
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Electrical and 
Computer Engineering Electrical and Computer Engineering 

2018 

A FAULT LOCATION ALGORITHM FOR UNBALANCED A FAULT LOCATION ALGORITHM FOR UNBALANCED 

DISTRIBUTION SYSTEM WITHOUT FAULT TYPE INFORMATION DISTRIBUTION SYSTEM WITHOUT FAULT TYPE INFORMATION 

Yizhe Li 
University of Kentucky, lyz9362@yahoo.com.tw 
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.516 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Li, Yizhe, "A FAULT LOCATION ALGORITHM FOR UNBALANCED DISTRIBUTION SYSTEM WITHOUT FAULT 
TYPE INFORMATION" (2018). Theses and Dissertations--Electrical and Computer Engineering. 112. 
https://uknowledge.uky.edu/ece_etds/112 

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering 
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Yizhe Li, Student 

Dr. Yuan Liao, Major Professor 

Dr. Caicheng Lu, Director of Graduate Studies 



 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

THESIS  
 

 
 
 

 
 

 

 

 

By 

Yizhe Li  

Lexington, Kentucky 

Director: Dr. Yuan Liao, Professor of Electrical and Computer Engineering 

Lexington Kentucky 

2017 

Copyright 
© 

Yizhe Li 2017 

  

A FAULT LOCATION ALGORITHM FOR UNBALANCED DISTRIBUTION 

SYSTEM WITHOUT FAULT TYPE INFORMATION 
 

A thesis submitted in partial fulfillment of the requirement of the 

degree of Master of Science in the College of Engineering at 

University of Kentucky 
 



 
 

ABSTRACT OF THESIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A FAULT LOCATION ALGORITHM FOR UNBALANCED DISTRIBUTION 

SYSTEM WITHOUT FAULT TYPE INFORMATION 

 

Power system faults normally result in system damage, profit loss and consumer 

dissatisfaction. Consequently, there is a strong demand on precise and fast fault location 

estimation for power system to minimize the system restoration time.   

This paper examines a method to locate short-circuit faults on a distribution system with 

unbalanced loads without fault type information. Bus impedance matrix technique was 

harnessed in the fault location estimation algorithm. The system data including line 

impedances, source impedance and distribution system layout was assumed to be known 

factors, hence pre-fault bus impedance can be calculated and implemented into the 

algorithm. Corresponding methods to derive system matrix information were discussed. 

Case studies were performed to evaluate the accuracy of the fault location algorithm and 

illustrate the robust performance under measurements errors influences, load variation 

impacts and load compensation implementations. 

Traditional fault location methods involve current and voltage measurements mandatorily 

locating at each ends of faulted section to locate the fault. The method examined finds fault 

location for distribution system utilizing impedance matrix accompanied with sparse 

measurements in the power network. This method fully considers the unbalance of 

distribution system. 

 

KEYWORDS: Distribution systems, fault locations, bus impedance matrix, power systems, 

fault diagnosis. 
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Chapter 1 INTRODUCTION 

In the first section of this introduction, there will be a general description of power 

system faults and distribution systems, followed by a brief discussion on published fault 

analysis theories along with adopted algorithm and techniques for distribution systems and 

bus impedance matrix. 

 

1.1. POWER SYSTEM FAULT BACKGROUND 

A typical power system includes generation, transmission and consumption along with 

all aspects of fault detection and management systems. Faults which mainly occur as short-

circuit faults may take place at power lines, transformers and generation system, causing 

heavily aggravation in rerouted lines or even immediately leading to electric blackout. 

Rapid restoration of service and excellent pinpoint accuracy during a fault clearance play 

an important role in power system regular operation to reduce overall cost and increase 

safety of the whole system. 

A common cause for a power system fault is an unexpected connection between power 

lines and grounded objectives such as trees. This case tends to happen more frequently in 

summer because thermal expansion of lines and fast-growing vegetation. Disaster 

phenomena also contributes greatly system failures since most design of power system 

would only consider natural factors to a certain degree in order to achieve feasibility in 

marketing aspect during planning phase of that power system. There has been a snow 

disaster in south china area causing damage and even collapses of more than one thousand 

main feeders including 500kV units. One of the analysis shows that the design schemes on 

power lines and towers were not considering such huge overweight from ice and snow on 
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power cables and towers especially at turning sections, which used to be considered as 

feasible designs due to the subtropical monsoon climate of the area [1]. Human errors and 

equipment failure including illegal structure under or close to power line or improper 

breaker tripping also could lead to faults. Lightning strikes are big portion of current flood 

and causing breaker to open, although most modern fault detection systems have the re-

connection feature to eliminate non-permanent fault [2].  

Three phase power line fault can be classified into five types considering number and 

means of connections of lines possibly including ground [3]. The first type is line to ground 

fault(LG) where occurs an unexpected connect between one single phase line to the ground. 

The second type is line to line fault(LL) where either two lines of different phases make 

connection. The third type is line to line to ground fault (LLG) that involves two lines of 

different phases and the ground. The fourth type is line to line to line(LLL) faults which is 

similar to LL fault but includes all three phases. The last type is line to line to line to ground 

fault(LLLG) which indicates that all three phases are connected to the ground. 

 

1.2. CURRENT PUBLISHED TECHNIQUES FOR POWER SYSTEM FAULT.  

Fault location algorithms have been under developing for decades, implemented with 

digital and analog fault detecting instruments to increase the stability and reliability of 

power system and reduce financial loss. Although significant efforts have been spent on 

high voltage level transmission system protection, there has been relatively little work in 

the development of fault location estimation for distribution system until lately.   

There have been numerous developed and developing methodologies for fault location 

estimation in the past decades [4] . There is a potential demand on more means to solve the 
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fault locations. As a matter of fact, several methods would be chosen to provide the 

estimations of one fault location in reality, due to the natural flaws of certain fault location 

methods and possible multiple results in some specific cases. Implementing different 

algorithms could reveal the unlikely fault locations and reinforce the correct ones which 

could be tricky to identify. The financial consequences for an accurate fault location can 

be so significant that it can deliver more precise fault location for the ground mechanic 

team then generally shorten the fault clearance time significantly leading to less complaints 

from consumers and penalty fee [3].  Therefore, fault analysis has become one of the most 

important research in electric engineering and new techniques keep coming up [4].  

Although the long research history and good amount of experience from practice, fault 

analysis is still considered as a major issue in long term.  The problems engineers and 

mechanics facing nowadays are generally measurements error during to the nature of 

instrumentation, synchronization problems of measurements in remote end of fault usually 

caused by the communication channel distortion, unknown fault resistance influence for 

some of the algorithms that needs an estimate fault resistance, the influence on power 

system protection from distributed generations and the difficulty brought by the unbalanced 

system in distribution network [2] [5] [6].  Furthermore, different types of fault analysis 

methods generally have their preferred scenarios, which leads to the necessity of utilizing 

specified or multiple methods for better understanding of the faulted section. 

In this paper, fault location related techniques were discussed in three aspects, namely 

methods involving travelling wave analysis techniques, methods involving fault voltage 

and current analysis and fault location algorithm for underground distribution system.   
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1.2.1. METHODS INVOLVING TRAVELLING WAVE ANALYSIS TECHNIQUE  

Travelling waves techniques utilize the theory of wave propagation through 

transmission line with the help of modern devices that are capable to harness the high 

frequency transient wave. Since the fault wave travels at a known speed that is only 

dependent on the material of the power line [7], the fault location can be calculated through 

wave analysis.  It requires high-quality measurement equipment to capture and record the 

fault wave and synchronized measurement with GPS technology for wave analysis 

procedure [6].  

High frequency transients and wavelet analysis specifically uses the transients 

generated by the fault to find out the fault lateral and further analysis on wavelet coefficient 

to pinpoint the fault location on the highlighted lateral [6].  This method not only 

identifies the faulted lateral but also has excellent robustness to the initial phase angle and 

network load. 

Distributed generations bring a little more challenge to power system protection.  

Travelling wave analysis technique shows its strength in this type of scenario due to its 

insensitive to load and initial phase influence when locating the fault.  Since this method 

is already highly hardware demanded, utilizing deep communication among power system 

protection devices, it can deal with the fault condition considerably efficiently by correctly 

isolating the fault area without either damaging the power system or limiting the potential 

benefit from the distributed generation systems [5]. 

Article [8] presents an idea for calculating transmission parameters including positive 

sequence parameters, temperature and sag using voltage and current gathered by Phasor 

Management Unit (PMU), which is considered to be crucial inputs for power system 
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analysis. The algorithm in this article utilizes non-linear optimal estimation theory with a 

capability of indicating and removing bad data, reducing measurement error and increasing 

the estimation accuracy dramatically.  

However, majority of current travelling wave methods only focus on a single 

transmission line, therefore it can be less sensitive and reliable when one of travelling wave 

fault locator became malfunctional.  One solution is adding record of the fault wave 

arriving time of each measurements in a big region of the grid since the fault wave would 

travel quite far distance.  The fault estimate location can be successfully calculated and 

remains accurate. Rather than depending on measurement from the both side of the fault 

condition line, using more data from other substations makes this method more reliable [9]. 

 

1.2.2. METHODS INVOLVING FAULT VOLTAGE AND CURRENT ANALYSIS 

Fault location estimation algorithms with fault voltage and current analysis, as one of 

the earlies developed power system protection techniques, are the mostly widely applied 

in the field.  Generally, this kind of algorithms use voltage sags created by the faults, 

sometimes current data instead. Additionally, comparing to travelling wave analysis, which 

requires excellently synchronized data, unsynchronized data can be used to locate the fault 

potentially.  This kind of methods can be divided into two major types, direct circuit 

analysis relying on solving polynomial equations and analysis with system impedance 

matrices with known system impedance in most cases. 

Circuit analysis consisting of KVL, KCL and Newtown- Raphson iteration, plays an 

important role in general fault analysis. With the help of such, an algorithm that only uses 

local end voltage and current data can be achievable [10].  In this algorithm, local pre-
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fault data and data during the fault are used and through circuit analysis equations were 

achieved to solve the unknown fault location.   This algorithm is considered especially 

useful on ultra-high voltage un-transposed parallel transmission lines comparing to other 

conventional algorithms.  

Accurate time domain algorithm methodology utilizing raw sampled data from 

terminals could provide estimation with zero theoretical error and no influence from the 

fluctuation of system frequency [11]. This algorithm utilizes differential equations of 

faulted condition and pure-fault networks to determine fault location.  

An algorithm for radial and non-radial ungrounded power distribution systems was 

developed in [12] aiming for accurate, generalized and robust solution for fault location 

estimations 

A new method for single-ended fault for overhead distribution network based on 

superimposed phase signals and special filtering techniques for fundamental phasor 

extraction utilizes interactive estimates equivalent admittance matrices, resulting an 

excellent robustness to load and remote source capacity [13].   

Method for unbalanced distribution network using fundamental frequency phasors 

assuming the network parameters and topology are known can be highly efficient according 

to a field test in Brazil.  This method allows local measurement data and network 

information contributes together to an accurate fault estimation regardless of the 

complexity of local distribution network. [4] 

The authors in [14] utilized current measurements from other branches in un-faulted 

sections filling the gap where there was a lack of measurements on faulted line which 

conventional fault analysis required.  With bus impedance matrix technique accompanied, 
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this fault analysis method achieved relatively good accuracy and decent robustness to bad 

measurement influences in simulation studies. An algorithm introducing optimal fault-

location estimator to enhance the accuracy and reliability of fault location estimations for 

distribution system with distributed generators was demonstrated in [15] where chi-squared 

test was implemented to pick out corrupted data。 Article [16] mentioned a fault detection 

scheme concept cooperating with auto-restoration system involving load forecasting and 

restoration time reduction logic to improve transmission line reliability. This collaboration 

work proves to reduce fault restoration time significantly and totally preventing 

unnecessary outage by taking good use of load trend forecasting and latest also practical 

techniques. 

A method to determine transmission line parameters of electric power grid was 

presented in [17]. Adaptive software was developed in this paper that is capable to 

eliminate the tedious and error-prone manually importing data and provide a tool to 

streamline and update line parameters in databases. 

Technique using Unsynchronized data from both side of line allows poor synchronized 

or unsynchronized protection system to participate together to generate the estimation of 

fault location [18].  Solving some realistic problem in the field including communication 

channel fail or protection system failure where little digitalization was applied in some area, 

which could lead to a theoretically unsolvable situation for most other techniques.  Most 

fault location algorithms require line parameters, but in some cases it could be unavailable 

or corrupted.  [19] introduces a method that needs no pre-fault information or line 

parameters with shunt capacitances considered, meaning only the voltage and current 

during the fault are required.  This new approach not only gives quite accurate results for 
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both balanced and unbalanced faults. 

A technique to manipulate bus voltage for a photovoltaic system is introduced in [20], 

taking the advantage of performance matrix and reactive power controller to mitigate the 

fluctuations and improve the overall performance in distribution system with photovoltaic 

generation. 

 

1.2.3. METHODS INVOLVING DIRECT CIRCUIT ANALYSIS 

Circuit analysis is a fundamental tool for any type of fault location methods however 

deriving fault location by solely mastering circuit analysis should be considered remarkable. 

Complex double fed distribution systems were taken into consideration in [21]. Current 

and voltage vectors were utilized in this article, as well as taking the advantage of topology 

concept of distribution systems. Without sacrificing considering unbalanced systems, the 

developed algorithm employed greatly simplified procedures and involved voltage and 

current estimations. Apparent impedance approach method was used in [22]. The 

disturbances of currents and voltages caused by the fault were harnessed and distribution 

system under unbalanced condition was discussed as well as different phases. This method 

naturally comes with a remarkable error diminishing feature considering loads forecasting 

and fault resistance estimation.  

 

1.2.4. FAULT LOCATION ALGORITHM FOR UNDERGROUND SYSTEM 

Fault location estimation faces more challenges in underground distribution system 

because the existence of huge shunt capacitance of the line, which can lead to considerable 

errors in fault location.  A method using iterative procedure to find the fault location with 
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data from primary end assuming the system is operating in balanced condition. [23].  One 

other method to conquer this problem is to iteratively compensate all the capacitance [24].  

Ref [25] demonstrates a fault location algorithm with direct circuit analysis where no lateral 

or tapped loads, only using data gathered at the sending end of the line. An underground 

cable equivalent circuit model was built with the aid of boundary condition concept which 

gives this method a promising potential to locate faults on power line cable with multiple 

sections. The method presented in [19] could reduce the iterative steps for grounded system, 

at the same time utilizing bus impedance matrixes.   

  To conclude literature review, existing fault location methods are demanding 

considerably on iterations upon circuit analysis procedure, targeting on short circuit 

analysis or voltage and current calculations.  This paper demonstrates a method to further 

introduce the benefits to ungrounded overhead distribution systems with short circuit faults.   
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Chapter 2 FAULT LOCATION METHODS FOR UNBALANCED 

DISTRIBUTION SYSTEMS 

This chapter introduces the methodology behind the fault location method. Firstly, the 

concept of ‘Node’ and bus impedance are going to be introduced along with an overall 

procedure to calculate fault location. Secondly, the procedure to formulate the pre-fault and 

during fault bus impedance matrix will be presented as well as according notations used 

throughout this paper. This part mainly focuses on driving point impedance and transfer 

impedance since they are the only variables containing the unknowns. Thirdly, it will be 

introducing bus voltage during faults which is essential to format the relationship between 

the unknown fault location, fault resistance and other known data such as system 

parameters and local measurements. Lastly, the procedure to determine fault location 

single-phase line, two-phase line and three-phase line will be demonstrated. The derivation 

steps to determine some components involved will be shown in Appendix 5,6.2,6.3. The 

method described here are from [3] and the objective of the study is to examine the 

performance of the method without assuming the fault type. 

 

2.1. FUNDAMENTALS OF ALGORITHM 

It has been assumed that information on generator, namely line currents and line to 

ground voltages could be measured by local measurements and a neutral point of the source 

can be achieved. This algorithm tends to find the fault location through such measurements.  

A bus, also called bus bar, is a huge conductor physically connecting several power 

lines with an identical electric potential. In a three-phase electric distribution system it 

normally comes with one to three phases as the circuit indicates. The term ‘Node’ will be 
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used to indicate a phase joint connection point [26]. Since multi-phase buses normally are 

simplified as one in circuit drawing, in this paper one of bus phases is represented by the 

terminology “Node”. 

Bus impedance matrix illustrates the inter-impedance between different nodes, can 

also determine the relation between voltages and current injections throughout the system.   

Introducing fault nodes in the system impedance matrix aids to find the fault location. 

Fault node divide the faulted line into two segments. Utilizing voltage and current injection 

information gathered from substations, new system impedance matrix with fault nodes can 

be derived. Generally, fault location combined with fault resistance, impedance matrix and 

current injection form a solid relationship with the node voltages, from which the fault 

location can be derived.  

The need for fault type classification is eliminated by assuming LG fault on single-

phase line, LLG fault on two-phase line and LLLG fault on three-phase line. The algorithm 

would adaptively generate nearly infinite fault resistance to represent a non-faulted node.  

 

2.2. FAULT LOCATION METHOD FOR DISTRIBUTION SYSTEMS  

Assuming the fault locates at a section in a distribution system as shown in Figure 2.1, 

a typical distribution system. Such system consists of three-phase, two-phase and one-

phase laterals and loads. A fault location method would be generated merely using local 

information from CTs and VTs at substations and system information.   
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The fundamental idea is to modify a bus impedance matrix of pre-fault condition into 

one during fault condition, which will be shown with details in this section. Different 

number of fictitious nodes are added to the pre-fault matrix on fault location considering 

the number of phases that the fault lines contain, namely one-phase line, two-phase line or 

three-phase line fault. After adding in fictitious nodes, the transfer impedance and driving 

point impedance need to be expressed in form of fault location. Voltages at local station 

nodes then can be represented as a function of bus impedance matrix and current injections 

at the substation. With the known node voltages at substations, fault location can also be in 

part of expression consisting of transfer impedance, driving point impedance, node 

voltages and fault resistance. Then fault resistance and fault location can be calculated. It 

Figure 2.1Sample Unbalanced Distribution System 
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clarifies that the fault location can be determined by using local measurements and known 

system information in this algorithm. Note to mention that there were very few iteration 

calculations involved in this method, which is one of the most distinguishing features of 

this algorithm. In this article, all voltages and currents refer to 60Hz frequency phasors.  

The bus impedance matrix shall be based on three-phase domain due to the nature of 

the innate unbalances of distribution system. Consequently, the fault location method 

would not suffer from unbalances in distribution system. 

Equivalent impedance models had to be created to equivalently replace loads to 

simulate load variation impact and load compensation, which will be discussed in case 

studies.  

Figure 2.2Demonstrations of Fault Types 
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Different fault types are represented in Figure 2.2 [3], consisting of line to ground 

faults(LG), line to line faults(LL), line to line to ground faults(LLG), line to line to line 

faults(LLL) and line to line to line to ground faults(LLLG). It is important to note that there 

could be all kinds of fault on a three-phase feeder or lateral. For two-phase laterals, only 

LG, LL, LLG fault could take place. While on a single-phase feeder, there could only be 

and only be just one kind of fault occurring which is LG fault. Fault location methods will 

be discussed regarding different type lines respectively.   

 

2.3. TRANSFER IMPEDANCE AND DRIVING POINT IMPEDANCE  

Figure 2.3 represents the specific section of distribution system where the fault occurs 

[3]. It is capable to illustrate all kinds of faults. As for notation declarations, please refer to 

next section. 

Throughout the derivation, pre-fault impedance matrix [Z0] consists of n rows and n 

Figure 2.3 Faulted Section of Distribution System 
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columns elements which are identical to the up left part of during fault impedance matrix 

[Z]. The rest part of [Z] contains transfer and driving point impedances concerning fault 

nodes.  

𝑍𝑘𝑟𝑖
= 𝐵𝑘𝑖 + 𝐶𝑘𝑖𝑚, 𝑖 = 1, 2, 3                     (1) 

𝑍𝑟𝑖𝑟𝑡
= 𝐴𝑖𝑡0

+ 𝐴𝑖𝑡1
𝑚 + 𝐴𝑖𝑡2

𝑚2,      

                                                          𝑖 = 1,2,3, 𝑡 = 1,2,3, 𝑎𝑛𝑑 𝑖 ≠ 𝑡              (2) 

𝑍𝑟𝑖𝑟𝑖
= 𝐴𝑖𝑖0

+ 𝐴𝑖𝑖1
𝑚 + 𝐴𝑖𝑖2

𝑚2, 𝑖 = 1,2,3            (3) 

where  

𝑍𝑘𝑟𝑖
                               transfer impedance between node k and 

node ri; 

𝑍𝑟𝑖𝑟𝑡
                               transfer impedance between node ri and rt; 

𝑍𝑟𝑖𝑟𝑖
 driving point impedance at node ri; 

𝐵𝑘𝑖, 𝐶𝑘𝑖, 𝐴𝑖𝑡0
, 𝐴𝑖𝑡1

, 𝐴𝑖𝑡2
, 𝐴𝑖𝑖0

, 𝐴𝑖𝑖1
, 𝐴𝑖𝑖2

     constants for a known system 

 

Note that the expression of transfer and driving point impedances are assigned in a 

function of fault location to generate a solvable equation for fault location.  

A basic relation between node voltage vector and current injections forms the 

fundamental principle for fault location method. Assuming current injections at any nodes 

were zero except node ri, the voltage at node k should be the result of Zkri, the transfer 

impedance between node k and node ri, multiplying current injection at node ri. According 

to Superposition Theorem, when there were other nodes with current injections the results 

would be the sum of individual calculations where zero injections at other nodes were 

assumed. 
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NOTATIONS USED IN Figure 2.3 AND BUS IMPEDANCE DERIVATION   

 

n  nodes number in the distribution system 

without fictitious fault nodes; 

p1, p2, p3, q1, q2, q3 sample feeder nodes: 

z1, z2, z3 self-impedance between p1and q1, p2 and 

q2, p3 and q3 respectively; 

z12, z23, z13 mutual impedance between phases; 

m the ratio between fault distance and  

length of the section, i.e. p.u. fault distance; 

[Z0] bus impedance matrix of prefault system 

without considering fault nodes; size of n 

by n; 

Z0,kl kth row and lth column of [Z0]; 

[Z] bus impedance matrix of faulted system 

considering fault nodes; size of (n+3) by 

(n+3); 

[Zkl] kth row and lth column of [Z]; 

Ep1，Ep2，Ep3，Eq1，Eq2，Eq3  voltages at node p1, p2, p3, q1, q2 and q3, 

respectively; 

I1, I2, I3 currents of branch p1-r1, p2–r2, p3-r3; 
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2.4. BUS VOLTAGE DURING THE FAULT 

Considering a LG fault occurring on phase A at node ri [3], and assign the node on 

substation corresponding to phase A as node k, according to the definition of transfer 

impedance, fault node voltage can be derived as  

𝐸𝑘 = 𝐸𝑘0
− 𝑍𝑘𝑟1

𝐼𝑓1
− 𝑍𝑘𝑟2

𝐼𝑓2
− 𝑍𝑘𝑟3

𝐼𝑓3
                 (4) 

the voltage difference between pre-fault and during fault at node k is thus  

∆𝐸𝑘 = 𝐸𝑘0
− 𝐸𝑘0

= −𝑍𝑘𝑟1
𝐼𝑓1

− 𝑍𝑘𝑟2
𝐼𝑓2

− 𝑍𝑘𝑟3
𝐼𝑓3

           (5) 

where  

Ek node voltage during fault at node k; 

Ek0 node voltage before fault at node k; 

ΔEk voltage difference between pre-fault and 

fault condition; 

Ifi fault current from node i to fault resistance; 

 

Same equations apply to two-phase or three-phase fault where every node voltages are 

just simply derived individually and then bundled up a vector form. Fault location 

algorithm would be around equation (5) 

According to KVL law, the current of feeder or lateral line can be derived from the 

product of the inverse of feeder or line impedance matrix and node voltage difference, 

which ends up being an equation with fault location. This relationship will be very handy 

for fault analysis. 
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2.5. DERIVING FAULT LOCATION  

2.5.1. FOR SINGLE-PHASE LINE (LG)  

Considering a LG fault occurring on phase A at node(r1) [3], the fault current If1 is 

expressed as  

𝐼𝑓1
=

𝐸𝑟10

𝑍𝑟1𝑟1+𝑅𝑓1

                            (6) 

where 

Er10 pre-fault voltage at node r1; 

Rf1   fault resistance. 

 

In order to express Er10 in terms of fault location, assign the faulted section with two 

nodes, p1 and q1, at each end and Er10can be derived as  

𝐸𝑟10 = 𝐸𝑝10 − 𝑚(𝐸𝑝10 − 𝐸𝑞10)                   (7) 

Where 𝐸𝑝10 and 𝐸𝑞10 are pre-fault voltages at node p1 and q1 

If1 can be expressed as  

𝐼𝑓1
=

−𝐸𝑝10+𝑚(𝐸𝑝10−𝐸𝑞10)

𝑍𝑟1𝑟2+𝑅𝑓1

                          (8) 

For this single-phase LG fault, assign the node of substation on phase A as k1, 

∆𝐸𝑘1
= −𝑍𝑘1𝑟1

𝐼𝑓1
=

−𝐸𝑝10+𝑚(𝐸𝑝10−𝐸𝑞10)

𝑍𝑟1𝑟2+𝑅𝑓1

𝑍𝑘1𝑟1
              (9) 

According to the transfer and driving point impedance derivation in (7) (8) (9), rewritten 

as,  

∆𝐸𝑘1
=

−𝐸𝑝10+𝑚(𝐸𝑝10−𝐸𝑞10)

𝐴110+𝐴111𝑚+𝐴112𝑚2+𝑅𝑓1

(𝐵𝑘11 + 𝐶𝑘11𝑚)             (10) 

Where only m and Rf1 are the only unknown parts in this quadratic equation for fault 

location m. Since m is not a complex number, we can solve this by generating real and 
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imaginary part of this equation where 𝑅𝑓1
can be solved and then m. 

The voltage change during fault could be considerably less comparing with current change 

if the fault resistance was large, therefore a technique to avoid using direct voltage 

measurements was utilized in this paper.  

This technique involves current change [ΔI] and local impedance matrix [zs]. Voltage 

change is given as  

[∆𝐸] = [𝑧𝑠][∆𝐼]                          (11) 

Take the advantage of good amount of change in current measurements to generate 

more accurate fault location result. This will be further demonstrated in case studies. One 

advantage of avoiding voltage measurements is the improved fault location estimation 

robustness to voltage measurement errors. 

 

2.5.2. FOR TWO-PHASE LINE FAULT (LG, LL, LLG) 

The fault current passing the fault resistances should be  

[
𝐼𝑓1

𝐼𝑓2

] = [
𝑍𝑟1𝑟2

+ 𝑅𝑓1
+ 𝑅𝑔 𝑍𝑟1𝑟2

+ 𝑅𝑔

𝑍𝑟1𝑟2
+ 𝑅𝑔 𝑍𝑟2𝑟2

+ 𝑅𝑓2
+ 𝑅𝑔

]
−1

∙ [
𝐸𝑟10

𝐸𝑟20
]        (12) 

where  

Rg fault resistance to the ground; 

𝑅𝑓1
, 𝑅𝑓2

                               fault resistance on corresponding fault 

nodes to ground fault resistance. 

Consider the voltage changes at substations node k1 and k2,  

∆𝐸𝑘1
= −𝑍𝑘1𝑟1

𝐼𝑓1
− 𝑍𝑘1𝑟2

𝐼𝑓2
                     (13) 

∆𝐸𝑘2
= −𝑍𝑘2𝑟1

𝐼𝑓1
− 𝑍𝑘2𝑟2

𝐼𝑓2
                     (14) 

To find the roots for these equations, Newton-Raphson method shall be utilized at this point. 
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By dividing above into 4 equations containing real and imaginary elements of fault location 

in each.  

 

2.5.3. FOR THREE-PHASE LINE FAULT (LG, LL, LLG, LLL, LLLG) 

For three-phase line fault, fault location is obtained by creating a relationship 

between fault current and fault node voltages as shown  

[

𝐼𝑓1

𝐼𝑓2

𝐼𝑓3

] = [

𝑍𝑟1𝑟1
+ 𝑅𝑓1

+ 𝑅𝑔

𝑍𝑟1𝑟2
+ 𝑅𝑔

𝑍𝑟1𝑟3
+ 𝑅𝑔

𝑍𝑟1𝑟2
+ 𝑅𝑔

𝑍𝑟2𝑟2
+ 𝑅𝑓2

+ 𝑅𝑔

𝑍𝑟2𝑟3
+ 𝑅𝑔

𝑍𝑟1𝑟3
+ 𝑅𝑔

𝑍𝑟2𝑟3
+ 𝑅𝑔

𝑍𝑟3𝑟3
+ 𝑅𝑓3

+ 𝑅𝑔

]

−1

∙ [

𝐸𝑟10

𝐸𝑟20

𝐸𝑟30

]   (15) 

And voltage change due to the fault at node k1, k2 and k3 of substation is 

∆𝐸𝑘1
= −𝑍𝑘1𝑟1

𝐼𝑓1
− 𝑍𝑘1𝑟2

𝐼𝑓2
− 𝑍𝑘1𝑟3

𝐼𝑓3
               (16) 

∆𝐸𝑘2
= −𝑍𝑘2𝑟1

𝐼𝑓1
− 𝑍𝑘2𝑟2

𝐼𝑓2
− 𝑍𝑘2𝑟3

𝐼𝑓3
               (17) 

∆𝐸𝑘3
= −𝑍𝑘3𝑟1

𝐼𝑓1
− 𝑍𝑘3𝑟2

𝐼𝑓2
− 𝑍𝑘3𝑟3

𝐼𝑓3
               (18) 

The pre-fault voltage data of the system was harnessed and complex equations were 

formed and solved using Least Square (LS) method [29]., the fault location and fault 

resistance could then be calculated.  

While applying this method, all sections of line in the proposed model were attempted. A 

list of possible fault locations was obtained and analyzed to narrow down and locate the 

actual fault location based on available information such as consumer complaint reports 

and weather condition records.  
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Chapter 3 SIMULATION MODEL 

 This section of the paper presents the developed simulation model and key supportive 

components in evaluation studies to test the discussed fault location methods. The tool used 

in this paper to aid testing was Simulink SimPowerSys module in Matlab 2017a [30]. A 

four-bus, 12.47kV, 60Hz unbalanced distribution system, as Figure 3.1, is built. Three-

phase, two-phase and single-phase loads and laterals were implemented with a 0.9 lagging 

power factor for all loads. For per unit system, 12.47kV and 1MVA were chosen to be base 

value for calculations. 

In order to generate inputs for the fault location algorithm in a large variety and 

furthermore to visualize comparisons on fault locations between model inputs and 

algorithm results, simulations had been run numerous times. Simulink SimPowerSys has a 

great potential to simulate a huge variety of electrical power system evaluations and 

monitor the associating behaviors. Simulink core modules also help significantly due to its 

powerful mathematical functionalities. Key features which contribute greatly in simulation 

procedure of this paper will be discussed in this chapter.  

  



2
2

 
  

Figure 3.1 Sample Distribution System Diagram 
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3.1. DATA COLLECTING AND RECORDING SECTION 

The overview of the fictitious distribution system model is shown Figure 3.1. The 

lower left part of the model is the main body of the fictitious distribution system. And the 

upper part plays a role of data collecting and recording throughout the simulation. Fast 

Fourier Transform (FFT) module has been harnessed to extract instant voltage and current 

phasers, which were recorded and saved into .m file for further analysis and fault location 

calculations. The algorithm requires the voltage and current data stream taken before and 

after the fault. In this paper FFT modules were used to measure voltage and current at 

fundamental frequency(60Hz). Note that there should be some inaccurate data flow during 

the first cycle of the simulation. Extra care had been taken to avoid using collected data 

taken during the first cycle or using non-constant data if newer version of FFT modules in 

Matlab 2017a were used, Figure 3.2. The Simulink SimPowerSys includes a more 

advanced FFT module in 2017 that is capable of holding the output at a user determined 

value for the first cycle of an Fourier Transformation procedure, in this paper it was set to 

be zero magnitude and zero phase angle. Voltage and current data was loaded to local files 

after collected from the model. Note in this specific format of file, the pattern of voltage 

and current data and respective phasor angles saved has a specific form which needs to be 

matched when extracting data from those files during fault location estimation procedure.  

 

Figure 3.2 Model of Fourier 

Transformation Block 
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3.2. MODELLING THE DISTRIBUTION SYSTEM SECTION  

A four-bus fictitious unbalanced distribution system was built in Simulink consisting 

of a three-phase voltage source, three-phase feeders, loads with three-phase, two-phase and 

single-phase, and corresponding laterals. A fictitious three-phase ground fault was added 

into the model made up of programable three phase breakers, according fault resistances 

and modified feeder/lateral impedance. Define the fictitious fault as Fault Unit. The 

modified feeder/lateral impedances involve the fault location parameter m that makes this 

specific part of line into two parts with a ratio of m/(1-m), with m being manually assigned 

every run regarding the test being run. As Figure 3.3, three-phase impedance (1-2)_1 and 

(1-2)_2 are modified with multiplier m or (1-m) in both unit inductance matrix and 

resistance matrix respectively.  

By adjusting the Fault Unit as the fault type and fault resistances indicate accordingly, 

faults with different type, fault type, fault location and fault resistance can be revised. In 

this research, all the loads are built as equivalent Z models or equivalent impedance models 

Figure 3.3 Fault Unit Section in Simulink Model 



25 
 

for convenience. CT and VT at local substation are represented by three phase voltage and 

current measurement block placed between source impedance and line impedance to 

simulate the realistic arrangement in power plant. Measurements were harnessed and 

delivered to data recording part of the model for further process.  
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Chapter 4 CASE STUDIES 

In this section, the results of simulations were presented in Figure 3.1.. Different case 

studies had been gone through including analysis upon fault location estimation accuracy, 

load variation impact on estimations of fault location and robustness test on voltage and 

current measurement errors. Some specific algorithm settings will be mentioned. 

Simulation procedure and Waveforms of voltage and current verse time during several 

types of faults, fault locations and fault resistances were generated. Using Matlab 

SimPowerSys in this section to simulate distribution system faults, key characteristics of 

this algorithm were revealed. During the simulation procedure, Discrete Fourier Transform 

(DFT) blocks were used to assist the algorithm, where phasers with fundamental frequency 

60Hz were harnessed both voltage and current.  

As shown in Figure 3.1, a fictitious distribution system with three-phase feeders and 

three-phase, two-phase and single-phase lateral and loads was implemented into the 

simulation. 

A few assumptions were made as follow. System voltage is based at 12.47 kV and all 

three loads are assumed to have 0.9 power factor. The laterals have the same number of 

phases as the load they are connected to. Last not the least, the system impedance 

information is as Appendix 6.4 including feeder impedances, later impedances, load 

impedances and source impedances.  

As for Matlab iteration procedures, fault location starts at 0.5 p.u., interphase fault 

resistances have a 1Ω starting value and 10Ω for ground resistances. No more than 10 

iterations were processed using this algorithm in Matlab and the concept of error was 

implemented as  
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%𝑒𝑟𝑟𝑜𝑟 =
𝐴𝑐𝑢𝑡𝑎𝑙 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑓𝑒𝑒𝑑𝑒𝑟
× 100          (19) 

A model of distribution system was created in Simulink and the pre-fault impedance 

matrix can be generated at the same time in Matlab for fault location algorithm. Different 

types of faults were imported into Simulink model and then data were recorded and saved 

in .mat files.  

 

4.1. TEST RESULTS  

4.1.1. SIMULATION RESULTS  

Simulation generates the input for the fault location algorithm, meanwhile it is capable 

to present some key features on the specific types of faults, which helps greatly in locating 

the fault section and fault type through reverse interpretation. For example, a voltage sag 

generally indicates a short circuit was created unexpectedly, in which case grounded or 

interphase connection was built up somehow [5]. A current drop may be introduced by a 

breaker tripping or an open circuit situation took place somewhere along that cable [4]. In 

this part of the article, several types of behavior of voltage and current during a fault will 

be presented and discussed.  

Let us assign a short circuit single-phase line to ground fault occurring between bus 1 

and bus 2, per unit fault location m being 0.2, phase fault resistance being 10Ω and ground 

fault resistance being 50Ω.  

Figure 4.1 shows the three phase voltages during a phase A LG fault. It is evidence 

that there is a voltage drop on phase A at time 0.05s also known as the third cycle of the 

signal which is the time to trip the breaker that simulates faults. Figure 4.2 is the graph for 

three-phase current during phase A LG fault. It is apparent that current change is much 
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more dramatical than voltage change in this case. As a matter of fact, this rule applies to 

all the kinds of faults and furthermore being part of the reason why current measurements 

are used in fault location estimation algorithm in this paper instead of voltage 

measurements. Figure 4.4 shows the voltages at substation during a LL fault at section 1-2 

with a totally fault resistance being 20Ω, indicating that the voltage of phase A raised up 

and voltage of phase B dropped down clearly. Current change under this condition is shown 

Figure 4.3, where the currents of both phase A and phase B were increased significantly. 

For LLG fault condition, other parameters remained the same except phase A fault 

resistance being 2Ω, phase B fault resistance being 4Ω, and ground fault resistance being 

13Ω. As Figure 4.5 and Figure 4.6 presents, there have been a voltage drop on phase A and 

phase B accompanied with line current increases at the same period time. Noticeably phase 

voltage and line current of phase B received more changes than phase A in this particular 

system.  

To examine the phase voltages and line currents behaviors under three phase LLL fault 

condition, phase C phase fault resistance was added in the fault unit as 5Ω and ground 

fault resistance was eliminated. Simulation results of three phase voltage and current were 

obtained in Figure 4.7 and Figure 4.8. It is evidential that all three phases have voltage 

drops and current skyrocketing increases and phase A gained the most amount of changes. 

Considering the unequal fault resistances in each phase, the result fits expectations.  

As for LLLG fault, ground fault resistance was reintroduced into the model with a 

resistance value of 10Ω. In some LLLG fault location estimation cases, each single-phase 

fault resistance was treated as identical hence LLLG faults can be equivalent to a 

superposition of three LG faults. In this paper, unbalanced three phase fault resistance were 
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taken into consideration and the discussed algorithm has the ability to solve according 

problems. Figure 4.9 and Figure 4.10 display the three-phase phase voltage and line current 

behavior under LLLG fault condition with unequal fault resistances on each phase. The 

results mostly follow the LLL fault condition result, with an exception of a reduced phase 

A fault voltage.  

Initial simulation result fitted the expectation upon the fictitious distribution system 

and at the same time demonstrated the ordinary behaviors of typical kinds of faults with 

visualizations. Greater quantity of simulations had been performed and three-phase phase 

voltage and current data was saved into .mat files for followed algorithm process.  
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Figure 4.1Three Phase Voltage during Phase A LG Fault 

Figure 4.2Three Phase Current during Phase A LG Fault 
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Figure 4.3Three Phase Current during Phase AB LL Fault 

Figure 4.4Three Phase Voltage during Phase AB LL Fault 
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Figure 4.6Three Phase Current during Phase AB LLG Fault 

Figure 4.5Three Phase Voltage during Phase AB LLG Fault 
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Figure 4.7Three Phase Voltage during Phase ABC LLL Fault 

Figure 4.8Three Phase Current during Phase ABC LLL Fault 
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Figure 4.10Three Phase Current during Phase ABC LLLG Fault 

Figure 4.9Three Phase Voltage during Phase ABC LLLG Fault 
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4.1.2. ALGORITHM OVERALL PERFORMANCE 

In this part of the paper, the test results of fault location algorithm on faults with 

different fault type, fault resistances and fault locations were shown in detail in Table 4-1, 

Table 4-4 and Table 4-3.. Equivalent Z models were used to implement loads into bus 

impedance matrix following the definition of transfer impedance and transfer impedance. 

As a result, load variation would lead to a natural inconsistency of this algorithm, which 

will be discussed in later section. 

Fault 

Section

Fault 

Type

Fault 

Location 

(p.u.)

Fault 

Resistance 

(Ω)

F.L Error 

%
F.R. Estimation (Ω)

LG 0.2 60 0.01 60.09

LL 0.2 20 0.02 20.00

LLG 0.4 [2 4 13] 0.01 [2.00 4.00 13.00]

LLL 0.4 [2 4 5 ] 0.01 [2.00 4.00 5.00]

LLLG 0.4 [2 4 5 10] 0.01 [2.00 4.00 5.00 10.00]

LG 0.7 40 0.05 40.02

LL 0.6 10 0.02 10.00

LLG 0.6 [2 3 10] 0.02 [2.00 3.00 10.00]

LLL 0.5 [2 3 5] 0.02 [2.00 3.00 5.00]

LLLG 0.5 [2 3 5 50] 0.02 [2.00 3.00 5.00 50.00]

LG 0.3 20 0.03 20.00

LL 0.1 8 0.02 8.00

LLG 0.1 [4 5 40] 0.02 [4.00 5.00 40.01]

LLL 0.4 [4 5 7] 0.02 [4.00 5.00 7.00]

LLLG 0.4 [4 4 4 10] 0.02 [4.00 4.00 4.00 10.02]

LG 0.8 40 0.06 40.00

LL 0.9 10 0.01 10.00

LLG 0.9 [5 6 20] 0.01 [5.00 6.00 20.00]

LG 0.4 10 0.01 10.00

LL 0.3 2 0.01 2.00

LLG 0.3 [1 1 10] 0.01 [1.00 1.00 10.00]

LLL 0.5 [2 3 2] 0.01 [2.00 3.00 2.00]

LLLG 0.5 [3 4 3 15] 0.01 [3.00 4.00 3.00 15.00]

Bus4-7 LG 0.7 20 0.02 20.00

Bus1-2

Bus2-5

Bus2-3

Bus3-6

Bus3-4

Table 4-1 Fault Location and Fault Resistance Estimation Results 
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The first four columns indicate the input of the simulation, namely the fault section, 

fault type, fault location and fault resistances. For LLG, LLL and LLLG faults where 

different fault impedance between phases could be present, unequal fault impedances have 

been listed separately. For an instance, the fourth case where it was an LLL fault with a 0.6 

fault location, the fault resistances are labeled as [2 4 5] indicating that fault resistances 

between phases are 2 and 4 ohm and ground fault impedance is 5 ohm. Column 5 and 6 are 

placed with estimated fault locations and estimated fault impedances respectively, making 

it straightforward to witness the accuracy of the test results generated in different scenarios.  

 

4.1.3. PERFORMANCE UNDER MEASUREMENT ERROR 

In Table 4-2, the influence of measurement errors upon estimated fault location are 

presented. Error of estimated fault location for faults taking place in section 1 to 2 are listed 

through column 5, 6, 7 and 8, where current measurement errors were set to 0.5%, 1% and 

voltage measurement errors were set to 0,5% and 1% respectively.  First four column 

remain the same definitions as in Table 4-1. Current measurement error brings little error 

in estimated fault location column 5 and 6 shows, fault location errors remain little. In 

1% 

Current 

Error

4% 

Current 

Error

1% 

Current 

& 

Voltage 

Error

4% 

Current 

& 

Voltage 

Error

LG 0.2 60 0.02 0.02 0.02 0.02

LL 0.2 20 0.02 0.02 0.02 0.02

LLG 0.4 [2 4 13] 0.01 0.01 0.01 0.01

LLL 0.5 [1 3 5 ] 0.01 0.01 0.01 0.01

LLLG 0.6 [4 4 4 10] 0.01 0.01 0.01 0.01

Bus1-2

Fault Location Estimation error %

Fault 

Section

Fault 

Type

Fault 

Location 

(p.u.)

Fault 

Resistance 

(Ω)

Table 4-2 Fault Location Estimations under Measurement Errors 
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column 6 and 7, voltage and current measurement errors were set to be opposite otherwise 

they would diminish the overall error. However, in this algorithm voltage measurement 

error has zero impact on fault location estimation. The rest shows that the demonstrated 

algorithm has an excellent robustness to current and voltage measurement error.  

 

4.1.4. PERFORMANCE UNDER LOAD VARIATION  

It is unavoidable to take the algorithm into load variation test since equivalent 

impedance models were implemented to model the loads. Equivalent impedance method 

could perfectly demonstrate load under nominal condition, but load does change 

dramatically during some time of the day in realistic situation. In order to simulate load 

variation impact, a separate multiplier for equivalent impedance models was introduced in 

the algorithm Table 4-3 shows the impact of load variation on error of fault location 

estimation. Column 1 to 4 share the same meaning as in previous tables, and column 5, 6 

show the errors of estimated fault location for faults happening in section 1 to 2 while 5% 

and 10% load variation were implemented into the model. It is evidenced that load variation 

influences the estimation error in noticeable but acceptable degree.  

 5% load 

variation

 10% load 

variation

LG 0.2 60 0.67 1.31

LL 0.2 20 1.45 2.89

LLG 0.4 [2 4 13] 1.67 3.33

LLL 0.4 [2 4 5] 1.58 3.15

LLLG 0.4 [2 4 5 10] 1.57 3.14

Bus1-2

Fault Location 

Estimation Error %
Fault 

Section

Fault 

Type

Fault 

Location 

(p.u.)

Fault 

Resistance 

(Ω)

Table 4-3 Fault Location Estimation Results under Load Variations 
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4.1.5. PERFORMANCE UNDER LOAD COMPENSATION  

For the purpose of reducing the impact of load variation in the evaluated algorithm, 

load compensation method was utilized [14]. Bus impedance matrix method for pre-fault 

condition was utilized in this section. Firstly, according to equivalent impedance models, 

individual load level can be calculated based on pre-fault voltages and currents at each load. 

Then regarding on load level, load impedance model reactive power consumption can be 

determined.  

Table 4-4 illustrates the effectiveness of the load compensation technique. The 

effectiveness on countering errors of estimated fault location when applying the technique 

of load compensation for faults is presented in column 5 and 6, which display the fault 

location errors for cases utilizing load compensations corresponding for 5% and 10% load 

variations. Clearly the accuracy of fault location estimation has been significantly 

improved after adopting load compensation technique.   

5% load 

variation 

with load 

compens

ation

10% load 

variation 

with load 

compens

ation

LG 0.2 60 0.02 0.04

LL 0.2 20 0.05 0.10

LLG 0.4 [2 4 13] 0.06 0.12

LLL 0.4 [2 4 5 ] 0.05 0.11

LLLG 0.4 [2 4 5 10] 0.05 0.11

Bus1-2

Fault Location 

Estimation Error %

Fault 

Resistance 

(Ω)

Fault 

Location 

(p.u.)

Fault 

Type

Fault 

Section

Table 4-4 Fault Location Estimation Results under Load 

Variation while Implementing Load Compensations 
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Chapter 5 CONCLUSION 

Fault location method for unbalanced distribution systems without fault type 

information was investigated in this work. 

Methods involving phase to neutral voltage and line current measurements were 

demonstrated, thoroughly attending unbalanced system with minimum local measurements. 

The discussed method uses bus impedance matrix combining with utilizing circuit analysis 

techniques with minimum iteration steps. Evaluation studies were performed for a variety 

of faults. Every single kind of fault was taken into consideration including unbalanced 

interphase faults. The algorithm does not require fault type and fault resistance information. 

Remarkably, it only requires solving quadratic equation for LG faults and small amount of 

iterations for others. 

Test results have shown that the algorithm is able to achieve accurate fault location 

estimation and fault resistance with excellent robustness to voltage and current 

measurement errors along with load variations. Load compensations technique discussed 

in this paper successfully reduced the impact of load variations. This algorithm has huge 

potential for distribution system applications in the field.  
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Chapter 6 APPENDIX 

6.1. TRANSFER IMPEDANCE  

To find transfer impedance between node k and fictitious fault node ri, Zkri, no source is 

needed or influential in this procedure. And considering injecting 1 A current at node k, [3] 

𝐸𝑝1
− 𝐸𝑟1

= 𝑚(𝑧1𝐼1 + 𝑧12𝐼2 + 𝑧13𝐼3)                 (20) 

𝐸𝑝1
− 𝐸𝑞1

= 𝑧1𝐼1 + 𝑧12𝐼2 + 𝑧13𝐼3                   (21) 

Where p1 and q1 are the ends of the faulted section line. 

And the node voltage is  

𝐸𝑟1
= 𝐸𝑝1

− 𝑚(𝐸𝑝1
− 𝐸𝑞1

)                     (22) 

In this case there is no mutual impedance involved so the transfer impedance between node 

k and fictitious fault node ri, Zkri is 

𝑍𝑘𝑟1
= 𝑍𝑘𝑝1

− 𝑚(𝑍𝑘𝑝1
− 𝑍𝑘𝑞1

)                   (23) 

For convenience, assigning  

𝐵𝑘1 = 𝑍𝑘𝑝1
                            (24) 

𝐶𝑘1 = −(𝑍𝑘𝑝1
− 𝑍𝑘𝑞1

)                       (25) 

Then  

𝑍𝑘𝑟1
= 𝐵𝑘1 − 𝑚𝐶𝑘1                       (26) 

This equation applies to all kinds of fault and similar procedure derivation works on r2 and 

r3 
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6.2. TRANSFER IMPEDANCE BETWEEN FAULT NODE R AND FAULT NODE 

RS, Zr1r2 

Assuming no source was in the system, voltage of node ri shall be obtained as below after 

injecting 1 A current at node ri, [3] 

𝐸𝑟2
= 𝐸𝑝2

− 𝑚(𝑧2𝐼2 + 𝑧12𝐼1 + 𝑍23𝐼3)                 (27) 

𝐸𝑝2
− 𝐸𝑞2

= 𝑧2𝐼2 + 𝑧12𝐼1 + 𝑧23𝐼3 + (1 − 𝑚)𝑧12           (28) 

Then we can get  

𝐸𝑟2
= 𝐸𝑝2

− 𝑚(𝐸𝑝2
− 𝐸𝑞2

) + 𝑚(1 − 𝑚)𝑧12            (29) 

𝐸𝑝2
 and 𝐸𝑞2

 can be obtained as  

𝐸𝑝2
= 𝑍𝑝2𝑝1

− 𝑚(𝑍𝑝2𝑝1
− 𝑍𝑝2𝑞1

)                  (30) 

𝐸𝑞2
= 𝑍𝑞2𝑝1

− 𝑚(𝑍𝑞2𝑝1
− 𝑍𝑞2𝑞1

)                  (31) 

There we have node voltage 𝐸𝑟2
 which equals to transfer impedance 𝑍𝑟1𝑟2

  

𝑍𝑟1𝑟2
= 𝑍𝑝1𝑝2

+ 𝑚(𝑧12 − 2𝑍𝑝1𝑝2
+ 𝑍𝑝1𝑞2

+ 𝑍𝑞1𝑝2
) 

+𝑚2(𝑍𝑝1𝑝2
+ 𝑍𝑞1𝑞2

− 𝑍𝑝1𝑞2
− 𝑍𝑞1𝑝2

− 𝑧12)           (32) 

Here let’s define  

𝐴12_0 = 𝑍𝑝1𝑝2
                             (33) 

𝐴12_1 = 𝑧12 − 2𝑍𝑝1𝑝2
+ 𝑍𝑞1𝑝2

                      (34) 

𝐴12_2 = 𝑍𝑝1𝑝2
+ 𝑍𝑞1𝑞2

− 𝑍𝑝1𝑞2
− 𝑍𝑞1𝑝2

− 𝑧12                (35) 

Then 𝑍𝑟1𝑟2
 becomes 

𝑍𝑟1𝑟2
= 𝐴12_0 + 𝐴12_1𝑚 + 𝐴12_2𝑚2                   (36) 

where fault location m is the only variable.  

Similarly, other transfer impedance can be derived and results are shown in previous 

chapter. 
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6.3. DRIVING POINT IMPEDANCE Zr1r2 

Assume eliminating all the sources in the system and injecting 1 A current at node r1. We 

can obtain [3] 

𝑍𝑟1𝑟1
= 𝑍𝑝1𝑝1

+ 𝑚(𝑧1 − 2𝑍𝑝1𝑝1
+ 2𝑍𝑝1𝑞1

) + 𝑚2(𝑍𝑝1𝑝1
+ 𝑍𝑞1𝑞1

− 2𝑍𝑝1𝑞1
− 𝑧1) (37) 

Which is a function of fault location m. For convenience lets define  

𝐴11_0 = 𝑍𝑝1𝑝1
                             (38) 

𝐴11_1 = 𝑧1 − 2𝑍𝑝1𝑝1
+ 2𝑍𝑞1𝑝1

                    (39) 

𝐴11_2 = 𝑍𝑝1𝑝1
+ 𝑍𝑞1𝑞1

− 2𝑍𝑝1𝑞1
− 𝑧1                   (40) 

There we have driving point impedance 𝑍𝑟1𝑟1
 

𝑍𝑟1𝑟1
= 𝐴11_0 + 𝐴11_1𝑚 + 𝐴11_2𝑚2                   (41) 

Similarly, other driving point impedance at other fault nodes can be found with same 

procedure. 

 

6.4. PARAMETERS USED IN SIMULATION AND CASE STUDY 

Source impedance of source 1: 

positive-sequence: 0.23 + j2.10 ohm 

zero-sequence: 0.15 + j1.47 ohm 

The feeder series impedance matrix and later impedance matrices in ohms/mile are given 

as follows [31] 

Main feeders impedance matrix: 

zMFabc =[
0.3465 +  1.0179𝑖
0.1560 +  0.5017𝑖 
0.1580 +  0.4236𝑖

 0.1560 +  0.5017𝑖
0.3375 +  1.0478𝑖
 0.1535 +  0.3849𝑖

0.1580 +  0.4236𝑖
 0.1535 +  0.3849𝑖
0.3414 +  1.0348𝑖

]    (42) 

Three phase lateral impedance matrix: 
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zLFabc =[
0.7526 +  1.1814𝑖
0.1580 +  0.4236𝑖
 0.1560 +  0.5017𝑖

0.1580 +  0.4236𝑖   
0.7475 +  1.1983𝑖
 0.1535 +  0.3849𝑖 

0.1560 +  0.5017𝑖
0.1535 +  0.3849𝑖
0.7436 +  1.2112𝑖

]    (43) 

Two phase lateral impedance matrix: 

  zLF2p =[
1.3294 +  1.3471𝑖 0.2066 +  0.4591𝑖
0.2066 +  0.4591𝑖 1.3238 +  1.3569𝑖

]                    (44) 

Single phase lateral impedance matrix: 

zLF1p =[1.3292 +  1.3475𝑖]                                      (45) 

  



44 
 

REFERENCE  

 
 
 

[1]  Y. Y. D. Y. Q. C. G. T. Y. Z. D. S. H. Hou, "Analysis of the Defects of Power 

Equipment in the 2008 Snow Disaster n Southern China Area," vol. Vol 35(3), 2009.  

[2]  Z. B. G. K. S. N. Nikolovski, "Frequency and Time Response of Power Plant 

Grounding System Exposed to Lightning Strike," International Journal of Electrical 

and Computer Engineering , vol. Vol. 6, pp. pp. 512-525, 2016.  

[3]  Y. Liao, "Generalized Fault Location Methods for Overhead Electric Distribution 

System," IEEE Transactions on power delivery, 2011.  

[4]  Y. Liao, "A novel method for locating faults on distribution systems," Electric Power 

Systems Research, Vols. 21-26, no. 0378-7796, 2014.  

[5]  R. Weron, Modelling and forecasting electricity loads and prices, West Sussex, 

England: John Wiley & Sons Ltd, 2006.  

[6]  G. M. J. C. G. E. P. E.C. Senger, "Automated Fault Location System for Primary 

Distribution Networks," IEEE TRANSACTIONS ON POWER DELIVERY, vol. No. 2, 

April 2015.  

[7]  A. El-Zonkoly, "Fault diagnosis in distribution networks with distributed," Electric 

Power Systems Research, Vols. no. 7, pp. 1482-1490, July 2011.  

[8]  D. J. a. N. Moslemi, "Fault location for radial distribution system using fault," Turin, 

Italy, June 6-9, 2005.  

[9]  G. Ferrarese, Wave Propagation, Berlin, Heidelberg: Springer, 2011.  

[10]  L. Y. Y. Du, "On Line estimation of transmission line parameters, temperature and sag 

using PMU measurements," Electric Power System Research 93, no. 0378-7796, 

2012.  

[11]  H. H. F. D. X. Z. K. Y. Z. Li, "Power grid fault traveling wave network location 

method," Lake Buena Vista, FL, USA, Oct 2013.  

[12]  M. K. M. J. M. S. Lotfifard, "A systematic approach for ranking distribution systems 

fault location algorithms and eliminating false estimates," vol. Vol. 28 , no. No. 1, Jan. 

2013.  

[13]  J. Q. J. Suonan, "An accurate fault location algorithm for transmission line based on 

R-L model parameter identification," Electric Power System Research, Vols. 17-24, 

2005.  

[14]  X. Wang, "Fault Location algortihms, Observability and Optimality for Power 

Distribution Systems," Lexington, 2014. 

[15]  Y. A. A. J. R.K. AggarwaI, "New concept in fault location for overhead distribution 

system using superimposed components," IEE Proceedings. Generation, 

Transmission and Distribution, Vols. pp.309-316, May 1997.  

[16]  Y. L. N. Kang, "Double Circuit Transmission Line Fault Location Utilizing 

Synchronized Current Phasors," IEEE Transactions on Power Delivery, vol. No. 2, 

no. 0885-8977, 2013.  



45 
 

[17]  W. X. &. Y. Liao, "Optimal Fault-Location Estimation in Distribution Systems with 

Distributed Generations," vol. Vol 44 , no. Issue 3, Dec 2015.  

[18]  E. P. B. C. C. P. H. G. H. K. Y. L. M. A. M. A. M. P. R. M. S. C. T. j. V. J. W. D. P. 

Bruce, "Reducing outages through improved protection, monitoring, diagnostics and 

autorestoration in transmission substations - (69kV and Above)," vol. Vol 31, no. No 

3, 2016.  

[19]  Y. L. W. Xiu, "Development of a software tool for calculating transmission line 

parameters and updating related databases," vol. Vol. 15, no. issue 6, Dec. 2014.  

[20]  D. H. E. U. J. G. D. Novosel, "Unsynchronized two-terminal fault location 

estimation," IEEE Transaction on Power Delivery, vol. No. 1, no. 0885-8977, January 

1996.  

[21]  Y. L. W. Xiu, "Accurate Transmission Line Fault Location Considering Shunt 

Capacitances without Utilizing Line Parameters," Electric Power Compoments and 

Systems, Vols. 1783-1794, no. 1532-5008, 2011.  

[22]  M. C. Y. L. X. Liu, "Reactive power control methods for photovoltaic inverters to 

mitigate short-term voltage magnitude fluctuations," 2014.  

[23]  M. T. H. M. M. H. S. Asgarifar, "A novel fault location algorithm for double fed 

distribution networks," Wuhan, China, Sept. 2011.  

[24]  C. M. F. D. L. L. A. A. Girgis, "A fault location technique for rural distribution 

feeders," New Orleans, LA, March 1993.  

[25]  M. C. S. L. C. T. S. L. X. Yang, "Fault Location for Underground Power Cable Using 

Distributed Parameter Approach," IEEE TRANSACTION POWER SYSTEMS, vol. 

NO. 4, no. 0995-8950, NOVEMBER 2008.  

[26]  B. K. K. S. D. F. J. F.V. Lopes, "Fault location on transmission lines little long than 

half-wavelength," Electri Power System Research , no. 0378-7796, 2014.  

[27]  T. S. Z. Xu, "Fault Location Method Based on Singl-End Measurements for 

Underground Cables," IEEE TRANSACTIONS ON POWER DELIVERY, vol. NO. 4, 

no. 0885-8977, OCTOBER 2011.  

[28]  S. J. Chapman, Electric Machinery and Power System Fundamentals, McGraw Hill 

Higher Education, 2002.  

[29]  J. G. a. W. Stevenson, Power System Analysis, New york: McGraw-Hill, 1994.  

[30]  R. C. Carter, Introduction to Electrical Circuit Analysis, New York: Holt, Rinehart 

and Winston, 1966.  

[31]  V. W. W. C. J. H. V. Esposito, Handbook of Partial Lease Squares Concepts, Methods 

and Applications, Berlin: Springer Berlin Heidlberg, 2010.  

[32]  "MATLAB User Guide".  

[33]  W. H. Kersting, "Radial distribution test feeders," 2001.  

 
 

  



46 
 

VITA 

Yizhe Li 

PLACE OF BIRTH 

Song Yuan City, Jillin Province, China 

EDUCATION  

B.S. Electrical and Electronic Engineering, Strathclyde University, Scotland, May 2015 

B.S. Electrical and Electronic Engineering, North China Electric Power University, May 

2015 


	A FAULT LOCATION ALGORITHM FOR UNBALANCED DISTRIBUTION SYSTEM WITHOUT FAULT TYPE INFORMATION
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	TABLE OF FIGURES
	LIST OF TABLES
	Chapter 1 INTRODUCTION
	1.1. POWER SYSTEM FAULT BACKGROUND
	1.2. CURRENT PUBLISHED TECHNIQUES FOR POWER SYSTEM FAULT.
	1.2.1. METHODS INVOLVING TRAVELLING WAVE ANALYSIS TECHNIQUE
	1.2.2. METHODS INVOLVING FAULT VOLTAGE AND CURRENT ANALYSIS
	1.2.3. METHODS INVOLVING DIRECT CIRCUIT ANALYSIS
	1.2.4. FAULT LOCATION ALGORITHM FOR UNDERGROUND SYSTEM


	Chapter 2 FAULT LOCATION METHODS FOR UNBALANCED DISTRIBUTION SYSTEMS
	2.1. FUNDAMENTALS OF ALGORITHM
	2.2. FAULT LOCATION METHOD FOR DISTRIBUTION SYSTEMS
	2.3. TRANSFER IMPEDANCE AND DRIVING POINT IMPEDANCE
	2.4. BUS VOLTAGE DURING THE FAULT
	2.5. DERIVING FAULT LOCATION
	2.5.1. FOR SINGLE-PHASE LINE (LG)
	2.5.2. FOR TWO-PHASE LINE FAULT (LG, LL, LLG)
	2.5.3. FOR THREE-PHASE LINE FAULT (LG, LL, LLG, LLL, LLLG)


	Chapter 3 SIMULATION MODEL
	3.1.  DATA COLLECTING AND RECORDING SECTION
	3.2. MODELLING THE DISTRIBUTION SYSTEM SECTION

	Chapter 4 CASE STUDIES
	4.1. TEST RESULTS
	4.1.1. SIMULATION RESULTS
	4.1.2. ALGORITHM OVERALL PERFORMANCE
	4.1.3. PERFORMANCE UNDER MEASUREMENT ERROR
	4.1.4. PERFORMANCE UNDER LOAD VARIATION
	4.1.5. PERFORMANCE UNDER LOAD COMPENSATION


	Chapter 5 CONCLUSION
	Chapter 6 APPENDIX
	6.1. TRANSFER IMPEDANCE
	6.2. TRANSFER IMPEDANCE BETWEEN FAULT NODE R AND FAULT NODE RS, Zr1r2
	6.3. DRIVING POINT IMPEDANCE Zr1r2
	6.4. PARAMETERS USED IN SIMULATION AND CASE STUDY

	REFERENCE
	VITA

