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ABSTRACT OF DISSERTATION

Solid Angle Measure Approximation Methods for Polyhedral Cones

Polyhedral cones are of interest in many fields, like geometry and optimization. A
simple, yet fundamental question we may ask about a cone is how large it is. As
cones are unbounded, we consider their solid angle measure: the proportion of space
that they occupy. Beyond dimension three, definitive formulas for this measure are
unknown. Consequently, devising methods to estimate this quantity is imperative. In
this dissertation, we endeavor to enhance our understanding of solid angle measures
and provide valuable insights into the e�cacy of various approximation techniques.

Ribando and Aomoto independently discovered a Taylor series formula for solid
angle measures of certain simplicial cones. Leveraging Brion–Vergne Decomposition,
we extend their findings, devising an algorithm for approximating solid angle measures
of polyhedral cones, including those where the series is not applicable. We compare
our method to other estimation techniques, and explore the practical applications of
these methods within optimization.

Gomory and Johnson established the use of facets of master cyclic group polyhedra
to derive cuts for integer programs. Within this framework, the size of the solid angle
subtended by a facet determines its importance. We apply various approximation
techniques to measure facet importance, provide computational results, and discuss
their implications.
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Chapter 1 Introduction and Background

The focus of this dissertation is to analyze various solid angle measure approximation
methods to measure cones of interest. In Chapter 1, we establish essential terminology
and notions that will be used frequently throughout the dissertation. In Chapter 2,
we consider solid angles and transformations which preserve solid angle measures. In
Chapter 3, we survey existing solid angle approximation methods. In Chapter 4, we
establish a decomposition method to approximate solid angle measures of polyhedral
cones in dimensions greater than three, expanding upon the work of Ribando and
Aomoto. Finally, in Chapter 5, we discuss the implementation and application of the
considered approximation methods, with descriptions and results of computational
experiments conducted.

1.1 Convexity and Polyhedra

Recall that a convex set satisfies the property that the line segement between any
two points in the set is completely contained within the set. Formally, a convex set
C ⊆ Rd is a set of points such that if x,y ∈ C, then λx + (1 − λ)y ∈ C for all
0 ≤ λ ≤ 1. A convex combination of x1,x2, . . . ,xn ∈ Rd is a linear combination

λ1x1 + λ2x2 + · · ·+ λnxn

where λi ∈ R≥0 for i = 1, 2, . . . , n, and λ1 + λ2 + · · ·+ λn = 1. The set of all possible
convex combinations of the elements of a set X is a convex set denoted by conv(X),
called the convex hull of X.

Polyhedra are a class of convex bodies that are of particular interest. A subset P
of Rd is a polyhedron if there exists A ∈ Rm×d and b ∈ Rm (m ≥ 0) such that

P = {x | Ax ≤ b},

so that P is the intersection of finitely many affine half–spaces. Above, we use
the shorthand notation Ax ≤ b which represents the system of linear inequality
constraints

at
1x ≤ b1, at

2x ≤ b2, . . . , at
mx ≤ bm,

with a1, a2, . . . , am representing the row vectors of A and b1, b2, . . . , bm being the
components of b. An inequality atx ≤ b (with nonzero a) is a valid inequality of a
polyhedron P if it is satisfied by every point in P . The intersection of P with the
hyperplane {x | atx = b}, where atx ≤ b is a valid inequality of P , is called a face of
P , and is itself a polyhedron. The dimension of a face of P is the dimension of its
affine hull. A face of P having dimension one less than that of P is called a facet of
P . A face of P having dimension 0 is called an extreme point or a vertex of P .

There are two fundamental subclasses of convex polyhedra: polytopes and poly-
hedral cones. A subset P of Rd is a polytope if it is the convex hull of finitely many
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points in Rd, or equivalently, if it is a bounded polyhedron. A polytope in Rd with di-
mension n ≤ d is called an n-polytope. A cone (not necessarily convex) is a nonempty
set of points C ⊆ Rd such that if x ∈ C, then λx ∈ C for all λ ≥ 0. Terminology
for cones mirrors that of convex sets. A conic combination of x1,x2, . . . ,xn ∈ Rd is
a linear combination

λ1x1 + λ2x2 + · · ·+ λnxn

where λi ∈ R≥0 for i = 1, 2, . . . , n. The set of all possible conic combinations of the
elements of a set X is a convex cone denoted by cone(X), called the conic hull of X.
We say cone(X) is generated by X. When X is finite, we say C is finitely generated.
A vector r ∈ C is an extreme ray of C if it satisfies the property: for any x,y ∈ C,
x + y ∈ {λr | λ ≥ 0} implies x,y ∈ {λr | λ ≥ 0}. A cone C is polyhedral if there
exists a matrix A such that

C = {x | Ax ≤ 0},

or equivalently, C is the intersection of finitely many half–spaces. Note that this
implies that polyhedral cones are closed. The well-known Minkowski-Weyl Theorem
states that a convex cone is polyhedral if and only if it is finitely generated. Given
X ⊆ Rd and Y ⊆ Rd, the Minkowski sum of X and Y is

X + Y = {x+ y | x ∈ X and y ∈ Y }.

Every polyhedron P ⊆ Rd can be expressed as the Minkowski sum of a polytope and
a cone:

P = conv(X) + cone(Y ),

for some X, Y ⊆ Rd.
Certain types of polyhedral cones are worth distinguishing. A pointed cone has the

origin as a vertex, or equivalently, does not contain a linear subspace of dimension
greater than zero. A simplicial cone is generated by a linearly independent set of
vectors. Certain cones arise in relation to convex sets. Let X ⊂ Rd be a convex set
and z ∈ X. The outer normal cone of X at z is

NX(z) = {y ∈ Rd | ytz ≥ ytx for all x ∈ X}.

The recession cone of X is

{y ∈ Rd | y +X ⊆ X}.

Let C ⊆ Rd be a convex cone. The dual cone of C is

C∗ = {y ∈ Rd | ytc ≥ 0 for all c ∈ C}.

The polar cone of C is the negative of the dual cone of C.
We can restrict our study to pointed cones by making use of the well known

cone decomposition theorem of Stoer and Witzgall [43]. A closed convex cone can
be expressed as the Minkowski sum of two orthogonal sets: a pointed cone and a
linear subspace. Let C ⊆ Rd be a cone. The linear span of C, denoted by lin(C) is

2



the smallest linear subspace containing C and is given by lin(C) = C + (−C). The
dimension of C is the dimension of the linear span of C. If C is not pointed, then C
contains the linear subspace L = C∩(−C) of dimension d−dim(lin(C)). The subspace
L is called the lineality space of C. Thus, the lineality space of any pointed cone is
{0}. If C/L denotes the orthogonal projection of C onto the orthogonal complement
of L, that is C/L = C ∩ L⊥, then C/L is pointed and C can be exrpressed as the
Minkowski sum C = L+ C/L.

1.2 Master Cylic Group Polyhedra and Group–Facet Polytopes

In this section, we will focus on two particular types of polyhedra which arise in
the area of optimization, particulaly in integer programming. We first give a brief
introduction to integer programming to give context to these polyhedra.

An integer programming problem is a linear programming problem which requires
variables to take on integer values. The goal of a linear program is to maximize or
minimize some linear objective function, subject to certain linear constraints. A linear
programming problem (LP) has the following standard form:

maximize ctx

subject to Ax ≤ b

x ≥ 0,

(1.1)

where x =
(
x1, x2, . . . , xn

)
is a vector of decision variables, A is a given m×n matrix,

and c and b are given n × 1 and m × 1 vectors respectively. The vector c is called
the objective vector. A proposal of values for the entries of x is a solution. A solution
is feasible if it satisfies all of the constraints. The feasible region of a linear program
is the set of all feasible solutions. Note that the feasible region of an LP is the
intersection of halfspaces, and so it is a polyhedron. A feasible solution that attains
the desired maximum is optimal. If a problem has no feasible solutions, it is called
infeasible. When the problem has feasible solutions whose objective values can be
arbitrarily large, it is called unbounded.

We may also view an LP in the equivalent form as a dictionary

z =
n∑

j=1

cjxj

xn+i = bi −
n∑

j=1

aijxj (i = 1, 2, . . . ,m).

The variables which appear in the objective function are called nonbasic variables
and take on value 0. The variables that do not appear in the objective function are
called basic varaibles.

3



An integer programming problem (IP) has the following standard form:

maximize ctx

subject to Ax ≤ b

x ≥ 0

x ∈ Zn,

(1.2)

Note that the integrality constraints of an IP imply that the feasible region is not
convex, hence not a polyhedron. To extend the notion of a valid inequality to an IP
we consider the convex hull of the feasible region of an IP, called the integer hull. A
valid inequality for an IP is a valid inequality for the integer hull.

In practice, to solve (1.2), one ignores the integrality constraint and solves the
linear programming relaxation (LPR) of (1.2), described in (1.1). Linear programs
can be efficiently solved by applying the simplex algorithm, which moves from feasible
dictionary to feasible dictionary by exchanging a basic variable for a nonbasic variable,
while increasing the objective function at each step. If the optimal solution to the
LPR is integral, then it is the optimal solution to the IP. If the LPR is infeasible, then
the IP is infeasible. Otherwise, the optimal solution to (1.1) given by the simplex
algorithm takes on fractional values and so is not a feasible solution to (1.2). To deal
with the latter case, we delve into the realm of cutting plane theory.

The cutting plane approach to solve integer programs, established by Gomory [21],
involves generating valid inequalities (also called cutting planes or cuts) for integer
programs. When the current optimal solution is not integral, a cut (or cuts) is
generated which is satisfied by all the feasible integer solutions, but not the current
optimal solution. The cut (or cuts) is added to the LPR, and the process is repeated.
There are many ways to generate cuts, but we focus our attention on those derived
from facets of master cyclic group polyhedra.

Consider the feasible region of an IP (1.2). By introducing nonnegative slack
variables, the feasible region of an IP is described by

Ax = b, x ≥ 0, x integer. (1.3)

By partitioning the variables into basic and nonbasic variables, one can rewrite (1.3)
as

BxB +NxN = b, xB,xN ≥ 0, xB,xN integer. (1.4)

If xB is a vector of integer components, then B−1NxN ≡ B−1b (mod 1). Note here
that the requirement of nonnegativity for xB is dropped. If column i of B−1N is
denoted by ti, B

−1b = b′ and xN =
(
n1, n2, . . . , n|N |

)
, then the relation is expressed

as
|N |∑
i=1

niti ≡ b′ (mod 1). (1.5)

Consider a group character χ, an addition preserving map sending column vectors
such as the ti’s into a group G. Applying such a map χ to (1.5) gives

|N |∑
i=1

χ(niti) ≡ χ(b′) (mod 1). (1.6)

4



Now, suppose G is a finite additive Abelian group which contains an identity element
0̄ and an element g0. Let t be a function which assigns to each element in G a
nonnegative integer. A function π is a valid function with right hand side g0 as defined
in [23] if π is continuous, nonnegative, π(0) = 0, π(g0) = 1, and

∑
g∈G t(g)g = g0

implies
∑

g∈G t(g)π(g) ≥ 1. Thus, if π is a valid function with right hand side χ(b′),
then

|N |∑
i=1

π (χ(ti))ni ≥
|N |∑
i=1

π (χ(niti)) ≥ 1. (1.7)

With this, Gomory and Johnson [23] showed that if π is subadditive and χ is a group
character which maps the columns of B−1N into a group G, then (1.7) is a cut for
all IP’s with constraints BxB + NxN . Thus, one is interested in valid functions π.
In the Gomory–Johnson model, the valid functions of particular interest are called
facets. The procedure to construct such valid functions π is described below.

Suppose in the optimal dictionary from applying the simplex algorithm to the
LPR, we have a basic variable x which takes on a fractional value. If the data is all
rational, we can express x as a sum of terms with common denominator q:∑

j∈N

rj
q
yj + x =

b

q
, (1.8)

where N is the set of indices of the integer nonbasic variables y1, y2, . . . , y|N |. Given
nonnegative integer b above, we consider f ≡ b (mod q) where 0 < f < q. With q
and f determined, to generate a cut for the integer program, we consider the master
cyclic group polyhedron P (q, f). These polyhedra first appeared in [21]. The master
cyclic group polyhedron is

P (q, f) = conv

({
z ∈ Zq−1

≥0

∣∣∣ q−1∑
i=1

i · zi ≡ f (mod q)

})
.

The term “master cyclic group polyhedron” comes from the fact that we can view
the set of coefficients in the summation above as the set of all nonzero elements of
the cyclic group of order q. The nonnegativity conditions z ≥ 0 imply that P (q, f)
lies within Rq−1

≥0 , the first orthant of Rq−1. Gomory [21] showed that P (q, f) is full-

dimensional and has Rq−1
≥0 as its recession cone, that is

P (q, f) = P (q, f) + Rq−1
≥0 .

Cutting planes can be derived from facets of master cyclic group polyhedra via
Gomory and Johnson’s interpolation procedure [22] which is described in detail in [11].
We briefly outline the interpolation procedure. Given a facet-defining inequality for
the polyhedron P (q, f):

q−1∑
i=1

πizi ≥ 1,

5
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define the piecewise linear function h : R → [0, 1] by

h(v) =


0 if v = ⌊v⌋
πi if v − ⌊v⌋ = i

q
for i ∈ {1, 2, . . . , q − 1}

επi + (1− ε)πi+1 if v − ⌊v⌋ = i+ϵ
q

for i ∈ {1, 2, . . . , q − 1}, 0 < ε < 1.

The above function is called the facet interpolated template function and abbreviated
as template function in [11]. It is sufficient to consider template functions on the
interval [0, 1] as they are periodic modulo 1. We apply h to (1.8) to obtain the
following valid inequality of the IP:∑

j∈N

h

(
rj
q

)
yj ≥ 1.

Thus, it is of interest to determine facet–defining inequalities of master cyclic group
polyhedra. In what follows, we will use the terms “facet” and “facet–defining in-
equality” interchangeably.

We demonstrate the interpolation procedure to generate cutting planes in the
example below.

Example 1.2.1. Consider the integer program

maximize 4x1 − 3x2

s.t. 3x1 + x2 + y1 = 5

−2x1 + x2 + y2 = 1

x1 + x2 + y3 = 3

x1, x2, y1, y2, y3 ≥ 0

x1, x2 ∈ Z.

Solving the LP-relaxation of the integer program yields a fractional optimal solu-
tion of (5

3
, 0). The row corresponding to x1 in the optimal dictionary is

1

3
y1 +

1

3
x2 + x1 =

5

3
(1.9)

Thus, we consider facets of P (3, 2). This polyhedron has one nontrivial facet given
by

1

2
z1 + z2 ≥ 1,

from which we obtain the template function h shown below.
Now, we apply h to the coefficients in (1.9) to obtain the following cut

h

(
1

3

)
y1 + h

(
1

3

)
x2 =

1

2
y1 +

1

2
x2 ≥ 1.

6
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Figure 1.1: Left: The polyhedron P (3, 2) with the line containing its nontrivial facet.
Right: The template function h defined by the nontrivial facet of P (3, 2).

which is equivalent to x1 ≤ 1. It is clear that this cut is valid for the integer hull and
is violated by (5

3
, 0). Adding this cut gives another linear programming relaxation of

the IP:

maximize 4x1 − 3x2

s.t. 3x1 + x2 + y1 = 5

−2x1 + x2 + y2 = 1

x1 + x2 + y3 = 3

x1 + y4 = 1

x1, x2, y1, y2, y3, y4 ≥ 0

The feasible region of this new LPR is shown in Figure 1.2.1. Solving the new LPR
yields an optimal solution of (1, 0) which is integral and so optimal for the IP.

It is important to note that while our example only required the addition of one
cut, in general, one may require multiple rounds of adding cuts, with multiple cuts
added in each round.

The facets of master cyclic group polyhedra are typically grouped into two cat-
egories: trivial facets (facets corresponding to nonnegativity constraints) and non-
trivial facets. Gomory [21] characterized the nontrivial facets of master cyclic group
polyhedra in the following theorem:

Theorem 1.2.2 ([21, Structure Theorem], rephrased). For positive integers f < q,
πtz ≥ 1 is a nontrivial facet of P (q, f) if and only if πt = (π1, π2, . . . , πq−1) is an
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1 2 3

1

2

3

1 2 3

1

2

3

3x1+x2 = 5

−2x1 + x2 = 1

x1

x2

x1 + x2 = 3

(5/3, 0)

3x1 + x2 = 5

−2x1 + x2 = 1

x1

x2

x1 + x2 = 3

(5/3, 0)

x1 = 1

Figure 1.2: Left: Feasible Region of the IP contains the dots. Integer hull is the
darker region. Feasible region of the LPR is the lighter region. Right: Feasible region
of the LPR with added cut is the lighter region.

extreme point of the following system:

πi ≥ 0, i = 1, . . . , q − 1 (nonnegativity) (1.10a)

πf = 1, (1.10b)

πi + πj = 1, i+ j ≡ f (mod q) (complementarity) (1.10c)

πi + πj ≥ πk k ≡ i+ j (mod q) (subadditivity). (1.10d)

Gomory [21] showed that the underlying group structure of master cyclic group
polyhedra allows one to relate facets of master cyclic group polyhedra via group
homomorphisms.

Theorem 1.2.3 ([16, Theorem 2.4], rephrased). Let q, f, s be positive integers with
f, s < q. Let Cq denote the cyclic group of order q, and ϕ : Cq → Cq be an automor-
phism such that ϕ(f) = s. The facets of P (q, f) are in one-to-one correspondence
with the facets of P (q, s). In particular, if

(π1, π2, . . . , πq−1) · x ≥ πf

is a facet of P (q, f), then

(πϕ(1), πϕ(2), . . . , πϕ(q−1)) · x ≥ πϕ(s)

is a facet of P (q, s).

Thus, given a group automorphism ϕ : Cq → Cq, the facets of P (q, ϕ(f)) are
essentially the same as the facets of P (q, f). As a consequence, we can understand the
facial structure of the master cyclic group polyhedra P (q, 1), P (q, 2), . . . , P (q, q − 1)
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by considering only a subset of these q − 1 polyhedra. For instance, if f1, f2 ∈
{2, 4, 5, 7, 8}, then the facets of P (9, f1) and P (9, f2) are essentially the same; and the
facets of P (9, 3) and P (9, 6) are essentially the same. Therefore, the facial structure
of these eight polyhedra can be understood by looking at the facial structure of just
two polyhedra; take, for instance, P (9, 3) and P (9, 8).

Theorem 1.2.4 ([16, Theorem 2.5], rephrased). Let q, f, p, e be positive integers with
f, p < q and e ≡ f (mod p), and where p divides q but p does not divide f . Let
Cq denote the cyclic group of order q, Cp denote the cyclic group of order p and
ϕ : Cq → Cp be the group homomorphism defined by ϕ(j) = j (mod p). If

(π1, π2, . . . , πp−1) · x ≥ πe

is a facet of P (p, e), then the facet of P (q, f) obtained via homomorphic lifting is

(πϕ(1), πϕ(2), . . . , πϕ(q−1)) · x ≥ πϕ(e),

where π0 = 0.

As noted by Evans [16], the facets resulting from homomorphic lifting are charac-
terized by the presence of zero(s) and cyclic repetitions. Consider the nontrivial facet
x1 + 2x2 ≥ 2 of P (3, 2). As 3 divides 9 but does not divide 8, and 2 ≡ 8 mod 3, by
Theorem 1.2.4, the facet

x1 + 2x2 ≥ 2

of P (3, 2) lifts to the facet

x1 + 2x2 + x4 + 2x5 + x7 + 2x8 ≥ 2

of P (9, 8). In general, a facet of P (q, f) obtained by homomorphic lifting of a facet
of P (p, e) is the facet of P (p, e) cyclically repeated q

p
times [16].

Since facets of the master cyclic group polyhedra can be used to generate valid
inequalities for integer programs, we would like a method to generate these facets.
We focus on the convex hulll of the extreme points of the inequality system (1.10), as
the components of the extreme points give coefficients for the desired facets. In the
following, we borrow terminology and notation from [42].

Definition 1.2.5. The group facet polytope, Π(q, f), is the convex hull of the extreme
points of the inequality system (1.10).

The nonnegativity constraints (1.10a) imply that the group facet polytope also
lies in the first orthant. However, unlike the master cyclic group polyhedron, the
group facet polytope is not full-dimensional, due to the complementarity equations
(1.10c).

As aforementioned, the recession cone of a master cyclic group polyhedron is the
first orthant so that

P (q, f) = P (q, f) + Rq−1
≥0 .
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Polyhedra of this type are of interest, particulary when viewed through the framework
of blocking polyhedra which was introduced by Fulkerson. A thorough exposition of
blocking polyhedra may be found in [40]. Shim [41] and Hunsaker [32] considered
master cyclic group polyhedra within this framework. Let X ⊂ Rd. The blocker of
X is

B(X) = {y ∈ Rd
≥0 | ytx ≥ 1 for all x ∈ X}.

Note that if X is a polyhedron of the form

X = conv(x1,x2, . . . ,xs) + Rd
≥0 (1.11)

then
B(X) = {y ∈ Rd

≥0 | ytxi ≥ 1 for all i = 1, 2, . . . , s}

and B(X) is called the blocking polyhedron of X. It is not difficult to see that for
polyhedra of the form (1.11),

B(B(X)) = X,

that is, blocking polyhedra appear in pairs. More precisely, if there are vectors
c1, c2, . . . , cs,d1,d2, . . . ,dt ∈ Rd

≥0 that satisfy

conv(c1, c2 . . . , cs) + Rd
≥0 = {x ∈ Rd

≥0 | dt
jx ≥ 1 for all j = 1, . . . , t},

then,

conv(d1,d2, . . . ,dt) + Rd
≥0 = {x ∈ Rd

≥0 | ctix ≥ 1 for all i = 1, . . . , s}.

Moreover, conv(c1, c2, . . . , cs)+Rd
≥0 and conv(d1,d2, . . . ,dt)+Rd

≥0 are called a block-
ing pair of polyhedra. As stated by Shim [41], we have the following characterization
of the group facet polytope:

B(P (q, f)) = Π(q, f) + Rq−1
≥0 ,

that is, the group facet polytope is the convex hull of the vertices of the blocker of
the master cyclic group polyhedron.

Gomory and Johnson [22] showed that the vertices of the blocker grow exponen-
tially in q, and thus it is impractical to try to explain every facet. With the intuition
that facets which appear larger on the surface of master cyclic group polyhedra will
be more useful than those that do not, Gomory, Johnson, and Evans established the
size of a facet, as seen from the origin, as a measure of its importance. In [2], it
is noted that facets which appear larger on the surface of the polyhedron tend to
exhibit a nicer structure than those which appear smaller. In the ensuing chapters,
we consider and develop requisite tools to approximate the relative sizes of facets.

Copyright© Allison Marie Fitisone, 2024.
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Chapter 2 Solid Angles and their Properties

In this chapter, we present essential definitions and background information regarding
solid angles. We then establish results for solid angle measures of outer normal cones
of Π(q, f) and B(q, f) at their vertices. The solid angle is a generalization of the
two-dimensional plane angle. It is a measure of the proportion of space occupied by a
cone in relation to some reference set, typically the ambient space in which the cone
resides.

2.1 Solid Angles

We define the solid angle measure of a polyhedral cone according to [27], and we
normalize it in such a way that the whole space has measure 1, according to [39].

Definition 2.1.1. The normalized solid angle measure, of a polyhedral cone C ⊆ Rd

with respect to the space Rd is defined as the ratio of the (d− 1)-dimensional volume
of the intersection of the cone with the unit sphere Sd−1 in Rd centered around the
origin to the volume of the unit sphere, i.e.,

Ω̃d(C) =
vold−1(C ∩ Sd−1)

vold−1(Sd−1)
. (2.1)

We note that the above definition works for convex non-polyhedral cones as well.
When the cone C is of dimension n < d, let Sn−1 denote the unit sphere centered
around the origin in the n-dimensional linear space containing C. We define the
normalized solid angle measure of C with respect to the linear span of C in a similar
manner:

Ω̃n(C) =
voln−1(C ∩ Sn−1)

voln−1(Sn−1)
.

We will refer to this measure as the affine solid angle measure of C.
Some authors prefer normalizing with respect to a half space [25] or the affine

space [33]. Recall that a polyhedral cone is finitely generated. In dimensions two
and three, we have easily understood formulas to compute solid angle measures of
simplicial cones in terms of their extreme rays. In R2, the solid (or plane) angle
measure can be computed via the standard inner product. Assume that v1 and v2

are unit vectors in R2. Then the normalized solid angle measure of the cone generated
by v1 and v2 is

cos−1(v1 · v2)

2π
.

In R3, the solid angle measure of a cone generated by three unit vectors is the
area of the spherical triangle on the unit sphere formed by the unit vectors. There
is a closed formula dating back to Euler and Lagrange which uses the scalar triple
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product. Assume that v1,v2 and v3 are unit vectors in R3. The solid angle measure
of the cone generated by v1,v2 and v3 is given by [15]:

E := 2 tan−1

(
|v1 · (v2 × v3)|

1 + v2 · v3 + v2 · v1 + v1 · v3

)
,

and the normalized solid angle measure of the cone, which is the proportion of R3

that the cone occupies, is therefore E
4π
. To the best of our knowledge, there currently

does not exist a neat closed formula for the solid angle measure of polyhedral cones
in dimensions greater than three.

The study of solid angles has gained a lot of traction in the past several years and
has been investigated in several publications (see [5, 6, 19, 36, 39], etc.). Of particular
interest is the solid angle measure of a polyhedral cone in dimensions beyond three.
This measure has widespread potential applications, from computing the expected
number of simplices in a triangulation of an n-cube [38], to calculating relative pixel
purity index (PPI) scores [29], to computing the volume of the feasibility domain of
an ecological community [35]. The various ways in which higher-dimensional solid
angle measures appear in literature demonstrate the importance of the topic and
necessitate a deeper understanding of it.

2.2 Solid Angle Measure Invariant Operations

In this section, we consider various maps as they relate to polyhedra and solid angle
measures, namely, isometries, dilations, and embeddings into higher dimensions. We
focus primarily on transformations on polyhedra where solid angle measures of outer
normal cones at vertices are preserved. We then apply these transformations to the
cones of interest to reduce the dimension of the solid angles we aim to measure.

We first demonstrate that the solid angle measure of an orthogonal direct sum of
two cones is the product of their respective affine solid angle measures.

Lemma 2.2.1. Let C ⊆ Rd be a polyhedral cone (or more generally, a convex cone) of
dimension n. Suppose that C = C1 ⊕ C2 is the orthogonal sum of cones C1 and C2

of dimensions n1 and n2, respectively. Then, the normalized solid angle measure of
C with respect to the linear span of C satisfies that

Ω̃n(C) = Ω̃n1(C1) · Ω̃n2(C2).

Proof. Since C1 and C2 are orthogonal, n = n1 + n2. Any u ∈ C can be uniquely
expressed as u = v +w where v ∈ C1,w ∈ C2 and ∥u∥2 = ∥v∥2 + ∥w∥2. Thus,∫

C

e−∥u∥2du =

∫
C1⊕C2

e−∥v+w∥2d(v +w) =

∫
C1

e−∥v∥2dv

∫
C2

e−∥w∥2dw.

It then follows from (3.2) that

Ω̃n(C) =

∫
C
e−∥u∥2du

πn/2
=

∫
C1

e−∥v∥2dv

πn1/2
·
∫
C2

e−∥w∥2dw

πn2/2
= Ω̃n1(C1) · Ω̃n2(C2).
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In the special case that one of the orthogonal parts is an ℓ-dimensional linear
subspace L of Rn, since Ω̃ℓ(L) = 1, we enjoy the following corollary:

Corollary 2.2.2. Let C ⊆ Rd be a polyhedral cone (or more generally, a convex cone)
of dimension n, such that C = C ′⊕L is the orthogonal sum of a cone C ′ of dimension
n′ < n and a linear subspace L of Rd. Then, Ω̃n(C) = Ω̃n′(C ′).

Corollary 2.2.2 demonstrates how computing solid angles of cones containing lines
reduces to computing solid angles of lower dimensional cones. Further, by recalling
the orthogonal decomposition of a cone C = L + C/L as the Minkowski sum of its
lineality space and it projection onto the orthogonal complement of its lineality space,
we note that the normalized solid angle measure of C is equal to the affine solid angle
measure of C/L.

Recall that an isometry h of Rd is a function that is distance-preserving. Every
isometry can be expressed as a composition h(v) = T (v) + t, where T is a unique
orthogonal linear transformation and t is a unique translation vector. As translating
a cone does not alter the proportion of space it occupies, we note that solid angle
measures are invariant under translations. The same arguments used to show that
orthogonal transformations preserve volumes can be used to show that they preserve
solid angle measures.

Lemma 2.2.3. Given a polyhedral cone C ⊂ Rd, vectors s, t ∈ Rd, and an isometry
h(x) = T (x) + t of Rd defined by an orthogonal transformation T , we have

Ω̃d(h(C + s)) = Ω̃d(C).

Proof. By definition of isometry h(C + s) = T (C) + T (s) + t is a translation of the
polyhedral cone T (C). Thus, h(C + s) and T (C) have the same solid angle measure.
It follows from properties of orthogonal transformations that

vold−1(T (C) ∩ Sd−1) = vold−1(T (C ∩ Sd−1)) = vold−1(C ∩ Sd−1).

Thus, by Definition 2.1.1 the statement holds.

If a cone can be transformed to coincide with another cone by an isometry, the
cones are said to have congruent solid angles. Cones with the same solid angle
measure may not necessarily be congruent.

Recall that NP (v) denotes the outer normal cone of a polyhedron P ∈ Rd at
v ∈ P . We consider the image of a polytope and its outer normal cones at its vertices
under isometries.

Lemma 2.2.4. Let P ⊂ Rd be a polytope, and h(x) = T (x) + t be an isometry. The
image of NP (v) under h is the outer normal cone of the polytope h(P ) at its vertex
h(v), translated by t, that is

h (NP (v))− t = Nh(P )(h(v)).
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Proof. It is clear that the vertices of h(P ) are the images of the vertices of P under
h. Let v be a vertex of P so that h(v) is a vertex of h(P ).

Let w ∈ h(NP (v)) − t so that w = T (x) for some x ∈ NP (v). Let z ∈ P and
y = h(z). To show that w lies in the outer normal cone of h(P ) at the vertex h(v), it
suffices to show thatw·(y − h(v)) ≤ 0. Since T is an orthogonal linear transformation
and x is in the outer normal cone of P at v, it follows that

w · (y − h(v)) = T (x) · T (z− v) = x · (z− v) ≤ 0.

If w ∈ Nh(P )(h(v)), then

w · (y − h(v)) = w · (T (z)− T (v)) ≤ 0

holds. Since T is orthogonal, it is invertible with T−1 also being orthogonal. Thus,

T−1(w) · T−1 (T (z)− T (v)) = T−1(w) · (z− v) ≤ 0.

Thus,
T−1(w) ∈ NP (v) and w + t = h

(
T−1(w)

)
∈ h (NP (v)) .

The dilation of a polytope P by a positive scalar α has the same outer normal
cones at its vertices as the original polytope P .

Lemma 2.2.5. Let P ⊂ Rd be a polytope and α > 0. The outer normal cone of P at
a vertex x is the outer normal cone of the polytope αP at the vertex αx.

Proof. It is clear that the vertices of αP are the vertices of P scaled by α.
Let p ∈ P , v a vertex of P , and g lie in the outer normal cone of P at v. Then,

g · (αp− αv) = α (g · (p− v)) ≤ 0.

Let h be in the outer normal cone of αP at αv. Then,

h · (p− v) =
1

α
(h · (αp− αvi)) ≤ 0.

The above lemma implies that scaling polytopes by positive factors preserves solid
angle measures of outer normal cones at vertices. We establish an analogous result
for higher-dimensional embeddings of polytopes.

Definition 2.2.6. Let 0 < d < n and N = {1, 2, . . . , n}. Let D = (i1, i2, . . . , id) be a
d-tuple of distinct elements of N . Define the linear embedding map ED : Rd → Rn

by
ED(x =

(
x1, x2, . . . , xd

)
) :=

(
a1, a2, . . . , an

)
,

such that ak = xj if k = ij ∈ D, and ak = 0 otherwise.

The next two assertions follow from Definitions 2.1.1 and 2.2.6.
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Theorem 2.2.7. Let C ⊂ Rd be a (translated) polyhedral cone, and ED : Rd → Rn be
an embedding map as defined in Definition 2.2.6. Then,

Ω̃d(C) = Ω̃d(ED(C)).

Proof. The above follows directly from Definition 2.1.1 by considering the solid angle
measure of ED(C) with respect to its linear span.

Theorem 2.2.8. Let P ⊂ Rd be a d-polytope and v be a vertex of P . Let Q and w be
images of P and v respectively, under an embedding map ED : Rd → Rn, as defined
in Definition 2.2.6. Then, the outer normal cone of Q at w is the orthogonal direct
sum of the image of NP (v) under ED and a linear subspace of Rn.

Proof. Given D, we define the linear subspace

L = Span ({ei | i /∈ D}) .

From Definition 2.2.6, it follows that for any y, z ∈ Rd, and ℓ ∈ L,

ED(y) · ED(z) = y · z, and ED(y) · ℓ = 0.

Let y ∈ NP (v), ℓ ∈ L, and q = ED(p) ∈ Q, for some p ∈ P . Then,

(ED(y) + ℓ) · (q−w) = (ED(y) + ℓ) · (ED(p)− ED(v))

= y · (p− v) + ℓ · (ED(p)− ED(v))

≤ 0.

Now, any x ∈ Rn can be uniquely expressed as x = m+ ℓ where m ∈ L⊥ and ℓ ∈ L.
Since m ∈ L⊥, it is clear that m = ED(r) for some r ∈ Rd. Suppose x ∈ NQ(w) and
q = ED(p) ∈ Q for some p ∈ P . Then,

x · (q−w) = (ED(r) + ℓ) · (ED(p)− ED(v)) ≤ 0.

Therefore,
ED(r) · (ED(p)− ED(v)) = r · (p− v) ≤ 0,

so that m ∈ ED(NP (v)).

The following is a consequence of [18, Corollary 2.4] and the above theorems.

Corollary 2.2.9. Let P ⊂ Rd be a d-polytope and v be a vertex of P . Let Q and w
be images of P and v respectively, under an embedding map ED : Rd → Rn given in
Definition 2.2.6. Then,

Ω̃n (NQ(w)) = Ω̃d (NP (v)) .
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2.3 Outer normal cones of Π(q, f) and B(q, f)

Hunsaker [32] showed that the solid angle subtended by a facet πtx ≥ 1 of P (q, f)
has equal measure to the outer normal cone of its blocker B(q, f) = Π(q, f)+Rq−1

≥0 at
its vertex π. Thus, to measure facet importance for P (q, f), we consider solid angle
measures of outer normal cones of B(q, f) at its vertices. Note that if πtx ≥ 1 is a
facet of P (q, f), then π is also a vertex of the group facet polytope Π(q, f). Shim
[41] considered and approximated solid and measure of the outer normal cone of the
group facet polytope Π(q, f) at its vertices as a measure of the importance of the
correspoding facets of P (q, f). We consider the latter case first.

Remark 2.3.1. In [42], it is shown that for any (q, f) /∈ {(4, 3), (4, 1), (6, 2), (6, 3)} the
nonnegativity constraints (1.10a) of Π(q, f) are redundant. As we do not consider
these cases, we take this fact for granted. As such, we define Π(q, f) as the set of(
π1, π2, . . . , πq−1

)
satisfying the system

πf = 1, (2.2a)

πi + πj = 1, i+ j ≡ f (mod q) (complementarity) (2.2b)

πi + πj ≥ πk k ≡ i+ j (mod q) (subadditivity). (2.2c)

We wish to compute the solid angle measures of two types of (q− 1)–dimensional
cones: the outer normal cones of B(q, f) at its vertices and the outer normal cones
of Π(q, f) at its vertices. As in the case of Shim [41], we first consider a partition
of indices. Partition {1, 2, . . . , q − 1} into I, J,H and singleton F = {f}. For i, j
such that i + j ≡ f (mod q) if i ̸= j, assign i ∈ I and j ∈ J (or vice versa), and if
i = j, then i ∈ H. Following Shim’s convention [41], we denote the complement of
any any index k by k, satisfying k + k ≡ f (mod q). Note that |I| is at most ⌊ q−2

2
⌋.

Leveraging the dimension of group facet polytopes and Corollary 2.2.9, we reduce
the computations of solid angle measures of the outer normal cones of group facet
polytopes at their vertices and outer normal cones of blockers of master cyclic group
polyhedra at their vertices to dimensions |I| and 2|I| respectively. We note here that
[42] consider a specific partition of indices. In the following, we make clear that in
reducing the dimension, we still preserve the solid angle measures of the cones of
interest. First, we introduce an additional polytope, the projection of Π(q, f) onto
the linear span of {ek | k ∈ I}:

ΠI(q, f) :=

{∑
i∈I

xiei

∣∣∣ (x1, x2, . . . , xq−1

)
∈ Π(q, f)

}
⊂ Rq−1.

Lemma 2.3.2. Consider the isometry h(x) = A(x) + t of Rq−1, where the orthogonal
matrix A ∈ R(q−1)×(q−1) has kth column given by

A(k) =


1√
2
(ek − ek̄), for k ∈ I

− 1√
2
(ek + ek̄), for k ∈ J

ek, for k ∈ H ∪ F,
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and where

t =
∑
k∈I

1√
2
ek +

∑
k∈J

1√
2
ek −

∑
k∈H

1

2
ek − ef .

Then, the following holds: h(Π(q, f)) =
√
2ΠI(q, f).

Note that by the results of the previous section, the above lemma implies that the
outer normal cones of the two polytopes have congruent solid angles.

Proof of Lemma 2.3.2. First, note that h is indeed an isometry as A is an orthogonal
matrix. Let π =

(
π1, π2, . . . , πq−1

)
∈ Π(q, f) so and πI =

∑
i∈I πiei ∈ ΠI(q, f). We

see that

1√
2
h(π) =

1√
2
(Aπ + t)

=
1√
2

(
q−1∑
i=1

πiA
(i) + t

)

=
1√
2

(∑
i∈I

πiA
(i) +

∑
j∈J

πjA
(j) +

∑
h∈H

πhA
(h) + πfA

(f) + t

)

=
1√
2

(∑
i∈I

πi√
2
(ei − eī) +

∑
i∈I

1− πi√
2

(−ei − eī) +
∑
h∈H

1

2
eh + ef + t

)

=
1√
2

(∑
i∈I

1√
2
(2πi − 1)ei +

∑
j∈J

− 1√
2
ej +

∑
h∈H

1

2
eh + ef + t

)

=
1√
2

(∑
i∈I

√
2πiei

)
= πI.

This shows the two polytopes are equal.

By substitution of the complementarities (2.2b) and (2.2a) in the characterization
of the group-facet polytope Π(q, f), each subadditivity (2.2c) can be expressed in
terms of only variables with indices in I. The set of subadditivities in terms of
variables with indices in I describes a polytope in R|I|. We refer to this polytope as
the reduced group facet polytope and denote it by Π̃(q, f).

At this stage, we recall that constraints at
1x ≤ b1 and at

2x ≤ b2 are linearly
independent if a1 and a2 are. A constraint atx ≤ b is tight at x̄ if atx̄ = b. Thus,
equality constraints atx = b of a polyhedron are tight at every point in the polyhedron.
For a polyhedron P ⊆ Rd, a point x ∈ P is a vertex of P if there are d linearly
independent constraints which are tight at x. For convenience, we may suppose
|I| = s and index its elements: I = {i1, i2, . . . , is}.
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Lemma 2.3.3. Let ei denote the ith standard basis vector of Rs. For a given point
π =

(
π1, π2, . . . , πq−1

)
∈ Π(q, f), consider the corresponding point

π̃ =
s∑

ℓ=1

πiℓeℓ ∈ Π̃(q, f).

Then, π is vertex of Π(q, f) if and only if π̃ is a vertex of Π̃(q, f).

Proof. If π is a vertex of Π(q, f), then q − 1 linearly independent constraints are
tight at π. Since there are q−1− s linearly independent equality constraints ((2.2a),
(2.2b)), there are s linearly independent subadditivities (2.2c) which are tight at π.
Expressing these s subadditivities in terms of only variables with indices in I shows
that π̃ satisfies s linearly independent constraints of Π̃(q, f), hence is a vertex.

If π̃ is a vertex of Π̃(q, f), then s linearly independent constraints are tight at π̃.
Since π ∈ Π(q, f), the q − 1 − s equality constraints are tight at it. It is clear that
a subadditivity of Π(q, f) is tight at π if and only if the corresponding constraint

(obtained from rewriting in terms of variable with indices in I) of Π̃(q, f) is tight at
π̃. Furthermore, if a set of subadditivities of Π(q, f) are linearly independent, then

the corresponding constraints of Π̃ are linearly independent. Since s linearly inde-
pendent constraints of Π̃(q, f) are tight at π̃, there are at least s linearly independent
subadditivities which are tight at π. Therefore, π is a vertex.

Example 2.3.4. We demonstrate this relationship with an example. By (1.10), the
polytope Π(5, 4) ⊂ R4 is the set of (π1, π2, π3, π4) satisfying:

π1, π3 ≥ 0, π2 =
1

2
, π4 = 1, π1 + π3 = 1, 2π1 ≥ π2, and 2π3 ≥ π1.

Thus
Π(5, 4) = conv

(
{
(
1
4
, 1
2
, 3
4
, 1
)
,
(
2
3
, 1
2
, 1
3
, 1
))

.

The partition of indices for this example is I = {1}, J = {3}, H = {2}, and F = {4}.
After substitution using the equations, we have the inequality description of the
reduced group facet polytope Π̃(5, 4) ⊂ R:

1

4
≤ π1 ≤

2

3
.

Now, we can relate ΠI(q, f) and Π̃(q, f). The following corollary follows directly
from previously established results and so is stated without proof.

Corollary 2.3.5. The polytope ΠI(q, f) ⊂ Rq−1 is the image of Π̃(q, f) under the
embedding map EI : Rs → Rq−1.

Corollary 2.3.5 and Corollary 2.2.9 together show that measures of outer normal
cones of ΠI(q, f) at its vertices are the same as those of Π̃(q, f) at its vertices. As
a consequence, the following corollary shows that to obtain the solid angle measures
of outer normal cones of vertices of Π(q, f), it suffices to focus on the measure of
the |I|-dimensional solid angles subtended by the outer normal cones of the reduced

group-facet polytope Π̃(q, f) at its vertices.
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Corollary 2.3.6. Let x =
(
x1, x2, . . . , xq−1

)
be a vertex of the polytope Π(q, f), and

x̃ =
(
xi1 , xi2 , . . . , xis

)
its corresponding vertex of Π̃(q, f). Then,

Ω̃q−1

(
NΠ(q,f)(x)

)
= Ω̃|I|

(
NΠ̃(q,f)(x̃)

)
.

Proof. By Lemma 2.3.2, NΠ(q,f)(x) has the same solid angle measure asNΠI(q,f)(EI(x̃)).
By Corollary 2.3.5, NΠI(q,f)(EI(x̃)) has the same solid angle measure asNΠ̃(q,f)(x̃).

Now, we focus our attention to outer normal cones of the blocker of P (q, f) at its
vertices. Using the structure of B(q, f), we can simplify the computation of the solid
angle measures of its outer normal cones at its vertices. The outer normal cones have
the following form:

C ⊕ cone(−ef )⊕
⊕

{h∈H}

cone(−eh)

for some 2|I|-dimensional cone C. By Lemma 2.2.1, the solid angle measure of the
outer normal cone of B(q, f) at a vertex is 2−(q−1−2|I|) times the solid angle measure
of C with respect to its 2|I|-dimensional linear span.

Copyright© Allison Marie Fitisone, 2024.
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Chapter 3 Solid Angle Approximation Methods

The normalized solid angle of a cone C ⊆ Rd has many equivalent definitions, hence
ways to measure it, including:

1: The proportion of a sphere, or ball centered at the origin which intersects C,
in which case the problem of measuring the solid angle is that of finding the
volume of a spherical polytope, which is a specific kind of convex body;

2: The probability that a randomly selected point in Rd lies inside C, in which
case Monte-Carlo estimates are appropriate for approximation;

3: or, in recognizing that volume is a special case of integration, viewing the ratio
in Definition 2.1.1 as one of integrals. Doing so gives the following equivalent
definitions of Ω̃d:

Ω̃d(C) =
vold−1(C ∩ Sd−1)

vold−1(Sd−1)
=

∫
C
f(x)dx∫

Rd f(x)dx
, (3.1)

where f : Rd → R is any function that is invariant under rotations around the
origin, and where

∫
Rd f(x)dx < ∞.

Viewing solid angle measures through the lens of Interpretation 1:, we consider the
much celebrated practical randomized volume approximation algorithm of Cousins
and Vempala [9]. For Interpretation 2:, we discuss the so called “shooting experiment”
dating back to Kuhn [34] and popularized by Gomory, Johnson, and Evans [24]. For
Interpretation 3:, we consider the work of Ribando [39], who choosing a particular
form f , rediscovered Aomoto’s [1] solid angle measure formula, which takes the form
of a hypergeometric power series. In this chapter, we survey these three methods.

3.1 Cousins–Vempala Practical Volume Algorithm

The normalized solid angle measure of a convex cone C ⊆ Rd is given by (2.1) which
is equivalent to

Ω̃d(C) =
vold(C ∩Bd)

vold(Bd)
=

vold(C ∩Bd)
√
π
d

Γ(1+ d
2
)

,

where Bd denotes the d-dimensional unit ball. Therefore, the problem of computing
the normalized solid angle measure of C is reduced to computing vold(C ∩ Bd), the
volume of a convex body. Computing volumes of convex bodies is a problem dating
back to antiquity. The history of volume computation as an algorithmic problem
dates back to at least the 1980s. In this context, a convex body is given by an oracle
if there is a program which outputs whether a point is in the convex body or not.
The early results of Elekes [14] and Bárány-Füredi [4] exhibited that no deterministic
polynomial time algorithm could compute the volume of a convex set given by an
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oracle to within less than exponential relative error. However, Dyer, Frieze, and
Kannan [12] presented the first polynomial randomized algorithm to approximate the
volume of a convex body to within any desired relative error. The algorithm is often
referred to as the DFK algorithm. The primary tool used was Monte Carlo integration
which relies on random sampling for the numerical estimation of an integral. This
has been the main ingredient of the majority of randomized volume approximation
algorithms since. The breakthrough result was an (ϵ, δ) approximation, which showed
that given two positive numbers 0 < δ, ϵ < 1, and a convex body K ⊂ Rd given by a
separation oracle (a procedure which given p ∈ Rd asserts that p ∈ K or returns a
hyperplane that separates p and K), one could determine a value ξ such that

(1− ϵ)ξ < vol(K) < (1 + ϵ)ξ

with probability at least 1−δ. The running time of the DFK algorithm is polynomial
in d, 1

ϵ
, and log(1

δ
), in particular, it required

O∗(d23) = O

(
d23 log5(d)ϵ−2 log

(
1

ϵ

)
log

(
1

δ

))
membership tests. The soft-O notation O∗(dh) indicates that logc(d) factors and
constants depending on ϵ and δ are suppressed. The DFK algorithm became the
impetus for the development of randomized (ϵ, δ)-volume approximation algorithms.
Subsequent work in this field has largely been focused on improving the complexity
growth with respect to dimension.

For solid angle measure computations, we will focus exclusively on the practical
randomized volume approximation algorithm [9] by Cousins–Vempala, which is im-
plemented in MATLAB [10], as its goal is to approximate volumes of intersections
of polyhedra and ellipsoids, which is applicable for solid angle measure. We will
dilineate how the algorithm works and also discuss how we apply it to our cases.
Here, we recall that a polyhedron can be expressed as the Minkowski sum of a cone
and a polytope; each of which can be described as the convex hull of its extreme
rays/points respectively, or by a system of equations and inequalities corresponding
to the half-spaces of which the cone and polytope are the intersections of. The for-
mer case is called a V−representation of the polyhedron while the latter is called the
H−representation.

One can assume that the convex bodies of interest are sufficiently round and
that they contain the origin. Otherwise, translation and the rounding phase are
performed as a pre-processing step in the volume approximation algorithm. Given
the H−representation of a polyhedron (in particular, the matrices A,A= and the
vectors b,b= such that the polyhedron satisfies Ax ≤ b and A=x = b=), a point in
the polyhedron, a description of an ellipsoid (the matrix E and center of the ellipsoid
c so that the ellipsoid is (x− c)tE(x− c) ≤ 1), and a target relative error parameter
ϵ, the Cousins–Vempala algorithm approximates the volume of the convex body K
which is defined as the intersection of the polyhedron and the ellipsoid.
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If fm is the characteristic function of K, then for any functions f0, f1, . . . , fm−1,
the volume of K is given by the telescoping product:

vol(K) =

∫
K

f0(x) dx ·
m∏
i=1

∫
K
fi(x) dx∫

K
fi−1(x) dx

=

∫
K

f0(x) dx ·
m∏
i=1

Ri,

where each ratio of integrals is called a phase.
In this way, approximating the volume of K is broken down into approximating

the initial phase
∫
K
f0(x) dx and approximating each phase Ri for i = 1, 2, . . . ,m

appearing above. Cousins and Vempala [9] consider Gaussian functions of the form
fi(x) = e−ai∥x∥2 for i = 0, 1, . . . ,m, with f0 being highly concentrated in K, so
that most of the volume under the Gaussian lies above K. Since the integral of
a Gaussian function over Rd has a closed form,

∫
K
f0(x) dx ≈

∫
Rd f0(x) dx gives

an easily computable approximation for the first integral. To determine what the
starting Gaussian should be, i.e., the value of a0, a percentage r (the default being
0.1) of the relative error ϵ is alloted. In [9], it shown that for a given a, and a random
variable X from e−a∥x∥2 over Rd, the probability that X /∈ K has upper bound given
as a function of a:

p(a) :=
∑
H∈H

e−ad2H

2dH
√
aπ

+ e−
d2E
8 ,

whereH represents the set of hyperplanes bounding the polyhedron, dH is the distance
from the origin to the hyperplane H, and dE is the minimum distance from the origin
to the boundary of the ellipsoid. Initial bounds of 0 and 1 are imposed upon a and
binary search is performed to find a0 such that p(a0) = rϵ.

For each i = 1, 2, . . . ,m−1, the phase Ri is the expectation of a random variable.
If X(i) is a random variable with probability density function

fi−1(x)∫
K
fi−1(y)dy

1K(x),

then the expected value of the random variable

Y (i) =
fi(X

(i))

fi−1(X(i))

is

E[Y (i)] =

∫
K

fi(x)

fi−1(x)
· fi−1(x)∫

K
fi−1(x)dx

dx = Ri.

To estimate the expected value of Y (i), random samples {X(i)
1 , X

(i)
2 , . . . , X

(i)
si } are ob-

tained via a random walk. The si random samples correspond to {Y (i)
1 , Y

(i)
2 , . . . , Y

(i)
si }

where, for j = 1, 2, . . . , si,

Y
(i)
j =

fi(X
(i)
j )

fi−1(X
(i)
j )

.
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The Monte-Carlo estimator of Ri for i = 1, 2, . . . ,m is

Ri = E
[
Y (i)

]
≈ 1

si

si∑
j=1

Y
(i)
j .

For each i = 1, 2, . . . ,m, to determine the quantity si of samples to take, Cousins
and Vempala introduce a stopping criterion which uses a sliding window size W (in
their implementation, the sliding window size is 400+d2). If the maximum difference
between any of the last W partial sums of the Monte-Carlo estimator of Ri:

1

k −W + 1

k−W+1∑
j=1

Y
(i)
j ,

1

k −W + 2

k−W+2∑
j=1

Y
(i)
j , . . . ,

1

k

k∑
j=1

Y
(i)
j ,

is at most ϵ
2
√
m
, then si is set to k, and the Monte-Carlo estimator is output as the

approximation for Ri.
The values a1, a2, . . . , am are determined recursively so that

ai = ai−1

(
1− 1

n

)ri

for i = 1, . . . ,m, where ri ≥ 1 is the maximum value where

Var[Y (i)]

E[Y (i)]2
≤ 2

holds. In the MATLAB implementation, the initial value of ri is 1. To test whether
the bound on the variance holds, a fixed number of samples (1000 + d2

2
) is used. If

the bound holds, the current value of ri is doubled until the constraint is violated,
at which ri is set to the last value at which the bound held. To determine m,
the number of phases which is sufficient, the MATLAB implementation computes
the Monte-Carlo estimator of Ri using a fixed number of samples (⌈150

ϵ
⌉). If the

estimation is sufficiently close to 1 (in practice, if it is less than 1.001), then m is set
to i+ 1 and am is set to 0.

3.1.1 Discussion

To apply the Cousins–Vempala algorithm to approximate the solid angle measure
of a polyhedral cones in Rd, we must provide the H-representation of the cone. In
our use cases, we typically deal with the V−representation of the cone, and describe
it by its extreme rays. For instance, Gomory’s characterization of the nontrivial
facets of P (q, f) provides a non-minimal H-representation of Π(q, f) which encodes
the generators of the outer normal cones of Π(q, f) at its vertices, hence a non-
minimal V –representation of the outer normal cones. Thus, in this framework, it is
more natural to consider V –representations. To convert from the V –representation
to an irredundant H-representation, we use the facet enumeration method of the
Polyhedron class in the Multi-Parametric Toolbox 3.0 [28]. The ellipsoid will always
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be the unit ball centered at the origin. Thus, c is the d-dimensional zero vector and
E is the d× d identity matrix. It is also necessary to find a point in the intersection
of the cone and the unit ball. To determine this point, we sum up the extreme rays
of the cone, so that the resultant vector is in the relative interior of the cone. To
ensure that it also lies in the unit ball, we scale it by a factor of 1

1+n
where n is

the norm of the norm of the vector. Cousins and Vempala [9] note that while the
heurstic stopping criterion experimentally provides a reasonable estimate, it cannot
guarantee accuracy. One method to increase the probability of an accurate answer
is to average over multiple trials. In the experiments reported in [9], at least 100
trials are conducted. As such, we consider 100 trials for our cases. Furthermore,
as aforementioned, the convex bodies undergo a rounding pre-processing step before
volume estimation. In the MATLAB implementation, the rounding step is performed
after the convex body is already constructed, hence rounding is performed in each
of the 100 trials. The authors note that the rounding phase is computationally
expensive, but ensures that the volume approximation is efficient. It is also important
to note that in the MATLAB implementation of the algorithm, three random walks
are available for sampling: ball walk, hit-and-run, and the default random walk,
coordinate hit-and-run. We use hit-and-run as it is the random walk of primary
focus in [9].

For the purposes of our study, we are interested in absolute error rather than
relative error. However, the Cousins–Vempala algorithm takes as input a target
relative error parameter. For a target absolute error parameter δ, we input the
relative error parameter δ

V
where V is an estimation of the volume of the convex

body of interest. For cones of dimension at most 4, we use estimates of the solid
angle measure obtained from the power series method to obtain V . For cones of
higher dimension, we use estimates of the solid angle measure obtained from existing
empirical data from shooting experiments performed in [32] and [41] to obtain V .

3.2 Shooting Experiments

A “shooting experiment” on a polyhedron P ⊂ Rd is a randomized procedure whereby
rays are “shot” from a particular point and the number of shots which “hit” a facet
of P are recorded. The point from which the rays emanate is called the shooting
point. The shooting point may be interior to the polyhedron (as in [34, 41]) or
exterior to the polyhedron (as in [16, 24]). A random direction vector d ∈ Rd is
generated. If a facet f of P is the first facet of P which the ray d intersects, we say
f is hit by d. The process is repeated and the frequency with which a facet is hit is
recorded. The percentage of shots received by a facet gives an approximation for the
measure of the solid angle subtended by that facet. Shooting experiments have been
the primary method for measuring solid angles subtended by facets of master cyclic
group polyhedra (see [11, 16, 32, 41] for example).

While the term “shooting experiment” is often attributed to Gomory, use of shoot-
ing experiments date back to at least the 1950s with Harold Kuhn [34] and his work
on the traveling salesman problem. In 1953, Kuhn devised a shooting experiment
to generate faces of an 11-dimensional polytope embedded in R20. Kuhn stated “To
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generate faces of this polytope, I proposed the following ‘experiment’ in the summer
of 1953: Sit at the center of gravity x of the polytope and fire a pistol in a random
direction d. Your shot will go out through a face with a probability 1.” For these
shooting experiments, Kuhn considered shooting random direction vectors from a
point in the interior of the polytope, out to the faces of the polytope. He posed the
shooting experiment as a linear program whose optimal solution provided the equa-
tion of the face through which the shot exited. In this way, the ratio of the shooting
experiment size of a facet (number of shots hit by a facet) to the total number of shots
performed, is an estimate of the solid angle subtended by the facet at the interior
shooting point.

In his initial shooting experiment in 1953, Kuhn shot 10 direction vectors, each
obtained by “sticking a pin at random in the Los Angeles telephone book” [34].
He noted that all ten shots went through “trivial” faces, i.e. faces arising from
nonnegativity constraints. In 1991, Kuhn revisited the same 11-dimensional polytope,
performing another shooting experiment, this time with 152,636 shots, where the
random direction vectors were obtained from a uniform distribution over the unit
sphere in R11. From Kuhn’s latter shooting experiment, he was able to determine
that the class of trivial faces, consisting of 20 out of the total 390 faces, subtended
approximately 80 percent of the central spherical angle of the polytope. The variance
in the results of Kuhn’s two shooting experiments reify the caution that is necessitated
when drawing conclusions based on shooting experiments, as well as the need for a
large number of shots to draw accurate conclusions.

In contrast to Kuhn’s shooting experiments, Gomory’s shooting experiments were
conducted on unbounded master cyclic group polyhedra, with the shooting point
being the origin, lying outside of the polyhedra. Moreover, in Kuhn’s shooting ex-
periment, direction vectors are shot from the interior point x in random directions
coming from a uniform distribution over the unit sphere, whereas in Gomory’s shoot-
ing experiment, because the polyhedra of interest lie completely within the nonnega-
tive orthant, the direction vectors are limited to the nonnegative orthant. Therefore,
while Kuhn’s shooting experiment estimates the measure of the solid angle subtended
by a facet of a polytope at the point x normalized so that the solid angle of all of
space has measure 1, Gomory’s shooting experiment estimates the measure of the
solid angle subtended by a facet of a blocking polyhedron at the origin, normalized
so that the solid angle of an orthant is 1.

For the shooting experiment established by [24], random direction vectors were
generated uniformly on the nonnegative orthant of Rq−1 [16]. They were able to
determine the facet hit by a random direction vector by use of the following theorem:

Theorem 3.2.1 ([24, Theorem 3 (Shooting Theorem)], rephrased). For positive in-
tegers f < q, the facet πtz ≥ 1 of P (q, f) (with π =

(
π1, π2, . . . , πq−1

)
) hit by the
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random direction vector v ≥ 0 is the solution to the linear program:

minimize vtπ

such that πi ≥ 0, i = 1, . . . , q − 1

πf = 1,

πi + πj = 1, i+ j ≡ f (mod q)

πi + πj ≥ πk, k ≡ i+ j (mod q).

Thus, to perform one shot in the shooting experiment, one solves the LP above,
and records the optimal solution corresponding to the facet hit. Hunsaker [32] proved
a more general result:

Theorem 3.2.2 ([32, Theorem 3.2], rephrased). Given a blocking polyhedron P and a
nonnegative objective vector c for minimization, xj is an optimal extreme point of P
if and only if ztxj ≥ 1 defines a facet of B(P ) that is intersected by the ray from the
origin in direction c.

In the above, B(P ) is the blocker of P . This implies that a facet πtz ≥ 1 of
P (q, f) is hit by a direction vector v in the shooting experiment if and only if v lies
in the negative of the outer normal cone of B(q, f) = Π(q, f) +Rq−1

≥0 at its vertex π.
Therefore, the measure of the solid angle subtended by the facet πtz ≥ 1 of P (q, f) is
equal to the solid angle measure of the outer normal cone of B(q, f) at its vertex π.

As aforementioned, rather than considering outer normal cones of the polyhedron
B(q, f), Shim[41] considered outer normal cones of the polytope Π̃(q, f) ⊂ R|I|, with
the partition of indices {1, 2, . . . , q− 1} = I ⊔ J ⊔F ⊔H and I = {i1, i2, . . . , is}. The
polytope is first translated so that the point

(
1
2
, 1
2
, . . . , 1

2

)
which lies in its interior is

translated to the origin. Then, for a single shot of Shim’s shooting experiment, a
random direction w is generated from a uniform distribution on the unit sphere of
Rs. The shot is performed by solving the LP:

maximize wtϕ

such that ϕ ∈ Π̃(q, f)−
(
1
2
, 1
2
, . . . , 1

2

)
.

Suppose the optimal solution to the LP above is ϕ̄ = π̃−
(
1
2
, 1
2
, . . . , 1

2

)
, then we think

of w as lying in the outer normal cone Π̃(q, f) at π̃ and the facet πtz ≥ 1 of P (q, f)
as being hit, where π̃ =

∑s
i=1 πiℓeℓ and ei denotes the i

th standard basis vector of Rs.
In his thesis [41], Shim posited the question of whether the two shooting experiments
were equivalent noting that “Experimental results boost the equivalence.” We can
re-frame this question as asking whether the solid angle measure of an outer normal
cone of Π̃(q, f) at a vertex is equal to the solid angle measure of the outer normal
cone of B(q, f) at the corresponding vertex, where the former solid angle measures
is normalized so that R|I| has measure 1, while the latter solid angle measure is
normalized so that an orthant Rq−1

≥0 has measure 1.
For this project, we use existing data from prior shooting experiments for com-

parisons.
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3.3 The Power Series Method

Ribando considered the function f(x) = e−∥x∥2 to express the normalized solid angle
measure of an n-dimensional cone C ⊂ Rn as

Ω̃n(C) =

∫
C
e−∥x∥2dx∫

Rn e−∥x∥2dx
=

∫
C
e−∥x∥2dx

πn/2
, (3.2)

which when simplified and expanded gave rise to a hypergeometric series. Further-
more, Ribando showed that the convergence of the power series was dependent on a
certain matrix, which we call the associated matrix.

Ribando’s results are presented in Theorem 3.3.2 below.

Definition 3.3.1. Let C be a simplicial cone in Rn, whose generators are the linearly
independent unit vectors v1, . . . ,vn ∈ Rn. Then, the associated matrix of C, denoted
by Mn(C), is the n× n matrix whose (i, j)-th entry is −|vi · vj| for i ̸= j, and whose
diagonal (i, i)-th entry is 1.

Mn(C) =


1 −|v1 · v2| · · · −|v1 · vn|

−|v2 · v1| 1 · · · −|v2 · vn|
...

...
. . .

...
−|vn · v1| −|vn · v2| · · · 1

 . (3.3)

Theorem 3.3.2 ([39, Theorem 2.2 and Corollary 3.3], rephrased). Let C ⊆ Rn be the
simplicial cone generated by the unit vectors v1, . . . ,vn. Let V ∈ Rn×n be the matrix
whose ith column is vi. Let αij = vi · vj for 1 ≤ i, j ≤ n. Let

Tα =
| detV |
(4π)n/2

∑
a∈N(

n
2)

[
(−2)

∑
1≤i<j≤n aij∏

1≤i<j≤n aij!

n∏
i=1

Γ

(
1 +

∑
m ̸=i aim

2

)]
αa. (3.4)

Then, Tα converges absolutely to the normalized solid angle measure Ω̃n(C) of the
cone if and only if its associated matrix Mn(C) is positive definite.

In the above series (3.4), Γ is the Euler-Gamma function; α = (α12, α13, . . . αn−1,n)
is a multivariable in

(
n
2

)
variables; and a = (a12, a13, . . . , an−1,n) is a multiexponent.

We define
αa :=

∏
1≤i<j≤d

α
aij
ij .

When i > j, we set aij = aji, and we define
∑

m ̸=i aim to be the sum over all the
terms in the multiexponent where i appears as either the first or second index.

Other functionals f have been used in (3.1) to represent high-dimensional solid
angle measures as integrals. Hajja and Walker [27, Theorem 1] use f(x) = 1 and
consider a standard change of variables, to obtain an integral formula for the solid
angle measures, where the integral is taken over the portion of the unit sphere in the
positive orthant. Kabluchko and Zaporozhets [33, Proposition 1.1] use a form related

27



to Gaussian distribution to present an equivalent formula for the solid angle measures
of a specific class of cones. For the purposes of this paper, we will focus exclusively
on Ribando’s hypergeometric series formula.

Copyright© Allison Marie Fitisone, 2024.
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Chapter 4 Cone Decompositions for Solid Angle measure

In this chapter, we extend use of the power series formula to arbitrary polyhedral
cones. The power series formula gives the solid angle measure of simplicial cones
whose associated matrices are positive definite. G iven a  p olyhedral c one, we may
project it onto the orthogonal complement of its lineality space to obtain a pointed
cone whose affine solid angle measure is  the same as  the normalized solid angle mea-
sure of the original cone. If the pointed cone is not simplicial, we can triangulate it
simplicial cones, so that the solid angle measure of the pointed cone is the sum of the
solid angle measures of the simplicial cones in the triangulation. In the next chapter,
we discuss this projection and our choice of triangulation in depth. Thus, the task at
hand is to determine solid angle measures of simplicial cones whose solid angles do
not have convergent power series (3.4). In this chapter, we consider systematically
decomposing such simplicial cones into cones whose associated matrices are positive
definite. The content of this chapter appears in [18], which is collaborative work with
Yuan Zhou.

Regarding the power series formula in (3.4), Ribando noted that there are two
significant i ssues i n applying t he p ower s eries method [39]. The fi rst ma jor is sue is
that in higher dimensions, computational feasibility is hindered by the large number
of coordinates needed to use the formula. To compute the(

n
)normalized solid angle 

measure of an n−dimensional simplicial cone, one needs coordinates. Several
authors make reference to the power series, but often cite it being computationally
untractable for high dimensions. The second issue is that the positive definite-ness of
the associated matrix is an essential assumption for applying the power-series formula.
When this criterion is not met, α lies outside of the domain of convergence of the
series, and the formula cannot be used in a way that is meaningful.

We present a method that allows one to compute the normalized solid angle
measure of any polyhedral cone via the power series method. Moreover, we address
the two major issues standing in the way of widespread use of the power series method
as a means to compute solid angle measures.

We address the positive-definite-ness criterion via signed decompositions of cones.
In Section 4.1, we investigate Brion–Vergne decomposition of cones with respect to
hyperplanes. We demonstrate in Theorem 4.1.3 and Corollary 4.1.4 that Brion–
Vergne decomposition of a simplicial cone with respect to a particular hyperplane
results in finitely many cones that either have a positive definite associated matrix
(and so their solid angle measures can be computed directly via the power series
formula), or contain lines (and so by applying Corollary 2.2.2, the computation of
solid angle measures can be simplified to a lower-dimensional problem, which can be
addressed using induction on dimension). In Section 4.2, we consider Brion–Vergne
decomposition of cones with respect to lines. We demonstrate in Theorem 4.2.3
that Brion–Vergne decomposition with respect to a particular line leads to a second
decomposition of a simplicial cone into finitely many cones, each of which has a
positive definite associated matrix. This theorem gives a method to decompose solid
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angles lying outside the domain of convergence into solid angles lying within the
domain of convergence of the series in Theorem 3.3.2.

We also address the computational feasibility of the power series method by re-
ducing the number of coordinates needed. In Section 4.3, we explore the properties
of cones resulting from the application of a stronger version of Theorem 4.2.3. These
cones have associated matrices that are not only positive-definite but also tridiagonal,
reducing the number of required coordinates for the power series formula from

(
n
2

)
to

n− 1. Theorem 4.3.1 shows that under the tridiagonal assumption, the power series
formula always converges to the solid angle measure. In Theorem 4.3.9, we examine
the asymptotic error of the power series formula for cones with tridiagonal associated
matrices.

4.1 First decomposition method

4.1.1 Brion–Vergne decomposition with respect to a hyperplane

We will make use of Brion–Vergne (B–V) decomposition (see [8], [3]) with respect
to a hyperplane. B–V decomposition is a signed decomposition of a simplicial cone
into a finite family of full-dimensional simplicial cones. The hyperplane determines
a facet for each of the cones in the decomposition. We adopt some of the notation
used in [3] and reformulate the decomposition below.

Definition 4.1.1. Let w1, . . . ,wd be vectors in Rn. We denote by ⟨w1, . . . ,wd⟩ the
linear span of w1, . . . ,wd. We denote by c(w1, . . . ,wd) the cone generated by the
vectors w1, . . . ,wd.

Let L ⊆ Rn be a hyperplane, and wi ∈ Rn \ L. We denote by ρi : Rn → L the
projection onto L, parallel to wi.

Let C be a cone. We denote by [C] the indicator function of the cone C. We say
that a cone C can be decomposed into cones C1, . . . , Ck, if their indicator functions
satisfy the relation

[C] ≡
k∑

i=1

si[Ci], where si ∈ {±1},

modulo indicator functions of cones containing lines (in Section 4.1) or modulo indi-
cator functions of lower-dimensional cones (in Section 4.2).

Theorem 4.1.2 (Brion–Vergne decomposition with respect to a hyperplane [3, Propo-
sition 15b]). Let w1, . . . ,wn form a basis of Rn and let cone C = c(w1, . . . ,wn). Let
L ⊆ Rn be a hyperplane. Assume that wi ∈ L if and only if r + 1 ≤ i ≤ s and that
wi lie on one side of L for 1 ≤ i ≤ r, and on the other side for s+1 ≤ i ≤ n. Then,
we have the following relation modulo indicator functions of cones containing lines.

[C] ≡
r∑

i=1

[R≥0wi + ρi(C)]−
n∑

i=s+1

[R≥0(−wi) + ρi(C)].
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4.1.2 Solid angle decomposition that includes cones containing lines

We now present a signed decomposition of a given full-dimensional simplicial cone
whose solid angle measure is of interest, in a way that the resulting cones either con-
tain lines so that Corollary 2.2.2 applies, or have positive definite associated matrices
so that Theorem 3.3.2 applies.

Theorem 4.1.3. Given linearly independent unit vectors w1,w2, . . . ,wn ∈ Rn, the
cone c(w1,w2, . . . ,wn) can be decomposed into a finite family of cones, each of which
is either:

(I) a cone containing lines, or

(II) a cone c(v1,v2, . . . ,vn) of dimension n whose associated matrix

Mn =


1 −|v1 · v2| · · · −|v1 · vn|

−|v2 · v1| 1 · · · −|v2 · vn|
...

...
. . .

...
−|vn · v1| −|vn · v2| · · · 1


is positive definite. In particular,

(a) ∥vi∥ = 1 for i = 1, 2, . . . , n

(b) vn = wn

(c) ⟨v1,v2, . . . ,vn−1⟩ = ⟨w1,w2, . . . ,wn−1⟩
(d) vi · vn = 0 for i = 1, 2, . . . , n− 2

(e) xTMn x =
∥∥[ϵ1v1, . . . , ϵnvn

]
x
∥∥2 holds for every x ∈ Rn, where ϵi = ±1.

Before proving the theorem, we point out that the property (e) ensures the positive
definiteness of the associated matrixMn given by (3.3). Indeed, for any nonzero vector
x :=

(
x1, . . . , xn

)
, since v1, . . . ,vn are linearly independent,

[
ϵ1v1, . . . , ϵnvn

]
x =

n∑
i=1

ϵixivi ̸= 0,

and hence xTMn x =
∥∥[ϵ1v1, . . . , ϵnvn

]
x
∥∥2 > 0. As a consequence, the solid angle

formula (3.4) for a cone in the decomposition, which is of the latter form (II), is a
convergent power series.

Proof of Theorem 4.1.3. We proceed by induction on the dimension.
Consider the base case n = 2. Letw1 =

(
w11, w12

)
andw2 =

(
w21, w22

)
be linearly

independent unit vectors. We show that the cone c(w1,w2) is already of the form (II).
The cone satisfies the properties (a) through (d) trivially. Let x =

(
x1, x2

)
∈ R2.

The equation in property (e) has the left-hand-side

xTMn x =
[
x1 x2

]
·
[

1 −|w1 ·w2|
−|w1 ·w2| 1

]
·
[
x1

x2

]
= x1

2 + x2
2 − 2x1x2|w1 ·w2|,
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and the right-hand side

∥∥[ϵ1w1, ϵ2w2

]
x
∥∥2 = ∥∥∥∥[ϵ1w11 ϵ2w21

ϵ1w12 ϵ2w22

]
·
[
x1

x2

]∥∥∥∥2
= (ϵ1x1w11 + ϵ2x2w21)

2 + (ϵ1x1w12 + ϵ2x2w22)
2

= x1
2(w2

11 + w2
12) + x2

2(w2
21 + w2

22) + 2ϵ1ϵ2x1x2(w11w21 + w12w22)

= x1
2 + x2

2 + 2ϵ1ϵ2x1x2(w1 ·w2).

Thus, for appropriate choices of ϵ1 and ϵ2, we see that property (e) is satisfied.
Suppose the statement is true for dimension n − 1. Now consider the cone

c(w1,w2, . . . ,wn) in dimension n which is not already of the form (I) or (II). We
distinguish two cases depending on the orthogonality of wn.

Case 1: Suppose that wn is orthogonal to all wi for 1 ≤ i ≤ n − 1. Set
vn = wn. By the inductive hypothesis, there is a (signed) decomposition of the
cone c(w1, . . . ,wn−1) into finitely many cones k1, . . . , kN that either contain lines or
are of the second form and satisfy the desired properties. Then, it is clear that the
cones

C1 := k1 + c(vn), C2 := k2 + c(vn), . . . , CN := kN + c(vn)

obtained by the Minkowski sums give a decomposition of c(w1, . . . ,wn).
If ki is a cone containing lines in the decomposition of c(w1, . . . ,wn−1), then

Ci also contains lines, and hence is of form (I). Otherwise, ki must be of the form
c(v1, . . . ,vn−1) that satisfies the properties (a)–(e) of dimension n−1. It is clear that
Ci = c(v1, . . . ,vn−1,vn) satisfies properties (a), (b) and (d) of dimension n. By the
inductive hypothesis, ⟨v1, . . . ,vn−2⟩ = ⟨w1, . . . ,wn−2⟩ and vn−1 = wn−1. Thus, we
have that ⟨v1, . . . ,vn−2,vn−1⟩ = ⟨w1, . . . ,wn−2,wn−1⟩ and so property (c) is satisfied.
It remains to verify property (e). We note that since vi ·vn = 0, the associated matrix
of Ci according to Definition 3.3.1 satisfies

Mn(Ci) =


0

Mn−1(ki)
...
0

0 · · · 0 1

 .

By the inductive hypothesis, there exist ϵ1, . . . , ϵn−1 ∈ {±1} such that the left-hand-
side of the equation in property (e) can be written as

xTMn(Ci)x =
[
x1 · · ·xn−1

]
Mn−1(ki)

 x1
...

xn−1

+ x2
n

= ∥ϵ1x1v1 + · · ·+ ϵn−1xn−1vn−1∥2 + x2
n

=
∥∥[ϵ1v1, · · · , ϵn−1vn−1, ϵnvn

]
x
∥∥2 ,

which is equal to its right-hand side, where we set ϵn = 1. Thus, property (e) holds.
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Case 2: Suppose that wn is not orthogonal to all w1, . . . ,wn−1. Without loss of
generality, we may assume that wn−1 ·wn ̸= 0.

We construct a hyperplane L in order to apply Brion–Vergne decomposition The-
orem 4.1.2 as follows. For 1 ≤ i ≤ n− 2, we define

ℓi := wi −
wi ·wn

wn−1 ·wn

wn−1. (4.1)

We remark that ℓi ·wn = 0 for all i = 1, 2, . . . , n− 2. Let

L := ⟨ℓ1, . . . , ℓn−2,wn⟩.

We find that L is a hyperplane of Rn, since if there are scalars λi’s making

0 =
n−2∑
i=1

λiℓi + λnwn =
n−2∑
i=1

λiwi −
n−2∑
i=1

λi
wi ·wn

wn−1 ·wn

wn−1 + λnwn,

then the linear independence of the wi’s implies each λi = 0.
Next, we decide for each i whether wi ∈ L, and we use si = −1 or 1 to indicate

which open half-space that wi belongs to. It is clear that wn ∈ L. We also know
that wn−1 ̸∈ L, because otherwise L would contain all w1, . . . ,wn, a contradiction.
We set sn−1 = 1. For 1 ≤ i ≤ n − 2, if wi · wn = 0, then it follows from (4.1) that
wi = ℓi ∈ L; otherwise, wi ·wn ̸= 0, then we have wi ̸∈ L since

wi = ℓi +

(
wi ·wn

wn−1 ·wn

)
wn−1 (4.2)

again by (4.1). We let accordingly

si =

{
1, if wi and wn−1 are on the same side of L

−1, if wi and wn−1 are on the opposite sides of L.

Denote

I+ = {1 ≤ i ≤ n− 1 | si = 1} and I− = {1 ≤ i ≤ n− 1 | si = −1}.

We remark that I− ∪ I+ is the set of i such that wi ∈ Rn \L, or equivalently, the set
of 1 ≤ i ≤ n− 1 such that wi ·wn ̸= 0.

By Theorem 4.1.2, modulo indicator functions of cones containing lines, we can
decompose the cone C = c(w1,w2, . . . ,wn) as

[C] ≡
∑
i∈I+

[R≥0wi + ρi(C)]−
∑
i∈I−

[R≥0(−wi) + ρi(C)],

which can be rewritten as

[C] ≡
∑

i∈I+∪I−
si [R≥0(siwi) + ρi(C)] . (4.3)
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Therefore, it suffices to show that every cone on the right-hand side of (4.3) can be
decomposed into a finite family of cones of form (I) or (II).

To this end, we let i ∈ I+ ∪ I− and we consider the cone

ci := R≥0(siwi) + ρi(C).

According to Definition 4.1.1,

ρi(C) = c (ρi(w1), . . . , ρi(wi−1), ρi(wi+1), . . . , ρi(wn)) .

Since wn ∈ L, we have ρi(wn) = wn. Thus,

ci = c (siwi, ρi(w1), . . . , ρi(wi−1), ρi(wi+1), . . . , ρi(wn−1), wn) . (4.4)

Next, we determine the projections that arise on the right-hand side of (4.4), by
distinguishing the cases i = n− 1 and i ̸= n− 1. In the former case where i = n− 1,
it follows from (4.2) that ρi(wk) = ℓk for all 1 ≤ k ≤ n−2. Therefore, (4.4) simplifies
to

cn−1 = c(sn−1wn−1, ℓ1, ℓ2, . . . , ℓn−2,wn)

= c

(
sn−1wn−1,w1 −

w1 ·wn

wn−1 ·wn

wn−1, . . . ,wn−2 −
wn−2 ·wn

wn−1 ·wn

wn−1,wn

)
.

In the latter case where i ≤ n− 2 and wi ·wn ̸= 0, we have by (4.2)

wn−1 =
wn−1 ·wn

wi ·wn

(wi − ℓi),

so

ρi(wn−1) = −
(
wn−1 ·wn

wi ·wn

)
ℓi = −

(
wn−1 ·wn

wi ·wn

)(
wi −

wi ·wn

wn−1 ·wn

wn−1

)
= wn−1 −

(
wn−1 ·wn

wi ·wn

)
wi. (4.5)

For 1 ≤ k ≤ n− 2 such that k ̸= i, we have

wk = ℓk +
wk ·wn

wn−1 ·wn

wn−1 = ℓk +
wk ·wn

wn−1 ·wn

· wn−1 ·wn

wi ·wn

(wi − ℓi).

It follows from (4.1) that

ρi(wk) = ℓk −
wk ·wn

wi ·wn

ℓi = wk −
wk ·wn

wi ·wn

wi. (4.6)

Using (4.5) and (4.6), we see that (4.4) simplifies to

ci = c

(
siwi,

{
wk −

wk ·wn

wi ·wn

wi | 1 ≤ k ≤ n− 1, k ̸= i

}
,wn

)
.
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We observe that the generators of ci in the latter case agree with those of cn−1 in the
former case, by setting i = n− 1.

Therefore, we can rewrite the cone ci for any i ∈ I+ ∪ I− in the form of

ci = c

(
u1

∥u1∥
, . . . ,

un−2

∥un−2∥
,un−1,wn

)
,

where

{u1, . . . ,un−2} =

{
wk −

wk ·wn

wi ·wn

wi

∣∣∣ 1 ≤ k ≤ n− 1, k ̸= i

}
(4.7)

un−1 = siwi (4.8)

If the cone ci is already of the form (I) or (II), then no further decomposition
is needed. Otherwise, we apply the inductive hypothesis on the (n− 1)-dimensional
cone

c

(
u1

∥u1∥
, . . . ,

un−2

∥un−2∥
,un−1

)
to get its (signed) decomposition into cones k1, . . . , kM that are of the form (I) or (II).
That is, each cone km := c(v1, . . . ,vn−1) from {k1, . . . , kM} either (I) contains lines,
or (II) satisfies

(i) ∥vj∥ = 1 for j = 1, 2, . . . , n− 1

(ii) vn−1 = un−1

(iii) ⟨v1,v2, . . . ,vn−2⟩ = ⟨u1,u2, . . . ,un−2⟩

(iv) vj · vn−1 = 0 for j = 1, 2, . . . , n− 3

(v) xTMn−1(km)x =
∥∥[ϵ1v1, . . . , ϵn−1vn−1

]
x
∥∥2 holds for every x ∈ Rn−1, where

ϵj = ±1.

Let
Cm = km + c(wn) = c(v1, . . . ,vn−1,wn)

be the n-dimensional cone obtained by appending wn to the generators of km. Then,
the cones C1, C2, . . . , CM give a decomposition of the cone ci on the right-hand side
of (4.3). It is clear that if km contain lines, then Cm also contains lines, so it is of the
form (I). It remains to show that Cm = c(v1, . . . ,vn−1,wn) is of the form (II), given
that km = c(v1, . . . ,vn−1) satisfies properties (i)– (v).

We set vn = wn. Then, Cm = c(v1, . . . ,vn−1,vn) clearly satisfies property (a)
because of (i), and property (b). Property (c) holds because

⟨v1, . . . ,vn−2,vn−1⟩ = ⟨u1, . . . ,un−2,un−1⟩ = ⟨w1, . . . ,wn−2,wn−1⟩,

where the first equality follows from properties (ii) and (iii), and the second equality
follows from equations (4.7) and (4.8). For any 1 ≤ k ≤ n− 1, k ̸= i, we have(

wk −
wk ·wn

wi ·wn

wi

)
·wn = wk ·wn −

wk ·wn

wi ·wn

wi ·wn = 0.
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Thus, wn is orthogonal to all u1, . . . ,un−2 by (4.7). Property (d) holds because
vn = wn is also orthogonal to all v1, . . . ,vn−2 by property (iii). Using property (d),
the associated matrix of Cm can be written in relation to the associated matrix of
km, as

Mn(Cm) =


Mn−1(km)

0
...
0

−|vn−1 · vn|
0 · · · 0 −|vn−1 · vn| 1

 .

Let vector x =
(
x1, . . . , xn

)
∈ Rn. Then,

xTMn(Cm)x =
[
x1 · · ·xn−1

]
Mn−1(km)

 x1
...

xn−1

− 2|vn−1 · vn|xn−1xn + x2
n.

By property (v), for the appropriate choice of ϵ1, · · · , ϵn−1 ∈ {±1}, the first term on
the right-hand side of the above equation is equal to

∥ϵ1x1v1 + · · ·+ ϵn−1xn−1vn−1∥2 .

By setting

ϵn =

{
−1, if vn−1 · vn and ϵn−1 have the same sign

1, otherwise,

we have that −|vn−1 · vn| = ϵn−1ϵn (vn−1 · vn), and hence

xtMn(Cm)x

= ∥ϵ1x1v1 + · · ·+ ϵn−1xn−1vn−1∥2 + 2ϵn−1ϵn (vn−1 · vn)xn−1xn + ϵ2nx
2
n

=
∥∥[ϵ1v1, . . . , ϵn−1vn−1, ϵnvn

]
x
∥∥2 .

This implies that property (e) holds as well. We showed that in Case 2, every cone
obtained via B–V decomposition can be further decomposed into a finite family of
cones, each of which either contains lines or has an associated matrix that is positive
definite. This concludes the proof of the theorem.

Corollary 4.1.4. The decomposition in Theorem 4.1.3 allows for the computation of
the normalized solid angle of a simplicial cone C ∈ Rn via the power series (3.4).

Proof. Suppose Theorem 4.1.3 yields the decomposition C1, . . . , CN of C such that
[C] =

∑N
i=1 si[Ci], where si = ±1. Then

Ω̃n(C) =
N∑
i=1

siΩ̃n(Ci).

36



For each Ci in the decomposition, if it is of the form (I), then we can apply Corol-
lary 2.2.2 to reduce it to a lower-dimensional problem; if it is of the form (II), then

Theorem 3.3.2 applies. By induction on the dimension, each Ω̃n(Ci) can be com-
puted.

We note that in order to compute the solid angle measure using Theorem 4.1.3,
one must determine the cones that contain lines and take orthogonal projections to
reduce dimension, which is not immediately obvious. As such, we present another
decomposition method in the following section.

4.2 Second decomposition method

The decomposition Theorem 4.2.3 in this section gives a more direct way to compute
the normalized solid angle measure of a simplicial cone. The resulting cones are either
lower-dimensional cones or full-dimensional simplicial cones. In the former case, the
cones have normalized solid angle measure 0. In the latter, the generators of the
cones are explicitly given. This allows us to determine the normalized solid angle
measure of the original cone, according to Corollary 4.2.4.

4.2.1 Brion–Vergne decomposition with respect to a line

We will make use another variant of Brion–Vergne (B–V) decomposition (see [8], [3]),
which is with respect to a one-dimensional subspace. Each cone in the decomposi-
tion will contain a generator along the given one-dimensional subspace. This B–V
decomposition is reformulated below.

Theorem 4.2.1 (Brion–Vergne decomposition with respect to a line [3, Proposition
15a], rephrased). Let w1, . . . ,wn form a basis of Rn and let cone C = c(w1, . . . ,wn).
Given a non-zero vector r =

∑n
i=1 λiwi ∈ Rn, let δi ∈ {−1, 0, 1} denote the sign of

λi for 1 ≤ i ≤ n. Then, the following relation holds, modulo indicator functions of
cones containing lines.

[C] ≡
∑
i:δi ̸=0

si [c (ϵi,1w1, . . . , ϵi,i−1wi−1, ϵi,i+1wi+1, . . . , ϵi,nwn, δir)] ,

where si, ϵi,k ∈ {±1} for 1 ≤ k ≤ n, k ̸= i are given by

si =

{
(−1)card({1≤j<i | δj=1}), if δi = 1

(−1)card({i<j≤n | δj=−1}), if δi = −1
(4.9)

ϵi,k =

{
−1, if δi = δk = 1 and k < i, or if δi = δk = −1 and k > i

1, otherwise.
(4.10)

Recall that if C = c(w1, . . . ,wn) is a simplicial cone in Rn generated by some
basis w1, . . . ,wn ∈ Rn, then its dual cone

C∗ := {y ∈ Rn | y · x ≥ 0 ∀x ∈ C}
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is also simplicial. The dual cone C∗ = c(w∗
1 . . . ,w

∗
n) is generated by some dual basis

w∗
1, . . . ,w

∗
n ∈ Rn such that for every 1 ≤ i, j ≤ n and j ̸= i,

w∗
i ·wi > 0 and w∗

i ·wj = 0. (4.11)

Furthermore, the dual of the dual is the cone itself, i.e., (C∗)∗ = C. The dual of a
cone containing lines is a lower dimensional cone (i.e., a cone whose affine dimension
is less than n).

By first passing to the dual cone, then applying Brion–Vergne decomposition
Theorem 4.2.1 with respect to a particular line, and finally taking the dual again,
we obtain the following decomposition which is modulo lower dimensional cones.
Furthermore, each cone in the decomposition shares at least two generators of the
original cone, one being wn.

Theorem 4.2.2. Let w1, . . . ,wn form a basis of Rn and let cone C = c (w1, . . . ,wn).
Let δi ∈ {−1, 0, 1} denote the sign of wi · wn for 1 ≤ i ≤ n − 1 and set δn = 0.
Suppose that the δi’s are not all zero. Then, the following relation holds, modulo
indicator functions of lower dimensional cones.

[C] ≡
∑
i:δi ̸=0

si [ci] ,

where each cone ci is generated by ui,k (1 ≤ k ≤ n) defined as

ui,k =

{
wk, if δk = 0 or k = i

ϵi,k

(
wk − wk·wn

wi·wn
wi

)
, otherwise

(4.12)

and the signs si, ϵi,k ∈ {±1} are given by equations (4.9) and (4.10), respectively.

Proof. Suppose that the dual cone C∗ is generated by w∗
1, . . . ,w

∗
n ∈ Rn. Let

r =
n−1∑
i=1

(
wi ·wn

wi ·w∗
i

)
w∗

i .

We note that the signs δi agree with those defined in Theorem 4.2.1, since wi ·w∗
i > 0.

We apply Theorem 4.2.1 to the dual cone C∗ = c (w∗
1, . . . ,w

∗
n), with respect to the

non-zero vector r, and obtain that

[C∗] ≡
∑
i:δi ̸=0

si
[
c
(
ϵi,1w

∗
1, . . . , ϵi,i−1w

∗
i−1, ϵi,i+1w

∗
i+1, . . . , ϵi,nw

∗
n, δir

)]
,

modulo indicator functions of cones containing lines.
Since linear identities that hold for indicator functions of cones also hold for their

duals, we have

[C] ≡
∑
i:δi ̸=0

si
[
c
(
ϵi,1w

∗
1, . . . , ϵi,i−1w

∗
i−1, ϵi,i+1w

∗
i+1, . . . , ϵi,nw

∗
n, δir

)∗]
,
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modulo indicator functions of lower dimensional cones.
We now show that each dual cone on the right-hand side of the above relation is

generated by the ui,k’s that are defined in (4.12). To this end, we verify that

wi · (δir) > 0 and wi ·
(
ϵi,jw

∗
j

)
= 0 ∀j ̸= i, (4.13)

and that for any k ̸= i,

ui,k · (δir) = 0, ui,k · (ϵi,kw∗
k) > 0 and ui,k ·

(
ϵi,jw

∗
j

)
= 0 ∀j ̸= i or k. (4.14)

The conditions in (4.13) trivially hold because of (4.11). To show (4.14) for k ̸= i,
we first consider the case where δk = 0, which implies that wk ·wn = 0 and ui,k = wk

by (4.12). We have

wk · (ϵi,kw∗
k) > 0, wk ·

(
ϵi,jw

∗
j

)
= 0 ∀j ̸= i or k, and

wk · (δir) = wk ·

(
δi

n−1∑
j=1

(
wj ·wn

wj ·w∗
j

)
w∗

j

)
which is equal to 0 when k = n, or equal to δi (wk ·wn) = 0 when k ̸= n. Now
consider k ̸= i such that δk ̸= 0, which implies k ̸= n. Since δi ̸= 0, we also know
that i ̸= n and wi ·wn ̸= 0. Using (4.12), we obtain that

ui,k · (δir) = ϵi,k δi

(
wk −

wk ·wn

wi ·wn

wi

)
·
n−1∑
j=1

(
wj ·wn

wj ·w∗
j

)
w∗

j

= ϵi,k δi

[
wk ·wn

wk ·w∗
k

(wk ·w∗
k)−

wk ·wn

wi ·wn

· wi ·wn

wi ·w∗
i

(wi ·w∗
i )

]
= 0

ui,k · (ϵi,kw∗
k) = ϵ2i,k

(
wk −

wk ·wn

wi ·wn

wi

)
·w∗

k = wk ·w∗
k > 0

ui,k ·
(
ϵi,jw

∗
j

)
= ϵi,k ϵi,j

(
wk −

wk ·wn

wi ·wn

wi

)
·w∗

j = 0 ∀j ̸= i or k.

Therefore, the conditions in (4.14) are all satisfied. The theorem holds.

4.2.2 Solid angle decomposition that includes lower dimensional cones

We present another decomposition theorem for a given full-dimensional simplicial
cone whose solid angle measure is of interest. The theorem is analogous to Theo-
rem 4.1.3. The resulting cones from Theorem 4.2.3 are either lower dimensional and
hence have 0 as normalized solid angle measures, or have positive definite associated
matrices so that Theorem 3.3.2 applies.

Theorem 4.2.3. Given linearly independent unit vectors w1,w2, . . . ,wn ∈ Rn, the
cone c(w1,w2, . . . ,wn) can be decomposed into a finite family of cones, each of which
is either
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(I) a cone of affine dimension less than n, or

(II) a full-dimensional cone generated by some vectors v1, . . . ,vn that satisfy the
properties (a)–(e) in Theorem 4.1.3 so that its associated matrix is positive
definite.

Proof. The proof is similar to that of Theorem 4.1.3. We proceed by induction on the
dimension. The base case n = 2 is direct (same proof as in Theorem 4.1.3). Suppose
that the theorem holds for dimension n−1. Now consider the cone c(w1,w2, . . . ,wn)
in dimension n which is not already of the form (I) or (II).

If wn is orthogonal to all wi for 1 ≤ i ≤ n − 1, then the arguments in Case 1 of
the proof of Theorem 4.1.3 (where we replace “contain lines” by “of affine dimension
less than n”) verbatim apply, so the statement is true for dimension n.

Next, we assume that wn is not orthogonal to all w1, . . . ,wn−1. Let δn = 0 and
δi ∈ {−1, 0, 1} be the sign of wi ·wn for 1 ≤ i ≤ n. Then, the δi’s are not all zero.
We apply Theorem 4.2.2, and obtain the (signed) decomposition

[C] ≡
∑
i:δi ̸=0

si [ci] modulo indicator functions of lower dimensional cones, (4.15)

where each cone ci = c (ui,1,ui,2, . . . ,ui,n) is generated by the ui,k’s according to (4.12).
In particular, ui,i = wi and ui,n = wn. Thus, we can rewrite the cone ci for any
1 ≤ i ≤ n− 1 such that δi ̸= 0 in the form of

ci = c (u1, . . . ,un−2,un−1,wn)

with {u1, . . . ,un−2} =
{

ui,k

∥ui,k∥
| 1 ≤ k ≤ n− 1, k ̸= i

}
and un−1 = wi.

If the cone ci is already of the form (I) or (II), then no further decomposition
is needed. Otherwise, by the inductive hypothesis, the (n − 1)-dimensional cone
c (u1, . . . ,un−2,un−1) can be decomposed into cones k1, . . . , kM , such that each cone
km := c(v1, . . . ,vn−1) from {k1, . . . , kM} is either (I) a cone of affine dimension less
than n−1, or (II) a cone with positive associated matrix satisfying the properties (i)–
(v). Let

Cm = km + c(wn) = c(v1, . . . ,vn−1,wn)

be the n-dimensional cone obtained by appending wn to the generators of km. Then,
the same arguments as in the proof of Theorem 4.1.3 show that Cm has the desired
properties, and that the cones C1, . . . , CM give a (signed) decomposition of the cone ci
in the relation (4.15). This concludes the inductive step, and therefore, the theorem
holds.

Corollary 4.2.4. Let C be a simplicial cone in Rn. Theorem 4.2.3 gives explicitly
the cones Ci whose normalized solid angle measures Ω̃n(Ci) can be computed via the
power series formula (3.4) and the signs si ∈ {±1}, such that the normalized solid
angle measure of C satisfies

Ω̃n(C) =
N∑
i=1

siΩ̃n(Ci). (4.16)
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Furthermore, the number of cones N in the decomposition is bounded above by (n−1)!.

Proof. Suppose that Theorem 4.2.3 yields a signed decomposition of the cone C:

[C] ≡
N∑
i=1

si [Ci] modulo indicator functions of lower dimensional cones.

Since the normalized solid angle measure of a lower dimensional cone with respect
to Rn is zero, (4.16) holds.

Each full-dimensional cone Ci resulting from the decomposition has a positive-
definite matrix, so that Theorem 3.3.2 applies, and so Ω̃n(Ci) can be computed via
the power series (3.4).

Finally, we show that N ≤ (n − 1)! by induction on n. If n = 2, then the base
case in the proof of Theorem 4.1.3 shows that the cone C is already of the form
(II), so no further decomposition is needed. Suppose that an (n − 1)-dimensional
cone can be decomposed into at most (n − 2)! cones. For an n-dimensional cone C
whose associated matrix is not yet positive-definite, Theorem 4.2.3 first decomposes
it into the cones ci for i such that δi ̸= 0, according to (4.15). Since δn = 0, there
are at most n − 1 such cones ci = c(ui,1, . . . ,ui,n). Subsequently, for each ci whose
associated matrix is not yet positive-definite, we omit its generator ui,n = wn in order
to obtain the (n− 1)-dimensional cone c(ui,1, . . . ,ui,n−1), and we further decompose
it into at most (n − 2)! cones that satisfy the desired properties by the inductive
hypothesis. Therefore, the total number of cones resulting from Theorem 4.2.3 is at
most (n− 1)(n− 2)! = (n− 1)!.

4.3 Asymptotic bound on the truncation error

4.3.1 Tridiagonal associated matrices

As aforementioned, the large number of coordinates needed creates issues with com-
putational feasibility of the power series formula (3.4) in Theorem 3.3.2. Ribando [39,
p. 487] states that “. . . accurate series approximations will require theorems allowing
us to reduce the number of terms that need computing.” Note that when αij = 0,
the only terms of αa in the series (3.4) that are non-zero must have multiexponent
a whose aij = 0. Thus, one possibility for reducing the number of terms needed for
computing is by decomposing into cones with as many pairwise orthogonal generators
as possible. One particular interesting case is when (αij)1≤i,j≤n is a tridiagonal matrix
(i.e., αij = vi ·vj = 0 whenever i ̸= j and i+1 ̸= j), as we will discuss in this section.

Given linearly independent unit vectors v1,v2, . . . ,vn ∈ Rn, let V ∈ Rn×n de-
note the matrix whose i-th column vector is vi. Suppose that V TV is the following
symmetric and tridiagonal matrix, where βi = vi · vi+1 for 1 ≤ i ≤ n− 1.

V TV =


1 β1

β1 1 β2

β2
. . . . . .
. . . . . . βn−1

βn−1 1

 (4.17)
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Then, the formula (3.4) simplifies to the following multivariate power series Tβ in
(n− 1)-variables.

Tβ =
|detV |
(4π)n/2

∑
b∈Nn−1

[
(−2)

∑
bi∏n−1

i=1 bi!
Γ

(
1 + b1

2

)
Γ

(
1 + b1 + b2

2

)
· · ·

Γ

(
1 + bn−2 + bn−1

2

)
Γ

(
1 + bn−1

2

)]
βb.

(4.18)

Theorem 4.3.1. Let C = c(v1,v2, . . . ,vn) be a cone in Rn generated by the linearly
independent unit vectors v1,v2, . . . ,vn. Let V be the matrix whose column vectors
are v1,v2, . . . ,vn. Suppose that V TV is a tridiagonal matrix as in (4.17). Then, the
associated matrix Mn(C) has the same eigenvalues as V TV .

In particular, if V TV is tridiagonal, then Mn(C) is positive definite, and the power

series (4.18) converges absolutely to the normalized solid angle measure Ω̃n(C) of the
cone C.

Proof. When V TV is the symmetric and tridiagonal matrix given by (4.17), the as-
sociated matrix of C is

Mn(C) =


1 −|β1|

−|β1| 1 −|β2|
−|β2|

. . . . . .

. . . . . . −|βn−1|
−|βn−1| 1

 , (4.19)

which is also symmetric and tridiagonal.
Let Pj(λ) be the characteristic polynomial of the j-th leading principal minor of

V TV for 1 ≤ j ≤ n. Set β0 = 0. We have P0(λ) = 1, P1(λ) = 1− λ and

Pj(λ) = (1− λ)Pj−1(λ)− β2
j−1Pj−2(λ) for 2 ≤ j ≤ n,

where the last recurrence relation is a well-known result for symmetric tridiagonal
matrices (e.g., see [37]). Since the relation depends only on β2

j−1 = (− |βj−1|)2, it is
clear that the characteristic polynomial of the associated matrix is the same as that
of V TV . Therefore, V TV and Mn(C) have the same eigenvalues.

Since the columns of V are linearly independent, for any x ̸= 0, we have that
xT (V TV )x = ∥V x∥2 > 0, showing that V TV is positive definite. Thus, Mn(C) is also
positive definite. It follows from Theorem 3.3.2 that the power series (4.18) converges

absolutely to the normalized solid angle measure Ω̃n(C) of the cone C.

Remark 4.3.2. We can strengthen property (d) from “vi ·vn = 0 for i = 1, . . . , n−2”
in Theorem 4.1.3 and Theorem 4.2.3 to

vi · vj = 0 for all 1 ≤ i, j ≤ n such that j ̸= i or i± 1. (IId’)
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The proofs of the two theorems hold verbatim. The new property IId’ ensures that
V TV is a tridiagonal matrix for any cone from the decomposition, so that Theo-
rem 4.3.1 applies. Therefore, we have the following variant of Corollary 4.2.4, which
takes advantage of the tridiagonal structure. We note that the number of cones re-
sulting from the new decomposition can be larger than that of Corollary 4.2.4, but it
is still upper bounded by (n− 1)!.

Corollary 4.3.3. Let C be a simplicial cone in Rn. Theorem 4.2.3 (with property (d)
replaced by IId’) gives explicitly the cones Ci and the signs si ∈ {±1}, such that the
normalized solid angle measure of C satisfies

Ω̃n(C) =
N∑
i=1

siΩ̃n(Ci).

The cones Ci have positive-definite and tridiagonal associated matrices, so their nor-
malized solid angle measures Ω̃n(Ci) can be computed via the simplified power series
formula (4.18). Furthermore, the number of cones N in the decomposition is bounded
above by (n− 1)!.

4.3.2 Eigenvalues and series truncation errors

In their study [25], Gourion and Seeger observed that a particular power series ex-
hibited slow convergence when the associated matrix was close to being singular.
Considering this observation alongside the previous Theorem 4.3.1, it is reasonable
to investigate the impact of eigenvalues on the convergence of the power series.

We notice that if the linearly independent unit vectors vi’s are all pairwise or-
thogonal, then the normalized solid angle measure of the cone C = c(v1, . . . ,vn)
is:

Ω̃n(C) =
1

2n
.

Therefore, in the following, we further assume that n ≥ 2 and that vi · vj ̸= 0 for
some 1 ≤ i < j ≤ n. Let V denote the matrix whose ith column is vi. Let λmin be
the smallest eigenvalue of V TV .

Lemma 4.3.4. The smallest eigenvalue λmin of V TV satisfies 0 < λmin < 1.

Proof. The matrix V TV is positive definite, since for any x ̸= 0, we have that
xT (V TV )x = ∥V x∥2 > 0, where the last strict inequality follows from the linear
independence of the columns of V . Thus, λmin > 0.

By the Cauchy interlacing theorem, λmin is less than or equal to the minimum
eigenvalue of a principal submatrix of V TV . In particular, by taking the principal

submatrix

[
1 vi · vj

vi · vj 1

]
where vi · vj ̸= 0, we have λmin ≤ 1− (vi · vj)

2 < 1.

For the rest of this section, we focus on the case where V TV is the tridiagonal
matrix as defined in (4.17). Theorem 4.3.1 implies that the power series Tβ in n− 1
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variables as defined in (4.18) converges absolutely to the solid angle measure. For
simplicity, we consider only the series part

(4π)n/2

| detV |
Tβ =

∑
b∈Nn−1

Ab β
b,

where, for any multiexponent b = (b1, . . . , bn−1) in Nn−1,

Ab :=
(−2)

∑
bi∏n−1

i=1 bi!
Γ

(
1 + b1

2

)
Γ

(
1 + b1 + b2

2

)
· · ·

Γ

(
1 + bn−2 + bn−1

2

)
Γ

(
1 + bn−1

2

)
.

(4.20)

We regard

T (x) =
∑

b∈Nn−1

Ab x
b1
1 x

b2
2 · · ·xbn−1

n−1

as a hypergeometric series of (n−1) variables x = (x1, . . . , xn−1) in Horn’s sense [30].

Remark 4.3.5. We recall some standard notations and results from [30, 39] regard-
ing the convergence of a hypergeometric series. We rephrase them below for the
triadiagonal case to describe the domain of convergence of T (x).

Let ei denote the i-th standard basis vector. For 1 ≤ i ≤ n − 1, we define the
ratio of the neighboring coefficients

fi(b) :=
Ab+ei

Ab

, (4.21)

and introduce the limit
Ψi(b) := lim

t→∞
fi(tb).

We can view Ab, fi(b) and Ψi(b) as functions of b ∈ Rn−1
+ instead of b ∈ Nn−1.

Then, for 1 ≤ i ≤ n − 1, fi is a rational function of the variables b ∈ Rn−1
+ . Set

b0 = bn = 0. The function Ψi satisfies

Ψi(b) = lim
t→∞

Atb+ei

Atb

= −
√
(bi−1 + bi)(bi + bi+1)

bi
, (4.22)

and it is a rational and homogeneous function of degree zero.

The parameterized curve
(

1
|Ψ1(b)| , . . . ,

1
|Ψn−1(b)|

)
describes an hypersurface that

bounds the convergence domain of the hypergeometric series T (x). That is, if a
point x lies on the boundary of the convergence domain, then for some b ∈ Rn−1

+ ,

|xi| =
1

|Ψi(b)|
∀ 1 ≤ i ≤ n− 1. (4.23)
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In addition, [39, Theorem 3.2] states that x lies on the boundary of the convergence
domain, if

det


1 −|x1|

−|x1| 1 −|x2|
−|x2|

. . . . . .

. . . . . . −|xn−1|
−|xn−1| 1

 = 0. (4.24)

It follows from Theorem 4.3.1 that in the tridiagonal case, the minimum eigenvalue
of the associated matrix Mn(C) given in (4.19) is also λmin, where 0 < λmin < 1 by
Lemma 4.3.4, and that x = β lies in the convergence domain of T (x). The following
lemma suggests that 1− λmin plays a role in the convergence of T (x).

Lemma 4.3.6. The point
(

β1

1−λmin
, . . . , βn−1

1−λmin

)
lies on the boundary of the domain of

convergence of the series T (x).

Proof. By Remark 4.3.5, it suffices to show that (4.24) holds for x = β
1−λmin

, which is
clearly satisfied since λmin is an eigenvalue of Mn(C).

We show a lemma regarding the monotonicity of the functions fi in (4.21), which
will become useful later in analyzing the series truncation errors.

Lemma 4.3.7. Let b ∈ Rn−1
≥0 and let 1 ≤ i, j ≤ n − 1 such that i ̸= j. Then,

|fi(b+ ej)| ≥ |fi(b)|.

Proof. If j ̸= i± 1, then it follows from (4.21) and (4.20) that |fi(b+ ej)| = |fi(b)|.
If j = i± 1, then the desired inequality is equivalent to

Γ
(

3+bi+bj
2

)
Γ
(

2+bi+bj
2

) ≥
Γ
(

2+bi+bj
2

)
Γ
(

1+bi+bj
2

) ,
which holds because the Γ function is log-convex on the positive real axis.

We are interested in an asymptotic analysis of the truncation error of the se-
ries T (β). Truncating the series in partial degrees (N1, . . . , Nn−1), the error term is
bounded by E(N1, . . . , Nn−1) defined below.

Definition 4.3.8. For partial degrees (N1, . . . , Nn−1) ∈ Nn−1, define the series T (β)
truncation error as

E(N1, . . . , Nn−1) =
∑
b∈B

∣∣Abβ
b
∣∣ ,

where B = {b ∈ Nn−1 | bi ≥ Ni for at least one i}.

We investigate the asymptotic decay of E(N1, . . . , Nn−1), in relation to 1− λmin.
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Theorem 4.3.9. For any ρ such that 1 − λmin < ρ < 1, there exist partial degrees
N1, . . . , Nn−1 such that for any integer ℓ ≥ 1, we have

E(N1 + ℓ, . . . , Nn−1 + ℓ) ≤ ρℓ E(N1, . . . , Nn−1).

To simplify the notation, we will prove Theorem 4.3.9 specifically for n = 3, which
we restate as Proposition 4.3.10 below. Note that the proof for general n follows in
the exact same manner.

Proposition 4.3.10. For any ρ such that 1− λmin < ρ < 1, there exist partial degrees
N1 and N2 such that for any integer ℓ ≥ 1, we have

E(N1 + ℓ,N2 + ℓ) ≤ ρℓ E(N1, N2).

Proof. For the multiexponent (b1, b2), the coefficient Ab in (4.20) is

Ab1,b2 =
(−2)b1+b2

b1! b2!
Γ

(
1 + b1

2

)
Γ

(
1 + b2

2

)
Γ

(
1 + b1 + b2

2

)
.

By Lemma 4.3.6 and (4.23), there exist x1, x2 ∈ R+ such that

|β1|
1− λmin

=
1

|Ψ1(x1, x2)|
and

|β2|
1− λmin

=
1

|Ψ2(x1, x2)|
.

Thus, we have

|β1Ψ1(x1, x2)| = 1− λmin and |β2Ψ2(x1, x2)| = 1− λmin. (4.25)

Since Ψ1,Ψ2 are rational and homogeneous functions of degree zero by (4.22), their
values only depend on the ratio between x1 and x2. (We note that for general n > 3,
each Ψi only depends on at most two consecutive pairwise ratios.) We express (x1, x2)
in polar coordinates (r0, θ0) with r0 =

√
x2
1 + x2

2 and θ0 = arctan(x2/x1). It follows
from (4.22) that |Ψ1(r cos θ, r sin θ)| =

√
1 + tan θ, which is increasing on θ ∈ [0, π/2),

and |Ψ2(r cos θ, r sin θ)| =
√
1 + cot θ, which is decreasing on θ ∈ (0, π/2]. We obtain

from (4.25) that∣∣∣β1 lim
r→∞

f1(r cos θ0, r sin θ0)
∣∣∣ = ∣∣∣β2 lim

r→∞
f2(r cos θ0, r sin θ0)

∣∣∣ = 1− λmin. (4.26)

Let ϵ be a small positive number. Specifically, we set

ϵ :=

√
ρ

1− λmin

− 1 > 0. (4.27)

It follows from (4.26) that there exists r0 > 0 such that

∀ r ≥ r0, |βifi(r cos θ0, r sin θ0)| ≤ (1− λmin)(1 + ϵ/2) for i = 1, 2.

Since f1, f2 are rational functions, there exist θ1, θ2 with θ2 < θ0 < θ1 such that

∀ r ≥ r0 and θ ∈ [θ2, θ1], |βifi(r cos θ, r sin θ)| ≤ (1− λmin)(1 + ϵ) for i = 1, 2.
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N2

N1

θ1

θ2

θ

r

Figure 4.1: The (b1, b2)-plane corresponding to the proof of Proposition 4.3.10. The
region bounded by rays θ1 and θ2 shows where the ratio bounds in (4.29) hold; The
region above the horizontal line at N2 and the ray θ2 and the region to the right of
the vertical line at N1 and below the ray θ1 correspond to Claim 4.3.11 (1) and (2),
respectively.

Let S be the sector whose polar coordinates r, θ satisfy

r > r0 and θ ∈ [θ2, θ1].

Denote
µ := (1− λmin)(1 + ϵ) =

√
(1− λmin)ρ < 1. (4.28)

We note that for (b1, b2) ∈ R2
+,

β1f1(b1, b2) =
(
Ab1+1,b2 β

b1+1
1 βb2

2

)
/
(
Ab1,b2 β

b1
1 βb2

2

)
;

β2f2(b1, b2) =
(
Ab1,b2+1 β

b1
1 βb2+1

2

)
/
(
Ab1,b2 β

b1
1 βb2

2

)
.

Thus, for any (b1, b2) ∈ R2
+ that lies in the sector S,∣∣Ab1+1,b2 β
b1+1
1 βb2

2

∣∣∣∣Ab1,b2 β
b1
1 βb2

2

∣∣ ≤ µ and

∣∣Ab1,b2+1 β
b1
1 βb2+1

2

∣∣∣∣Ab1,b2 β
b1
1 βb2

2

∣∣ ≤ µ. (4.29)

Let (N1, N2) be an integer point in the interior of S such that (N1 ± 1, N2) and
(N1, N2 ± 1) are also inside the sector S. Such point (N1, N2) exists because the
conditions below can always be met by scaling.

N2 cot θ1 + 1 ≤ N1 ≤ N2 cot θ2 − 1 and

N1 tan θ2 + 1 ≤ N2 ≤ N1 tan θ1 − 1.
(4.30)

We illustrate the parameters and the regions in Figure 4.1.
Using (4.29) and (4.30) together with Lemma 4.3.7, we obtain the following claim.
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Claim 4.3.11. Let (b1, b2) ∈ N2.

1. If b1 ≥ N1 and b2 ≤ b1 tan θ1, then

∣∣∣Ab1+1,b2
β
b1+1
1 β

b2
2

∣∣∣∣∣∣Ab1,b2
β
b1
1 β

b2
2

∣∣∣ ≤ µ.

2. If b2 ≥ N2 and b2 ≥ b1 tan θ2, then

∣∣∣Ab1,b2+1 β
b1
1 β

b2+1
2

∣∣∣∣∣∣Ab1,b2
β
b1
1 β

b2
2

∣∣∣ ≤ µ.

In order to study the truncation errors E(N1, N2) and E(N1+ℓ,N2+ℓ), we rewrite
them as

E(N1, N2) = S1 + S2 + S3 (4.31)

and
E(N1 + ℓ,N2 + ℓ) ≤ S ′

1 + S ′
2 + S ′

3 + S ′
4, (4.32)

respectively, where

S1 =
∑
b1≥N1

0≤b2<N2

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ; S2 =
∑
b2≥N2

0≤b1<N1

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ;
S3 =

∑
b1≥N1
b2≥N2

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ,
and

S ′
1 =

∑
b1≥N1+ℓ
0≤b2<N2

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ; S ′
2 =

∑
b2≥N2+ℓ
0≤b1<N1

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ;
S ′
3 =

∑
b1≥N1

b2≥N2+ℓ

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ ; S ′
4 =

∑
b1≥N1+ℓ
b2≥N2

∣∣Ab1,b2β
b1
1 βb2

2

∣∣ .
We view each term |Ab1,b2β

b1
1 βb2

2 | in a series Sk as corresponding to the point (b1, b2)
in the first quadrant. See Figure 4.2.

We first consider S1 and S ′
1. Let (b1, b2) ∈ N2 such that b1 = N1 + i for some

i ≥ 0 and b2 ≤ N2. We compare the term corresponding to (b1, b2) with the term
corresponding to (N1, b2). Using Claim 4.3.11 (1), we have that∣∣∣∣AN1+i,b2β

N1+i
1 βb2

2

AN1,b2β
N1
1 βb2

2

∣∣∣∣ = i−1∏
j=0

∣∣∣∣∣AN1+j+1,b2β
N1+j+1
1 βb2

2

AN1+j,b2β
N1+j
1 βb2

2

∣∣∣∣∣ ≤ µi.

In particular, the above inequality holds for i = ℓ and any 0 ≤ b2 ≤ N2 − 1. This
implies that

S ′
1 ≤ µℓS1. (4.33)

Similarly, using Claim 4.3.11 (2), we obtain that

S ′
2 ≤ µℓS2. (4.34)

Next, we compare a term corresponding to (b1, b2) in S3 to the term s correspond-
ing to (N1, N2), which is defined by

s :=
∣∣AN1,N2β

N1
1 βN2

2

∣∣ .
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Figure 4.2: Planes of multiexponents (b1, b2) ∈ N2 for analyzing the series truncation
errors E(N1, N2) (left) and E(N1 + ℓ,N2 + ℓ) (right). The regions indicate which
series Sk the term |Ab1,b2β

b1
1 βb2

2 | belongs to in (4.31) and (4.32).

Claim 4.3.12. Let b1 = N1 + i and b2 = N2 + j, where i, j are non-negative integers.
Then ∣∣Ab1,b2β

b1
1 βb2

2

∣∣
s

≤ µi+j.

Proof. Depending on whether the point (b1, b2) lies below or above the ray from the
origin through the point (N1, N2), we reduce either b1 or b2 by 1, as follows. By
the geometric conditions in (4.30), if (b1, b2) is below the ray, then b1 − 1 lies in the
sector S, and if (b1, b2) is above the ray, then b2−1 lies in the sector S. In either case,
we can apply Claim 4.3.11 to obtain that the ratio between the terms corresponding
to (b1, b2) and (b′1, b

′
2) = (b1, b2 − 1) or (b1 − 1, b2) is at most µ. Repeat this process

until (b′1, b
′
2) = (N1, N2). By multiplying the sequences of ratios obtained in the

process, we have the desired inequality.

In particular, Claim 4.3.12 provides upper bounds of S ′
3 and S ′

4 in terms of s:

S ′
3 ≤ s

∞∑
i=0

∞∑
j=ℓ

µi+j =
µℓs

(1− µ)2
,

S ′
4 ≤ s

∞∑
i=ℓ

∞∑
j=0

µi+j =
µℓs

(1− µ)2
.

(4.35)

Claim 4.3.13. For very large N1, N2, we may assume that s/S1 is sufficiently small.

Proof. Let (N∗
1 , N

∗
2 ) ∈ N2 be a point in the sector S such that N∗

1 ≥ N1, N
∗
2 = N2+k

and k := ⌊N∗
2 −N∗

1 tan θ2⌋ is a large integer. Define s∗ to be the term corresponding
to the integer point (N∗

1 , N
∗
2 ), and define the series S∗

1 accordingly. Notice that

we can lower bound S∗
1 by the single term t inside it, where t :=

∣∣∣AN∗
1 ,N2β

N∗
1

1 βN2
2

∣∣∣
corresponding to the point (N∗

1 , N2). Since this point lies in S and N2 = N∗
2 − k,

Claim 4.3.11 (2) implies that s∗/t ≤ µk. Therefore, s∗/S∗
1 ≤ µk, which is sufficiently

small for k large enough.
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In particular, we take large N1, N2 such that s/S1 ≤ 1
2
ϵ(1− µ)2, or equivalently,

2s

(1− µ)2
≤ ϵS1. (4.36)

By combining (4.31) through (4.36), we obtain that

E(N1 + ℓ,N2 + ℓ) ≤ S ′
1 + S ′

2 + S ′
3 + S ′

4 ≤ µℓ

(
S1 + S2 +

2s

(1− µ)2

)
≤ µℓ (S1 + S2 + ϵS1) ≤ µℓ(1 + ϵ)(S1 + S2 + S3)

≤ µℓ(1 + ϵ)ℓ(S1 + S2 + S3)

= (µ(1 + ϵ))ℓE(N1, N2).

Finally, according to (4.27) and (4.28),

µ(1 + ϵ) =
√
(1− λmin)ρ ·

√
ρ

1− λmin

= ρ.

Therefore, the desired inequality E(N1 + ℓ,N2 + ℓ) ≤ ρℓE(N1, N2) holds.

Copyright© Allison Marie Fitisone, 2024.
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Chapter 5 Implementation and Applications of Solid Angle Measure
Approximation Methods

5.1 Implementation

In this section, we discuss the implementation of the cone decomposition of the pre-
vious chapter and Ribando’s power series for solid angle approximation.

5.1.1 Stopping Criterion

Given that Tα is an infinite series, an approximation will be given by a truncation of
the series. While [39] and [26] consider truncation at a fixed degree r, we present a
more dynamic truncation criterion, which we refer to as truncation by ϵ, for a given
target absolute error parameter ϵ > 0.

For a positive integer r, define Sr to be the sum of the terms in Tα that have

degree r, i.e., the sum of the terms in formula (3.4) corresponding to a ∈ N(
n
2) such

that a1 + a2 + · · · + an(n−1)/2 = r. For a given polyhedral cone K, we can compute
the total number of simplicial cones N whose solid angle measures will be required
for computing the solid angle of K via a function called total num cones. We note
that this number is dependent upon the choice of triangulation as well as type of
decomposition used. Given ϵ > 0, in this truncation method, for each of the N cones
with convergent power series Tα, we truncate Tα at the smallest degree r such that
1
2
(|Sr−1|+ |Sr|) < ϵ

N
.

5.1.2 Constructing Polyhedra

We will often use the Polyhedra module in SageMath to construct polyhedra as
Polyhedron objects. To construct a Polyhedron object, one must provide either a V –
representation of the polyhedron (vertices, rays, and lines) or an H-representation of
the polyhedron (equations and inequalities presented as lists). Note that a SageMath
Polyhedron object has optional parameters: backend and base ring. For Polyhedron
objects that we construct in SageMath, we use the Normaliz backend, and the Ra-
tional Field as the base ring.

5.1.3 Projecting out Lineality Space

Recall that by Corollary 2.2.2, the solid angle of a polyhedral cone is the same as
the solid angle measure of the pointed cone which is its projection onto the orthogo-
nal complement of its lineality space. Given a polyhedral cone K represented by its
generators, we construct K as a Polyhedron object, which by default will compute
a minimal V –representation of K. We determine an orthonormal basis of the lin-
eality space of K. Then, we consider the extreme rays which are determined in the
minimal V –representation of K. We use the orthonormal basis of the lineality space
to determine the component orthogonal to the lineality space of each extreme ray.
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We construct another Polyhedron object using these components as rays. This new
Polyhedron object describes a pointed cone with the same solid angle measure as K.

5.1.4 Triangulation

To obtain a simplicial cone, we must triangulate the pointed cone P . The building
function for triangulations in SageMath requires the input to be a point configuration.
Note that a triangulation method exists for Polyhedron objects which are polytopes
as well as pointed cones, whose backends are Normaliz. However, at the time of
writing, it is unclear how to use the triangulation method for a Polyhedron with
Normaliz backend to obtain multiple triangulations for nonsimplicial pointed cones.

We reduce triangulation of the d-cone P (whose extreme rays correspond to a
vector configuration) to triangulation of a (d − 1)-polytope (whose vertices give a
point configuration) by positively scaling the extreme rays to obtain homogenous
coordinates, where the resulting points lie on an affine hyperplane. To homogenize
our vector configuration, we generate a conic combination n of our extreme rays and
ensure that it is not orthogonal to any of the extreme rays. We use the resulting vector
as the normal vector to the affine hyperplane described by ntx = 1. The intersection
of the cone with the affine hyperplane forms a polytope. Given an extreme ray r in
the vector configuration, scaling by a factor of 1/(n ·r) gives a vertex of the polytope.

We construct a PointConfiguration in SageMath of the vertices of the described
polytope. To triangulate a point configuration in SageMath, one can use the inter-
nal engine, or the optional TOPCOM (Triangulations of Point Configurations and
Oriented Matroids) engine. At present, the question of whether regular triangu-
lations perform better than non-regular triangulations in the power series method
remains unanswered. As such, we do not wish to restrict ourselves to only regular
triangulations. We opt for the TOPCOM engine, as it is required for non-regular
triangulations. TOPCOM’s triangulation algorithms rely only on the combinatorial
data of the point configuration, given by its oriented matroid.

Note that many different triangulations of a point configuration may exist. We
considered 24 different non-simplicial cones of dimensions three through 5, and the
running time of computing their solid angles, dependent on various triangulations.
In Figure 5.1, each point gives the running time for solid angle computation of a
non-simplicial cone using a specific triangulation. Points with the same markers cor-
respond to different triangulations of the same non-simplicial cone. For the sake of
scale, we omit running times over 1000 CPU seconds. In Figure 5.1 we see that the
general trend is that an increased number of cones generally requires more time to
compute a solid angle approximation via the power series method, and that small
numbers of cones correspond to small computation times. For this reason, for dimen-
sions greater than four, we choose to use the triangulation which among the up to
first 500 triangulations enumerated by TOPCOM, yields the smallest N number of
cones in its decomposition. The choice of 500 here is arbitrary and requires further
exploration. We see clear examples where different triangulations of the same non-
simplicial cone result in the same number of cones, but markedly different running
times, as well as examples where a triangulation resulting in more cones has a smaller
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running time. These instances underscore the limitations of this investigation, em-
phasizing the necessity for a deeper comprehension of factors contributing to running
time for informed decisions regarding triangulation strategies.

Figure 5.1: Number of cones in decomposition of triangulated cones versus running
time.

The cones corresponding to the markers in Figure 5.1 and the triangulations
considered are listed in in the appendix.

In our study, a triangulation of a pointed cone P is given as a list of lists of indices.
Each list of indices corresponds to a simplicial cone whose extreme rays correspond
to the extreme rays of P with those same indices as determined by the ordered list
P.rays list().

5.1.5 Decomposition

Given a triangulation of a pointed cone P represented by indices, we represent each
simplicial cone in the triangulation as a matrix, whose rows are the extreme rays of the
simplicial cone. For each simplicial cone in the triangulation, we decompose it into an
orthogonal direct sum of cones. For each cone in the orthogonal direct sum, we apply
the decomposition in Theorem 4.2.3 via the function generate cones decomposition.
The decomposition Theorem 4.2.3 is dependent upon the dot products of extreme
rays, and so is still applicable to lower-dimensional cones.

53



Note that the decomposition is done on an ordered basis and so the order of
the extreme rays of the simplicial cone matters. In particular, the last extreme
ray of the simplicial cone plays a special role in that it appears in every cone in
the decomposition, the extreme rays of the resulting cones in the first iteration are
dependent upon their dot product with the last extreme ray, and the number of
extreme rays that the last extreme ray is orthogonal to determines the number of cones
in the first iteration of the decomposition, that is the number of cones ci in (4.15).
Thus, to minimize this quantity, we set the last generator to be the generator which
is pairwise orthogonal to the most generators of the simplicial cone.

The output of generate cones decomposition is a generator object containing a
list of N ordered pairs, where for i = 1, 2, . . . , N the first entry is Ci and the second
is si as defined in (4.16).

5.1.6 Computing the Power Series

Suppose K decomposes into N simplicial cones, each having a positive definite asso-
ciated matrix, and that C is one of the N cones in the decomposition. To compute
the solid angle measure of K, we must compute a truncated power series for C. Given
a target absolute error ϵ, we approximate the convergent power series Tα for C with
our function solid angle simplicial and posdef, using truncation by ϵ. Recall that the
truncation degree is dependent on ϵ and N . We first decompose C into an orthogonal
direct sum of cones. By Lemma 2.2.1, the solid angle measure of C is the product of
the solid angle measures of the cones in the orthogonal direct sum. Furthermore, since
K has positive-definite associated matrix, it is clear that the cones in the orthogonal
direct sum have positive-definite associated matrices, hence convergent power series.
For each cone in the orthogonal decomposition of C, we first check if it a single ray,
whose affine solid angle measure is 1

2
. If this is not the case, we let d be the dimen-

sion of the cone, and we normalize the extreme rays of the cone and compute the
multivariable α as a list of the non-zero dot products of the extreme rays. We also
keep track of the indices of the extreme rays corresponding to non-zero dot products
for evaluating the Gamma function as in (3.4). We let k be the number of non-zero
dot products, that is the length of α. Recall that we are able to consider only the
non-zero dot products because if αij = 0, the the only terms contributing to the
sum Tα are those where the multiexponent a satisfies aij = 0. Thus, rather than
computing the series in

(
d
2

)
coordinates, we are able to use k coordinates.

Note that in (3.4), square roots and π appear often, as a result of applying the
Gamma function as well as normalizing the extreme rays. Since the square root of
many values and π are interpreted in SageMath as symbolic expressions, we add as
an optional parameter base ring which by default is set to Real Field, with which we
cast these values to, as symbolic computations are known to be costly.

For the series portion of (3.4), we re-express the series as

(4π)d/2

| detV |
Tα =

√
π
d
+

∞∑
m=1

(−2)m
∑

p∈Wm

1∏k
i=1 pi!

∑
c∈Cp

Acα
c,
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where Wm is the set of all weak partitions of m into k parts, Cp is the set of all
multi-permutations of the the multi-set containing the elements of p, and

Ac =
d∏

i=1

Γ

(
1 +

∑
n̸=i cin

2

)
.

In this way, the solid angle measure approximation of the cone is given by

(4π)d/2

| detV |
Tα =

√
π
d
+

M∑
m=1

(−2)m
∑

p∈Wm

1∏k
i=1 pi!

∑
c∈Cp

Acα
c, (5.1)

where M is the degree at which the series satisfies the truncation criterion.
For a fixed degree m, we generate all of the weak partitions of m into k parts

dynamically by fixing a minimum part of the partition, and then generating partitions
with reduced m and k. We output these weak partitions as dictionaries whose keys
are the entries of the partitions, and whose values are the frequency with which the
entries appear in the partition. For instance, the weak partition (3, 2, 2, 0) of 7 into
4 parts is stored as {3 : 1, 0 : 1, 2 : 2}. We order these dictionaries by increasing
frequency. Multi-sets are often given by their frequency vector, which is a vector of the
frequencies with which an element in the multi-set appears. After identifying a weak
partition with a multi-set, we can obtain a frequency vector. For our example, we
have frequency vector

(
1, 1, 2

)
. When a frequency vector is encountered for the first

time, we use Aaron Williams’ [45] algorithm for multi-set permutations, implemented
by Erik Garrison at [20] to generate all the multipermutations of the weak partition,
and we cache this result, with the key being the frequency vector and the value being
the multipermutations. If another partition is encountered having the same frequency
vector, its entries are mapped to the partition having cached multipermutations to
generate the multipermutations of the new partition, rather than computimg all of
the multipermutaions via Williams’ algorithm.

Each pi! appearing in (5.1) is computed recursively and cached. To compute the
coefficient Ac for the multiexponent c, we compute si =

∑
i ̸=m cim. Then, noting

that si is an integer, we see that we need to compute Gamma values for integers and
half-integers. We have a function recursive gamma si whose input is si and whose
output is an approximation (because we use an approximation of

√
π depending on

the base ring parameter) of Γ(1+si
2

). We use the recursive relation

recursive gamma si(0) =
√
π,

recursive gamma si(1) = 1,

recursive gamma si(n) =

(
n− 1

2

)
recursive gamma si(n− 2) for n ≥ 2.

We cache the output of recursive gamma si. In computing αc, we cache the powers
of the entries of α and compute these powers recursively.
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5.1.7 Discussion of Optimizations to Code

Many improvements have been made over time to optimize the performance of our
implementation of the power series method. The initial incarnation of the method to
compute the solid angle measure of a simplicial cone takes the form of the function
solid angle general in [17]. In the initial version, the multivariable α was fixed to
have length

(
n
2

)
where n is the dimension of the cone of interest. In the current

version, we take advantage of the fact that if αij = 0 then any term which depends
on a multiexponent a having aij ̸= 0 is 0, hence does not contribute to Tα. In the
initial version, to compute Sr as defined in Subsection 5.1.1, we generated all of the
weak compositions of r into

(
n
2

)
parts. For each composition a, we computed

(−2)
∑

1≤i<j≤n aij and
∏

1≤i<j≤n

aij!.

If two weak compositions share the same entries, then the quantities above are exactly
the same, indicating numerous repeated computations. In the current iteration, we
compute k, the number of nonzero entries in α. We then group weak compositions
with k entries together if they are permutations of the same weak partition of a
nonnegative integer m into k parts. Each group of weak compositions has the same
value for

∏
1≤i<j≤n aij!. We also group together weak partitions if they correspond

to the same value m. These partitions, hence all of the compositions which are
permutations of them, have the same value for (−2)

∑
1≤i<j≤n aij .

Furthermore, in the initial implementation, for each weak composition a of r into(
n
2

)
parts, for j = 1, 2, . . . , n the quantity

Γ

(
1 +

∑
m ̸=i aim

2

)
(5.2)

as seen in (3.4) was computed, which corresponds to

d×
(
r +

(
n
2

)
− 1(

n
2

)
− 1

)
operations for each r. We observe that for all of the multiexponents used in the com-
putations of S1, S2, . . . , Sk, as defined in Subsection 5.1.1, there exist only k distinct
values that (5.2) can assume. Therefore, it is pragmatic to store these values in a
cache rather than recalculating them. Additionally, both the Gamma and factorial
functions exhibit recursive properties, making it advantageous to exploit this char-
acteristic. In the initial iteration, we neither cached the Gamma nor factorial values
nor utilized recursive computation. However, in the present iteration, we implement
both strategies.

To illustrate the improvement in performance, we consider how solid angle general
performs versus how the current improved version of it performs. The Corner and
Opposite cones (defined in the next section) are simplicial cones with positive def-
inite associated matrices. Over 5 runs, the solid angle general function with target

56



absolute error ϵ = 0.0001, required an average of 37.68 and 0.22 CPU seconds re-
spectively. In our current version, the average computation time was 0.21 and 0.02
CPU seconds respectively. The Weyl chamber D5 (discussed in the next section) is a
5–dimensional simplicial cone without positive definite associated matrix and so re-
quires decomposition. Using solid angle general to compute the solid angle measure
approximation of each cone in the decomposition, using Tα truncated at degree 15,
required an average of 327.86 CPU seconds. The current version required an average
of 1.26 CPU seconds.

5.2 Computational Experiments

All experiments were run on a 1.4 GHz Quad-Core Intel Core i5, 8GB RAM PC. We
utilized MATLAB R2023a and SageMath 10.0 [44].

5.2.1 Simplicial Cones with Known Solid Angles

Irreducible root systems have been studied extensively (see [7, 31]). Given an irre-
ducible root system Φ ⊂ Rn, the Coxeter arrangement corresponding to Φ is the
arrangement of hyperplanes which are orthogonal to the roots in Φ, that is, the re-
flecting hyperplanes of the associated finite Coxeter group. The complement of the set
of hyperplanes in a Coxeter arrangement is disconnected. Each connected component
is isometric and called a region of the hyperplane arrangement.

We will focus primarily on a certain type of Coxter group, namely Weyl groups,
which are finite reflection groups. Given α ∈ Φ, the reflection about the hyperplane
perpendicular to α is the map

sα(x) = x− 2
x ·α
α ·α

α.

The Weyl group of Φ is the finite group generated by all such sα’s. For Weyl groups,
the regions of the corresponding hyperplane arrangements are called Weyl chambers.
It is well known that the Weyl group acts freely and transitively on Weyl chambers.
Thus, the normalized solid angle measure of a single Weyl chamber is 1

|W | , where |W |
is the number of Weyl chambers, which is also the order of the associated Weyl group.
To construct a single Weyl chamber, we construct the cone that is bounded by the
hyperplanes orthogonal to a fixed set of simple roots. Note that after projecting out
the lineality space of Weyl chambers, we have simplicial cones.

We also consider a class of obtuse cones (cones which are larger than orthants)
of the form cone

(
e1, e2, . . . , êi, . . . , en,−e1 − e2 − · · · − en

)
for 1 ≤ i ≤ n, which all

have normalized solid angle measure 2n−1
2nn

. We will refer to cones of this form as type
In. The case of I4 is discussed in [27]. Type In cones are simplicial cones.

Other cones with known solid angle measures arise in the literature. We list the
cones appearing in [38] below with their normalized solid angle measure:

Standard = cone
((
−1, 1,−1,−1

)
,
(
−1,−1,−1, 1

)
,
(
2, 0, 0, 0

)
,
(
0, 0, 0, 2

))
Corner = cone

((
1,−1,−1,−1

)
,
(
0, 2, 0, 0

)
,
(
0, 0, 2, 0

)
,
(
0, 0, 0, 2

))
Opposite = cone

((
1,−1,−1,−1

)
,
(
−1,−1,−1, 1

)
,
(
−1, 1,−1,−1

)
,
(
2, 0, 0, 0

))
,
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with

Ω̃4(Standard) =
5

48
, Ω̃4(Corner) =

15

64
, and Ω̃4(Opposite) =

11

192
.

Note that the Corner cone is isometric to I4 and so has the same solid angle measure.
Another four-dimensional cone is considered in [27] where the authors compute its
solid angle measure to be 17

96
. The cone is

HW = cone
((
0, 1, 0, 0

)
,
(
−1,−1,−1, 1

)
,
(
−1,−1,−1,−1

)
,
(
1, 0, 0, 0

))
.

Richard Ehrenborg [13] determined an alternative method to obtain the normal-
ized solid angle measures of the four aforementioned cones through the lens of Weyl
chambers. The Coxeter arrangement associated to the Weyl group of the B4 root
system comprises the hyperplanes defined by equations

xi = 0, for 1 ≤ i ≤ 4

xi ± xj = 0, for 1 ≤ i < j ≤ 4.

The hyperplanes defining the facets of the Standard, Corner, and HW cones are in
the above arrangement. Thus, each of these three cones is formed from multiple Weyl
chambers of the B4 arrangement, of which there are 384 isometric chambers. Consider
the set of permutations of the points (s11, s22, s33, s44) where s1, s2, s3, s4 ∈ {±1}.
Each chamber is characterized by the presence of exactly one such point. Conse-
quently, it is straightforward to compute the normalized solid angle measure of the
Standard, Corner and HW cones as n

384
where n is the number of such points which

lie in each cone respectively.
The Coxeter arrangement associated to the Weyl group of the F4 root system

comprises the 24 hyperplanes defined by the equations

xi = 0, for 1 ≤ i ≤ 4,

xi ± xj = 0, for 1 ≤ i < j ≤ 4,

x1 ± x2 ± x3 ± x4 = 0.

The facets of the Opposite cone lie on hyperplanes in this arrangement. This hyper-
plane arrangement divides R4 into 1152 isometric chambers, each characterized by
the presence of exactly one point in the following list:

Permutations of (s11, s25, s37, s49),

Permutations of (s12, s24, s36, s410),

Permutations of (s11, s23, s35, s411),

where s1, s2, s3, s4 ∈ {±1}. The Opposite cone contains 16, 22, and 28 points from
each set respectively. Consequently, its normalized solid angle measure is 66

1152
.

We consider the absolute error of the approximation given by the power series
method for the aforementioned simplicial cones with known solid angle measures,
for dimensions two through five. In Figure 5.2, the dashed line represents the line
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Figure 5.2: Target Absolute Error versus Absolute Error for polyhedral cones with
known solid angle measures on log-log scale.

Actual Error = 10(Target Absolute Error). We see that for the cases considered,
the error is always strictly less than this, indicating that the power series method
gives an approximation whose error is of the order of the given target absolute error
parameter ϵ. While these findings provide an empirical foundation for our stopping
criterion, they also underscore a notable limitation of both this study and the power
series method. The stopping criterion alone does not ensure accuracy, and increasing
the target absolute error parameter may not necessarily result in improved accuracy.
Therefore, additional exploration is essential to identify the conditions under which
the power series method can reliably provide an estimate with an error lower than a
specified target absolute error parameter.

5.2.2 Outer Normal Cones of Group-Facet Polytopes

In this section, we report computational results for approximating solid angle mea-
sures of outer normal cones of reduced group facet polytopes at their vertices. In the
tables that follow, Gom is the number of Facet in Table P (Gq, (f)) of [21]. Facet is
the facet of of P (q, f) corresponding to the vertex of interest. The bold values corre-
spond to the indices of the chosen set I from the partition of indices as discussed in
Section 2.3. Cones is the total number of cones in the power series method decom-
position. PS gives the approximation via the power series method with truncation
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by target absolute error parameter ϵ = 1e− 4, rounded to the fourth decimal place.
The choice of ϵ is based on the fact that the shooting experiment data comes from
a shooting experiment with 10,000 shots. For cones having dimension at most four,
when applicable, we consider multiple triangulations for the power series method and
report in the table the estimate corresponding to the fastest running time. For higher
dimensions, we select the triangulation having the smallest number of cones in the
decomposition. SSS is the shooting experiment size reported in [41] normalized by
a factor of 1

10,000
. As aforementioned, the Cousins–Vempala algorithm is random-

ized, and the authors of [9] report the average of at least 100 trials in experiments
conducted in [9]. As such, we use 100 trials in our experiments. CV is the aver-
age solid angle measure approximation obtained from performing 100 trials of the
Cousins–Vempala algorithm.

The times are CPU times in seconds, rounded to nearest hundredth of a second.
The Time for PS appears directly to the right of it and is the average of three runs
of the power series method. The Time for CV appears in the last column and is
the average time per trial. That is, the total time spent on computing the CV
approximation should be understood as 100 times the listed time.

Table 5.1: Solid angle measures of outer normal cones at vertices of Π̃(7, 6)

Gom Facet Cones PS Time CV Time
1 1 2 3 4 5 6 1 0.3238 0.01 0.3245 68.66
4 9 4 6 8 3 12 2 0.2500 0 0.2500 53.77
3 4 8 5 2 6 10 2 0.2500 0 0.2500 52.39
2 6 5 4 3 2 8 1 0.1762 0.01 0.1763 40.11

Since the outer normal cones considered in Table 5.1 are two-dimensional, their
exact measures are known. The PS values agree with the exact values rounded to
the fourth decimal place. For this case, the power series method is both faster and
more accurate than the Cousins–Vempala algorithm. In this example, we see that
the most important facet is the mixed integer cut for P (7, 6). The mixed integer cut
for a master cyclic group polyhedron is defined in [16], where it is discussed as being
a class of frequently hit facets in the shooting experiment.

Table 5.2: Solid angle measures of outer normal cones at vertices of Π̃(8, 7)

Gom Facet Cones PS Time SSS CV Time
1 1 0 1 0 1 0 1 2 0.3051 0.13 0.3081 0.3050 151.93
2 1 2 3 0 1 2 3 2 0.1933 0.06 0.1915 0.1931 92.76
5 1 2 3 4 5 6 7 2 0.1667 0.04 0.1682 0.1669 79.14
7 9 10 3 12 5 6 15 3 0.1250 0 0.1283 0.1250 70.22
4 3 2 1 4 3 2 5 1 0.0811 0.01 0.0815 0.0811 39.11
3 1 2 1 2 1 2 3 1 0.0650 0.02 0.0633 0.0651 29.25
6 7 6 5 4 3 2 9 1 0.0636 0.02 0.0591 0.0633 29.09
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In Table 5.2, we see that all three solid angle approximation methods give rise to
the same order of importance. We also observe that the two most important facets
are those from homomorphic liftings as described in Theorem 1.2.4, which are known
to perform well in shooting experiments. In particular, it is noted in [16, 24] that
for q not prime, the facets from homomorphic liftings receive a disproportionately
high number of hits in shooting experiments. Since the outer normal cones are three–
dimensional, we are able to ascertain the exact solid angle measures of the outer
normal cones. The PS values agree with the exact measures rounded to the fourth
decimal place for all the vertices except (1, 0, 1) where the exact measure rounded
to the fourth decimal place is 0.3053. The first two most important facets are from
homomorphic lifting. The third most important is from the mixed integer cut.
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Table 5.3: Solid angle measures of outer normal cones at vertices of Π̃(9, 8)

Gom Facet Cones PS Time SSS CV Time
1 1 2 0 1 2 0 1 2 2 0.2958 0.12 0.2915 0.2963 114.63
3 1 2 3 4 5 6 7 8 2 0.1817 0.05 0.1860 0.1814 88.98
5 4 8 12 7 2 6 10 14 2 0.1666 0.03 0.1675 0.1667 88.93
7 16 5 12 10 8 15 4 20 3 0.1250 0.00 0.1256 0.1250 48.03
4 8 7 6 5 4 3 2 10 1 0.1019 0.01 0.1008 0.1020 39.87
6 11 4 6 8 10 12 5 16 1 0.0650 0.02 0.0664 0.0651 27.35
2 2 1 3 2 1 3 2 4 1 0.0636 0.02 0.0622 0.0636 27.32
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In Table 5.3, the three approximation methods give the same order of importance
for the three-dimensional cones. The power series method is faster than the CV
algorithm. The exact normalized solid angle measures rounded to the fourth decimal
place are the same as the approximations given by the power series method except
at Facets 1 and 5, where the exact measures rounded to the fourth decimal place are
0.2961 and 0.1667 respectively. The two most important facets are from homomorphic
lifting and the mixed integer cut.
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Table 5.4: Solid angle measures of outer normal cones at vertices of Π̃(10, 9)

Gom Facet Cones PS Time SSS CV Time
1 1 0 1 0 1 0 1 0 1 8 0.2861 0.85 0.2757 0.2854 162.34
3 1 2 3 4 0 1 2 3 4 14 0.1533 325.24 0.1572 0.1522 72.65
4 4 3 2 6 0 4 3 2 6 4 0.1309 0.26 0.1312 0.1290 65.42
9 1 2 3 4 5 6 7 8 9 5 0.1272 1.05 0.1322 0.1263 77.67
12 9 18 7 6 15 14 3 12 21 4 0.0833 0.04 0.0837 0.0839 50.08
11 3 6 4 2 5 3 1 4 7 2 0.0535 0.64 0.0526 0.0532 26.60
10 9 8 7 6 5 4 3 2 11 2 2.94 1.39 0.0411 0.0446 26.51
5 4 3 2 1 5 4 3 2 6 5 0.0353 6.21 0.0358 0.0357 24.14
6 2 4 6 3 5 2 4 6 8 1 0.0259 1.00 0.0254 0.0273 18.79
7 6 7 3 4 5 6 2 3 9 1 0.0236 0.08 0.0256 0.0240 16.03
8 6 2 3 4 5 6 7 3 9 1 0.0208 6.92 0.0217 0.0205 14.73
2 1 2 1 2 1 2 1 2 3 1 0.0158 31.16 0.0158 0.0156 10.8164



In Table 5.4, we see that the ranking of facets is the same for the PS and CV
values. However, the shooting experiment differs in its rankings of Facets 4 and 9 as
well as Facets 6 and 7. The power series method is faster for approximating the solid
angle measures of the four–dimensional outer normal cones. We once again observe
that the the two most important facets come from homomorphic lifting and mixed
integer cuts.
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Table 5.5: Solid angle measures of outer normal cones at vertices of Π̃(11, 10)

Gom Facet Cones PS Time SSS CV Time
1 1 2 3 4 5 6 7 8 9 10 3 0.1332 0.45 0.1354 0.1332 73.28
7 4 8 12 16 9 2 6 10 14 18 5 0.1272 1.38 0.1291 0.1273 71.36
13 9 18 16 3 12 21 8 6 15 24 4 0.0908 0.06 0.0935 0.0908 72.88
2 10 9 8 7 6 5 4 3 2 12 8 0.0894 3.23 0.0872 0.0895 56.35
16 16 21 4 20 14 8 24 7 12 28 4 0.0833 0.05 0.0816 0.0832 54.94
17 25 6 20 12 15 18 10 24 5 30 3 0.0809 0.01 0.0813 0.0810 48.68
3 8 5 2 10 7 4 12 9 6 14 2 0.0627 0.73 0.0579 0.0627 47.22
5 6 12 7 2 8 14 9 4 10 16 2 0.0605 0.16 0.0646 0.0605 34.59
11 20 7 16 14 12 10 8 17 4 24 1 0.0411 0.04 0.0403 0.0410 24.82
6 15 8 12 5 9 13 6 10 3 18 1 0.0399 0.05 0.0404 0.0401 35.65
9 13 4 6 8 10 12 14 16 7 20 1 0.0370 0.03 0.0402 0.0370 25.68
4 6 12 7 13 8 3 9 4 10 16 5 0.0351 2.16 0.0297 0.0353 24.81
8 4 8 12 5 9 13 6 10 14 18 1 0.0286 0.16 0.0276 0.0286 19.34
14 9 18 5 14 12 10 19 6 15 24 1 0.0236 0.09 0.0250 0.0236 21.69
18 14 6 20 12 15 18 10 24 16 30 1 0.0190 0.16 0.0187 0.0190 13.21
15 18 14 10 6 13 20 16 12 8 26 1 0.0176 646.49 0.0173 0.0175 11.07
10 13 15 6 8 10 12 14 5 7 20 1 0.0158 33.52 0.0162 0.0158 15.90
12 9 18 16 14 12 10 8 6 15 24 2 0.0134 0.18 0.0140 0.0137 13.55
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In Table 5.5, we see that the order of importance given by the power series method
and the CV–algorithm agree. The order of importance given by the shooting experi-
ment disagrees with the two other methods for Facets 3 and 5 and Facets 11 and 6.
The power series method is faster than the CV–algorithm for these four dimensional
cones. We once again observe that the facet corresponding to the mixed integer cut
is the most important cut.

5.2.3 Outer Normal Cones of Blockers of Master Cyclic Group Polyhedra

In this section, we report computational results for approximating solid angle mea-
sures of outer normal cones at vertices of the blocking polyhedra of master cyclic
group polyhedra. Since these polyhedra are of blocking type, and therefore contained
in the nonnegative orthant, the approximations are normalized so that an orthant
has measure 1. In the tables, Gom is the number of Facet in Table P (Gq, (f)) of
[21]. Facet is the facet of of P (q, f) corresponding to the vertex of interest. Cones is
the total number of cones in the power series method decomposition. PS gives the
approximation via the power series method with truncation by target absolute error
parameter ϵ = 1e− 3. Note that the output of the power series method is scaled by a
factor of 2|I| as solid angle approximations from shooting experiments are normalized
so that an orthant has measure 1. The choice of ϵ is based on the fact that the shoot-
ing experiment data comes from a shooting experiment with 1,000 shots. For cones
having dimension at most four, when applicable, we consider multiple triangulations
for the power series method and report in the table the estimate corresponding to the
fastest running time. HSS is the shooting experiment size reported in [32] normalized
by a factor of 1

1000
. CV is the average solid angle approximation from 100 trials of

the Cousins–Vempala algorithm. The times are CPU times in seconds. The Time for
PS is the average of three runs of the power series method. As aforementioned, the
Cousins–Vempala algorithm is randomized, and the authors of [9]report the average
of at least 100 trials in every experiment. The Time for CV is the average time of
per trial. That is, the total time spent on computing the CV approximation should
be understood as 100 times the listed time.

Table 5.6: Solid angle measures of outer normal cones at vertices of Π(7, 6) + R6
≥0

Gom Facet Cones PS Time HSS CV Time
1 1 2 3 4 5 6 4 0.325 0.17 0.332 0.323 1.87
4 9 4 6 8 3 12 2 0.251 0.02 0.253 0.248 1.53
3 4 8 5 2 6 10 4 0.247 0.21 0.245 0.246 1.68
2 6 5 4 3 2 8 2 0.172 0.05 0.170 0.170 1.39

In Table 5.6, the order or importance given by each of the three approximation
methods is consistent. For these four-dimensional cones, we see that the power series
method is faster than the Cousins–Vempala algorithm. In this example, we see that
the most important facet is the mixed integer cut for P (7, 6). The mixed integer cut
for a master cyclic group polyhedron is defined in [16], where it is discussed as being
a class of frequently hit facets in the shooting experiment.
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An important observation here is that while the order of importance of facets is
the same, the approximations in Table 5.6 differ from those in Table 5.1, suggesting
that the Shim and Gomory shooting experiments are not equivalent.

Table 5.7: Solid angle measures of outer normal cones at vertices of Π(8, 2) + R7
≥0

Gom Facet Cones PS Time HSS CV Time
1 1 2 1 0 1 2 1 4 0.342 0.13 0.367 0.340 4.95
3 3 6 5 4 3 2 1 4 0.325 0.16 0.312 0.325 4.44
2 3 6 1 4 3 2 5 4 0.325 0.16 0.321 0.322 4.69

In Table 5.7, we see that none of the three methods agree on the rankings of
Facets 2 and 3. The PS approximations suggest that Facet 2 and Facet 3 are equally
important. The CV approximations suggest that Facet 3 is more important than
Facet 2, while the shooting experiment suggests the opposite. Note that all three
methods rank the facet from homomorphic lifting as most important. We see that
the power series method is faster on these 4-dimensional cones. When considering
the outer normal cones corresponding to Facet 2 and Facet 3, we have that they are

C2 = cone
((
−2,−1, 0, 0

)
,
(
−1, 0, 0,−1

)
,
(
−1, 0, 0, 0

)
,
(
0,−1,−1, 0

)
,
(
0, 0,−1, 0

))
C3 = cone

((
−1, 0, 0,−1

)
,
(
0,−1,−1, 0

)
,
(
0,−1, 0,−2

)
,
(
0, 0,−1, 0

)
,
(
0, 0, 0,−1

))
respectively. Swapping the first and fourth coordinates of each extreme ray corre-
sponds to an isometry between C2 and C3. Thus, Facet 2 and Facet 3 subtend solid
angles of equal measure and are therefore equally important, as predicted by the
power series method.

Table 5.8: Solid angle measures of outer normal cones at vertices of Π(8, 4) + R7
≥0

Gom Facet Cones PS Time HSS CV Time
4 3 2 1 4 1 2 3 2 0.250 0.02 0.259 0.249 1.21
1 1 2 3 4 1 2 3 2 0.250 0.02 0.259 0.247 1.21
3 3 2 1 4 3 2 1 2 0.250 0.02 0.254 0.245 1.23
2 1 2 3 4 3 2 1 2 0.250 0.02 0.228 0.245 1.23

In Table 5.8, we see that the power series method suggests that all four facets
are equally important. The shooting experiment suggests Facets 4 and 1 are equally
important, but more important that Facets 3 and 2. However, the volume approxi-
mation method suggests that Facets 3 and 2 are equally important. One can show
that the 4 outer normal cones corresponding to this facet are isometric to each other.
Labelling the cones C4, C1, C3 and C2 as corresponding to Facets 4, 1, 3 and 2 respec-
tively, we have that:

C4 = cone
((
−1,−1, 0, 0

)
,
(
0,−1, 0, 0

)
,
(
0, 0,−1,−1

)
,
(
0, 0,−1, 0

))
C1 = cone

((
−1,−1, 0, 0

)
,
(
−1, 0, 0, 0

)
,
(
0, 0,−1,−1

)
,
(
0, 0,−1, 0

))
C3 = cone

((
−1,−1, 0, 0

)
,
(
0,−1, 0, 0

)
,
(
0, 0,−1,−1

)
,
(
0, 0, 0,−1

))
C2 = cone

((
−1,−1, 0, 0

)
,
(
−1, 0, 0, 0

)
,
(
0, 0,−1,−1

)
,
(
0, 0, 0,−1

))
.
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Swapping the first and second coordinates of each extreme ray of C2 shows it is
isometric to C1. Swapping the third and fourth coordinates of each extreme ray of
C3 shows it is isometric to C1. Swapping the first and second coordinated and the
third and fourth coordinates of each extreme ray of C4 shows it is isometric to C1.
Thus, the four cones are isometric. Therefore, the power series estimate is the exact
measure. Furthermore, the power series method is once again faster than the CV
algorithm on these four-dimensional cones.
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Table 5.9: Solid angle measures of outer normal cones at vertices of Π(8, 7) + R7
≥0

Gom Facet Cones PS Time HSS CV Time
1 1 0 1 0 1 0 1 86 > 1 day 0.303 0.309 23.34
2 1 2 3 0 1 2 3 41 > 1 day 0.230 0.192 17.53
5 1 2 3 4 5 6 7 68 > 1 day 0.144 0.166 11.44
7 9 10 3 12 5 6 15 6 0.124 0.16 0.120 0.124 9.82
4 3 2 1 4 3 2 5 18 0.102 51969.90 0.092 0.082 8.34
3 1 2 1 2 1 2 3 7 0.061 1221.40 0.068 0.061 6.28
6 7 6 5 4 3 2 9 25 > 1 day 0.043 0.063 4.31

70



Table 5.9 shows that the power series method is not efficient at approximating
solid angle measures for the six dimensional cones. In particular, the computation
appears to be encumbered by large numbers of cones in the decompositions. In
contrast, the CV algorithm computes approximations relatively fast. Note that of
the three approximations that the power series method is able to compute within 24
hours, 2 match exactly with the CV values.
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Table 5.10: Solid angle measures of outer normal cones at vertices of Π(9, 3) + R8
≥0

Gom Facet Cones PS Time HSS CV Time
1 2 4 6 5 4 3 2 1 6 0.163 0.27 0.159 0.163 27.02
3 5 1 6 2 4 3 2 4 6 0.163 0.13 0.152 0.163 25.26
5 2 4 6 2 1 3 5 4 6 0.162 0.15 0.151 0.164 25.72
2 2 4 6 2 4 3 2 4 3 0.125 0.02 0.138 0.124 24.29
7 10 2 12 4 5 6 7 8 9 0.112 1339.67 0.129 0.110 23.50
8 4 8 12 7 2 6 10 5 9 0.111 420.93 0.115 0.111 20.64
6 7 5 12 10 8 6 4 2 10 0.098 13.06 0.116 0.111 21.16
4 4 2 6 4 2 3 4 2 28 > 1 day 0.040 0.051 7.81
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In Table 5.10, Gom is the number of Facet in Table P (G9, (6)) of [21]. P (9, 6) and
P (9, 3) have the same structure by Theorem 1.2.3. The table shows many discrepan-
cies in the ranking of facets. Notably, none of the three methods agree on which of the
six dimensional cones has the largest solid angle measure, thus none of the methods
agree on which facet is the most important. The CV method ranks Facet 5 as the
most important, while the shooting experiment ranks Facet 1 as the most important,
and the PS method ranks Facets 1 and 3 as the most important.
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Table 5.11: Solid angle measures of outer normal cones at vertices of Π(9, 8) + R8
≥0

Gom Facet Cones PS Time HSS CV Time
1 1 2 0 1 2 0 1 2 52 > 1 day 0.312 0.300 22.87
3 1 2 3 4 5 6 7 8 50 > 1 day 0.170 0.183 14.06
5 4 8 12 7 2 6 10 14 68 > 1 day 0.173 0.167 13.21
7 16 5 12 10 8 15 4 20 6 0.124 0.21 0.115 0.126 9.73
4 8 7 6 5 4 3 2 10 23 > 1 day 0.094 0.100 8.44
2 2 1 3 2 1 3 2 4 25 > 1 day 0.079 0.063 7.67
6 11 4 6 8 10 12 5 16 7 0.061 608.73 0.057 0.062 5.72
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In Table 5.11, we see that the power series method cannot efficiently approximate
all of the solid angle measures of the six dimensional cones under consideration.
We see that we can only approximate the measures of two outer normal cones of
Π(9, 8)+R8

≥0 using the power series method. As with Table 5.2, these results suggest
that solid angle measure approximation via the power series method is encumbered by
a larger number of cones coming out of the decomposition. In contrast, the Cousins–
Vempala algorithm does not take long to compute approximations. Note that the
two approximations obtained using the power series method are within 0.002 of the
corresponding CV approximations, but differ quite drastically from those given by
the shooting experiment. Furthermore, note that the shooting experiment and the
CV method rank a facet from homomorphic lifting as being the most important facet.
However, the methods do not agree on rankings for Facets 3 and 5.
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Table 5.12: Solid angle measures of outer normal cones at vertices of Π(10, 2) + R9
≥0

Gom Facet Cones PS Time HSS CV Time
1 2 4 1 3 0 2 4 1 3 31 > 1 day 0.198 0.209 15.75
2 3 6 4 2 0 3 6 4 2 41 > 1 day 0.177 0.191 14.45
5 4 8 7 6 5 4 3 2 1 52 > 1 day 0.199 0.183 15.84
7 6 12 3 4 10 6 2 8 9 6 0.163 0.28 0.168 0.163 14.21
3 3 6 4 2 5 3 1 4 2 17 0.136 8114.87 0.141 0.126 12.38
4 4 8 2 6 5 4 3 2 6 3 0.086 0.08 0.077 0.086 7.39
6 6 12 3 4 5 6 7 8 9 14 > 1 day 0.040 0.041 4.56
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In Table 5.12, Gom is the number of Facet in Table P (G10, (8)) of [21]. P (10, 8)
and P (10, 2) have the same structure by Theorem 1.2.3. We see that the power
series method cannot efficiently approximate all of the solid angle measures of the
six dimensional cones under consideration. We see that we can only approximate the
measures of three outer normal cones of Π(10, 2)+R9

≥0 using the power series method.
As with Table 5.2 and Table 5.11, these results suggest that solid angle measure
approximation via the power series method is encumbered by a larger number of
cones coming out of the decomposition. In contrast, the Cousins–Vempala algorithm
does not take long to compute approximations. It is interesting to observe that of the
three approximations obtained via the power series method, two match exactly with
that of the CV approximations. Furthermore, these two approximations are obtained
much faster via the power series method than the CV algorithm. We see that the CV
values rank a facet from homomorphic lifting as most important whereas the shooting
experiment ranks a facet from the mixed integer cut as most important.

Copyright© Allison Marie Fitisone, 2024.
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Appendices

Appendix A: SageMath Program

The following program is to approximate solid angle measures for polyhedral cones.
Below, we include two main functions for computing solid angle measures of simplicial
cones, and solid angle measures of simplicial cones with positive definite associated
matrices respectively. A simplicial cone should be represented as a matrix whose rows
give the extreme rays of the cone. The code, including the helper functions called in
the two main functions, can be accessed at [17].

def solid_angle_measure(simplicial_cone, deg=100000, eps=1e-6,
↪→ base_ring=RR, decompose_to_tridiag=False, verbose=False):

r"""

Return an estimate of the sum of the normalized solid angle
measure of the cones generated by the row vectors of the
matrices in the given list of matrices, based on a truncated
form of Jason Ribando's formula (see note).

↪→

↪→

↪→

INPUT:

- ``simplicial_cone`` -- a matrix or a list that is convertible
to a matrix; the row vectors of ``M`` span the cone for
which we compute its solid angle.

↪→

↪→

- ``deg`` -- integer (default: `100`); ``deg`` is the maximum
sum of the powers of the `\alpha_{ij}`'s in the summation
(i.e. it is the maximum sum of the terms in the
multiexponent.)

↪→

↪→

↪→

- ``eps`` -- positive real number (default: ``1e-6``); this
parameter is used to determine when the summation stops. In
terms of the partial sum, when `s_n-s_{n-1} < \epsilon`, we
stop adding terms to the partial sum sequence.

↪→

↪→

↪→

- ``base_ring`` -- a sub-field of the reals implemented in Sage
(default: RR). The base_ring parameter determines the field
in which airthmetic is done.

↪→

↪→

- ``decompose_to_tridiag`` -- boolean(default: False). Whether
each cone in the decomposition should have a tridiagonal
associated matrix.

↪→

↪→
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- ``verbose`` -- (optional) boolean(default: False). Whether to
print out intermediate data.↪→

OUTPUT:

- an estimate of the sum of the normalized solid angle measures
of the given simplicial cone↪→

EXAMPLES:

This example shows the measure of the solid angle spanned by the
↪→

↪→

vectors ``[1,0]`` and ``[-1,-1]``. Note that it agrees with 
the value obtained by the arctan formula.::

sage: logging.disable(logging.INFO)
sage: A = matrix([[1,0],[-1,-1]])
sage: solid_angle_measure(A, eps=1e-6)
0.374998211389711

This example shows the measure of the solid angle spanned by the
↪→

↪→

↪→

↪→

vectors ``[2, sqrt(2), 3], [-1, 1, 2]``, and ``[-3, 0,
5/4]``, with ``deg`` set to ``20`` and ``eps`` set to
``1e-6``. The relative error compared to value ``0.01183`` 
obtained by the arctan formula is <0.5%.::

sage: A = matrix(RR, [[2, sqrt(2), 3], [-1, 1, 2], [-3, 0,↪→ 

5/4]])

sage: a = solid_angle_measure(A, deg=50, eps=1e-6)
sage: b = solid_angle_3d(A)
sage: abs(a-b)/b < 5e-5
True

The following are examples of estimations of the solid angle
↪→

↪→

measure of a cone in `\RR^5` using different ``deg`` 
values::

sage: A = matrix([[1,1,0,0,0],[-1,3,0,-4,1],[5,0,0,-1,0],↪→ 

[0,0,-2,1,4],[0,0,0,0,1]])

sage: solid_angle_measure(A, deg=10)
0.00533087907335968

sage: solid_angle_measure(A, deg=12)
0.00487047236050033
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sage: solid_angle_measure(A, deg=18)
0.00407911422649577

TESTS:

In the following examples, we consider cones formed by Coxeter
arrangements in various dimensions of various types. The
hyperplanes of a Coxeter arrangement of type ``B_n``
subdivide ``R^n`` into ``n!*2^n`` isometric cones, each with
normalized solid angle measure ``1/(n!*2^n)``.

↪→

↪→

↪→

↪→

We consider cones formed by the ``B_2`` arrangement in ``R^2``.
The expected value is ``1/(2!*2^2)=1/8``::↪→

sage: B2 = matrix([[1,1],[1,0]])
sage: solid_angle_measure(B2)
0.125000319734726

We consider cones formed by the ``B_3`` arrangement in ``R^3``.↪→ 

The expected value is ``1/(3!*2^3)=1/48``::

sage: B3 = matrix([[1,0,0],[1,1,0],[1,1,1]])
sage: solid_angle_measure(B3)
0.0208338480731115

We consider cones formed by the ``B_4`` arrangement in ``R^4``.↪→ 

The expected value is ``1/(4!*2^4)=1/384``::

sage: B4 = matrix([[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]])
sage: solid_angle_measure(B4)
0.00260509099329648

The hyperplanes of a Coxeter arrangement of type ``D_n`` (n at
least 4) subdivide ``R^n`` into ``n!*2^(n-1)`` isometric
cones, each with normalized solid angle measure
``1/(n!*2^(n-1))``.

↪→

↪→

↪→

We consider cones formed by the ``D_4`` arrangement in ``R^4``.
The expected value is ``1/(4!*2^3)=1/192``::↪→

sage: D4 = matrix([[1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 1],↪→ [1, 1,
1, -1]])
sage: solid_angle_measure(D4, eps=1e-4)
0.00523328191018306
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.. NOTE::

This function decomposes the cone of interest into cones
with positive definite associated matrices, hence into 
cones whose solid angles are computable via Ribando's 
formula.

↪→

↪→

↪→

"""

# since numbernonzero parts may be different, we clear the↪→ 

multipermutation cache
multipermute.clear_cache()

multipermute_by_frequency_dict = {}

solid_angle_prod = 1

# decompose the cone into an orthogonal direct sum
for orth_cone in generate_orthogonal_parts(simplicial_cone):

# decompose to cones with positive definite associated↪→ 

matrices

if decompose_to_tridiag:
if verbose:

print(list(generate_tridiag_cones_decomposition(orth_cone)))↪→

t = sum(s*solid_angle_simplicial_and_posdef(c, deg=deg,
eps=eps, base_ring=base_ring, space="affine", 
tridiag=True, verbose=verbose,
multipermute_by_frequency_dict=

↪→

↪→

↪→

multipermute_by_frequency_dict)

for (c, s) in
↪→ generate_tridiag_cones_decomposition(orth_cone))

else:

if is_M_alpha_posdef(orth_cone) == True:
if verbose is True:

print([orth_cone, 1])
t = solid_angle_simplicial_and_posdef(orth_cone,

deg=deg, eps=eps, base_ring=base_ring,
space="affine", tridiag=False, verbose=verbose, 
multipermute_by_frequency_dict=

↪→

↪→

↪→

multipermute_by_frequency_dict)

else:

if verbose:
print(list(generate_cones_decomposition(orth_cone))) 
t = sum(s*solid_angle_simplicial_and_posdef(c,

deg=deg, eps=eps, base_ring=base_ring, 
space="affine", verbose=verbose, 
multipermute_by_frequency_dict=

↪→

↪→

↪→

multipermute_by_frequency_dict)
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for (c, s) in
↪→ generate_cones_decomposition(orth_cone)) 

solid_angle_prod *= t
logging.info('Solid angle measure is %s.', solid_angle_prod) 
logging.info(' ')
return(solid_angle_prod)

def solid_angle_simplicial_and_posdef(M, eps=1e-6, deg=1000000000,
↪→

↪→

space="ambient", tridiag=False, base_ring=RR, verbose=False, 
multipermute_by_frequency_dict={}):

r"""

Return an estimate of the normalized solid angle measure of the 
cone spanned by the row vectors of the given matrix ``A``, based 
on a truncated form of Jason Ribando's formula (see note).

INPUT:

- ``M`` -- a matrix or a list that is convertible to a matrix;
the row vectors of ``M`` span the cone for which we compute 
its solid angle. The cone is assumed to have positive 
definite associated matrix.

↪→

↪→

↪→

- ``eps`` -- positive real number (default: ``1e-6``); this
parameter is used to determine when the summation stops. In 
terms of the partial sum, when `s_n-s_{n-1} < \epsilon`, we 
stop adding terms to the partial sum sequence.

↪→

↪→

↪→

- ``deg`` -- integer (default: `100`); ``deg`` is the maximum
sum of the powers of the `\alpha_{ij}`'s in the summation 
(i.e. it is the maximum sum of the terms in the 
multiexponent.)

↪→

↪→

↪→

- ``space`` -- either "ambient" (by default) or "affine",
indicating with respect to which space the solid angle of 
the cone is considered.

↪→

↪→

- ``tridiag`` -- boolean(default: False). Whether the associated
matrix of the cone is tridiagonal or not.↪→

- ``base_ring`` -- a sub-field of the reals implemented in Sage
(default: RR). The base_ring parameter determines the field 
in which airthmetic is done.

↪→

↪→
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- ``verbose`` -- (optional) boolean(default: False). Whether to
print out intermediate data for the power series, such as 
the degree, term, and partial sums.

↪→

↪→

OUTPUT:

- an estimate of the normalized solid angle measure spanned by
the row vectors given in ``M``.↪→

EXAMPLES:

This example shows the measure of the solid angle spanned by the
↪→

↪→

vectors ``[1,0]`` and ``[-1,-1]``. Note that it agrees with 
the value obtained by the arctan formula.::

sage: logging.disable(logging.INFO)
sage: M = matrix([[1,0],[-1,-1]])
sage: solid_angle_simplicial_and_posdef(M, eps=1e-9) # abs↪→ 

tol 2e-9
0.375

This example shows that when the vectors are linearly dependent,
↪→

↪→

the measure of the solid angle with respect to the ambient 
space is 0::

sage: M = matrix([[2,0,0], [0,3,0], [-4,-4,0]])
sage: solid_angle_simplicial_and_posdef(M, space="ambient") 
WARNING:root:cone not full-dimensional
0

This example shows the measure of the solid angle spanned by the
↪→

↪→

↪→

↪→

vectors ``[2, sqrt(2), 3], [-1, 1, 2]``, and ``[-3, 0,
5/4]``, with ``deg`` set to ``20`` and ``eps`` set to
``1e-6``. The relative error compared to value ``0.01183`` 
obtained by the arctan formula is <0.5%.::

sage: M = matrix(RR, [[2, sqrt(2), 3], [-1, 1, 2], [-3, 0,↪→ 

5/4]])

sage: a = solid_angle_simplicial_and_posdef(M, deg=20,
↪→ eps=1e-6)

sage: b = solid_angle_3d(M)
sage: abs(a-b)/b < 0.005
True
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This example shows an estimation of the measure of the solid
↪→

↪→

angle spanned by vectors `\RR^5`, with different ``deg``
values.::

sage: A = [[1,1,0,0,0],[-1,3,0,-4,1],[5,0,0,-1,0],
....: [0,0,-2,1,4],[0,0,0,0,1]]

sage: solid_angle_simplicial_and_posdef(A, eps=-1, deg=10)
↪→ # abs tol 1e-15
0.00533087907335968

sage: solid_angle_simplicial_and_posdef(A, eps=-1, deg=12) #↪→ 

long time (18 s), abs tol 1e-15
0.00487047236050033

TESTS:

The example below is based on Example 3.4 in Gourion and Seeger
↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

(see note). For the matrix ``A`` below, the authors used
truncated forms of Ribando's formula, testing deg =
0,1,2,5,10,20, and 40. The estimates they obtained were
0.097403, 0.067204, 0.082871, 0.079939, 0.080930, 0.080878,
and 0.080878 respectively. The authors normalized their
measurement with respect to a half space. Thus, the function
should return estimates that are half of the above values.
Below, we show that this is the case. We observe that the
last two returns are equal, showing that eps=1e-6 is too
large when deg=40.::

sage: A = matrix([[1/2, -1/2, -1/2, 1/2],[1/2, 1/10, 7/10,
1/2],↪→

....: [-4/7, 4/7, 1/7, 4/7], [-4/11, -5/11, 8/11,
4/11]])↪→

sage: solid_angle_simplicial_and_posdef(A, deg=1)
# abs tol 1e-15↪→

0.0336018459286235

sage: solid_angle_simplicial_and_posdef(A, deg=2)
# abs tol 1e-15↪→

0.0431921854297128

sage: solid_angle_simplicial_and_posdef(A, deg=5)
# abs tol 1e-15↪→

0.0399696621189179
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sage: solid_angle_simplicial_and_posdef(A, deg=10)
# abs tol 1e-15↪→

0.0404638509737549

sage: solid_angle_simplicial_and_posdef(A, deg=20) # abs

tol 1e-15↪→

0.0404387819367501

sage: solid_angle_simplicial_and_posdef(A, deg=40) # abs

tol 1e-15↪→

0.0404387819367501 

.. NOTE::

This function uses the formula given in Ribando's 2006 paper
entitled "Measuring Solid Angles Beyond Dimension Three." 
More specifically, it is a truncated form of the multi-
variate power series given in Theorem 2.2.

↪→

↪→

↪→

In Gourion and Seeger's 2010 paper entitled "Deterministic
and stochastic methods fof computing volumetric moduli 
of convex cones, the authors look at the volumetric 
modulus/ normalized volume of convex polyhedral cones, 
in comparison to a half space. See Theorem 4.1 and 
Remark 4.2.

↪→

↪→

↪→

↪→

↪→

"""

Start_Time = time.process_time()

if not hasattr(M, 'nrows'):
M = matrix(M)

if space == "ambient" and M.rank() < M.ncols():
logging.warning("cone not full-dimensional") 

return 0
prod = 1
br_pi = base_ring(pi)
sqrt_pi = base_ring(sqrt(br_pi))
trunc_degs = []

for A in generate_orthogonal_parts(M):
# is M has positive-definite block associated matrix, it's↪→ 

blocks have positive-definite associated matrices
d = A.nrows()

# if cone is 1 ray, affine solid angle is 1/2
if d == 1:

prod *= base_ring(1/2)
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trunc_degs.append(0)

continue

# the only multivariables contributing to the sum are the↪→ 

nonzero ones
v = matrix([A[i]/A[i].norm() for i in range(d)]) # leave as

↪→ norm, otherwise lose 0s in vtv 
dot_prod_matrix = v * v.transpose()

# find the values for the multivariable alpha
if tridiag: # if tridiag is True, we only consider the↪→ 

tridiagonal part of the dot product matrix
nonzero_inds = [(i, i+1) for i in range(d - 1) if
↪→ dot_prod_matrix[i][i+1] != 0] 

else:

nonzero_inds = [(i, j) for i in range(d - 1) for j in
↪→ range(i + 1, d) if dot_prod_matrix[i][j] != 0] alpha = 

[base_ring(dot_prod_matrix[i, j]) for (i, j) in↪→ 

nonzero_inds]

number_nonzero_parts = len(alpha)

# if all dihedral angles are 0, the cone is an orthant 
if number_nonzero_parts == 0:

prod *= base_ring(1/2) ** d 
trunc_degs.append(0) 
continue

# compute the constant and use it to determine the threshold↪→ for 
truncation

const = base_ring(sqrt((dot_prod_matrix).determinant())) / ((2↪→ 

* sqrt_pi) ** d)
threshhold = eps / const

# zero term for power series
partial_sum = sqrt_pi ** d

two_to_deg = 1
prev_sum_deg_n = partial_sum
if verbose:

logging.info('Degree:, Current Term:, Partial Sum:, Avg of
↪→ Terms:')

for n in range(1, deg + 1):
two_to_deg *= -2
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sum_deg_n = sum(sum_partition(partition, alpha, sqrt_pi,
base_ring, nonzero_inds, number_nonzero_parts, 
multipermute_by_frequency_dict) for partition in 
weak_partitions(n, number_nonzero_parts))

↪→

↪→

↪→

partial_sum += (two_to_deg * sum_deg_n) 
if verbose:

logging.info([n, (const * sum_deg_n), (const *
partial_sum), (const * 0.5 * (abs(two_to_deg * 
sum_deg_n) + abs(two_to_deg/2 *
prev_sum_deg_n)))])

↪→

↪→

↪→

# check if we should truncate the series at degree n
if (0.5 * (abs(two_to_deg * sum_deg_n) + abs(two_to_deg/2↪→ * 
prev_sum_deg_n))) < threshhold:

trunc_degs.append(n) 
break

prev_sum_deg_n = sum_deg_n
prod *= base_ring(const * (partial_sum))
Execution_Time = time.process_time() - Start_Time
logging.info('Simplicial cone with positive-definite associated

matrix \n%s\n truncated at degrees %s. Took %s CPU s to 
compute solid angle %s.', sage_input(matrix(M)), trunc_degs, 
Execution_Time, prod)

↪→

↪→

↪→

logging.info(' ') 
return prod

Appendix B: Cones and Triangulations

Unless otherwise stated, we consider all of the triangulations for the cones below.
When a subset of triangulations is considered, we give the extreme rays of the cone
as an ordered list and a list of the considered triangulations.

0. Outer normal cone of Π̃(9, 8) at vertex (1/8, 1/4, 3/8)

1. Outer normal cone of Π̃(11, 10) at vertex (1/10, 1/5, 3/10, 2/5)

2. Outer normal cone of Π̃(11, 10) at vertex (2/9, 4/9, 2/3, 8/9)

3. Outer normal cone of Π̃(11, 10) at vertex (3/8, 3/4, 7/16, 13/16)

4. Outer normal cone of Π̃(11, 10) at vertex (3/8, 3/4, 7/16, 1/8)

5. Outer normal cone of Π̃(11, 10) at vertex (3/8, 3/4, 2/3, 1/8)

6. Outer normal cone of Π̃(11, 10) at vertex (4/7, 5/14, 1/7, 5/7)

7. Outer normal cone of Π̃(11, 10) at vertex (4/7, 3/4, 1/7, 5/7)
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8. Outer normal cone of Π̃(11, 10) at vertex (5/6, 3/4, 2/3, 7/12)

9. Outer normal cone of Π̃(10, 9) at vertex (1/9, 2/9, 1/3, 4/9)

10. Outer normal cone of Π̃(10, 9) at vertex (3/7, 6/7, 1/3, 2/7)

11. Outer normal cone of Π̃(10, 9) at vertex (3/7, 6/7, 4/7, 2/7)

12. Outer normal cone of Π̃(10, 9) at vertex (2/3, 1/2, 1/3, 1)

13. Outer normal cone of Π̃(10, 9) at vertex (2/3, 1/2, 1/3, 1/6)

14. Outer normal cone of Π̃(10, 9) at vertex (9/11, 8/11, 7/11, 6/11)

15. Outer normal cone of Π̃(10, 9) at vertex (1/4, 1/2, 3/4, 1)

• Ordered rays:

[−2, 1, 0, 0], [−1,−1, 1, 0], [−1, 0,−1, 1], [0,−2, 0, 1],

[0, 1, 2, 0], [0, 2, 0, 1], [1, 0, 1, 1]

• Triangulations:

– [0, 1, 2, 4], [0, 2, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]

– [0, 1, 2, 4], [0, 2, 4, 5], [1, 2, 3, 4], [2, 3, 4, 6], [2, 4, 5, 6]

– [0, 1, 2, 4], [0, 2, 4, 5], [1, 2, 3, 6], [1, 2, 4, 6], [2, 4, 5, 6]

– [0, 1, 2, 6], [0, 1, 4, 6], [0, 2, 5, 6], [0, 4, 5, 6], [1, 2, 3, 6]

16. Outer normal cone of Π̃(10, 9) at vertex (1, 0, 1, 0)

• Ordered rays:

[[−1,−1, 1, 0], [−1, 0, 0,−2], [0,−2, 0, 1], [0,−1,−1,−1],

[0, 1, 2, 0], [1, 0, 1, 1], [1, 1, 0,−1], [2, 0,−1, 0]]

• Triangulations:

– [0, 1, 2, 4], [1, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 5], [2, 3, 5, 7], [3, 4, 5, 6], [3, 5, 6, 7]

– [0, 1, 3, 4], [0, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 5], [2, 3, 5, 7], [3, 4, 5, 6], [3, 5, 6, 7]

– [0, 1, 2, 4], [1, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 5], [2, 3, 5, 7], [3, 4, 5, 7], [3, 4, 6, 7]

– [0, 1, 2, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 5, 6], [1, 4, 5, 6], [2, 3, 5, 7], [3, 5, 6, 7]

– [0, 1, 2, 4], [1, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 6], [2, 3, 6, 7], [2, 4, 5, 6], [2, 5, 6, 7]

– [0, 1, 3, 4], [0, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 5], [2, 3, 5, 7], [3, 4, 5, 7], [3, 4, 6, 7]

– [0, 1, 2, 4], [1, 2, 3, 4], [1, 3, 4, 6], [2, 3, 4, 7], [2, 4, 5, 7], [3, 4, 6, 7]

– [0, 1, 2, 4], [1, 2, 3, 4], [1, 3, 4, 7], [1, 4, 6, 7], [2, 3, 4, 5], [2, 3, 5, 7], [3, 4, 5, 7]

– [0, 1, 2, 4], [1, 2, 3, 6], [1, 2, 4, 5], [1, 2, 5, 6], [1, 4, 5, 6], [2, 3, 6, 7], [2, 5, 6, 7]

– [0, 1, 2, 5], [0, 1, 4, 5], [1, 2, 3, 5], [1, 3, 5, 6], [1, 4, 5, 6], [2, 3, 5, 7], [3, 5, 6, 7]
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17. Outer normal cone of Π̃(8, 7) at vertex (1/7, 2/7, 3/7)

18. Outer normal cone of Π̃(8, 7) at vertex (1/3, 2/3, 1)

19. Outer normal cone of Π̃(8, 7) at vertex (1, 0, 1)

20. Outer normal cone of Π̃(12, 11) at vertex (1/3, 2/3, 1/3, 2/3, 1/3)

21. Cone isometric to a four-dimensional orthant

• rays = [[2, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 2, 1], [0, 0, 1, 0]]

22. Cone which contains two copies of the Weyl chamber F4

• rays = [[1, 0, 0, 0], [1, 1, 0, 0], [2, 1, 1, 0], [3, 1, 1, 1], [3, 1, 1,−1]]

23. Cone which contains two copies of the Weyl chamber B4

• rays = [[1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 0, 1]]
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