1-7-2017

Functional and Structural Studies on the *Neisseria gonorrhoeae* GmhA, the First Enzyme in the glyceromanno-heptose Biosynthesis Pathways, Demonstrate a Critical Role in Lipooligosaccharide Synthesis and Gonococcal Viability

Igor H. Wierzbicki
Oregon State University

Ryszard A. Zielke
Oregon State University

Konstantin V. Korotkov
University of Kentucky, kkorotkov@uky.edu

Aleksandra E. Sikora
Oregon State University

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/biochem_facpub

Part of the [Bacteria Commons](https://uknowledge.uky.edu/biochem_facpub), [Biochemistry, Biophysics, and Structural Biology Commons](https://uknowledge.uky.edu/biochem_facpub), and the [Microbiology Commons](https://uknowledge.uky.edu/biochem_facpub)

Repository Citation

https://uknowledge.uky.edu/biochem_facpub/118

This Article is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Molecular and Cellular Biochemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Functional and Structural Studies on the Neisseria gonorrhoeae GmhA, the First Enzyme in the glycero-manno-heptose Biosynthesis Pathways, Demonstrate a Critical Role in Lipooligosaccharide Synthesis and Gonococcal Viability

Notes/Citation Information
Published in Microbiology Open, v. 6, issue 2, e00432, p. 1-16.

© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)
https://doi.org/10.1002/mbo3.432
Functional and structural studies on the *Neisseria gonorrhoeae* GmhA, the first enzyme in the *glycero-manno*-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability

Igor H. Wierzbicki | Ryszard A. Zielke | Konstantin V. Korotkov | Aleksandra E. Sikora

1Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
2Department of Molecular & Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA

Correspondence
Aleksandra E. Sikora, Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA.
Email: Aleksandra.Sikora@oregonstate.edu

Funding information
National Institute of General Medical Sciences, Grant/Award Number: P30GM110787 and P20GM103486; National Institute of Allergy and Infectious Diseases, Grant/Award Number: R01-AI117235.

Abstract
Sedoheptulose-7-phosphate isomerase, GmhA, is the first enzyme in the biosynthesis of nucleotide-activated-*glycero-manno*-heptoses and an attractive, yet underexploited, target for development of broad-spectrum antibiotics. We demonstrated that GmhA homologs in *Neisseria gonorrhoeae* and *N. meningitidis* (hereafter called GmhA_{GC} and GmhA_{NM}, respectively) were interchangeable proteins essential for lipooligosaccharide (LOS) synthesis, and their depletion had adverse effects on neisserial viability. In contrast, the *Escherichia coli* ortholog failed to complement GmhA_{GC} depletion. Furthermore, we showed that GmhA_{GC} is a cytoplasmic enzyme with induced expression at mid-logarithmic phase, upon iron deprivation and anaerobiosis, and conserved in contemporary gonococcal clinical isolates including the 2016 WHO reference strains. The untagged GmhA_{GC} crystallized as a tetramer in the closed conformation with four zinc ions in the active site, supporting that this is most likely the catalytically active conformation of the enzyme. Finally, site-directed mutagenesis studies showed that the active site residues E65 and H183 were important for LOS synthesis but not for GmhA_{GC} function in bacterial viability. Our studies bring insights into the importance and mechanism of action of GmhA and may ultimately facilitate targeting the enzyme with small molecule inhibitors.

KEYWORDS
crystal structure, drug target, *Neisseria gonorrhoeae*, sedoheptulose-7-phosphate isomerase GmhA

1 | INTRODUCTION

The World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC) emphasized an urgent need for the development of antimicrobials with novel modes of action against antibiotic-resistant threats with severe consequences for public health, including infections caused by drug-resistant *Neisseria gonorrhoeae* (Centers for Disease Control and Prevention, 2013a, 2013b; World Health Organization, 2012, 2015). Gonorrhea is highly prevalent throughout the world, and if untreated or inadequately treated, often leads to serious repercussions on reproductive health including ectopic pregnancy, pelvic inflammatory disease, and infertility (Centers For
targeting the heptose enzymes in the nucleotide-activated-glycero-manno-heptose pathways is a relatively unexplored field, although it appears to be an alternative approach to the discovery of broad-spectrum antibacterial drugs (Bauer, Stevens, & Hansen, 1998; Darby, Ananth, Tan, & Hinnebusch, 2005; Tamaki, Sato, & Matsushashi, 1971; Valvano, Messner, & Kosma, 2002). Nucleotide-activated-glycero-manno-heptoses, while absent in eukaryotic cells, are widely present in bacteria and are crucial components of the lipopolysaccharides (LPS), lipooligosaccharides (LOS), capsules, O-antigens, and glycan moieties of bacterial cell surface (S-layer) glycoproteins (Valvano et al., 2002). In particular, one such potential drug target of significant interest is sedoheptulose-7-phosphate isomerase, GmhA, annotated previously as TfrA (Havekes, Lugtenberg, & Hoekstra, 1976) and LpcA (Brooke & Valzano, 1996a). GmhA is conserved in many Gram-negative and some Gram-positive bacteria and is responsible for catalyzing isomerization of the D-sedoheptulose 7-phosphate into D-glycero-α,β-D-manno-heptose-7-phosphate (Eidels & Osborn, 1974), which is the first and common step for parallel biosynthetic pathways leading to generation of GDP-D-glycero-α-D-manno-heptose (D,D-heptose) and ADP-L-glycero-β-D-manno-heptose (LD-heptose; reviewed in Ref: [Valvano et al., 2002]). D,D-heptose is required for glycosylation of flagella and capsular polysaccharides, and for the assembly of disaccharide repeating units (D,D-heptose linked to L-rhamnose) composing the S-layer glycan in the Gram-positive Eubacterium, Aneurinibacillus thermoaerophilus DSM 10155 (Eidels & Osborn, 1974; Kosma, Wugeditsch, Christian, Zayni, & Messner, 1995; Wugeditsch et al., 1999). LD-heptose is used for glycosylation of capsular polysaccharides (Valvano et al., 2002) and as a primary building block of LPS/LOS core oligosaccharide (Brooke & Valzano, 1996a; Eidels & Osborn, 1971). In addition, a large family of bacterial autotransporter heptosyltransferases (BAHTs) utilizes LD-heptose as a sugar donor to modify serine residues on their substrate autotransporters, which has a significant impact on the virulence of Gram-negative pathogens (Lu, Li, & Shao, 2015). The LD-heptose is synthesized in sequential reactions catalyzed in order by GmhA-HldE[HldA]-GmbB-HldE[HldC]-HldD [reviewed in Refs: (Raetz & Whitfield, 2002; Valzano et al., 2002)]. Usually one or more LD-heptose molecules and two 2-keto-3-deoxy-D-manno-oct-2-ulosonic acid (KDO) residues form the inner portion (lipid A proximal) of the LPS/LOS core oligosaccharide, which is typically more conserved than the structurally diverse outer core (Raetz & Whitfield, 2002). Similarly, gonococcal LOS contain two basal heptose molecules, designated Hep I and Hep II, forming elongation centers α, β, and γ (Gibson et al., 1989; John, Griffiss, Apicella, Mandrell, & Gibson, 1991; Yamasaki, Bacon, Nasholds, Schneider, & Griffiss, 1991). The individual chains can be decorated with structures that mimic human carbohydrate epitopes (α chain linked to Hep I; Apicella & Mandrell, 1989); a single glucose, lactose, or glucose with additional sugars (β chain extending from Hep II; Gibson et al., 1989; Yamasaki et al., 1994); and GlcNac, GlcNac acetate, or occasionally galactose (γ chain; Mcleod Griffiss, Brandt, Saunders, & Zollinger, 2000). In addition, phosphate or phosphoethanolamine groups may be attached to the heptose residues (Preston, Mandrell, Gibson, & Apicella, 1999; Raetz & Whitfield, 2002). The phosphoric residues participate in the ionic interactions between LPS/LOS and outer membrane proteins, as well as divalent cations, providing a barrier against entry of detergents, antibiotics, and hydrophobic compounds (Preston et al., 1999; Raetz & Whitfield, 2002). The N. gonorrhoeae heptose-monophosphate was recently linked with the clinical and epidemiological synergy of gonorrhea and HIV (Malott et al., 2013). At the molecular level, this interplay involves the unique ability of gonococci to efficiently liberate phosphorylated LD-heptose into the extracellular milieu, which elicits an immune response and induces HIV-1 expression and viral production in cluster of differentiation 4-positive (CD4+) T cells (Malott et al., 2013).

Mutations in genes encoding GmhA in different bacterial species examined to date resulted in pleiotropic effects including production of truncated LPS/LOS composed of lipid A and KDO residues, increased susceptibility to antibiotics and detergents, impaired biofilm formation, and attenuated virulence (Aballay, Drenkard, Hilbun, & Ausubel, 2003; Bauer et al., 1998; Brooke & Valzano, 1996b; Darby et al., 2005). In addition, lack of HldA, which acts immediately downstream from GmhA in the LD-heptose biosynthetic pathway, rendered gonococci unable to induce HIV-1 expression (Malott et al., 2013). Therefore, we propose GmhA in N. gonorrhoeae, GmhA_GC as a molecular target for the development of new antagonist drugs. Herein, we performed characterization of GmhA_GC at the molecular, functional, and structural levels to facilitate the future targeting of this enzyme with small molecule inhibitors.

2 | EXPERIMENTAL PROCEDURES

2.1 | Bacterial strains and growth conditions

Strains of bacteria used in this study are listed in Table 1. Neisseria gonorrhoeae and N. meningitidis were cultured either on gonococcal base solid medium (GCB, Difco), or in gonococcal base liquid (GCBL) medium supplemented with Kellogg’s supplement I and II in ratios 1:100 and 1:1000, respectively (Spence, Wright, & Clark, 2008). GCBL was additionally supplemented with sodium bicarbonate at a final concentration of 0.042%. In vitro host-relevant growth conditions (iron deprivation, presence of normal human serum, anoxia) were procured as described previously (Zielke et al., 2016). Neisseria were cultured on solid media for 18–22 hr at 37°C in the presence of 5% atmospheric CO2. For N. gonorrhoeae, piliated or nonpiliated variants were passaged onto GCB and incubated for additional 18–22 hr.
Technologies. Genomic DNA of gonococcal strains, software version 2.8 (GSL Biotech LLC) and synthesized by IDT (NC_003112), and WIERZBICKI Et al. mutagenesis, and transcomplementation of Oligonucleotides were designed based on the genomic sequence Genetic manipulations, site-directed |

Colonies with piliated morphology were used for DNA transforma -

E. coli g/ml. For:

strains were grown either on Luria–Bertani agar (LBA,

Escherichia coli g/ml. For:

μ g/ml, erythromycin 250 μ g/ml, kanamycin 50

Difco) or cultured in Luria–Bertani broth (LB, Difco) at 37°C. Bacterial strains used in this study TABLE 1 | N. gonorrhoeae Bacterial strains Reference N. meningitidis FA1090 (Connell et al., 1988) MS11 (Meyer, Mlawer, & So, 1982) 1291 (Apicella, Breen, & Gagliardi, 1978) F62 (Sparking, 1966) FA1090 ΔgmhA_{GC}/P_{lac}::gmhA_{GC} This study FA1090 ΔgmhA_{GC}/P_{lac}::gmhA_{GC}, E65A This study FA1090 ΔgmhA_{GC}/P_{lac}::gmhA_{GC}, H183A This study FA1090 ΔgmhA_{GC}/P_{lac}::gmhA_{NM} This study Baltimore collection 1991–1994: LGB1, LG14, LG2, LGB26, LG20 (Garvin et al., 2008; Zielke et al., 2014) Clinical isolates from Public Health–Seattle & King County Sexually Transmitted Disease Clinic: UW01, UW02, UW03, UW04, UW05, UW06, UW07, UW08, UW09, UW10, UW11, UW12, UW13 (Zielke et al., 2016) 2016 WHO reference strains:F, G, K, L, M, N, O, P, W, X, Y, Z, U, V (Unemo et al., 2016) N. meningitidis MC58 (McGuinness et al., 1991) MC58 ΔgmhA_{NM}/P_{lac}::gmhA_{NM} This study MC58 ΔgmhA_{NM}/P_{lac}::gmhA_{GC} This study E. coli MC1061 (Casadaban & Cohen, 1980) BL21(DE3) (Studier & Moffatt, 1986) Colonies with piliated morphology were used for DNA transformation, while nonpiliated variants were used in all other experiments. Escherichia coli strains were grown either on Luria–Bertani agar (LBA, Difco) or cultured in Luria–Bertani broth (LB, Difco) at 37°C. Antibiotics were used on selected bacteria in the following concentrations: for N. gonorrhoeae: kanamycin 40 μg/ml, erythromycin 0.5 μg/ml; for N. meningitidis: kanamycin 80 μg/ml, erythromycin 2 μg/ml; for E. coli: kanamycin 50 μg/ml, erythromycin 250 μg/ml. 2.2 | Genetic manipulations, site-directed mutagenesis, and transcomplementation Plasmids and primers used in this study are listed in Table S1. Oligonucleotides were designed based on the genomic sequence of N. gonorrhoeae FA1090 (NC_002946), N. meningitidis MC58 (NC_003112), and E. coli BL21(DE3) (NC_012892) using SnapGene software version 2.8 (GSL Biotech LLC) and synthesized by IDT Technologies. Genomic DNA of gonococcal strains, N. meningitidis MC58, and E. coli BL21(DE3) was isolated with the Wizard genomic DNA Purification Kit (Promega). PCR products and plasmid DNA were purified using QIAprep Spin Miniprep Kit (QIAGEN). PCR reactions were performed using chromosomal or plasmid DNA as template, appropriate oligonucleotides, and Q5[®] High-Fidelity DNA Polymerase (NEB). E. coli MC1061 was used as the host during the molecular cloning and site-directed mutagenesis procedures. All created constructs and suppressor mutations in ΔgmhA_{GC}/P_{lac}::gmhA_{GC} were verified by Sanger Sequencing at the Center for Genomic Research and Biocomputing at Oregon State University. Transformation of N. gonorrhoeae and N. meningitidis was performed as described previously (Alexander, Richardson, & Stojilkovic, 2004; Zielke et al., 2014).

The recombinant GmhA_{GC} (rGmhA_{GC}) containing N-terminal-6 × His-tag followed by the tobacco etch virus (TEV) protease recognition site was obtained by amplifying the DNA region of the ngo1986 lacking stop codon with primers rNGO1986-F and rNGO1986-R and cloning the obtained PCR product (615 bp) into NcoI/HindIII sites of pRSF-NT (Table S1). The conditional GmhA_{GC} mutant, FA1090 ΔgmhA_{GC}/P_{lac}::gmhA_{GC} was constructed using a strategy as described by (Zielke et al., 2016) by placing an additional copy of ngo1986 under the control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter, P_{lac}, within an intergenic region located between lacP and aspC in the FA1090 chromosome (Mehr, Long, Serkin, & Seifert, 2000) and a subsequent in-frame replacement of the ngo1986 in its native chromosomal locus with the nonpolar kanamycin resistance cassette. Specifically, the ngo1986 containing its native ribosomal binding site (RBS) was amplified with primers NGO1986-RBS-F and NGO1986-RBS-R. The resulting 628 bp PCR product was digested with FseI and inserted into Scal/Fsel-treated pGCC4, yielding pGCC4-GmhA_{GC}. After transformation of FA1090 with pGCC4-GmhA_{GC} gonococci were selected on GCB with 0.5 μg/ml erythromycin and verified by PCR with primers pGCC4-Ver-F and pGCC4-Ver-R.

The constructs for deletion of gmhA_{GC} were obtained by amplification of the 552 bp upstream DNA region and 571 bp downstream from ngo1986 with primers NGO1986-UP-F/NGO1986-UP-R and NGO1986-Down-F/NGO1986-Down-R, respectively. The upstream fragment was digested with EcoRI/KpnI and cloned into similarly cleaved pUC18K, yielding pUC18K-GmhA_{GC}-Up. Next, the downstream fragment was inserted into the BamHI/HindIII-cleaved pUC18K-GmhA_{GC}-Up. The resulting pUC18K-GmhA_{GC} was linearized with HindIII and used to transform FA1090 carrying the second copy of GmhA on the chromosome, FA1090P_{lac}::gmhA_{GC}. Clones were selected on a solid medium supplemented with kanamycin and 0.1 mmol/L IPTG, and verified by PCR with NGO1986-Ver-F and NGO1986-Ver-R primers. Subsequently, selected gonococci were further verified by immunoblotting analyses using anti-GmhA_{GC} antisera.

To generate GmhA_{GC}E65A and GmhA_{GC}H183A, the template for site-directed mutagenesis (pUC18-GmhA_{GC}) was constructed by amplifying ngo1986 with its native RBS using primers NGO1986-RBS-F and NGO1986-RBS-R and cloning into Smal-cleaved pUC18. Site-directed mutagenesis was performed using the template; primer pairs E65A-F/E65A-R or H183A-F/H183A-R, respectively, and Q5
Site-Directed Mutagenesis Kit (NEB), according to the manufacturer’s manual. Subsequently, the mutated variants of GmhA_{GC} were amplified with NGO1986-RBS-F and NGO1986-RBS-R, cleaved with FseI, and cloned into ScaI/FseI-digested pGCC4, introduced into the FA1090 chromosome, and the native ngo1986 was deleted as described above.

For transcomplementation studies, GmhA homologs from N. meningitidis MSC8 (nmb2090) and E. coli BL21(DE3) (ECBD_3400) were amplified with primer pairs NGO1986-RBS-F/NGO1986-RBS-R and ECBD3400-RBS-F, respectively. The resulting PCR products were digested with FseI and introduced into ScaI/FseI-digested pGCC4. Introduction into the FA1090 chromosome and deletion of GmhA were performed as outlined above.

The cytoplasmic marker control for subfractionation experiments, the zwf gene (ngo0715) encoding glucose-6-phosphate-1-dehydrogenase was amplified using primers RAZ548 and RAZ549. The PCR product was cleaved with NcoI and HindIII and cloned into pRSF-NT to obtain plasmid pRSF-NT-Zwf.

2.3 | Proteine subfractionation procedures

Colonies of N. gonorrhoeae FA1090 were collected from GCB, suspended in 500 ml of GCBL to OD_{600} of 0.1, and cultured with aeration at 37°C until OD_{600} of ~0.8. Bacterial cells were separated from the suspension by centrifugation (10 min, 6,000g, 4°C). The crude cell envelopes were purified using a sodium carbonate extraction procedure while naturally released membrane vesicles (MVs) and soluble proteins (SS) were fractionated from culture supernatants by ultracentrifugation as described previously (Zielke et al., 2016).

2.4 | GmhA_{GC} depletion studies

Colonies of FA1090 ΔgmhA_{GC}/p_{lac}::gmhA_{GC} were collected with a cotton swab from GCB supplemented with 10 μmol/L IPTG and suspended in GCBL to OD_{600} of 0.1. After two washes in prewarmed GCBL, bacterial suspension was split and incubated with shaking (220 rpm) with or without IPTG for 3 hr at 37°C. Cultures were back-diluted to OD_{600} of 0.1 in fresh GCBL, as described above, and cultured for additional 6 hr. At specific time points indicated in the text, OD_{600} measurements were taken, samples for western blotting and LOS isolation were withdrawn, and cultures were serially diluted followed by plating on GCB for enumeration of colony-forming units (CFUs). Experiments were performed on three separate occasions and mean values and SEM are presented.

2.5 | Isolation of LOS and silver staining

LOS was isolated from N. gonorrhoeae and N. meningitidis based on the method described previously (Hitchcock & Brown, 1983). Bacteria were either collected from GCB or GCBL, as specified in the text, suspended in 1.5 ml of GCBL to OD_{600} of 0.2 and spun down for 1.5 min at 15,000g. Pelleted cells were lysed by addition of 50 μl of lysis buffer (2% SDS, 4% β-mercaptoethanol, 10% glycerol, 1mol/L Tris-HCl pH 6.8, and 0.01% bromophenol blue) and incubation at 100°C for 10 min. Samples were allowed to cool down to room temperature and proteins were digested by addition of 25 μg proteinase K in 10 μl of lysis buffer and incubated for 1 hr at 60°C. Isolated LOS was resolved on 16.5% Mini-PROTEAN® Tris-Tricine Gel (Bio-Rad) and visualized by a silver staining procedure (Tsai & Frasch, 1982).

2.6 | Fitness assessment

Colonies of different neisserial strains, as indicated in the text, were collected from GCB and reconstituted in GCBL to OD_{600} of 0.1. Bacterial cultures were incubated in the absence of IPTG for 3 hr at 37°C with aeration and subsequently back-diluted to OD_{600} of 0.2, serially diluted, and plated on GCB with or without IPTG for CFUs scoring. Experiments were repeated in three biological replicates and mean values with corresponding SEM are presented.

2.7 | Purification of the rGmhA_{GC} and rZwf and production of polyclonal rabbit antibodies

E. coli BL21(DE3) strain carrying either pRSF-NT-GmhA_{GC} or pRSF-NT-Zwf was used as heterologous host for overproduction and purification of rGmhA_{GC} and recombinant Zwf (rZwf), respectively. Overnight cultures were back-diluted in 2.0 L of LB supplemented with kanamycin and incubated with aeration at 37°C until the optical density (OD_{600}) reached ~0.5. Overproduction of rGmhA_{GC} and rZwf was induced with 0.1 and 1 mmol/L IPTG, respectively, and cultures were incubated for additional 3 hr at 37°C. Cells were harvested by centrifugation (6,000g, 10 min, 4°C). Pelleted bacteria carrying pRSF-NT-GmhA_{GC} were suspended in lysis buffer (20 mmol/L Tris-HCl pH 7.0, 1 mol/L NaCl, 10 mmol/L imidazole, 5% glycerol) supplemented with a Pierce Protease Inhibitor Mini Tablet (Thermo Scientific) and lysed by passing six times through a French pressure cell at 12,000 psi. Cell debris and unbroken cells were separated from soluble protein fraction by centrifugation at 16,000g for 30 min at 4°C. The supernatant was passed through 0.22 μm membrane filter (VWR International) and applied onto Bio-Scale MiniProfinity IMAC cartridges (Bio-Rad) on the NGC Scout Chromatography system (Bio-Rad). Loosely bound proteins were removed with 10 column volumes of wash buffer (20 mmol/L Tris-HCl pH 8.0, 500 mmol/L NaCl, 40 mmol/L imidazole) and elutions were conducted with a 40–250 mmol/L imidazole gradient. Fractions containing rGmhA_{GC} were combined and a PD-10 column (GE Healthcare) was used to exchange the buffer to 20 mmol/L HEPES pH 7.5, 100 mmol/L NaCl, 5% glycerol. Subsequently, the N-terminal-6 × His-tag of the rGmhA_{GC} was removed by TEV protease. Cleavage reaction was prepared by mixing rGmhA_{GC} with TEV in 20:1 (w:w ratio) in 500 μl of cleavage buffer (0.5 mol/L Tris-HCl pH 8.0, 5 mmol/L EDTA), 10 μl of 0.5 mol/L DTT, and 500 μl of Ni-NTA agarose (Qiagen) equilibrated with cleavage buffer. Following overnight incubation at room temperature, cleavage mixture was loaded onto a 5 μl polypropylene column (Thermo Scientific) and supernatant containing 6 × His-tag-free rGmhA_{GC} was collected. To remove residual TEV protease that coeluted with rGmhA_{GC}, the mixture was incubated again with 500 μl of Ni-NTA agarose
Purification of rZwf was accomplished using the same procedures as described above with the following modifications. E. coli cells were resuspended in lysis buffer (20 mmol/L Tris- HCl pH 8.0, 10 mmol/L imidazole, 450 mmol/L NaCl). Cells were lysed using French Press and rZwf was purified using 5 ml Bio-Scale Mini Nuvia IMAC Ni-Charged column (Bio-Rad) connected to a NGC Chromatography System (Bio-Rad). Bound peptides were eluted using elution buffer (20 mmol/L Tris- HCl pH 8.0, 250 mmol/L imidazole, 450 mmol/L NaCl). Fractions containing proteins were pooled, EDTA and DTT were added to final concentrations of 0.5 mmol/L and 1 mmol/L, respectively, and the His-tag was removed by overnight incubation with TEV protease (ratio 1:100 w/w). After cleavage, the proteins were separated using Hi Load 16/600 Superdex 75 pg column (GE Healthcare) and buffer containing 20 mmol/L Tris pH 8, 150 mmol/L NaCl connected to the NGC Chromatography System. Fractions containing Zwf were pooled together and concentrated using 10 kDa Vivaspin 20 concentrators (GE Healthcare). Glycerol was added to a final concentration of 10% and the protein was aliquoted and stored at −80°C.

The polyclonal rabbit anti-GmhA GC and anti-Zwf antibodies were generated using 6 x His-tag-free rGmhA GC and rZwf, respectively. Standard 13-week antibody production protocols were applied, utilizing four New Zealand White rabbits, animal handling was performed according to the Animal Protocol #1 approved by IACUC, in a certified animal facility (USDA 93- R- 283) and the NIH Animal Welfare Assurance according to the Animal Protocol #1 approved by IACUC, in a certified facility (USDA 93- R- 283) and the NIH Animal Welfare Assurance Program (#A4182- 01) at the Pacific Immunology Corporation. Anti-GmhA GC and anti-Zwf antisera were used at 1:10,000.

2.8 | Size exclusion chromatography

The NGC Scout Chromatography system (Bio-Rad) employing a HiLoad 16/600 Superdex 75 pg column (GE Healthcare Life Sciences) was used to separate purified rGmhA GC based on the molecular size. Buffer for the chromatography (20 mmol/L Tris- HCl pH 8.0, 500 mmol/L NaCl) was applied at 1 ml/min flow rate. Gel Filtration Standard (Bio-Rad) was used to determine the size of the separated proteins.

2.9 | Crystallization and structure determination of N. gonorrhoeae GmhA GC

The screening for initial crystallization conditions was performed using JCSG Core Suites I-IV (Qiagen) (Newman et al., 2005). The optimized crystals were grown using 0.1 mol/L Tris-HCl pH 8.5, 0.2 mol/L magnesium chloride, 30% PEG4000. Crystals were transferred to a cryoprotectant solution supplemented with 20% glycerol and flash-frozen in liquid nitrogen. The diffraction data were collected from a single crystal at the beamline 22-ID, Southeast Regional Collaborative Access Team (SER-CAT) at the Advanced Photon Source, Argonne National Laboratory. Data were integrated and scaled using XDS and XSSCALE (Kabsch, 2010a). The structure was solved by molecular replacement using Phaser (McCoy et al., 2007) and structure of Pseudomonas aeruginosa GmhA (PDB 3BJZ) as a search model (Taylor et al., 2008). The electron density modification was performed using Parrot (Cowtan, 2010) followed by automated model rebuilding using Buccaneer (Cowtan, 2006). The model was completed by manual rebuilding in Coot (Emsley, Lohkamp, Scott, & Cowtan, 2010) and was refined using REFMAC5 (Murshudov et al., 2011). The structure was validated using Coot and the MolProbity server (Chen et al., 2010). The structural figures were generated using PyMol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.).

2.10 | SDS-PAGE and immunoblotting

Whole cell lysates of Neisseria strains indicated in the text were either collected from solid media after 22 hr of aerobic or 48 hr of anaerobic growth, or harvested from liquid media following procedures described (Zielke et al., 2014, 2016). E. coli cells were collected from LB agar plates after overnight incubation. Samples were normalized based on OD 600 values or based on total protein concentration, and SDS-PAGE, staining with Coomassie brilliant blue G-250, and immunoblotting analyses were performed exactly as described previously (Zielke et al., 2014, 2016).

2.11 | Statistical analysis

GraphPad Prism’s build-in t-test was used for determination of statistically significant differences between obtained experimental results. A confidence level of 95% was used for all analyses.

2.12 | Accession numbers

The coordinates and structure factors were deposited to the Protein Data Bank with accession code 5I01.

3 | RESULTS

3.1 | Chromosomal location and purification of GmhA GC

Genes encoding the enzymes of LD-heptose biosynthesis pathway are scattered throughout the chromosome in the majority of bacteria including N. gonorrhoeae (Valvano et al., 2002). The GmhA homolog in N. gonorrhoeae strain FA1090 is encoded by ngo1986, which is located between ngo1985, coding for an outer membrane lipoprotein (Zielke et al., 2014) and ngo1987 encoding a putative endonuclease (YraN). Comparison of the gmhA location using BioCyc Pathway/Genome Database Collection (http://biocyc.org/) showed that this genetic arrangement is conserved among the various deposited Neisseria species and isolates (n = 70) with only a few exceptions, including N. bacilliformis ATCC BAA-1200, N. sp. oral taxon 020 F0370, N. shayeganii 871, and N. subflava NJ9703.
GmhAGC consists of 197 amino acids with residues 37–197 comprising a sugar isomerase domain (SIS) (Bateman, 1999) that is shared between all ketose/aldose isomerases (Golinelli-Pimpaneau, Le Goffic, & Badet, 1989). At the amino acid level, GmhAGC shows 43–57% identity with crystallized orthologous proteins (Table 3) and contains the key conserved residues observed in all GmhA homologs, including three serine residues and a threonine that presumably interact with the phosphate group of sedoheptulose 7-phosphate or D-glycero-D-manno-heptose 7-phosphate (Harmer, 2010; Valvano et al., 2002).

To characterize GmhAGC, we first purified recombinant protein with an N-terminal 6× His-tag followed by the tobacco etch virus (TEV) protease cleavage site and prepared untagged protein. Size exclusion chromatography indicated that the native GmhAGC forms tetrameric structures in the solution (Fig. S1A). The denatured protein
defect in LOS synthesis and growth cessation

WIERZBICKI Et al.

3.2 | N. gonorrhoeae deprived of GmhA_{GC} displays defect in LOS synthesis and growth cessation

The genetic inactivation of gmhA in E. coli, Haemophilus influenzae, H. ducreyi, Salmonella enterica, and Yersinia pestis resulted in altered outer membrane permeability and decreased virulence in animal infection models, however, the mutants did not display drastic growth defects in vitro (Abalaly et. al., 2003; Bauer et al., 1998; Brooke & Valvano, 1996b; Darby et al., 2005). Therefore, we were surprised by the failure of our numerous attempts to generate a clean deletion of ngo1986 in N. gonorrhoeae FA1090. As an alternative strategy, an additional copy of gmhA_{GC} was placed under the control of the IPTG-inducible Plac promoter and introduced into the chromosome of wild-type FA1090, followed by an allelic replacement of ngo1986 with the kanamycin resistance cassette. The obtained ΔgmhA_{GC}/P_{lac}:gmhA_{GC} mutant grew scarcely after passage on solid media without IPTG, whereas abundant colonies were observed in the presence of the inducer (Figure 1a). The depletion of GmhA_{GC} was corroborated by probing whole cell lysates of these gonococci with anti-GmhA_{GC} antiserum (Figure 1b). Visualization of LOS species by Tricine-SDS-PAGE coupled with silver staining showed, as expected, that bacteria deprived of GmhA_{GC} carried a truncated version of LOS that migrated faster in comparison with the LOS species isolated from wild-type and ΔgmhA_{GC}/P_{lac}:gmhA_{GC} cells (Figure 1c). The FA1090 ΔgmhA_{GC}/P_{lac}:gmhA_{GC} cells were collected from solid media supplemented with 20 μmol/L IPTG, suspended to OD₆₀₀ of 0.1, washed twice, divided, and cultured either in the presence or absence of IPTG for 3 hr. At time point designated as 0 hr, corresponding cultures were back-diluted to the same density (OD₆₀₀ of 0.1) into fresh media with or without IPTG and incubated for additional 6 hr. Samples of bacterial cultures were collected every hour for GmhA_{GC} and Ng-MIP immunoblotting analysis, LOS, and whole cell protein profiles (c), monitoring of bacterial proliferation by measurement of density of the cultures at OD₆₀₀, (d) and spotting serially diluted bacteria on solid media with IPTG for CFU scoring (e). Whole cell lysates were matched by the same OD₆₀₀ units. As loading control, samples separated by SDS-PAGE were either probed with anti-Ng-MIP antibodies or stained with Coomassie brilliant blue G-250. The migration of molecular mass marker (kDa) is indicated on the left. All experiments were performed in three biological replicates. Means and SEM are presented on graphs; *p < 0.05

FIGURE 1 GmhA_{GC} is pivotal for N. gonorrhoeae growth and lipooligosaccharide (LOS) synthesis. (a) The N. gonorrhoeae FA1090 gmhA_{GC} conditional knockout strain, ∆gmhA_{GC}/P_{lac}:gmhA_{GC} was streaked out from frozen glycerol stock on solid media supplemented with 20 μmol/L isopropryl β-D-1-thiogalactopyranoside (IPTG). After 18 hr incubation at 37°C in the presence of 5% atmospheric CO₂, the colonies were passaged onto plates either with (+) or without IPTG (−). (b) Whole cell lysates of FA1090 wild-type and isogenic ΔgmhA_{GC}/P_{lac}:gmhA_{GC} harvested from plates with (+) or without 20 μmol/L IPTG (−) were either probed with polyclonal rabbit antiserum or subjected to LOS extraction using proteinase K followed by silver staining. (c–e) The FA1090 ΔgmhA_{GC}/P_{lac}:gmhA_{GC} cells were collected from solid media supplemented with 20 μmol/L IPTG, suspended to OD₆₀₀ of 0.1, washed twice, divided, and cultured either in the presence or absence of IPTG for 3 hr. At time point designated as 0 hr, corresponding cultures were back-diluted to the same density (OD₆₀₀ of 0.1) into fresh media with or without IPTG and incubated for additional 6 hr. Samples of bacterial cultures were collected every hour for GmhA_{GC} and Ng-MIP immunoblotting analysis, LOS, and whole cell protein profiles (c), monitoring of bacterial proliferation by measurement of density of the cultures at OD₆₀₀, (d) and spotting serially diluted bacteria on solid media with IPTG for CFU scoring (e). Whole cell lysates were matched by the same OD₆₀₀ units. As loading control, samples separated by SDS-PAGE were either probed with anti-Ng-MIP antibodies or stained with Coomassie brilliant blue G-250. The migration of molecular mass marker (kDa) is indicated on the left. All experiments were performed in three biological replicates. Means and SEM are presented on graphs; *p < 0.05

3.3 | GmhA_{GC} subcellular localization and expression patterns

Preliminary results and absence of signal peptide suggested that GmhA of E. coli is a cytoplasmic enzyme (Brooke & Valvano, 1996a). However, subcellular localization of GmhA_{GC} and expression patterns

migrated on SDS-PAGE according to the predicted molecular mass of 21.093 kDa (Fig. S1B). Untagged GmhA_{GC} was subsequently used in crystallization and to obtain polyclonal rabbit antisera.

Together, these findings demonstrated that GmhA_{GC} is pivotal for LOS synthesis and optimal growth of N. gonorrhoeae.
were never assessed. To examine the localization of GmhA\textsubscript{GC}, \textit{N. gonorrhoeae} FA1090 was harvested at mid-logarithmic phase of growth and subjected to subfractionation procedures. Equal amounts of extracted proteome fractions including cytoplasm, cell envelopes, naturally released membrane vesicles, and soluble proteins in culture supernatants were separated by SDS-PAGE and probed with polyclonal antibodies (Figure 2a). GmhA\textsubscript{GC} was found solely in the cytoplasmic protein fraction, similarly to the cytoplasmic...
enzyme glucose-6-phosphate 1-dehydrogenase, Zwf. As expected, the GTPase Obg (ObgGC), which primarily associates with 50S ribosomal subunits and partly with the peripheral inner membrane proteome (Papanastasiou et al., 2013; Zielke et al., 2015), was detected mainly in the cytoplasm and minute amounts were also found in the cell envelope fraction; whereas, antisera against the outer membrane protein marker BamA (Zielke et al., 2016) cross-reacted with fractions containing cell envelopes and membrane vesicles.

The expression of GmhAGC was subsequently examined in wild-type FA1090 during routine aerobic growth in liquid media (Figure 2b–c) and on solid media under conditions that more closely mimic clinical infection, such as iron deprivation, exposure to human serum, and anoxia (Figure 2d). Antibodies against Ng-MIP, TbpB, and AniA were used as markers for ubiquitous expression, iron-limiting conditions, and anaerobiosis, respectively (Cornelissen, 2008; Zielke et al., 2014, 2016). Immunoblotting analyses of whole cell lysates showed that expression of GmhAGC peaked during mid-exponential phase (3 and 4 hr, Figure 2b–c). Increased GmhAGC levels were also detected during iron deprivation and anaerobic growth in comparison with standard laboratory conditions (Figure 2d). As expected, expression of Ng-MIP remained constant throughout different phases of gonococcal growth and was unchanged under all tested conditions (Zielke et al., 2015, 2016), while TbpB and AniA were the most highly upregulated during iron deprivation and anaerobic growth, respectively (Figure 2d).

The increase in GmhAGC expression did not influence LOS migration patterns in wild-type gonococci, albeit increased amounts of total LOS were observed in bacteria cultured in the presence of normal human serum and anaerobically (Figure 2d). To further assess the possible correlation between expression of GmhAGC and LOS levels, ΔgmhAGC was cultured in increasing concentrations of IPTG. The vast overexpression of GmhAGC achieved with 1,000 μmol/L IPTG did not have adverse effect on bacterial growth (data not shown) and had no effect on the LOS quantities (Figure 2e).

Cumulatively, these experiments demonstrated that GmhAGC is a cytoplasmic enzyme with augmented expression during mid-logarithmic phase, iron depletion and anaerobiosis, and that overproduction of GmhAGC alone does not alter gonococcal LOS abundance.

3.4 Conservation of gmhA among Neisseria

Analysis of gmhA conservation showed that the gene (locus NGO1986, NMB2090, NMC2070) is present in all of the 39,182 Neisseria spp. genomes deposited into the PubMLST database (http://pubmlst.org/neisseria/ as of July, 2016) and that there are 340 alleles and 323 single nucleotide polymorphic sites (Fig. S4).

Expression of GmhAGC among 36 different N. gonorrhoeae strains isolated from patients at different times and geographic locations, including the 2016 WHO reference strains (Unemo et al., 2016), was also assessed by immunoblotting. Whole cell lysates were resolved by SDS-PAGE and probed with either polyclonal anti-GmhAGC antisera or Zwf antibodies, or stained with Coomassie brilliant blue G-250 as a loading control. Antisera against GmhAGC cross-reacted with all clinical isolates of N. gonorrhoeae, but no cross-reactivity was detected for the E. coli GmhA homolog (Figure 3). In addition, there were noticeable differences in GmhAGC protein abundance between the strains, while Zwf was uniformly expressed and there were no discrepancies in regard to samples normalization and loading (Figure 3 and Fig. S3).

FIGURE 4 Hindering GmhAGC isomerase activity does not influence N. gonorrhoeae growth. (a) Wild-type FA1090 and isogenic conditional mutants carrying either native gmhAGC (ΔgmhAGC/Plac::gmhAGC) or mutated variants of GmhAGC (ΔgmhAGC/Plac::gmhAGC_E65A or ΔgmhAGC/Plac::gmhAGC_H183A) were collected from solid media with (+) and without (−) isopropyl β-D-1-thiogalactopyranoside (IPTG). Expression of individual GmhAGC variants and lipooligosaccharide (LOS) patterns were examined in whole cell extracts by immunoblotting and silver staining, respectively. Samples were matched by equivalent OD600 units. Migration of a molecular mass marker (kDa) is indicated on the left. (b) Wild-type FA1090 and conditional mutants ΔgmhAGC/Plac::gmhAGC, ΔgmhAGC/Plac::gmhAGC_E65A, and ΔgmhAGC/Plac::gmhAGC_H183A were collected from solid media supplemented with 20 μmol/L IPTG, suspended in liquid media to OD600 of 0.1, cultured for 3 hr, back-diluted to equal OD600 of 0.2, serially diluted, and spotted on solid media in the presence (+) and absence (−) of IPTG. CFUs were scored. The data show averages of CFUs with corresponding SEM of at least three separate experiments; *p < .05.
3.5 | Hindering GmhA_{GC} isomerase activity does not influence <i>N. gonorrhoeae</i> growth

The crucial side chains for GmhA enzymatic activity appeared to be E65 and H180 in the E. coli ortholog as analyzed by in vitro kinetic assays, LOS synthesis, and novobiocin sensitivity studies. It has been proposed that these two residues act as the base and the acid, respectively, to promote the isomerization reaction of D-sedoheptulose 7-phosphate into D-glycero-α-D-manno-heptose-7-phosphate (Taylor et al., 2008). Therefore, to determine whether the observed decrease in <i>N. gonorrhoeae</i> survival upon GmhA_{GC} depletion is a consequence of abolished LOS synthesis, site-directed mutagenesis of corresponding residues (E65 and H180 in GmhA_{GC}) was employed. The obtained GmhA_{GC} E65A and H180A variants were placed under the IPTG-inducible promoter and introduced into the chromosome of wild-type FA1090, followed by allelic exchange of ngo1986 with the kanamycin resistance cassette. Both mutated proteins were stably produced in <i>N. gonorrhoeae</i>; however, the H180A variant was present at higher levels than the wild-type GmhA_{GC} (Figure 4a). Silver staining analysis of LOS revealed that bacteria expressing either E65A or H180A constructs produced truncated LOS, regardless of the presence of IPTG (Figure 4a). Furthermore, under nonpermissive conditions (without IPTG), the ∆<i>gmhA_{GC}/P_{lac}:gmhA_{GC}</i>E65A and ∆<i>gmhA_{GC}/P_{lac}:gmhA_{GC}</i>H180A, similar to the ∆<i>gmhA_{GC}/P_{lac}:gmhA_{GC}</i>, had decreased viability, which was demonstrated by a 3214-fold decline, respectively, in CFUs in comparison with wild-type gonococci (Figure 4b). In contrast, the expression of either mutated version of GmhA_{GC} rescued bacterial viability to the wild-type level.

These <i>in vivo</i> studies demonstrated the importance of residues E65 and H180 in GmhA_{GC} activity in the production of full-length LOS and suggested that abolition of LOS synthesis is disconnected from the GmhA_{GC}-dependent effect on <i>N. gonorrhoeae</i> viability.

3.6 | Transcomplementation studies of GmhA

GmhA homologs of <i>H. influenzae</i> and <i>H. ducreyi</i> restored the synthesis of full-length LPS in the E. coli ∆<i>gmhA</i> mutant (Bauer et al., 1998; Brooke & Valvano, 1996a). This suggested that GmhA proteins can function interchangeably. However, failure of multiple attempts to remove ngo1986 in FA1090 carrying the E. coli gmhA gene cloned under the P_{lac} promoter and integrated into the chromosome ruled out the possibility of a functional interspecies complementation. The E. coli GmhA (GmhA_{EC}) shares 74% and 75% amino acid identity with <i>H. influenzae</i> and <i>H. ducreyi</i> proteins, respectively, while only 50% identity exists between GmhA_{EC} and GmhA_{GC} (Table 3). In contrast, <i>N. meningitidis</i> GmhA (GmhA_{NM}) shows 98% identity to GmhA_{GC} and anti-GmhA_{GC} antisera readily recognized GmhA_{NM} (Figure 5a). Therefore, we decided to use an analogous strategy to create <i>N. gonorrhoeae</i> and <i>N. meningitidis</i> ∆<i>gmhA</i> strains expressing either endogenous or nonendogenous GmhA. Immunoblotting experiments demonstrated that under permissive conditions, both proteins were stably expressed in each host, while without IPTG, neither GmhA_{GC} nor GmhA_{NM} were detected (Figure 5a). Functional interchangeability of GmhA between <i>N. gonorrhoeae</i> and <i>N. meningitidis</i> was then evaluated by analysis of LOS patterns. FA1090, ∆<i>gmhA_{GC}/P_{lac}:gmhA_{NM}</i> expression of GmhA_{NM} resulted in LOS migrating exactly as LOS species extracted from the wild-type gonococci (Figure 5a). Likewise, expression of GmhA_{GC} restored LOS synthesis in the <i>N. meningitidis</i> MC58 ∆<i>gmhA_{NM}/P_{lac}:gmhA_{GC}</i>. Furthermore, as expected from our studies in <i>N. gonorrhoeae</i> (Figure 1), depletion of GmhA_{NM} in <i>N. meningitidis</i>
MC58 ΔgmhANM/P$_{lac}$::gmhANM had adverse effects on bacterial viability and resulted in a 300- and 235.7-fold decrease in CFUs in comparison with wild-type and ΔgmhANM/P$_{lac}$::gmhANM cultured in the presence of IPTG, respectively (Figure 5b). There was no statistically significant difference in the number of CFUs between the wild-type N. gonorrhoeae and its isogenic ΔgmhAGC mutant expressing either GmhAGC or GmhANM (Figure 5b). Similarly, both GmhANM and GmhAGC fully complemented the lack of GmhANM in N. meningitidis.

Together, the transcomplementation studies showed that the N. gonorrhoeae and N. meningitidis GmA can function interchangeably. Expression of either of the homologs restored both viability and LOS synthesis. Additionally, we concluded that E. coli GmA is not able to complement GmhAGC functions, as we were not able to generate a viable N. gonorrhoeae ΔgmhAGC/P$_{lac}$::gmhAGC mutant.

3.7 | The structure of N. gonorrhoeae GmA

To gain insights into the function of GmA and to facilitate the future targeting of this enzyme with small molecule inhibitors, we obtained recombinant protein for structural studies (Fig. S1). The structure of N. gonorrhoeae GmA was determined by molecular replacement and was refined to 2.37 Å resolution with R$_{work}$/R$_{free}$ 0.207, 0.267, and excellent stereochemical parameters (Table 2). Four monomers of GmA were present in the asymmetric unit (Figure 6a). The tetrameric architecture is consistent with the results of size exclusion chromatography (Fig. S1A), and with the previously determined structures of GmA homologs from other bacteria (Table 3). The interface area of the GmA tetramer is extensive and buries 14,160 Å2 of surface area as calculated by the PISA server (Krissinel & Henrick, 2007). Four subunits of GmA adopt highly similar structures with root mean square deviation (r.m.s.d.) 0.1–0.2 Å between subunits. Residues 69–74 (chains A and B) and 69–75 (chains C and D) are disordered in the structure. These residues form a loop in the vicinity of the active site and could become ordered upon substrate binding. A similar disorder was observed in the homologous region of E. coli GmA (Taylor et al., 2008).

Each monomer of GmA is composed of a central five-stranded parallel β-sheet flanked by four α-helices from each side (Figure 6b). Four zinc ions are present in the GmA tetramer. The zinc ions are coordinated by the side chains of residues H61, E65, and H183 of one monomer, and the side chain of Q175 of the neighboring monomer (Figure 6c). Therefore, the zinc-binding sites of GmA are identical to the zinc-binding sites of B. pseudomallei GmA (Harmer, 2010).

Overall, the structure of GmA is similar to the previously determined structures of GmA from other bacteria, as well as E. coli DiaA (Table 3). The monomer structure of GmA could be superimposed to the homologous structures with r.m.s.d. of 0.5–1.4 Å. The tetramer structure of GmA forms a “closed” conformation, similar to the GmA structures of P. aeruginosa, V. cholerae, B. pseudomallei, and C. psychrophilae (Do et al., 2015; Harmer, 2010; Seetharaman et al., 2006; Taylor et al., 2008).

Table 2: Data collection and refinement statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$/2</td>
</tr>
<tr>
<td>Cell dimensions:</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>114.36</td>
</tr>
<tr>
<td>b (Å)</td>
<td>130.15</td>
</tr>
<tr>
<td>c (Å)</td>
<td>47.15</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
</tr>
<tr>
<td>γ (°)</td>
<td>147.15</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>85.91–2.37 (2.43–2.37)</td>
</tr>
<tr>
<td>R${work}$/R${free}$</td>
<td>0.134/0.1032</td>
</tr>
<tr>
<td>CC$_{1/2}$</td>
<td>99.6 (62.4)</td>
</tr>
<tr>
<td>R$_{free}$</td>
<td>0.207/0.267</td>
</tr>
<tr>
<td>Number of atoms:</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>5411</td>
</tr>
<tr>
<td>Ligand/ion</td>
<td>4</td>
</tr>
<tr>
<td>Water</td>
<td>101</td>
</tr>
<tr>
<td>B-factors:</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>37.6</td>
</tr>
<tr>
<td>Ligand/ion</td>
<td>54.9</td>
</tr>
<tr>
<td>Water</td>
<td>32.7</td>
</tr>
<tr>
<td>All atoms</td>
<td>37.2</td>
</tr>
<tr>
<td>Wilson B</td>
<td>41.2</td>
</tr>
<tr>
<td>R.m.s. deviations:</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.009</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.224</td>
</tr>
<tr>
<td>Ramachandran distribution (%)</td>
<td></td>
</tr>
<tr>
<td>Favored</td>
<td>97.8</td>
</tr>
<tr>
<td>Outliers</td>
<td>0</td>
</tr>
</tbody>
</table>

Values in parentheses are for the highest resolution shell.

CC$_{1/2}$ correlation coefficient as defined in (Karplus & Diederichs, 2012) and calculated by XSCALE (Kabsch, 2010b).

Calculated using the MolProbity server (http://molprobity.biochem.duke.edu) (Chen et al., 2010).

4 | DISCUSSION

GmA is a conserved sedoheptulose-7-phosphate isomerase involved in the first biosynthesis step of the L,D-heptose component of the LPS/LOS. Deprivation of heptoses results in pleiotropic phenotypes including synthesis of LPS/LOS molecules composed only of lipid A and KDO residues, increased susceptibility to antimicrobial agents, defects in plasmid F conjugations and P1 bacteriophage transduction, and decreased virulence and biofilm formation (Bauer et al., 1998;
Brooke & Valvano, 1996a; Earl et al., 2015; Havekes et al., 1976; Malott et al., 2013; Tamaki et al., 1971). In *N. gonorrhoeae*, heptoses are also crucial for LOS function in the evasion of the host immune system and induction of HIV expression (Malott et al., 2013; Preston et al., 1996). Variability in LOS molecules on the gonococcal surface is driven by phase variable enzymes responsible for decorating the sugar moiety of the outer core oligosaccharide (Apicella et al., 1987; Danaher et al., 1995). *N. gonorrhoeae* scavenges sialic acid from the human body and modifies the lacto-N-neotetraose attached to the HepI of the LOS core oligosaccharide, which provides protection from killing by classical and alternative complement pathways (Elkins et al., 1992; Ram et al., 1998). Thus, inhibition of GmhA could aid in treatment of infections caused by different pathogenic bacteria including *N. gonorrhoeae*.

Accordingly, in this work, we presented initial characterization of GmhAGC at the functional and structural levels. Our experiments demonstrated that gonococci and meningococci depleted in GmhA produced overall significantly less LOS molecules that migrated faster in comparison with the LOS-derived from wild-type bacteria (Figures 1b and 5a). In contrast to other orthologs, however, diminution of the GmhA cellular pool had severe consequences on neisserial growth (Figures 1a, d–e and 5b). This protein is likely not essential for bacterial viability, as GmhA-depleted neisserial cells still arose on solid media under nonpermissive conditions (Figure 1a, d–e). Corroborating this observation, gmhA was not found among 827 gonococcal core essential genes identified using a high-density Tn5 transposon library (Remmele et al., 2014). In addition, expression of GmhAGC variants carrying substitutions in the catalytic residues coordinating zinc ions, E65, and H183 (Figure 6c), led to synthesis of truncated LOS while retaining ample *N. gonorrhoeae* viability (Figure 4). These findings suggested that GmhAGC may be involved in additional physiological function(s) in Neisseria. Not surprisingly, a complete functional trans-complementation was achieved between GmhAGC and GmhAGC (Figure 5a–b), whereas multiple attempts to generate a viable strain of *N. gonorrhoeae* expressing only GmhAGC were unsuccessful (data not shown). Based on these findings, we concluded that GmhA plays a critical role in LOS synthesis and is a fundamental growth factor for both *N. gonorrhoeae* and *N. meningitidis*.

Profiling of GmhAGC expression showed that amounts of GmhAGC increased during exponential growth of wild-type *N. gonorrhoeae* (Figure 2c). Surprisingly, the isogenic conditional ΔgmhAGC/Plac::gmhAGC mutant cultured in the presence of IPTG had elevated levels of GmhAGC during the late logarithmic phase (Figure 1c–e), suggesting that expression of GmhAGC is regulated at the posttranscriptional (e.g., small noncoding RNAs, RNA-binding proteins, RNases, and thermoswitches) or posttranslational levels. Higher amounts of GmhAGC were also noted upon exposure of *N. gonorrhoeae* to environmental cues relevant to infection; iron deprivation and anaerobiosis (Figure 2d). Transcriptomic studies, however, did not identify GmhAGC as an iron-regulated gene (Ducey, Carson, Orvis, Stintzi, & Dyer, 2005; Jackson...
grown gonococci (Figure 2d), while vast overexpression of GhmAGC accordingly, increased amounts of LOS were detected in anaerobically the L,D- heptose biosynthesis pathway is upregulated during anoxia. Throughput proteomic studies (Zielke et al., 2016), suggesting that anaerobically versus aerobically cultured gonococci in our recent high-

including HldA (NGO0402) and GmhB (NGO2070) were identified in Clark, 2011). Higher levels of enzymes acting downstream from GmhA

to >32, 8, and 16, respectively), showed significantly lower GmhAGC lones (MICs in mg/L for ciprofloxacin, gemifloxacin, and moxifloxacin et al., 2016). Additionally, strain L, which has high MICs for all quino-
sensitive to gemifloxacin and moxifloxacin (MICs ranging from 0.004 to 0.016 mg/L). Finally, to better understand the pivotal function of GmhA GC, we have determined the three-dimensional structure of the untagged enzyme (Figure 6). Comparison of our GmhA GC crystal structure with the structures of homologs from other bacteria did not reveal significant differences in the general organization of the structure or within the catalytic site of the enzyme. Zinc ions were not added to any of the protein purification steps or crystallization buffers, yet similar to Burkholderia pseudomallei GmhA (Harmer, 2010), GmhA GC held zinc ions in the active site (Figure 6c), providing further support that GmhA is a metalloenzyme. Zinc is likely retained from the cell of the hetero-

gonococci in our recent high-throughput proteomic studies (Zielke et al., 2016), suggesting that the L,D-heptose biosynthesis pathway is upregulated during anoxia. Accordingly, increased amounts of LOS were detected in anaerobically grown gonococci (Figure 2d), while vast overexpression of GmhA GC alone had no effect on LOS levels (Figure 2e). GmhA GC expression was also studied in a diverse collection of gonococcal isolates, including the 2016 WHO reference strains (Unemo et al., 2016) containing multidrug-resistant N. gonorrhoeae (Figure 3). Potential involvement of GmhA in antibiotic resistance via increased synthesis of LPS was suggested recently in Salmonella typhimurium DT104B multiresistant strain with additional fluoroquinolone resistance (Correia et al., 2016). Notwithstanding this suggestion, the amounts of GmhA GC varied widely between the WHO strains K, L, V, W, X, Y, and Z, which display overall high levels of ciprofloxacin resistance (MIC>32 mg/L) and decreased susceptibility to gemifloxacin and moxifloxacin (Unemo et al., 2016). Additionally, strain L, which has high MICs for all quinolones (MICs in mg/L for ciprofloxacin, gemifloxacin, and moxifloxacin of >32, 8, and 16, respectively), showed significantly lower GmhA GC levels in comparison with WHO isolates F, O, P, and U, which are all ciprofloxacin sensitive (MIC of 0.004 mg/L) and are significantly more sensitive to gemifloxacin and moxifloxacin (MICs ranging from 0.004 to 0.016 mg/L).

In conclusion, understanding the function and structure of individual GmhA proteins will facilitate drug discovery approaches focused on targeting this protein with small molecule inhibitors. In particular, our work demonstrated the crucial function of GmhA in neisserial growth and LOS synthesis, positive regulation of expression by host-relevant environmental stimuli, and conservation among different iso-
tes, as well as provided further support for the mode of action of GmhA. These findings underscore the significance of GmhA GC as a target for antigonorrhea therapeutics. Future work involving determining the interacting partner(s) of GmhA GC and analysis of global changes at the proteome and metabolome levels are required to elucidate the whole scope of physiological function(s) of GmhA GC in N. gonorrhoeae.

ACKNOWLEDGMENTS

We thank staff members of Southeast Regional Collaborative Access Team (SER-CAT) at the Advanced Photon Source, Argonne National

<table>
<thead>
<tr>
<th>Protein</th>
<th>Organism</th>
<th>r.m.s.d.</th>
<th>Sequence identity</th>
<th>Ligands</th>
<th>PDB ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmhA</td>
<td>P. aeruginosa</td>
<td>0.5</td>
<td>57</td>
<td>D-glycero-α-D-manno-heptopyranose-7-phosphate</td>
<td>1X92</td>
<td>(Taylor et al., 2008)</td>
</tr>
<tr>
<td>DiaA</td>
<td>E. coli</td>
<td>0.7</td>
<td>52</td>
<td>apo</td>
<td>2YVA</td>
<td>(Keyamura et al., 2007)</td>
</tr>
<tr>
<td>DiaA</td>
<td>E. coli</td>
<td>0.7</td>
<td>52</td>
<td>apo</td>
<td>4U6N</td>
<td>unpublished</td>
</tr>
<tr>
<td>GmhA</td>
<td>F. tularensis</td>
<td>0.7</td>
<td>45</td>
<td>apo</td>
<td>3TRJ</td>
<td>(Chaudhury et al., 2013)</td>
</tr>
<tr>
<td>GmhA</td>
<td>C. psychrerythreae</td>
<td>0.7</td>
<td>48</td>
<td>apo</td>
<td>5BY2</td>
<td>(Do et al., 2015)</td>
</tr>
<tr>
<td>GmhA</td>
<td>C. jejuni</td>
<td>0.7</td>
<td>54</td>
<td>apo</td>
<td>1TK9</td>
<td>(Seetharaman et al., 2006)</td>
</tr>
<tr>
<td>GmhA</td>
<td>P. aeruginosa</td>
<td>0.8</td>
<td>56</td>
<td>apo</td>
<td>3BJZ</td>
<td>(Taylor et al., 2008)</td>
</tr>
<tr>
<td>GmhA</td>
<td>B. pseudomallei</td>
<td>0.8</td>
<td>43</td>
<td>Zn²⁺</td>
<td>2X3Y</td>
<td>(Harmer, 2010)</td>
</tr>
<tr>
<td>GmhA</td>
<td>B. pseudomallei</td>
<td>0.9</td>
<td>43</td>
<td>Zn²⁺, D-glycero-α-D-manno-heptopyranose-7-phosphate</td>
<td>2XBL</td>
<td>(Harmer, 2010)</td>
</tr>
<tr>
<td>GmhA</td>
<td>E. coli</td>
<td>1.4</td>
<td>45</td>
<td>apo</td>
<td>2I2W</td>
<td>(Taylor et al., 2008)</td>
</tr>
<tr>
<td>GmhA</td>
<td>E. coli</td>
<td>1.1</td>
<td>45</td>
<td>D-sedoheptulose-7-phosphate</td>
<td>2I22</td>
<td></td>
</tr>
<tr>
<td>GmhA</td>
<td>V. cholerae</td>
<td>1.1</td>
<td>43</td>
<td>apo</td>
<td>1X94</td>
<td>(Seetharaman et al., 2006)</td>
</tr>
</tbody>
</table>

*As reported by the Dali server (Holm & Rosenstrom, 2010) for superposition of monomers. A mean value is listed for the structures containing more than one protein subunit in the asymmetric unit.
Laboratory, for assistance during data collection. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Benjamin I. Baarda for critical reading of the manuscript. We acknowledge the Protein Core at the Center for Molecular Medicine, University of Kentucky, that is supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant number P30GM110787. Funding for this work was provided to AES by grant R01-AI117235 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and was partially supported by an Institutional Development Award (IDeA) from the NIGMS/NIH under grant number P20GM103486 to KVK.

CONFLICT OF INTEREST

The authors have declared that no conflict of interest exist.

REFERENCES

Funding for this work was provided to AES by grant R01-AI117235 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and was partially supported by an Institutional Development Award (IDeA) from the NIGMS/NIH under grant number P20GM103486 to KVK.

CONFLICT OF INTEREST

The authors have declared that no conflict of interest exist.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Wierzbicki, I.H., Zielke, R.A., Korotkov, K.V. and Sikora, A.E. Functional and structural studies on the *Neisseria gonorrhoeae* GmhA, the first enzyme in the glycero-manno-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability. *MicrobiologyOpen*. 2017;6:e432. https://doi.org/10.1002/mbo3.432