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ABSTRACT OF DISSERTATION

SLk-Tilings and Paths in Zk

An SLk-frieze is a bi-infinite array of integers where adjacent entries satisfy a certain
diamond rule. SL2-friezes were introduced and studied by Conway and Coxeter.
Later, these were generalized to infinite matrix-like structures called tilings as well
as higher values of k. A recent paper by Short showed a bijection between bi-infinite
paths of reduced rationals in the Farey graph and SL2-tilings. We extend this result
to higher k by constructing a bijection between SLk-tilings and certain pairs of bi-
infinite strips of vectors in Zk called paths. The key ingredient in the proof is the
relation to Plücker friezes and Grassmannian cluster algebras. As an application, we
obtain results about periodicity, duality, and positivity for tilings.

KEYWORDS: Combinatorics, Representation Theory, Algebra, Grassmannians, Friezes,
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Chapter 1 Introduction

A frieze is a bi-infinite offset array of entries satisfying certain properties. Friezes
were first introduced and studdied by Conway and Coxeter in 1970’s [5][6]. They
proved various facts about periodicity and symmetry of friezes and, in particular, that
there is a bijection between SL2-friezes over positive integers, often called Conway-
Coxeter Friezes, and triangulations of polygons. Later, the discovery of cluster alge-
bras in 2000’s [12] has created a newfound interest in friezes. In particular, cluster
algebras of type A are closely tied to triangulations of polygons. Moreover, additive
categorification of cluster algebras yields another important relation between friezes
and representation theory of quivers, first shown in [4]. Subsequent connections were
also discovered between frieze patterns and Farey graphs, cross-ratios, and continued
fractions, see the survey [13] and references therein. From this foundation came a
series of generalizations of SL2-friezes.

The first generalization is in terms of k, which can be also thought of as dimension.
While Conway and Coxeter defined friezes specifically for k = 2, the definition was
then expanded to SLk-friezes. These were found to be related to linear difference
equations and the combinatorial Gale transform [14].

Another direction of study comes from considering friezes with non-integer en-
tries. The Grassmannian Gr(k, n) is a projective variety via the Plücker embedding,
with homogeneous coordinate ring C[Gr(k, n)], which is one of the first and most
well-known examples of cluster algebras [16]. It was shown by Baur, Faber, Gratz,
Serhiyenko, and Todorov that one may use certain Plücker coordinates as entries in
an SLk-frieze and the Plücker relations that they satisfy yield the desired diamond
rule, the defining property of a frieze [2]. This lead to a classification of all (finite)
SLk-friezes as Plücker friezes applied to a particular element of the Grassmannian.
Later in [10], a generalization of SLk friezes were studied in relation to juggling func-
tions and positroid varieties, certain important subvarieties of the Grassmannian. In
addition, recently [9] extend the work on triangulations of subpologyons and friezes
beyond the two-dimensional case.

In another direction, friezes were further generalized to SLk-tilings, infinite arrays
M = (mi j) with i, j ∈ Z where the determinant of every k × k submatrix equals
1, by Bergeron and Reutenauer [3]. These tilings are called tame if every larger
adjacent minor has a determinant of 0. They showed how one could construct a tiling
from a frieze by rotating the frieze 45◦ clockwise and extending infinitely. In their
exploration of tame SLk-tilings they show that tilings may be represented using their
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so-called linearization data. In the case of two-dimensional tilings, Short [17] relates
this linearization data to paths, and proves a bijection between SL2-tilings and paths
in the Farey graph. Further restrictions of this map give geometric interpretations for
positive and periodic SL2-tilings as well as tilings from SL2-friezes. This bijection
was later extended to the 3D Farey graph by considering tilings over Eisenstein
integers [11], as well as entries in the field Z/nZ [18].

In summary, there has been a lot of work in the case k = 2 as well as some
more recent developments in the case of SLk freizes for higher values of k. In this
paper, we study SLk tilings for k ≥ 2, as these objects are much less understood.
We consider them from the perspective of linear algebra and obtain a generalization
of Short’s result [17]. Since we lack a connection to the geometry of the Farey graph,
we introduce a new algebraic notion of a path in Zk. Let γ = {γi}i∈Z be a bi-infinite
strip of k-column vectors γi ∈ Zk with the property that the matrix (γi, . . . , γi+k−1)
whose columns are k consecutive entries of γ is an element of SLk(Z). We denote
the set of all such strips Pk and we call γ a k-path. Additionally, we define the notion
of multiplication of a path by a matrix A ∈ SLk(Z) as

Aγ = (· · · , Aγ1, Aγ2, Aγ3, · · · ).

With this, we are able to prove our main result.

Theorem 1.0.1. The map Φ given by

Φ : (Pk × Pk)/SLk(Z) → SLk

(γ, δ) 7→ M = (mi j)i,j∈Z,

where mi j = det(γi, . . . , γi+k−2, δj) is a bijection between tame SLk-tilings and pairs
of paths modulo the action by SLk(Z).

The proof relies heavily on the connection between SLk friezes and Plücker co-
ordinates. We are also able to obtain a number of other correspondences similar to
those of Short. The first is about tilings which result specifically from friezes.

Theorem 1.0.2. The restriction of the map Φ given by

Φι : Pk/SLk(Z) → FRk

γ 7→ M = (mi j)i,j∈Z,

where mi j = det(γi, . . . , γi+k−2, γj) is a bijection between tame SLk-tilings from
SLk-friezes and equivalence classes of paths.
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We also prove that pairs of periodic paths are in bijection with SLk-tilings which
have the corresponding periods on their rows and columns. On the other hand,
Short’s result about positivity relies heavily on the geometry of the Farey graph
by considering paths which move clockwise. It is not clear how to interpret this
geometric notion in our setting. However, in the specific case of tilings from friezes,
we can look at the quiddity sequence. Rather than relying on the geometry of the
Farey graph or triangulations of polygons, we appeal to the structure of C[Gr(k, n)]
and Plücker relations. This construction allows us to prove that tilings from positive
friezes are in bijection with paths with positive quiddity sequences for certain values
of n and k, such as most cases where n ≤ 8. This proof requires a case-by-case
analysis for different choices of k and n. Moreover, this correspondence fails for
higher values of n. Hence, for general k and n, one needs to develop another notion
in this higher-dimensional setting that captures positivity.

Finally, our bijection reinterprets the dual tiling of Bergeron and Reutenauer
[3] and further justifies calling this operation a dual. We define a diagonalization
operation on a path γ written as γ̃. This leads to the following result.

Theorem 1.0.3. The dual tiling Φ(γ, δ)∗ = Φ(Aγ̃, δ̃) for a fixed A ∈ SLk(Z) up to
a shift of indices.

In particular, since the diagonalization operation is an involution, one can easily
deduce the same for the dual, whereas the original proof of this in [3] relied on some
complex calculations.

This paper is organized as follows. In Chapter 1, we discuss the key definitions
and past results relating to friezes, tilings, and Plücker coordinates. In Chapter 2
we define the main bijection between paris of paths and SLk tilings and prove its
validity. In Chapter 3 we introduce various restrictions of our bijection and show its
connection to duality. In Chapter 4 we complete the necessary calculations to prove
the partial positivity results.

1.1 Friezes

We begin by defining a structure first studied by Conway and Coxeter in the case
k = 2 [5][6] and then extended for higher k by Bergeron and Reutenaur [3].

Definition 1.1.1. An SLk-frieze is an array of offset bi-infinite rows of integers
consisting of k − 1 rows of zeros at the top and bottom, a row of ones below and
above them, respectively, and in between w ≥ 1 rows of integers satisfying the
following properties. For an example, see Figure 1.1.

3



1. Every k×k diamond of neighboring entries has determinant 1 when considered
as a k × k matrix formed by a 45◦ clockwise rotation.

2. Every (k+1)×(k+1) diamond has determinant 0 when considered as a matrix.

We call w the width of the frieze. We say the frieze is positive if all the entries
between the rows of ones are positive.

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

· · · · · ·
a c e g

b d f h

Figure 1.1: An SL2-frieze of width 2. Every 2× 2 diamond must have determinant

1, for example

∣∣∣∣a 1
b c

∣∣∣∣ = ac− b = 1.

We will also consider friezes with infinite rows.

Definition 1.1.2. An infinite SLk-frieze is an array of offset bi-infinite rows of
integers consisting of k−1 rows of zeros at the top followed first by a row of ones and
then infinitely many rows of integers satisfying properties (1) and (2) of Definition
1.1.1. We say an infinite frieze is positive if all the entries below the row of ones are
positive.

Note that a non-infinite SLk frieze may be extended to an infinite frieze with
periodic rows. When referring to infinite friezes specifically, we will explicitly use the
phrase “infinite friezes”.

For the following definitions, fix k, n ∈ Z>0 with k < n. Let Gr(k, n) denote the
Grassmannian of k planes in Rn. That is, elements of Gr(k, n) are k-linear subspaces
of Rn which can be represented by k × n matrices of full rank. It is known that
Gr(k, n) is a projective variety identified with the image of the Plücker embedding,
with homogenous coordinate ring

A(k, n) = C[Gr(k, n)].

4



Moreover, it was shown by Scott [16] that A(k, n) is a cluster algebra where Plücker
coordinates are cluster variables. Let I be a k-tuple with entries in [n] where we
allow for repeated entries. Such a tuple gives rise to a Plücker coordinate defined as
follows.

Definition 1.1.3. A Plücker coordinate pI with I = (i1, . . . , ik) is a map from
Gr(k, n) into R,

pI : Gr(k, n) → R
A 7→ det(ai1 , . . . , aik),

where A = (a1, . . . , an) is a k × n matrix.

Note that if there exists p ̸= q with ip = iq then pI = 0. Additionally, if
(i1, . . . , ik) = π(j1, . . . , jm) where π is a permutation on an ordered k-tuple, then
p(i1,...,ik) = sign(π)p(j1,...,jm). Note that we want the indices of Plücker coordinates to
be ordered and elements of [n]. Thus, we introduce the following notation. Given
a k-set, possibly a multiset, {i1, . . . , ik}, let jm ≡ im (mod n) with 1 ≤ jm ≤ n
for all m ∈ [k]. Then we write o(i1, . . . , ik) := (jℓ1 , . . . , jℓk) where {j1, . . . , jk} =
{jℓ1 , . . . , jℓk} and jℓ1 ≤ · · · ≤ jℓk . Hence, o(I) is obtained from a set I by first
reducing the entries mod n and then reordering them in increasing order.

Let I = {i1, . . . , ik−1} and J = {j0, . . . , jk}. The Plücker coordinates satisfy the
Plücker relations

k∑
ℓ=0

(−1)ℓpo(I)jℓ · po(J\jℓ) = 0, (1.1)

where o(I)jp denotes the ordered tuple obtained by adjoining jp at the end of
o(I). We will frequently refer to certain kinds of Plücker coordinates whose indices
are at least partially consecutive.

Definition 1.1.4. Fix a k-set I such that I = [r]k = {r, r+1, . . . , r+k−1}. Then the
Plücker coordinate po(I) is called consecutive. If instead o(I) is a consecutive (k−1)-
tuple and m ∈ [n] \ I, we call the Plücker coordinate po(I∪{m}) almost consecutive.

We now define a familiar structure which makes use of Plücker coordinates in
place of integers.

Definition 1.1.5. The Plücker frieze of type (k, n) denoted by F(k,n) is a Z×[n+k−1]
array with entries given by the map

(r,m) 7→ po([r]k−1,m′),

where m′ = m+ r − 1. For an example, see Figure 1.2.

5



0 0 0 0
p1 2 p2 3 p3 4 p4 5

· · · p2 5 p1 3 p2 4 p3 5 · · ·
p3 5 p1 4 p2 5 p1 3

p3 4 p4 5 p1 5 p1 2
0 0 0 0

Figure 1.2: The Plücker frieze F(2,5) of type (2, 5). When applied to a matrix satis-
fying the assumptions in Theorem 1.1.6, the consecutive Plücker coordinates in rows
2 and 5 become all 1’s and the remaining entries become a frieze as in Figure 1.1.

Baur, Faber, Gratz, Serhiyenko and Todorov have shown that F(k,n) satisfies
properties (1) and (2) of Definition 1.1.1. Hence, it is a frieze with entries in A(k, n)
rather than integers [2]. We wish to discuss their relationship to traditional friezes
over the integers. Let F(k,n)(A) denote the array of numbers pI(A) resulting from
applying each Plücker coordinate in the frieze F(k,n) to the matrix A ∈ Gr(k, n).

Theorem 1.1.6. [2, Theorem 3.1] Let A be a k × n matrix with entries in Z with
the property that each consecutive Plücker coordinate has a value 1 when applied to
A. Then F(k,n)(A) is an SLk-frieze.

Of additional use to us is that we can also represent an arbitrary frieze as a
Plücker frieze for a particular Grassmannian.

Remark 1.1.7. [2, Remark 3.7] Any SLk-frieze F of width w over Z can be em-
bedded into Gr(k, n) where n = w + k + 1 as a point which can be represented by a
matrix MF whose consecutive k × k minors are ones. Moreover, F(k,n)(MF ) = F .

We will also need the following result about particular matrices formed by Plücker
coordinates. For mi ∈ [n], we use the notation [m1,m2] for the closed cyclic interval
{m1,m1+1,m1+2, . . . ,m2} where the elements are considered modulo n. We define
open and half-open intervals similarly.

Definition 1.1.8. Let r, s ∈ [n] and m = (m1, . . . ,ms) with mi ∈ [n]. We define the
(s× s) matrix

Am;r := (ai j)1≤i,j≤s,

where ai j := po([r+i−1]k−1,mj) for 1 ≤ i, j ≤ s.

6



Proposition 1.1.9. [2, Proposition 3.5] Let r ∈ [n], s ∈ [k], and m = (m1, . . . ,ms)
with mi ∈ [n] for all i satisfying the following conditions.

(c1) m is ordered cyclically modulo n.

(c2) We have r + k − 2 ̸∈ [m1,ms).

Then

det (Am;r) =

[
s−2∏
ℓ=0

po([r+ℓ]k)

]
· po([r+s−1]k−s,m1,...,ms).

Example 1.1.10. Suppose in the case of Gr(3, 8) we have r = 1, s = 3, and
m = (3, 4, 5). Then we have

Am;r =

p1 2 3 p1 2 4 p1 2 5
p2 3 3 p2 3 4 p2 3 5
p3 4 3 p3 4 4 p3 4 5

 =

p1 2 3 p1 2 4 p1 2 5
0 p2 3 4 p2 3 5
0 0 p3 4 5

 .

By Proposition 1.1.9, this determinant is

det (Am;r) =

[
1∏

ℓ=0

po([1+ℓ]3)

]
· po([3]0,3,4,5) = p1 2 3p2 3 4p3 4 5.

In the set-up of Theorem 1.1.6, Plücker coordinates with consecutive entries will
be sent to 1 when applied to the matrices A. Thus, we have[

s−2∏
ℓ=0

po([r+ℓ]k)(A)

]
= 1,

and the determinant in Proposition 1.1.9 is then given by

det (Am;r) = po([r+s−1]k−s,m1,...,ms)(A).

1.2 Tilings

Mainly, we are going to focus not on friezes, but on more general structures called
tilings introduced and studied by Bergeron and Reutenaur [3].

7



Definition 1.2.1. A tiling M = (mi j)i,j∈Z with values mi j ∈ Z is an infinite array.
We denote by Mi j the adjacent k × k sub-matrix of M

Mi j = M{i,...,i+k−1},{j,...,j+k−1}.

We say that M is an SLk-tiling if Mi j ∈ SLk(Z) for all i, j ∈ Z. In this case we say
that M satisfies the SLk-property. We say that an SLk-tiling M is tame if every
adjacent (k + 1) × (k + 1) sub-matrix of M has determinant 0. We denote by SLk

the set of all tame SLk-tilings.

Remark 1.2.2. Condition (2) of Definition 1.1.1 is not always required in defining
friezes. It is also called tameness. In this paper we only consider tame friezes and
tilings, but wild tilings, those not satisfying this condition, have been studied by
Cuntz [8].

Friezes correspond to a special type of periodic tilings described as follows.

Definition 1.2.3. [3, p. 266] Let F be an SLk-frieze. Then we denote by MF the
tiling constructed from F using the following process. Let the rows of a frieze become
a falling diagonal of a tiling by rotating the frieze 45◦ clockwise as in Figure 1.3. We
may fill in the rest of the tiling through a skew extension in both directions as follows.
Let ai j be an entry of the rotated frieze, then define ai j+w+k+1 = (−1)k−1ai j where
w is the width of the frieze.

...
...

...
...

...
...

...
...

...
· · · 0 1 b c 1 0 −1 −b −c · · ·
· · · −1 0 1 d e 1 0 −1 −d · · ·
· · · −g −1 0 1 f g 1 0 −1 · · ·
· · · −h −i −1 0 1 h i 1 0 · · ·

...
...

...
...

...
...

...
...

...

Figure 1.3: Tiling resulting from rotating and extending the frieze in Figure 1.1.

Another important structure in our study of tilings is k-column vectors. Our
goal is to construct a bijection between SLk-tilings and pairs of sequences of vectors
satisfying certain properties.
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Definition 1.2.4. Let γ = {γi}i∈Z be a bi-infinite strip of k-column vectors γi ∈ Zk

with the property that the matrix (γi, . . . , γi+k−1), whose columns are k consecutive
entries of γ, is an element of SLk(Z). We denote the set of all such strips Pk and we
call γ a path.

The structure of these paths gives rise to additional information in how one set
of adjacent vectors relates to the next one. We encode the information in terms of
J matrices, which record how one column of γ relates to the preceding k columns.

Definition 1.2.5. We define the matrix Jk
n ∈ SLk(Z) for n ∈ Z as follows

Jk
n =


0 · · · 0 (−1)k−1

Ik−1

jn 2
...

jnk


where Ik−1 is the identity matrix of size k − 1. We may also refer to the entry in
the top right corner as Jn 1 for consistency of notation. When clear, we omit the
superscript k and write simply jn. We use the term J matrices when referring to
matrices of this form in general.

Observe that multiplying a matrix A = (a1, . . . , ak) on the right by a matrix Jn
results in applying the following steps to A.

1. Delete the first column a1 of A.

2. Shift all remaining columns to the left by one.

3. Append a new final column a′1 which is a linear combination of the columns of
A, namely

a′1 = (−1)k−1a1 + jn 2a2 + · · ·+ jnkak.

The result is the matrix
AJn = (a2, . . . , ak, a

′
1).

Recall that Jn ∈ SLk(Z). Thus, if A ∈ SLk(Z), then so is AJn. In fact, for any
matrix A′ ∈ SLk(Z) where the first k − 1 columns of A′ are a2, . . . , ak, there exists
a unique Jn such that AJn = A′.

We later show that for any general B ∈ SLk(Z), there is a sequence of J matrices
which allow us to transform A into B via right multiplication. Thus, these J matrices
serve as transitions between k consecutive columns of a path. More precisely, to a
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path γ ∈ Pk, we associate a collection of J matrices {Ji}i∈Z called transition matrices
such that

(γi, . . . , γi+k−1)Ji = (γi+1, . . . , γi+k).

On the other hand, Bergeron and Reutenauer show that all rows (respectively
columns) of a tiling M ∈ SLk may be written as a linear combination of the previous
k rows (respectively columns) with a coefficient of (−1)k−1 on the first [3, Lemma
2]. In particular, they state that

Rowi+k = (−1)k−1Rowi + ji 2Rowi+1 + · · ·+ ji kRowi+k−1

Coli+k = (−1)k−1Coli + j′i 2Coli+1 + · · ·+ j′i kColi+k−1,

where Rowi (respectively Coli) refers to the i-th row (respectively column) of M.
They refer to the other coefficients, {ji 2, ji 3, . . . , ji k} and {j′i 2, j′i 3, . . . , j′i k}, as the
linearization data, and these, in turn, correspond directly with the last column of
the J matrix if we take the first coefficient to be the (−1)k−1 term. They prove the
following result.

Proposition 1.2.6. [3, Proposition 3] The mapping

ξ : SLk → SLk(Z)×
(
Z1×(k−1)

)Z × (Z(k−1)×1
)Z

M 7→ (M1 1, λ, µ),

which associates to a tame SLk-tiling its linearization data λ and µ of the rows and
columns respectively and a central matrix M1 1 = M[k],[k], is a bijection.

This demonstrates that J matrices also serve as transitions between rows and
columns of SLk-tilings. We recall a few additional definitions due to Bergeron and
Reutenaur [3], starting with the notion of periodicity in tilings and paths.

Definition 1.2.7. Let m ∈ Z>0. We say a path γ is p-periodic if it has the property
that γi = γi+p for all i ∈ Z. We denote by (Pk)p the set of all p-periodic paths.
Similarly, a sequence of J matrices {Ji}i∈Z is p-periodic if they have the property
that Ji = Ji+p for all i ∈ Z. We say a tiling M is p-row periodic (respectively
p-column periodic) if mi j = mi+p j (respectively mi j = mi,j+p) for all i, j ∈ Z. We
say that a tiling M is (p× q)-periodic if

mi j = mi+p j = mi j+q = mi+p j+q

for all i, j ∈ Z.

10



Bergeron and Reutenauer introduce an interesting operation on tilings called
duality which we recall below. Later, we will present an alternative interpretation of
this by applying our results.

Definition 1.2.8. [3, Equation 10] The p-derived tiling of a tiling M, denoted ∂pM
is given by

∂pM :=
(
M

(p)
i j

)
i,j∈Z

where M
(p)
i j is the adjacent p × p minor of M with upper-right corner mi j. When

p = k − 1, we call ∂k−1M the dual of M and we write M∗.

The following proposition shows that the terminology of the dual is justified.

Proposition 1.2.9. [3, Proposition 6] The dual of a tame SLk-tiling is a tame
SLk-tiling. Moreover, (M∗)∗ and M coincide up to translation.

1.3 SL2-tilings

SL2-tilings were studied in detail by Short where he related them to the combina-
torics of the Farey graph [17]. We recall the main results below.

Definition 1.3.1. A Farey graph is a graph with vertices in Q ∪∞. Two reduced

rationals
a

b
and

b

c
are connected by an edge if ad − bc = ±1. In this case, we take

∞ =
1

0
.

Short constructs a bijection between certain pairs of structures which he also calls
paths, though his definition differs slightly.

Definition 1.3.2. [17] A path of reduced rationals is a bi-infinite sequence of reduced

rationals γ =

{
ai
bi

}
i∈Z

which satisfy the property that

aibi+1 − ai+1bi = 1.

We denote the set of all such paths as PQ. Note that elements of PQ are paths in
the graph theoretic sense in the Farey graph.

We take a moment to draw an important distinction between PQ and P2 as
defined in Definition 1.2.4. Observe that for paths γ ∈ P2, there is a difference

11



between columns

(
a

b

)
and

(
−a

−b

)
of γ which is lacking in the Farey graph. Both of

these represent the same reduced rational
a

b
=

−a

−b
. Note that while replacing one

with the other changes the sign on the determinant of the two consecutive columns
of γ, and thus matters in the definition of path γ ∈ P2, the sign does not matter
when thought of as a path in the Farey graph. Hence, Short must identify M and
−M, the tiling obtained by negating all entries of M.

Short constructs a bijection between SL2(Z)-tilings and paths in PQ. In aid of
this, he defines the following map.

The notation (PQ×PQ)/SL2(Z) denotes the set of conjugacy classes consisting
of pairs of paths γ, δ up to multiplying all columns in γ and δ by the same matrix
A ∈ SLk(Z).

Definition 1.3.3. [17] Let γ =

{
ai
bi

}
i∈Z

and δ =

{
cj
dj

}
j∈Z

be paths in PQ. Define

the map ΦQ as follows.

ΦQ : (PQ× PQ)/SL2(Z) → SL2/±
(γ, δ) 7→ (mi j)i,j∈Z

where SL2/± is the set of all tilings where we identify M = −M, and mi j =
aidj − bicj.

Theorem 1.3.4. [17, Theorem 1.1] The map ΦQ in Definition 1.3.3 is a bijection
between pairs of paths modulo SL2(Z) and the set of all SL2-tilings up to a global
change of sign SL2/±.

In this paper, we obtain a generalization of Short’s result for all k ≥ 2. Moreover,
Short’s use of the geometry of the Farey graph allows him to establish further bijec-
tions by placing certain restrictions on paths. While Short’s main result and several
others are extended here, it is not clear how to generalize all of them as we lack the
connection to geometry.

Copyright© Zachery T. Peterson, 2024.
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Chapter 2 The Bijection

In this chapter we define a map Φ from pairs of paths to SLk-tilings and then prove
that it is a bijection.

2.1 Defining Φ

We first introduce a map Φ̃. We will later show that this map is well-defined.

Definition 2.1.1. We define a map Φ̃ from a pair of paths to a tiling as follows. Fix
a pair (γ, δ) ∈ Pk × Pk.

Φ̃ : (Pk × Pk) → SLk

(γ, δ) 7→ (mi j)i,j∈Z,

where
mi j = det (γi, γi+1, . . . , γi+k−2, δj) .

Thus, the entries mi j of the tiling come from taking the determinant of k − 2
consecutive columns of γ and a single column of δ.

Example 2.1.2. Suppose we have a pair of paths γ, δ ∈ Z3 defined as follows:

γ = (· · · , γ1, γ2, γ3, γ4, · · · ) =

 1 0 0 1
· · · 0 1 0 5 · · ·

0 0 1 2


and

δ = (· · · , δ1, δ2, δ3, · · · ) =

 1 1 1
· · · 1 2 3 · · ·

1 3 6

 .

To derive a specific entry of the tiling Φ̃, saym1 2, we take two entries of γ starting
at γ1 and append δ2. The resulting determinant gives the entry:

m1 2 = det(γ1, γ2, δ2) = det

1 0 1
0 1 2
0 0 3

 = 3.
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We may assemble the whole tiling in this fashion. For example,

M =

.. .
...

...
...

· · · 1 3 6 · · ·
· · · 1 1 1 · · ·
· · · −4 −3 −2 · · ·

...
...

...
. . .

.

Note that it is not clear from the definition that the array Φ̃(γ, δ) satisfies the
SLk-property. We will show this later. For now, we need some preliminary results.
Let A be a k × k matrix. We define the multiplication of A by γ ∈ Pk, denoted by
Aγ, by

Aγ = (· · · , Aγ1, Aγ2, . . .) .

Lemma 2.1.3. The map Φ̃ is invariant under multiplication by A ∈ SLk(Z), that
is Φ̃(γ, δ) = Φ̃(Aγ,Aδ).

Proof. Fix (γ, δ) ∈ (Pk×Pk). Let mi j be the entry of the image M of Φ̃(γ, δ). Then

Φ̃(Aγ,Aδ) has image m′
i j where

m′
i j = det (Aγi, . . . , Aγi+k−2, Aδj)

= det (A (γi, γi+1, · · · , γi+k−2, δj))

= det(A)mi j

= mi j.

Let π : (Pk × Pk) → (Pk × Pk)/SLk(Z) be the quotient map. By Lemma 2.1.3,

Φ̃(Aγ,Aδ) = Φ̃(γ, δ), so Φ̃ induces a map Φ from (Pk × Pk)/SLk(Z) to SLk such
that the following diagram commutes.

Pk × Pk SLk

(Pk × Pk)/SLk(Z)

π

Φ̃

Φ

We will focus on the map Φ and prove that it is a bijection. First, we make an
observation about J matrices.
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Lemma 2.1.4. The J matrices generate SLk(Z).

Proof. It is a classical result in linear algebra that shear matrices generate the special
linear group, see for example [1]. Thus, it suffices to show that J matrices generate
shear matrices Si j(λ) which consist of the identity matrix with a single nonzero entry
λ in position (i j) where i ̸= j.

Fix a shear matrix Si j(λ). Recall the structure of a J-matrix from Definition
1.2.5. Consider (Jn)

j−1 where Jn is the J matrix with jn ℓ = 0 for all ℓ ∈ {2, . . . , k}.
This matrix (Jn)

j−1 has columns

(ej, . . . , ek, (−1)k−1e1, . . . , (−1)k−1ej−1).

Then, multiply by the J matrix Jm with a single nontrivial j-entry in the last column
where

jm,i′ =

{
λ if i > j

(−1)k−1λ if i < j

where i′ ≡ (i− j + 1) (mod k) and jmℓ = 0 for ℓ ̸= i′. The resulting matrix J j−1
n Jm

is of the form

J j−1
n Jm =

(
ej+1, . . . , ek, (−1)k−1e1, . . . , (−1)k−1ej−1, (−1)k−1(λei + ej)

)
.

Then multiply by (Jn)
k−j to obtain (−1)k−1Si j(λ). Finally, to get the desired Si j(λ),

multiply by (Jn)
k.

From this, we develop the following technique. Consider (γ, δ) ∈ (Pk × Pk). We
construct a periodic path withm consecutive entries from γ and n consecutive entries
from δ with m,n ≥ k. Without loss of generality, we may select a labeling such that
the desired elements of γ and δ are {γ1, . . . , γm} and {δ1, . . . , δn} respectively. By
Lemma 2.1.4, there is a sequence of J matrices {Ji}i∈[ℓ+k] for some ℓ ∈ Z such that

(γm−k+1, . . . , γm)J1 · · · Jℓ+k = (δ1, . . . , δk).

Let λi with i ∈ [ℓ] be the last column of the product

(γm−k+1, . . . , γm)J1 · · · Ji.

Similarly, there is a sequence of J matrices {J ′
i}i∈[q+k] for some q ∈ Z such that

(δn−k+1, . . . , δn)J
′
1 · · · J ′

q+k = (−1)k−1(γ1, . . . , γk).
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Let µi with i ∈ [q] be the last column of the product

(δn−k+1, . . . , δn)J
′
1 · · · J ′

i .

We obtain a matrix A with columns

A = (γ1, . . . , γm, λ1, . . . , λℓ, δ1, . . . , δn, µ1, . . . , µq). (2.1)

Note that, by construction, A satisfies the properties of Theorem 1.1.6, that is all
consecutive Plücker coordinates of A are 1.

Definition 2.1.5. Fix m,n ≥ k. We define a map

φm,n : (Pk × Pk)/SLk(Z) → Pk/SLk(Z)

as follows. Given (γ, δ) ∈ (Pk × Pk)/SLk(Z), let A be constructed as in Equation
(2.1). Then we define a new path φm,n(γ, δ) by extending A periodically as follows.

(φm,n(γ, δ))i = (−1)r(k−1)Ai′

where i′ = i+ r · (m+ ℓ+n+ q) When obvious, we will omit the subscripts m,n and
write φ(γ, δ).

We provide an example of the construction of the path φ(γ, δ) below.

Example 2.1.6. Suppose we have a pair of paths γ, δ ∈ Z2 defined as follows

γ =

(
· · · 0 −1 −2 −1

1 1 1 0
· · ·
)

and δ =

(
· · · −4 1 2

3 −1 −1
· · ·
)
.

We wish to construct a path φ3,2(γ, δ). We start with the first three columns of γ(
0 −1 −2
1 1 1

)
.

Our goal is to use this starting place to create a path which reaches the first two
columns of δ, i.e. (

0 −1 −2 · · · −4 1
1 1 1 · · · 3 −1

)
.

Wemay do this by constructing an appropriate sequence of J matrices which generate(
−1 −2
1 1

)−1( −4 1
3 −1

)
.
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In this case, we obtain a single vector λ =

(
3

−2

)
. We do the same in order to

return back to the initial entry of γ scaled by −1. In this case, the sequence of

vectors µ is µ =

(
−1
2

)
. The resulting path has the form

φ3,2(γ, δ) = (· · · , γ1, γ2, γ3, λ1, δ1, δ2, µ1,−γ1,−γ2,−γ3, · · · )

=

(
· · · 0 −1 −2 3 −4 1 −1 0 1 2

1 1 1 −2 3 −1 2 −1 −1 −1
· · ·
)
.

From this partial data about γ and δ, we will be able to extract certain partial
information about their image M = Φ(γ, δ) and then expand this to a variety of
conclusions about the whole image M.

Lemma 2.1.7. Let M := Φ(γ, δ) be an array and let M = M{1,...,m},{1,...,n} be an
adjacent m×n sub-matrix in M with m,n ≥ k. Then there exists a tame SLk-tiling
M′ from a frieze which has the property that the adjacent m× n sub-matrix

M ′ = M′
{i,...,i+m−1},{j,...,j+n−1}

is equal to M for some i and j.

Proof. For paths γ and δ and m+k−2, n ≥ k, use Equation (2.1) to construct a ma-
trix A and a path φ(γ, δ) as in Definition 2.1.5. By Theorem 1.1.6, F(k,n+ℓ+m+q)(A) is
a tame SLk-frieze. We may extend this frieze to a tame SLk-tilingM′ = MF(k,n+ℓ+m+q)(A)

as in Definition 1.2.3. Let M ′ be a submatrix of M′ of size m × n with upper-left
entry p1,...,k−1,m+ℓ+1(A). By construction, this is given by the determinant of the
matrix (γ1, · · · , γk−1, δ1), and is therefore equal to m1,1 in M. The same holds for
all other entries of M ′.

This finally allows us to show that Φ, and hence Φ̃, are well-defined.

Proposition 2.1.8. The map Φ : (Pk × Pk)/SLk(Z) → SLk is well-defined.

Proof. Let (γ, δ) ∈ (Pk × Pk)/SLk(Z) and M = Φ(γ, δ). We wish to show that
M ∈ SLk. By Lemma 2.1.7, we can map M = M{1,...,m},{1,...,n} to a portion of a
tame SLk-tiling M′. Observe that in Equation (2.1), our choice of indexing for γ
and δ was arbitrary. Therefore, we may adjust our labels on γ and δ such that the
upper left corner of M may be any entry in M. Therefore, since M′ ∈ SLk, we have
that, in particular, every adjacent k× k sub-matrix is in SLk(Z) and every adjacent
(k + 1)× (k + 1) adjacent sub-matrix has determinant 0. Thus, M is in SLk.
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2.2 Transition Matrices

Next, we present a series of results which will allow us to compare the transition
matrices of tilings and paths. First, we give a notation for the transition matrices in
a tiling.

Definition 2.2.1. Given a tiling M we write Hi for the horizontal transition matrix
of M which transitions from column i+ k − 1 to i+ k, i.e.

Mi jHj = Mi j+1.

Similarly, we write Vi for the vertical transition matrix which transitions from row
i+ k − 1 to i+ k, i.e.

MT
i jVi = MT

i+1 j.

With this notation in mind, we make the following observation. Let M = MF

be a tiling from a frieze F with entries in some integral domain. We may index M
such that M0 0 := M is of the following form.

M =


1 m1 1 m1 2 · · · m1 (k−1)

0 1 m2 2 · · · m2 (k−1)

. . . . . . · · · ...
0 1 m(k−1) (k−1)

0 0 1

 .

In order to transition fromM to the k-th column ofM, we use a horizontal transition
matrix which takes the form of a J matrix. In particular,

M



(−1)k−1

j2
...

jk−p+1
...
jk


=



m1 k

m2 k
...

mk−p+1 k
...

mk k


, (2.2)

for p ∈ [k] where ((−1)k−1, j2, . . . , jk−p+1, . . . , jk)
T is the final column of the horizontal

transition matrix. This gives rise to the following lemma.

Lemma 2.2.2. LetM = MF be a tiling from a frieze F and let ((−1)k−1, j2, · · · , jk−p+1, · · · , jk)T
be the final column of the horizontal transition matrixH0. Then jk−p+1 = (−1)p−1Mp

where Mp is the p-th adjacent minor of M[k],[k] whose bottom right corner is mk k.
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Proof. We proceed by strong induction. Take as a base case p = 1. By Equation
(2.2), clearly jk = mk k. Additionally, the 1 minor is |mk k| = mk k. Thus, jk =
(−1)1−1mk k = mk k, as desired, and the base case holds.

Suppose the statement holds for jk−i+1 where i ∈ [p − 1] with p ≤ k. Consider
the case jk−p+1. By Equation (2.2), we see that

jk−p+1 = m(k−p+1) k −
p−1∑
i=1

jk−i+1m(k−p+1) (k−i). (2.3)

The minor Mp has the form

Mp =

∣∣∣∣∣∣∣∣∣∣∣

m(k−p+1) (k−p+1) m(k−p+1) (k−p+2) · · · m(k−p+1) k

1 m(k−p+2) (k−p+2) · · · m(k−p+2) k

. . . · · · ...
1 m(k−1) (k−1) m(k−1) k

0 1 mk k

∣∣∣∣∣∣∣∣∣∣∣
.

We compute the determinant by going across the top row. Denote by rq in the
determinant of the (p− 1)-st minor associated with the term m(k−p+1) (k−p+q) where
q < p from the top row. This minor rp is of the form

rq =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗
. . . ∗

0 1
m(k−p+q+1) (k−p+q+1) · · · m(k−p+q+1) k

0 1 · · · m(k−p+q+2) k

. . .
...

1 mk k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This determinant is given entirely by the determinant of the lower-right block of size
p − q, which, by the inductive hypothesis, is (−1)p−q−1jk−p+1+q. Thus, each of the
terms in the expression for Mp are given by

(−1)q−1m(k−p+1) (k−p+q)rq = (−1)q−1m(k−p+1) (k−p+q)(−1)p−q−1jk−p+1+q = (−1)pjk−p+1+qm(k−p+1) (k−p+q).

When q = p, rp is given by (−1)p−1m(k−p+1) k times the identity matrix. Thus, we
have that the minor Mp is given by

Mp = (−1)p−1m(k−p+1) k + (−1)p
p−1∑
i=1

jk−i+1m(k−p+1) (k−i).
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Multiplying Equation (2.3) by (−1)p−1 gives us that

(−1)p−1jk−p+1 = (−1)p−1m(k−p+1) k + (−1)p
p−1∑
i=1

jk−i+1m(k−p+1) (k−i) = Mp,

as desired.

We generalize this result to give us the entries of all J matrices in a Plücker frieze.

Proposition 2.2.3. Let M = MF(k,n) such that m1 1 = po([1]k−1[1]).

(a) The entry jp q+1 of Hp is given by

jp q+1 = (−1)k−q−1po([p]q ,[p+q+1]k−q).

(b) The entry jp q+1 of Vp is given by

jp q+1 = (−1)k−q−1po([p+q−1]k−q ,[p+k]q).

Proof. We begin by proving part (a). The horizontal transition matrix Hp+k−1 is a
transition between the adjacent submatrix

A[p+k−1]k;p =


po([p]k−1,p+k−1) po([p]k−1,p+k) · · · po([p]k−1,p+2k−2)

po([p+1]k−1,p+k−1) po([p+1]k−1,p+k) · · · po([p+1]k−1,p+2k−2)
...

...
. . .

...
po([p+k−1]k−1,p+k−1) po([p+k−1]k−1,p+k) · · · po([p+k−1]k−1,p+2k−2)


as in Definition 1.1.8 and the next column of M. By Lemma 2.2.2, this means
jp+k−1 q+1 is equal to (−1)k−q−1 times the adjacent (k − q)-minor of A[p+k]k;p aligned
with the bottom-right corner. This corresponds to the matrix A[p+k+q]k−q ;p+q. By
Proposition 1.1.9, we have that

det(A[p+k+q]k−q ;p+q) = po([(p+q)+(k−q)−1]k−(k−q),[p+k+q]k−q) = po([p+k−1]q ,[p+k+q]k−q).

Thus, we have
jk+p−1 q+1 = (−1)k−q−1po([p+k−1]q ,[p+k+q]k−q).

Setting p to p− k + 1, we obtain the desired result.
Part (b) follows similarly by using MT . The corresponding matrices are now of

the form A[p+q−2]k−q ;p+q.
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We show an example of how the formulas in parts (a) and (b) of Proposition 2.2.3
are related.

Example 2.2.4. We may first use the formula in Proposition 2.2.3 part (a) to
construct the sequence of the final column of the J matrices of a Plücker frieze,
hence the horizontal transition matrices of the corresponding tiling. For example, if
we take k = 4, we have the following sequence starting with p = 1:· · · ,


−1

p1 3 4 5
−p1 2 4 5
p1 2 3 5

 ,


−1

p2 4 5 6
−p2 3 5 6
p2 3 4 6

 ,


−1

p3 5 6 7
−p3 4 6 7
p3 4 5 7

 ,


−1

p4 6 7 8
−p4 5 7 8
p4 5 6 8

 , · · ·

 .

We may similarly use the formula from Proposition 2.2.3 part (b) to construct the
sequence for vertical transition matrices starting with p = 1:· · · ,


−1

p1 2 3 5
−p2 3 5 6
p3 5 6 7

,


−1

p2 3 4 6
−p3 4 6 7
p4 6 7 8

 ,


−1

p3 4 5 7
−p4 5 7 8
p5 7 8 9

 ,


−1

p4 5 6 8
−p5 6 8 9
p6 8 9 10

 , · · ·

 .

Note that column entries along the ascending diagonals of one sequence form the
columns of the other.

With this example as guidance, we define an operation and notation on paths
which alters their J matrices.

Definition 2.2.5. Given a path γ ∈ SLk(Z) with J matrices {Ji}i∈Z, define a new

path γ̃ ∈ SLk(Z) such that γ̃[k] = (γ[k])
T and the J matrices of γ̃ written {J̃i}i∈Z

have entries in the final column given by

j̃i q =

{
ji 1 = (−1)k−1 q = 1

(−1)kji+q−2 k−q+2 else

for i ∈ Z and q ∈ [k].

Remark 2.2.6. Note that (̃J̃i) from the J matrices of ˜̃γ equals Ji from the J matrices
of γ up to a shift in indexing by k − 2, i.e.

(̃J̃i)i = Ji+k−2

for all i ∈ Z.
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Next, we obtain results about the transition matrices of tilings.

Lemma 2.2.7. The horizontal transition matrices of the tiling M := Φ(γ, δ) are
equal to the J matrices of δ.

Proof. Let γ, δ ∈ (Pk × Pk)/SLk(Z). Without loss of generality, we may select our
γ such that (γ1, γ2, . . . , γk) = Ik. We want to show that the horizontal transition
matrices of M match up with the J matrices of δ. It suffices to show that M1 1J1 =
M1 2 where J1 is the corresponding transition matrix of δ, i.e. J1 = H1. In particular,
we want to show that

k∑
i=1

j1 imℓ i = mℓ k+1

for all ℓ ∈ [k] where j1 i is the i-th entry in the last column of J1. For the case of the
first row, we note that

m1 i = det(γ1, · · · , γn−1, δi) = δi k,

hence the conclusion follows from the definition of J1. For the remaining rows,
observe that the entry mℓ+1 i is given by the determinant of the matrix

0 P

δi 1
δi 2
...
δi ℓ

Ik−ℓ ∗


,

where the ℓ×(ℓ−1) matrix P consists of the upper ℓ entries of the matrix (γk+1, γk+2, . . . , γk+ℓ−1).
We may write this determinant as

mℓ+1 i = (−1)k−ℓ

ℓ∑
n=1

anδi n, (2.4)

where an is some fixed value based on P used in taking the determinant of the upper
right block. Note that P , and hence an, does not depend on i. Thus, we have

k∑
i=1

j1 imℓ+1 i = (−1)k−ℓ

k∑
i=1

j1 i

ℓ∑
n=1

anδi n

= (−1)k−ℓ

ℓ∑
n=1

an

k∑
i=1

j1 iδi n.
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By definition of J1, we may rewrite the final sum as δk+1n. Thus, we have

k∑
i=1

j1 imℓ+1 i = (−1)k−ℓ

ℓ∑
n=1

anδk+1n = mℓ+1 k+1,

for all ℓ ∈ [k − 1] where the last equality follows from Equation (2.4).

Lemma 2.2.8. The vertical transition matrices of Φ(γ, δ) correspond to the J ma-
trices of γ̃ as in Definition 2.2.5.

Proof. Let M := Φ(γ, δ). Recall that by Lemma 2.1.7, we may construct an
SLk-tiling M′ from a single path φ(γ, δ) with contains an adjacent m × n matrix
M′

{1,...,m},{i,...,i+n−1} equal to M[1]m,[1]n where m,n > k. By construction, the path

φ(γ, δ) has as its first J matrix J1 the first J matrix of γ. By Lemma 2.2.7, this
means that the horizontal transition matrices starting at M′

[k],[k] = M ′
1 1 are the J

matrices of γ. Note that the matrix M′
[k],[k] need not lie in M. Since M′ is a tiling

from a frieze, by Proposition 2.2.3 part (b), the vertical transition matrix V ′
1 has

entries given by
j1 q+1 = (−1)k−q−1po([q]k−q ,[k+1]q)

where the Plücker coordinate is applied to A where A is one period of φ(γ, δ). Con-

sider the entries of the matrix J̃1 of γ̃. By Defintion 2.2.5 and and Proposition 2.2.3,
these correspond to the entries of the final column of the J matrix given by

j̃1 q+1 = (−1)kjq k−q+1 = (−1)kjq k−q+1 = (−1)k−q−1po([q]k−q [k+1]q ,

applied to A. Thus, by taking m,n large enough, the vertical transition matrix
V ′
1 equals the first J matrix J̃1 of γ̃. Now, we need to show that V1, the vertical

transition matrix of M, equals V ′
1 . This follows by construction, since M1 1 = M ′

1 1

and M2 1 = M ′
2 1. Thus, J̃1 = V1, as desired. Since our choice of starting position for

M′ was arbitrary, this holds for all vertical transition matrices and all J matrices of
γ.

We combine the above lemmas to obtain the following crucial result.

Corollary 2.2.9. Let M = Φ(γ, δ) be an SLk-tiling. The horizontal transition
matrices of M correspond to the J matrices of δ and the vertical transition matrices
of M correspond to the J matrices of γ̃

Proof. This result follows from Lemmas 2.2.7 and 2.2.8.
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2.3 Defining Φ−1

In order to demonstrate that Φ is a bijection, we construct a map Ψ from tilings to
paths. To begin with, we construct a matrix C which captures a specific transfor-
mation of a path δ ∈ Pk.

Lemma 2.3.1. Consider the tiling M := Φ(γ, δ). Without loss of generality, we
may assume (γ1, γ2, . . . , γk) = Ik. Then for all j ∈ Z

m1,j

m2,j
...

mk,j

 = Cδj

where C ∈ SLk(Z) has the following form:

C =


0 · · · 0 1

(−1)k−1 0 0
. . .

...
∗ (−1)k−1 0

 .

In particular, the entries on the lower-left of the matrix C are determined uniquely
by the J matrices of γ.

Proof. We construct the image of Φ(γ, δ). Let Jn be the transition matrices for γ.
Observe that, by construction, since γi = ei for all i ∈ [k], we have

m1 j = det(e1, . . . , ek−1, δj) = det

 Ik−1

δ1 j
...

δk−1 j

0 · · · 0 δk j

 = δk j = Cδj,

for C as in the statement of the lemma. For 2 ≤ i ≤ k, we have that

mi j = det

[
0 P

Ik−i+1 ∗

]
=
(
(−1)i−1

)k−i+1
det(P )

where P is the upper right (i−1)× (i−2) matrix of
i−2∏
n=1

Jn appended with the upper

(i − 1) entries of δj. Note that the determinant of P is a linear combination of the
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entries of the last column, which is the upper i − 1 entries of δj. We focus on the
coefficient of δi−1 j, which is given by the determinant of the upper left (i−2)×(i−2)
matrix of P , call it Q.

Note that the product
i−2∏
n=1

Jn may be written as

i−2∏
n=1

Jn = (γi−1, . . . , γk+i−2) =

[
0 Q

Ik−i+2 ∗

]
.

Since each Jn ∈ SLk(Z), the determinant of this product is one. We may also
calculate it in terms of Q as

1 = det

(
i−2∏
n=1

Jn

)
=
(
(−1)i−2

)k−i+2
det(Q).

This gives us that det(Q) = ((−1)i)
k−i

.
By definition of Φ(γ, δ), the coordinate mi j is given by

mi j = det


0

Q

δ1 j
...

δi−2 j

∗∗ δi−i j

Ik−i+1 ∗


Hence, the coefficient of δi−1 j in mi j is(

(−1)i−1
)k−i+1

det(Q) =
(
(−1)i−1

)k−i+1 (
(−1)i

)k−i
= (−1)k−1.

Thus, we have the desired equation
m1,j

m2,j
...

mk,j

 = Cδj.
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We use this to construct a map Ψ.

Definition 2.3.2. We define a map Ψ from a tiling to a pair of paths modulo SLk(Z).
Let M ∈ SLk be a tiling. Then

Ψ : SLk → (Pk × Pk)/SLk(Z)
M → (γ, δ),

where γ and δ are defined as follows. We define the path δ to be the horizontal strip
from M that is k entries tall centered at M[1]k[1]k := M , which is to say that

δi =


m1 i

m2 i
...

mk i

 .

To define γ we construct γi for i ∈ [k] and its J matrices. In order to construct the
J matrices, let γ′ be a vertical strip of M with width k. That is,

γ′
i =


mi 1

mi 2

· · ·
mi k

 .

Then the J matrices Ji of γ are given by the J matrices J̃i−k+2 of γ̃′. For the entries
γ[k], we set (γ1, γ2, . . . , γk) = C where C is as defined as in Lemma 2.3.1 from the

matrices of γ̃′.

Remark 2.3.3. By construction, under the map Ψ the matrix Hi of M equals the
i-th J matrix of δ and the J matrices of γ are constructed from Vi according to
Corollary 2.2.9.

Lemma 2.3.4. The map Ψ is well-defined.

Proof. Clearly, δ ∈ Pk, since each adjacent set of k consecutive columns forms an
adjacent k×k submatrix of M. Furthermore, γ ∈ Pk since C is in SLk(Z) and every
other set of k adjacent columns (γi, γi+1, . . . , γi+k−1) of γ form a matrix which can
be written as a product of C and J matrices, which are all elements of SLk(Z).

We proceed to show that Φ and Ψ are inverses of each other.
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Proposition 2.3.5. Φ ◦Ψ = idSLk
.

Proof. Let M ∈ SLk. Let Vi and Hi be the transition matrices of M. Then Ψ(M) =
(γ, δ). By Remark 2.3.3, Hi is equal to the i-th J matrix of δ and the i-th J matrix

for γ is given by Ṽi+k−2. Thus, by Corollary 2.2.9, Φ(γ, δ) has as its i-th horizontal
transition matrix Hi and as its i-th vertical transition matrix

˜̃
Vi+k−2 = Vi.

It therefore suffices to check that M := M1 1 is equal to ((Φ ◦Ψ)(M))[k],[k] :=
M ′. Let Ψ(M) = (γ, δ). By construction of Ψ, δ has the property that M =
(δ1, δ2, . . . , δk) and (γ1, γ2, . . . , γk) = C. We may multiply (γ, δ) by C−1 without
changing equivalence classes in (Pk × Pk)/SLk(Z). Thus, Φ(γ, δ) = Φ(C−1γ, C−1δ).
Then (γ1, γ2, . . . , γk) = C−1γ = Ik. By Lemma 2.3.1, we have

M ′ = C
(
C−1(δ1, δ2, . . . , δk)

)
= (δ1, δ2, . . . , δk) = M,

as desired.

Proposition 2.3.6. Ψ ◦ Φ = idPk×Pk/SLk(Z).

Proof. Consider a pair of paths γ and δ. Let (γ′, δ′) = (Ψ ◦ Φ)(γ, δ). By Corollary
2.2.9 and Remark 2.3.3, we know that the J matrices are the same for γ and γ′ as
well as δ and δ′. After multiplying both paths γ′ and δ′ by some matrix A ∈ SLk(Z),
which does not change the equivalence class in (Pk × Pk)/SLk(Z), we may assume
that γ = γ′. Furthermore, we may set (γ1, γ2, . . . , γk) = Ik. Since the J matrices are
the equal, it suffices to show that

(δ1, δ2, . . . , δk) = (δ′1, δ
′
2, . . . , δ

′
k).

Since (γ, δ′) = (Ψ ◦ Φ)(γ, δ), by Proposition 2.3.5, we may apply Φ to both sides to
get

Φ(γ, δ) = Φ(γ, δ′) := M.

By Lemma 2.3.1, this implies that Cδj = C ′δ′j for all j ∈ Z. Since C is uniquely
determined by the J matrices of γ, we have C = C ′ and, since C ∈ SLk(Z), this
gives δj = δ′j for all j ∈ Z.

With both directions proven, we get our main result.
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Theorem 2.3.7. The map Φ given by

Φ : (Pk × Pk)/SLk(Z) → SLk

(γ, δ) 7→ M = (mi j)i,j∈Z,

where mi j = det(γi, . . . , γi+k−2, δj) is a bijection between tame SLk-tilings and pairs
of paths modulo the action by SLk(Z).

Proof. Follows from Proposition 2.3.5 and Proposition 2.3.6.

By restricting to the case k = 2, we derive a result which is equivalent to the one
produced by Short. In particular, the the two results are related as in the following
commutative diagram

(P2 × P2)/SL2(Z) SL2

(PQ× PQ)/SL2(Z) SL2/±

Φ

π π′

ΦQ

,

where π is a quotient map which identifies (γ, δ) ∼ (−γ, δ).
This also gives us a nice description of the map ξ−1 from Proposition 1.2.6. Let

us first define another map ρ which associates a path with its linearization data [3,
Equation 7].

Definition 2.3.8. Define the function ρ as follows.

ρ : (Pk × Pk)/SLk(Z) → SLk(Z)×
(
Z1×(k−1)

)Z × (Z1×(k−1)
)Z

(γ, δ) 7→ (γ1, . . . , γk)
T × {(ji 2 . . . , ji k)T}i∈Z × {(j′i 2 . . . , j′i k)

T}i∈Z

where the elements ji j and j′i j are given by the final columns of the J matrices of γ̃
and δ respectively.

Since linearization data is in bijection with tilings by Proposition 1.2.6, we see
that ρ is also a bijection, hence it is invertible. While ξ−1 is defined recursively, the
map Φ is explicit. This makes the following result particularly noteworthy.
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Corollary 2.3.9. The following diagram commutes.

(Pk × Pk)/SLk(Z) SLk

SLk(Z)×
(
Z1×(k−1)

)Z ×
(
Z(k−1)×1

)Z
Φ

ρ
ξ−1

Copyright© Zachery T. Peterson, 2024.
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Chapter 3 Applications

3.1 Periodicity

Here we detail some consequences about periodicity of paths and tilings. Recall the
notion of periodicity given in Definition 1.2.7.

Lemma 3.1.1. For a path γ, if the J matrices are m-periodic and J1J2 · · · Jm = Ik,
then γ is m-periodic.

Proof. By definition

(γi, . . . , γi+k−1) JiJi+1 · · · Ji+m−1 = (γi+m, . . . , γi+m+k−1) .

Thus, it suffices to show Ji · · · Ji+m−1 = Ik. Since Ji = Ji+m for all i ∈ Z, we may
write the subscripts modm. Thus,

JiJi+1 · · · Ji+m−1 = JiJi+1 · · · JmJ1J2 · · · Ji−1

Note that J1J2 · · · Jm = Ik by assumption. Therefore, we multiply

JiJi+1 · · · JmJ1J2 · · · Ji−1 = JiJi+1 · · · JmJ1J2 · · · Ji−1

(
JiJi+1 · · · JmJ−1

m J−1
m−1 · · · J−1

i

)
= JiJi+1 · · · Jm (J1J2 · · · Ji−1JiJi+1 · · · Jm) J−1

m J−1
m−1 · · · J−1

i

= JiJi+1 · · · JmJ−1
m J−1

m−1 · · · J−1
i

= Ik.

We may construct a similar result going from tilings to J matrices.

Lemma 3.1.2. If M is m-column periodic, then the J matrices of δ are m-periodic
and JiJi+1 · · · Ji+m−1 = Ik for all i ∈ Z.

Proof. We know that we may get fromM1 i toM1 i+m by multiplying by JiJi+1 · · · Ji+m−1.
Since M1 i = M1 i+m, as M is m-column periodic, this product must be the iden-
tity Ik. Furthermore, since column i and column i +m are the same for all i ∈ Z,
the same J matrix must be used to transition between them, so Ji = Ji+m for all
i ∈ Z.

This gives us the following proposition.
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Proposition 3.1.3. Fix a path δ. The following are equivalent.

1. The J matrices of δ are m-periodic and J1J2 · · · Jm = Ik.

2. The path δ is m-periodic.

3. The tiling M := Φ(γ, δ) for any path γ is m-column periodic.

Proof. The implication (1) ⇒ (2) follows from Lemma 3.1.1, and the implication
(3) ⇒ (1) from Lemma 3.1.2 and Corollary 2.2.9. For the implication (2) ⇒ (3),
suppose δ is m-periodic. If δ repeats every m entries, the resulting determinants
mi j = det(γi, . . . , γi+k−1, δj) will also repeat everym entries going across the columns.
Thus, the resulting M will be m-column periodic, as desired.

Remark 3.1.4. The dual of this proposition is also true. That is, the following are
equivalent.

1. The J matrices of γ are m-periodic and J1J2 · · · Jm = Ik.

2. The path γ is m-periodic.

3. The tiling M := Φ(γ, δ) for any path δ is m-row periodic.

Together, these results give us the necessary and sufficient conditions for period-
icity in a tiling as in Definition 1.2.7.

Corollary 3.1.5. The paths γ and δ are m and n periodic, respectively, if and only
if M := Φ(γ, δ) is (m× n)-periodic.

Proof. The forward direction follows from (2) ⇒ (3) in Proposition 3.1.3 and Remark
3.1.4. Similarly, the backward direction follows from (3) ⇒ (2).

3.2 Duality

Our goal is to show that the dual M∗ of an SLk-tiling M := Φ(γ, δ) defined in
Definition 1.2.8 has a simple interpretation in terms of the map Φ. In particular,
it is given by Φ(Aγ̃, δ̃), i.e. a shift of conjugacy class for γ together with the tilde
operator, up to some shift in indices. We begin by presenting several results about the
dual as it relates to Plücker friezes and their J matrices. A special case of Theorem
3.2.2 for friezes was proven by Morier-Genoud, Ovsienko, Schwatz, and Tobachnikov
[14] as well as Cordes and Roselle [7].

We first give a lemma which shows that the dual preserves J matrices up to the
tilde operator.
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Lemma 3.2.1. Let M = Φ(γ, δ) be an SLk-tiling and let M∗ = Φ(γ∗, δ∗) be its

dual. Then the sequences of transition matrices for γ̃ and δ̃ from Definition 2.2.5
coincide with those for γ∗ and δ∗ respectively up to a shift in indexing.

Proof. LetM∗ := M∗
[2k+1],[2k+1]. Note thatM

∗ is entirely determined byM[3k−1],[3k−1].

Let M′ be the tiling resulting from the path φ3k−1,3k−1(γ, δ) from Definition 2.1.5.
By construction,

M[3k−1],[3k−1] = M′
[3k−1],[i]3k−1 =


p[1]k−1 i(A) p[1]k−1 i+1 · · · p[1]k−1 i+k−1

p[2]k−1 i(A) p[2]k−1 i+1 · · · p[2]k−1 i+k−1
... · · · . . .

...
p[k]k−1 i(A) p[k]k−1 i+1 · · · p[k]k−1 i+k−1

 .

Then, by Proposition 1.1.9,

(
M′

[3k−1],[i]3k−1

)∗
=


p[i]k−1 k−1(A) p[i+1]k−1 k−1 · · · p[i+k−1]k−1 k−1

p[i]k−1 k(A) p[i+1]k−1 k · · · p[i+k−1]k−1 k
... · · · . . .

...
p[i]k−1 2k−2(A) p[i+1]k−1 2k−2 · · · p[i+k−1]k−1 2k−2

 .

Thus, the first horizontal transition matrix for M∗ is the i-th horizontal transition

matrix for (M ′)∗ which transitions from the first k columns of
(
M′

[3k−1],[i]3k−1

)∗
to

columns 2 throuh k + 1. But this is V ′
i+1, the i-th vertical transition matrix for

M′. Similarly, the first vertical transition matrix of M∗ is the (k − 1)-st horizontal
transition matrix of M′, which is Jk−1 of the path φ(γ, δ), i.e. Jk−1 of γ. Thus, the
dual operator preserves J matrices up to the tilde operator, as desired.

It should be noted that, although the dual operator preserves information about
the transition matrices, it does not necessarily preserve the information about the
initial k × k adjacent submatrix. Thus, applying the dual to the tiling Φ(γ, δ) may
not preserve the conjugacy class, but it will preserve information about the sequence
of J matrices.

Theorem 3.2.2. Let M = Φ(γ, δ) be an SLk-tiling. Then its dual M∗ = Φ(Aγ̃, δ̃)
for some A ∈ SLk(Z).

Proof. By Lemma 3.2.1, the sequence of J matrices associated with γ̃ correspond
to the sequence of vertical transition matrices of M∗. Similarly, the sequence of J
matrices of δ̃ correspond to the sequence of horizontal transition matrices of M∗.
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Thus, this maintains the linearization data up to the tilde operator. Multiplying
δ̃ by a matrix A ∈ SLk(Z) preserves the J matrices by Lemma 2.1.3. Doing so
changes the central k× k adjacent submatrix such that its image under the dual has
the correct central k × k adjacent submatrix.

As a corollary, we can easily recover the fact the dual operator has the desired
duality property.

Corollary 3.2.3. For any SLk-tiling M, (M∗)∗ = M up to a shift.

Proof. Let M = Φ(γ, δ). For sufficiently large m,n, we can construct φm,n(γ, δ) as
in the proof of Lemma 3.2.1 such that the resulting tiling M′ has the property that
(M∗)∗ = (M′∗)∗[k] [k] = (M∗)∗[k] [k]. We may calculate (M∗)∗ using Plücker coordinates,
i.e.

(M∗)∗ =


po([k−1]k−1,i+k−2) po([k−1]k−1,i+k−1) · · · po([k−1]k−1,i+2k−3)

po([k]k−1,i+k−2) po([k]k−1,i+k−1) · · · po([k]k−1,i+2k−3)
...

...
. . .

...
po([2k−2]k−1,i+k−2) po([2k−2]k−1,i+k−1) · · · po([2k−2]k−1,i+2k−3)

 ,

which is just M′
[k] [k] = M[k] [k] shifted right and down by k−2. By Remark 2.2.6, this

corresponds to the shift in the J matrices of ˜̃γ and
˜̃
δ. Since this preserves a central

adjacent k × k submatrix and the J matrices of γ and δ, the result follows.

3.3 Friezes

Our goal is to show that the bijection Φ has a simple restriction to infinite friezes,
namely that friezes are in bijection with pairs of paths where both paths are identical
up to a shift. We first define some notation to clarify this.

Definition 3.3.1. Define the inclusion function ι as follows.

ι : Pk/SLk(Z) → (Pk × Pk)/SLk(Z)
(γ) 7→ (γ, γ).

Note that the image of the map ι is a subset of (Pk × Pk)/SLk(Z), so we may
use it as a restriction of the domain of the map Φ. Additionally, note that ι is a
bijection on its own image, so Φ ◦ ι is injective. We write Φι for Φ ◦ ι. We wish to
show that this restriction on the domain corresponds to a restriction on the range to
tilings resulting from infinite SLk-friezes.
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Definition 3.3.2. Let F be an infinite frieze. We define a tiling MF as follows.
Let the rows of F become the falling diagonals of a tiling by rotating the frieze 45◦

clockwise. Since F is infinite, the left half of the tiling is complete. Fix an element
on the last known falling diagonal of the tiling, and let this be the upper-right corner
of a k × k matrix M1 1, i.e. an entry with index m1 k lies on the falling diagonal of
zeroes with nothing known above it or to its right. LetHi be the horizontal transition
matrix which takes Mi−1 i to Mi i. We use these transition matrices to construct the
right half of the tiling.

Remark 3.3.3. Let F be a finite frieze and F ′ its infinite extension. We want
to verify that the tiling MF ′ in Definition 3.3.2 coincides with MF which results
from Definition 1.2.3. Observe that both MF and MF ′ will have the same left
half by construction. Given such a portion of an infinite tiling, there is a unique
complete tiling which results by extending to the right along the falling diagonals
[3, Proposition 7]. Both MF and MF ′ are valid tilings, and must therefore be the
same.

It should be noted that the right half of the tiling MF , though recoverable as
an infinite frieze, need not be a periodic extension of F as with finite friezes. It also
need not have the same properties as F , such as positivity. However, since this part
is uniquely determined by F , we can restrict ourselves to talking about the left part
of F . Let FRk denote the set of all SLk-tilings resulting from infinite SLk-friezes.

Theorem 3.3.4. The restriction of the map Φ given by

Φι : Pk/SLk(Z) → FRk

γ 7→ M = (mi j)i,j∈Z,

where mi j = det(γi, . . . , γi+k−2, γj) is a bijection between tame SLk-tilings from
SLk-friezes and equivalence classes of paths.

Proof. We first show that the map is well-defined. Let γ ∈ Pk and let M = Φι(γ).
Observe that the entries mi j in M where i ∈ Z and j ∈ [i]k−1 are all zeros since they
are given by determinants of matrices of the form (γi, . . . , γi+k−2, γj) where γj is the
same as one of the previous columns. These constitute k−1 falling diagonals of zero
entries. The next falling diagonal consisting of entries of the form mi i−1 is all ones,
since these are given by determinants of matrices formed by adjacent columns in γ.
Thus, the left half of M is recoverable as an infinite frieze F .

We now show that the map is a bijection. The map Φι inherits injectivity from the
injectivity of Φ and ι. For surjectivity, let F be an infinite frieze (possibly the result
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of an extension of a finite frieze) and M = MF . Index the horizontal transition
matrices Hi as in Definition 3.3.2. Note that for a conjugacy class in Pk/SLk(Z), it
is sufficient to construct the sequence of J matrices to describe its elements uniquely.
Consider the tiling Φι(γ) where γ has J matrices Hi with (γ1, γ2, . . . , γk) = Ik. We
claim MF = Φι(γ) up to a shift. Consider a (k+ 1)× (k+ 1) adjacent submatrix of
MF . Since this adjacent submatrix lies in a frieze, it may be realized as a part of a
tiling from a finite frieze, hence represented with Plücker coordinates. It’s horizontal
transition matrix is a J matrix of γ and, since it is from a frieze, its vertical transition
matrix is J̃i for some i based on its vertical position in the tiling. Since our choice
of submatrix was arbitrary, this holds for all indices i ∈ Z. Thus, the linearization
data of MF corresponds to the J matrices of γ, proving the claim.

Note that this means finite friezes become periodic tilings. Thus, we can make
a further restriction. We denote by FRk,n the set of all SLk-tilings resulting from
SLk-friezes of width w = n − k − 1. Let Pk,p denote the set of p-periodic paths in
Pk.

Corollary 3.3.5. The restriction of Φι to p-periodic paths

Φι : Pk,p/SLk(Z) → FRk,p+k+1

is a bijection between p-periodic paths and SLk-friezes of width n− k − 1.

Proof. The map is well-defined as a result of Proposition 3.1.3 and Theorem 3.3.4.
Surjectivity follows from Remark 1.1.7, as the elements of the Grassmannian corre-
spond exactly with paths γ. Injectivity is inherited from the injectivity of Φι.

Copyright© Zachery T. Peterson, 2024.
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Chapter 4 Positivity

4.1 Background

We have made several references to the work of Short. Short was able to prove several
results about positive SL2-tilings and friezes and their relations to paths using the
geometry of the Farey graph [17, Theorem 1.4]. Lacking a connection to geometry,
we cannot use the same methodology. Instead, we focus on studying positivity for
friezes using Plücker coordinates.

Recall that all friezes can be realized as Plücker friezes evaluated at certain ele-
ments of the Grassmannian. We begin by defining a new class of Plücker coordinate
which will play an important role in our discussion.

Definition 4.1.1. A Plücker coordinate of the form po([i]k+1\{j}) where i ∈ [n] and
j ∈ [i]k−1 but j ̸= i and j ̸= i+ k− 1, i.e. a Plücker coordinate which consists of two
consecutive runs separated by a gap of size one, is called semi-consecutive.

Note that consecutive Plücker coordinates are not semi-consecutive. We will later
make use of the following definitions and results due to Morier-Genoud, Ovsienko,
Schwartz, and Tobachnikov [14]. Since their work deals with SLk-friezes, we adapt
it to fit the notion of tilings.

Definition 4.1.2. [14, Definition 4.1.1] Let F be a frieze. Consider the array re-
sulting from rotating F 45◦ clockwise. Let aji be the adjacent minor of size j whose
bottom right corner is taken as mi i in the array. The Gale dual of F , denoted F G, is
the frieze where the (i, j)-th entry in its array is given by (ak−j+i−1

i−1 ). Let MF ∈ SLk

be a tiling from a frieze F . Then the Gale dual of MF , is given by MG
F := MFG .

They prove that the Gale dual of a frieze is itself a frieze, so this notation is
well-defined. We reformulate this notion here.

Theorem 4.1.3. [14] Let MF ∈ SLk be a tiling from a frieze F of width n− k + 2.
Then MG

F also is a tame SLn−k-tiling from a frieze of width k + 2.

4.2 Paths where k = 3

When k = 3 we have a special result about the paths γ which result from positive
tilings from friezes. First, we examine two specific elements of γ.
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Lemma 4.2.1. Let γ ∈ Pk be a path with (γ1, γ2, γ3) = I3. If M := Φι(γ) is a tiling
from a positive frieze, then the entries of γ4 and γ0 alternate in sign. In particular,
the first and last entries are positive and the middle entries are negative.

Proof. Since (γ0, γ1, γ2), (γ2, γ3, γ4) ∈ SL3(Z), γ4 and γ0 are of the form

γ4 =

1
a
b

 , γ0 =

c
d
1

 .

By definition of Φι, we have the following entries of M which lie in the first nontrivial
row:

m1 4 = det

1 0 1
0 1 a
0 0 b

 = b, m3 1 = det

0 1 1
0 a 0
1 b 0

 = −a

and

m2 0 = det

0 0 c
1 0 d
0 1 1

 = c, m0 3 = det

c 1 0
d 0 0
1 0 1

 = −d.

Since M is positive, so are b, c,−a, and −d.

We now examine arbitrary elements of γ.

Lemma 4.2.2. Let γ ∈ Pk be a non-periodic path with (γ1, γ2, γ3) = I3. Let
γi = (xi, yi, zi)

T for i any integer not in {0, 1, 2, 3, 4}. If M := Φι(γ) is a tiling from
a positive frieze, then the following hold.

1. xi > 0

2. zi > 0

3. yi < 0 if and only if yi+1 < 0.

If γ ism-periodic, the same holds for γi where i is not congruent to to {0, 1, 2, 3, 4}
mod m.

Proof. As in the proof of Lemma 4.2.1, the positivity of m1 i and m2 i give the posi-
tivity of xi and zi respectively. Furthermore, we have that

mi 3 = det

xi xi+1 0
yi yi+1 0
zi zi+1 1

 = xiyi+1 − xi+1yi,
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mi 1 =

xi xi+1 1
yi yi+1 0
zi zi+1 0

 = yizi+1 − yi+1zi.

By the positivity of M as well as xi and zi, we have the following. If yi < 0, then
mi 1 gives us that

zi+1

zi
<

yi+1

yi
,

so yi+1 < 0. If yi+1 < 0, then mi 3 gives us that

xi

xi+1

<
yi
yi+1

,

so yi < 0.

This allows us to make a general statement about the path γ.

Theorem 4.2.3. Let γ ∈ Pk be a path with (γ1, γ2, γ3) = I3. If M := Φι(γ) is
a tiling from a positive infinite frieze, then the entries of γi alternate in sign for
i ∈ Z \ [3]. In particular, the first and last entries are positive, and the middle entry
is negative. If M = Φι(γ) is a tiling from a positive finite frieze with period m, then
entries of γi alternate in sign for i ̸≡ 1, 2, 3 (mod m).

Proof. We induct on i from above starting with i = 4 and below starting with i = 0.
Lemma 4.2.1 gives the base cases, and Lemma 4.2.2 gives the inductive step.

The converse of this is not generally true. Consider the following example:

γ =

· · · ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

 1
−2
1

 ,

 1
−1
1

 ,

 1
−3
2

 ,

 1
−2
1

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 · · ·

 . (4.1)

This gives the following tiling:

Φι(γ) =

0 0 1 1 1 2 1 0 0
0 0 1 1 1 1 1 0 0

0 0 1 −1 0 2 1 0 0
0 0 1 0 −1 0 1 0 0

0 0 1 1 −1 2 1 0 0
0 0 1 1 1 0 1 0 0,
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which is clearly not a tiling from a positive frieze. Note the entry m3 5 = −1 is given
by

−1 =

∣∣∣∣∣∣
0 1 1
0 −2 −3
1 1 1

∣∣∣∣∣∣ .
4.3 J matrices

Nest, we want to study the relationship between friezes and entries of their J ma-
trices. We must first show a result about the entries of J matrices which will allow
us to prove certain facts about the entries of dual tilings. We have the following
corollary to Proposition 2.2.3.

Corollary 4.3.1. All entries of J matrices of tilings M from Plücker friezes are
semi-consecutive Plücker coordinates. In particular, all semi-consecutive Plücker
coordinates appear as an entry in some J matrix of M.

Before continuing, we make several observations about Plücker coordinates con-
cerning the sizes of k and n.

Remark 4.3.2. We consider two cases.

(a) If k ≥ n − 3, then all almost consecutive Plücker coordinates pI are either
semi-consecutive or consecutive. With only three entries to exclude from [n]
to form I, there must either be a gap of one entry between sequences or all
entries will be consecutive.

(b) If k ≤ 3, then all semi-consecutive Plücker coordinates pI are almost consec-
utive. With only three entries in I, at least one consecutive run will have a
length of one.

For ease of notation in the following results, we define a structure using the final
columns of J matrices.

Definition 4.3.3. For a tiling MF ∈ SLk, we call the vectors qi =


(−1)k−2ji 2

...
(−1)pji k−p

...
(−1)0ji k

,

where ji ℓ are the elements from the final column of the i-th horizontal transition
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matrix of MF , the quiddity vectors. The sequence (qi)i∈Z is called the quiddity
sequence of MF . We say a quiddity sequence is positive if all of its entries are
positive.

This extends the traditional notion of the quiddity sequence in the case where
k = 2 to higher dimensions. Note that by Proposition 2.2.3 part (a), for Plücker
friezes, the entries in these vectors correspond exactly to the semi-consecutive Plücker
coordinates.

Lemma 4.3.4. Let MF ∈ SLk be a tiling from a frieze F with n − 3 ≤ k. Then
MF is positive if the quiddity sequence is positive.

Proof. Since the quiddity sequence is positive, this means all semi-consecutive Plücker
coordinates are positive. By part (a) of Remark 4.3.2, all almost consecutive Plücker
coordinates in this case are also semi-consecutive. Since all entries of MF(k,n) are
given by almost consecutive Plücker coordinates, then all of them are also posi-
tive.

Lemma 4.3.5. Let MF ∈ SLk be a tiling from a positive frieze F with k ≤ 3. Then
the quiddity sequence is positive.

Proof. By part (b) of Remark 4.3.2, we know that the entries of the quiddity vectors
are almost consecutive, hence are entries of MF . Since all entries of MF are positive,
so is the quiddity sequence.

4.4 The Cases of (4, 7) and (5, 8)

For some special pairs of (k, n), we can make additional arguments. It should be
noted that, while the representation theory of algebras that provide categorification
of the cluster structure on Ak,n does not feature directly in either of these arguments,
it did serve as inspiration for the proofs. For both of the following special cases, we
refer to the Plücker relations as given by Equation (1.1). We begin with the case
where k = 4 and n = 7.

Lemma 4.4.1. Let MF ∈ SLk be a tiling from a positive frieze F where n ≤ 7 and
k = 4. Then the quiddity sequence is positive.

Proof. Given that almost consecutive Plücker coordinates are positive, it suffices to
show that the semi-consecutive Plücker coordinates are positive. It is only when
n ≥ 6 that Plücker coordinates of the form po(mm+1m+3m+4) are semi-consecutive,
but not almost consecutive. We show that these are positive. Consider the Plücker
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relation with I = {m,m + 1,m + 3} and J = {m + 1,m + 2,m + 3,m + 4,m + 5}.
This gives the equation

0 = po(mm+1m+3)m+1po(m+2m+3m+4m+5) − po(mm+1m+3)m+2po(m+1m+3m+4m+5)

+ po(mm+1m+3)m+3po(m+1m+2m+4m+5) − po(mm+1m+3)m+4po(m+1m+2m+3m+5)

+ po(mm+1m+3)m+5po(m+1m+2m+3m+4).

Recall that Plücker coordinates with repeated entries are 0 and consecutive Plücker
coordinates are 1. Thus, we may simplify the equation.

0 = po(m+1m+3m+4m+5) − po(mm+1m+3m+4)po(m+1m+2m+3m+5) + po(mm+1m+3m+5).

By assumption, po(m+1m+3m+4m+5) and po(m+1m+2m+3m+5) are positive since they
are almost consecutive. Thus,

po(mm+1m+3m+4) > 0 if po(mm+1m+3m+5) ≥ 0.

In the case of n = 6, m+5 ≡ m−1 (mod 6), so the latter is almost consecutive, hence
positive. In the case of n = 7, note that m + 6 ≡ m − 1 (mod 7) and consider the
Plücker relation with I = {m,m+1,m+3} and J = {m,m+1,m+2,m+5,m+6}.
Simplified as above, the resulting equation is

0 = −1− po(mm+1m+3m+5) + po(mm+1m+3m+6)po(mm+1m+2m+5).

Note that the final term is the product of almost consecutive Plücker coordinates,
hence it is at least 1. Therefore, po(mm+1m+3m+5) ≥ 0, as desired.

For the case where k = 5 and n = 8, we first make claims regarding k = 3 and
n = 8.

Remark 4.4.2. Note that C[Gr(5, 8)] ∼= C[Gr(3, 8)] with pI 7→ pIc where I
c = [8]\I.

Hence, we consider C[Gr(3, 8)]. For the following, we assume that consecutive
Plücker coordinates po(mm+1m+2) = 1 and all Plücker coordinates are integers. Ad-
ditionally, recall the Plücker relations as described in Equation (1.1).

Lemma 4.4.3. Suppose Plücker coordinates of the form po(mm+1m+3) and
po(mm+2m+3) are positive for all m ∈ N. Then Plücker coordinates of the form
po(mm+2m+4) ≥ 0 for all m ∈ N. Furthermore, for a fixed m ∈ N, po(mm+2m+4) = 0 if
and only if po(mm+2m+3) = po(m+1m+2m+4) = 1.
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Proof. Consider the Plücker relation where I = {m,m + 2} and J = {m + 1,m +
2,m+ 3,m+ 4}. This gives us the following equation:

0 = po(mm+2)m+1po(m+2m+3m+4) − po(mm+2)m+2po(m+1m+3m+4)

+ po(mm+2)m+3po(m+1m+2m+4) − po(mm+2)m+4po(m+1m+2m+3).

Recall that consecutive Plücker coordinates are 1 and that Plücker coordinates with
repeated indices are 0. We may therefore simplify the equation as

po(mm+2m+4) = −1 + po(mm+2m+3)po(m+1m+2m+4).

By assumption, the second term on the right side is a positive integer, therefore
po(mm+2m+4) ≥ 0. Observe, additionally, that po(mm+2m+4) = 0 if and only if the
second term on the right side is 1. Since both Plücker coordinates in the product are
positive integers, this occurs if and only if both are 1.

The same assumption also provides an additional result about a crucial orbit of
Plücker coordinates.

Proposition 4.4.4. Consider Gr(3, 8). Suppose Plücker coordinates of the form
po(mm+1m+3) and po(mm+2m+3) are positive for all m ∈ N and that, for some fixed
q ∈ N, either po(q q+1 q+5) ≥ 0 or po(q q+1 q+4) ≥ 0. Then po(mm+1m+5) ≥ 0 and
po(mm+1m+4) ≥ 0 for all m ∈ N.

Proof. We proceed to prove two claims from which we may derive the desired result.

Claim 1 If po(mm+1m+5) ≥ 0, then po(mm+1m+4) ≥ 0.

Claim 2 If po(mm+1m+4) ≥ 0, then po(mm+4m+7) ≥ 0.

Consider the Plücker relation where I = {m,m + 1} and J = {m + 2,m + 3,m +
4,m+ 5}. This gives us the following equation:

0 = po(mm+1)m+2po(m+3m+4m+5) − po(mm+1)m+3po(m+2m+4m+5)

+ po(mm+1)m+4po(m+2m+3m+5) − po(mm+1)m+5po(m+2m+3m+4).

Recall consecutive Plücker coordinates are 1. We may therefore simplify the equation
as

po(mm+1m+5) = 1− po(mm+1m+3)po(m+2m+4m+5) + po(mm+1m+4)po(m+2m+3m+5).
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By assumption, all terms other than po(mm+1m+5) and po(mm+1m+4) are positive.
Thus, we have proven Claim 1.

Additionally, consider the Plücker relation where I = {m,m+ 4} and J = {m+
2,m+ 3,m+ 4,m+ 5}. This gives us the following equation:

0 = po(mm+4)m+2po(m+3m+4)m+5 − po(mm+4)m+3po(m+2m+4)m+5

+ po(mm+4)m+4po(m+2m+3)m+5 − po(mm+4)m+5po(m+2m+3)m+4.

This simplifies as

po(mm+4m+5) = −po(mm+2m+4) + po(mm+3m+4)po(m+2m+4m+5).

We may shift all indices by 4, recalling that we are in Gr(3, 8), to get the equation

po(mm+1m+4) = −po(mm+4m+6) + po(mm+4m+7)po(mm+1m+6).

Note that, by shifting indices, po(mm+1m+6) is of the form po(mm+2m+3) and
po(mm+4m+6) is of the form po(mm+2m+4), hence the former is positive and the latter
non-negative by assumption and Lemma 4.4.3 respectively. Thus, we have proven
Claim 2.

Note that po(mm+4m+7) is of the form po(mm+1m+5) where the indices are shifted
by −7. Suppose that po(q q+1 q+5) ≥ 0 for some q ∈ N. By Claim 1, this implies
po(q q+1 q+4) ≥ 0. By Claim 2, this implies po(q q+4,q+7) ≥ 0 which in turn im-
plies po(q−1 q q+3) ≥ 0 by Claim 1. One may iterate this process, concluding that
po(mm+1m+5) ≥ 0 and po(mm+1m+4) ≥ 0 for all m ∈ N. Alternatively, by start-
ing from the assumption that po(q q+1 q+4) ≥ 0 for some q ∈ N, Claim 2 implies
po(q q+4,q+7) ≥ 0 which in turn implies po(q−1 q q+3) ≥ 0 by Claim 1, and the iteration
proceeds similarly.

We now present a list of specific Plücker relations which we will use in the coming
results.

Lemma 4.4.5. The following equations in Gr(3, 8) follow from Equation (1.1). Each
is presented with its sets I and J and simplified such that all Plücker coordinates
with repeated entry are set to 0 and all consecutive Plücker coordinates are set to 1.

1. If I = {3, 7} and J = {1, 2, 3, 4}, then

p3 4 7 = p2 3 7p1 3 4 − p1 3 7.
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2. If I = {3, 7} and J = {4, 5, 6, 7}, then

p3 6 7p4 5 7 = p3 5 7p4 6 7 − p3 4 7.

3. If I = {3, 7} and J = {2, 3, 4, 5}, then

p2 3 7 = p3 4 7p2 3 5 − p3 5 7.

4. If I = {3, 4} and J = {2, 3, 6, 7}, then

p3 6 7 = p3 4 7p2 3 6 − p3 4 6p2 3 7.

5. If I = {5, 7} and J = {1, 3, 4, 5}, then

p1 5 7 = p3 5 7p1 4 5 − p4 5 7p1 3 5.

6. If I = {1, 2} and J = {2, 3, 4, 7}, then

p2 4 7 = p1 2 4p2 3 7 − p1 2 7.

7. If I = {2, 6} and J = {3, 4, 5, 7}, then

p2 6 7 = −p2 3 6p4 5 7 + p2 4 6p3 5 7 − p2 5 6p3 4 7.

8. If I = {2, 6} and J = {2, 4, 6, 7}, then

p2 6 7p2 4 6 = p2 4 6p2 4 7.

9. If I = {4, 6} and J = {2, 3, 4, 8}, then

p4 6 8 = p2 4 6p3 4 8 − p3 4 6p2 4 8.

10. If I = {2, 4} and J = {1, 2, 6, 8}, then

p1 2 4p2 6 8 = p2 4 8p1 2 6 − p2 4 6.

For the following proposition, we examine Plücker coordinates of certain types in
the case Gr(3, 8). We will use this result later to make claims about the corresponding
coordinates in the case Gr(5, 8).
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Proposition 4.4.6. Consider Gr(3, 8). Let consecutive Plücker coordinates be 1
and almost consecutive Plücker coordinates be positive. Let S be the collection of
all Plücker coordinates of the form po(mm+1m+5) and po(m+1m+2m+5) where m ∈ N
and R be the collection of all Plücker coordinates of the form po(mm+1m+3) and
po(mm+2m+3) where m ∈ N. Suppose all elements of R are positive and that there
exists a non-positive element in S. Then all elements of R are 1 and all elements of
S are 0.

Proof. We may, without loss of generality, pick a particular Plücker coordinate of
each form from the collection R since all equations hold after a shift in indices. We
set m = 2 and take the first case where p2 3 7 ≤ 0. For the following result, we refer
to the list of equations from Lemma 4.4.5.

Consider Relation (1). By assumption, p2 3 7 ≤ 0 and p1 3 4 > 0. By Lemma 4.4.3,
p1 3 7 ≥ 0. Thus, p3 4 7 ≤ 0. Consider Relation (2). By assumption, p4 5 7, p4 6 7 ≥ 0.
By Lemma 4.4.3, p3 5 7 ≥ 0. By the above, p3 4 7 ≤ 0. Thus, p3 6 7 ≥ 0. Note that p3 6 7
is of the form po(nn+1n+5), so we may apply Proposition 4.4.4. Thus, p2 3 7 ≥ 0 and
p3 4 7 ≥ 0. Combining with above results, we conclude p2 3 7 = p3 4 7 = 0 as desired.

We now consider the second case where p3 4 7 ≤ 0. Consider Relation (3). By
Lemma 4.4.3, p3 5 7 ≥ 0. Thus, p2 3 7 ≤ 0. As above, Relation (2) and Proposition
4.4.4 give us the same result. Since each assumption leads to p2 3 7 = p3 4 7 = 0, the
remainder of the proof is identical regardless of starting case.

We now proceed to simplify the remaining relations of Lemma 4.4.5 by replacing
Plücker coordinates with known values. Relation (1) gives p1 3 7 = 0, hence p1 3 8 =
p1 2 7 = 1 by Lemma 4.4.3. Relation (4) gives p3 6 7 = 0. Relation (2) gives p3 5 7 = 0,
hence p3 5 6 = p4 5 7 = 1 by Lemma 4.4.3. Relation (5) gives p1 5 7 = −p4 5 7p1 3 5.
Since all terms are non-negative by Lemma 4.4.3, this implies p1 5 7 = p1 3 5 = 0.
Then p5 7 8 = p1 6 7 = 1 and p1 3 4 = p2 3 5 = 1 by Lemma 4.4.3. Relation (6) gives
p2 4 7 = −1. Relation (7) gives p2 6 7 = −p2 3 6. By Proposition 4.4.4, both are non-
negative, so p2 6 7 = p2 3 6 = 0. Relation (8) gives p2 4 6 = 0, hence p2 4 5 = p3 4 6 = 1 by
Lemma 4.4.3. Relation (9) gives p4 6 8 = −p3 4 6p2 4 8. Since all terms are non-negative
by Lemma 4.4.3, and p3 4 6 = 1, this implies p4 6 8 = p2 4 8 = 0, hence p4 6 7 = p5 6 8 = 1
and p2 3 8 = p1 2 4 = 1 by Lemma 4.4.3. Relation (10) gives p2 6 8 = 0, hence, by
Lemma 4.4.3, p1 6 8 = p2 7 8 = 1. We may now use the two claims used in the proof of
Proposition 4.4.4 to demonstrate that all Plücker coordinates of the form po(nn+1n+5)

and po(nn+1n+4) are 0.

This leads us to a statement concerning the case of (5, 8).

Proposition 4.4.7. Let MF ∈ SLk be a tiling from a positive frieze F where n = 8
and k = 5. Then the quiddity sequence is positive.
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Proof. Recall from Remark 4.4.2 that there is an isomorphism between Gr(3, 8) and
Gr(5, 8). Consider the collections R and S from Proposition 4.4.6. Performing
the complement operation pIc on elements of R yields all almost consecutive Plücker
coordinates in Gr(5, 8) and performing it on elements of S yields all semi-consecutive
Plücker coordinates. Since MF is a tiling from a positive frieze, this implies that all
entries in R are positive. Thus, by Proposition 4.4.6, any tiling without a strictly
positive quiddity sequence comes from the frieze with only trivial entries and whose
quiddity sequence is the sequence of zeros.

4.5 Gale Dual

Using the Gale dual, we are able to extend our notions of positivity to even more
cases. We first make an observation about the entries in the Gale dual. The entries
of the Gale dual are consecutive minors of Plücker coordinates. So, by Lemma 2.2.2,
semi-consecutive Plücker coordinates.

Additionally, we refer to the following result from Ovsienko.

Theorem 4.5.1. [15] Let k = 2 and n ≤ 9. Then the Gale dual restricts to a
bijection on positive friezes.

We can now state a partial positivity result for SLk-tilings from friezes.

Theorem 4.5.2. Let MF ∈ SLk be a tiling from a frieze F of type (k, n) satisfying
one of the following conditions:

1. k = 2 and n ≤ 9

2. k = 3, 6 and n ≤ 8

3. k = 4 and n ≤ 7

4. k = 5 and n ≤ 7

5. k = 5 and n = 8 with the exception of the frieze of all ones and the quiddity
vectors are all (1, 0, 0, 0, 1)T

Then MF is positive if and only if the quiddity sequence is positive.

Proof. We break this into cases.
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Case (1): k = 2 The forward direction follows from Lemma 4.3.5. We show the
backward direction. Suppose that the semi-consecutive Plücker coordinates
are all positive. Then MG

F is a positive tiling. By Theorem 4.5.1, this means
MF is as well.

Case (2): k = 4 The forward direction follows from Lemma 4.4.1. The backward
direction follows from Lemma 4.3.4.

Case (3): k = 5 The backward direction follows from Lemma 4.3.4. The forward
direction follows from Proposition 4.4.7 when n = 8. For n ≤ 7, suppose that
the tiling is positive. Then, by Theorem 4.5.1, MG

F is a positive tiling where
k = 2. This means that semi-consecutive Plücker coordinates of MF are also
positive.

Case (4): k = 3 The forward direction follows from Lemma 4.3.5. We prove the
backward direction. For n ≤ 6, this follows from Lemma 4.3.4. For n = 7, 8,
suppose that the semi-consecutive Plücker coordinates are all positive. Then
MG

F is a positive tiling where n = 7 and k = 4 or n = 8 and k = 5. By Cases
(2) and (3), respectively, the resulting tilings have positive semi-consecutive
Plücker coordinates with a single exception, hence their own Gale duals are
positive. Thus, the initial tiling MF is also positive. For the exception in
Case (3), note that the Gale dual of the all ones tiling in Gr(3, 8) is not a
positive tiling in Gr(5, 8) as the consecutive Plücker coordinates of the form
po(nn+1n+5) = po(nn+1n+4) = 0. Thus, this case does not come into play here.

Case (5): k = 6 The backward direction follows from Lemma 4.3.4. We prove the
forward direction. Suppose that the tiling is positive. Then MG

F is a positive
tiling where k = 2. This means that the semi-consecutive Plücker coordinates
of MF are also positive.

As an application, we make a connection to the following conjecture by Cuntz.

Conjecture 4.5.3. [8, Conjecture 2.1] There are 26952 positive friezes with k = 3
and n = 8.

By Theorem 4.5.2, these friezes are in bijection with the positive friezes where
k = 5 and n = 8 with a single exception in the (5, 8) case not appearing in the
(3, 8) case. Thus, Conjecture 4.5.3 together with Theorem 4.5.2 imply that there are
conjecturally 26951 positive friezes with k = 5 and n = 8.
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