdowns but moving 

forward; producers will have to manage the new landscape without government assistance. 

With projected future decreases in government assistance, operators will likely need to 

optimize their decision-making to maximize net income by increasing revenue or 

decreasing expenses. Given the decrease in planted acres, one option for increasing net 

income would be to farm on higher saturated or historically non-farmed acres. Chapter 2 

of this dissertation performs a life cycle cost and carbon footprint analysis for 

implementing a tile drainage system, while chapters 3 and 4 focus on the production 

expense side of net income by evaluating secondary combine and tractor values.  

 The second chapter tackles the issue of the continual decrease in farmland and 

investigates the economics of furthering row crop operations into areas of high saturation. 

A life cycle cost and carbon footprint analysis were developed to analyze the economic 

feasibility and estimate the carbon impacts of installing a tile drainage system. With the 

study’s goal in mind, the objectives were to establish four representative fields for 

installing a tile drain system, design a system for each field with the ability to change the 

soil type, perform a life cycle cost and carbon footprint on the various systems, and evaluate 

and provide results for producer use of the various combinations. 

During the initial study, an additional breakeven analysis was developed to provide 

a deeper understanding of the results. Carbon footprint estimates suggested the average 

across all fields in the base case scenario would result in the carbon impact of 551.3 kg 



172 

 

CO2 eq per acre, with an average cost of that system at $3,641 per acre. The largest field 

in the study held the lowest cost at $1,599 per acre, illustrating the significant decrease in 

cost due to economies of scale with the larger area. When soil types were evaluated, 

estimates followed the expected order due to lateral pipe spacing, but the results will allow 

producers to estimate their own fields for installation accurately. The break-even analysis 

is likely the most industry-impactful finding for the study. For corn, a 28-bushel per acre 

was needed to offset the cost of the system, while soybeans needed an 11-bushel increase. 

The results presented in this chapter provide a deeper analysis of tile drainage systems and 

allow producers to have adequate information for implementation. 

Chapters three and four are associated with the second largest farm asset of farm 

machinery. Chapter three addresses the adoption of precision agricultural technologies on 

combine harvesters. Over the past decade, combines have drastically changed with the 

further development of precision agricultural technologies. A unique dataset for auction 

sales in North America was paired with a logarithmic-hedonic model to evaluate the factors 

that impact combine values. Given the base model results, a secondary model was 

constructed to evaluate the impact on values, specifically from the type of technology. 

Results were then used to suggest the value added by various technologies. Although full 

results are needed to assess a combine's value accurately, the model found estimates for 

manufacturer differences in value, estimated that usage hours have less of an impact on 

price than the age of the combine and that data-sharing technologies have the largest 

increase in value among the technologies. The chapter provides a more in-depth evaluation 

of the market and the changing technologies that will assist operators in properly evaluating 

combine machinery.  
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The fourth chapter evaluates the farm machinery market changes by investigating 

the impacts of the COVID-19 pandemic on the used tractor market. Similar to the third 

chapter, an auction dataset was used to estimate value changes. Additional variables were 

generated in order to represent the differences between tractors, as well as illustrate each 

state's pandemic shutdown date. The final dataset was then paired with a hedonic pricing 

model to estimate the impacts of the various factors. Overall, the model estimated an 

increase of 16.3% in tractor values due to the pandemic. However, further investigation 

suggested that the impacts range from –5.5% to 16.8%, depending on the timing of the 

sale. Furthermore, the model was able to estimate impacts from general variables such as 

manufacture, usage rates, and sale characteristics. Utilizing these key findings with the full 

model results will allow producers to accurately evaluate their on-farm machinery and 

future buying and selling opportunities.  

In conclusion, the farming industry has seen major changes in the past decade from 

limited land availability, new technologies, and a pandemic. The chapters presented in this 

dissertation provide much needed information on evaluating potential opportunities for 

farmers to combat recent changes. Although a farming operation has many different parts, 

this dissertation addresses the two largest asset areas for most operations. The suggestions 

and results illustrated here will allow operators to accurately assess their current operations 

as well as future opportunities with land and machinery management.  
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CHAPTER 6. APPENDIX 

6.1 Appendix 1. Tile Drainage Systems Breakeven Model Inputs 

Financial Variables for Model 

Term of Payback: 50 Years 

Discount Rate: 8% 

Percent Increase of Crop Yields from Tile Drainage System: 20% 

Corn Estimated Prices and Yields (Note years 2003-2021 were used for estimates after year 

2033) 

Year 

Corn 

Yield 

Soybean 

Yields Corn Price 

Soybean 

Price 

2003 129.3 38.0  $ 2.32   $ 5.53  

2004 142.2 33.9  $ 2.42   $ 7.34  

2005 160.3 42.2  $ 2.06   $ 5.74  

2006 147.9 43.1  $ 2.00   $ 5.66  

2007 149.1 42.9  $ 3.04   $ 6.43  

2008 150.7 41.7  $ 4.20   $ 10.10  

2009 153.3 39.7  $ 4.06   $ 9.97  

2010 164.4 44.0  $ 3.55   $ 9.59  

2011 152.6 43.5  $ 5.18   $ 11.30  

2012 146.8 42.0  $ 6.22   $ 12.50  

2013 123.1 40.0  $ 6.89   $ 14.40  

2014 158.1 44.0  $ 4.46   $ 13.00  

2015 171.0 47.5  $ 3.70   $ 10.10  

2016 168.4 48.0  $ 3.61   $ 8.95  

2017 174.6 51.9  $ 3.36   $ 9.47  

2018 176.6 49.3  $ 3.36   $ 9.33  

2019 176.4 50.6  $ 3.61   $ 8.48  

2020 167.5 47.4  $ 3.56   $ 8.57  

2021 171.4 51.0  $ 4.53   $ 10.80  

2022 176.7 51.7  $ 6.00   $ 13.30  

2023 173.3 49.5  $ 6.69   $ 14.23  

2024 181.0 51.6  $ 5.32   $ 12.17  

2025 183.0 52.1  $ 4.84   $ 11.82  

2026 185.1 52.6  $ 4.66   $ 11.37  

2027 187.4 53.2  $ 4.50   $ 11.18  

2028 189.5 53.8  $ 4.42   $ 10.99  

2029 191.7 54.3  $ 4.33   $ 10.89  

2030 193.7 54.9  $ 4.23   $ 10.73  

2031 195.8 55.6  $ 4.17   $ 10.61  

2032 197.6 56.1  $ 4.09   $ 10.48  

2033 199.2 56.6  $ 3.99   $ 10.33  

2034 198.6 57.2  $ 4.79   $ 12.22  
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2035 200.6 57.8  $ 4.80   $ 12.28  

2036 202.6 58.4  $ 4.82   $ 12.34  

2037 204.6 59.1  $ 4.84   $ 12.41  

2038 206.6 59.7  $ 4.85   $ 12.47  

2039 208.5 60.3  $ 4.87   $ 12.53  

2040 210.5 60.9  $ 4.88   $ 12.59  

2041 212.5 61.6  $ 4.90   $ 12.65  

2042 214.5 62.2  $ 4.91   $ 12.71  

2043 216.5 62.8  $ 4.93   $ 12.77  

2044 218.4 63.4  $ 4.94   $ 12.84  

2045 220.4 64.1  $ 4.96   $ 12.90  

2046 222.4 64.7  $ 4.97   $ 12.96  

2047 224.4 65.3  $ 4.99   $ 13.02  

2048 226.3 65.9  $ 5.00   $ 13.08  

2049 228.3 66.6  $ 5.02   $ 13.14  

2050 230.3 67.2  $ 5.04   $ 13.20  

2051 232.3 67.8  $ 5.05   $ 13.27  

2052 234.3 68.4  $ 5.07   $ 13.33  

2053 236.2 69.0  $ 5.08   $ 13.39  

2054 238.2 69.7  $ 5.10   $ 13.45  

2055 240.2 70.3  $ 5.11   $ 13.51  

2056 242.2 70.9  $ 5.13   $ 13.57  

2057 244.2 71.5  $ 5.14   $ 13.64  

2058 246.1 72.2  $ 5.16   $ 13.70  

2059 248.1 72.8  $ 5.17   $ 13.76  

2060 250.1 73.4  $ 5.19   $ 13.82  

2061 252.1 74.0  $ 5.20   $ 13.88  

2062 254.1 74.7  $ 5.22   $ 13.94  

2063 256.0 75.3  $ 5.24   $ 14.00  

2064 258.0 75.9  $ 5.25   $ 14.07  

2065 260.0 76.5  $ 5.27   $ 14.13  

2066 262.0 77.2  $ 5.28   $ 14.19  

2067 264.0 77.8  $ 5.30   $ 14.25  

2068 265.9 78.4  $ 5.31   $ 14.31  

2069 267.9 79.0  $ 5.33   $ 14.37  

2070 269.9 79.7  $ 5.34   $ 14.43  

2071 271.9 80.3  $ 5.36   $ 14.50  

2072 273.8 80.9  $ 5.37   $ 14.56  

2073 275.8 81.5  $ 5.39   $ 14.62  
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