University of Kentucky UKnowledge

Agronomy Notes

Plant and Soil Sciences

6-1976

Comparisons of Nitrogen Fertilizer Sources under Kentucky Soil and Climatic Conditions

Kenneth L. Wells University of Kentucky

Lloyd W. Murdock University of Kentucky, Imurdock@uky.edu

Harold F. Miller University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/pss_notes

Part of the Agronomy and Crop Sciences Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Wells, Kenneth L.; Murdock, Lloyd W.; and Miller, Harold F., "Comparisons of Nitrogen Fertilizer Sources under Kentucky Soil and Climatic Conditions" (1976). *Agronomy Notes*. 120. https://uknowledge.uky.edu/pss_notes/120

This Report is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Agronomy Notes by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE Lexington, Kentucky 40506

COOPERATIVE EXTENSION SERVICE

COMPARISONS OF NITROGEN FERTILIZER SOURCES UNDER KENTUCKY SOIL AND CLIMATIC CONDITIONS

K.L. Wells, Lloyd Murdock and Harold Miller

VOL. 9 NO. 6

June, 1976

A summary of yield data comparing different nitrogen fertilizer sources in field experiments conducted by the Agronomy Department staff should provide information that will help answer some of the inquiries regarding the comparative value of some of the nitrogen fertilizers being marketed in Kentucky. Since the nitrogen rates per acre shown in all tables are <u>ACTUAL NITROGEN</u> the <u>COST PER POUND OF NITROGEN</u> in the different materials is an important consideration when evaluating the various products.

Keep in mind that in order to adequately conduct a sources of nitrogen study, there must be a good yield response to the application of nitrogen. For this reason we always include a no-nitrogen treatment. If the no-nitrogen treatment yields considerably less than the nitrogen treatments, then we can validly compare the effect of sources and rates...unless some other factors unduly affect the experiment. So keep your eye on the no-nitrogen yield levels and the magnitude of response to applied nitrogen in looking over these data. Where little or no response was obtained, results for sources or rates of N mean very little.

This yield data along with the information on sources in AGR-43 (Nitrogen in Kentucky Soils) should be helpful in determining which nitrogen fertilizer is the most practical source of nitrogen for the various management and cropping systems.

The College of Agriculture is an Equal Opportunity Organization authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex or national origin.

COMPARISONS ON CORN

I. Nitrogen fertilizer broadcast and immediately disked-in just before planting -Conventionally prepared seedbed (Tables 1 and 2)

Pounds NITROGEN Per Acre	N Source	Poorly Drained Soil Stendal si.l. 2-Yr AV (1968-69)	Well Drained Soil Crider si.1. $3-Yr AV (1968-70)^{-1/2}$
		bu/	'A
0		61	71
80	A.N.	93	78
80	UREA	87	76
160	A.N.	121	80
160	UREA	115	77

 $\frac{1}{2}$ Lack of moisture limited production each year

Data by Harold Miller 3 reps per treatment

`*

0

6.3

Carl Carl

Pounds NITROGEN	·	Well Drained Soil Mountview si.1.							
Per Acre	N Source	1971	1972	1973	1974	4 Yr AV			
	· · · · · · · · · · · · · · · · · · ·			· bu/A -					
0		64	118	47	60 1/	72			
100	Sodium Nitrate	116	148	120	116 🕂	125			
100	UREA	125	143	115	131 ±/	129			
100	A.N.	122			(14) 26 4 7				
200	Sodium Nitrate	125	1.52	128	128	1.33			
200	UREA	134	150	134	131	137			
200	A.N.	1.35							

 $\frac{1}{2}$ In 1974 material applied at a rate to supply Data by W.W. Frye 150 pounds of nitrogen per acre

II. Nitrogen fertilizer broadcast just after planting and left on the soil surface (Tables 3, 4 and 5) 5

Table 3.	Conventionally prepared	d seedbed		
Pounds			Poorly Drained Sol	1
NITROGEN			Melvin si.l.	
Per Acre	N Source	1972	1973	2 Yr AV
			bu/A ·	
0	walk family state	65	18	42
100	A.N.	134	1.45	140
100	UREA	122	131	127
100	Solution	128	139	134

Data by Harold Miller 4 reps per treatment

4 reps per treatment

Table 4. N	lo-till planted		
Pounds		Moderately Well-Drained	Moderately Well-Drained
NITROGEN		Loring si.l.	Tilsit si.l.
Per Acre	N Source	1974	1974
		bu	1/A
0		41	27 1/
125	A.N.	128	49
125	UREA	111	48

 $\frac{1}{2}$ Low yields due to late planting and early frost

Data by John Ellis 4 reps per treatment

Table 5. Summa		Breathitt Co.		Lincoln Co.	Wolfe Co.	Ohio Co.	Caldwell Co.	
Nitrogen	16 N	No-	Conv.	No-	No-	Conv.	No-	Conv
Source	per A	<u>t</u> ill	_til1	till	t111	till	<u>till</u>	<u>till</u>
				APPLIED AT	PLANTINC			
No Nitrogen	0	131	118	69	101	33	79	41
Anm. Nitrate	75	138	138	62	125	110	~~~~	
Urea	75	126	141	62	130	103		
Solution	75	126	127		150	97		
Cal. Amm. Nitra		444, 844 bar		2 4 - 44 - 42		109		
Amm, nitrate				,			104	152
Urea	125			یسی ولی وی اس ولی این مند است ولی این سی می این بای بای این			101	131
Ama, nitrate		144	139	94	124			
Urea	150	144	151	76	153			
Solution	150	134	146		149			
				DELAYED APPI	$\frac{27}{2}$	اللہ اللہ کے <u>سے میں میں ایک رہی</u> ایک رائد	د سبا برای وسل خبر وسل کرد ا	
Amm. nitrate	75	137	132	97	170			
Urea	75	147	122	93	157	فسيرحله العا		
Solution		132	130	1.00	148			
Amm. nitrate	150	132	- 167	121	184	سې باده سوي دلان يوي باسم بيناز دامل دانله داده. دوي وجو باسان		
Urea	150	135	140	123	164			
Solution	150	143	143	128	209	in on 144		

Data from experiments by Wells, Bitzer, Ellis, Murdock and Miller. 3-4 reps per tmt.

 $\underline{1}$ / Soil type and drainage at sites were:

_	County	Soil type	Soil Drainage
	Breathitt	Allegheny, loam	Well drained
	Lincoln	Melvin silt loam	Poorly drained
	Wolfe	Allegheny loam	Well drained
	Ohio	Melvin silt loam	Poorly drained
	Caldwell	Tilsit silt loam	Mod. well drained (fragipan at 24 inches)
<u>2</u> /	Delayed applic	cation was 5-7 weeks	after planting.

COMPARISONS ON SMALL GRAIN

Table 6. 1	Late February or ear	ly March topdressing	g on Barley.	
Pounds			Well Drained Soil	
NITROGEN			Maury si.l.	
<u>Per Acre</u>	N Source	1973	1975	2 Yr AV
		-	bu/A	
0		67	45	56
30	A.N.	73	54	64
30	Urea	68	50	59
30	Solution		59	
60	A.N.	82	69	76
60	Urea	81	52	67
60	Solution		73	
90	A.N.	80	72	76
90	Urea	85 -	64	75
90	Solution		77	
			Date by KI Molle a	nd M I Bitgor

Data by K.L. Wells and M.J. Bitzer 3 reps per treatment

r*:

<u>Table 7.</u>	Late February or ea	rly March to	pdressing on	WHEAT		(
Pounds			Well Dr	ained Soil		C.r.r
NITROGEN			Maur	y si.l.		
Per Acre	N Source	1973	1974	1975	3 Yr AV	
			b	u/A		
0		46	56	53	52	
30 -	A.N.	52	61	51	55	
30	Urea	51	58	55	55	
30	Solution	·		62		
60	A.N.	61	64	59	61	
60	Urea	64	67	61	64	
60	Solution		••• ••	62		
90	A.N.	65	68	. 63	65	
90	Urea	59	66	61	62	
90 .	Solution	·		59		
· · · · · · · · · · · · · · · · · · ·		•		a by K.L. We	11s and M.J. Bit	zer

Data by K.L. Wells and M.J. Bitzer

3 reps per treatment

Table 8. Topdressing on WHEAT applied March 26.

fn 1 1

Pounds NITROGEN		Moderately Well-Drained Grenada si.l.	
Per Acre	N Source .	1975	
		bu/A	
0		21	
30	A.N.	33	
30	Urea	34	
30	Solution	37	
60	A.N.	42	1
60	Urea	45	
		Data by Harold Miller	

Data by Harold Miller 3 reps per treatment

COMPARISONS ON GRASS SODS

GRASS YIELDS - LBS DRY MATTER PER ACRE

Table 9. Materials broadcast on established BLUEGRASS and ORCHARDGRASS sod. Treatments replicated 4 times. Harold F. Miller

Downdo	ireatments replicate	10 4 LIMES. Natoru	F. Miller							
Pounds			Well Drained Soil							
NITROGEN		Maury si.l.								
Per Acre	Source	1971	1.972	2 Yr AV						
<u>1</u> / 0	الله في منه	2401	2095	2248						
50	A.N.	4052	4038	4045						
50	Urea	4033	41.50	4092						
1.00	Δ.Ν.	5719	5432	5576						
100	Urea	5179	5002	5091						
150	A.N.	7004	6216	6610						
150	Urea	6188	5870	6029						
50-0-50	A.N.	5737	4401	5069						
500- 50	Urea	5081	4099	4590						
50 ~ 50-50	A.N.	7023	5930	64 7 7						
50-50-50	Urea	6706	5739	6223						

1/ Initial application broadcast around the middle of March. Split applications applied in mid-March, erely June and mid-August.

Table 10,		on an ord rhoods sou narch 50. At	9
·	1st cutting June 2,	Treatments replicated 4 times. 1	larold Miller.
Pounds		Well Drained	Pounds of
NITROGEN		Maury s1.1.	Hitrogen in
Per Acre	Source	Production thru June 2	llerbage llarvested
$\frac{1}{2}$ 0		1260	15
50	A.N.	3234	42
50	Urea	2660	32
50	Solution	2632	36
100	A.N.	4419	68
1.00	Urea	3566	48
100	Solution	3845	56
150	A.N.	4523	85
150	Urea	4150	67 .
156	Solution	, 4578	71

Table 10, Haterials broadcast on an old FESCUE sod March 30. Area lost after harvesting

<u>1</u>/ Materials applied March 30

		1973			1974			1975		3-Yr Avg		
Date N applied	No N	A.N.	Urea	No N	A.N.	Urea	No N	A.N.	Urea	No N	A.N.	Urea
Mid-March	2771	3780	4067							2771	3780	4067
Early April	2771	4257	3904	1934	3938	3583	1442	3311	3154	2049	3835	3547
Mid-April 2/	1579	2971	3250	2017	4378	4437	1703	3791	3598	1766	3713	3762
Mid-April Early May - Mid-May	2519	3187	3114	533	861	863	1541	3348	3018	2030	3268	3066
Mid-May	1519	3046	2406	1520	2905	2667	1410	2467	2269	1483	2809	2447
Early June	1119	2143	1833	1565	2820	2327	1662	2219 ⁻	2158	1449	2394	2106
Mid-June Early July <u>3</u> / Mid-July <u>3</u> /	711	1784	1675	1300	2518	2093	2077	3274	2515	1363	2525	2094
Early July 3/	419	648	568	<u>\1127</u>	2581	2319	1522	2608	2464	1324	2595	2392
Mid-July 3/	332	682	554	Ì001	2357	2083	1065	1898	1588	1033	2128	1836
Early August <u>2</u> /	209	690	595	964	2413	1924	857	1578	1322	910	1996	1623
Mid-August				833	1812	1700	743	1157	1011	788	1485	1356
Mid-September				603	1830	1514	403	868	719	503	1349	1117
Early October				913	2433	2313				913	2433	2313

Table 11.	Effect of date when N was applied on the agronomic effectiveness of urea as compared with
	ammonium nitrate at the rate of 70 lbs N/acre

data by Lloyd Murdock

I/ For each treatment (date applied), grass was clipped to 2-inch height on date of N application, N was broadcast over the plots, and the plots were harvested twice--at 30 days after N was applied and again 90 days after N was applied. Yields shown are the total dry matter harvested from the two clippings (average 4 replications/treatment).

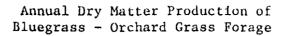
2/ Yields shown for 1974 represent only the dry matter regrowth harvested 90 days after N was applied (data for 30 day growth was lost).

3/ Yields shown for 1973 represent only the dry matter accumulated 30 days after N was applied (cattle destroyed the 60-day regrowth).

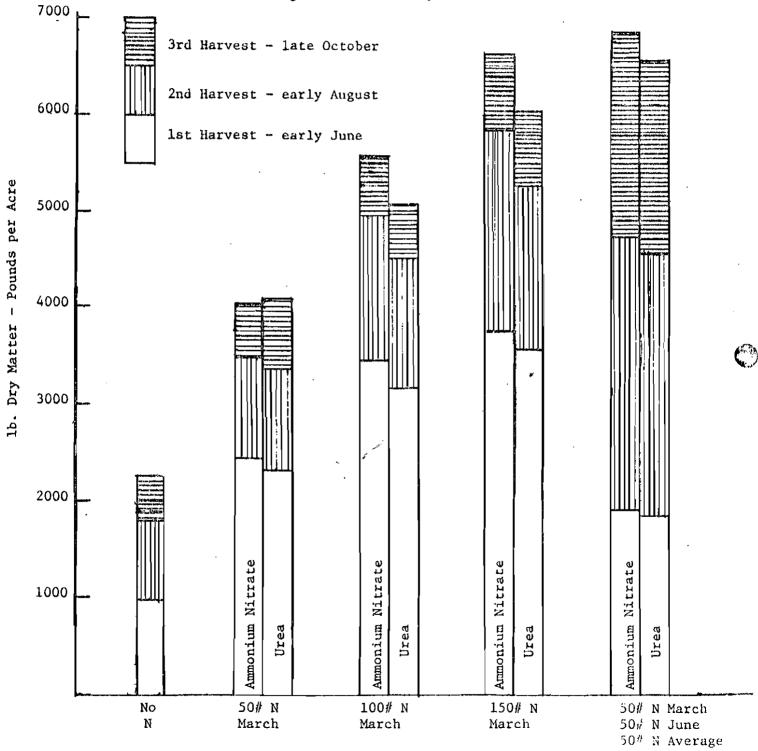
E

6

 \mathbf{c}


SHOULD UREA BE CONSIDERED A SLOW RELEASE SOURCE OF WITROCEN?

In 1973 a study comparing the effect of ammonium nitrate and urea on the growth of fescue was initiated. A no-nitrogen treatment and 70 lb of nitrogen per acre as ammonium nitrate and urea were applied at each treatment period. On each date of application, these treatments were applied to a separate set of plots. The nitrogen was applied to a separate set of plots, The nitrogen was applied around the first and fifteenth of each month, beginning in mid-March and ending early October. Each plot was harvested at 30 and 90 days after nitrogen application. Nitrogen content and yields were both determined. Each treatment was replicated four times.


The yields (see Table 11) and nitrogen content (not shown) of the forage indicate that more nitrogen was taken up by the plant from ammonium nitrate than urea. Presumably this is due to a volatilization loss of nitrogen that occurs when urea is added on the soil surface. Most of this loss was apparent with the first harvest made 30 days after application. The yields and nitrogen contents of the second harvest, 90 days after application, show only a small advantage favoring ammonium nitrate. The loss from urea was greater when applied during the middle of May or later. When applied before the middle of May, the yield from the urea plots was 3% less than that of ammonium nitrate. When added after this date, the difference is 13%. Over the period of time studied, no difference was found between the nitrogen release rate of ammonium nitrate and urea.

Another study was conducted comparing ammonium nitrate and urea as nitrogen sources during the 1971 and 1972 growing season on an established bluegrass-orchardgrass sod. A no nitrogen treatment along with rates of 50, 100, and 150 pounds of actual nitrogen from each of the two sources was applied in March. In addition, split applications of 50 pounds of nitrogen per acre in March, again in early June after the first harvest, and a third application following the second harvest in early August for a total of 150 pounds during the growing season were included. Each treatment was replicated four times.

The annual dry matter production along with the average yields for the 1971 and 1972 are shown in table 8. The herbage was harvested three times each season and average yields in pounds of dry matter per acre for each treatment calculated. The results by cuttings shown in the following graph show little evidence of urea being a slower release source of nitrogen than ammonium nitrate. A comparison of the yields for the second and third harvest show little difference in nitrogen availability from the two sources during the growing season, when the soil is warm and microbial activity is at its peak (see AGR-43). Where the rate of 50 pounds of nitrogen was applied in March, there was little yield increase over the no nitrogen plots for EITHER source after the first harvest in early June. Where the 100 and 150 pound rates were applied in March there was some nitrogen response, about equal for both sources, in the second harvest. The dry matter production was low for the third harvest on all treatments except the split application indicating that neither source of nitrogen at the rates of as much as 150 # N per acre applied in March was effective in supplying the nitrogen needed for fall growth of grasses under Kentucky climatic conditions.

Average 1971 and 1972 yields

