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Abstract 

Biodegradable hydrogels are of interest for drug delivery applications due to their resemblance to 

biological tissue and their ability to absorb large amounts of biological fluids.  Here, hydrogels were 

synthesized from multiple macromers to demonstrate step-wise degradation and multiphase drug release 

profiles.   Control over the degradation and release profiles of multiple macromer hydrogels has potential 

applications in implantable, extended release drug delivery devices in which removal would not be 

needed after administration.  Herein, macromers were synthesized from diethylene glycol diacrylate (A), 

poly(ethylene glycol) diacrylate (n=400) (H), and isobutylamine (6) in 1.2:1 molar ratios of total 

diacrylate to amine with diacrylate ratios of A:H (0:1), (1:1), and (2:1). Multiple macromer hydrogels 

were synthesized via UV photo polymerization with a 365nm UV flood source and an intensity of 8-

10mW/cm2.  Degradation and swelling studies were conducted gravimetrically, and fluorescence 

correlation spectroscopy (FCS) was used to track diffusion coefficients at different stages of degradation.  

Degradation for the fully degradable systems used was inconclusive, while degradation for the non-

degradable systems demonstrated a two-stage release.  Swelling was found to increase with hydrophilic 

character of the hydrogels.  Fluorescently tagged lysozyme, trypsin, and bovine serum albumin were 

loaded into the multiple macromer hydrogels and release was tracked using fluorescence spectroscopy.  A 

triphasic drug release was not achieved for the systems used; however, release was tuned by varying the 

mass ratios of the hydrogel components.  

 

 



Introduction 

The use of multiple macromers in hydrogel synthesis allows for a stage-wise degradation 

profile and a controlled multiphase release. Over the past few decades, biodegradable hydrogels 

have been extensively investigated for biomedical applications.1 Hydrogels are defined as three 

dimensional cross-linked hydrophilic polymer systems that have the ability to imbibe large 

amounts of water or biological fluids.  These systems have become of great interest for medical 

applications due to their tunable mechanical properties and degradation profiles, as well as their 

resemblance to biological tissue. Biodegradable hydrogels are the subset of hydrogels that will 

degrade under physiological conditions, and they are therefore attractive for in vivo applications 

such as tissue scaffolding and drug release.  In addition, they are desirable as there is no need to 

remove the biodegradable system after application.2,3 One such system of biodegradable 

hydrogels can be synthesized using poly(β-amino ester) macromers.  Recently, a combinatorial 

library of 120 poly(β-amino esters) (PBAE) encompassing combinations of twelve acrylates and 

ten amines was developed by Anderson et al. via condensation reactions that combined amines 

with  diacrylates.4   Degradation of the PBAE hydrogels occurs via hydrolytic of the backbone 

ester bonds and varies depending on the relative hydrophobicity of the systems.  

PBAEs have been studied for applications such as polymeric gene delivery5, pulsatile 

drug release via PBAE iron oxide nanocomposites6, and synergistic cancer therapy via co-

loading of paclitaxel and iron oxide nanoparticles.7  Additionally, protein release has been 

studied in poly(ethylene glycol) and poly(acrylic acid) cross-linked hydrogels. 8, 9 Recently, 

degradation profiles of hydrogels synthesized from single macromers and multiple macromers 

were investigated.  Single macromer systems exhibited relatively linear degradation profiles, 

while multiple macromer systems displayed a stepwise degradation profile.10 Here, multiple 



macromer hydrogels were synthesized, and a multiphase drug release was demonstrated utilizing 

changes in swelling states and diffusivity during degradation.  Figure 1 illustrates the concept 

that smaller molecular weight drugs would initially be released at a higher rate, and then as the 

hydrogel degrades, the higher molecular weight drugs would be released.  

 

 

Figure 1.  Illustration of multiphase release via changes in swelling and diffusion with degradation.  (A) illustrates the concept 
that smaller molecular weight drugs will release first, smaller circles, followed by drug of larger sizes, larger circles.  (B) 
illustrates the concept of enhanced swelling and diffusion as components degrade.  

Materials 

Isobutyl amine (IBA), dimethyl sulfoxide (DMSO), 2-dimethoxy-2-phenylacetophenone DMPA, 

lysozyme from chicken egg white, trypsin from porcine pancreas, and bovine serum albumin 

(BSA) were purchased from Sigma. Poly(ethylene glycol)400 diacrylate (PEG400DA) and 

diethylene glycol diacrylate (DEGDA) were purchased from Polysciences, Inc.  Alexa 488 

carboxylic acid succinimidyl ester, Alexa 594carboxylic acid succinimidyl ester, and Alexa 680 

carboxylic acid succinimidyl ester were purchased from Invitrogen.  

A 
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Methods  

Macromer Synthesis 

From the library of PBAE macromers developed by Anderson et al., two acrylates and 

one amine were selected for hydrogel synthesis.4  Based on the desired properties and previous 

work, poly(ethylene glycol)400 diacrylate (PEG400DA; H), diethylene glycol diacrylate 

(DEGDA; A), and isobutylamine (IBA; 6) were utilized. Four AH6 macromers were synthesized 

with 1.2:1 molar ratios of acrylate to amine: A:H (0:1), (1:1), (2:1), and (0:1).  Figure 2 shows a 

schematic of the species involved in macromer synthesis as well as the macromer synthesis 

reaction set-up.  The amine was added to the combination of acrylates and the reaction was 

carried out at 85°C in a round bottom flask.  The reaction was allowed to occur for 48hrs under 

stirring at 300rpm, after which the macromer was removed and stored at 4°C. 11 

 

Figure 2. Macromer synthesis reagents (A) and reaction set-up (B).  

 

Hydrogel Synthesis 

Biodegradable hydrogels were synthesized using AH6 macromers and PEG400DA 

through UV photo polymerization between glass plates. All hydrogels consisted of three 

components with varying mass ratios of PEG400DA, AH6(2-1), AH6(1:1), and/or AH6(0:1). 

A A B 



Macromer was weighed in a 20mL glass vial.  Proteins were dissolved in 95wt% DMSO with 

respect to total macromer.  The relatively high amount of solvent was demanded by the solubility 

of BSA in DMSO. 12,13 The protein solution was added to the macromer and vortexed for 30 

seconds. DMPA at 1 wt% of total macromer was dissolved in 5wt% DMSO.  The photo-initiator 

was added to the reaction solution and vortexed for 30 seconds and immediately transferred into 

glass plates separated by a Teflon spacer. The hydrogels were polymerized using a 365nm UV 

flood source for 5 minutes at an intensity of 8-10mW/cm2.14 After polymerization, gels were 

allowed to cool for 15 minutes before transferring to ethanol to wash overnight.  Hydrogels were 

cut into discs in the swollen state, and placed in a desiccator until dry.  

Degradation  

The rate of hydrolytic degradation for the multiple macromer hydrogel systems was 

measured gravimetrically.  Phosphate buffered saline (PBS) was added at 37°C to pre-weighed 

hydrogel discs. Temperature was held constant using a water bath.  At desired time points, 

excess PBS was removed before the samples were frozen and freeze dried to determine a final 

weight. All samples were run in triplicate.   

Swelling  

Percent swelling of the multiple macromer hydrogel was determined gravimetrically.  

The hydrogels were cut into discs and 0.5mL of 37°C PBS was added to each sample. 

Temperature was held constant using a water bath.  At desired time points, excess PBS was 

removed, gels were weighed, and 0.5mL of fresh PBS was added to each sample.   

Protein Labeling 

Lysozyme, trypsin, and BSA were tagged with Alexa Fluor dyes (Invitrogen).  Lysozyme 

was tagged with Alexa 594 carboxylic acid succinimidyl ester, trypsin was tagged with Alexa 



680 carboxylic acid succinimidyl ester, and BSA was tagged with Alexa 488 carboxylic acid 

succinimidyl ester.  The desired protein was dissolved in 0.1M sodium bicarbonate buffer at 

10mg/mL.  The Alexa Fluors were dissolved in DMSO at 10mg/mL.  The dye was slowly added 

to the protein while mixing, and was then continually mixed for 1 hour.  The solution was 

filtered using Millipore centrifuge tubes and washed thrice with PBS to remove unreacted dye.  

The concentrated protein solution was lyophilized and stored at 4°C. 

Protein release  

The rate of release of protein was studied with fluorescence spectroscopy.  Protein loaded 

hydrogel discs were weighed and immersed in 0.5mL PBS at 37°C.  At desired time points, the 

PBS solution was removed and replaced.  The removed aliquot was analyzed at the respective 

excitation/emission wavelengths for the fluorescently tagged proteins using a BioTek 

SynergyMx plate reader.   

Fluorescence Correlation Spectroscopy  

The multiple macromer hydrogel discs were immersed in 3mL (10nM) rhodamine in 

PBS.  At desired time points, the hydrogel discs were removed from the solution, excess solution 

was removed and samples were observed with FCS. 

Results and Discussion 

Hydrogel Synthesis 

Two sets of hydrogels were successfully synthesized.  The first set of hydrogels consisted 

of two biodegradable components and one non-biodegradable component, and they were 

composed of   PEG400DA:AH6(1-1):H6 with mass ratios of 20:40:40, 50:25:25, and 80:10:10.  

The multiple macromer gels were synthesized with and without fluorescently tagged lysozyme 

and BSA.  The second set of multiple macromer hydrogels consisted of three biodegradable 



components.  The systems synthesized were AH6(2-1):AH6(1-1):H6 with mass ratios of 

40:10:50, 40:30:30, and 40:50:10.  The gels were synthesized with and without fluorescently 

tagged lysozyme, trypsin, and BSA.   

Degradation of multiple macromer hydrogels 

Degradation was conducted for PEG400DA:AH6(1-1):H6 multiple macromer hydrogels 

with mass ratios of 20:40:40, 50:25:25, and 80:10:10.  Figure 3 shows the degradation profile for 

7 days of degradation.  The values shown are adjusted for incomplete drying of the hydrogels 

before starting degradation.  The average weight of each set of hydrogel discs was adjusted to the 

average weight of a set of dry hydrogel discs.  After 12 hours of degradation, the H6 fraction of 

the multiple macromer hydrogel appeared to be degraded, which is consistent with the 

degradation rate of control H6 hydrogels.   Control AH6(1-1) hydrogels fully degrade in 36 

hours, however, after 7 days of degradation, the fraction of the multiple macromer hydrogel 

remaining was greater than expected.  Two distinct phases of degradation were present in these 

systems.  The similar nature of the H6 and AH6(1-1) components may have masked an 

additional step of degradation.   The higher than expected remaining fraction could be a result of 

incomplete conversion or incomplete removal of degradation products from the hydrogel. 

Conversion was measured using Fourier transform infrared spectroscopy (FTIR).  The ratio of 

the area under the curve of the C=C bond at 1637cm-1 to the area under the curve for the C=O 

bond at 1724cm-1 was compared for the reaction solution and unwashed hydrogels.  Conversion 

of PEG400DA:A6:H6 systems with mass ratios of 20:40:40, 50:25:25, 80:10:10 indicated that 

conversion decreased with increasing PBAE character.  Conversion of the 80:10:10 system was 

approximately 90%, while conversion for the 50:25:25 and 20:40:40 systems were 80% and 70% 

respectively.  The lower conversion associated with the PBAE components would cause the mass 



ratio of the non-degradable component to be higher than reported.  However, it is unlikely that 

this phenomenon is the only aspect affecting the degradation.  A second possibility for the higher 

than expected degradation rate is entrapment of degradation products in the non-degradable 

portion of the gel.  If the degraded fractions were unable to escape, the fraction remaining would 

be higher than the theoretical based on mass ratios.  

 

Figure 3. Degradation plot for PEG400DA:AH6(1-1):H6 with mass ratios of 80:10:10 (triangles), 50:25:25(squares), and 
20:40:40(diamonds).   

Degradation was carried out for a set of fully degradable AH6(2-1):AH6(1-1):H6 multiple 

macromer hydrogel with mass ratios of 40:10:50, 40:30:30, and 40:50:10.  The degradation 

profiles are shown in Figure 4.  The values shown on the plot are adjusted for incomplete drying 

of the hydrogels before the start of degradation. Similar to the PEG400DA:AH6(1-1):H6 

systems, the theoretical H6 fraction seemed to degrade in 12 hours.  However, all three systems 

degraded in less than 36 hours.  The similar and rapid degradation times for the H6 and AH6(1-

1) components made it difficult to determine if a step-wise degradation was occurring with these 

systems.   



 

Figure 4. Degradation plot for AH6(2-1):AH6(1-1):H6 with mass ratios of 40:10:50 (triangles), 40:30:30 (squares), and 40:50:10 
(diamonds). 

Swelling 

Swelling studies were conducted for the fully degradable AH6(2-1):AH6(1-1):H6 systems, but 

have not yet been conducted for other systems..  Swelling was found to increase with increasing 

hydrophilic character of the PBAEs.  The results are shown in Figure 8.   

 

Figure 5. Plot of percent swelling for the AH6(2-1):AH6(1-1):H6 multiple macromer hydrogel systems.   



Release  

Lysozyme and BSA were released from PEG400DA:AH6(1-1):H6 hydrogels with mass 

ratios of 20:40:40, 50:25:25, and 80:10:10.  The lysozyme and BSA were loaded at 0.2wt% and 

100wt% DMSO was used as the solvent.  The mass percent of the non-degradable component 

was sufficient in all three systems to keep the gel intact over 3 weeks of degradation.  

Additionally, some protein remained entrapped in the network at that time point. The cumulative 

release per gel weight is shown in Figure 5.  The loading of the proteins was theoretically the 

same, however, different amounts of photo-bleaching may have occurred.   

 

Figure 6.  Release profile of lysozyme and BSA from PEG400DA:AH6(1-1):H6 multiple macromer hydrogel.   

 Lysozyme, trypsin, and BSA were released from fully degradable AH6(2-1):AH6(1-

1):H6 multiple macromer hydrogels with mass ratios of 40:10:50, 40:30:30, and 40:50:10 as well 

as AH6(2-1), AH6(1-1), and H6 single macromer hydrogels.  The three multiple macromer 

systems fully degraded and therefore released all the proteins in less than 36 hours.  Figure 6 



plots A-C show the rate of release for lysozyme, trypsin, and BSA. The rate of release of the 

proteins was dependent upon the composition of the hydrogels.  As the hydrophobic character of 

the hydrogels increased the time for degradation and release increased.  As shown in plot D of 

Figure 6, very little difference is seen between the release profiles of the three systems.  This 

result could be due to the minimal difference in degradation times of the three systems.   

 

Figure 7. Release of proteins from AH6(2-1):AH6(1-1):H6 multiple macromer hydrogels and AH6(2-1), AH6(1-1), and H6 single 
macromer hydrogels.   Lysozyme, trypsin, and BSA release are shown in plots A, B, and C respectively for the six systems.  A 
comparison of the release of lysozyme, trypsin, and BSA for the AH6(2-1):AH6(1-1):H6 40:10:50 system is shown in plot D.  

Fluorescent Correlation Spectroscopy  

Fluorescence correlation spectroscopy was conducted on the PEG400DA:AH6(1-1):H6 

system.  The study was done at room temperature, and the diffusion coefficients were somewhat 

surprising.  The diffusion coefficients were expected to increase with time, however, diffusion 

coefficients at some of the intermediate time points were greater than those at 7 days.  Only one 

set of samples were run for each system, therefore more trials are needed before the results have 

statistical significance.   

A B 

C D 



  

Figure 8.  Preliminary FCS results for PEG400DA:AH6(1-1):H6 multiple macromer hydrogels with varying mass ratios.  

 

Conclusion 

A step wise degradation profile was observed for the PEG400DA:AH6(1-1):H6 multiple 

macromer hydrogels, but not for  the AH6(2-1):AH6(1-1):H6.  A multiphase degradation profile 

was not observed for the fully degradable hydrogel systems.  However, two stages of release 

were seen in the PEG400DA:AH6(1-1):H6 systems, characterized by an initial rapid phase of 

release and then a slower sustained release.  Swelling was found to increase with increasing ‘H’ 

character in the fully degradable system, and the diffusion coefficients yielded interesting results 

in the PEG400DA:AH6(1-1):H6 systems.  The use of PBAE components with more diverse 

characteristics, and a smaller amount of overlapping degradation, may allow for a multi-phase 

release profile to be observed.  Overall, the multiple macromer systems allow for a tunable 

degradation profile, and show promise for use in drug delivery type applications.  Slight 

adjustments to the components and mass ratios used for synthesis should allow for a multi-phase 

release profile, which can then  be tuned further for the release of multiple drugs for a specific 

disease state.   
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