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Abstract

Planning under uncertainty is a central problem in developing intelligent autonomous sys-
tems. The traditional representation for these problems is a Markov Decision Process (MDP).
The MDP model can be extended to a Multi-criteria MDP (MMDP) for planning under un-
certainty while trying to optimize multiple criteria. However, due to the trade-offs involved
in multi criteria problems there may be infinitely many optimal solutions. The focus of this
project has been to find a method that efficiently computes a subset of solutions that represents
the entire set of optimal solutions for bi-objective MDPs.

1 Introduction
Much research in the artificial intelligence planning community has focused on planning under
uncertainty. These problems have applications from space exploration robots to decision support
for investing for retirement. Traditionally, these problems are represented with a mathematical
formulation known as a Markov Decision Process (MDP). Formally, an MDP is defined as follows:

Definition 1.1 A Markov Decision Process (MDP) is a tuple 〈S,A, T,R〉 where: S is a finite set
of states, A is a finite set of actions, T : S × A → Pr(S) is a transition function giving, for each
state and action a probability function over S, and R : S×A→ R, is a reward function giving the
immediate reward for executing a given action in a given state [5].

For MDPs the transition model is Markovian, meaning the probability of a transition is only
affected by the current state and not the state history. The probabilistic transition model also means
the environment is nondeterministic and the agent is dealing with uncertainty when planning. A
discount factor γ (0 < γ < 1) may also be included with the model. This factor enforces that
immediate rewards are considered more important than future rewards. Otherwise, for a problem
with an infinite horizon the total reward summed up over time would be infinite. The solutions to
the problems represented by MDPs are called policies, which are functions mapping an action to
each state. The value of a policy is given by the Bellman equation:

V π(s) = R(s, π(s)) + γ
∑
s′

T (s′|s, π(s))V π(s′).
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The policy with the best expected utility is the optimum policy [1]. This optimal policy can be
found by maximizing the Bellman equation using linear programming or dynamic programming
techniques such as value iteration or policy iteration.

2 Multi-Criteria Markov Decision Processes
MDPs can be extended to MMDPs (Multi-criteria Markov Decision Processes) by extending the
reward function to map a state-action pair to a reward vector which assigns a scalar reward for each
criterion. The value function will also be vector-valued, and the Bellman equation will continue to
define the value of a policy. Note that a policy that maximizes on one criterion will not necessarily
do the same for another. Some policies will favor one criterion, some the other criterion, and
some will be balanced towards both criteria. There may not be a single policy that maximizes
both criteria. Therefore to compare policies of MMDPs, the notion of Pareto optimality will be
introduced in Section 3.

3 Pareto Optimality
In multi-criteria optimization, one way of comparing solutions is Pareto optimality. Informally,
a solution is Pareto optimal if its value for one criterion cannot be increased without the value
on another criterion being decreased. To formally describe this, first, Pareto dominance must be
defined. Let ax and bx represent criterion x for solution vectors a and b respectively and N be the
set of all criteria.

a �p b iff ∀x∃y ∈ N[ax ≥ bx ∧ ay > by]

The set of Pareto optimal solutions can then be defined as the set of all solutions that are not
Pareto dominated by another solution. This set of solutions is referred to as the Pareto front. It
is easy to see that for even two criteria the cardinality of the Pareto front could be infinite. For
example, taking one solution in the Pareto front, one criterion’s value can be increased while the
other is decreased such that the new solution is not dominated by the former and the former is not
dominated by the new soution.

Another term that needs to be defined is supported solution. A supported solutions is one that
is part of the convex hull of the Pareto front. It is possible for a solution to be non-supported and
yet still Pareto optimal.

With possibly infinitely many solutions, a method must be found to efficiently represent all
solutions. First, ε-dominance is defined as [4]:

x %ε y ←→ ∀i ∈ N, xi(1 + ε) ≥ y.

One such method is to represent the entire set of solutions with a much smaller subset of
solutions. This subset consists of a set of solutions such that all other solutions are ε-dominated by
at least one point in the subset. This subset is defined as an ε-cover or ε-approximation. For any
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set of solutions to a multi-criteria optimization problem there will be multiple subsets that provide
an ε-cover. It is therefore possible to search not only for an ε-cover but also for the cover with
minimal cardinality. It is the goal of this research to find an ε-cover with approximately minimal
cardinality for the set of all Pareto optimal solutions to MMDPs. The experimental part of this
paper focuses on bi-objective MMDPs.

4 Finding the Complete Pareto Optimal Set
As a point of comparison for testing methods of finding an ε-cover it is necessary to determine
the entire set of solutions. The technique is to use a weighted sum of the reward values for each
criterion to find all Pareto non-dominated, supported solutions. For the bi-objective case, this
method involves finding two solutions and then optimizing in the direction of the normal of the
line between the two solution points. The initial step is to find the optimum value function for each
criterion. Then a third solution is found in the direction of the normal to the line between the two
solutions. This is done with a scalar reward function which is a linear combination of the reward
values for each criterion and a vector of weights. The weights can be found from the slope of the
normal and are constrained such that the sum of the weights must equal one. After finding the
third point the process can then be repeated looking between the new point and one old point and
the new point and the other old point. The process continues recursively until no point is found
between a pair.

The algorithm can be extended to multiple criteria, normalizing in the direction of a plane
formed by three points for three criteria or, more generally, in the direction of a hyperplane de-
termined by n points for n criteria. Value iteration is an efficient optimization technique for this
algorithm but other approaches such as linear programming can be used. The pseudocode for the
algorithm is shown in Algorithm 1:

Input: m, an MMDP with criteria x,y and rewards R1, R2

Output: The set of all supported Pareto Optimal Solutions
p1 = optimize(R1);
p2 = optimize(R2);
Q = {p1, p2}
Q = Q ∪ directedOptimization(p1, p2);
return Q;

Algorithm 1: Algorithm for finding all supported Pareto optimal solutions.

The method optimize finds the optimal policy for the MDP with the same states, actions, and
transitions as the given MMDP but with the given scalar rewards function. The pseudocode for the
directedOptimization helper method is shown in Algorithm 2:

3



Input: p1, p2 are coordinate points representing values of each criteria
Output: Set of all supported Pareto optimal solutions between p1, p2
y = (x(p1)−x(p2))

(x(p1)+y(p2)−x(p1)−y(p1)) ;

x = (y(p1)−y(p2))
(x(p1)+y(p2)−x(p1)−y(p1)) ;

q = optimize(xR1 + yR2);
if q == x or q == y then

return {};
end
return directedOptimization(p1, q) ∪ directedOptimization(q, p2);

Algorithm 2: Pseudocode for the directedOptimization algorithm

4.1 Approximating the Pareto Front
This section presents a simple method for finding an approximation of the Pareto front. This
method involves finding solutions using a standard MDP dual linear program. The algorithm uses
a parameter, λ, to weight the different reward functions for each criterion. One criterion is weighted
λ and the other is 1 - λ for 0 ≤ λ ≤ 1. The algorithm iteratively decrements (or increments) λ by a
fixed step so that the solutions progressively decrease in value for one criterion while increasing on
the other. This method does not find all the solutions (some are always possibly missed regardless
of the step size) but, it is a good approximation of the Pareto front. However, it is not guaranteed
to be an ε-cover.

5 Greedy Algorithm
The greedy algorithm presented here finds an epsilon cover of minimal cardinality for all Pareto
non-dominated solutions. It is a general optimization technique that can be adapted to MMDPs.
The algorithm can be summarized as follows.Find the maximum value for each criterion. Establish
a lower bound for the second criterion within epsilon of the maximum value. Then maximize the
second criterion subject to this bound. This solution will then be part of the epsilon cover. Then
the loop over the following while each point found does not ε-cover the maximum value that was
found for the first criteria. Find a point q′ that maximizes the second criterion but is not covered
by the previous point on the first criterion. Use the value of q′ on the second criteria as the new
maximum for the second criterion and repeat. This will find the minimum epsilon cover as long as
the optimization technique is exact [3].

One problem with this algorithm is that value iteration is not an optimization technique that
can be bounded on one criterion while optimizing on another. Therefore linear programming must
be used which is less efficient. Further slowing the algorithm is that finding pure policies (policies
with a deterministic assignment of actions to states) with linear programing is even slower. The
time is still polynomial but large problems take a while to run as will be shown in experimental
results.
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Input: ε, m: an MMDP with criteria x, y
Output: An ε-cover of minimal cardinality
Compute value of optimal policy for criteria x and criteria y: xmax and ymax
ȳ1 = ymin

1+ε
;

q1 = optimize(x, y ≤ ȳ1);
Q = q1;
while xmin < x(qi)(1+ε) do

q′i+1 = optimize(y, x < x(qi)(1 + epsilon);
ȳi+1 = min(ȳi, y(q′i+1)) 1

1+epsilon
;

qi+1 = optimize(x, y ≤ ȳi+1);
Q = Q ∪ qi+1;
i = i+ 1;
return Q;

end
Algorithm 3: Pseudocode for the Greedy algorithm

6 Divide and Conquer Approach
This is a variation of multi-objective optimization that is designed to find a minimum epsilon cover
or at least an approximation within a small factor multiplied by the minimum. This method takes
multi-objective optimization and changes the stopping conditions on the recusion in order to find
an ε-cover. Currently a point is added to the covering set under a few conditions.

1. If it covers both parent points.

2. If it covers one parent it will be added and recursion stops between that parent and the new
point.

3. If after search on both sides of the point along the curve, no covering solution is found then
the aforementioned point becomes part of the cover.

The problem with this approach is that can possibly miss non-supported solutions just as multi-
objective optimization does not find non-supported solutions. There is also no guarantee that
the set found is of the minimal cardinality. However, it can be seen from tests results that it is
significantly faster than the greedy approach. The initial step of the algorithm is the same as Multi-
Criteria Optimization but the maximum for each criteria is not added unless the helper method,
divideAndConquer, returns null. The pseudocode for the helper method is shown in Algorithm 6:

6.1 K-Best Policies for Finding Non-supported Solutions
As previously mentioned, the problem with the divide and conquer algorithm is that it fails to find
non-supported solutions. This results under the stopping condition that no point is found between
the two parent points. It is possible that there is a non-supported solution that is not epsilon
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Input: p1,p2 are coordinate points representing the values of each criteria
Output: A set of Pareto optimal solutions approximating an ε-cover between p1 and p2
y = (x(p1)−x(p2))

(x(p1)+y(p2)−x(p1)−y(p1)) ;

x = (y(p1)−y(p2))
(x(p1)+y(p2)−x(p1)−y(p1)) ;

q = optimize(xR1 + yR2);
if q == p1 or q == p2 then

Q = {};
end
if x(q)(1 + epsilon) > x(p1) and y(q)(1 + epsilon) > y(p2) then

Q = {q};
end
if x(q)(1 + epsilon) > x(p1) then

Q = {q} ∪ divideAndConquer(q, p2);
end
if y(q)(1 + epsilon) > y(p2) then

Q = {q} ∪ divideAndConquer(p1, q);
end
else

Q = divideAndConquer(p1, q) ∪ divideAndConquer(q, p2);
end
if Q does not cover q then

Q = Q ∪ {q};
end
return Q

Algorithm 4: Pseudocode for the Divide and Conquer Algorithm

dominated by the two points. Therefore the epsilon cover does not cover the entire Pareto front.
One method of getting around this problem might be using the technique of finding the k-best
policies. In the case that the best solution with the normalized rewards function is no better than
p1 or p2 the technique is to find the next best policies that are not dominated by p1 or p2. These
solutions can be used to complete the cover. The method of finding k-best policies that is used in
the divide and conquer algorithm is the algorithm K-Best Improved (KBN) [2]. This algorithm
relies on the theorem that the kth best policy differs from the i-th best policy for some i < k on
exactly one state [2]. The drawback to this algorithm is that k must be known a priori. Ideally, the
search for non-supported solutions would involve finding the second best, then the third best, and
so on until a solution was found that was epsilon dominated by both p1 and p2. But since k must
be known a priori the method must generate a list of solutions with a large k and then as many of
them as needed are looked at. Once a solution on the list meets the stopping criterion the rest can
be ignored. However if no solution on the list meets the stopping criterion then the algorithm must
be run with a greater k. KBN can be efficient for large k values but slows as the size of the MDP
grows.
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7 Pareto Optimal Policy Relatedness
Given an MMDP, there will be a solution set of Pareto optimal policies such that each policy is
not dominated by any other. Also, as presented in Section 1, a policy is a function that maps an
action to each state. Another explored topic in this research was by how much do these functions
differ from one another. In other words, how many states do two policies disagree on the action
to take. This was tested by finding all Pareto optimal supported solutions. Each solution policy
then was inserted into an undirected graph. A solution node was connected to another solution
node if the number of states that the policies differed on was less than or equal to a given k. Depth
first search was then used to find the number of connected components in the graph. The result
was that for k = 1 (i.e, all Pareto optimal policies differ from another Pareto optimal policy by
exactly one state) there were multiple connected components. For k = 2 there were fewer but still
as the number of states increased so did the number of components. The conclusion for now is that
there is no guarantee that all Pareto optimal policies are closely related. Future analysis could look
at whether the inclusion of non-supported Pareto optimal policies would completely connect the
entire graph.

8 Experimental Results
The divide and conquer algorithm and greedy algorithm were compared on a series of different
problems to see how they compared in computational time and cover cardinality. The algorithms
were implemented in Java and tests were performed within the Eclipse Interactive Developement
Environment. Tests were run on a 2.66 GHz Dual-Core Intel(R) Core(Tm)2 CPU running Linux
3.2. Tests consisted of generating random MMDPs of varying size and measuring the performance
of each algorithm on them. For each size problem, each algorithm was run on 10 different prob-
lems. Each MMDP was an infinite horizon problem with a discount factor of 0.9. It was not
considered if the discount factor could have affected the results. The size of the test problems
ranged from 20 to 500 states and for each number of states, tests were performed for 5 and for 10
actions being available in each state. Value iteration was used as the given optimization technique
for the divide and conquer algorithm runs. For the algorithms finding an ε-cover, an ε value of
0.05 was used. To test that an ε-cover was in fact produced, all Pareto optimal supported solutions
were found using the Multi-criteria Optimization algorithm. The average computation time for this
algorithm was also recorded and the results displayed in table 1. Tables 2 and 3 show results for
100, 200, 300, 400, and 500 states with 5 and 10 actions respectively. Also it should be noted that
the approximations were verified to be ε-covers for each trial.

8.1 Finding all Pareto Optimal Policies
The data for finding all solutions indicates that the number of Pareto optimal solutions and the
computation time are both functions of the number of states. However it can be seen that an
increase in the number of actions will result in an increase in the first derivative of computation
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time. The number of solutions found appears to grow a little faster with more actions but is mainly
a function of the number of states.

8.2 Comparing the Divide and Conquer and the Greedy Algorithm
The tabular and graphical comparisons of the divide and conquer and the greedy algorithm show
that the former significantly outperforms the latter in terms of computation time. However, as
shown in Tables 2 and 3, the greedy algorithm will find the ε-cover of minimal cardinality. In
general the cardinality of the ε-cover found by the divide and conquer algorithm seems to be within
a multiple of 2 of the actual minimum but this has not been proven.

States Actions Solutions Time (s)
100 5 102.3 1.142940687
200 5 196 17.606066236
300 5 289 27.027831748
400 5 372.8 69.621308841
500 5 462.5 152.321939523
100 10 135.2 2.093502994
200 10 269.6 17.606066236
300 10 395.1 82.656662125
400 10 513 185.278586949
500 10 621.4 372.586691124

Table 1: Average run time and solutions for finding all solutions
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Figure 1: Experimental results for finding all Pareto optimal policies
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States Div and Conq. Time (s) Greedy Time (s) Div and Conq. Cover Size Greedy Cover Size
100 0.0501 3.1151 6.3 3.5
200 0.1495 25.3162 6.1 3.6
300 0.3712 71.3525 6 3.2
400 0.8027 120.2230 6 3.3
500 1.3626 234.0653 6 3.3

Table 2: Average run time for EC Optimization and the Greedy algorithm with 5 actions

States Div and Conq. Time (s) Greedy Time (s) Div and Conq. Cover Size Greedy Cover Size
100 0.0697 5.1399 6.2 3.2
200 0.3043 39.5615 6 3.4
300 0.8988 119.1357 6 3.3
400 1.5838 218.9639 6 3.1
500 2.5032 416.2294 6 3.5

Table 3: Average run time for EC Optimization and the Greedy algorithm with 10 actions
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Figure 2: Experimental comparison of methods of finding an ε-cover

9 Conclusion
This work has discussed a method for finding all Pareto optimal policies for a MMDP. It has also
introduced a novel idea for finding an ε-cover based on this method for finding all the policies. This
method uses a divide and conquer approach to find the cover. It also makes use of a technique for
finding the k-best policies for a given rewards function. This allows the algorithm to search for non-
suppored solutions. In addition, an optimization method of finding the minimal ε-cover has been
adapted for MMDPs. All of these algorithms have been tested experimentally. It was observed that
this new divide and conquer algorithm is significantly faster then the greedy algorithm adapted to
MMDPs. However, it does not guarantee a cover of minimal size.

Relatedness of Pareto optimal policies was experimentally looked at but results are inconclu-
sive. Supported, Pareto optimal policies do not seem to have to be related but it is possible that if
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non-supported policies are included then a relation can be established.
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