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The temporal control mechanisms that precisely control ani-
mal development remain largely elusive. The timing of major
developmental transitions in insects, including molting and
metamorphosis, is coordinated by the steroid hormone 20-hy-
droxyecdysone (20E). 20E involves feedback loops to maintain
pulses of ecdysteroid biosynthesis leading to its upsurge,
whereas the underpinning molecular mechanisms are not well
understood. Using the silkworm Bombyx mori as a model, we
demonstrated that E75, the 20E primary response gene, medi-
ates a regulatory loop between ecdysteroid biosynthesis and 20E
signaling. E75 isoforms A and C directly bind to retinoic acid
receptor-related response elements in Halloween gene pro-
moter regions to induce gene expression thus promoting ecdys-
teroid biosynthesis and developmental transition, whereas iso-
form B antagonizes the transcriptional activity of isoform A/C
through physical interaction. As the expression of E75 isoforms
is differentially induced by 20E, the E75-mediated regulatory
loop represents a fine autoregulation of steroidogenesis, which
contributes to the precise control of developmental timing.

Animals undergo developmental transitions from the
embryo to juvenile to adulthood, and these processes are deter-
mined by steroid hormones and their corresponding nuclear
receptors (NRs).2 In insects, 20-hydroxyecdysone (20E; ecdy-

sone is the immediate precursor of 20E; 20E and ecdysone are
the main ecdysteroids) is the actual steroid hormone. The ecdy-
sone receptor (EcR) and its partner molecule, Ultraspiracle
(USP), form the functional NR complex of 20E. In conjunction
with EcR-USP, 20E activates a small set of early response genes
encoding several transcription factors that further activate a
large set of downstream late response genes. Pulses of 20E sig-
nals initiate major developmental transitions in insects, includ-
ing egg hatching, larval-larval molting, and larval-pupal-adult
metamorphosis (1, 2).

NRs form a large and conserved superfamily of ligand-acti-
vated transcription factors that are essential for growth, devel-
opment, reproduction, homeostasis, and metabolism. NRs are
defined by the presence of a highly conserved DNA binding
domain (DBD) and a less conserved ligand binding domain (3,
4). There are 18 –19 NRs in insects, including the fruit fly, Dro-
sophila melanogaster, and the silkworm, Bombyx mori (3, 5, 6).
Apart from the EcR, ligand was only identified for another
insect NR, ecdysone-induced protein 75B (E75). E75 is a crucial
20E response gene that affects ecdysteroid titer. E75 binds to
heme, which responds to gases NO and CO (7–12). The E75
orthologs in mammals are Rev-erb � (NR1D1) and Rev-erb �
(NR1D2), and NR1D2 binds to heme, responds to NO, and
regulates circadian rhythm (13–15).

In Drosophila, the E75 locus encodes four E75 mRNA iso-
forms, E75A, E75B, E75C, and E75D, which are generated by
differential promoter usage and alternative splicing of 5� exons.
The DBD of E75A/C possesses two C4 zinc fingers; E75B is
incomplete and contains only one zinc finger, whereas E75D
lacks a DBD. 20E-EcR-USP rapidly and abundantly induces the
expression of E75A and E75B by binding to the 20E response
elements present in the promoter regions. In contrast, the 20E
induction of E75C expression is slow and weak (9, 16). Germ
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2012CB114600 (to S. L. and Y. C.), National Science Foundation of China
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line clones of E75-null mutants missing all three isoforms lead
to arrest during mid-oogenesis (17). Isoform-specific E75 null
mutants exhibit different phenotypes; E75A mutants show a
reduced ecdysteroid titer leading to developmental retardation
and molting defects; E75B mutants can survive and exhibit nor-
mal reproductive performance; and E75C mutants die within a
few days after eclosion (9). E75 might regulate 20E signals
through interaction with another 20E response gene HR3,
which encodes another important insect NR. HR3 controls the
termination of the 20E signal pulse, which triggers the larval-
prepupal transition by both inhibiting 20E-EcR-USP transacti-
vation by interacting with EcR and blocking ecdysone biosyn-
thesis by down-regulating the Halloween family of cytochrome
P450 genes (Halloween genes). HR3 also induces the expression
of �ftz-F1, which acts as a competent factor for EcR-USP to
respond to the subsequent 20E signal pulse during the prepu-
pal-pupal transition. Importantly, E75 acts as a transcriptional
repressor for HR3 in relieving HR3 inhibition on 20E signaling
and HR3 induction on �ftz-F1 expression. E75 inhibits the
transactivation ability of HR3 through physical interaction and
competing for binding to the retinoic acid receptor-related
receptor response elements (ROREs). Therefore, the 20E-in-
duced transcriptional cascade, including EcR-USP, E75, HR3,
and �ftz-F1, governs the larval-prepupal-pupal transition. In
addition, because NO and CO are able to reverse the ability of
E75 to interfere with HR3, the function of E75 is modulated by
gas availability (10 –12, 18 –21).

Early studies found that E75B interferes with HR3 induction
of �ftz-F1 expression (18), and later studies revealed that at
least E75A has the same function (11), indicating that E75 iso-
forms play similar roles in HR3 regulation. However, in female
adults, E75A induces apoptosis in the egg chamber at stages 8
and 9, whereas E75B prevents E75A function and thus allows
egg development, indicative of opposite roles in regulating
female reproduction (22). Similarly, E75 isoforms also play dis-
tinct roles in regulating female reproduction in the mosquito,
Aedes aegypti (23). Given that both E75A and E75B have similar
effects on HR3, HR3 clearly cannot account for the opposite
functions of the E75 isoforms, suggesting that E75 isoforms
may employ novel mechanisms to differentially regulate insect
development.

Bombyx E75 processes at least three isoforms, E75A, E75B,
and E75C, showing similar gene organization and 20E response
to Drosophila E75 (24, 25). Likewise, Bombyx E75A/C interacts
with HR3 and represses its transactivation activity by physical
interaction and competing for ROREs (26). We reasoned that
Bombyx could be a good model to solve the E75 isoform-spe-
cific mechanism, because this insect species has a compara-
tively longer life cycle for phenotypic observations and can be
genetically modified for functional analyses (27). A molecular
dissection of E75 isoforms in Bombyx found that, in addition to
acting as transcriptional repressors of HR3, E75 isoforms also
regulate ecdysteroid biosynthesis by directly controlling Hal-
loween gene expression. Mechanistically, E75A/C functions as
a transcriptional factor to directly induce Halloween gene
expression, whereas E75B antagonizes the transactivation abil-
ity of E75A/C. Given that the expression of E75 isoforms is
differentially induced by 20E, our study revealed an E75-medi-

ated regulatory loop that contributes to steroidogenesis auto-
regulation and thus developmental timing. Regarding the ulti-
mate regulation of ecdysteroid biosynthesis, E75 first functions
directly and then acts through inhibition of HR3.

Results

E75 RNAi Disrupts 20E Signaling and 20E-induced Meta-
morphosis—We have previously demonstrated that E75 iso-
forms display stage- and tissue-specific responses to 20E (25).
To determine the function of E75 during larval-pupal meta-
morphosis, expression of all three E75 isoforms was reduced by
RNAi (E75 RNAi) at the initiation of the wandering stage (IW).
E75 RNAi caused lethal phenotypes, with �60 and 10% lethality
during the prepupal and pupal stages, respectively. Some E75
RNAi larvae died during the wandering stage, and others failed
to form normal pupae and died as larval-pupal intermediates,
whereas others were arrested during the pupal stage or imme-
diately after adult emergence (Fig. 1, A–A�).

Importantly, E75 RNAi inhibited fat body remodeling, which
is controlled mainly by the 20E-triggered transcriptional cas-
cade during larval-pupal metamorphosis (28 –31). Twenty four
hours after injection with E75 double-stranded RNA (dsRNA)
(supplemental Fig. S1, A and B�), LysoTracker Red staining, the
number and size of autophagosomes and the ATG8 protein
levels decreased significantly, suggesting that the 20E-induced
fat body autophagy is affected by E75 RNAi (Fig. 1, B–B�).
Meanwhile, labeling with Hoechst 33342 and propidium
iodide, TUNEL staining, and measurement of caspase 3 activity
revealed significant reductions in 20E-induced fat body apopto-
sis by E75 RNAi (Fig. 1, C–C�). In addition, the 20E-induced fat
body cell dissociation that occurred 24 h after pupation in the
EGFP RNAi control pupae was significantly prevented in the
E75 RNAi pupae (Fig. 1D).

The effects of E75 RNAi on fat body remodeling suggest that
E75 is required for maintaining 20E signaling to promote larval-
pupal metamorphosis. The expression levels of several key
genes in the 20E-triggered transcriptional cascade were deter-
mined by quantitative real time PCR (qPCR) using the total
RNA isolated from the fat body collected 24 h after E75 dsRNA
injection. The mRNA levels of all the 20E-response genes
decreased by 60 –90% compared with their levels in the control
larvae (Fig. 1E). Moreover, Western blottings using EcR-B1,
USP, and Br-C antibodies revealed a decrease in their protein
levels in the E75 RNAi larvae (Fig. 1E�), indicating that E75
RNAi disrupts the 20E-triggered transcriptional cascade in the
fat body during larval-pupal metamorphosis. Overall, E75
RNAi disrupted 20E signaling, prevented fat body remodeling,
and caused lethality during metamorphosis.

E75 RNAi Down-regulates the Halloween Genes and
Decreases Ecdysteroid Biosynthesis—Several genes in the 20E-
triggered transcriptional cascade, including EcR, Br-C, E75,
HR3, and �ftz-F1, regulate ecdysteroid titers in Drosophila (9,
21, 32, 33). We recently identified the role of E93 in maintaining
ecdysteroid titers in Bombyx (31). As measured by enzyme
immunoassay (EIA) 24 h after dsRNA treatment, ecdysteroid
titers significantly decreased in E75 RNAi larvae (Fig. 2A), sug-
gesting that E75 is required for maintaining ecdysteroid titers in
Bombyx.

E75 Regulates Steroidogenesis
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The prothoracic glands produce and secrete ecdysone; once
released into the hemolymph, ecdysone is converted to 20E in
the peripheral tissues, such as the fat body and midgut (34).
Ecdysone and 20E in the mixture of hemolymph ecdysteroids
were separated and individually collected using reverse-phase
high performance lipid chromatography (rpHPLC) and then
measured by EIA. As expected, both titers of ecdysone and 20E
decreased in E75 RNAi larvae; moreover, the ratio between 20E
and ecdysone was further decreased in E75 RNAi larvae (Fig. 2,
B–B�).

In Bombyx, the Halloween genes, spook (spo), phantom
(phm), disembodied (dib), and shadow (sad), mediate the
sequential steps of ecdysone biosynthesis in the prothoracic
glands, whereas shade (shd) catalyzes the conversion from
ecdysone to 20E in the fat body and other peripheral tissues (35,

36). The mRNA levels of spo, phm, dib, and sad decreased by
more than 90% in the prothoracic glands isolated from E75
RNAi larvae (Fig. 2C). The prothoracic glands were dissected
out from the E75 RNAi larvae and cultured in vitro, and the
ecdysone released into the medium was measured by EIA.
Importantly, the ratio of ecdysone release by the cultured pro-
thoracic glands decreased by about half in E75 RNAi larvae (Fig.
2C�). Overall, the prothoracic glands of E75 RNAi larvae exhib-
ited normal morphology without apparent autophagy, apopto-
sis, and cell dissociation (supplemental Fig. S2, A and C). Nev-
ertheless, a large number of mitochondria, which are essential
for hormone production in endocrine organ cells, were mis-
shaped in the prothoracic gland cells from the E75 RNAi larvae,
supporting the reduced ecdysone production (Fig. 2C�). Mean-
while, the mRNA levels of shd decreased by 80% in the fat body
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FIGURE 1. E75 RNAi disrupts 20E signaling and 20E-induced metamorphosis. E75 dsRNA (30 �g per larva) was injected into each Bombyx larva at the
initiation of the wandering stage. EGFP dsRNA was used as a control. A and A�, E75 dsRNA-treated silkworms died during the prepupal (A), pupal (A�), and adult
(A�) stages. The chart (A�) shows the quantification of the lethality during the prepupal, pupal, and adult stages. B and B�, LysoTracker Red staining (red, �40)
(B); transmission electron microscopy analysis (�7500; black arrow denotes an autolysosome) (B�), and Western blotting of ATG8 (B�) in the fat body 24 h after
dsRNA treatment. C and C�, Hoechst 33342 (blue) and propidium iodide (red) staining (�40) (C); TUNEL labeling (green, �40) (C�), and caspase 3 activity (C�) in
the fat body 24 h after dsRNA treatment. D, comparison of fat body cell dissociation at 24 h after pupation. E and E�, qPCR analysis of 20E-response genes (E) and
Western blotting analysis of the protein levels of some 20E-response genes (E�) in the fat body at 24 h after dsRNA treatment.
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from the E75 RNAi larvae (Fig. 2D). The fat body tissues were
dissected and cultured in vitro with the addition of ecdysone
in the medium, and ecdysone and the newly converted 20E in
the medium were separated by rpHPLC and measured by
EIA. The conversion from ecdysone to 20E also decreased by
80% in the fat body dissected from the E75 RNAi larvae (Fig.
2D�). Taken together, these data demonstrated that E75
RNAi down-regulates Halloween genes that are responsible
for ecdysone biosynthesis in the prothoracic glands and the
conversion from ecdysone to 20E in the fat body, resulting in
the disruption of ecdysteroid biosynthesis and 20E-induced
metamorphosis.

Overexpression of E75A/C Up-regulates Halloween Genes,
Promotes 20E Signaling, and Accelerates Metamorphosis—Ini-
tial experiments using RNAi to reduce the expression of each
E75 isoform showed variable results, mostly because their AF-1
domains are too short to generate reliable isoform-specific
dsRNAs. We generated an ecdysteroid UDP-glucosyltrans-
ferase (egt) mutant of B. mori nucleopolyhedrosis baculovi-
rus (BmNPV) to overexpress each E75 isoform on day 2 of the
fifth instar (L5D2). Five and a half days after BmNPV infection,
only 30% of the EGFP-overexpressed larvae began wandering,
whereas 80 and 70% of the E75A- and E75C-overexpressed lar-
vae entered the wandering stage with reduced body sizes,
respectively, although the wandering behavior and the body
size of the E75B-overexpressed larvae were slightly prevented

compared with the control larvae (Fig. 3, A and A� and
supplemental Fig. S1, C and D�). Moreover, 72 h after BmNPV
infection, both titers of ecdysone and 20E increased in the
E75A/C-overexpressed larvae, but they slightly decreased in the
E75B-overexpressed larvae (Fig. 3, B–B�).

Seventy two hours after BmNPV infection, we further exam-
ined the effects of each E75 isoform on the prothoracic glands
and fat body (supplemental Fig. S1, C and D�). The mRNA
levels of spo, phm, dib, and sad increased by 4 –7- and 3–5-fold
in the prothoracic glands of the E75A- and E75C-overexpressed
larvae, respectively; however, they decreased by 20 – 40% in the
E75B-overexpressed larvae (Fig. 3, C–C�). The amount of ecdy-
sone released by the cultured prothoracic glands increased by
200 and 150% in the E75A- and E75C-overexpressed larvae,
respectively, but they slightly decreased in the E75B-overex-
pressed larvae (Fig. 3D). Meanwhile, the mRNA levels of shd
increased by 3-fold in the fat body from the E75A/C-overex-
pressed larvae, but they slightly decreased in the E75B-overex-
pressed larvae (Fig. 3E). Similarly, the conversion from
ecdysone to 20E increased in the fat body from the E75A/C-
overexpressed larvae, but they slightly decreased in the E75B-
overexpressed larvae (Fig. 3F). In conclusion, overexpression of
E75A/C up-regulates Halloween genes, promotes ecdysteroid
biosynthesis, and accelerates metamorphosis, whereas E75B
overexpression might have opposing effects.
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�g per larva) was injected into each Bombyx larvae at the initiation of the wandering stage. EGFP dsRNA (30 �g per larva) was used as a control. A, comparison
of ecdysteroid levels at 24 h after dsRNA treatment. B–B�, comparisons of the levels of ecdysone (B) and 20E (B�) as well as the ratio between 20E and ecdysone
(B�) in the hemolymph at 24 h after dsRNA treatment. C–C�, qPCR analysis of four Halloween genes (spo, phm, dib, and sad) in prothoracic glands (C),
transmission electron microscopy analysis of the mitochondria (8000�; the arrow denotes mitochondria) in prothoracic glands (C�), and a comparison of
ecdysone release in the prothoracic glands at 24 h after dsRNA treatment. D and D�, qPCR analysis of the Halloween gene shd (D) and a comparison of the
conversion of ecdysone to 20E (D�) in the fat body at 24 h after dsRNA treatment.
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E75A/C, but Not E75B, Binds to ROREs and Directly Induces
Halloween Gene Expression—Because E75 binds to ROREs to
antagonize the transactivation ability of HR3, we hypothesized
that E75 might also bind to ROREs and thus directly induce
Halloween gene expression. Using a dual-luciferase assay sys-
tem established in heterologous human HEK 293 cells, we
investigated whether the three E75 isoforms can directly bind
the promoter of the five Halloween genes, including spo, phm,
dib, sad, and shd. The �2.5-kb promoter region of each Hal-
loween gene was cloned into the pGL3 vector. Upon E75A/C
overexpression, all five �2.5-kb promoter regions supported a
2.5– 4-fold increase in luciferase activity, whereas E75B overex-
pression had no effect (Fig. 4, A–E). In BmN cells, the luciferase
activities of all five �2.5-kb promoter regions increased 1.5–3-
fold upon E75A/C overexpression. Interestingly, E75B overex-
pression slightly reduced the luciferase activities (Fig. 4, F–J),
resembling the effects of E75B overexpression in vivo (Fig. 3,
C–C� and E).

There are 2, 1, 3, 2, and 4 potential ROREs in the �2.5-kb
promoter regions of spo, phm, dib, sad, and shd, respectively

(supplemental Fig. S3). We then performed chromatin immu-
noprecipitation (ChIP) in Bm-N cells to examine how the three
E75 isoforms bind to ROREs. The binding of E75 isoforms to
DNA was detected using the V5 antibody and cross-linked
chromatin isolated from Bm-N cells that were transfected with
the E75A/B/C-V5 expression plasmids. As measured by qPCR,
the V5 antibody increased the precipitation of 13 ROREs
(except one in shd) when E75A was overexpressed, 12 ROREs
(except one in sad and the other in shd) when E75C was over-
expressed, but no ROREs when E75B was overexpressed (Fig. 4,
K–O).

All the responsive ROREs in the �2.5-kb promoter regions of
each Halloween gene were deleted, and the mutated �2.5-kb
promoter regions of all the five Halloween genes were cloned
into the pGL3 vector. E75A/C overexpression did not increase
luciferase activity for any of the mutated constructs (Fig. 4,
P–T). Together, the dual-luciferase assays and ChIP-qPCR data
revealed that E75A/C, but not E75B, binds to ROREs in the
promoter regions of all five Halloween genes and directly
induces gene expression.
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FIGURE 3. Overexpression of E75A/C up-regulates Halloween genes, promotes 20E signaling, and accelerates metamorphosis. P2 BmNPV egt mutant
expressing E75A/B/C (5 �l; �105 pfu) was injected into each Bombyx larva on day 2 of the fifth instar. BmNPV expressing EGFP was used as a control. A and A�,
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E75B Antagonizes the Transactivation Ability of E75A/C—
The above overexpression results raise the possibility that E75B
antagonizes the transactivation ability of E75A/C. To test this
hypothesis, E75A or E75C and E75B were co-transfected into
HEK 293 cells. The effect of the expressed proteins on spo and
shd promoter activities was determined. As shown above (Fig.
4, A–E), E75A/C overexpression, but not E75B overexpression,
showed significant increases in the luciferase activity. Impor-
tantly, co-transfection of E75B antagonized the transactivation
ability of E75A/C in a dose-dependent manner, whereas E75A
and E75C did not affect each other (Fig. 5, A–B�). Similar results
were obtained in BmN cells (Fig. 5, C–D�).

To further verify the hypothesis in vivo, equal amounts of two
BmNPVs of EGFP, E75A, E75B, or E75C were co-infected to
L5D2 larvae. Five days after BmNPV infection, E75A/C-, but
not E75B-, overexpressed larvae showed precocious wandering
behavior and reduced body size compared with the EGFP-over-
expressed control larvae (Fig. 5E). Importantly, co-infection
with E75B nearly blocked the ability of E75A/C to reduce body
size (Fig. 5E�). Seventy two h after BmNPV infection, ecdys-
teroid titers significantly increased in the E75A/C-overex-
pressed larvae, and this increase was blocked by co-infection
with E75B (Fig. 5F), suggesting that E75B antagonizes the trans-
activation ability of E75A/C.
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FIGURE 4. E75A/C, but not E75B, bind to ROREs and induce Halloween gene expression. A–E, HEK 293 cells were co-transfected with the E75A/B/C (EGFP as
a control) expression construct, the pGL3 basic plasmids containing �2.5-kb promoter regions of each Halloween gene (spo (A), phm (B), dib (C), sad (D), and shd
(E)), the hsp70 basal promoter regulating the expression of firefly luciferase (Fluc), and a reference reporter plasmid carrying Renilla luciferase (Rluc). After 48 h
of transfection, the dual-luciferase assays were performed. The luciferase activity fold change is defined as the relative luciferase activity induced by E75A/B/C
overexpression compared with EGFP overexpression. F–J, BmN cells were co-transfected with the E75A/B/C (EGFP as a control) expression construct, the pGL3
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formed as in A–E. K–O, ChIP assays of E75A/B/C-V5 binding to the �2.5-kb promoter regions of Halloween gene promoters. Bm-N cells were transfected with
E75A/B/C-V5 expression plasmid for 48 h and immunoprecipitated with IgG or antibodies against V5. The precipitated DNA and input were analyzed by qPCR
to detect the binding between E75A/B/C-V5 and ROREs in the promoter regions and CDS regions of the five Halloween genes. The results of qPCR analyses are
presented as E75A/B/C-V5 compared with IgG. P–T, all the ROREs in the �2.5-kb promoter regions of each Halloween gene were deleted, and the mutated
�2.5-kb promoter regions of all the five Halloween genes were cloned into the pGL3 vector. The dual-luciferase assays were performed as in A–E.
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CRISPR/Cas9-mediated genome editing is becoming a pow-
erful tool for functional studies in Bombyx (37, 38). Because
RNAi was not able to sufficiently and specifically reduce E75B

expression, we performed CRISPR/Cas9-mediated knock-out
of E75B. Interestingly, all of the E75B-knock-out larvae suc-
cessfully survived to adults but showed accelerated wandering
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of firefly luciferase were used. E and F, changes in wandering behavior and body size at �5 days after injection of BmNPV expressing EGFP, E75A, E75B, and E75C
(E). The chart (E�) shows the quantification of the body size. A comparison of ecdysteroid titer at 72 h after injection of BmNPV expressing EGFP, E75A, E75B, and
E75C (F). G and H, changes in wandering behavior after CRISPR/Cas9-mediated knock-out of E75B (G). The chart (G�) shows the quantification of the wandering
behavior in G. A comparison of ecdysteroid titers at 24 h after the initiation of the wandering stage (H).
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behavior and elevated ecdysteroid titers (Fig. 5, G and H, and
supplemental Fig. S4). Overall, the E75B-knock-out larvae
underwent phenotypic changes similar to those of the E75A/C-
overexpressed larvae. Both in vitro and in vivo experimental
data revealed that E75B antagonizes the transactivation ability
of E75A/C for regulating Halloween gene expression, ecdys-
teroid biosynthesis, and metamorphosis.

Incomplete DBD in E75B Mediates Physical Interactions and
Thus the Opposing Actions between E75B and E75A/C—Finally,
we investigated whether E75B antagonizes the transactivation
ability of E75A/C through protein-protein interactions. Two
constructs of E75A, E75B, or E75C, the C termini of which were
fused to different tags, were co-transfected in HEK 293 cells.
Immunocytochemistry was performed to examine their possi-
ble protein-protein interactions. When E75A and/or E75C
were co-transfected, they evenly localized in the nuclei (Fig.
6A). By contrast, when E75B was co-transfected with E75A,
E75B, or E75C, the two proteins frequently co-localized at some
aggregating chromatin spots (Fig. 6B). Similar results were
obtained in BmN cells (Fig. 6, C and D). Both data in HEK 293
and BmN cell lines suggested that E75B might associate with all
three E75 isoforms.

E75A, E75B, and E75C contain different AF-1 domains and
DBDs (25). To identify the actual E75B domain(s) that are
responsible for its association with all three E75 isoforms, we
generated three E75 mutant constructs: coE75A/C that shares
the complete DBD of E75A/C and the common C terminus,
coE75A/B/C that shares the incomplete DBD of E75A/B/C and
the common C terminus, and E75noN that only retains the
common C terminus (Fig. 6E). When coE75A/C was co-trans-
fected with E75A, E75B, or E75C, only coE75A/C and E75B
co-localized at the aggregating chromatin spots in HEK 293
cells (Fig. 6F). When coE75A/B/C was co-transfected with
E75A, E75B, or E75C, the two proteins always co-localized at
the aggregating chromatin spots (Fig. 6G). Nevertheless,
E75noN had no co-localization with E75A/C but co-localized
with E75B (Fig. 6H). The immunocytochemistry experiments
demonstrated that the incomplete DBD in E75B is indispens-
able for the association between E75B and E75A/C. Further-
more, in HEK 293 cells, co-transfection with coE75A/B/C
antagonized the transactivation ability of E75A/C in a dose-de-
pendent manner (Fig. 6, I and I�), indicating that the incomplete
DBD in E75B mediates physical interactions and thus the
opposing actions between E75B and E75A/C.

Discussion

E75A/C Is a Bona Fide Transcription Factor That Induces
Halloween Gene Expression—The majority of research on Dro-
sophila focused on showing that E75 is a transcriptional repres-
sor of HR3 through physical interaction and competing for
ROREs. Nevertheless, HR3 inhibition is not able to explain the
isoform-specific phenotypes of E75 mutants. Here, we demon-
strate for the first time that, in addition to HR3 inhibition,
E75A/C is a bona fide transcription factor that directly drives
Halloween gene expression and thus induces ecdysteroid bio-
synthesis. First, E75 RNAi resulted in a decrease in expression
of all five Halloween genes responsible for ecdysteroid biosyn-
thesis, low ecdysteroid titers, impaired 20E signaling, repressed

fat body remodeling, and lethality during metamorphosis (Figs.
1 and 2A). These E75 RNAi silkworms exhibit phenotypic
defects similar to Drosophila E75A and E75C null mutants (9).
Second, E75A/C overexpression up-regulates Halloween genes,
promotes ecdysteroid biosynthesis, and accelerates metamor-
phosis (Fig. 3). Consistently, these phenotypes are similar to
those observed after overexpression of E75A specifically in the
Drosophila prothoracic glands (21). Third, dual-luciferase
assays and ChIP-qPCR experiments together showed that
E75A/C binds to ROREs in the Halloween gene promoter
regions and thus induces expression of these genes (Fig. 4 and
supplemental Fig. S3), providing strong evidence that E75A/C
is a bona fide transcription activator. By binding to ROREs,
E75A/C might act as a transcriptional repressor for competing
with HR3, but more importantly, E75A/C functions as a tran-
scriptional activator that induces Halloween gene expression.
Fourth, E75B processes an incomplete DBD, which is not able
to bind to ROREs to induce Halloween gene expression but still
can inhibit HR3, confirming that Halloween gene induction
and HR3 inhibition are indeed two separated functions of E75
(Figs. 3 and 4). Finally, in both the prothoracic glands and fat
body of Bombyx, the E75 mRNA levels peak nearly 1 day earlier
than that of HR3 (supplemental Fig. S5, A, B, D, and E) (25),
implying that E75A/C functions as a transcriptional activator in
inducing Halloween gene expression during the wandering
stage and then as transcriptional repressor of HR3 during the
larval-pupal transition. Regarding the ultimate regulation of
ecdysteroid biosynthesis, E75 should first function directly and
then act through inhibition of HR3 (supplemental Fig. S5H).
Conclusively, E75A/C is a bona fide transcription activator that
drives Halloween gene expression and thus induces ecdysteroid
biosynthesis (Fig. 7).

E75B Antagonizes E75A/C to Regulate Halloween Gene
Expression—The second important discovery of this study is on
E75B antagonism of the transactivation ability of E75A/C to
regulate Halloween gene expression. First, in contrast to
E75A/C overexpression, E75B overexpression down-regulates
Halloween genes, reduces ecdysteroid biosynthesis, and delays
metamorphosis (Fig. 3). Second, co-transfection of E75B antag-
onizes the transactivation ability of E75A/C both in vitro (Fig. 5,
A–D�) and in vivo (Fig. 5, E and F). Third, knock-out of E75B
exhibits phenotypes (Fig. 5, G and H) similar to those seen after
E75A/C overexpression (Fig. 3, A and A�). Finally and most
importantly, the incomplete DBD of E75B mediates physical
interactions and thus opposing actions between E75B and
E75A/C (Fig. 6). Different from that, all E75 isoforms utilize
their common C terminus to interact with and to antagonize
transcriptional activity of HR3 (19, 26).

It is necessary to note that the E75B mutants in both Dro-
sophila (9) and Bombyx (Fig. 5, G and H) are viable and fertile.
Taking advantage of the comparatively long life cycle and the
newly developed CRISPR/Cas9-mediated genome editing
method in Bombyx, we have observed accelerated wandering
behavior and elevated ecdysteroid titers in the Bombyx E75B
mutants. Because E75B antagonizes transcriptional activity of
both HR3 and E75A/C, the outcome of E75B in tuning ecdys-
teroid biosynthesis and developmental timing should be con-
text-specific. We assume that this role of E75B should be
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FIGURE 6. Incomplete DBD in E75B mediates physical interactions and thus the opposing actions between E75B and E75A/C. A, HEK 293 cells were
co-transfected with two pcDNA 3.1(�) vectors expressing E75A and E75C, the C termini of which were fused to different tags (V5, HA, and Myc) for 48 h, and then
immunocytochemistry was performed. B, co-transfection and immunocytochemistry in HEK 293 cells were performed as described in A, except that two
pcDNA 3.1(�) vectors expressing E75B and E75A (or E75C), the C termini of which were fused to different tags (V5, FLAG, and Myc), were used. C, BmN cells were
co-transfected with two pIEx-4 vectors expressing E75A and E75C, the C termini of which were fused to different tags (V5, HA, and Myc) for 48 h, and then
immunocytochemistry was performed. D, co-transfection and immunocytochemistry in BmN cells were performed as described in C, except that two pIEx-4
vectors expressing E75B and E75A (or E75C), the C termini of which were fused to different tags (V5, FLAG, and Myc), were used. E, diagram showing three E75
mutant constructs: coE75A/C, coE75A/B/C, and E75noN. F–H, co-transfection and immunocytochemistry in HEK 293 cells were performed described as in A,
except that two pcDNA 3.1(�) vectors expressing coE75A/C (F) (or coE75A/B/C (G) or E75noN (H)) and E75A/B/C, the C termini of which were fused to different
tags (V5, HA, FLAG, and Myc), were used. I and I�, HEK 293 cells were co-transfected with three expression constructs (coE75A/B/C, E75A/E75C, and EGFP), the
pGL3 basic plasmids containing �2.5-kb promoter regions of spo and the hsp70 basal promoter regulating expression of firefly luciferase (Fluc), and a reference
reporter plasmid carrying Renilla luciferase (Rluc) for 48 h of transfection, and then the dual-luciferase assays were performed. Luciferase activity fold change
is defined as the relative luciferase activity compared with EGFP.
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conserved in Bombyx and Drosophila, because the protein
structure and 20E induction of expression are the same in both
animals. Previous studies also showed that E75A and E75B have
opposing effects on the apoptosis/development choice of the
egg chamber in Drosophila (22). Similarly, E75 isoforms play
distinct roles in regulating female reproduction in the mosquito
A. aegypti (23). These studies indicate that E75 isoforms have an
isoform-specific function in regulating insect reproduction, in
line with our findings that E75A/C and E75B oppositely regu-
late Halloween gene expression, ecdysteroid biosynthesis, and
developmental timing. In conclusion, lacking a complete DBD,
E75B does not act as an independent transcription activator,
but antagonizes the transactivation ability of E75A/C by bind-
ing to and changing the conformation of E75A/C (Fig. 7).

Correlations among E75, HR3, and NO—Phylogenetic analy-
sis reveals that E75 and HR3 belong to NR subfamily 1 and are
closely related (3). Multiple lines of evidence support that, by
physical interaction and by competing for ROREs, E75 isoforms
indiscriminately act as transcriptional repressors for HR3. By
being either transcriptional repressors for HR3 in relieving HR3
inhibition on Halloween gene expression (21) or transcriptional
activators in inducing Halloween gene expression (Figs. 1– 4),
E75A/C ultimately promotes ecdysteroid biosynthesis and
developmental transition (supplemental Fig. S5H). Both gain-
of-function and loss-of-function results clearly show that
E75B inhibits Halloween gene expression and thus ecdys-

teroid biosynthesis in vivo (Figs. 3 and 5), indicating that its
inhibition of ecdysteroid biosynthesis via antagonizing the
transactivation ability of E75A/C (Figs. 3– 6) is more crucial
than its possible promotion via relieving HR3 inhibition (sup-
plemental Fig. S5 H).

NO and CO are able to reverse the ability of E75 to interfere
with HR3; thus, the function of E75 in counteracting HR3 might
vary depending on the availability of these gases. We investi-
gated the developmental profiles of NO synthetase (NOS1 and
NOS2) in the prothoracic glands and the fat body in Bombyx.
Interestingly, the expression peaks of NOS1 and NOS2
(supplemental Fig. S5, C, C�, F, and F�) never match that of E75
(supplemental Fig. S5, A, B, D, and E). Moreover, the transcrip-
tional activity of E75A/C in inducing Halloween gene expres-
sion was able to be reversed by NO (supplemental Fig. S5G).
Thus, the ability of E75A/C to promote ecdysteroid biosynthe-
sis and developmental transition could be reversed by NO (sup-
plemental Fig. S5 H). We suppose that the binding of E75B with
E75A/C, the binding of all E75 isoforms with HR3, and the
binding of NO with all E75 isoforms will result in changes of
conformation and transactivation ability of the latter ones.

E75-mediated Steroidogenesis Autoregulation Contributes to
the Precise Control of Developmental Timing—Steroidogenesis
autoregulation in insects involves a fine regulatory loop
between ecdysteroid biosynthesis and 20E signaling. A number
of genes in the 20E-triggered transcriptional cascade regulate
ecdysone biosynthesis and thus ecdysteroid titers in both Dro-
sophila and Bombyx (9, 21, 31–33). �ftz-F1, Br-C, HR3, and E75
regulate Halloween gene expression in the prothoracic glands
(21, 32, 33). Here, we found that E75 binds to ROREs and
induces Halloween gene expression (Fig. 4 and supplemental
Fig. S3). Importantly, E75A/C induces the Halloween gene
expression that is responsible for not only ecdysone biosynthe-
sis in the prothoracic glands but also the conversion from ecdy-
sone to 20E in the fat body, whereas E75B has opposing roles.
The composite data support the central role of E75 in the reg-
ulatory loop of ecdysteroid biosynthesis (Fig. 7).

In summary, 20E induces the expression of E75 isoforms dif-
ferently, and E75A/C and E75B oppositely regulate ecdysteroid
biosynthesis, forming a fine regulatory loop between ecdys-
teroid biosynthesis and 20E signaling (Fig. 7). Acting indepen-
dently or through HR3 inhibition in a context-specific manner,
E75 isoforms are involved in the fine regulation of ecdysteroid
biosynthesis, which contributes to the precise control of devel-
opmental timing (supplemental Fig. S5H). This study provides
a paradigm for how NR isoforms accurately mediate steroido-
genesis autoregulation and thus developmental timing in
animals.

Experimental Procedures

Silkworms and Cells—Bombyx larvae (p50 strain) were pro-
vided by the Sericultural Research Institute, Chinese Academy
of Agricultural Sciences (Zhenjiang, China), and fed fresh mul-
berry leaves at 25 °C under 14-h light/10-h dark cycles (25, 29).
Bm-N cells were maintained in TC-100 medium (PAN-
BIOTECH, Germany) supplemented with 10% heat-inactivated
fetal bovine serum (Gibco). HEK 293 cells were maintained in

ecdysone

20-hydroxyecdysone

dietary cholesterol 
or phytosterol

spook 
phantom

disemboied
shadow

shade

20E-EcR-Usp

EcR-Usp

E75A
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Prothoracic gland
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FIGURE 7. A model, E75 isoforms mediate a fine regulatory loop between
ecdysteroid biosynthesis and 20E signaling. 20E rapidly induces the
expression of E75A and E75B, whereas its induction of E75C expression is slow.
E75A/C induces the Halloween gene expression responsible for ecdysone
biosynthesis in the prothoracic glands and the conversion from ecdysone to
20E in the fat body, whereas E75B antagonizes the transactivation ability of
E75A/C. This model supports the central role of the 20E-response gene E75 in
regulating ecdysteroid biosynthesis. The E75-mediated regulatory loop rep-
resents a fine autoregulation of steroidogenesis which contributes to the
precise control of developmental timing.
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Dulbecco’s modified Eagle’s medium (HyClone) supplemented
with 10% fetal bovine serum (25, 31).

E75 RNAi in Bombyx Larvae—The E75 dsRNA (25) was syn-
thesized using a T7 RiboMAXTM Express RNAi kit (Promega,
P1700). The EGFP dsRNA was used as a control. Thirty �g of
dsRNA per larva was injected at IW. The prothoracic glands,
peripheral fat body tissues from the 5th abdominal segment,
and hemolymph samples were collected at the indicated times
for further analysis (25).

Baculovirus-mediated Overexpression of E75 Isoforms in
Bombyx Larvae—Using the homologous recombination tech-
nique (39), we generated the BmNPV egt mutant that allows
silkworms, which survive until pupation, to produce sufficient
E75 protein. The BmNPVs expressing E75A, E75B, and E75C
were obtained in the same manner as the Autographa califor-
nica nucleopolyhedrovirus (25). Five �l of P2 BmNPV (�105

pfu) was injected into each Bombyx larva on L5D2, and then the
prothoracic glands, fat body, and hemolymph were collected at
the indicated times for further analysis.

CRISPR/Cas9-mediated Knock-out of E75B in Bombyx—Our
colleagues previously developed efficient approaches for
CRISPR/Cas9-mediated genome editing in Bombyx (37, 38)
and helped us to perform the E75B knock-out experiment in
this study. Cas9 mRNA (mMESSAGE mMACHINE kit,
Ambion, Austin, TX) and E75B sgRNA (MAXIscript T7 Kit,
Ambion, Austin, TX), TAATACGACTCACTATAGGTGCT-
AGTGAGCATGCTGGAGGGTTTTAGAGCTAGAAATAG-
CAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAA-
AAAGTGGCACCGAGTCGGTGCTTTT, was synthesized
and purified separately. A mixture of Cas9 mRNA (300 ng/�l)
and E75B sgRNA (300 ng/�l; with EGFP sgRNA as a control)
was injected into the non-diapause preblastoderm p50 embryos
prepared within 6 h after oviposition using a micro-injector
(Narishige, Tokyo, Japan), and then the embryos were incu-
bated at 25 °C in a humidified chamber for 10 –12 days until
larval hatching. Approximately 24 h after IW, genomic DNA
was extracted for mutagenesis analysis. The prothoracic glands,
fat body, and hemolymph were collected for further analysis.

Conventional Molecular, Biochemical, and Cellular Meth-
ods—Details of caspase-3 activity measurement, qPCR, and
Western blotting have been previously described (25, 31, 40).
Production of the EcR, Met1, Br-C, and E75 antibodies have
been reported in our publications (25, 30). The AB11 USP anti-
body was a kind gift from Dr. Fotis Kafatos. The Western blot-
ting images were obtained with a Tanon-5500 Chemilumines-
cent Imaging System (Tanon, China).

Fluorescence Microscopy and Transmission Electron Micro-
scopy—The prothoracic glands and fat body were dissected and
processed for fluorescence microscopy and transmission elec-
tron microscopy analyses as described previously (25, 29, 31,
40). TUNEL (Beyotime, China) labeling and LysoTracker Red
(Invitrogen) staining were used to estimate caspase activity and
autophagy, respectively. Cell death was also detected by pro-
pidium iodide staining (red nuclei) and nuclei with Hoechst
33342 (blue) (Beyotime). Pictures were taken under an FV10-
ASW confocal microscope (Olympus, Japan) at �40 magni-
fication, and each type of observation was performed under
the same conditions. A H7650 transmission electron micro-

scope (Hitachi, Japan) was used to observe autophagic com-
ponents, mitochondria, and other cell structures.

Tissue Culture and rpHPLC-EIA Measurements of Ecdy-
steroids—For measurements of ecdysteroid titers in the hemo-
lymph, we used EIA (Cayman Chemical) (38). In some cases,
ecdysone and 20E in the hemolymph were separated using a
modified rpHPLC procedure (41) followed by quantification
using EIA. In brief, total ecdysteroids in the hemolymph sam-
ples were extracted with methanol, dried, and re-dissolved in
20% acetonitrile (ACN) containing 0.1% trifluoroacetic acid
(TFA). An Agilent 1100 Series HPLC system (Agilent Technol-
ogies) equipped with a variable UV wavelength detector (set at
240 nm) was employed. All samples were separated by an
Eclipse Plus C18 (4.6 � 250 mm) column (Agilent Technolo-
gies) using a variable mobile phase consisting of 20% ACN con-
taining 0.1% TFA for 5 min and a linear gradient of 20 – 80%
ACN containing 0.1% TFA for 20 min. The flow rate was 1
ml/min. 20E and ecdysone standards (Sigma) were eluted after
7 and 14 min, respectively. All sample fractions were collected
at 6.7– 8.7 and 13–15 min for 20E and ecdysone, respectively,
dried, re-dissolved in EIA buffer, and measured by EIA. The
ratio of ecdysone and 20E was calculated.

For the measurement of ecdysone release, the prothoracic
glands were dissected out and cultured in Grace’s medium
(Sigma) at 25 °C. After pre-incubation for 1 h, the medium was
replaced with fresh medium. Four hours after incubation, the
medium was collected, dried, and re-dissolved in EIA buffer,
and the ecdysteroid concentration was determined by EIA. To
measure the conversion from ecdysone to 20E, the fat body was
cultured in Grace’s medium at 25 °C. After pre-incubation for
1 h, the medium was replaced with fresh medium containing 5
�M ecdysone. Four hours after incubation, the medium was
collected and concentrated. Ecdysone and 20E in the medium
were separated by rpHPLC, and the fractions were dried, re-dis-
solved in EIA buffer, and measured by EIA. The conversion
from ecdysone to 20E was calculated.

ChIP Assay in Bm-N Cells—The modified pIEx-4 vector con-
taining the BmNPV ie1 promoter (42) was used to overexpress
E75A/B/C-V5 in Bm-N cells. Bm-N cells were grown in 10-cm
dishes (70% confluent) and transfected with the E75A/B/C-V5
expression plasmid for 48 h using the Effectene transfection
reagent (Qiagen, Germany). Then, the cells were fixed and sub-
jected to ChIP assay (31, 42, 43) using the agarose ChIP kit
(Pierce) and the V5 antibody (Sigma). Mock immunoprecipita-
tions with pre-immune serum were used for negative controls.
The precipitated DNA and input were analyzed by qPCR to
detect the binding between E75A/B/C-V5 and ROREs in pro-
moter regions and CDS regions (as negative control) of the five
Halloween genes.

Dual-Luciferase Assay in HEK 293 Cells and BmN Cells—To
examine whether the promoter regions of the five Halloween
genes are responsive to E75, the 2.5-kb regions of each Hallow-
een gene promoter upstream of the transcription start site (or
the RORE-deleted mutant constructs) were cloned into the
pGL3 basic vector containing the hsp70 minimal promoter
(Promega). The pRL vector (Promega) carrying Renilla lucifer-
ase driven by the Actin3 promoter was used for normalization.
E75A/B/C (or coE75A/B/C) was cloned into the pcDNA 3.1(�)
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vector (Invitrogen) to create the expression constructs. After
co-transfection of E75A/B/C expression construct, a reporter
pGL3 vector, and the reference pRL vector into HEK 293 cells
for 48 h using the Effectene transfection reagent (Qiagen), the
cells were collected. The relative luciferase activity was calcu-
lated by normalizing the reporter firefly luciferase level to the
reference Renilla luciferase level. Dual-luciferase assays were
conducted using the dual-luciferase assay system (Promega)
and a Modulus luminometer (Turner BioSystems) (29, 31, 42,
43). For some experiments, two constructs of EGFP, E75A,
E75B, E75C, or coE75A/B/C were co-transfected into HEK 293
cells equally or in a dose-dependent manner. When necessary,
the NO donor, 2,2�-(hydroxynitrosohydrazino)bis-ethanimine
(Sigma; 200 �M) was added to the medium (10). Dual-luciferase
assays in BmN cells were performed the same as in HEK 293
cells except the expression vector was pIEx-4 containing the
BmNPV ie1 promoter as above described.

Cytohistochemistry in HEK 293 Cells and BmN Cells—Micro-
scope coverslips (Fisher, 12-542A) were sterilized before use
and placed into 6-well plates during HEK 293 cell plating. After
1 day of pre-incubation, the cells were co-transfected with two
pcDNA 3.1(�) vectors expressing E75A, E75B (or its mutants
coE75A/C, coE75A/B/C, and E75noN), or E75C, the C termini
of which were fused to different tags (V5, HA, FLAG, and Myc),
for 48 h. After extensive washing, the coverslips were fixed in
4% paraformaldehyde for 45 min at room temperature, blocked
in phosphate-buffered saline containing 5% BSA and 1% Triton
X-100 (PBSBT) for 1 h, and incubated with two different pri-
mary tag antibodies (V5, HA, FLAG, and Myc, Sigma) (diluted
1:200) at 4 °C overnight. The coverslips were washed for 1 h in
PBSBT and incubated with two counterpart FITC green/red-
conjugated secondary antibodies from mouse/rabbit (diluted
1:200) for 2 h at room temperature (43). Images were captured
using the Olympus FV10-ASW confocal microscope at �40
magnification. Cytohistochemistry in BmN cells were per-
formed the same as in HEK 293 cells except the expression
vector was pIEx-4 containing the BmNPV ie1 promoter as
described above.

Statistics—The experimental data were analyzed using
Student’s t test and analysis of variance. For the t test, *, p �
0.05; **, p � 0.01; ***, p � 0.001. For analysis of variance, bars
labeled with different lowercase letters are significantly differ-
ent (p � 0.05). Throughout the study, values are represented as
the mean 	 S.D. of five independent experiments.
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Supplementary Figures and Figure Legends: 

 

 

 

Figure S1. E75 mRNA and protein levels after E75 RNAi and overexpression 

E75 dsRNA (30 µg per larva) was injected into each Bombyx larva at the initiation of the 

wandering stage. EGFP dsRNA was used as a control. 

(A and A’) E75 mRNA (A) and protein (A’) levels in the fat body. 

(B and B’) E75 mRNA (B) and protein (B’) levels in the prothoracic glands. 

P2 BmNPV egt mutant expressing E75A/B/C (5 μl; ~10
5
 pfu) was injected into each Bombyx 

larva on day 2 of the fifth instar. BmNPV expressing EGFP was used as a control. The 

samples were analyzed 72 h after injection of BmNPV expressing E75A/B/C. 

(C-C’”) E75A/B/C mRNA (C-C’’) and protein (C’”) levels in the prothoracic glands. 

(D-D’”) E75A/B/C mRNA (D-D”) and protein (D’”) levels in the fat body. 
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Figure S2. E75 RNAi does not cause apparent morphologic changes in the prothoracic 

glands 

E75 dsRNA (30 µg per larva) was injected into each Bombyx larva at the initiation of the 

wandering stage. EGFP dsRNA was used as a control. 

(A and A’) LysoTracker Red staining (red, 40×) (B) and TEM analysis (7,500×) (B’) in the 

prothoracic glands 24 h after dsRNA treatment. 

(B and B’) TUNEL labeling (green, 40×) (B) and caspase 3 activity (B’) in the prothoracic 

glands 24 h after dsRNA treatment. 

(C) A comparison of the overall structure of the prothoracic glands under a light microscopy 

24 h after dsRNA treatment. 
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Figure S3. A diagram showing 2, 1, 3, 2, and 4 potential ROREs in the ~2.5-kb promoter 

regions of spo, phm, dib, sad, and shd, respectively 
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Figure S4. CRISPR/Cas9-mediated knockout of E75B 

A mixture of Cas9 mRNA (300 ng/μl) and E75B sgRNA (300 ng/μl; with EGFP sgRNA as a 

control) was injected into the non-diapaused preblastoderm p50 embryos prepared within 6 h 

after oviposition. Approximately at 24 h after the initiation of the wandering stage, genomic 

DNA was extracted for mutagenesis analysis. 

(A) The sequences between the two arrows indicate the amplicon nearly 550 bp from genomic 

DNA PCR from the control larvae. Codons in blue show the sequence for primer design, the 3 

bp codons in red show the initiation codon of E75B, while the codons in green indicate the 

PAM region used for designing E75B sgRNA. 

(B and B’) An additional maximum deletion band nearly 260 bp (showed by the red arrow), 

which is apparently smaller than the control 550 bp band, was got by genomic DNA PCR from 

the E75B-knockout larvae (B). The chart (B’) shows the quantification of the additional 

maximum deletion in (B). 

(C-C’’) The variation of E75B knockout including deletion (C) (note E75B KO17 is the 

additional maximum deletion in B) and insertion (C’). The chart (C’’) shows the quantification 

of successful E75B knockout larvae. 
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Figure S5. Correlations among E75, HR3, NO and Nuclear receptor E75 isoforms 

mediate steroidogenesis autoregulation and regulate developmental timing during the 

larval-pupal transition in Bombyx 

(A-C’) Developmental profiles of HR3 (A), E75 (B), NOS1 (C), and NOS2 (C’) mRNA levels 

in the prothoracic glands. 

(D-F’) Developmental profiles of HR3 (D), E75 (E), NOS1 (F), and NOS2 (F’) mRNA levels 

in the fat body. 

(G) HEK 293 cells were co-transfected with the E75A/B/C (EGFP as a control) expression 

constructs, the pGL3 basic plasmids containing ~2.5-kb promoter regions of spo and the hsp70 

basal promoter regulating the expression of firefly luciferase (Fluc), and a reference reporter 

plasmid carrying Rellina luciferase (Rluc). DETA-NO was added at 32 h after transfection and 

the dual luciferase assays were performed 16 h later. The luciferase activity fold change is 

defined as the relative luciferase activity induced by E75A/B/C overexpression compared to 

EGFP overexpression. 

(H) E75A/C act as a transcription activator to induce Halloween gene expression and a 

transcriptional repressor to inhibit HR3 transactivation ability in promoting ecdysteroid 

biosynthesis and developmental transitions, and either function of E75 could be reversed by 

NO. Lacking a complete DBD, E75B does not act as an independent transcription activator, 

but antagonizes the transactivation ability of E75A/C; E75B serves as an equal transcriptional 

repressor for HR3. Acting independently or through HR3 inhibition, E75 isoforms function in 

a context-specific manner. The E75-mediated regulatory loop represents a fine autoregulation 

of steroidogenesis which contributes to the precise control of developmental timing. 



R. Palli, Yang Cao and Sheng Li
Kang Li, Ling Tian, Zhongjian Guo, Sanyou Guo, Jianzhen Zhang, Shi-Hong Gu, Subba

BombyxSteroidogenesis Autoregulation and Regulate Developmental Timing in 
 Isoforms MediateE7520-Hydroxyecdysone (20E) Primary Response Gene 

doi: 10.1074/jbc.M116.737072 originally published online June 29, 2016
2016, 291:18163-18175.J. Biol. Chem. 

  
 10.1074/jbc.M116.737072Access the most updated version of this article at doi: 

 Alerts: 

  
 When a correction for this article is posted•  

 When this article is cited•  

 to choose from all of JBC's e-mail alertsClick here

Supplemental material:

  
 http://www.jbc.org/content/suppl/2016/06/29/M116.737072.DC1

  
 http://www.jbc.org/content/291/35/18163.full.html#ref-list-1

This article cites 43 references, 13 of which can be accessed free at

 by guest on D
ecem

ber 12, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/lookup/doi/10.1074/jbc.M116.737072
http://www.jbc.org/cgi/alerts?alertType=citedby&addAlert=cited_by&cited_by_criteria_resid=jbc;291/35/18163&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/291/35/18163
http://www.jbc.org/cgi/alerts?alertType=correction&addAlert=correction&correction_criteria_value=291/35/18163&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/291/35/18163
http://www.jbc.org/cgi/alerts/etoc
http://www.jbc.org/content/suppl/2016/06/29/M116.737072.DC1
http://www.jbc.org/content/291/35/18163.full.html#ref-list-1
http://www.jbc.org/

	20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx
	Repository Citation

	20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx*

