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ABSTRACT OF DISSERTATION

Adams operations on the Burnside ring from power operations

Topology furnishes us with many commutative rings associated to finite groups. These
include the complex representation ring, the Burnside ring, and the G-equivariant
K-theory of a space. Often, these admit additional structure in the form of natural
operations on the ring, such as power operations, symmetric powers, and Adams
operations. We will discuss two ways of constructing Adams operations. The goal of
this work is to understand these in the case of the Burnside ring.
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Chapter 1 Introduction

1.1 Setting and Motivation

Let G be a finite group and let A(G) be the Burnside ring of G. This is the
Grothendieck ring of isomorphism classes of finite G-sets and is a Z-module of rank
equal to the number of isomorphism classes of transitive G-sets. The power operation
is a multiplicative map

Pn : A(G)→ A(G× Σn)

induced by taking a G-set X to the n-fold Cartesian product X×n where Σn reorders
components and G acts diagonally. The Burnside ring is a pre-λ-ring, that is to say it
has a notion of symmetric powers satisfying certain identities. This provides sufficient
data to construct an Adams operation, which is an additive map

ψn : A(G)→ A(G).

Let R(G) be the complex representation ring of G. As with the Burnside ring,
R(G) has a power operation that is a multiplicative map induced by taking a G-
representation V to the n-fold tensor power V ⊗n with the usual G× Σn-action. The
representation ring is also a pre-λ-ring with symmetric powers that give rise to an
Adams operation that is a ring map. However, these two operations are closely related
in the case of the representation ring, as the nth Adams operation on R(G) factors
through the power operation:

R(G) R(G× Σn) R(G)⊗Z R(Σn) R(G).
Pn

ψn

∼= id⊗ev

Such a factorization has appeared in other settings as well. For instance, Ando’s
construction for Adams operations on Morava E-theory are defined through the power
operation.

1.2 Desirable Conditions for a factorization

Our goal is to produce a similar factorization for Burnside rings. However, to ensure
such a factorization has content and more closely mimics other settings, we place
various restrictions on it.

Definition 1.2.1. We denote αG,n : A(G × Σn) → A(G) any map that factors ψn
through the power operation: αG,n ◦Pn = ψn. We will write αn when G is clear from
context. Further, it is desirable that αG,n satisfies the following conditions:

1. αG,n is additive and factors through the transfer ideal.

1



2. αG,n is natural with respect to restriction, i.e for H ≤ G, we have ResGH ◦αG,n =
αH,n ◦ ResGH .

3. The following diagram commutes, where αe,n is considered to be a map from
A(Σn) ∼= A(e× Σn) to A(e) ∼= Z.

A(G)⊗ A(Σn) A(G)⊗ Z

A(G× Σn) A(G)

1⊗αe,n

∼=
αG,n

Note that αG,n is not assumed to be unique, and in general, may fail to be unique.
In particular, transitively stabilized basis elements which do not appear in the image
of the power operation may be mapped freely, though conditions (2) and (3) place
restrictions on this.

1.3 Current Results

One may ask if the existence of an αn satisfying these conditions is guaranteed for all
groups and power operations, but this is not true. In particularly, we construct an
explicit counterexample which shows it is not possible to construct an αΣ4,3 satisfying
conditions (1) and (3).

There are large classes of well behaved groups which may provide refuge from
the complications occurring for Σ4, the first of which we consider is the setting of
abelian groups. Abelian groups provide a clear description for the decomposition of
(G/H)n as a G × Σn-set understood through the work of Bonventre, Guillou, and
Stapleton. Furthermore, a corollary to the work of Gay, Morris, and Morris simplifies
the computation of the Adams operation, greatly reducing the work necessary to
show a proposed αn factors ψn.

Theorem 1.3.1. For abelian groups and n ≥ 1, there exists an additive map αn such
that αn ◦ Pn = ψn satisfying all of our desired properties when n = p is a prime.

In addition to abelian groups, for p prime, we may consider the setting of p-groups
and the pth power and Adams operation. These groups provide significant differences
in the structure of (G/H)p as a G×Σp-set, however, the computation of the Adams
operations remains simple compared to the more general setting.

Theorem 1.3.2. For p prime and G a p-group, there exists an additive map αp such
that αp ◦ Pp = ψp satisfying properties (1) and (3)

Despite the fact a factorization satisfying some of the conditions can be described,
restriction is more difficult to understand when G is not assumed to be abelian. As
such, proving a constructed αp is natural with respect to restriction remains unclear.

Copyright© Lewis Dominguez, 2024.
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Chapter 2 Background

We begin with an overview of the Burnside ring, the ring of marks, the representation
ring and its relations to the Burnside ring, as well as operations associated to these
rings. This material can be found in a number of sources, such as Tom Dieck’s
Transformation Groups[11, Chapter 1], Bouc’s Handbook of Algebra article [4], and
Boorman’s S-operations in Representation Theory [3, Chapter 1].

2.1 The Burnside Ring

Fix a finite group G. First, we consider the groupoid of finite G-sets, which we will
denote G-set. This category admits two symmetric monoidal structures, one is given
by disjoint union, and the other by Cartesian product.

Definition 2.1.1. The Burnside semiring, denoted A+(G), is the commutative semir-
ing structure on the set of isomorphism classes of finite G-sets in which addition is
induced by disjoint union and multiplication induced by Cartesian product. The
Burnside ring A(G) is the Grothendieck completion of A+(G) with respect to disjoint
union.

Remark 2.1.2. The Grothendieck completion of A+(G) may be constructed by con-
sidering formal differences of isomorphism classes of G-sets of the form [X]− [Y ], and
then setting [X]− [Y ] equal to [A]− [B] when [X] + [B] = [A] + [Y ] in A+(G). We
refer to such formal differences of isomorphism classes of G-sets as ‘virtual’ G-sets.

Additionally, it should be noted that the concept of a G-action is not well-defined
on virtual G-sets, as there is not a canonical method to pick a representative for
the classes under Grothendieck completion. However, when considering an additive
map out of A(G), it is sufficient to understand its image on elements of the form
[G/H] ∈ A+(G).

Example 2.1.3. Consider when G = e is the trivial group. The isomorphism classes
of finite e-sets are given by cardinality. As each finite set is a disjoint union of
singletons, we see that A+(e) ∼= N. The Grothendieck completion of N as a semiring
gives A(e) ∼= Z.

As each finite G-set decomposes into a disjoint union of transitive G-sets and the
Burnside ring is built out of the groupoid of finite G-sets, it suffices to understand
the additive and multiplicative operations on finite transitive G-sets. These are in
bijection with conjugacy classes of subgroups of G, and so there is a canonical ad-
ditive basis for the Burnside ring, giving the following decomposition as an abelian
group. Boorman provides elementary proofs for this decomposition [3, Chapter 1].
We define SubConj(G) to be the set of conjugacy classes of subgroups of G. There is
an isomorphism of abelian groups

3



A(G) ∼=
⊕

[H]∈SubConj(G)

Z{[G/H]}.

Furthermore, as these elements are a basis for the additive structure, the multi-
plicative structure is determined by the pairwise products. Since every G-set decom-
poses into a collection of transitive orbits, there is necessarily a decomposition for the
product of two transitive G-sets into basis elements. Let H and K be two subgroups
of G, then the product of G-sets G/H ×G/K decomposes as follows:

G/H ×G/K ∼=
∐

HgK∈H\G/K

G/(H ∩ gKg−1).

Remark 2.1.4. When G = K in the double coset formula, we see G/G is the multi-
plicative unit of A(G), as there is only one double coset for HgG and the intersection
gives H, so G/H ×G/G ∼= G/H. For this reason, we will often refer to G/G as 1 or
∗.

Example 2.1.5. Consider G = Cp, for p prime. In this case, there are two transitive
G-sets, 1 = Cp/Cp and Cp/e. Using the canonical basis, we see A(Cp) ∼= Z{1, w}
as an abelian group, where w := Cp/e. The multiplicative structure must still be
determined, but the only calculation required is Cp/e×Cp/e = w2, and as w is a free
G-set of size p, one can see w2 = pw. We then quotient by this relation to see the
following presentation:

A(Cp) ∼= Z[w]/⟨w2 − pw⟩.

Observe that A(G) can always be computed as a quotient of a polynomial ring
on | SubConj(G)| − 1 many variables representing the transitive G-sets G/H for each
H ̸= G. In general, this will require the calculation of

(| SubConj(G)|
2

)
relations, though

products involving G/G or G/e are simple to compute.

Example 2.1.6. For G = Σ3, the symmetric group on three elements, we omit the
calculations involving the double coset formula, but give the following presentation
for A(Σ3), where x := Σ3/A3, y := Σ3/C2, z := Σ3/e:

A(Σ3) ∼= Z[x, y, z]/⟨x2 = 2x, y2 = y + z, z2 = 6z, xy = z, xz = 2z, yz = 3z⟩,

Now, given a G-set, we can define an H-set for H ≤ G by restricting the action,
which induces a map of rings. More generally, this can be defined along any group
homomorphism.

Definition 2.1.7. For any group homomorphism φ : H → G, there is an induced
map of commutative rings

ResGH : A(G) A(H)

X ResGH = X with hx = φ(h)x,

4



referred to as a restriction map.

As it relies on precomposition with the action map, restriction is contravariant.
We may ask for a covariant map, this is the transfer. It will not result in a ring map.
However, it will produce an additive map.

Definition 2.1.8. For any group homomorphism φ : H → G, there is an induced
map of abelian groups

TrGH : A(H) A(G)

X G×H X := G×X/⟨(gφ(h), x) ∼ (g, hx)⟩,

referred to as either the induction or transfer map.

Note that restrictions and transfers are defined along all group homomorphisms.
When clarification is necessary, we may use the notation φ∗ or Resφ for restriction
along φ and φ∗ or Trφ for the transfer along φ. Furthermore, the restriction of a
transfer has a particularly nice decomposition.

Definition 2.1.9. Fix H ≤ G, then for g ∈ G, there is an isomorphism cg : A(H)→
A(gHg−1) induced by conjugation. This follows from the fact A(−) is a functor,
hence it preserves isomorphisms.

Proposition 2.1.10. [11, 6.1.7](Double Coset Formula) For subgroups H,K ≤ G,
we have the following relation:

ResGH TrGH =
⊕

KgH∈K\G/H

TrKK∩gHg−1 cg Res
gKg−1

H ∩H.

Example 2.1.11. Let G = Σ3 and H = C3 with φ : H ↪→ G given by the inclusion
of the three cycle subgroup. As we have the descriptions of both Burnside rings as
polynomial rings, we need only determine the images of the additive generators. The
map is then guaranteed to respect the appropriate quotients, and furthermore, as Res
is a ring map, 1 will go to 1. Note that this is not true for the transfer map, as it
is not multiplicative. Again, we omit the calculation, but include the final result for
each map below.

Table 2.1: Restriction and Transfer between Σ3 and C3

A(Σ3) ResΣ3
C3

A(C3) TrΣ3
C3

x 2 1 x
y w w 3z
z 2w

5



Now, it would be helpful to understand elements of the Burnside ring for groups
with particular structure. While the abelian group structure of A(G) is easily classi-
fied, it will be helpful to simplify the data associated to subgroups of products. For
this reason, we will review Goursat’s Lemma.

2.1.1 Goursat’s Lemma

As finite transitive G-sets are in correspondence with the conjugacy classes of sub-
groups, it would be helpful to understand the subgroup structure of a product group.
However, given groups G,G′, it is important to note that the subgroups of G × G′

need not be of the form H ×K for H ≤ G and K ≤ G′. The diagonal subgroup of
C2 × C2 provides a simple example of a subgroup that is not a product of two sub-
groups. However, Goursat’s lemma provides a way to understand the subgroups of
G×G′ in terms of subgroups in G and G′ equipped with extra data. Let H ≤ G×G′

be a subgroup of the product, then we can construct the following information from
H:

ker(p1|H)

ker(p2|H) H ≤ G×G′ im(p2|H) ≤ G′

im(p1|H) ≤ G

p1

p2

Notice that we can consider ker(p1|H) as a subgroup of G′, and more specifi-
cally im(p2|H), as all elements are of the form (e, h′) with h′ ∈ im(p2|H). Similarly,
ker(p2|H) may be viewed as a subgroup of im(p1|H). Even further, these are normal
subgroups, as conjugation preserves the form (e, h′) or (h, e) respectively.

Lemma 2.1.12. [8] Let G,G′ be groups, and let H be a subgroup of G × G′ with
projections p1 : G×G′ → G and p2 : G×G′ → G′. Then we have an isomorphism of
the quotients:

im(p1|H)/ ker(p2|H) ∼= im(p2|H)/ ker(p1|H)

This allows us to construct a bijection between subgroups H ≤ G×G′ and triples
of the form (N,N ′, f) with N normal in G, N ′ normal in G′ and f an isomorphism
of G/N onto G′/N ′.

While this will allow us to extract data, the multiplicative structure of A(G) can
be quite complex. We will make use of the ring of marks to better understand the
Burnside ring.

6



2.1.2 The ring of marks

The ring of marks is a commutative ring which will simplify some of our necessary
calculations. We will review some basic properties of it before also considering the
representation ring, ring of class functions, and how all of these relate.

Definition 2.1.13. The ring of marks, denoted Marks(G), can be defined as
∏

[H] Z{[H]},
or equivalently as Fun(SubConj(G),Z). There is a canonical map of commutative
rings denoted χ from A(G) to Marks(G), often referred to as the marks homomor-
phism or character map:

χ : A(G) Marks(G)

X ([H] 7→ |XH |).

Example 2.1.14. Assume G = Cp. As A(Cp) ∼= Z[w]/⟨w2 − pw⟩ and χ is a com-
mutative ring homomorphism, the map is determined by the value χ(w). If we write
Marks(Cp) ∼= Z{e}⊕Z{Cp}, then the image of w will be (p, 0), as Cp/e has p e-fixed
points and zero Cp-fixed points. Hence, the image is generated by (1, 1) and (p, 0).
Note that this is not a surjection, and in almost all cases, χ will not be a surjection.

Proposition 2.1.15. [6, Theorem 1, Page 238] The marks homomorphism χ :
A(G) → Marks(G) is an injection, and as they are the same rank as Z-modules,
χ⊗Q is an isomorphism.

Remark 2.1.16. If we consider the bases for A(G) and Marks(G), the bijection between
transitive G-sets and conjugacy classes of subgroups shows these are free Z-modules
of the same rank. Thus, we see that if χ is an injection, it is immediately a rational
isomorphism. The proposition can be proven by partially ordering the basis by sub-
conjugacy and writing the associated matrix in increasing rank, giving a triangular
matrix with no zeroes on the diagonal (as χ(G/H)[H] is always non-zero).

Due to its ring structure as a finite product of the integers, it is often simpler to do
computation on A(G) within Marks(G) and then lift along the section to determine
what the value on G-sets is. As χ is rationally an isomorphism, the section can
be calculated by inverting the matrix calculated in the remark. Additionally, there
are relations to determine when a function in Marks(G) is within the image of the
Burnside ring.

Remark 2.1.17. As Marks(G) is the ring of Z-valued functions on SubConj(G), one
can replace Z by another commutative ring, commonly denoted Marks(G,R) :=
Fun(Conj(G), R) when relevant. Following this, χ is still defined as above, making
use of the fact Z is the initial commutative ring.
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2.2 The representation ring and its relationship to the Burnside ring

As with the Burnside ring, we first consider the groupoid of finite dimensional com-
plex G-representations, which we will denote GRep. Recall that a G-representation
is a complex vector space equipped with a G-action compatible with scaling and ad-
dition. This category admits two compatible symmetric monoidal structures, notably
direct sum and tensor product.

Definition 2.2.1. The complex representation semiring, denoted R+(G), is the com-
mutative semiring structure on the set of isomorphism classes of finite dimensional
complex G-representations in which addition is induced by direct sum and multi-
plication induced by tensor product. The complex representation ring R(G), which
we will further refer to as the representation ring, is the Grothendieck completion of
R+(G) with respect to direct sum.

Remark 2.2.2. As before, the Grothendieck completion may be constructed using
formal differences of isomorphism classes of representations, which we will refer to as
virtual representations. Similarly, if a representation V is referred to as non-virtual,
it is an element of R+(G) and representable by the class [V ]− [0].

Definition 2.2.3. A subrepresentation of a representation V is a subspace which
is stabilized by the G-action. By stabilized, we mean that if ρ is our representa-
tion, a subspace U is stabilized if ρ(g)(U) = U for every g ∈ G. Similarly, a complex
G-representation is said to be irreducible if it contains no proper non-trivial subrepre-
sentation. The representation ring R(G) has a canonical basis given by isomorphism
classes of irreducible representations, of which there are always finitely many.

Example 2.2.4. Consider when G = e is the trivial group. Similar to G-sets, the
irreducible representations of e are the 0-dimensional vector space and a fixed 1-
dimensional vector space. As any higher dimensional representation splits as a sum
of 1-dimensional representations, we see that R+(e) ∼= N and R(e) ∼= Z.

As with the G-set G/G in the Burnside ring, we may always consider a 1-
dimensional representation with trivial G-action. This acts as the multiplicative unit
of the ring R(G), and as such, we may refer to it as 1.

Example 2.2.5. For G = C3, there are two non-trivial 1-dimensional representations
of C3, which can both be given by having a generator act as multiplication by a 3rd
root of unity. These two representations will both be squares of one another, giving
us the following presentation:

R(C3) ∼= Z[x]/⟨x3 − 1⟩.

As with the Burnside ring, we may make use of the interaction between group
homomorphisms and action maps to obtain maps between representation rings.

Definition 2.2.6. For any group homomorphism φ : H → G, there is an induced
map of commutative rings, referred to as a restriction map:
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ResGH : R(G) R(H)

V ResGH(V ) = V with hv = φ(h)v.

Definition 2.2.7. The ‘regular’ representation of G is denoted C{G} and is the
complex vector space with basis given by elements of G, using the action of G on
itself by multiplication. It always contains at least one copy of every irreducible
representation of G, notably showing that the number of irreducibles is at most the
order of the group.

Definition 2.2.8. As with the Burnside ring, there is an induced map of abelian
groups for any group homomorphism φ : H → G, referred to as an induction or
transfer map:

TrGH : R(H) R(G)

V C{G} ⊗H V := C{G} ⊗ V/⟨(gφ(h), v) ∼ (g, hv)⟩.

Note that as before, restriction and transfer are defined along all group homomor-
phisms.

Definition 2.2.9. There is a map of commutative rings from the Burnside ring to
the representation ring, which we will refer to with L for the ‘linearization’ of the
G-set:

L : A(G) R(G)

X C{X}.

Example 2.2.10. Consider G = C3, then A(C3) ∼= Z[w]/⟨w2 − 3w⟩ and L depends
only on the image of w. As L(w) is given by G acting on C{G/e}, we will obtain the
regular representation, given by the element x2+x+1. Thus, the image is generated
by ⟨1, x2 + x+ 1⟩, which notably gives that L is not surjective.

Remark 2.2.11. The linearization map L is not necessarily injective or surjective,
but its image will always contain 1 and the regular representation, as it is a map of
commutative rings and C{G/e} is the regular representation.

Definition 2.2.12. Let Cl(G) := Fun(Conj(G),C) be the ring of class functions on
G, where Conj(G) is the collection of conjugacy classes of elements of G. Then χ,
the character map, is defined as follows, as well as ι, which is induced by subgroup
inclusion.
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χ : R(G) Cl(G) ι : Marks(G) Cl(G)

G↷ V f : [g]→ Tr(g) f ι(f)([g]) = f(⟨g⟩)

While χ is injective, ι need not be.

We denote both the character map and the marks homomorphism with χ as they
are both defined by considering fixed point data. We will subscript them with the
domain if clarification is necessary.

Proposition 2.2.13. The maps L, χ, ι form the following commutative diagram.

A(G)

R(G) Marks(G)

Cl(G)

L χ

χ ι

While we omit the full proof, the result relies on the fact that dim(C{X}⟨g⟩) =
|X⟨g⟩| for non-virtual G-sets. As all of these objects are free Z-modules and the maps
are commutative ring homomorphisms, it is sufficient to see it commutes on basis
elements.

2.3 Power Operations

Now, we move onto operations which are defined for all of the above rings, the
first of which is the power operations. These occur commonly are induced by maps
of G-sets and G-representations for the Burnside ring and representation ring. As
before, these are not necessarily a ring maps. Rymer provides further details on the
power operations for the Burnside ring [10, Section 2].

2.3.1 Power Operations

Definition 2.3.1. There is a multiplicative map Pn : A+(G) → A+(G × Σn) called
the power operation,

Pn : A+(G) A+(G× Σn)

X X×n,

where an element (g, σ) ∈ G × Σn acts on a tuple of the form (xi) ∈ X×n by
(g, σ)(xi) = (gxσ(i)).
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Given two G-sets X and Y , the power operation interacts with addition as follows,
where the transfer is along the inclusion map. This will be referred to as the coproduct
formula when relevant.

Pn(X + Y ) ∼=
∑
i+j=n

TrG×Σn
G×Σi×Σj

(X i × Y j)

Definition 2.3.2. For representation rings, the power operation is defined analo-
gously as Pn : R+(G)→ R+(G× Σn),

Pn : R+(G) R+(G× Σn)

V V ⊗n,

where an element (g, σ) ∈ G×Σn acts on a tuple of the form (vi) ∈ V ⊗n by (g, σ)(vi) =
(gvσ(i)).

Similarly, given two G-representations V and W , the power operation interacts
with addition as follows:

Pn(V +W ) ∼=
∑
i+j=n

TrG×Σn
G×Σi×Σj

(V ⊗i ×W⊗j),

where the transfer is along the inclusion map.

Remark 2.3.3. We can adjust the additive formula to extend these operations to
virtual G-sets and virtual G-representations through a small modification. If A and
B are G-sets or G-representations, then the power operation on virtual elements is
given by the following formula

Pn(A−B) ∼=
∑
i+j=n

TrG×Σn
G×Σi×Σj

(Pi(A)× Pj(−B)),

where the transfer is along inclusion as before.
It remains to give a formula for Pn(−B). We can make use of the fact that

Pn(0) = 0, as well as TrG×Σn
G×Σn

= idA(G×Σn) . By separating terms and solving, we
obtain an inductive formula for Pn(−B):

0 = Pn(B −B) ∼=
∑
i+j=n

TrG×Σn
G×Σi×Σj

(Pi(B)× Pj(−B))

Pn(−B) ∼= −Pn(B)−
∑
i+j=n
i,j ̸=n

TrG×Σn
G×Σi×Σj

(Pi(B)× Pj(−B)).

As this allows us to calculate the power operation on a formal sum or difference,
we may extend these operations to A(G) and R(G) respectively.
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2.3.2 The Transfer Ideal and Restrictions

While the power operation is not additive, we may quotient by a certain ideal to
make a composite which is. In this case, we should note that transfer of the form
TrG×Σn

G×Σn×Σ0
and TrG×Σn

G×Σ0×Σn
may be identified with the identity map. Consider the

following expansion of our sum for power operations:

Pn(A−B) ∼=
∑
i+j=n

TrG×Σn
G×Σi×Σj

(Pi(A)× Pj(−B))

Pn(A−B) ∼= Pn(A) + Pn(B) +
∑
i+j=n
i,j ̸=0

TrG×Σn
G×Σi×Σj

(Pi(A)× Pj(−B)).

Definition 2.3.4. We say that H ≤ G × Σn is ‘transitive’ if the projection to Σn

gives a transitive subgroup, i.e one which acts transitively on the set of n elements.
Following this, a G × Σn-set is ‘transitively stabilized’ if its stabilizer is transitive.
The transfer ideal of the A(G × Σn) is generated by basis elements which are not
transitively stabilized:

Itr := ⟨[G× Σn/H]|H is not transitive⟩

Note that the quotient by this ideal will be a map of free Z-modules, as it acts
as identity on all basis elements which are transitively stabilized while sending those
which are not to 0. Hence, it suffices to describe its effect on an additive basis.
Furthermore, Itr is minimal among ideals I in A(G× Σn) and natural in G with the
property that qI ◦ Pn is additive. We will refer to operations that factor through the
power operation modulo the transfer ideal as the ‘additive’ power operations.

Proposition 2.3.5. The power operations Pn are natural with respect to restriction
maps, in the sense that the following diagrams commute:

A(G) A(G× Σn) R(G) R(G× Σn)

A(H) A(H × Σn) R(H) R(H × Σn).

Pn

ResGH ResG×Σn
H×Σn

Pn

ResGH ResG×Σn
H×Σn

Pn Pn

Remark 2.3.6. The power operation also commutes with linearization, which in turn
respects restriction, so one may construct a commutative cube of maps.

While the above commutative diagrams explain that power operations and re-
striction interact nicely, they do not describe how a G-set explicitly decomposes into
basis elements of A(G × Σn) or A(H × Σn). In general, this is a difficult problem,
but in the case G is the trivial group, it is reasonably easy to determine.
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2.3.3 Understanding Pn for G = e

We will compute Pn for when G is the trivial group. While this is will be simple
in comparison to the general case, computations of various transfers will still be
necessary. Afterwards, we will quotient by the transfer ideal to show the composite
is additive.

Example 2.3.7. Consider G = e, so the power operation lands in A(Σn). As iso-
morphism classes of e-sets are given by cardinality, we will write k for a set of size
k ∈ Z≥0. Let the elements of the set be the numbers 1 through k, where e acts
trivially on all elements. Then, an element of Pn(k) is an n-tuple with each entry a
number from 1 to k.

We can make use of the coproduct formula to determine the basis decomposition.
By induction on the number of entries in the coproduct, we obtain the following
isomorphism:

Pn(k) ∼=
∐

i1+...+ik=n

TrΣn∏k
j=1(Σij

)

(
k∏
j=1

(∗ijj )

)
Here, we write ∗j for each element of k, as they are trivial e sets when consid-

ered individually, but in general, the powers on each piece of the product would be
dependent on the composition in the index of the summand.

To determine the basis decomposition, we need to determine what these transfers
correspond to. This is simpler than it may appear, because after using the definition
of the transfer, the product of fixed sets is still a fixed set, so we can simplify as
follows:

TrΣn∏k
j=1(Σij

)

(
k∏
j=1

(∗ijj )

)
∼= Σn ×∏k

j=1(Σij
)

(
k∏
j=1

(∗ijj )

)
∼= Σn ×∏k

j=1(Σij
) ∗ ∼= Σn/

k∏
j=1

(Σij).

Hence, after taking the sum, we get the complete decomposition for the power
operation. If we had instead considered −k, we would obtained Pn(−1) times this
answer. It should be noted that there are repeat stabilizers throughout the sum.

Pn(k) ∼=
∐

i1+...+ik=n

(
Σn/

k∏
j=1

(Σij)

)
Now, while this is an explicit answer, we can obtain a clearer answer by making

use of the ring of marks. In general, it’s difficult to write a power operation on the
ring of marks, but here, we can determine the image by calculating the mark of k×n

directly. If H is a subgroup of e × Σn, we can consider how H acts on the set of
numbers 1 through n. This decomposes into a collection of transitive orbits

∐
i ni.

This will give us the following formula:
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k ∈ A(e) k×n ∈ A(Σn)

(f : [e] 7→ k) Pn(f)[H] =
∏
i

kni .

χ

Pn

χ

Pn

Remark 2.3.8. The power operations factor through A(G ≀ Σn) and R(G ≀ Σn). This
is called the ‘total’ power operation and denoted Pn : A(G) → A(G ≀ Σn) and Pn :
R(G)→ R(G≀Σn), which is induced by the action ofG≀Σn on the n-fold product of the
set or n-fold tensor power of the vector space. As G×Σn includes into G ≀Σn through
the diagonal map G → Gn, there is a restriction map ResG≀Σn

G×Σn
, giving the desired

factorization. As with the power operation Pn, this is a multiplicative operation, but
the quotient by a minimal ‘transfer’ ideal will make the composite additive.

Example 2.3.9. Let G = e as before. In the prior example, we gave an explicit
decomposition for the nth power operation of any finite e-set. Each stabilizer was
given as a product of symmetric groups at most as large as Σn, and up to order only
one such product will contain a copy of Σn, notably the indices of the sum which
correspond to the trivial composition with iℓ = n and im ̸=ℓ = 0. This will be the
only transitively stabilized basis element in the decomposition. Hence, we obtain the
following image after taking the quotient by the transfer ideal:

A(e) A(Σn) A(Σn)/Itr

k
∐

i1+...+ik=n

(
Σn/

k∏
j=1

(Σij)

)
kΣn/Σn.

Pn /Itr

As mentioned earlier, after the taking the quotient by the transfer ideal, the
composite with the power operation is a map of commutative rings.

2.4 The Adams Operation

Many natural operations can be built out of the power operations by considering a
map from the target of the power operation back to the source of the power operation.
We will use this idea to define a pre-λ-structure on the Burnside ring. First, we recall
what a λ-ring and a pre-λ-ring are. These definitions follow along with those given
by Gay, Morris, and Morris, which draw from Knutson [9, Chapter 1]. Let R be a
torsion-free commutative ring and N the set of non-negative integers.

2.4.1 Construction via pre-λ-rings

As the representation ring is constructed using vector spaces, some of the natural
operations on vector spaces extend to the representation ring, notably that of sym-
metric powers and exterior powers. Similarly, symmetric powers of sets extend to the

14



Burnside ring. These operations are closely related and together form a category of
rings, although we will not consider the categorical structure.

Definition 2.4.1. A pre-λ-ring is a ringR with operations λn, ψn, βn : R→ R, n ∈ N.
These operations must satisfy a collection of identities found below [7, Section 2].
Here, we should interpret βn as analogous to the symmetric powers, while λn is
similar to the exterior powers. The operations λ0, β0, ψ0 must be the constant map to
1, and λ1, β1, ψ1 are idR. The operations λn and βn are not additive or multiplicative,
while the Adams operation ψn is required to be additive and may be multiplicative.

0 =
n∑
i=0

(−1)iλiβn−i

nβn =
n−1∑
i=0

βiψn−i

(−1)−1nλn =
n−1∑
i=0

(−1)iλiψn−i

Remark 2.4.2. These identities allow us to recover all three operations from any one
of them as long as R is torsion-free. As both the Burnside ring and the representation
ring are torsion-free, we need only define one of the collections of operations and we
may use the identities to induce a pre-λ-ring structure.

In the case of R = A(G) or R = R(G), we obtain βn from the power operation
as follows. If we quotient the power operation by the Σn action, it gives a G-set
or G-representation respectively, referred to as the nth symmetric power, or Symmn.
The symmetric powers satisfy conditions on βn such as β0 = 1 and β1 = idR, thus
allowing us to inductively define ψn and λn using the identities.

Furthermore, for the Burnside ring, Bouc and Rökaeus provide a direct construc-
tion for the operations λn in terms of G-sets, allowing for an alternative construction
for the Adams operation [5, Theorem 1.1]. This induces a pre-λ-ring structure iden-
tical to the one obtained by making use of symmetric powers.

These methods give us a recursive formula for the operations ψn in terms of the
symmetric powers or alternating powers and lower Adams operations. However, both
of these methods require us to calculate all lower Adams operations, and as such a
non-recursive formula would be preferred. In the case of the representation ring, we
see there is a more direct method.

Proposition 2.4.3. [1, Proposition 2.5] The nth Adams operation on the represen-
tation ring factors through the power operation, where the middle isomorphism is the
Kunneth isomorphism of the representation ring and lastly we evaluate the character
of a representation of Σn at the conjugacy class of the long cycle:
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R(G) R(G× Σn) R(G)⊗Z R(Σn) R(G).
Pn

ψn

∼= id⊗ev

While such a factorization for the Adams operation on the Burnside ring would
be ideal, the Burnside ring does not have a Kunneth isomorphism and also A(Σn)/ITr
is quite large. However, Gay, Morris, and Morris describe an elegant formula for the
Adams operations that makes use of the ring of marks.

Theorem 2.4.4. [7, Theorem 4.2] For H,K ≤ G, and rd equal to the number of
orbits of size d when K acts on G/H, we have the following equality.

χ(ψn([G/H]))[K] =
∑
d|n

drd.

As the ring of marks is rationally isomorphic to the Burnside ring and both are
free Z-modules, we need only invert a triangular matrix to use this to calculate the
Adams operation on the Burnside ring.

Example 2.4.5. Let G = Σ4. The following table gives the 3rd Adams operation
on A(Σ4), calculated using the ring of marks formula. This is done by finding the
orbit decomposition for each subgroup K acting on each coset Σ4/H, then using the
above theorem to give a function in the ring of marks, and finding which element in
the Burnside ring maps to this by inverting the matrix associated to χ.

Table 2.2: Computing the image of ψ3 on A(Σ4)

A(Σ4) Basis Element ψ3 Image

Σ4/e −3Σ4/e+ 12Σ4/A3

Σ4/Σ2 = Σ4/⟨(12)⟩ 1Σ4/e− 5Σ4/Σ2 + 3Σ4/A3 + 6Σ4/A4

Σ4/⟨(12)(34)⟩ −2Σ4/e+ 1Σ4/⟨(12)(34)⟩+ 6Σ4/A3

Σ4/C4 = Σ4/⟨(1234)⟩ −1Σ4/e+ 1Σ4/C4 + 3Σ4/A3

Σ4/⟨(12)(34), (13)(24)⟩ 3Σ4/A4

Σ4/⟨(12), (34)⟩ 2Σ4/e− 6Σ4/Σ2 + 1Σ4/⟨(12), (34)⟩+ 6Σ4/Σ3

Σ4/D8 = Σ4/⟨(1234), (13)⟩ 1Σ4/⟨(12)(34), (13)(24)⟩ − 2Σ4/D8 + 3Σ4/Σ4

Σ4/A3 = Σ4/⟨(123)⟩ −1Σ4/e+ 4Σ4/A3

Σ4/Σ3 = Σ4/⟨(123), (12)⟩ 1Σ4/e− 3Σ4/Σ2 + 4Σ4/Σ3

Σ4/A4 = Σ4/⟨(123), (12)(34)⟩ Σ4/A4

Σ4/Σ4 Σ4/Σ4

While the result above simplifies the computation of ψ3, it’s not as direct as in the
representation theory example, and additionally, doesn’t give a factorization through
the power operation. If we return to our earlier example with G = e, we find some
motivation that such a factorization through Pn can exist, as below.
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Motivated by all of this, our goal is to construct a map

αG,n : A(G× Σn)→ A(G)

such that ψn = αG,n ◦Pn. When G is clear from context, we may abuse notation and
write αn for αG,n.

Copyright© Lewis Dominguez, 2024.
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Chapter 3 Constraints on factorization

There are a few properties we will require of any αn such that αn ◦Pn = ψn. They are
not strictly necessary, however they do hold in the representation theory case, and in
fact, stronger conditions are met within representation theory.

3.1 Desirable Conditions

Definition 3.1.1. We denote αG,n : A(G × Σn) → A(G) any map that factors ψn
through the power operation: αG,n ◦ Pn = ψn. Further, it is desirable that αG,n
satisfies the following conditions:

1. αG,n is additive and factors through the transfer ideal.

2. αG,n is natural with respect to restriction, i.e for H ≤ G, we have ResGH ◦αG,n =
αH,n ◦ ResGH .

3. The following diagram commutes, where αe,n is considered to be a map from
A(Σn) ∼= A(e× Σn) to A(e) ∼= Z. In general, we will write αn when G is clear
from context.

A(G)⊗ A(Σn) A(G)⊗ Z

A(G× Σn) A(G)

1⊗αe,n

∼=
αG,n

Note that αG,n is not assumed to be unique, and in general, may fail to be unique.

Remark 3.1.2. While the conditions (1) and (2) are reasonable, one may wonder why
condition (3) is desirable. In short, ideally αn would be an A(G)-module map, however
this seems to be too much to ask. This weaker condition is motivated by the following
commutative diagram which can be drawn in the representation theory case, since
αn for the representation ring is an R(G)-module map, where a is the action of R(G)
on an R(G)-module. For the Burnside ring, we ask only the outermost equivalent
square to commute.

R(G)⊗R(Σn) R(G)⊗ Z

R(G)⊗R(G× Σn) R(G)⊗R(G)

R(G× Σn) R(G)

1⊗αe,n

1⊗ReseΣn

a

1⊗αG,n

a

αG,n
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3.2 Factorization in the case G = e

Example 3.2.1. In the case of G = e, we can factor ψn through the power operation
as follows. By using the ring of marks formula, we know that any additive map αn to
complete the factorization must send Σn/Σn to 1. Furthermore, factoring through the
transfer ideal requires all non-transitive basis elements must be sent to 0. To ensure
that αn is defined on all of A(Σn), we need also must define its image on e×Σn-sets
which are not in the image of the power operation, notably for Σn/T with T any
transitive subgroup. These will be sent to the given image, and then all images are
defined and the two possible images for Σn/Σn agree. We then have the factorization
ψn = αn ◦ Pn.

A(e) A(Σn) A(e)

k
∑

∑k
j=1 ij=n

(
Σn/

k∏
j=1

(Σij)

)
k

Σn/T |Σn/T |

Pn αn

This example hints at some future structure we’ll make use of to show such a
factorization for various types of groups. In the abelian case, we can even give an
explicit decomposition into transitively stabilized basis elements for the power oper-
ation, but in general, we make use of Goursat’s lemma data to capture how the Σn

action interacts with the G action.

Copyright© Lewis Dominguez, 2024.
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Chapter 4 A Counterexample to the general setting

While a well-behaved factorization of the Adams operation through the power oper-
ation exists for the representation ring and we can clearly write one for A(e), there’s
no guarantee one exists for all groups. As such, one might ask what barriers exist to
a well-behaved factorization. In this section, we consider where challenges may arise,
then show this problem arises in the case of G = Σ4.

4.1 Challenges for a factorization

In the non-abelian setting, there is a reasonable concept for building a counterexam-
ple. If αn is going to be defined on A(G×Σn), then αn must be well-defined for each
basis member. However, when we calculate Pn for each basis member X of A(G),
there can be overlap in the basis decomposition in A(G × Σn). A mock example is
provided below, where we would need to ensure αn(Z) can be defined coherently:

A(G) A(G× Σn) A(G)

X
Y

Xn ∼= Z
∐
W

Y n ∼= 2Z
∐
Ŵ

ψn(X) = αn(X
n) ∼= αn(Z)

∐
αn(W )

ψn(Y ) = αn(Y
n) ∼= 2αn(Z)

∐
αn(Ŵ ).

Pn αn

Any αn would have satisfy both decompositions, so it creates a system of equations
in A(G). If this system is inconsistent, there’s no way to construct an αn with the
desired properties, showing that it is not always possible.

4.2 A counterexample for G = Σ4

For the remainder of this section, we will focus on G = Σ4 and the third power
operation P3 on it. However, we will refer to Σ4 as S4 for clarity to distinguish from
the symmetric group component of the power operation. First, we need to calculate
the image of each basis element under the Adams operation, then decompose the
images under the power operation, and lastly, determine if the resulting system can
be solved. As we have already calculated ψ3 on S4 in Example 2.4.5, we may skip to
determining decompositions.

For all H ≤ S4, we will only explicitly write down the basis decomposition of
P3(S4/H) into transitive components, any orbits which are not transitively stabilized
will be included in a general form of NTOH for non-transitive orbits of P3(S4/H).
As α3 must factor through the transfer ideal, it necessarily sends all of these to 0, so
their image is already known and doesn’t affect the system.
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4.2.1 Computing P3(S4/e)

The following computation will be necessary to compute αS4,3, and much of the work
holds for understanding P3 in generality.

Lemma 4.2.1. P3(S4/e) has the following decomposition in A(S4 × Σ3):

P3(S4/e) ∼= [S4 × Σ3/(e× Σ3)]
∐

4[S4 × Σ3/⟨(123), (123)⟩]
∐

NTOe

Proof. First, we may observe that the orbit generated by (e, e, e) is stabilized by
(e × Σ3). Note that any transitive subgroup of Σ3 contains a 3-cycle, so we may
assume up to conjugacy that any transitively stabilized orbit is stabilized by at least
one element of the form (g, (123)) for some g ∈ S4. Furthermore, we may choose
each orbit to be generated by a tuple of the form (e, g1, g2) for some g1, g2 ∈ S4, with
g1 ̸= g2, as this is either non-transitive or covered by the orbit (e, e, e). Thus, the
following must be true:

(g, (123))(e, g1, g2) = (gg2, g, gg1) = (e, g1, g2)

This implies g1 = g, g2 = g2 and e = g3. Outside of g = e, this gives that every
transitively stabilized orbit is generated by a tuple of the form (e, g, g2) for some
order 3 element in S4. This gives four possible orbits, plus the trivial ‘diagonal’ orbit
generated by (e, e, e). We can see that these orbits do not collapse, as any (k, σ) which
gives (k, σ)(e, g, g2) = (e, ĝ, ĝ2) will lead to the conclusion that k is one of e, g, g2 as
either ke = e, kg = e or kg2 = e. Hence, as there are four eligible g up to reordering
and all of which are conjugate to (123), we obtain the desired decomposition. ■

The above argument regarding the structure of tuples which generate a transitively
stabilized orbit can be extended beyond H = e. Again, consider (eH, g1H, g2H) to
be the generator of a transitively stabilized orbit, which is stabilized by at least one
(g, (123)) for g, g1, g2 ∈ S4, with g1H ̸= g2H. We exclude the case of eH = g1H = g2H
as this is stabilized by a subgroup conjugate to (H × Σ3). As before, the following
equation holds:

(g, (123))(eH, g1H, g2H) = (gg2H, gH, gg1H) = (eH, g1H, g2H)

This implies g1H = gH, g2H = gg1H = g2H and gg2H = eH = g3H, allowing us
to conclude g3 ∈ H. In a general setting, this is not sufficient to make any conclusions
about g, but as g ∈ S4 and the entries of the tuple are distinct, either g3 = e or g
is order 4, as no higher order elements exist in S4. If g is order 4, we conclude that
g ∈ H, giving us the case where eH = g1H = g2H. Hence, the tuple generating the
orbit can be assumed to be of the form (eH, gH, g2H) for g an element of order 3, up
to reordering.

It should be noted that this does not guarantee all such tuples generate distinct
orbits. Notably, if two three cycles are conjugate by an element of H, the associated
tuples will generate the same orbit. We will observe an example of this shortly.
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4.2.2 Computing P3(S4/S2)

As before, we must compute the decomposition of P3(S4/S2) into S4 × Σ3 basis
elements.

Lemma 4.2.2. P3(S4/S2) has the following decomposition in A(S4 × Σ3):

P3(S4/⟨(14)⟩) ∼= [S4 × Σ3/(⟨(14)⟩ × Σ3)]
∐

[S4 × Σ3/⟨(123), (123)⟩]∐
2[S4 × Σ3/⟨((12), (12)), ((14), (23))⟩]

∐
NTO⟨(14)⟩.

Proof. We will take ⟨(14)⟩ as the conjugacy class representative of S2 for calculation.
As before, we first notice the tuple (eS2, eS2, eS2) is stabilized by S2 × Σ3, giving
us the first desired orbit. Following this, our prior work gives us that we need only
check the orbits of the tuples generated by three cycles, namely those of the form
(eS2, gS2, g

2S2) for g = (123), (124), (134), (234).
If g = (123), we first recognize this generates the same orbit as g = (234), as

acting by ((14), ()) on (eS2, (123)S2, (132)S2) will give us (eS2, (234)S2, (243)S2),
and notably, these are distinct representatives of the S2 cosets, so these gener-
ated the same orbit. Hence, we need only consider the stabilizer when g = (123).
If some (k, σ) is going to stabilize (eS2, (123)S2, (132)S2), it must be true that k
is one of the six representatives of the three cosets in the tuple, simply because
k ∗ eS2 must remain one of the cosets in the tuple. This means it suffices to check
k = e, (14), (123), (132), (1423), (1432) and determine if these permute the entries of
the tuple. If so, there is some σ ∈ S3 which results in (k, σ) being in the stabilizer.

Table 4.1: Computing Stabilizer Elements for (eS2, (123)S2, (132)S2)

k ∈ A(S4) ∗ (eS2, (123)S2, (132)S2) Associated σ ∈ Σ3

e(eS2, (123)S2, (132)S2) = (eS2, (123)S2, (132)S2) σ = ()
(14)(eS2, (123)S2, (132)S2) = (eS2, (234)S2, (243)S2) Non-stabilizing
(123)(eS2, (123)S2, (132)S2) = ((123)S2, (132)S2, eS2) σ = (123)
(132)(eS2, (123)S2, (132)S2) = ((132)S2, eS2, (123)S2 σ = (132)

(1423)(eS2, (123)S2, (132)S2) = ((1423)S2, (1342)S2, (24)S2) Non-stabilizing
(1432)(eS2, (123)S2, (132)S2) = ((1432)S2, (34)S2, (1243)S2) Non-stabilizing

Hence, we conclude the stabilizer is generated by ⟨(123), (123)⟩, giving us the
second orbit in our desired decomposition.

Now we must consider the stabilizers of the orbits for g = (124), (134). These will
turn out to be similar cases, so below will only consider g = (124). These two orbits
are distinct, and the work in calculating the stabilizer will show this. As before, it
is true that k must be one of the six representatives of the cosets eS2, (124)S2 and
(142)S2, so it suffices to check k = e, (14), (124), (142), (24), (12).

We can first observe that g = (134) necessarily generates a distinct orbit, as
these six k values are also the only elements of G which ensure there is a eS2 in the
resulting tuple, which (eS2, (134)S2, (143)S2) would have to contain. Furthermore,
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Table 4.2: Computing Stabilizer Elements for (eS2, (124)S2, (142)S2)

k ∈ A(S4) ∗ (eS2, (124)S2, (142)S2) Associated σ ∈ Σ3

e(eS2, (124)S2, (142)S2) = (eS2, (124)S2, (142)S2) σ = ()
(14)(eS2, (124)S2, (142)S2) = (eS2, (142)S2, (124)S2) σ = (23)
(124)(eS2, (124)S2, (142)S2) = ((124)S2, (142)S2, eS2) σ = (123)
(142)(eS2, (124)S2, (142)S2) = ((142)S2, eS2, (124)S2) σ = (132)
(24)(eS2, (124)S2, (142)S2) = ((124)S2, eS2, (142)S2) σ = (12)
(12)(eS2, (124)S2, (142)S2) = ((142)S2, (124)S2, eS2) σ = (13)

this stabilizer is generated by ((24), (12)) and ((12), (13)), which is conjugate to the
desired ⟨((12), (12)), ((14), (23))⟩. We will find that g = (134) similarly generates
an orbit with a conjugate stabilizer. This gives us the desired sum of transitively
stabilized orbits, and all other orbits are necessarily non-transitive. ■

4.2.3 Computing P3(S4/S3)

In this subsection, we will compute the last necessary decomposition prior to showing
αS4,3 is inconsistent.

Lemma 4.2.3. P3(S4/S3) has the following decomposition in A(S4 × Σ3):

P3(S4/S3) ∼= [S4 × Σ3/(S3 × Σ3)]
∐

[S4 × Σ3/⟨((12), (12)), ((14), (23))⟩]
∐

NTOS3 .

Proof. We will take ⟨(12), (23)⟩ as the conjugacy class representative of S3. As before,
we can first notice (eS3, eS3, eS3) is stabilized by S3 × Σ3, giving us the first desired
orbit, and furthermore, this is the same orbit given by g = (123) for the orbits of tuples
generated by three cycles. Additionally, it will turn out that g = (124), (134), (234)
all generate the same orbit. We will consider the tuple (eS3, (124)S3, (142)S3) and
determine its stabilizer.

As before, it suffices to check the action of every element in the cosets eS3, (124)S2

and (142)S3. For brevity, we omit the full calculation of these actions, as it would
require 24 rows. The stabilizer will be ⟨((12), (13)), ((14), (12))⟩, which is conjugate
to the desired second orbit. This gives us the above decomposition into transitive
orbits. ■

The third power operation of these three S4-sets have overlap, so any α3 which
factors ψ3 would need to give coherent images. If we view this as in the mock example,
this is a system of three equations with five unknowns. We will need to make use of
a final lemma to determine three of those unknowns.

Lemma 4.2.4. For a given G, if α3 exists and factors ψ3 as α3 ◦ P3 = ψ3 with our
desired properties, it must satisfy the following for any H ≤ G.

α3([G× Σ3/(H × Σ3)]) = G/H
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Proof. This follows immediately from property (3) by taking [G/H] ∈ A(G) and
Σ3/Σ3 ∈ A(Σ3). ■

4.2.4 αS4,3 is inconsistent

Now, we can construct our system of equations and try to solve it, since it is now
three equations with two unknowns. If α3 exists and satisfies the desired conditions,
then the following equations must hold.

α3(P3(S4/e)) = α3([S4 × Σ3/(e× Σ3)]) + 4α3([S4 × Σ3/⟨(123), (123)⟩])
α3(P3(S4/⟨(14)⟩)) = α3([S4 × Σ3/(⟨(14)⟩ × Σ3)]) + α3([S4 × Σ3/⟨(123), (123)⟩])

+ 2α3([S4 × Σ3/⟨((12), (12)), ((14), (23))⟩])
α3(P3(S4/S3)) = α3([S4 × Σ3/(S3 × Σ3)]) + α3([S4 × Σ3/⟨((12), (12)), ((14), (23))⟩])

We may first eliminate all of the variables associated to orbits generated by tuples
of the form (eH, eH, eH) using the lemma. Following this, as we have assumed
α3 ◦P3 = ψ3, we may apply our calculations of ψ3 from the prior section. After some
simplification, we arrive at this new system:

−S4/e+ 3S4/A3 = α3([S4 × Σ3/⟨(123), (123)⟩])
S4/e− 6S4/⟨(14)⟩+ 3S4/A3 + 6S4/A4 = α3([S4 × Σ3/⟨(123), (123)⟩])

+ 2α3([S4 × Σ3/⟨((12), (12)), ((14), (23))⟩])
S4/e− 3S4/⟨(14)⟩+ 3S4/S3 = α3([S4 × Σ3/⟨((12), (12)), ((14), (23))⟩])

We can use the two equations which are solved for their respective variables and
check coherence on the middle equation. After simplification, this will result in the
conclusion S4/A4 = S4/S3 in A(S4), but these are distinct basis elements, leading
to a contradiction. As such, it is impossible to construct an α3 factoring ψ3 such
that α3 ◦ P3 = ψ3. It is of special note that this failure was not dependent on our
original choice of αe,3, nor did it make use of condition (2). Lemma 4.2.4 forced the
image of certain basis elements based condition (3) and the fact that Σ3/Σ3 is the
only transitively stabilized basis element of A(Σ3) which appeared in the image of
the power operation. For αe,3 to factor ψ3, it must send Σ3/Σ3 to 1, resulting in the
contradiction regardless of which αe,3 we choose.

Copyright© Lewis Dominguez, 2024.
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Chapter 5 Factoring the Adams operation in abelian groups

The prior section demonstrates that a well-behaved factorization of the Adams
operation through the power operation does not exist in general. Note that in our
counterexample, G is nonabelian. In this section, we explore the setting of abelian
groups, first providing a description of transitive components of (G/H)n forG abelian,
and then using this to construct a factorization for all n. We show that the map αn
that we construct is natural when n = p is a prime.

We begin by observing a corollary to Gay, Morris, and Morris’ theorem:

Corollary 5.0.1. For G an abelian group and H,K ≤ G, the Adams operation on
the ring of marks can be computed as:

χ(ψn([G/H]))[K] =

{
|G/H|, if (|K/K ∩H|) divides n
0, else.

Proof. This follows from the original formula and the observation that all orbits will
be isomorphic to K/K ∩H as K-sets. Hence, if the size of K/K ∩H divides n, the
sum is concentrated in one term which resolves to |G/H|, or otherwise, the sum is
empty. ■

Using this corollary, we can more easily verify if an αn we have constructed prop-
erly factors ψn through Pn, since it will only involve taking K virtual fixed points and
determining if |K/K ∩ H| divides n. Since G is abelian, both of these calculations
are relatively simple when compared to the general setting.

5.1 Understanding (G/H)n for G abelian

Any factorization of ψn through Pn will require us to provide a value on every basis
element of A(G×Σn). We’ll need to understand the structure of Pn(G/H) = (G/H)n

as a G × Σn-set to do so. It turns out that we may give a precise description of
transitively stabilized orbits when G is abelian.

Definition 5.1.1. For G an abelian group with H ≤ S ≤ G and |S/H| = k with k|n,
let aS/H : S → Σk be the action map for S acts on S/H. Following this, we denote
the graph of this map as Γ(aS/H).

Using this, we may obtain a subgroup of G×Σn as follows: First, assume n = qk.
Then use the projection Γ(aS/H) → Σk to have Γ(aS/H) act on (Σq)

k by permuting
the components of the product. This gives an action that can be used to construct a
semidirect product. Consider the semidirect product (Σq)

k ⋊ Γ(aS/H), which may be
viewed as a subgroup of G× ((Σq)

k ⋊Σk). Lastly, identify (Σq)
k ⋊Σk as a subgroup

of Σn using the fact that qk = n. This gives us a subgroup of G × Σn, well-defined
up to conjugacy.
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Subgroups of this type correspond precisely to transitive stabilizers of tuples which
appear in the image of the power operation. The work of Bonventre, Guillou, and
Stapleton provides a concise proof for this after identifying the appropriate compo-
nents.

Lemma 5.1.2. [2, Lemma 2.24] Let H ≤ S ≤ G such that [S : H] = k with
k|n, enumerating the cosets as {siH}ki=1, choosing s1H = eH. Then the following
subgroups are conjugate in G×Σn, where ((siH)

n
k )ki=1 is concatenated in the order of

the indices giving (s1H, · · · , s1H, s2H, · · · , s2H, · · · , skH, · · · , skH).

[StabG×Σn((siH)
n
k )ki=1] = [(Σn

k
)k ⋊ Γ(aS/H)]

Notation 5.1.3. Given H ≤ S ≤ G with [S : H] = kS,H , we denote the associated
basis element in A(G× Σn) as follows:

ΓH,S := G× Σn((siH)
n
k )ki=1

∼= G× Σn/((Σn
k
)k ⋊ Γ(aS/H)),

where G× Σn is the G× Σn-orbit generated by acting on x.

5.1.1 Decomposition of (G/H)n

Proposition 5.1.4. Let H ≤ G, G abelian. The following is a decomposition of
(G/H)n into transitively stabilized G× Σn basis elements.

(G/H)n ∼=

 ∐
H≤S≤G

kH,S :=[S:H],kH,S |n

ΓH,S

⨿∐NTOH

Proof. For the forward direction, suppose x̄ = (giH)ni=1, chosen such that g1H = eH,
is a generator for a transitively stabilized orbit of (G/H)n. By the above lemma,
it suffices to show its orbit is generated by a tuple of the form ((siH)ki=1)

n
k with

s1H = eH and {siH}ki=1 = S/H, for some H ≤ S ≤ G and [S/H] = k.
Consider (g, σ) ∈ Stab(x̄). As σ only reorders the tuple, if we consider the set of

cosets in x̄, we conclude {ggiH}ni=1={giH}ni=1. Since the stabilizer is a group, we also
conclude ⟨g⟩ acts on {giH}ni=1, the set of cosets in x̄. Let πG be the projection from
G×Σn to G, then πG(Stab(x̄)) acts on {giH}ni=1 by assembling these actions over the
stabilizer, where the permutation portion is not used in the action. Following this,
we may define a πG(Stab(x̄))-equivariant function, where πG(Stab(x̄)) acts trivially
on [n], the integers from 1 to n.

f : {giH}ni=1 [n]

giH The number of times giH appears in x̄.
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This is πG(Stab(x̄))-equivariant, as the fact (g, σ) is invertible means action by
πG(Stab(x̄)) may not change the number of cosets of type giH present in x̄. Fur-
thermore, we observe that {giH}ni=1 is a transitive πG(Stab(x̄))-set. It suffices to see
there is an element of πG(Stab(x̄)) which sends gjH to eH for each j ∈ [n]. As x̄ is
transitively stabilized, let (gj,1, σj,1) ∈ πG(Stab(x̄)) be such that σ−1

j,1 (1) = j. Then we
may see gj,1gσ−1

j,1 (1)
H = gj,1gjH = g1H = eH, and conclude (gj,1, σj,1) is our desired

element, and thus the set is a transitive πG(Stab(x̄))-set.
Hence, we may conclude f is a constant function as its image must be a transitive

set, and we have a trivial action on the codomain. Let k ∈ [n] be the image of f , and
as each coset must repeat q times, we conclude q|n such that n = kq. Since the set
is transitive, we can generate {giH}ni=1 as a πG(Stab(x̄))-set simply by acting on any
singular element, so we choose g1H = eH as the generating element. This allows us
to conclude that both {giH}ni=1=πG(Stab(x̄))/H and |πG(Stab(x̄))/H| = k.

This is sufficient to see that our orbit is generated by a tuple of the desired type.
Let {siH}ki=1 = πG(Stab(x̄))/H = {giH}ni=1. Then ({siH}ki=1)

q is a tuple of length
n which contains each coset in x̄ the same number of times as in x̄. Hence, it is the
same up to reordering, and thus generates the same orbit. By our lemma, it has the
desired stabilizer.

For the return map, we need only show the specified basis elements correspond to
transitively stabilized orbits of (G/H)n. Given H ≤ S ≤ G with [S : H] = k, k|n and
n = kq, this is sufficient data to construct the tuple ((siH)ki=1)

q with siH ∈ S/H.
This is an element of (G/H)n and by the previous lemma, it is stabilized precisely by
a subgroup conjugate to the desired form.

It is essentially immediate to conclude the two directions compose to identity. If
we begin with x̄ = (giH)ni=1, the construction identifies another tuple in the same
G × Σn-orbit and shows it has the appropriate stabilizer, and the inverse map sim-
ply returns this chosen tuple. For the other composite, given ΓH,S, the associated
tuple ((siH)

n
k )ki=1 will immediately be of the desired form for the forward direction

construction, returning ΓH,S immediately. Hence, we obtain the desired bijection,
modulo

■

We will provide a formula for αn, and to check it factors ψn as desired, it suffices
to check on the image of the marks homomorphism. However, the structure of the
G-sets in the image will be convenient, due to the following lemma.

Lemma 5.1.5. Given H ≤ S ≤ G and L ≤ G with G abelian, the following fixed
points are equal.

(G/S)L = (G/S)⟨H,L⟩

Proof. As G is abelian and H ≤ S, we may simply commute all elements of H to the
coset. Hence, ℓh ∈ ⟨H,L⟩ fixes gS ∈ G/S if and only if ℓ ∈ L fixes gS. ■
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5.2 Factoring ψn through Pn for G abelian

Now that we have a decomposition of Pn(G/H) and the necessary framework, we
may define an αn to factor ψn when G is abelian.

Theorem 5.2.1. If G is an abelian group with H ≤ G, n ≥ 1, and T ≤ Σn a
transitive subgroup, then we may inductively construct an additive map αn such that
αn ◦ Pn = ψn satisfying properties (1) and (3). The map is given on basis members
and linearly extended. If a basis member of A(G× Σn) is not given a specific image,
the basis member is in the kernel.

αn(G× Σn/H × T ) = |Σn/T |(G/H)

for H ≤ S ≤ G with kH,S|n, αn(ΓH,S) = kH,S(G/S)−
∑

H≤J<S
kH,J |n

αn(ΓH,J)

Proof. We first note that the two assignments may contradict, in the event the stabi-
lizer of ΓH,S took the form H ′ × T ′. However, if e× T is a subgroup of the transitive
stabilizer, we may conclude the tuple is a single repeated coset, and hence its orbit
is of the form ΓH,H = (G× Σn/H × Σn).

Now, we may check this formula factors ψn correctly. Let L ≤ G be a subgroup
of G. Then, by Theorem 2.4.4, it suffices to check the value of χ(αn(Pn([G/H])))[L],
and Lemma 5.0.1 simplifies this further. Additionally, as ⟨L,H⟩/H ∼= L/(L ∩ H),
we can conclude that the value of χ(αn(Pn([G/H])))[L] is correct if and only if the
value of χ(αn(Pn([G/H])))[⟨H,L⟩] is correct. Hence, we need only consider subgroups
containing H. If the index with H divides n, the value should be |G/H|, otherwise
it should be 0. For simplicity, let M = ⟨H,L⟩.

χ(αn(Pn([G/H])))[M ] =
∑

H≤S≤G
kH,S |n

αn(ΓH,S)
M

=
∑

H≤S<M
or S≮M,M≮S

kH,S |n

(αn(ΓH,S)
M) + (αn(ΓH,M))M +

∑
M<Ŝ≤G
kH,Ŝ |n

(αn(ΓH,Ŝ)
M)

The value of the sum is determined by the value of the three components. First,
we observe that αn(ΓH,S)

M will always contribute 0 to the total, as any G-set in the
sum must be a linear combination of G/S for S < M or incomparable to M , all of
which are free M -sets, and thus contribute 0 fixed points.

The second term is more complicated, as it has two possible values, dependent on if
kH,M divides n. We focus first on the case that kH,M does not divide n. Following this,
αn(ΓH,M) = 0, so the middle term contributes no virtual fixed points. Furthermore, if

M < Ŝ, we may observe kH,Ŝ = kH,M |Ŝ/M |, which implies kH,Ŝ also does not divide
n. Thus, the right sum is empty, contributing 0. In total, χ(αn(Pn([G/H])))[M ] = 0,
as expected by Corollary 5.0.1.
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Second, we focus on the case where kH,M |n, specifically on the value of the middle
term. By applying the given formula, we obtain the following. The sum over H ≤
J < M provides zero fixes points as any G-set in the sum a linear combination of
G-sets of the form G/J for J < M .

αn(ΓH,M)M = kH,M(G/M)M −
∑

H≤J<M
kH,J |n

αn(ΓH,J)
M

= kH,M |G/M | −
∑

H≤J<M
kH,J |n

αn(ΓH,J)
M

= |G/H| − 0

Next, we must consider what each of the terms in the final sum indexed by M <
Ŝ ≤ G contribute. First, suppose Ŝ covers M , i.e there are no other subgroups in the
sum such that M < J < Ŝ.

αn(ΓH,Ŝ)
M = kH,Ŝ(G/Ŝ)

M −
∑

H≤J<Ŝ
kH,J |n

αn(ΓH,J)
M

= kH,M |G/M | − αn(ΓH,M)M −
∑

H≤J<Ŝ
J ̸=M,kH,J |n

αn(ΓH,J)
M

= |G/H| − |G/H| −
∑

H≤J<Ŝ
J ̸=M,kH,J |n

αn(ΓH,J)
M

= −
∑

H≤J<Ŝ
J ̸=M,kH,J |n

αn(ΓH,J)
M

= 0

In this case, since Ŝ covers M , the final sum will be entirely over subgroups who
are incomparable to M or are contained in M , and as such only give G-sets with
such subgroups as their stabilizers. Hence, by our prior determination, it provides 0
virtual fixed points. Alternatively, if Ŝ does not cover M , the sum splits analogously,
but with more parts. As before, we may pull out the M term to cancel, but now it
splits into three sums. The first sum will be over subgroups below M and above H,
the second for those which are incomparable to M , and the last for those above M
and below Ŝ.
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αn(ΓH,Ŝ)
M = kH,Ŝ(G/Ŝ)

M −
∑

H≤J<Ŝ
kH,J |n

αn(ΓH,J)
M

= −
∑

H≤J<Ŝ
J ̸=M,kH,J |n

αn(ΓH,J)
M

= −


∑

H≤J<M
kH,J |n

αn(ΓH,J)
M +

∑
H<J<Ŝ

J≰M,M≰J
kH,J |n

αn(ΓH,J)
M +

∑
M<J<Ŝ
kH,J |n

αn(ΓH,J)
M


= −(0 + 0 + 0) = 0

The first two sums provide zero virtual fixed points by our prior arguments. The
last requires an extension of our argument when Ŝ covers M . Among the J , there
are those which cover M , and we know for those αn(ΓH,J)

M = 0. Now, if J does
not cover M , we observe we could write a series of sums, those which cover M , then
those which are precisely two subgroup inclusions away, then three, and so on. As
each rank of subgroups provides 0 virtual fixed points, as in the covering case, we see
the next rank also provides 0 virtual fixed points, leading to a total contribution of
0.

Now with each of the terms handled, we may return to the original question in
the case that kH,M |n. We then apply each of our prior simplifications to obtain the
following.

χ(αn(Pn([G/H])))[M ] =
∑

H≤S≤G
kH,S |n

αn(ΓH,S)
M

=
∑

H≤S<M
or S≮M,M≮S

kH,S |n

(αn(ΓH,S))
M + (αn(ΓH,M))M +

∑
M<Ŝ≤G
kH,Ŝ |n

(αn(ΓH,Ŝ))
M

= 0 + |G/H|+ 0

= |G/H|

Hence, our assignment agrees after the marks homomorphism, showing that χ(αn◦
Pn) = χ(ψn). Since the marks homomorphism is injective, we conclude αn ◦Pn = ψn,
i.e αn factors the Adams operation on the Burnside ring.

Following this, we must also show it satisfies the desired properties. Regarding
property (1), αn was defined on basis members and linearly extended, hence it is
immediately additive. Furthermore, only elements with transitive stabilizer were
given a non-zero image, hence it factors through the transfer ideal. Lastly, we may
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observe that property (3) holds for our earlier choice of αe,n, as if we begin with
G/H ⊗ Σn/T , both directions give |Σn/T |G/H. Hence, αn also satisfies our desired
properties of (1) and (3).

■

5.3 Naturality of αG,n

Next we will show that, when p is prime, αp is natural with respect to restriction.
We expect this to be true for all n. We will first prove some lemmas.

Assume that φ : G′ → G is a homomorphism between finite abelian groups. For
H ⊆ G, let H ′ = φ−1(H). Since H ′ is the kernel of the composite G′ → G → G/H,
there is an induced injection G′/H ′ ↪→ G/H. Let ℓH = |G/H|/|G′/H ′|. This number
will give us control over the restriction maps.

Recall φ∗ : A(G)→ A(G′) is the restriction map.

Lemma 5.3.1. With the notation described above, we have

φ∗([G/H]) = ℓH [G
′/H ′].

Proof. We are interested in the G′-set G/H. We have an injection of groups G′/H ′ ↪→
G/H. Since the groups are abelian, we have G/H ∼=

∐
ℓH
G′/H ′ as G′/H ′-sets. It

follows that we have the same decomposition as G′-sets. ■

Now fix H ⊆ S ⊆ G and let S ′ = φ−1(S). As above, there is an induced injection
S ′/H ′ ↪→ S/H. We will denote this injection by φH,S.

Lemma 5.3.2. If the injection φH,S : S
′/H ′ ↪→ S/H is an isomorphism, then for all

H ⊆ J ⊆ S, we have ℓH = ℓJ .

Proof. We have
|G/H| = |J/H| · |G/J |

and
|G′/H ′| = |J ′/H ′| · |G′/J ′|.

Since φH,S is an isomorphism, |J/H| = |J ′/H ′|. It follows that

|G/H|/|G′/H ′| = |G/J |/|G′/J ′|.

■

With this in hand, we turn our attention to the restriction of G× Σp-sets of the
form ΓH,S. Let φp = φ × Σp : G

′ × Σp → G × Σp. It is important to understand
φ∗
pΓH,S when |S/H| = p. Recall that there is an isomorphism of G× Σp-sets

ΓH,S ∼= (G× Σp)(siH),

where (siH) is an ordered tuple consisting of the cosets in S/H. Note that the
subgroup H × e ⊆ G × Σp acts trivially on the tuple (siH), so the tuple may be
considered as a G/H×Σp-set. Further, H is a normal subgroup of ΓH,S and ΓH,S/H is
the graph subgroup of G/H×Σp for the action of S/H on itself by left multiplication.
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5.3.1 Restriction of ΓH,S type basis elements

Among the relevant basis elements of A(G×Σp, sets of the form ΓH,S are particularly
important to αn, as as such we will need to understand restrictions of such sets.

Proposition 5.3.3. Assume |S/H| = p. There is an isomorphism of G′ × Σp-sets

φ∗
p(ΓH,S)

∼=
∐

(G′/H′)\(G/H)/(S/H)

(G′ × Σp)/Γ(aS′/H′).

Proof. This is a consequence of the double coset formula (Proposition 2.1.10) for

Res
G×Σp

G′×Σp
Tr

G×Σp

Γ(aS/H). Since G′ × Σp → G′/H ′ × Σp is surjective and G′/H ′ × Σp and

Γ(aS/H)/H are both subgroups of G/H ×Σp, it is more convenient to work with the
more complicated looking double coset formula for:

Res
G/H×Σp

G′/H′×Σp
Tr

G/H×Σp

Γ(aS/H)/H .

First consider the double cosets

(G′/H ′ × Σp)\(G/H × Σp)/(Γ(aS/H)/H),

Since the quotient of the middle term by the subgroup on the left hand side is just
(G/H)/(G′/H ′), the double coset formula simplifies to

((G/H)/(G′/H ′))/(Γ(aS/H)/H),

where Γ(aS/H)/H ⊆ G/H×Σp acts through the projection onto G/H. This is just the
action of S/H on G/H through right multiplication (we remind the reader that these
are abelian groups). This is in bijective correspondence with (G′/H ′)\(G/H)/(S/H).

Secondly, note that G′/H ′ × Σp is normal in G/H × Σp, so it is conjugation
invariant. Further, we have

(G′/H ′ × Σp) ∩ (Γ(aS/H)/H) = Γ(aS′/H′)/H ′

as the intersection is just the restriction of the domain of the graph to G′/H ′. This
gives us an inclusion Γ(aS′/H′)/H ′ ↪→ Γ(aS/H)/H.

Thus the double coset formula simplifies to

Res
G/H×Σp

G′/H′×Σp
Tr

G/H×Σp

Γ(aS/H)/H =
∑

(G′/H′)\(G/H)/(S/H)

Tr
G′/H′×Σp

Γ(aS′/H′ )/H′ Res
Γ(aS/H)/H

Γ(aS′/H′ )/H′ ,

where the terms that we are summing over have no influence on the transfer or
restriction.

Applying this formula to the singleton (Γ(aS/H)/H)-set (Γ(aS/H)/H)/(Γ(aS/H)/H),
we learn that the restriction of (G/H × Σp)/(Γ(aS/H)/H) to G′/H ′ × Σp is∐

(G′/H′)\(G/H)/(S/H)

(G′/H ′ × Σp)/(Γ(aS′/H′)/H ′).
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Finally, restricting this along the surjection G′×Σp → G′/H ′×Σp gives the G
′×Σp-set∐

(G′/H′)\(G/H)/(S/H)

(G′ × Σp)/(Γ(aS′/H′)).

■

Corollary 5.3.4. If φH,S : S
′/H ′ ↪→ S/H is an isomorphism and |S/H| = p, then

φ∗
p(ΓH,S) = ℓHΓH′,S′ .

Proof. Apply Proposition 5.3.3. Since φH,S is an isomorphism, Γ(aS′/H′) is a transitive
subgroup of G′×Σp and (G′×Σp)/Γ(aS′/H′) = ΓH′,S′ . Since φH,S is an isomorphism,
we have (G′/H ′)\(G/H)/(S/H) = (G/H)/(G′/H ′) and |(G/H)/(G′/H ′)| = ℓH (by
definition). ■

Proposition 5.3.5. If φH,S is an isomorphism and |S/H| = p, then

φ∗(αp(ΓH,S)) = αp(φ
∗
p(ΓH,S)).

Proof. By Corollary 5.3.4,
φ∗
p(ΓH,S) = ℓHΓH′,S′ .

So
αp(φ

∗
p(ΓH,S)) = ℓH(|S ′/H ′|G′/S ′ −G′/H ′).

On the other hand,
αp(ΓH,S) = |S/H|G/S −G/H,

so
φ∗(αp(ΓH,S)) = |S/H|ℓSG′/S ′ − ℓHG′/H ′.

Lemma 5.3.1 implies that ℓH = ℓS and our assumption that φH,S is an isomorphism
implies that |S/H| = |S ′/H ′|. The result follows. ■

Now we will consider the case that φH,S is not an isomorphism.

Corollary 5.3.6. If |S/H| = p and φH,S is not an isomorphism, then

φ∗
p(ΓH,S) = 0

is in the transfer ideal Itr ⊆ A(G′ × Σp)

Proof. Apply Proposition 5.3.3. Since φH,S is not an isomorphism, S ′ = H ′ and
ΓaS′/H′ does not have transitive image in Σp (the image is just the identity element).
Thus the restriction sits in the transfer ideal. ■

Proposition 5.3.7. Assume that |S/H| = p and φH,S is not an isomorphism, then

φ∗(αp(ΓH,S)) = 0.
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Proof. As in the proof of Proposition 5.3.5, we have

φ∗(αp(ΓH,S)) = |S/H|ℓSG′/S ′ − ℓHG′/H ′.

However, since φH,S is not an isomorphism and S/H ∼= Cp, we must have that
S ′/H ′ = e, which implies that S ′ = H ′.

Since |S/H| = p and S ′ = H ′, we have

ℓH = |G/H|/|G′/H ′|
= (|S/H| · |G/S|)/|G′/S ′|
= (p|G/S|)/|G′/S ′|
= pℓS.

■

All together, these results prove that αp is natural with respect to restriction.

5.3.2 αG,p is natural with respect to restriction

With the above results in hand, we may now show that our αG,p is natural with
respect to restriction when G is abelian, i.e it satisfies all of the desired conditions.

Theorem 5.3.8. Let G be an abelian group and p prime. Then for any group ho-
momorphism φ : G′ → G, the map αp constructed in Theorem 5.2.1 is natural with
respect to restriction along φ, i.e the following diagram commutes:

A(G× Σp) A(G)

A(G′ × Σp) A(G′)

αG,p

φ∗
p φ∗

αG′,p

Proof. It suffices to directly check the maps agree on each basis element of A(G×Σp).
We will classify the basis elements into four collections, then determine the behavior
in each case. Suppose M is a subgroup of G×Σp, then G×Σp falls into one of these
four collections.

1. G× Σp/M is not transitively stabilized

2. G× Σp/M is of the form (G× Σp)/(H × T ) for a transitive subgroup T of Σp

and a subgroup H of G.

3. G×Σp/M is of the form ΓH,S for H ≤ S ≤ G and |S/H| = p where φH,S is an
isomorphism

4. G×Σp/M is of the form ΓH,S for H ≤ S ≤ G and |S/H| = p where φH,S is not
an isomorphism
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First, we note these collections are disjoint and by Proposition 5.1.4 and the
definition of αp in Theorem 5.2.1, any basis element given a non-zero image falls into
a unique one of these collections, and basis elements given 0 as their image fall into
collection (1).

We first consider G × Σp/M in collection (1). We first observe that the G′ × Σp

action factors through the G×Σp action. If there is a G
′×Σp-set in the decomposition

of G×Σp/M which is transitively stabilized, then the stabilizer could be regarded as a
subgroup ofG×Σp and would be the stabilizer of a chosen generating element, but this
contradicts our assumption M is non-transitive. Hence, we conclude that the action
by G′×Σp must decompose the orbit into a collection of sets which are not transitively
stabilized. Hence, we see that φ∗ ◦ αG,p(G× Σp/M) = 0 = αG′,p ◦ φ∗

p(G× Σp/M) for
basis elements in collection (1).

Secondly, we consider the case that G×Σp/M is in collection (2), i.e of the form
(G×Σp)/(H × T ) for a transitive subgroup T of Σp and a subgroup H of G. As the
stabilizer is a product, the effect of the restriction action is limited to the G and G′

component respectively. Using this, we then directly calculate the two routes agree:

(G× ΣP )/(H × T ) |Σp/T |G/H

ℓHG
′ × Σp/H

′ × T |Σp/T |ℓHG/H

αG,p

φp φ∗

αG′,p

Lastly, Proposition 5.3.5 shows αp is natural for basis elements in collection (3),
and together Corollary 5.3.6 with Proposition 5.3.7 show αp is natural for basis el-
ements in collection (4). As all basis elements have been shown to commute, since
αG,p and restriction are additive, we conclude φ∗αG,p = αG′,pφ

∗
p, as desired. ■

While it remains open to show αn is natural for an arbitrary n, we expect it to
be so and the primary question involves understanding the restriction of G×Σn sets
of the form ΓH,S when |S/H| is not prime. However, when G is not abelian, even
understanding the decomposition of (G/H)p requires significant consideration.

Copyright© Lewis Dominguez, 2024.
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Chapter 6 The pth Adams operation for p-groups

The setting of abelian groups leads to a number of simplifications regarding the
decomposition of (G/H)n and in computing the image of the Adams operation in
Marks(G). If we move to groups which are not necessarily abelian, the complexity
of the decomposition changes drastically, but fortunately the computation of the
Adams operation remains reasonably simple. If p is prime, its only divisors are 1 and
p, meaning the Gay, Morris, and Morris formula simplifies as follows. Additionally,
there are notable simplifications to the orbit decomposition if G is a p-group. As
such, in this section, we consider G to be a p-group.

Corollary 6.0.1. For H,K ≤ G, and rd equal to the number of orbits of size d when
K acts on G/H, we have the following equality.

χ(ψp([G/H]))[K] = r1 + prp

Furthermore, we observe that the tuple (eH)p ∈ (G/H)p still generates an orbit
of the form G × Σp/H × Σp. To ensure we satisfy property (3) of Definition 3.1.1,
any αp must send this to G/H. After taking K fixed points, this term gives precisely
r1. Thus, our goal is to define an αp such that the following holds, where orbp is the
set of orbits of size p for the given action:

αp((G/H)p \G× Σp((eH)p) = p|orbp(K ↷ G/H)|.

6.1 Goursat’s Lemma

As mentioned before, we will require the usage of data from Goursat’s lemma to
understand the orbit decomposition in the general setting, as G × Σp is a product
group and we seek to understand its subgroups up to conjugacy. Given a group is
of the form of a product, we can create the following diagram, where πG and πΣ are
the projection maps to the associated subgroup. Consider M ≤ G×Σp, and we then
construct an analogous diagram as to 2.1.12 where G′ = Σp:

ker(πG|M)

ker(πΣ|M) M im(πΣ|M)

im(πG|M)

πG

πΣ
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We may consider ker(πG|M) as subgroup of Σp, as every element of it is neces-
sarily of the form (e, σ). Similarly, we may take ker(πΣ|M) to be a subgroup of G.
Goursat’s lemma provides that ker(πΣ|M) ⊴ im(πG|M) and ker(πG|M) ⊴ im(πΣ|M).
In fact, it guarantees the existence of a specific isomorphism encoded by M , notably
im(πG|M)/ ker(πΣ|M) ∼= im(πΣ|M)/ ker(πG|M). Finally, given such choices of sub-
groups and an isomorphism, one obtains a specific subgroup of the product. This is
to say, if we want to understand subgroups of G× Σp, then it suffices to understand
the relevant subgroups of G, Σp, and chosen isomorphisms.

6.2 Understanding (G/H)p for G a p-group

Just as in the abelian case, we must first understand the structure of the orbits
in (G/H)p which are transitively stabilized. First, we recall a classic result that a
transitive subgroup of Σp must contain a cycle of length p. Suppose (ĝiH)pi=1 generates
a transitively stabilized orbit. We first act on (ĝiH)pi=1 by (ĝ1

−1, e) to ensure the first
entry is eH. Then, as there is some p-cycle σ̂ in the stabilizer, we may rearrange it
by a permutation τ to force (g, (1, 2, · · · , p)) is in the stabilizer. The resulting tuple
will be written as (giH)pi=1. We then conclude the following:

(giH)pi=1 = (g, (1, 2 · · · p))k(giH)pi=1 = (gkgσ−k(i)H)

If we focus on the (k + 1)st component, we observe gk+1H = gkH. Additionally,
we note that gpH = eH. Hence, we conclude the orbit generated by (ĝiH)pi=1 includes
an element of the form x̄ = (giH)p−1

i=0 for g ∈ G such that gp ∈ H.
This will allow us to classify all transitively stabilized orbits, however we must

take certain quotients to prevent overcounting.

Definition 6.2.1. For H ≤ G, we may define the following set of cosets:

subp(G/H) := {gH ∈ G/H|gp ∈ H, gi /∈ H for i ∈ [1, p− 1]}

Importantly, note that eH is not in this set.

Alongside each element, we consider the data of a tuple x̄ = (giH)p−1
i=0 ∈ (G/H)p

which generates a G×Σp-orbit. There are two quotients of this set under which the
orbit is invariant. First, there is an action by Cp−1 on either the left or right, as if
gp ∈ H, then for i ∈ [1, p − 1] we have (gi)p ∈ H. As (gjH)p−1

j=0 only differs from

(gijH)p−1
j=0 by a permutation, they generate the same orbit. Additionally, there is a

left H-action as follows. Given gH, observe that for any h ∈ H, hgH = hgh−1H and
(hgh−1)p = hgph−1 ∈ H, corresponding to the tuple (hgih−1H)p−1

i=0 , which we see is
in the same orbit as (giH)p−1

i=0 by acting with the element (h, e) ∈ G× Σn.

Definition 6.2.2. Considering all of the above, we define:

Subp(G/H) := H\subp(G/H)/Cp−1.
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6.2.1 Transitively Stabilized Orbits of (G/H)p

Just as in the abelian case, since αp will ideally factor through the transfer ideal, we
do not need to understand the exact decomposition of (G/H)p. As such, it suffices
to see the decomposition into transitively stabilized orbits, which we show below.

Lemma 6.2.3. For G a p-group and H ≤ G, there is a G × Σp-set map from
transitively stabilized orbits of (G/H)p to G × Σp-sets corresponding to elements of
Subp(G/H).

Tr. Stabilized Orbits of (G/H)p → G× Σp/H × Σp ⨿
∐

gH∈Subp(G/H)

x̄=(giH)p−1
i=0

G× Σp/ Stab (x̄).

Proof. We first map the orbit associated to (eH)pi=1 to G×Σp/H×Σp. Let (giH)pi=1 ∈
(G/H)p generate an orbit which is transitively stabilized. First, we act by (g−1

1 , e) to
obtain the tuple (g−1

1 giH)pi=1. This is still in the same orbit, and thus is transitively
stabilized. As every transitive subgroup of Σp contains a p-cycle, this implies there is
an element (g, σ) ∈ Stab((g−1

1 giH)pi=1) where σ is a p-cycle. Furthermore, this implies
(gp, e) is in the stabilizer, which gives gp ∈ Subp(G/H). Let k ∈ [2, p], then as σ is a
p-cycle, there exists a value ℓ ∈ [1, p− 1] so that σ−ℓ(k) = 1. We may use this to see
the following:

(g−1
1 giH)pi=1 = (gℓ, σℓ)(g−1

1 giH)pi=1 = (gℓg−1
1 gσ−ℓ(i)H)pi=1 =⇒ g−1

1 gkH = gℓH

As all cosets of the form gjH, j ∈ [1, p− 1] are identified under the Cp−1 quotient,
we map this tuple to the equivalence class of the coset g−1

1 gkH ∈ Subp(G/H). There
are two checks to ensure this map is well-defined, the first of which is to ensure it is
independent of which element of the orbit we choose, and the second is to see that
it is independent of the representatives for the cosets in (giH)pi=1. It should be noted
that the choice of (g, σ) does not affect our choice of (g−1

1 gkH) as the image, it was
only used to show the coset g−1

1 gkH this lies within Subp(G/H).
Suppose (ĝ, σ̂) ∈ G×Σp. Showing the map is independent of our chosen orbit gen-

erator is equivalent to showing that acting by (ĝ, σ̂) before mapping does not change
the image. We see that (ĝ, σ̂)(giH)pi=1 = (ĝgσ̂−1(i)H). Continuing with our original
construction, we then act by (g−1

σ̂−1(1)ĝ
−1, e) to obtain the tuple (g−1

σ̂−1(1)gσ̂−1(i)H). Im-
mediately, we see that the G component of the action will not affect the chosen coset,
and additionally, since σ̂ is a bijection, the tuple is reordered and multiplied by gσ̂−1(1)

rather than g1. Hence, it suffices to show that the image is the same regardless of
which entry we invert before producing our image. The reordering will not affect our
map, as we have already shown all cosets other than eH have the same equivalence
class in Subp(G/H).

Hence, fix j ∈ [1, p], then our goal is to show that g−1
j gmH form ̸= j is in the same

equivalence class as g−1
1 gmH for m ̸= 1. As before, we choose an element (g, σ) ∈

Stab((g−1
1 giH)pi=1) such that σ−ℓ(k) = 1. We may obtain the tuple (g−1

j giH)pi=1 from
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the tuple (g−1
1 giH)pi=1 by acting on it with the element (g−1

j g1, e). This will conjugate

the stabilizer appropriately, so we have (g−1
j g1gg

−1
1 gj, σ) ∈ Stab((g−1

j giH)pi=1). Again,

as σ is a p-cycle, for k ∈ [1, p], k ̸= j, there exists a power ℓ̂ ∈ [1, p − 1]such that

σ−ℓ̂(k) = j, giving us the following:

(g−1
j giH)pi=1 = (g−1

j g1g
ℓ̂g−1

1 gj, σ
ℓ̂)(g−1

j giH)pi=1 =⇒ g−1
j gkH = g−1

j g1g
ℓ̂g−1

1 gjH

Furthermore, there exists some ℓ′ ∈ [1, p− 1] such that g−1
1 gjH = gℓ

′
H. Notably,

this also implies g−ℓ
′
g−1
1 gj ∈ H. As Subp(G/H) quotients by a leftH action, acting by

this element will not change the equivalent class of our image, giving us the following:

g−1
j gkH ∼ g−ℓ

′
g−1
1 gj · g−1

j g1g
ℓ̂g−1

1 gjH = gℓ̂−ℓ
′
g−1
1 gjH = gℓ̂−ℓ

′
gℓ

′
H = gℓ̂H

As ℓ̂ is guaranteed not to be a multiple of p, this is a coset which is identified with
gℓH from our original image, hence the image of the map is not dependent on the
chosen element of the orbit.

Fortunately, seeing the image is independent of the representatives for (giH)pi=1 is
much simpler. Let (giH)pi=1 = (gihiH)pi=1 be another choice of representatives. Our
initial procedure first multiplies by (h−1

1 g11, e), giving the tuple (h−1
1 g−1

1 gihiH), which
will be mapped to h−1

1 g−1
1 gkhkH for any choice of k ∈ [2, p]. This only differs from

the original image by acting with an element of H on the left, and as Subp(G/H)
quotients by such an action, our images will be identified under the quotient. Hence,
the forward map is well-defined.

■

Lemma 6.2.4. For G a p-group and H ≤ G, there is a G × Σp-set map from sets
corresponding to elements of Subp(G/H) to transitively stabilized orbits of (G/H)p.

Tr. Stabilized Orbits of (G/H)p ← G× Σp/H × Σp ⨿
∐

gH∈Subp(G/H)

x̄=(giH)p−1
i=0

G× Σp/ Stab (x̄).

Proof. We first send G × Σp/H × Σp to the orbit generated by (eH)pi=1. Our prior
work shows that given gH ∈ Subp(G/H), mapping G × Σp/ Stab (x̄) to the orbit of
x̄ is well-defined and respects the G× Σp-action. ■

Proposition 6.2.5. The maps in 6.2.3 and 6.2.4 are inverses, and as such, the fol-
lowing is a decomposition of (G/H)p into transitively stabilized G×Σp basis elements.

Proof. All that remains is to compose these maps in each direction. Given an orbit
associated to (eH)pi=1 and the basis element G × Σp/H × Σp, the composition is
immediately seen to be identity in each direction.

If we begin with a transitively stabilized orbit (ĝiH)pi=1 and perform the earlier
construction such that we obtain another element of the orbit (giH)pi=1 stabilized by
an element of the form (g, (12 · · · p)), then the composition returns the orbit of the
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tuple (giH)p−1
i=0 , which is in the same orbit as we have shown (giH)p−1

i=0 = (giH)pi=1,
hence it is identity on the orbit itself.

Composition beginning with gH ∈ Subp(G/H) is essentially immediate, as it
maps to x̄ = (giH)p−1

i=0 , which in turn maps to the coset gH ∈ Subp(G/H) by our
initial construction.

As the map is well-defined in both directions and each composition is identity, it
is a bijection, and we see that alongside a term for a ‘diagonal’ tuple, Subp(G/H)
classifies the transitively stabilized orbits of (G/H)p. ■

Before we can fully classify orbits, we must make an observation regarding the
structure of these stabilizers. By our earlier observation, every transitively stabilized
orbit is generated by a tuple of the form x̄ := (giH)pi=0 for some gH ∈ Subp(G/H),
with Stab (x̄) the stabilizer of this element. As this is a subgroup of G × Σp, we
may apply Goursat’s lemma, then observe that im(πG|Stab (x̄)))/ ker(πΣ|Stab (x̄)) ∼=
im(πΣ|Stab (x̄))/ ker(πG|Stab (x̄)). Following this, an element of ker(πG|Stab (x̄)) must be
of the form (e, σ). However, as all p elements of x̄ are distinct, σ must be trivial.
Hence, we conclude this kernel is trivial, showing im(πG|Stab (x̄)))/ ker(πΣ|Stab (x̄)) ∼=
im(πΣ|Stab (x̄)). As G is a p-group, so is this quotient, and thus im(πΣ|Stab (x̄)) must
also be a p-group within Σp. Up to conjugacy, the only transitive subgroup of Σp

which is also a p-group is Cp.

Definition 6.2.6. There is a surjective set map fromG/ ker(πΣ|Stab (x̄)) toG/ im(πG|Stab (x̄))),
which we will denote γ. This follows from the fact that ker(πΣ|Stab (x̄)) is contained
in im(πG|Stab (x̄))), and thus the following assignment is well-defined:

G/ ker(πΣ|Stab (x̄)) G/ im(πG|Stab (x̄)))

ℓ ker(πΣ|Stab (x̄)) ℓ im(πG|Stab (x̄))).

γ

Furthermore, this also implies that if ℓ ker(πΣ|Stab (x̄)) is K-fixed for K ≤ G, then
ℓ im(πG|Stab (x̄))) must also be K-fixed. Hence, this map is well-defined after taking
K-fixed points, though it may no longer be surjective. We will denote the induced
map on fixed points by γK .

6.2.2 Relating orbp(K ↷ G/H) to K-fixed point data

As discussed before, we may check if a proposed αp factors ψp on the image of the
marks homomorphism in the ring of marks using 2.4.4. Due to condition (3), the
main consideration is how our formula will account for the term which corresponds
to orbits of size p for K acting on (G/H). Here, we show this is in bijection with a
set of K-fixed points for certain G-sets.
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Lemma 6.2.7. Given H,K ≤ G, there is a set map from the following collection of
K-fixed points to orbits of size p for K acting on G/H.∐

gH∈Subp(G/H)

x̄=(giH)p−1
i=0

(G/ im(πG|Stab (x̄))))
K \ γK(G/ ker(πΣ|Stab (x̄)))→ orbp(K ↷ G/H)

Proof. For simplicity in notation, let Sx̄ := im(πG|Stab (x̄))) and Jx̄ := ker(πΣ|Stab (x̄)).
Following this, given gH ∈ Subp(G/H) and ℓSx̄ such that it is K-fixed but ℓJx̄ is
not, then we claim the set {ℓgiH}p−1

i=0 is an orbit of size p for K acts on G/H. As
Subp(G/H) involves a quotient by a left H action and a Cp−1 action, and we made
use of a specific representative of ℓSx̄, there are three issues to consider before this
map is well-defined.

We will first show that {ℓgiH}p−1
i=0 is a K-set of size p at all, then following this,

show the map is well-defined. Let k ∈ K, and consider kℓgiH = ℓℓ−1kℓgiH. As ℓSx̄
is K-fixed, we conclude ℓ−1kℓ ∈ Sx̄ and as such, it will only permute the set {giH}p−1

i=0

and the leftmost ℓ will not be affected. Furthermore, ℓJx̄ is not K-fixed, there exists
a k such that ℓ−1kℓ is in Sx̄ \Jx̄, making such an element of the form (ℓ−1kℓ, σ) where
σ is of order p. Hence, K acts on this set non-trivially, and as K is a p-group and
this set is size p, it is one orbit of size p.

We recall that the Cp−1 action quotients the cosets gH and gjH where j ∈ [1, p−1].
This gives the image as the set {ℓgijH}p−1

i=0 . As gp ∈ H, it follows gij /∈ H for all
i ∈ [1, p − 1], this will range through the same collection of cosets as gH would
produce, since they are all distinct. Hence, we obtain the same image regardless of
the representative we choose under the Cp−1 quotient.

Next, suppose ℓSx̄ = ℓ̂Sx̄, hence we must show {ℓgiH}p−1
i=0 = {ℓ̂giH}p−1

i=0 . As

ℓSx̄ = ℓ̂Sx̄, we conclude ℓ̂−1ℓ ∈ Sx̄. Since it is in the stabilizer of x̄, acting by it will
only reorder the tuple, thus the set is unchanged, so {ℓ̂−1ℓgiH}p−1

i=0 = {giH}p=1
i=0 . This

is sufficient to construct a bijection between {ℓgiH}p−1
i=0 and {ℓ̂giH}p−1

i=0 , and due to
the Cp−1 invariance of the image, the choice of representative does not change the
image.

Lastly, we must consider the quotient by the left H action on subp(G/H). Let
h ∈ H, and we first note that the stabilizer of (hgiH)p−1

i=0 is not Sx̄, but instead
hSX̄h

−1. However, as this is only conjugate, this still corresponds to the same G×Σp

orbit and still gives a map from the desired domain. Given that ℓSx̄ is K-fixed, then
we have ℓh−1 ·hSx̄h−1 is K-fixed, and so our produced orbit will be {ℓh−1 ·(hg)iH}p−1

i=0 .
This intersects with the original set, and as it is a K-orbit, must be the same set as
{ℓgiH}p−1

i=0 , so action by H does not change the image.
Hence, the map gives an element of the desired codomain and is well-defined. ■

Lemma 6.2.8. Given H,K ≤ G, there is a set map from the orbits of size p for K
acting on G/H to the following collection of K-fixed points.

∐
gH∈Subp(G/H)

x̄=(giH)p−1
i=0

(G/ im(πG|Stab (x̄))))
K \ γK(G/ ker(πΣ|Stab (x̄)))← orbp(K ↷ G/H)
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Proof. As before, we will use the following notation for simplicity. Let Sx̄ := im(πG|Stab (x̄)))
and Jx̄ := ker(πΣ|Stab (x̄)). To define this map, suppose {giH}pi=1 is a K-set of size
p. Choose any element of this set, say g1H. As this set is a K-orbit, K acts
transitively on it. As K is a p-group, there exists an element k ∈ K such that
{kig1H}p−1

i=0 = {giH}p−1
i=0 . Providing an image requires an x̄ ∈ (G/H)p, an element

of Subp(G/H), and a coset of G/Sx̄ which is K-fixed but the associated G/Jx̄ coset
is not K-fixed. We define the image to be given by x̄ = (g−1

1 kig1H)p−1
i=0 , where

g−1
1 kg1H ∈ Subp(G/H) as kpg1H = g1, and the coset is g1Sx̄. Furthermore, this coset

is K-fixed, as let k̂ ∈ K. It suffices to show that multiplication on the left by g1k̂g1
only permutes {g−1

1 kig1}p−1
i=0 . This multiplication gives {g−1

1 k̂kig1}p−1
i=0 . As k̂ ∈ K and

K acts on the set {kig1}p−1
i=0 , then k̂ either fixes everything or permutes them, so g1Sx̄

is K-fixed. However, g1Jx̄ is not K-fixed, as the chosen k must not fix it, since fixing
g1Jx̄ is equivalent to acting trivially on g1H. Hence, this image satisfies all of the
desired quotients, but we need ensure this map is does not depend on our choices.
Notably, we must show it is independent of which element of the orbit we call g1H,
and which element k ∈ K we use to generate the orbit from g1H.

Suppose we had chosen another element of {giH}pi=1. Fix the chosen k ∈ K to
be such that {kjg1H}p−1

j=0 = {gjH}
p−1
j=0 and giH = kig1H, which we may do by taking

appropriate powers of k and re-indexing the set as necessary. We then would obtain
g−1
i kgiH ∈ Subp(G/H). Observe that g−1

i kgiH = g−1
i ki+1g1H, and furthermore, as

g−1
1 k−igi ∈ H and Subp(G/H) is quotiented by the left H action, our image will be
in the same equivalent class as g−1

1 k−igig
−1
i ki+1g1 = g−1

1 kg1H. As we obtain the same
Subp(G/H) equivalence class, x̄ is unchanged up to reordering, and hence Sx̄ is the
same up to conjugacy. Furthermore, we may conclude that g1Sx̄ = giSx̄, as this is
equivalent to observing {g−1

1 kjg1H}p−1
j=0 = {g−1

i kj+igi}p+1
j=0, which follows as they share

an equivalence class in Subp(G/H).

Suppose k̂ is another element of k such that {k̂ig1H} = {giH}. This will reorder
the original x̄, but not change the elements of, hence the stabilizer will not change up
to conjugacy. Hence, as the two tuples are simply permutations of one another, this
implies g−1

1 kg1H = g−1
1 k̂ig1H for some i ∈ [1, p − 1]. Since the latter is in the same

equivalence class as g−1
1 k̂g1H in Subp(G/H), the image is independent of our choice

of k ∈ K with the desired properties.
Hence, the map gives an element of the desired codomain and is well-defined. ■

Proposition 6.2.9. The maps in 6.2.7 and 6.2.8 are inverses, and as such, we may
classify orbits of size p for K acting on G/H using that data. That is to say, the
following bijection holds:

∐
gH∈Subp(G/H)

x̄=(giH)p−1
i=0

(G/ im(πG|Stab (x̄))))
K \ γK(G/ ker(πΣ|Stab (x̄))) ∼= orbp(K ↷ G/H)

Proof. We must show each composition is identity. As before, let Sx̄ := im(πG|Stab (x̄)))
and Jx̄ := ker(πΣ|Stab (x̄)). First, we begin with a K-fixed point of the appropriate

form. Let gH ∈ Subp(G/H) and ℓSx̄, which then maps to {ℓgiH}p−1
i=0 . For the return
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map, choose k ∈ K which acts transitively on this set, then we obtain ℓ−1kℓH ∈
Subp(G/H) which defines x̄′ = (ℓ−1kiℓH)p−1

i=0 and gives ℓSx̄′ . As k acts transitively
on the orbit, kℓH = ℓgjH for some j ∈ [1, p− 1], which gives ℓ−1kℓH = gjH, hence,
they identify under the Cp−1 quotient and Sx̄ is conjugate to Sx̄′ .

For the reverse composition, it suffices to see that the orbit is not entirely lost,
as any singular element will generate the orbit. Since the full composition can be
chosen to preserve g1H, it gives identity in this direction as well, hence, the map is a
bijection. ■

The proposition allows us to understand rp as in Gay, Morris, and Morris’ theorem.
When combined with the fact that orbit associated to (eH)pi=1 is G×Σp/H×Σp and
must be mapped under αp to G/H, all that remains is to understand the above fixed
points as a G-set.

6.2.3 Translating K-fixed point data into G-sets

Lastly, while this set of K-fixed points is in bijection with orbits of size p, it is not
strictly a sum of basis elements in A(G). One final lemma will allow is to translate
this to the appropriate data for the Burnside ring.

Lemma 6.2.10. Given H,K ≤ G and gH ∈ Subp(G/H) with x̄ = (giH)p−1
i=0 , let

Sx̄ = im(πG|Stab (x̄))) and Jx̄ = ker(πΣ|Stab (x̄)). The following equality holds:

p|(G/Sx̄)K \ γK(G/Jx̄)| = p|(G/Sx̄)K | − |(G/Jx̄)K |.

Proof. As Sx̄/Jx̄ ∼= Cp, the size of the fibers must be 0 or p. In the case the fibers
are size p, they can be given explicitly. Suppose ℓJx̄ is K-fixed, i.e ℓ−1kℓ ∈ Jx for all
k ∈ K. Then we see ℓgiJx̄ is also K-fixed for i ∈ [0, p− 1] as g−iℓ−1kℓgi · gjH = gjH,
hence g−iℓ−1kℓgi ∈ Jx̄. These p cosets are distinct, as otherwise, this implies gj ∈ Jx̄
for some j ̸= p, which contradicts the fact the entries of x̄ are distinct, giving all p
possible cosets. However, as gj ∈ Sx̄ for any j, these cosets collapse to ℓSx̄ under
γ. Hence, as we range over elements of (G/Jx̄)

K and consider them as elements of
(G/SX̄x)

K by applying γK , they contribute 0 to the left and cancel to 0 on the right.
All other cosets present are those of (G/Sx̄)

K \γK(G/Jx̄), which contribute p to each
side. Hence, the equality holds. ■

6.3 Factoring ψp through P p for G a p-group

As before, now that we have a decomposition and the necessary framework, it is
possible to define an αp factoring ψp for G a p-group. However, due to the method
of this decomposition, it is unclear if this is natural with respect to restriction.

Theorem 6.3.1. If G is a p-group with H ≤ G and p prime, T ≤ Σp a transitive
subgroup, then we may define an additive map αp such that αp ◦ Pp = ψp, satisfying
properties (1) and (3).The map is given on basis members and linearly extended. If
a basis member of A(G × Σp) is not given a specific image, the basis member is in
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the kernel. As above, if gH ∈ Subp(G/H) and x̄ = (giH)p−1
i=0 , let Sx̄ = im(πG|Stab (x̄)))

and Jx̄ = ker(πΣ|Stab (x̄)). The map αp is given by

αp((G× ΣP )/(H × T )) = |Σp/T |(G/H)

and, for gH ∈ Subp(G/H),

αp(G× Σp/ Stab(x̄)) = p(G/Sx̄)− (G/Jx̄).

Proof. First, we observe that as Subp(G/H) does not include eH, the two assignments
do not interact in any way. Additionally, we see the definition of αp satisfies (1) as αp
is defined on basis members and linearly extended, hence additive. Furthermore, only
basis members with a transitive stabilizer were given a non-zero image, and as such
it factors through the transfer ideal. Additionally, property (3) holds for our earlier
choice of αe,p, as if we begin with (G/H)⊗Σp/T , both directions give |Σp/T |(G/H).

By Corollary 6.0.1, it suffices to check that χ(α ◦ Pp([G/H]))[K] = r1 + prp for
each conjugacy class of subgroups K ≤ G. We have

χ(αPp([G/H]))[K] = (αp(Pp(G/H))K

= αp(G× Σp/H × Σp)
K ⨿

∐
gH∈Subp(G/H)

x̄=(giH)p−1
i=0

αp(G× Σp/ Stab (x̄))
K (6.2.5)

= (G/H)K +
∑

gH∈Subp(G/H)

x̄=(giH)p−1
i=0

(p(G/Sx̄)
K − (G/Jx̄)

K)

= r1 +
∑

gH∈Subp(G/H)

x̄=(giH)p−1
i=0

p|(G/Sx̄)K \ γK(G/Jx̄)| (6.2.10)

= r1 + p|orbp(K ↷ G/H)| (6.2.9)

= r1 + prp

As αp is defined on basis members and linearly extended, it is additive, and
furthermore, the transfer ideal is in the kernel by construction. Given G/H ∈ A(G)
and Σp/T in A(Σp), property (3) requires the image under αp to be |Σp/T |(G/H) for
it to commute with our chosen αe,n, which agrees with our assignment. Hence, αp
satisfies conditions (1) and (3) and by Corollary 6.0.1, we see ψp = αp ◦ Pp.

■

Copyright© Lewis Dominguez, 2024.
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Chapter 7 Future Work

In this chapter, we discuss a number of routes to consider for extending this work, of
which there are two of particular interest. First, we ideally would find a classification
of groups such that a factorization is known for more values of n, and secondly, if
αG,n does not exist with our desired conditions for all groups and n, we would like to
find an infinite class of such counter examples.

7.1 Factoring ψp
k
through P pk

There are extensions to much of the work in Chapter 5 to factoring ψp
k
through P pk ,

but they require determining the decomposition of (G/H)p
k
and a classification of

orbits of size pj when j ≤ k for K acting on G/H. Furthermore, Lemma 6.2.10 relies
on the fact that certain quotients are size p, but we believe we can extend this to
whenever certain quotients are abelian. Hence, we propose the following conjecture:

Conjecture 7.1.1. Given p prime and n ∈ N, then for G a p-group such that all
proper sub-quotients of size pj are abelian for j ≤ k, there exists an αG,pk factoring

ψp
k
satisfying conditions (1) and (3).

This conjecture would require propositions analogous to 6.2.5, 6.2.9, and 6.2.10
respectively, of which some proposed formulae exist for at this time, but we have
omitted for simplicity.

7.2 Determining G, n where αG,n fails to exist

It’s likely that the failure of αΣ4,3 is not unique, given that collisions in the A(G ×
Σn) decomposition of (G/H)n can be constructed for symmetric groups with ease.
Computational complexity increases sharply, so at this time no other exact results
are known. However, based on this work, we propose the following conjecture:

Conjecture 7.2.1. For n ≥ 4, there does not exists an αΣn,3 factoring ψ3 satisfying
conditions (1) and (3).

In the case of G = Σ4, it was possible to show this failure by only computing the
decomposition of three basis elements, but it is likely more will need to be computed
for higher symmetric groups, leading to increased computational difficulty.

Copyright© Lewis Dominguez, 2024.
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