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ABSTRACT OF THESIS

CONTRIBUTIONS TO HYBRID POWER SYSTEMS INCORPORATING

RENEWABLES FOR DESALINATION SYSTEMS

Renewable energy is one of the most reliable resource that can be used to generate

the electricity. It is expected to be the most highly used resource for electricity

generation in many countries in the world in the next few decades. Renewable energy

resources can be used in several purposes. It can be used for electricity generation,

water desalination and mining. Using renewable resources to desalinate the water

has several benefits such as reduce the emission, save money and improve the public

health. The research described in the thesis focuses on the analysis of using the

renewable resources such as solar and wind turbines for desalination plant. The

output power from wind turbine is connected through converter and the excess power

will be transfer back to the main grid. The photo-voltaic system (PV) is divided into

several sections, each section has its own DC-DC converter for maximum power point

tracking and a two-level grid connected inverter with different control strategies. The

functions of the battery are explored by connecting it to the system in order to prevent

possible voltage fluctuations and as a buffer storage in order to eliminate the power

mismatch between PV array generation and load demand. Computer models of the

system are developed and implemented using the PSCADTM/EMTDCTM software.
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Chapter 1

Introduction

The electric power generated from wind turbines has increased over the past few

decades. Using the wind power has many benefits. For instance, it is clean energy,

which is friendly for the environment. In addition, it is cost effective being one of the

cheapest energy resources available today [17]. Wind power start to become a popular

resource for electricity generation across the USA due to its costs and the distribution

of wind resources wind energy can be divided to into different categorized based on

its size. There are large wind turbines, which are used to generate a large number of

megawatts; there are also small wind turbines, which usually produce no more than

100 kilowatts of electricity [18]. In addition, these can be installed at home, small

business and farms. A very small wind turbines, which produce about 50 watts and

can be used to charge batteries and power small motors [19]. Solar power also is one

of the fastest growing renewable energy resources in the last decade. PV has several
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important characteristics in term of environment, installation and cost. It is suit-

able for areas such as residential, industrial, commercial and it can expand its power

utilities capacity. In addition, since it depends on the sunlight, it is friendly to the

environment and has a little effect on it. Batteries in PV systems could be beneficial

for some systems, which stores the energy during the daytime in batteries and feed

the grid after the sunshine. The capacity of a battery counts on the discharge current,

temperature and other factors, which makes the electrochemical devices counts on a

large number of material properties meeting a defined standard to function correctly

[20]. Global demand for clean water continues to increase since the world population

increases and the water’s resources are becoming scarce. Countries around the world

struggle from the scarce resources of the water they have. Therefore, national plans

has been developed in order to use the seawater to cover the needs for freshwater.

Furthermore, desalinate became one of the most popular ways to achieve these objec-

tives [3]. However, the desalination process is consuming substantial energy, which

could be an obstruction for countries that have limited energy resources. Power elec-

tronics conversion system provides an interface that enables flexible interconnection

of different systems such as renewables, batteries and controllable loads to the grid

[21].

2



1.1 Research background

Extracting the maximum power from the wind turbine has been the focus of a

large amount of research in recent years with applying new control strategies for

higher efficiency. Some research have explained several type of control strategies for

aerodynamic design of the turbine blades [22], some researchers focus on the control

technologies of the generator, which can be employed to extract the maximum power

from the turbine. Pitch control strategy can be used to maintain the optimal power

from the turbine over a wide range of wind speed conditions [23, 24]. For low wind

speed, the desired generator torque and the resulting rotor spedd were controlled

in order to operate the wind trubine clode to maximum efficiency [25]. Researchers

have proposed a significant amount of researches on control technologies of power

conversion system of the wind turbine [25, 26]. Different type of machines could

be used for wind turbines in order to transfer the mechanical power to electrical

power and connected with the grid such as squirrel-cage induction generator SCIG,

wound rotor induction generators WRIG, doubly fed induction generator DFIG and

permanent magnet synchronous generator PMSG. PMSG has higher efficiency and

better performance compare to the other types of generators. Also, it can be used

without a gearbox, which results to reduction of the weight of the nacelle and costs

[27]. Wind energy have been incorporated with different renewable energy resources

such as PV system. Also, PV-hybrid system is suitable for stand alone applications.

3



Water desalination process is an intensive energy consumption, which results to high

cost. Thermal process requires thermal and electrical energy for water desalination

process such as driving the cooling pumps, recycling pumps and brine blow down

pumps.

1.2 Thesis outline

Chapter 1 introduces the research background for wind energy, PV systems and

the parameters to be considered for design. To refine the main goals of the research,

literature reviews of wind energy and control strategies are covered in this chapter.

Chapter 2 discusses the modeling of components and subsystems and gives an

overview of the technologies and developments in control systems of the wind energy

, water desalination process from an electrical view and the PV cell design and control.

Chapter 3 explains the configuration and associated control methods of a multi-

megawatts grid connected wind farm. The wind farm consists of several wind turbine

units connected in parallel and integrated with the grid in order to observe the steady

state and transient effect with changes in wind speeds and environment parameters.

Chapter 4 presents several case studies of grid integrated with wind farm, PV

system and water desalination plant. A control strategy for stand alone system is

also introduced.

Chapter 5 concludes the research with a brief summary of original contributions

4



and work. Also, suggestions for future work that can be extended based on the current

research was explained.
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Chapter 2

Modeling of Components and
Subsystems

2.1 Introduction

This chapter introduces the water desalination systems, their main components

and operational principles.In addition, it introduces the PV cells and arrays and the

very important concept of maximum power point tracking (MPPT). Wind turbines

characteristics and the need design for integration with the electric grid are also

explained. Furthermore, the power electronic devices and functions needed for both

DC-AC and DC-DC conversion are also introduced.

Global demand for clean water continues to increase since the world population

increases and the water’s resources are becoming scarce. Countries around the world

struggle from the scarce resources of the water they have. Therefore, national plans

has been developed in order to use the seawater to cover the needs for freshwater.

6



Furthermore, desalinate became one of the most popular ways to achieve these ob-

jectives. However, the desalination process is consuming substantial energy, which

could be an obstruction for countries that have limited energy resources [3].

The electric power generated from wind turbines has increased over the past few

decades. Using the wind power has many benefits. For instance, it is clean energy,

which is friendly for the environment.In addition, it is cost effective being one of the

cheapest energy resources available today. Wind power start to become a popular

resource for electricity generation across the USA due to its price and the distribution

of wind resources. According to [19], wind power has become the fastest growing

energy resource in the industry of energy. As show in Fig 2.1, wind power installation

have significantly increased in the us. With an accelerated growth taking place since

2011 [1]. The technology and researches of wind turbine has come a way since the

crisis of energy that happened in 1970s [20].

2.2 Problem formulated

The thesis mainly describes and focuses on the analysis of using the hybrid power

system incorporating renewable resources such as solar and wind turbines for desalina-

tion plant. The wind turbines are divided into multi-megawatt units and each turbine

has its own power conversion system, control system for maximum power point and

transformer. The output power from wind turbine is connected through converter and
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Figure 2.1: Growth in U.S. Wind Energy Installations [1].

the excess power will be transfer back to the existing grid. The photo-voltaic system

(PV) is divided into several sections, each section has its own DC-DC converter for

maximum power point tracking and a two-level grid connected inverter with different

control strategies. The load in the thesis will be a water desalination plant, since the

process of water desalination is an intensive energy consumption, which is a proper

load for the system. Different simulation conditions will be introduced in order to

ensure that the control system for both the wind turbines and PV system is working

and producing the maximum power from the system. The entire system will be inte-

grated with with a reliable grid, which ensure that the water desalination plant will

be operated all the day regardless the wind speed. In addition, the functions of the
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wind farm and the PV system are explored by connecting it to the load and work as

stand alone mode in order to prevent the power outage on the load, where it should

work all the day. Computer models of the system are developed and implemented

using the PSCADTM/EMTDCTM software.

2.3 Desalination systems

2.3.1 Thermal and membrane based methods

Water can be desalinated using different methods. The most popular technologies

are thermal and membrane method. Firstly, thermal desalination method, which use

the heat to vaporize the fresh water. In addition, the process includes multistage flash

(MSF), vapor compression (VP), low temperature evaporation (LTE) and multiple-

effect desalination (MED). Moreover, all of these process condense the steam to supply

the heat that is needed to evaporate the water. This method is mostly use in industrial

process applications since it produces high purity water. In the MSF process, the sea

water is heated to about 90-120C using the heat of condensation of the vapor and

then flash at decreasing levels of pressure and finally condensed and recovered as fresh

water as shown in fig 2.2 [3].

In MED process, there are two main stage. The first one is heated by low pressure

steam, which is about 0.3 bar. Therefore, vapors will be produced and directed to

the second stage and be as the heat source. In the first stages, vapor passes through
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Figure 2.2: MSF process [2]

the demisters to next stage. Moreover, vapor from the second stage is condensed by

using the sea water as the coolant. Fig 2.3 illustrates the MED process. MES process

are being popular since the low grade heat, low energy consumption and waste heat

utilization [2].

Figure 2.3: MED process [3]

Secondly, membrane desalination method, which use the high pressure generated

from electrical pump to separate the fresh water from the saline water.
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2.3.2 Typical power system requirements and ratings

Water desalination process is an intensive energy consumption, which results to

high cost. Thermal process such as multistage flash (MSF) requires thermal and

electrical energy for water desalination process. It requires the electrical energy for

driving the pumps such as water cooling pumps, water recycling pumps and brine blow

down pumps [2]. It mainly consumes between 19.58 kWh/m3 and 27.25 kWh/m3 to

desalinated water. On the other hand, reverse osmosis (RO) requires electrical energy

for the high pressure pumps, which consumes about 4-6 kWh/m3, which make it

widely used in many of the desalination plants [54]. Furthermore, 63.7 % of the total

capacity of the desalinated water is produced by membrane process, while 34.3 % is

produced by thermal process [2, 28]. Therefore, using the renewable energy resources

for the water desalination could be an energy saving. Renewable energy resources can

be divided to main categories. First, dispatchbale resources such as biomass, hydro,

geothermal and concentrated solar power with storage. Second, non-dispatchable

resources such as ocean power resource, wind and solar photovoltaic. It is also known

as variable renewable energy (VRE). The minimum energy requirement for water

desalination can be expressed by using Van’t Hoff formula as following:

π = cRT, (2.1)

Where, π the osmotic pressure, c the molar concentration of salt ions, R the
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gas constant, which equals 0.082 and T the ambient temperature on the absolute

temperature scale. For the seawater, c equals 1.128 mol/liter, which results the π

to be 27.8 bar or 278 kg.m/L. Moreover, since each 10 Joules equal 1 kg.m or 0.77

kWh/m3, which is the minimum theoretical energy requirement [3].

Integrate the VRE with the electric power grid requires several measurements in

order to protect the stability of the grid. Firstly, variability that caused by tempo-

ral availability of the resources. Secondly, uncertainty due to sudden changes in the

resource availability. Thirdly, location properties due to the geographical changes.

Finally, low marginal cost since the renewable resources are freely available. Further-

more, the impact on voltage variation and power system protection’s behavior under

faults conditions should be considered [3].

Energy storage can be beneficial for the system. In addition, it is needed to save

the exceed energy production. For instance, solar energy can be stored during the

day time to use it after the sunset. Moreover, energy storage improves the reliability

and stability of the grid. Energy can be stored by conversion of the electricity into

different form of energy. For instance, pumped storage hydro, where compressed air

energy storage. Another example by using electric batteries which charge during the

availability of the energy then use it to supply the system when the source of the

energy is not available [3].

wind energy can be divided to into different categorized based on its size. Large
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wind turbines, which are used to generate a large number of megawatts. Moreover,

it can be used to power hundreds of buildings. Small wind turbines, which usually

produce no more than 100 kilowatts of electricity. In addition, it can be installed at

home, small business and farms. Finally, very small wind turbines, which produce

about 50 watts and can be used to charge batteries and power small motors [2].

The output power generated by wind turbines mainly depends on the wind speed,

where it should be strong in order to generate a high output power. Therefore,

integrate the wind farm with grid or connect the wind farm with a load as stand alone

system should ensure the reliability of the system and voltage stability. In addition,

the PV system mainly depends on the solar radiation and the temperature. Thus,

integrate the PV system with the grid without an energy storage such as a battery

should not affect the system reliability after the sunshine, where the produced pwer

from the PV will be zero. In this model, the load will be a water desalination plant

with 1 MW rating. Therefore, the output power from the entire system includes the

wind farm and the PV system at every conditions should be higher than the load

rating to ensure that the water desalination plant works all the day regardless the

changes in the wind speeds and the solar irradition. Thus, the wind farm consists

of 6 wind turbines connected in parallel with total of 12 MW and the PV system

rating is 1 MW. Any change in the wind speed should not affect the reliability of the

system, where the load requires 1 MW. Furthermore, since there is no energy storage
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associated with the system such as a battery, the wind farm must feed the load after

the sunshine where the output power from the PV will be zero and the load is 1 MW.

2.4 Photovoltaic cells and arrays

Photovoltaic (PV) system mainly converts the sunlight into electricity It is used in

different industry around the world. Solar power is one of the fastest growing renew-

able energy resources in the last decade. PV has several important characteristics in

term of environment, installation and cost. It is suitable for areas such as residential,

industrial, commercial and expanding of power utilities capacity. In addition, since

it depends on the sunlight, it is friendly to the environment and has a little effect on

it. Moreover, the installation of PV system it is not difficult since it has no moving

parts to wear out. Therefore, these benefits make the PV system desirable in many

industries. Temperature has a significant effect on the efficiency of the PV cell, which

short circuit current increases when the temperature increases [29]. One of the most

suitable places for PV system is Saudi Arabia since the high solar potential. For

instance, while the average annual rate of solar radiation is 100-200 W/m2 in most of

the high concentrated solar areas, it is about 250 W/m2 in Saudi Arabia. In addition,

the average sunshine hours in Saudi Arabia is 8.89 hours and it is rainless country,

which mean the sun is available most of the year. It planned to generate 54 GW

from renewable resources by 2032 and about 70 percent of these capacity would be
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from solar. Fig 2.4 illustrates a daily and monthly solar radiation in Makkah,western

area of Saudi Arabia. It ranges between 4.15 kWh/m2/day and 7.17 kWh/m2/day.

Moreover, the solar irradiance is high during the summer months which start from

March to September. On the other hand it is low in the winter months which start

from October to February [4].

Table 2.1: PV materials efficiencies
Material Typical Efficiencies

Gallium arsenide (GaAs) 20
Monocrystalline silicon 14 to 17
Polycrystalline silicon 11.5 to 14

Ribbon Silicon 11 to 13
Copper indium gallium selenide (CIGS) 9 to 11.5

Cadmium telluride (CdTe) 8 to 10
Amorphous silicon (a-Si) 5 to 9.5

Graetzel 4 to 5
Polymer 1 to 2.5

Figure 2.4: Solar radiation data [4]
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2.4.1 PV output characteristics

Photovoltaic cell is mainly represented by the simple double exponential circuit as

shown in fig 2.5. In addition, it is systematized by one power supply and two diode,

where the power supply converts the solar radiation into photo current Iph and diodes

D1 and D2 and resistances regulate the current that flows to the load [30].

The output current and voltage from the PV cell counts on the amount of the

illumination on the surface of the cell and the temperature [44]. Moreover, the tem-

perature has a direct effect on the output voltage. For instance, higher temperature

results to a decrease in the output voltage. Equation 2.3 and 2.2 illustrate the rela-

tionship between the output voltage and current from the cell.

I=Ig − Io[e
( qV
KT ) − 1], (2.2)

I = Ig − Io[e
(V +IRsr

nKTc/q
) − 1] −

(
V + IRsr

Rsh

)
, (2.3)

Figure 2.5: Equivalent circuit of PV cell [5].
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where, Ig is the component of cell current due to photons; Io is the saturation

current; K is the Boltzmann constant which equal 1.38 1023j/K); Tc is the cell tem-

perature; q is the electron charge (q = 1.6x1019C); V is the output voltage; Rsh, the

shunt resistance and Rsr, the series resistance.

From equation 2.3, the temperature effects on the amount of the photo-current Ig.

Moreover, Ig depends on the amount of solar irradiance falling on the PV cell. The

relationship between the photo-current and solar irradiance (G) and cell temperature

(Tc) can be given as:

Ig = IscR
G

GR

[1 + αT (Tc − TcR)], (2.4)

The saturation current, Io in equation 2.3 also known as the “dark-current” is a

function of the cell temperature and the relationship is given by:

Io = IoR

(
T 3
c

T 3
cR

)
exp

[(
1

TcR
− 1

Tc

)
qeg
nk

]
, (2.5)

where, IoR is the saturation current at the reference temperature, eg is the band gap

energy of the solar cell material and n is the diode ideal factor which is typically 1.3

for silicon solar cells [31].

The PV cell temperature, TC (oC) can therefore be calculated as:

TC = TA +

(
NOCT − 20

0.8

)
G. (2.6)
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where, G is the solar iraddiance, TA is the ambient temperature and NOCT is

the nominal operating cell temperature, which is the temperature that the PV cell

will reach without any load connected. Equation 2.6 is expressed with air mass AM

of 1.5 at 20oC, G = 800 W/m2 and the wind speed is less than 1m/S [31].

2.4.2 PV module and array setup

A photovoltaic cell is a basic electrical component, which typically 156 mm x

156 mm dimension. Each cell produces about 0.5 volt when it is exposed to light.

Moreover, the output amperage of the cell is proportional to its surface area, and

counts on the light’s intensity. PV cells can be connected together in series or parallel

in order to have a PV module for voltage and power requirements. Common PV

module contains between 54 and 72 cells [6]. 2.6 shows the configuration for PV cell,

module and array.

PV cells within a module could be shaded by an external object or by clouds.

Therefore, the shaded cell might become reverse-bias and consume power instead of

produce it, which results to loss in the total output power. Furthermore, the PV cell

could cause potential failure for the whole module, because the thermal stress on the

other cells of the module. Sometimes, the extreme shading may generate reverse bias

voltage that exceeds the breakdown voltage of the cell and damage the cell. Thus,

PV cells can be connected in parallel to bypass diodes, which allow current to flow
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Figure 2.6: PV cell configuration from solar cell to solar array [6].

through the PV module. Without bypass diode, output power reduction can be up to

91.9%. It is sufficient to connect one bypass diode for each 15-20 PV cells. Moreover,

bypass diode dose not cause any power losses since the current does not flow through

it during the normal operation conditions. PV module has multiple cells that are

connected in series and parallel as same as PV array that has multiple modules are

connected in series and parallel [7]. PV modules are mainly connected in series in

order to build voltage, while PV modules are connected in parallel in order to build

current as shown in Fig. 2.7.

The PV array is static object, which can be mounted at a particular place in

order to absorb the sunlight and then convert it to electricity. PV array received the

maximum amount of irradiance when the sun is perpendicular to the array. However,

the sun is changing its position to the earth during the daytime and the different
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Figure 2.7: IV curve of PVs arrays with different configurations [7].

seasons. Therefore, it is impossible to have an orientation where the PV array will

receive the maximum amount of irradiance. The position of the sun can be expressed

by the solar azimuth and solar altitude. Solar azimuth represents the angle along

the horizon, while the solar altitude represents the angle of the sun relative to the

horizon of the earth where the north corresponds to angle of zero degree and increases

in clockwise direction [7].Solar altitude and solar azimuth change in term of time and

day of the year for particular place. Moreover, solar constant represents the average

rate of the radiant energy that is received from the sun on earth. For any day of the

year, solar constant can be expressed as following:

Isolar = Io

[
1 + 0.034

(
360n

365.25

)]
. (2.7)
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Where Isolar the solar constant, n the desirable day of the year with January 1st

being 1 [EquSolarConst]. The efficiency of the PV module is the ratio of the output

electrical power to the solar irradiance input over the area of the cell [10], which can

as expressed:

η =
Pm
E ∗ A

, (2.8)

Where Pm the maximum power, E the solar irradiance (W/m2) and A the area

of the PV module.

2.4.3 MPPT

Solar panels have a a nonlinear voltage-current characteristics with certain maxi-

mum power point MPP, which counts on several factors such as temperature, irradia-

tion and humidity. The maximum output power tracking is an electronic system that

change the electrical point of the modules to generate the maximum output power.

The maximum output power from the PV array counts on the electrical properties

and conditions at the point of installation, while the operating point depends on the

connected load [8]. PV panels always produce the maximum output power when

operated at the knee of I-V curve as shown in fig 2.5.

There are several algorithms that can be used to calculate the maximum power

point of the PV panels. Perturb and observe, incremental conductance and fuzzy logic
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Figure 2.8: Solar Cell I-V Characteristic Curve [8].
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are the most widely used algorithms. Perturb and observe algorithm is commonly

used for MPPT due to the simplicity of the implementation process. Furthermore,

incremental conductance algorithm needs more complicated computation inside the

controller, which results in better track of changing conditions compared to the other

algorithms [32].

2.4.4 Converters and electric machines

Power electronic converters mainly use for controlling the flow of the electric en-

ergy between two systems or subsystems [33]. It consists of solid states electronics

such as diodes, thyristors and transistors that are used to control and convert the

electric power from one form to another form such as DC to AC or AC to DC. In

addition, it can be used to connect sources with loads, whose electric requirements

are different from the source’s output [34]. Electric machines are used to convert

the energy from one form to another form such as mechanical energy to electric en-

ergy and vice versa. While motors convert the electric energy to mechanical energy,

generators convert the mechanical energy to electric energy [35].

DC/DC converters are used for transforming DC source voltage from level to

another level either high or low. Furthermore, switching converters regulate the

current flow from input to the load. Linear converters preserves continuous current

flow from the input to the load. Pulse with modulates converters (PWM) has high
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efficiency, constant frequency, commercial availability and high conversion ratio [36].

The four main DC/DC topologies are boost, buck, buck-boost and Cuk converters

[32]. A simple circuit implementation in PSCAD illustrates the variation of the output

voltage with respect to duty cycle.

(a) (b)

(c) (d)

Figure 2.9: Circuit implementation in PSCAD for DC/DC converter (a) buck, (b)
boost , (c) buck-boost and (d) Cuk [9].

AC/DC converters are mainly used to convert the electric power from AC to DC

form, which known as rectifiers. DC/AC converters are used to convert DC to AC

form, which known as inverters. AC/DC converters are used to supply DC power to

the electronic devices such as computers, screen and battery charge controller. Rec-

tifiers can be classified into controlled and uncontrolled rectifiers. While the output
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of controlled rectifiers counts on the input and the external control system, the out-

put of the uncontrolled rectifiers solely counts on the input [10]. The uncontrolled

rectifiers are made of diode and can e classified into full bridge and half bridge diode

rectifiers for one phase and three phase. Single phase full wave rectifiers consist of

two diodes with transformer with center tap secondary side or four diodes without

the transformer [37]. Half wave rectifiers only produce half output electric cycle,

which requires less power electronics devices than the full wave rectifiers need. The

correlation between the DC and the AC voltages of full-wave rectifier and half wave

rectifier is expressed as:

Vdc =
1

2π

∫ π

0

Vm sin ωt d(ωt) =
Vm
π

= 0.318Vm for half bridge, (2.9)

Vdc =
1

π

∫ π

0

Vm sin ωt d(ωt) =
2Vm
π

= 0.636Vm, for full bridge. (2.10)

Where the input supply voltage is given as (Vm sinωt) and Vdc the avearge load voltage

[37].
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2.5 Wind turbine

2.5.1 Wind turbine characteristics

Wind turbines consists of several parts that are employed to control the shaft

speed, electromagnetic conversion, and extract the power from the wind. Firstly,

wind turbine use blades to extract the power from the wind and then the low speed

shaft will rotate. Secondly, a gear-train is employed to control the speed of the shaft

for different conditions. For instance, step up the speed of shaft from the slowly

spinning rotor to the higher speeds needed in order to drive the generator. Finally,

for the conversion of the electromechanical energy, an electric generator is used for

this purpose [17]. Power electronic converters may be used in order to regulate and

control the output power of the turbine. Yaw system is used to rotate the nacelle

in order to make the blades facing the wind direction. The main components of the

wind turbine are illustrated in Fig 2.10.

Other components of the wind turbine are wind van and several sensors such as

anemometer and current sensors. The wind van mainly measures the direction of

the wind and then send a signal to yaw system. The sensors measure the speed of

the wind for protection and maximum efficiency. In addition, other sensors are used

to measure the voltage and current of the generator. Wind turbines are classified

into four main types: fixed-speed, partial variable speed wind turbine with variable

rotor resistance, variable speed wind turbine with partial-scale power converter and
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Figure 2.10: The components of the wind turbine [10].

variable speed wind turbine with full-scale power converter [65]. Fig2.11 shows the

schematic of the fixed-speed turbine and the partial variable speed wind turbine with

variable rotor resistance respectively, while fig2.12 shows the variable speed wind

turbine with partial-scale power converter and the variable speed wind turbine with

full-scale power converter [18].

Fixed-speed wind turbines are the most basic type. Which, operates with little

variation in the speed of the rotor turbine. In addition, in this type of turbine, the

generator is connected directly with the grid through a transformer. The second type

is partial variable speed wind turbine with variable rotor resistance uses a wound rotor

induction generator and id directly connected with the grid. Moreover, the winding of
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Figure 2.11: (a) Fixed-speed wind turbine, (b) partial variable speed wind turbine
with variable rotor resistance [11].

Figure 2.12: (a) Fixed-speed wind turbine, (b) partial variable speed wind turbine
with variable rotor resistance [11].

the rotor is connected with controlled resistance in series in order to regulate the rotor

resistance and control the output power. Variable speed wind turbine with partial-

scale power converter, which known as doubly-fed induction generator wind turbines

use AC/DC/AC converter inside the rotor to slide the power and to control the rotor

frequency which results to control the rotor speed. Finally, variable speed wind tur-

bine with full-scale power converter uses the permanent magnet generator (PMSG)

with full scale power converter to connect with the grid [11]. In this model, the vari-

able speed wind turbine with full-scale power converter uses (PMSG) to connect the
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turbine with grid will be used. The generator is the main electrical component in the

turbine. Synchronous generators (SG) are widely used in variable-speed wind energy

conversion systems due to its large flexibility that meet the technical requirements

in the wind energy systems. Moreover, it can be designed to have a large number of

poles and operate at the same speed of the turbine blade. The wind energy system of

the SG is controlled by full capacity converters due to the variable speed operation.

The conventional two level back to back power converter is the most used converter

for wind turbines. Using converter-based systems will allow independent real and

reactive power control. Furthermore, the range of the converter is mainly between

1.5 to 3 MW. 2.13 shows the two main two level back to back converter [12].

Figure 2.13: (a) Two level back to back converters with passive rectifier, (b) Two-level
back-to-back converters with active rectifier [12].

The rated speed of the SG depends on number of poles and the rated stator

frequency.2.15 shows the construction of the variable speed SG wind energy system.

Generally, wind turbines operate from minimum speed, which known as cut-in

speed, and then reach to maximum speed, which is the rated speed. The cut-in

speed is the minimum speed that the turbine start generate the power. It is typically
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Figure 2.14: Block diagram of variable-speed SG wind energy system [13].

between 3.13 and 4.47 m/sec for most of the turbines. Therefore, the speed of turbine

will increase until reach to the rated speed. Between the cut-in speed and rated speed

of the turbine, maximum power point tracking will be operated in order to increase

the power. The wind turbine will generate the designated power after the speed reach

to the rated speed. To protect the parts of the turbine from the mechanical damage,

wind turbine will be shut down at certain speed, which is usually between 22 and 45

m/sec. In addition, when the speed drops back to the rated speed, the wind turbine

will operate again [13].

The power generated by a wind turbine could be expressed by the following equa-

tion:

P =
1

2
ρaCPASV

3, (2.11)

where ρa the air density in kg/m3 , CP the power coefficient, AS the swept area

of the wind turbine rotor in m2 and V the wind velocity in m/S. The swept area of
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Figure 2.15: Wind power VS wind speed curve [13].

the rotor AS can be further:

AS =
π

4
D2 =

π

r2
, (2.12)

The rotor power coefficient CP can be expressed as following:

Cp =
Protor
Pwind

, (2.13)

According to [13], the maximum power that can be extracted from wind can be

calculated as:

P =
16

27

ρa
2
V 3AS, (2.14)
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Figure 2.16: An example of theoretical power production against rotor’s diameter
change for small wind turbines at wind speed 10 m/s [14].

The relationship between the rotor’s diameter and the generated power is signifi-

cantly important. The increase in the rotor’s diameter will lead to increases in swept

area by the wind turbine, and hence, the amount of electricity that the turbine can

generate. Figure2.16 illustrates the changes in theoretical output power against the

changes in rotor’s diameter [13].

Another important factor related to the power of wind turbines is the tip speed

ratio TSR, which is the ratio of the rotor tip’s speed to the the free stream wind

speed. Therefore, a high TSR is desirable, because it results in a high rotational

speed of the shaft increases the efficiency of the electrical generator. Generally, slow
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running blades operates with tip speed ratio between 1 to 4, and fast running blades

operates with tip speed between 5 to 7. On the other hand, high TSR leads to noise,

strong vibration especially for two and one blade rotors [12]. TSR can be calculates

as following equation:

λ =
v

V
=

ωr

Vwind
, (2.15)

Where ťhe rotor tip speed in [m/sec], V the wind speed in [m/sec], r the rotor

radius in [m] and ω the angular velocity in [rad/sec]. An important topology to

improve the power coefficient CP is the blade pitch control. Unlike the wind speed,

the pitch angle can be controlled in order to improve the performance of the wind

turbine and extract the maximun available mechanical power regardless the wind

speed. At constant speed ratio, Cp increases when the pitch angle decrease [23].

The mechanical torque is dependent on the wind speed, which can be expressed

as :

Tm =
P

ω
, (2.16)

Furthermore, any wind turbine can not convert more than 0.593 of the kinetic

energy of the wind into mechanical energy that turns a rotor and it is called the

power coefficient CP . In addition, It is known as Betz law who concluded the law.

Therefore, the power coefficient can be (0.593 or less) [23].
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Figure 2.17: Power coefficient Cp as a function of TSR λ and pitch angle in degrees.

2.5.2 Wind turbine controllers

Wind speeds varies depends on the environment and the time. Thus, the rotating

speed of the wind generator is not constant, which is different from the electrical

synchronous speed of the grid. Therefore, the electrical base frequency of the wind

generator should be set to a value with respect to the rates mechanical speed of the

wind turbine [24]. Equation 2.17 and 2.18 illustrate the value for the electrical base

speed of the synchronous machine.

fbase =
P

2
.
RPMTUR

60
, (2.17)
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ωB = 2πf = π.P.
RPM

60
, (2.18)

Wind turbines contain control system that is used to increase the output efficiency

and decrease the loads on the structure. Control system consists of several computers

to continuously monitor the direction and speed of the wind. In addition, it collects

and analyze the data that are receive it from sensors. Furthermore, yaw system

actively adjust the angle of attack based on the direction and the measurements of

the wind. Therefore, the control system mainly controls the yaw system, the blade

pitch system and the generator. To collect the data of the wind such as direction and

speed, there are several sensors that can be used. For instance, a cup anemometer

which measures the wind speed and send it to the central controller. Another type

of sensors that can be used is ultrasonic anemometer. It sends high frequency waves

between the four poles and then it measures the phase shifting in the received signals.

In addition, the type of generators that can be used for the wind turbine are doubly fed

induction generator (DFIG), squirrel cage induction generator (SCIG), wound rotor

induction generator (WRIG), permanent magnet synchronous generator (PMSG) and

finally electrically excited synchronous generator (EESG). The most using generators

are DFIG and SCIG generators [24].

35



2.5.3 Permanent magnet synchronous generator model

Permanent magnet synchronous generator is the most important part in the wind

power generation system, which transfer the mechanical power into electrical power

and then connect with grid. The PMSG will generate the power and then it will be

transferred to the power converters, which control the power before send it to the

grid. The converters are required because the PMSG generates a variable frequency

voltage that need to match the constant grid voltage [38]. The state space relationship

between the terminal voltage of the PMSG and the currents and the phase flux

linkages in abc reference can be expressed as following:


vas

vbs

vcs

 =


Rs 0 0

0 Rs 0

0 0 Rs



ias

ibs

ics

+
d

dt


λas

λbs

λcs

 (2.19)

Where, vas, vbs and vcs the instantaneous three phase stator voltages in abc refer-

ence, ias, ibs and ics the instantaneous three phase stator current in the same reference,

and λas, λbs and λcs the instantaneous flux linkage, which can be expressed in the

following equation:


λas

λbs

λcs

 =


Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc



ias

ibs

ics

+


λr cos(θr)

λr cos(θr − 2π
3

)

λr cos(θr + 2π
3

)

 (2.20)

Where, Laa, Lbb and Lcc the self inductance of three phases , Lab, Lac, Lba, Lbc,
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Lca and Lca the mutual inductance between phases, λr the rotor flux linkage and θr

function of both self and mutual inductance [38]. On the other hand, the voltages of

the PMSG in dq reference can be expressed as following:

vds = Rsids + Ld
dids
dt

− ωeLqsiqs, (2.21)

vqs = Rsiqs + Ld
diqs
dt

− ωeLdsids + ωeλr, (2.22)

Where, vds and vqs the instantaneous stator voltages in dq reference, ids and iqs

the instantaneous stator current in dq reference,  Ld and  Lq the inductance in dq

reference and ωe and λr the electrical angular speed and flux linkage respectively [38].

The cut-in speed is determined by the parameters of the turbine as well as the cogging

torque of the motor. It must be small as much as possible to increase the efficiency

of the turbine. In addition, cogging torque affected by several design factors such as

air gap length, magnet performance, slot opening and pole pitch of the magnet [12].

The electromagnetic torque of the generator can obtained as:

Te =
3

2
P (λriqs − (Ld − Lq)idsiqs), (2.23)

Where P the number of pole pairs, λr rotor flux-linkage (Wb), Ld and Lq are

dq-axis stator self inductance respectively and ids and iqs are dq-axis stator currents

respectively.
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The d-axis stator current ids could be controlled to be zero in order to have a

linear relationship between Te and the stator current at constant rotor flux linkage

λr. Therefore, 2.23 can be simplified as:

Te =
3

2
P (λriqs) =

3

2
P (λris), (2.24)

The magnitude of the stator voltage could be expressed as:

Vs =
√

(vds)2 + (vqs)2 =
√

(ωrLqiqs)2 + (ωrλr)2, (2.25)

The stator power factor angle is expressed as:

φs = θv − θi, (2.26)

Where θv and θi are the angles of the stator voltage and current vectors respec-

tively, given by:

θv = tan−1(
vqs
vds

), (2.27)

θi = tan−1(
iqs
ids

), (2.28)
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2.5.4 PSCAD model

Wind power is an important resource of energy that could used to increase the

capacity and the reliability of the grid. There are several types of wind turbines are

used for this industry. One of these types is the full converter wind turbine using

a permanent magnet synchronous generator. Many advantages can be achieved by

using this technology. For instance, allowing the turbine to operate over a wide

range of wind speeds, which results to improved the power extraction from the grid.

Moreover, improving the fault response of the system, which increase the reliability

of the grid [39].

Integration of the wind turbines with the grid requires steady state studies and

dynamic transient studies of the turbines along with its collector system in order

to simulate the impact of the dynamic events on the power system such as loss of

generation, loss of wind, loss of generation, short circuit voltage and loss of lines.

Power electronics has a significant effect on the system since it controls the output

power from the generator. The interface between the generator and the grid is AC-

DC-AC conversion system. The AC-DC converter consists of diode bridge rectifier and

a buck-boost converter in order to control the DC link voltage. Furthermore, The DC-

AC conversion is using a current controlled inverter, which regulates the reactive and

real power of the system. Full converter wind turbine consists of different subsystems,

which are electrical and mechanical subsystems. It consists of aerodynamic model for
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rotor, reference power calculations, pitch controller, power electronics subsystem and

PMSG model. In this model, wind turbines rated of 2 MW from Vestas company will

be used. In addition, the full technical data is as appendix at the end of the report.

Power system simulation tools PSCAD/EMTDC will be used to simulation studies.

The aerodynamic torque (see also equation 2.23 can then be calculated as:

Trotor =
Protor
ωrotor

=
1
2
.ρ.Cp.πR

2
rotor.V

3
wind

ωrotor
, (2.29)

Where Cp the rotor power coefficient and can be expressed as following:

Cp =
Protor
Pwind

, (2.30)

The TSR λ and the user-defined blade pitch angle β are used to calculate the

rotor power coefficient CP as following:

Cp = 0.5(λ− 0.022β2 − 5.6)e−0.17λ, (2.31)

Since the wind turbine in this model will be installed close to the sea level, the

air density ρ is 1.23 kg/m. Therefore, from (3.3), the power of the turbine can be

calculated as :

P = 0.5 ∗ 1.23 ∗ 9852 ∗ 0.5 ∗ 123 = 5.192MW, (2.32)
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From equation 2.33, the theoretical output power is larger than rated power of

the turbine, because the Betz law, which means that wind turbines can not be better

than 0.59 efficient. Therefore, the rated output power would be:

P = 5.192 ∗ 0.59 = 3.06MW, (2.33)

The mechanical torque of the generator is dependent on the power and the wind

speed (as explained in equation 2.16. Tm = 1450/3.06M = 2068.9 N.m

Table 2.2: Generator data
Type Permanent Magnet synchronous generator

Rate Power (MW) 2
Rate Apparent Power (MVA) 2.35

Rated Voltage (kV) 0.71
Rated Current (kA) 11.5 to 14
Rated Speed (rpm) 1450

Number of Poles 12
Xd 0

Table 2.3 illustrates the parameters of the turbine that is used in the module. In

addition, the wind governor parameters is defined in Table 2.4.

Table 2.3: The wind turbine parameters.

The parameters of the synchronous generator component are shown in table 2.5.
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Table 2.4: The wind governor parameters.

Table 2.5: The synchronous generator parameters.

Finally, the schematic of the model is shown in fig. 2.18
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Figure 2.18: PS-CAD Model of a wind turbine generator.
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Chapter 3

Simulation of PV, Wind Turbine,
Water Desalination Plant and the
Grid

This chapter explains the control and protection for integrating the PV, the wind

turbines and water desalination plant with the grid. PV is divided into several parts

and every part has separate DC/DC converters and two levels inverter in order to

grid voltage control. The wind turbines also divided into several parts and each part

has its own AC/DC converter and DC/AC inverter. The water desalination plant is

expressed as constant speed pumps, which represent the water desalination process.

The PV arrays, the wind turbines and constant speed pumps are connected to the

electric grid with different operation modes.

3.1 Introduction

Renewable energy resources are expected to be essential proportion of the future

smart grid. According to the institute for energy research [1], about 9.9% of the total
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consumed energy In 2015 was from renewable resources. In addition, about 24.42

GW of PV was installed between 2010 and 2015. Several countries over the world use

the renewable resources as a portion of their grid. For instance, Germany and China

generate about 39.7 GW and 43.5 GW respectively from the PV in 2015 [1]. Thus, it

is significant to study the effect of the integrating the wind turbines and PV with the

grid. A substantial amount of literature exists on renewable resources integrated with

the grid, and some of these literatures are on energy storage systems and maximum

power point tracking techniques [5]. Some authors discuss the control of the voltage

and frequency of the grid [30]. Total harmonic distortion of the injected current to

the grid was explained [40, 41]. Other researches explained the typologies for DC-DC

converter, PV inverters and AC-DC converters [42]. Each section of the PV systems

has a PV array, DC-DC, transformer and DC-AC converter connected in parallel in

order to connected the PV array with the grid as shown in Fig3.1.

The two level invertes could be cascaded with proper control to obtain a multilevel

output voltage waveform. Moreover, each inverters connected with the grid through 2

winding transformer. For wind power system, it is divided to several sections and each

section has wind blades, PMSG, AC-DC converter and DC-AC inverter as illustrated

in fig3.2.

The conversion system consists of converter for rotor side, another converter for

grid side and control system for the converters. Conversion topology accomplished
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Figure 3.1: Schematic of grid tied PV system consists of multiple units connected in
parallel with one transformer [9].

Figure 3.2: The schematic of grid tied wind turbine system including a wind turbine
connected with one PMSG, converters and transformer.
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by a diode-bridge rectifier and a buck-boost converter, which controls the DC link

voltage. The DC-AC conversion is using a current-controlled inverter, which controls

the real and reactive output power.

3.2 PV System

PV system has been divided into several section in order to meet the power con-

ditioning electronics requirements [43]. Each sections include a buck converter con-

nected with the PV array to maintain the output voltage at the maximum power

point. When multiple strings are connected together, [44] suggests using the buck

converter for maximum power point tracking. The buck converter is connected with

two level central inverter via DC link capacitor. ∆-Y transformer could be used to

connect the PV with the grid. Fig3.3 shows the schematic of the one PV section in

PSCAD.

Practical implementations may use a ∆-Y transformer also [22].

3.2.1 PV array

Photovoltaic cell mainly converts the light energy into electricity. The intensity of

the radiation on the cell controls the current, while the increase in the temperature

of the cell results on reduce the voltage. The solar cell will have its maximum voltage

when no load is connected with the cell, which known as open circuit voltage (Voc)

and the solar cell current will be its minimum. On the other hand, when the solar
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Figure 3.3: Schematic of PV unit in PSCAD showing the solar PV panel, 2-level
inverter, DC-DC converter, transformer and grid based on [9].
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cell is short circuited, the voltage will be its minimum and the current reaches its

maximum, which known as short circuit current (Isc). Thus, solar cell will produce

its maximum electric power at the knee of the I-V curve as shown in fig3.4, which

known as MPP [9].

Figure 3.4: Solar panel I-V characteristics curve [9].

The relationship between voltage and current of the PV cell is expressed as:

Icell = Ig − Io[e

(
q(v+IcellRsr)

nKTc

)
− 1] −

(
v + IcellRsr

Rsh

)
, (3.1)

where, Ig, the photo current generated; Io, the saturation current; K, the Boltz-

mann constant; q, the electron charge; V, the output voltage; Tc, the cell temperature;

Rsh, the shunt resistance and Rsr, the series resistance [42]. Open circuit voltage of

the cell (Voc) typically varies from 23.3 to 44.2 V when tested under standard test

conditions (STC) and depending on the material of cell. In this PV system, each
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module consists of two strings connected in parallel with 40 cells connected in series

per string in order to achieve Voc of 43.7V and short circuit current of 9.12A per

module under (STC). In addition, the PV array consists of 160 strings of PV module

with 24 modules per strings in order to keep the DC voltage below 1kV. Table3.1

shows the PV cell and module specifications in the PV system.

Table 3.1: PV cell and module specifications
Parameters Value

PV cell open circuit voltage Voc (V) 1.09
PV cell short circuit current Isc (A) 4.56
PV module open circuit voltage (V) 43.7
PV module short circuit current (A) 9.12

Maximum power (W) 260

3.2.2 MPPT

Maximum power point tracking MPPT is an electronic system that varies the the

operating point of the PV module in order to deliver the maximum available power.

The output power from the PV module depends on the environment conditions such

as the temperature and irradiation. Therefore, MPPT is used in order to produce

the maximum power from the PV module, which is at the knee of the I-V curve at

every conditions [41]. In this model, the incremental conductance method will be

used. Before the incremental conductance method determines the reference voltage

(Vmppt) based on MPP, the output voltage (VPV ) and current (IPV ) of the PV array

is continuously measured and filtered as illustrated in fig3.5 . Therefore, the PI
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controller is used to ensure that the (VPV ) is equal to (Vmppt) by changing the duty

cycle of the DC-DC converter and compare it with a high frequency triangular signal

generator in order to produce the IGBT gating pulse as shown in fig3.6.

Figure 3.5: Schematic diagram for MPPT control in the PSCAD [9].

Figure 3.6: Control diagram for DC-DC converter in the PSCAD [9].

3.3 Wind turbine

Wind energy system has been divided into six separate sections, and each sec-

tion produces 2 MW. Each section has mechanical and electrical components. The

mechanical components extracts the power from the wind turbine and produce me-

chanical torque. The electrical components converts the mechanical torque to an
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electrical torque and generate electric power. Permanent magnet synchronous gen-

erator PMSG is the interface between the mechanical and the electrical components

[39]. The electrical consists of two converters for grid side and rotor side, convert-

ers control and measurements multi-meters. The mechanical system consists of the

wind turbine and pitch angle controller. Fig3.7 illustrates the PSCAD module for

one wind turbine of 2 MW, which includes the PMSG, converters with controller and

transformer.

Figure 3.7: Schematic of 2MW wind turbine unit in PSCAD showing the turbine,
mechanical dynamic block, PMSG, AC-DC converter, DC-AC converter and trans-
former.

The electrical generator is used in this model is a three-phase permanent magnet

synchronous generator since it has a high efficiency with less maintenance. Also, it

is used for different speed variation [38]. 3.2 illustrates the electrical specifications of

the PMSG in PSCAD simulation.
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Table 3.2: Electrical specification of the generator

Type Permanent magnet synchronous generator
Rated power 2 MW

Rated apparent power 2.35 MVA (@pf=0.85)
Rated speed 1450 rpm
Frequency 145 Hz

Voltage 710 V
Number of poles 12

3.3.1 AC/DC/AC converters

The wind speed is variable and typically depends on the time of the day. AC-DC-

AC conversion system must be used in order to regulate and connect the output power

of the generator with the grid. Three system variables must be controlled in order to

regulate the output power from the PMSG, which are the maximum output power

that are produced by the turbine, the reactive power injected to the grid and the DC

link voltage of the power converters [14]. The conversion system consists of rotor side

converter and grid side inverter. While the rotor side converter controls the active

power by controlling the current of the rotor circuit, the grid side converter controls

the DC bus voltage and reactive power to the grid [11]. Fig3.8 illustrates the schematic

diagram for the control system of the conversion system that are used in the model.

In addition, using fully controllable rectifier permits variable speed operation, and

maximum power point tracking for different wind speeds. Fig3.9 Fig3.13 illustrate the

schematic diagram for the rectifier control and the PSCAD model for the same system

respectively. Hysteresis current control is a PWM technique, which has implemented
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Figure 3.8: Schematic diagram for the control system of the conversion system.

in this control system of the converters for its simplicity and is used for high rating

power system. It operates by comparing a current error such as the difference between

the measure phase current and the demand current [45]. Furthermore, when the error

exceeds the upper hysteresis band, the converter output is switched low and vise versa.

Pulse width modulation PWM controller can be used in this system, which can get

much less ripple in the controller currents. Fig3.13 shows PSCAD model for the same

system.

As shown in figure3.11, the reference speed of the generator ωref is calculated based

on the pitch control topology, and then compare it with the measured generator speed.

Thus, the error are sent to PI controller, which generate q-axis reference current iqref .
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Figure 3.9: Scematic diagram for the rectifier control based on [15].

Figure 3.10: Scematic diagram for the inverter control based on [15].
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Figure 3.11: Power circuit diagram in PSCAD simulator shows the control system
that are used for the converters.
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The d-axis reference current of the stator idref is set to be zero in order to realize the

zero d-axis control (ZDC) topology. Thus, the stator current is equal to its q-axis

component iqs as following:

is =
√
i2qs + i2ds = iqs, (3.2)

Furthermore, idref and iqref are transformed into abc stationary frame by using

dq/abc block. The three measured currents ia, ib and ic can be adjusted by using

PWM block, which adjust them according to their reference values. In addition, the

three phase stator currents ias ibs and ics are transformed into dq-axis currents ids ans

iqs respectively. The daxis current is set to be zero and the qaxis current is controlled

in order to control the electromagnetic torque Te [25]. The measured grid voltages

are sent to a phase locked loop (PLL) control to track the grid voltage vector and

generate the angle of the grid voltage θ for the voltage oriented control (VOC) as

shown in fig3.12. Fig3.13 shows the circuit diagram for the rectifier, inverter and

control system.

3.3.2 Phase locked loop

A phase locked loop (PLL) is a closed-loop system, which an internal oscillator

is controlled to keep the time of some external periodical signal by using the feed-

back loop [27]. In addition, PLL techniques are used in many fields such as power

electronics, communications and computers. Grid connected power converters match
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Figure 3.12: Power circuit diagram in PSCAD simulator shows the phase locked loop
that are used to track the grid voltage.

the function of the PLL since it should work in harmony with the grid. It must

phase lock its internal oscillator to some certain power signal from grid to generate

an amplitude and phase coherent internal signal, which is used for control system.

PLL produces continuous information about the phase angle and amplitude of the

magnitude of interest such as grid voltage that allows space vector based controller

to be employed. PLL mainly consists of three main block as shown in fig3.14. The

first block is the phase detector PD, which generates an output signal relative to the

phase difference between the signal generated by the oscillator and the input signal.

The second block is the loop filter LF, which provides a low pass filtering to the high

frequency AC signal from PD block. PI controller or first order low pass filter can

be employed for this block. The third block is the volatge controlled oscillator VCO,

which generates with its output an AC signal that has shifted frequency based on the

given central frequency [16].
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Figure 3.13: Power circuit diagram in PSCAD simulator shows 2-level inverters, 2-
level rectifier and the control system for both the rectifier and the inverter.

Figure 3.14: The structure of the phase locked loop PLL [16].
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3.3.3 Output power control

The extracted power from the wind turbine can be controlled in order to opti-

mize the power by several control strategists. Pitch control and passive stall control

are the most popular control strategies being used to optimize the extracted power

from the wind turbine. Pitch controller is equipped with a closed loop rotor speed

controller that regulates the pitch angle for the rotor blades in order to optimize the

extracted mechanical power from the turbine with respect to the wind speed vari-

ation [26]. Therefore, the rotor blades will be either pitched toward the wind to

optimize the wind energy or turned out the wind to protect the turbine from the

mechanical damage. In addition, while the wind speed ranges from cut-in speed to

the nominal speed, the power coefficient Cp will be optimized by adjusting the pitch

angle, which results to maximize the output power from the turbine. For the high

wind speeds, the pitch controller will maintain a constant nominal power. The other

control strategy is the passive stall control, which is aerodynamically designed to pro-

duce turbulence beyond a certain speed and gradually increasing the attack’s angle

of the blades until leading the blades to stall [24]. For high wind speed, this topol-

ogy allows regulating the mechanical power from the wind turbine to protect it from

any mechanical damages. Moreover, the pitch angle is constant, which results to low

maintenance cost compared to pitch control strategy, because the less mechanically

moving elements [23]. However, the disadvantage of this control topology is during
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Figure 3.15: Power circuit diagram in PSCAD simulator shows the 2-level converter
used for rotor side and grid side.

the operating speeds above the nominal wind speeds, which leads to drop in below

the nominal power. Furthermore, another disadvantage is the voltage flicker in the

system since the turbine torque is sensitive to any change in the wind speed [15]. The

control model for the converters that are used in this model consists of two levels

converters for the rotor side and the grid side converters. In addition, it is developed

based on IGBT switches as illustrated in fig3.15.

3.4 Water desalination plant

Water desalination process is an intensive energy consumption, which results to

high cost. Thermal process such as multistage flash (MSF) requires thermal and elec-

trical energy such as heaters and pumps for water desalination process. It requires the

electrical energy for driving the pumps such as water cooling pumps, water recycling

pumps and brine blow down pumps [28]. It mainly consumes between 19.58 kWh/m3

and 27.25 kWh/m3 to desalinated water. On the other hand, reverse osmosis (RO)
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requires electrical energy for the high pressure pumps, which consumes about 4-6

kWh/m3, which make it widely used in many of the desalination plants [2].

The minimum energy requirement for water desalination can be expressed by using

Van’t Hoff formula as following:

π = cRT, (3.3)

Where, π the osmotic pressure, c the molar concentration of salt ions, R the

gas constant, which equals 0.082 and T the ambient temperature on the absolute

temperature scale. For the seawater, c equals 1.128 mol/liter, which results the π to be

27.8 bar or 278 kg.m/L. Moreover, since each 10 Joules equal 1 kg.m or 0.77 kWh/m3.

In this model, the grid in the PSCAD simulator represents the water desalination

plant since the inverter’s controller requires the angel θ for voltage synchronization.

3.5 Simulation results and discussion

A single wind turbine with power conversion system is modeled and simulated in

PSCAD simulater as illustrated in fig3.7 with a simulation time step of 50µs, which

is a typical step for most practical circuits. In addition, this simulation time step

allows high accuracy for the waveform of the system output and power electronics

converter [46]. Simulation time steps can be changed to different values to get more

accuracy but with a long simulation time [47]. In this scenario, the rectifier maintain
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the output voltage of the PMSG, while the inverter maintain the output active power.

To simulate the the entire system with the grid, six turbine units of 2 MW connected

in parallel with the grid and simulated as shown in fig3.16a. Each wind turbine

has own transformer in order to connect the turbine with the grid, which is step up

transformer and the grid voltage level is 13.2 kV. In order to illustrates the effect

of speed changes on the turbine, the wind speed suddenly decreases from 9.5 m/s

to 7.5 m/s at 20s simulation time. Fig3.22 shows the output voltage of the rectifier,

which maintains the voltage at 1.1 pu. While the wind speed suddenly decreases from

9.5 m/s to 7.5 m/s, the rectifier maintains the voltage at 1.1 pu. Fig3.23 shows the

ids and iqs currents of the rectifier’s control system and their reference respectively.

Similarly, fig3.24 show the inverter’s actual and reference current components Iq and

Id respectively. Iq is regulated to maintain the output active power of the turbine

since the Id current is set to be zero. Moreover, Fig3.18 shows the output active and

reactive powers from one turbine, which equal approximately 1.89 pu active power

and approximately 0.05 pu reactive power. When the wind speed suddenly changed,

the output active power drops to 0.65 pu and the reactive power drops to 0.01 pu

since the active power depends on the wind speed. In addition, fig3.19 shows the

total output active and reactive powers from six wind turbine PT and QT to the grid.
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(a) (b)

Figure 3.16: (a) Overall Schematic diagram diagram in PSCAD for wind farm
connected with the grid, (b) Detail schematic inside the wind farm showing six wind
turbine units connected in parallel with total of 12 MW. The detail model of each
unit is illustrated in fig 3.7 .
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Figure 3.17: The wind speed and the mechanical speed of the generator, where the
mechanical speed equal 0.8 p.u. at wind speed 9.5 m/s and drops to 0.65 p.u. when
the wind speed suddenly changed.

3.6 Summary

This chapter explains the layout of a multi wind turbines grid connected model

built in PSCAD, which is a simulation software typically employed for power system

transient analysis. The system consists of six wind turbines with their own rectifier,

inverter, control system for both rectifier and inverter and step up transformer. Each

wind turbines rated of two MW with total of 12 MW of the entire wind turbines. All

sections are connected in parallel. For the grid side inverters, the grid voltage ori-

ented control VOC is used, which allowing independent control of active and reactive
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Figure 3.18: The output active and reactive powers from one wind turbine, where
numeric change happens in the first second and then being regulated by the controller.
When the wind speed suddenly changed, the output active power drops to 0.65 pu
and the reactive power drops to 0.01 pu since the active power depends on the wind
speed.

Figure 3.19: The total output active and reactive powers from six wind turbine to
the grid.
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Figure 3.20: The three phase output voltages from six wind turbines.
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Figure 3.21: The three phase output currents from six turbines, where it decreases
when the wind speed decrease.
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Figure 3.22: The output voltage of the rectifier, which maintains the voltage at 1.1
kV. While the wind speed suddenly decreases from 9.5 m/s to 7.5 m/s at 20s, the
rectifier maintains the voltage at at the same value with a numeric change due to the
change in Iq.
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Figure 3.23: The Id, Iq and their reference currents for the controller of rectifier, where
the Id is set to be zero and the Iq is regulated to maintain the voltage at reference
value.
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Figure 3.24: The Id, Iq and their reference currents for the controller of inverter,
where the Id is set to be zero and the Iq is regulated to maintain the active power.
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powers. In addition, the grid-side converter controls the DC bus voltage and the re-

active power, while the generator-side converter controls active powers by controlling

the currents of the rotor circuit. The control topology of the converters is zero d-axis

control (ZDC), where the d-axis reference current of the stator is kept zero and the

stator current equal the q-axis stator current iqs.
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Chapter 4

Case Studies for Desalination
Plant Integrated with Hybrid
Power System

4.1 Introduction

Using renewable energy resource for electricity generation became trend in many

countries in the world. In addition, renewable energy resources can be used for several

purposes such as water desalination, transportation and water cooling and heating.

Furthermore, renewable energy resources could be used to provide electricity to the

rural areas, which struggle from the power outages due to the unavailability of the

power resources [19]. The potentials in wind power as well as PV systems have been

growing significantly in the last decade. Many countries started to build wind farms

and integrate them with their grid and with other renewable energy resources such

as PV. For instance, the united states plans to receive 20 percent of their power

demand from the from wind by 2030. In addition, Saudi Arabia plans to produce
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200 GW from the renewable energy resources by 2030 [4]. Solar energy is one of the

most attractive resource of renewable energy, because it is scalable for residential and

multi-megawatts installations. Also, it can meet most of the power requirements [42].

4.2 Overall rating

The first proposed model consists of 6 individual wind turbines of 2 MW, which

total of 12 MW and 1.5 MW from PV unit is integrated with grid, which represents

the desalination plant as illustrates in fig4.3. For PV system, the PSCAD model, PV

arrays and the control systems was developed by one of the SPARK’s lab member

Mr. Akeyo in partial fulfillment of the requirements for his master degree as shown in

fig4.2. The open circuit voltage of PV module counts on the material used for the cell,

which is between 23.3 to 44.2 V [34]. Therefore, in this module, 2 parallel strings with

40 cells connected in series per strings to have an open circuit voltage of 43.7 V and

short circuit current of 9.12 A for each module under standard test conditions (STC).

The PV array consists of 160 strings with 24 modules in each strings connected in

series in order to regulate the DC voltage to be under 1 kV [55]. In addition, the PV

array suddenly shaded in order to illustrates the effect of irradiance drop. In this case

study, the irradiance dropped from 1000 W/m2 to 500 W/m2 at 20s simulation time

as well as the wind speed dropped from 9.5 m/s to 7.5 m/s at the same simulation

time. The change in the wind speed leads to a decrease in the output active power
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(a) (b)

Figure 4.1: (a) Schematic of the system in PSCAD showing the wind farm connected
in parallel with 1 MW solar plant, (b) Six wind turbine units connected in parallel
with total of 12 MW.

of the turbine following which the inverter reduces its iq reference. Similarly, the

DC bus voltage of the PV decreases, because the PV inverter reduces its real power

reference to compensate for the shading. In addition, when the irradiance suddenly

reduced, the array terminal volateg moves away from the MPP before the controller

adjusts the duty cycle ratio and then back at MPP.

The second proposed model consists of six wind turbines with total of 12 MW

connected in parallel and works as stand alone system for a R-L load, which represents

the desalination plant. Stand alone systems are good for rural areas, which power
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Figure 4.2: Schematic of the system in PSCAD showing the PV system with power
controlling based on [9]. The detail model is illustrated in fig3.3

sources are impractical or unavailable to provide electricity. Thus, it is more economic

to install a stand alone system than install a new power plant or extend the power

lines and cables. In this case study, Each turbine rated of 2 MW with total of 12 MW

from the six turbines. The load in the first case is R-L load, which equals 16.66Ω +

0.0016H. Fig4.16 shows the PSCAD schematic of six wind turbine units connected

in parallel with R-L load.

4.2.1 Simulation results

The performance of the second proposed case studies was designed and simulated

at 50µ s solution time-step using PSCADTM/ EMTDCTM. The system works as

stand alone mode, which an arbitrary rotating reference frame at 60 Hz is used. Also,

the Id current is forced to be zero and the Iq current controls the active power of the

turbine as shown in fig4.13. In addition, the absorbed reactive power depends on the

load inductance. The output power from the wind turbine is operating at maximum

power point. At 20s simulation time, wind speed dropped from 9.5 m/s to 7.5 m/s
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(a) (b)

Figure 4.3: (a) Schematic of the system in PSCAD showing the load connected with
the wind farm, which consists of 6 wind turbines connected in parallel with total of
12 MW, (b) Six wind turbine units connected in parallel with total of 12 MW.
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Figure 4.4: The output active and reactive powers from one wind turbine, where
numeric change happens in the first second and then being regulated by the controller.
When the wind speed suddenly changed, the output active power drops to 0.65 pu
and the reactive power drops to 0.01 pu since the active power depends on the wind
speed.

in order to illustrates the effect of the wind speed changes on the system.

The output reactive power of the system should be zero. However, since the load

in the stand alone system is R-L load and the voltage equations of the PMSG as

illustrated in equations 2.21 and 2.22 in chapter 2 shows that the Vd is not zero even

Id is zero. Therefore, the reactive power of the system Q = 3
2
Iq Vd. In addition, the

angle of the grid θ is required for transformation and is obtained from a synchronous

rotating reference frame at 60 Hz.

78



Figure 4.5: The output active and reactive powers from six wind turbines and PV
system, where numeric change happens in the first second and then being regulated
by the controller. When the wind speed suddenly changed, the output active power
drops to 5 MW and the reactive power drops to 0.01 pu since the active power depends
on the wind speed.

Figure 4.6: The output active and reactive powers from one wind turbine, where
numeric change happens in the first second and then being regulated by the controller.
When the wind speed suddenly changed, the output active power drops to 0.65 pu
and the reactive power drops to 0.01 pu since the active power depends on the wind
speed.
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Figure 4.7: The DC Power from the PV. Reduction in irradiance at 20s simulation
time leads to decrease in PV output current making the PV DC power drop.

Figure 4.8: PV AC power output at unity power factor irrespective of changes in
array irradiance..
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Figure 4.9: The three phase output voltages of the system.

Figure 4.10: The three phase output currents to the grid.
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Figure 4.11: The control system of the power conversion system of the wind turbine
operating in the stand-alone mode.

Figure 4.12: The Iq current and its reference current for the controller of inverter,
where the Id is set to be zero and the Iq is regulated to maintain the active power.
The magnitude of the Iq current is high, because the rating of the system, where the
control is being difficult for high ratings.
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Figure 4.13: The Id current and its reference current for the controller of inverter,
where is set to be zero and the. The high ripple is a result of the PI tuning of the
controller and the high rating of the system.

Figure 4.14: The output active and reactive powers from the system, where numeric
change happens in the first second and then being regulated by the controller. When
the wind speed and the irradiance suddenly changed, the output active power drops
to 5.1 MW and the reactive power drops to 0.01 pu since the active power depends
on the wind speed.
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Figure 4.15: Schematic of the system in PSCAD showing the wind farm connected in
parallel with solar plant. The wind farm consists of 6 wind turbine units connected
in parallel with total of 12 MW and the PV rated of 1 MW.

Figure 4.16: Schematic of the system in PSCAD showing the wind farm connected in
parallel with solar plant. The wind farm consists of 6 wind turbine units connected
in parallel with total of 12 MW and the PV rated of 1 MW.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis focus on integrating a multi-wind turbine units connected in paral-

lel with the grid. The output power from the wind farm to the grid was controlled

under different wind speeds. Also, a PV system and wind farm which consists of

6 wind turbine units connected in parallel integrated with the grid was simulated

and analyzed. The power control of both PV system and wind turbines under sev-

eral conditions such as wind speeds variation and irradiance variations was simulated

and analyzed. In addition, the wind farm connected with the load and work as a

stand alone system, which represents the water desalination plant was introduced

and simulated. The wind blades, permanent magnet synchronous generator, power

electronic converters, controls and transformers were designed and simulated using

PSCADTM/EMTDCTM , which is a tool typically employed for power system tran-

sient analysis.
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In chapter 1 and 2, background about the research and relevant topics were re-

viewed as well as modeling of components and different control strategies for the power

system conversion. Also, the water desalination process and power consumption were

introduced.

In chapter 3, a significant concept and software implementation of 12 MW wind

farm integrated with the grid was introduced. The wind farm consists of 6 wind

turbine units rated of 2 MW connected in parallel with total of 12 MW. Each turbine

has its own PMSG, power conversion system and control and step up transformer.

In chapter 4, two different case studies were implemented and introduced. The first

one was a grid tied wind farm and PV system with different environment conditions

such as wind speed change and irradiance changes. The control system of the power

conversion regulates and maintain the voltage and the output active power. The

other case study was a stand alone system, which integrate the wind farm with load

that represent water desalination plant.

5.2 Future work

The thesis has explained integrating different renewable energy resources with

the grid along with associated control scheme under several environment conditions.

Extract the maximum power from the turbine can be achieved by several control

strategies such as pitch control and aerodynamic design of the blades. Pitch control

strategy maintains the optimal power from the turbine over a wide range of wind speed
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conditions. Pitch control maintains the actual output power of the generator to be

around the rated power by increasing the pitch angle when the wind speed exceeds

the rated speed of the turbine. Thus, the mechanical and electrical components of the

turbine such as the generator and the blades could be protected for over-wind speed

conditions. In addition, future work can investigate the transient and sub-transient

of stand alone systems integrated with wind farm and PV system. Also simulate and

analyze the effect of the relative wind turbine size, and control strategies employed

on the stability of the grid in case of wind speed exceeds the rated speed.
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