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ABSTRACT

Metalloproteins bind and utilize metal ions for a variety of biological purposes. Due to the ubiquity of metalloprotein

involvement throughout these processes across all domains of life, how proteins coordinate metal ions for different bio-

chemical functions is of great relevance to understanding the implementation of these biological processes. Toward these

ends, we have improved our methodology for structurally and functionally characterizing metal binding sites in metallopro-

teins. Our new ligand detection method is statistically much more robust, producing estimated false positive and false nega-

tive rates of ~0.11% and ~1.2%, respectively. Additional improvements expand both the range of metal ions and their

coordination number that can be effectively analyzed. Also, the inclusion of additional quality control filters has significant-

ly improved structure-function Spearman correlations as demonstrated by rho values greater than 0.90 for several metal

coordination analyses and even one rho value above 0.95. Also, improvements in bond-length distributions have revealed

bond-length modes specific to chemical functional groups involved in multidentation. Using these improved methods, we

analyzed all single metal ion binding sites with Zn, Mg, Ca, Fe, and Na ions in the wwPDB, producing statistically rigorous

results supporting the existence of both a significant number of unexpected compressed angles and subsequent aberrant

metal ion coordination geometries (CGs) within structurally known metalloproteins. By recognizing these aberrant CGs in

our clustering analyses, high correlations are achieved between structural and functional descriptions of metal ion coordina-

tion. Moreover, distinct biochemical functions are associated with aberrant CGs versus nonaberrant CGs.

Proteins 2017; 85:885–907.
VC 2017 The Authors Proteins: Structure, Function and Bioinformatics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Metalloproteins are proteins that can bind at least one

metal ion as a cofactor. They play various distinct function-

al, structural, and signal transductional roles in proteins,

and are essential for all domains of life. Many proteins rely

on metals to help hold their structures together,1–3 while

others require metals to implement mechanistic steps in

biochemical reactions they catalyze.4 However, most transi-

tion metals, such as Zn, Fe, and Cu, are highly toxic in their

free ionic form, requiring tight regulation. Therefore, there

are many proteins involved in the sensing, transporting,

and storing of metal ions in biological systems to maintain

homeostatic levels.5,6 It is estimated that roughly 30–40%

of whole proteomes across the biosphere are metallopro-

teins.7 Metal ions generally bind to proteins via coordina-

tion with electronegative atoms from the protein, such as

nitrogen, oxygen, and sulfur. One of the most important

aspects of metal binding is its coordination geometry (CG),

which often implies functional activities. In inorganic

chemistry, a metal ion can bind to its ligands almost ideally.

In this context, metal ions are observed and verified to
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adopt a limited set of canonical CGs according to their

physiochemical properties (Fig. 1). Whereas in biology, the

chemical environment around metal ions is often more

complicated. Since bound metal ions are often required for

specific functions in metalloproteins, some metal binding

sites are targeted for drug design,8,9 providing yet another

reason for their systematic study.

The applications of rapidly improving genomic sequenc-

ing technologies are generating huge amounts of gene

sequence information and expression data. Various pattern

recognition and expression analysis methods are identify-

ing which biochemical and cellular functions are possible

within specific tissues at specific times, addressing “What”,

“Where”, and approximately “When” specific functions

occur. However, “How” gene-products implement function

requires data and analyses that are focused on their three-

dimensional structure. Developing computational methods

that derive and describe the linkages between structure and

function represents the growing area of structural bioinfor-

matics. This area of research utilizes the structural informa-

tion accumulated in the world-wide Protein Data Bank

(wwPDB)10 and functional information accumulated in

various knowledge bases including Uniprot11 and the Gene

Ontology Consortium.12 In addition, many other structur-

al databases and tools have been built, such as SCOP13 and

CATH,14 that organize structure and relate it to function.

However, for our purposes in this article, SCOP and related

databases are mainly focused on the overall fold or

sequence homology of a protein, while in metal binding, it

is the immediate binding ligands or local environment that

are more functionally relevant to “how” the metal is uti-

lized. CheckMyMetal is a well-maintained web-based tool

that is structurally focused on the metal binding sites of

metalloproteins.15 It has methods for inspecting and vali-

dating metal binding sites in metalloproteins and for basic

sorting of a metal’s CGs. Since its main focus is on the

structural aspects of metal binding sites, it does not have

methods to link metalloprotein structure with function. In

current efforts seeking to provide metalloproteins’

structure-function relationships, MetalPDB is one of the

leading database tools.16 However, MetalPDB is based

essentially on structural homology of a metal ion(s) and its

surrounding coordination shell, and loosely summarized

>17,000 structural clusters with functional details. In this

study, we developed a more general structural description

of metal binding sites represented mainly by their CG and

having strong functional relevance.

Our previous work demonstrated that a more general

CG description of a single zinc ion could be constructed

based on its 3D-structure and has high Spearman correla-

tion (rho 5 0.88, p-value< 2.2 3 10216) with function.17

Furthermore, we demonstrated that a large number of

aberrant 4-ligand CGs in zinc metalloproteins with signifi-

cant deviations from canonical CGs existed due to structur-

al constraints from the metalloprotein. These constraints,

mostly in the form of bidentated ligands, and associated

aberrant CGs included unique functional relationships.

These controversial results generated criticism18 that we

address in a companion perspective article.19 Also, these

results created several new questions:

i. Could similar functionally-relevant structural descrip-

tions of CG be constructed for other common metals,

involving different numbers of ligands?

ii. Would similar or even new structural constraints and

aberrant CGs be detected?

To address these questions in this study, we greatly

expanded our methodology to allow construction of CG

structural descriptions with an arbitrary number of

ligands. We also had to greatly improve our detection of

metal binding ligands by adding several quality control

filters, compensating for crystallographic resolution, and

preventing false detection of ligands. These improve-

ments helped to detect and structurally describe single

metal ion CGs and their functional relationships across

the five most abundant metalloproteins.

METHODS

Define metal’s first coordination shells
(fc-shells)

All released structural entries were downloaded from

wwPDB on Feb 25, 2015. Our metalloprotein filtering

Figure 1
Structure of canonical CG models. For each structure, the magenta ball rep-
resents the metal ion center, and the white balls represent the binding

ligands. The three-letter code for each CG is shown in parenthesis. The
major CG names are shown in red with their minor CGs follow in the same

row. The minor CGs can often be viewed as missing ligands from their cor-

responding majors ones. CGs are also separated by lines according to their
ligand numbers. [Color figure can be viewed at wileyonlinelibrary.com]
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tool identified all PDB entries with at least one metal

atom in the HETATM record and removed entries with

fewer than 20 amino acids in the SEQRES record. Next,

metal clusters were identified and removed, using two

metal atoms within 3 Å as the filter. Zn, Mg, Ca, Fe, and

Na were kept for the rest of the analyses in this study

due to their high abundance based on Table I. If not

specified, all analyses were carried out first for each metal

separately and then combined together. The overall

workflow is shown in Figure 2. Since the general proce-

dure is similar to what was performed on Zn with an

older version of the wwPDB (March 13, 2013), we are

mainly highlighting the extensive list of improvements

here.

Step 1: For each metal site, we generated a list of

potential non-H shell ligands (including carbon) within

a certain distance of the metal atom. The initial shell

lower cutoff is 1.3 Å for all metals, and the initial upper

cutoff is based on the atomic radius of the metal as

shown in Table II. To avoid the inclusion of second shell

atoms due to this generous upper cutoff, the bond

lengths between any atom and the metal must be smaller

than 1.5 times the bond length of the metal to any other

atoms in the cutoff, and also be smaller than 1.5 times

the bond length between the two atoms. This ‘triangular

rule’ can help exclude atoms that do not directly bind to

the metal but are still part of the metal’s local chemical

environment. We then used the CG evaluation tools to

bootstrap the best-fit canonical CGs to identify an initial

set of binding ligands. To achieve that, all subsets and

combinations of the potential atoms and the correspond-

ing ligand–metal–ligand angles (angles) were computed

and compared to the ideal angles of the canonical CGs,

tetrahedral (Tet), trigonal bipyramidal (Tbp), octahedral

(Oct), and pentagonal bipyramidal (Pbp). Several addi-

tional filters were applied to every set of atoms before

checking against the canonical CGs: (1) only the best

possible alternate locations of each amino acid residue

were allowed in the atom collection; (2) if any two

ligand-ligand atom pairs are smaller than 1.5 Å or >6.0

Å, they were marked as an unreasonable atom–atom

bond-length distance and eliminated; (3) if any of the

atoms are symmetry-related, unless it is from the biologi-

cal multimer units indicated in the PDB file or all the

symmetry-related atoms are water, the binding site would

be excluded from further analysis; (4) we also excluded

the metal site if the majority of its ligands were water.

These filters limit the inclusion of metal binding sites

that may represent nonspecific binding or crystallograph-

ic artifacts. The set of atoms that pass all filters and have

the smallest angle variance were considered the initial

binding ligands.

Step 2: As the initial binding ligands were identified,

bond lengths of each element type (O, S, N, . . .) were

computed. The inclusion of carbon as binding ligands in

step 1 can be used to estimate the chance of having an

atom accidently aligned as well as canonical CGs in

regard to other binding ligands, since carbon is a very

Table I
Numbers of Metalloproteins in wwPDB as of Feb 2015

Metal
Number of

PDB entries
Number of total

metal sites Metal
Number of

PDB entries
Number of total

metal sites

Zn 9360 26,788 Pb 48 152
Mg 9145 53,896 Gd 42 197
Ca 7762 24,335 Tl 40 261
Fe 6359 27,514 Rb 37 153
Na 4888 16,527 Sm 33 111
Mn 2266 8138 Ir 31 48
K 1673 5306 Pr 22 55
Cu 1134 4397 Rh 20 46
Ni 935 2252 Eu 19 61
Co 915 2087 Pd 19 85
Cd 758 4289 Ag 18 75
Hg 528 1923 Os 14 33
Pt 191 629 Lu 13 56
Mo 176 664 Ho 12 35
Al 158 351 Tb 11 32
V 120 364 Cr 9 21
Ba 118 311 Ga 8 10
Sr 118 3551 La 8 18
Ru 99 134 Sb 5 10
Cs 88 393 Ce 4 7
W 76 1443 Er 2 6
Yb 72 177 In 2 3
Au 64 322 Bi 1 1
Y 53 202 Dy 1 30
Li 52 88 Total 47,527 187,587

Aberrant Coordination Geometries in Metalloproteins
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uncommon ligand atom. This is due to increasing atom

density with respect to angle space as a shell inclusion

cutoff increases. A new upper cutoff was then set to be

the average between bond-length mean plus one standard

deviation of the most abundant element and the main

carbon distance mode (Table II). Therefore, the updated

upper cutoff is generous enough to include most of the

actual binding ligands but still effective enough to

exclude falsely detected ligand atoms. Taking Zn as an

example, the most abundant ligand element is S, as

shown in Figure 3, and the Zn-S bond length mean and

standard deviation are 2.341 Å and 0.152 Å accordingly.

The main modal peak of fictional Zn-C is 3.071 Å, so

the middle point between them is (2.341 1 0.152

Å 1 3.071)/2 5 2.782 (Å), which became the updated

bond length cutoff for the ligand detection of zinc ions.

Figure 2
The workflow of metalloprotein CG analysis. The gray ribbons identify specific steps of the overall analysis as described in the methods.

Table II
Derived Distance Cutoffs and Parameters for Defining the Coordination Shell of the Five Most Prevalent Metalloproteins in Different Steps

Step 1 Step 2
Step 3 Step 5 Step 6

Metal

Atomic
radius
(pm)

Initial
distance

upper
cutoff (�)

The most
abundant
element

Bond length
mean of the

most abundant
element (�)

Bond length
standard

deviation of
the most
abundant

element (�)

Carbon
mean

peak (�)
Element
included

Updated
distance

upper
cutoff (�)

IA small
angle

removal
cutoff (�)

Random
forest
cutoff

(degrees)

Zn 135 3.20 S 2.340 0.152 3.071 S, O, N 2.782 68 60/70
Mg 150 3.35 O 2.350 0.368 3.067 O, N 2.892 65 58/68
Ca 180 3.65 O 2.481 0.271 3.432 O 3.092 60 55/65
Fe 140 3.25 N 2.063 0.134 3.081 S, O, N 2.639 68 63/73
Na 180 3.65 O 2.697 0.369 3.568 O 3.317 60 50/65

Yao et al.
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The computational bootstrapping step (Step 1) was

then carried out again using the updated cutoffs to

obtain the list of potential shell ligands. The same trian-

gular and other filtering rules were applied. This time we

only kept elements with a high occurrence (>5%), and

also ignored the carbon. After the second round of boot-

strapping, the tentative metal binding shells were defined,

and bond length statistics were calculated for further

refinement.

Step 3: It is known that the bond lengths scatter more

as the crystallographic resolution worsens,20 as shown in

Figure 4A. Our data shows that the relationship between

the bond lengths standard deviation and resolution is

similar regardless of the metal or the element type (Fig.

4B). Resolutions with >30 data points were kept in cal-

culating the standard deviation specific to resolution. A

resolution cutoff of 3.5 Å was used to ensure a reason-

able quality of the data in this step. Considering all

metal-element pairs together, we were then able to com-

pute the combined slope of bond length standard devia-

tion (bl-std) versus resolution. Then for each individual

metal site, an adjusted bond length standard deviation

was calculated as:

sdx5 m Rx– Ravg

� �
1sdavg (1)

where m is the combined slope, sdavg and Ravg are the

overall bond length standard deviation and the average

resolution of given metal-element type, Rx is the resolu-

tion of the metal site to be calculated. The resulting

Figure 3
The updated upper Zn bond-length cutoff for generating final bond-

length statistics. The gray histogram is the detected Zn-S bond lengths
based on canonical CGs. The blue histogram is the fictional Zn-C bond

lengths based on canonical CGs. The red line is the upper bond-length
cutoff used for calculating final bond-length statistics: (Zn-S mean 1 1

Zn-S standard deviation 1 the Zn-C mode)/2. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 4
(A) Zn-S bond length as a function of crystallographic resolution. (B) Scatter plot of bond length standard deviations versus average crystallograph-
ic resolutions by bond type. Symbols show smoothed values for individual metal-ligand bond types. Symbols are specific to the ligand element.

Symbols and regression lines are color-coded by metal. The magenta-color line is the combined regression with an r2 of 0.692 and a p-value of

5.5 2 10259. [Color figure can be viewed at wileyonlinelibrary.com]
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adjusted bond length standard deviation, sdx, was used

for the next step.

Step 4: With this adjusted bl-std, all atoms within the

updated cutoff were revisited and only atoms within 2.5

adjusted standard deviations of its expected value were

kept. NMR structures were included and treated as struc-

tures with 2.5 Å resolution.21,22The same set of filters as

in step 1 was employed again to check the quality of the

kept atoms. Thanks to the refined bl-std, an additional

filter was added at this step based on observed bimodali-

ty detected in the distribution of average bl-std-

normalized deviations of all ligands’ bond lengths to

their specific bond length mode, especially for Na ion

coordination (Fig. 5). This average normalized bond-

length deviation can be viewed as an average z scores for

bond-lengths observed in a specific metal binding site,

Figure 5
Average normalized bond length deviation histograms of five most abundant metalloproteins. The cutoff 0.91 was derived from the clear bimodal

separation in Na, and was applied to all metals, which is represented as the red line in each sub-graph. Bidentation means that two of the binding

ligands come from the same molecule or residue. 31 multidentation means that three or more of the binding ligands come from the same mole-
cule or residue. They are the contributing factor to the shoulders in each histogram. [Color figure can be viewed at wileyonlinelibrary.com]

Yao et al.
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where the expected value is the specific major bond-

length mode from a chemical perspective and the stan-

dard deviation is the refined bl-std. If this normalized

average deviation is >0.91, based on clear separation

between the two modes in Na, the metal coordination is

considered grossly incorrect (likely as a result of metal

ion misassignment) and was thus removed from further

analysis. The atoms that passed all filters composed our

final metal fc-shells for the rest of the analyses, generat-

ing the bond-length histograms in Figure 6. Final

element-specific bond length statistics (means and var-

iances) were calculated for each metal (Fig. 6). Finally, a

nonredundant set of metal fc-shells with a resolution

better than 3 Å and an occupancy >0.9 were derived for

clustering and functional analyses.

Step 5: The iterative process. All CG models shown in

Figure 1 were used in this step. At each iteration, a v2

probability was calculated for each CG model at each

metal site, using a combined angles and bond lengths

vector. All combinations of the atoms within the updated

cutoff defined in Step 2 were considered. We excluded

the combinations if there are angles between the atoms

below a cutoff specific to each metal based on its small-

est angle histogram. The same set of filters in step 4 was

also applied. All CG models in Figure 1 were considered.

Pearson correlations between angles were estimated for

each CG to calculate the v2 statistics. However, for trigo-

nal prismatic (Tpr), square antiprismatic (Sqa), hexago-

nal bipyramidal (Hbp), and their associated minor CGs,

the angle correlation matrix is large and has a very wide

range of values between the elements, leading to higher

error during its numerical inversion. Thus, the matrix

inversion that is required for the normalized v2 statistics

calculation is incapable of accurately capturing the

angle’s influence over each other. So we treated angles

and bond lengths as independent variables, but with a

1.5 multiplier on the variance to counter the effect of

dependency in the v2 statistics calculation. The CG

Figure 6
Bond length distributions and statistics of all bond types involving elements O, N, and S, which have >5% occurrence.

Aberrant Coordination Geometries in Metalloproteins
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model that possesses the highest v2 probability was clas-

sified as the metal site’s CG. Both angle and bond length

statistics of a CG were calculated at the end of an itera-

tion, and were then used in the v2-probability calculation

of the next iteration. A new iteration was performed

until all statistics converged.

Cluster and assign canonical and aberrant
CGs to each cluster

Step 6: Random forest23,24 was used to separate nor-

mal versus compressed groups. Training data were com-

posed of the main angle peaks from the smallest angle

histogram. The cutoff for the normal and compressed

training data was specific to each metal as shown in

Table II. The smallest angle, the two ligands composing

the smallest angle, and the bidentation status of the

smallest angle are the features for training the classifier.

Step 7: K-means25 was employed to cluster the metal

sites based on their ligand-metal-ligand angles. To enable

the comparison of metal sites with different numbers of

ligands (that is, different coordination numbers), we

reduced the all-angle space to a 6-angle space by selecting

the following angles from all angles of a given metal site:

largest angle, smallest-middle angle, 33rd-quantile-middle

angle, 66th-quantile-middle angle, largest-middle angle,

and smallest-opposite angle (Table III). The opposite

angles are those that do not share any ligands with the larg-

est angle, and the middle angles are all angles except the

largest and the smallest-opposite angle. Except for 7-ligand

and 8-ligand CGs (see Discussion), this reduced angle

space can preserve the key information needed for separat-

ing each CG, while reducing the redundancy of the repeat-

ed angles. Four measures were used in determining the

optimal number of clusters (k): (1) the Jaccard index com-

putes how well matching clusters overlap between itera-

tions; (2) the sum of differences indicates how close

the cluster centers are to each other between iterations;

(3) the Spearman’s correlation coefficient rho and 4) –

log(p-value) indicate an average of functional correspon-

dence across the clusters. For all four measures, a larger

value denotes a better performance.

Step 8: To characterize the clusters, we checked the

cluster centers and calculated a v2 probability of each CG

model for each metal site. The model that had the high-

est cluster-average probability was then characterized as

the cluster’s CG.

Functional validation of the k-means clusters

Step 9: We ran InterProScan26,27 5.20–59.0 using the

current versions of TIGRFAM,28 ProDom,29 SMART,30

HAMAP,31 Prosite-Patterns,32 SuperFamily,33 PRINTS,34

Panther,35 Gene3d,36 PIRSF,37 PfamA,38 PrositePro-

files,32 and Coils39 hidden Markov models on the nonre-

dundant sequences previously determined. We retained

only those results with an InterProScan (IPR) annotation

mapping and overlapping at least one ligand residue. We

derived and evaluated the consistency of CG-based

Table III
6-angle Space for All CGs in Figure 1. [Color table can be viewed at wileyonlinelibrary.com]

CG Largest
Ordered middle angles, with smallest-middle, 33-quantile-middle,

66-quantile-middle, largest-middle positions are in red
Smallest
opposite

4-ligand:
Teta 109.5 109.5, 109.5, 109.5, 109.5 109.5
Bva 120 90, 90,120, 120 90
Bvp 180 90, 90, 90, 90 120
Pyv 180 90, 90, 90, 90 90
Spl 180 90, 90, 90, 90 180
5-ligand:
Tbp 180 90, 90, 90, 90, 90, 90, 120, 120 120
Spy 180 90, 90, 90, 90, 90, 90, 90, 180 90
Tpv 131.8 70.6, 90, 90, 90, 90, 131.8, 131.8, 131.8 70.6
6-ligand:
Oct 180 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 180, 180 90
Pva 144 72, 72, 72, 72, 90, 90, 90, 90, 90, 144, 144, 144, 144 72
Pvp 180 72, 72, 90, 90, 90, 90, 90, 90, 90, 90, 144, 144, 144 72
Tpr 131.8 70.6, 70.6, 90, 90, 90, 90, 90, 90, 131.8, 131.8, 131.8, 131.8, 131.8 70.6
7-ligand:
Pbp 180 72, 72, 72, 72, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 144, 144, 144, 144, 144 72
Hva 180 60, 60, 60, 60, 60, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 120, 120, 180, 180 60
Hvp 180 60, 60, 60, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 180, 180 60
Sav 143.6 70.5, 70.5, 70.5, 70.5, 70.5, 82, 82, 82, 82, 82, 82, 109.5, 109.5, 109.5, 143.6, 143.6, 143.6, 143.6, 143.6 70.5
8-ligand:
Hbp 180 60, 60, 60, 60, 60, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 120, 120, 180, 180, 180 60
Sqa 143.6 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 82, 82, 82, 82, 82, 82, 82,

82, 109.5, 109.5, 109.5, 109.5, 143.6, 143.6, 143.6, 143.6, 143.6, 143.6, 143.6
70.5

aCG abbreviations are based on Figure 1.
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structure and sequence-based function annotation rela-

tionships between k-means clusters.

For functional annotation characterization of the nor-

mal and compressed CGs, the molecular function (MF)

and biological process (BP) gene ontology (GO) annota-

tions reported with the InterProScan annotations were

extracted, and the set of GO terms that are direct ancestors

were added to each entry using GO.db v3.3.0. The categor-

yCompare2 (v0.99.158) program40 was used to create

annotation objects based on the set of sequences annotated

and to calculate hypergeometric enrichment on the normal

entries and compressed entries separately. Significant GO

annotations had at least two metal binding sites annotated

from the normal or compressed list, and an unadjusted

p-value� 0.05. P-values were also adjusted for multiple

testing via the Benjamini-Hochberg method.41 The cor-

rected p-values are used to select results shown in the Sup-

porting Information tables, while uncorrected were used

for clustering groups of GO terms together. To improve

interpretability, GO terms were grouped by running the

cluster_walktrap algorithm from igraph (v 1.0.1 based on

the Walktrap random walks algorithm42,43) on a graph of

the GO terms, where nodes are terms and edges are

weights based on the number of shared annotated metal

binding sites. Prior to grouping, edges with weight< 0.8

were removed. Next, enrichments were checked for consis-

tency by examining the individual ligand groups against

the “allLig” group. So, “all” metal all-ligand was compared

against all 4-ligand, all 5-ligand, etc, and Ca all-ligand was

compared against Ca 4-ligand, 5-ligand, and so forth The

contributions of each metal to the GO annotations in the

combined metal results were calculated from the metal

specific annotations, and the maximum percentage and

corresponding metal reported.

Code and data availability

All data and code used and results generated are avail-

able from software.cesb.uky.edu or FigShare.44

RESULTS AND DISCUSSION

Defining metal binding sites

The wwPDB contains a total of 106,427 structures as of

Feb 25, 2015, and 47,527 of them are metalloproteins. The

number of specific metalloproteins and metal binding sites

can be found in Table I. Only the five most abundant met-

als, Zn, Mg, Ca, Fe, and Na are considered in this work.

Determining a metal’s binding ligand is not as straight-

forward as one would anticipate, as first and second coor-

dination atoms from the protein are often crowded

together around the metal ion. In this situation, there is no

simple rule in deciding whether an atom is metal-binding

or not. This is partly due to the limitations in structural

resolution, crystallographic artifacts, and to phenomena

such as the carboxylate shift45 that smear the metal-ligand

bond-lengths. The determination is often achieved simul-

taneously with a metal binding site’s CG classification. The

most common approach is to use a simple distance cutoff

and then select a ligand subset that best fits one of the

canonical CG models.16 Sometimes, the bond valence

model is taken into account.15 The dilemma of choosing

the cutoff is, if it is too generous, extra second-

coordination-shell atoms will be included, which will

increase the demand for a more accurate CG fitting meth-

od. But if it is too strict, some of the loosely bound ligands

will be excluded in the first step, which will hinder the fit-

ting to the correct CG model. This methodology also pre-

cludes the existence of noncanonical, aberrant CGs.

As our previous study showed, simply matching to

canonical CG models is problematic,16,17 which makes

the accurate detection of metal binding ligands even more

critical for detecting and analyzing CG. In this work, we

first used an initial shell cutoff based on the metal’s atomic

radius as shown in Table II to detect potential ligands that

fit to canonical CGs to derive metal-ligand bond-length

statistics for use in later steps. This first round of the boot-

strap step can capture the general distribution of bond-

length for each ligand element. However, Figure 3 clearly

shows that if this raw shell cutoff is the only criteria used,

significant numbers of non-ligand second-shell atoms

(represented by carbon) will be included due to the atom-

angle density issue. To get rid of these nonligand second

shell atoms, we used carbon to estimate the false ligand

metal distance distribution and then identified where false

ligand atoms start to appear with high probability (that is,

the highest carbon atom mode). In other words, we used

the ubiquitous presence of carbon in protein structures to

estimate the ‘accidental’ angle alignment with other ligands

to fit any canonical CGs. The updated upper distance shell

cutoff was also set to guarantee the inclusion of the majori-

ty of the most abundant ligand element, which is more

likely to be the actual binding ligands. The red line in Fig-

ure 3 shows the cutoff used for Zn, which was the middle

point between the first carbon mode (peak) and the Zn-

sulfur bond-length mean plus one standard deviation.

With these improved shell cutoffs and additional heuris-

tics, such as the ‘triangular rule’, we generated improved

bond-length statistics for each metal (Table II).

For accurately detecting the proper set of ligands, our

next major improvement involved adjusting the bl-stds

based on crystallographic resolution. With accurate

bond-length statistics, the detection of the proper set of

ligands can be performed independently, a single ligand

at a time, via a statistical test. However, the bond-lengths

tend to scatter (vary) more as structure resolution wor-

sens (that is, larger resolution value) for a specific metal-

element type.20 Rather than greatly restricting our analy-

ses to structure entries with only high resolution (<1.5

Å), we are able to safely extend our analyses to structure

entries with lower resolutions down to 3.0 Å by taking
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the crystallographic resolution into consideration in the

statistical test. To do this, we shifted all the bl-std to res-

olution data points along the y axis by its own overall

metal-element bl-std to put everything on the same

scale/level. Figure 4 shows that regardless of the metal

and binding element, the bl-std and resolution relation-

ship is of the same proportion. Therefore, a combined

slope can accurately describe this relationship and be

used to adjust an individual metal-atom pair’s standard

deviation according to the entry’s resolution as shown in

Equation (1). We also tested deriving similar standard

deviation adjustments based on R-factor and R-free and

combinations of R-factor, R-free, and resolution (data

not shown). These combinations did not work well since

the low density of entries prevented accurate calculation

of metal-ligand bond-length standard deviations. Howev-

er, in the future, we may have enough structural exam-

ples to reexamine combinations. But currently, the

crystallographic resolution provided the highest Pearson’s

correlation for refining bond-length standard deviations.

The rational of the additional filter in Step 4 is that if

all ligands are systematically larger than the expected val-

ue (major bond length mode), it is highly likely that the

metal was incorrectly modeled or probably misassigned,

from its density map. Figure 5 shows the histograms by

metal ion of the average normalized deviation between

the bond lengths and the major modes before we applied

the filter. The cutoff was derived from the most distinc-

tive bimodal separation seen for the Na ion, and is

shown as the red line in each histogram. While bidenta-

tion and multi-dentation metal binding sites had some

shift toward higher average deviations, especially for Zn

due to longer bond-length modes present (Fig. 7), these

deviations were for the most part below the cutoff used

to identify incorrect modeling of the metal binding site.

The reason is that gross inaccuracies manifest across all

bond-lengths in a metal binding site and not just a single

bond-length as demonstrated by the bimodal distribu-

tions in Figure 5. However, the 0.91 average normalized

deviation cutoff is a tradeoff between removing large

amounts of error versus including real multidentation

metal ion coordination. The main effect of this filter is

that it tends to remove the tailing portion in the bond

length histogram more favorably than the main peak.

The bond length distribution of each metal to oxygen

without this filter has significant skewing with a large

tail for longer bond-lengths as shown in Figure 8. On

the left, it shows how this filter eliminated potentially

misassigned metal ions, reducing the skewness of the dis-

tribution. As a comparison, the right side shows the

bond-length distribution if we were to use a resolution

cutoff of 2.5, 2.0, and 1.5 as the filter. These filters only

reduce the tail proportionally to the overall shape (that

is, no preference in filtering out the tail portion). Also,

these stricter resolution filters removed too many data

points, making the subsequent analyses unfeasible. From

these results, it is clear that simply using higher resolu-

tion as the criterion for ‘high quality’ data is not suffi-

cient to detect grossly inaccurate metal binding sites,

Figure 7
Chemical functional group and multidentation specific bond length

modes. On the left is the overall bidentation short and long arms for

each metal and some specific functional groups that contributing to the
overall bond length histogram. On the right is a breakdown of the

most abundant functional groups in the bidentation and multidenta-
tion, as they often exhibit distinct modes. [Color figure can be viewed

at wileyonlinelibrary.com]
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probably due to metal ion misassignment. These likely

detected misassignments would be due to incorrectly fit-

ting a smaller metal ion into an electron density for a

larger ion,46 causing the observed large average bond-

length z scores deviations.

Since the bond-length histograms show an approxi-

mate normal distribution for most of the metal-ligand

bond types (Fig. 6), a simple parametric test is used to

detect ligands based on bond-length means and

resolution-adjusted standard deviations. We tested a

range of ligand detection standard deviation cutoffs from

2 to 3 bl-std. When the stricter cutoff (that is, 2 bl-stds)

is used, all downstream cluster measures tend to be

higher and more stable. But on the other hand, fewer

ligands will be counted as binding ligands. Due to devia-

tions from normality, ligands in compressed angles are

disproportionately lost, which leads to insufficient num-

bers of compressed CGs for clustering. Therefore, a 2.5

bl-std cutoff was used for this study to compromise

between the two situations. Thus, 2.5 standard deviations

ensure that approximately 98.8% of the suitable ligands

will be included.

Another possible way of determining the binding

ligands is to use chi-squared probability testing for the

set of potential ligands together.17 Compared to the chi-

squared method, the single ligand testing does a much

better job in identifying a higher number of ligands, as it

could correctly characterize the most common number

of ligands of Fe, Mg, and Na as 6 and Ca as 7, while our

previously published chi-squared probability method

tended to favor 4-ligand structures for all metals.

The filters employed in several steps throughout our

analysis also helped to ensure a high quality of the struc-

tural data being analyzed. Table IV shows the count of dif-

ferent number of ligand for each metal after step 4. Based

on this data and the physiochemical bonding capacity of a

metal ion (that is, the number of ligands a metal ion can

form a bond with),47–49 we could estimate an error rate

for our ligand detection analysis. The error rate was calcu-

lated as the number of ligands not physiochemically

expected (for example, 7 and 8 for magnesium) divided by

the total number of detected ligands for sites with the larg-

est number of expected ligands. For example, the magne-

sium estimated ligand detection error rate is (2*2 1 69*1)/

(2*8 1 69*7 1 5674*6) � 0.002113. For the five metals, the

estimated ligand detection error rate ranges from 0.00% to

0.21%, with an overall error rate of 0.11% across these

metals. It assumed that the error rate was the same for all

coordination numbers being detected, so that we could use

the falsely identified and the highest true coordination

number to estimate the overall error rate; but, these esti-

mates represent only a lower limit of the real false positive

rate. Overall, our analyses provide both an estimated false

positive rate (�0.11%) and an estimated false negative rate

(�1.2%) for ligand detection, indicating a very robust

method. No prior protein metal binding site analysis

methodology has undergone this level of statistical evalua-

tion nor demonstrated this level of rigorous performance.

Figure 8
Bond length modification by two different filters: average bond length
deviation (left) and X-ray crystallography resolution (right). The aver-

age deviation filter can detect potential misassigned metal ion, and
removes the skewed long tails. The resolution filter removes the whole

spectrum proportionally and leaves a much smaller number of data for
analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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Chemical functional group and
multidentation specific bond length modes

While we used bond-length means for the develop-

ment of our ligand detection methods, the major bond-

length modes should be interpreted as expected bond

lengths for monodentation ligands from a chemical per-

spective. These major modes of different metal-element-

specific ligand pairs as shown in Figure 6 table agree

very well with several studies based on the Cambridge

Structural Database (CSD).50 Thus, the extensive set of

quality control filters applied in this study has derived a

similar level of aggregate bond-length statistics from low-

er resolution wwPDB entries that was previously demon-

strated from analyses of very high resolution small

molecule X-ray structures in the CSD.

Even though they do not meaningfully affect the over-

all statistics, the bond length distributions still exhibit

skewed shoulders and long tails for certain metals and

ligand elements, especially metal-oxygen ligation. It has

been known that glutamate and aspartate can bind metal

ions via both of the carboxylate oxygens, causing a skew

in the metal-oxygen bond-length distributions.45 As

indicated in Figure 7, the carboxylate shift manifests as a

bimodal distribution of the bond-length, especially for

Zn-O. The carboxylate short bond-length mode matches

the expected monodentation bond-length mode, while

the carboxylate long bond-length mode is distinct and

broader. In addition, pyrophosphate and different

nucleotides can bind metal ions with multiple atoms in a

multidentation manner, which have been observed before

by several independent studies.51,52 Likewise, Figure 7

shows that these multidentating chemical functional

groups also have distinctive bond length modes. The

bond length modes of phosphate and carboxylate biden-

tation are distinct from each other as shown in Mg-O

and Na-O. Tyrosine and molecular oxygen (O2) show

separate bond length modes to the major mode of Fe-O,

and account for the broader peak and shoulders left to

the major mode. Moreover, all of these distinctive bond-

length modes explain much of the skew and long tailness

observed in the overall bond-length distributions. Also,

the existence of distinct bond-length modes associated

with multidentation is virtually unknown by the broader

metalloprotein community. Thus, these derived bond-

length mode characteristics may provide additional infor-

mation for future molecular simulation studies focused

on understanding metal ion coordination as it relates to

specific biochemical function.

During our efforts to identify different bond-length

modes that account for the skewness and long tails of

the overall bond-length distributions, we also noticed the

over-representation of certain bond-length values. Under

further investigation, we determined that these highly

repetitive bond-length values came from relatively few

PDB entries with dozens and even hundreds of metal

sites per PDB entry. Most of these PDB entries dealt

with large and repetitive structures, like ribosomal units

or chlorophyll in photoreactive centers. While causing

isolated spikes when visualizing a single functional group

bond-length mode, these repetitive metal binding sites

do not hinder the visual detection of the functional

group bond-length modes and do not appreciably affect

the overall bond-length distribution and derived statis-

tics. Also, this overpopulation of certain metal binding

site structures is eliminated by a sequence redundancy

filter to prevent influencing the cluster analyses in subse-

quent steps.

The universal existence of compressed
angles among metalloproteins

Upon identifying the binding ligands, the smallest

ligand-metal-ligand angle of individual metal sites can be

computed. The smallest angle histograms (Fig. 9) show

that there exists two types of angles: i) normal angles as

expected from canonical CGs and ii) compressed angles,

the majority of which cannot be explained by expected

canonical CGs. Among the normal angles, the peaks

around 72 degrees of Mg, Ca, and Fe can be justified by

the Pentagonal bipyramidal (Pbp) CG, or its associate

minor CGs. The peak around 90 degrees of Fe, Mg, Ca,

and Na can be explained by Octahedral (Oct), Trigonal

bipyramidal (Tbp), or their associated minor CGs. And

Table IV
Ligand Counts and Error Rates by Metal

Metal

Number of
metal

clusters

Number of
usable

metal sites
(>3- ligand)

Number of
unusable

metal sites
(<53-ligand) 4-ligand 5-ligand 6-ligand 7-ligand 8-ligand 9-ligand Total

Estimated
Ligand

Detection
Error rate

Nonredundant
set

Zn 572 21,257 4959 11,380 2365 a750 b2 - - 14,497 0.000443 4800
Mg 691 29,859 23,346 3595 2941 a5674 b69 b2 - 12,281 0.002113 2813
Ca 196 21,057 3082 918 1490 4485 5399 a1258 b18 13,568 0.001760 4080
Fe 11,287 14,990 1237 1071 3929 a5804 b2 - - 10,806 0.000057 2370
Na 240 11,475 4812 703 1557 1840 186 a17 - 4303 0.000000 1184

Overall 0.001128

aHighest coordination number considered valid for the given metal.
bCoordination numbers considered erroneous and thus used in ligand detection error estimation.
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Figure 9
Smallest angle distributions for the five most abundant metalloproteins. The left histograms show smallest angle propensities broken down by coor-
dination number and metal. The right histograms show smallest angle propensities broken down by ligand type and metal. bi is short for bidenta-

tion, which means that the two atoms composing the smallest angle are from the same residue or molecule. aa is short for amino acid, which
means that the composing ligands are the 20 standard amino acids. Similarly, nonaa means that at least one of the composing ligands is not the 20

standard amino acids. H2O-aa means that one of the composing ligand is the 20 standard amino acids and the other is water. And H2O-both

means that both of the composing ligands are water molecules.



the 109-degree peak of Zn is from the Tetrahedral (Tet)

as shown in Figure 9, which matches a similar graph

generated from data that is two years older.17 Whereas

the compressed angles are normally <60 degrees, and

cannot be explained by any known 4-, 5-, and 6-ligand

canonical CGs, which are the majority ligand numbers

for Zn, Mg, Fe, and Na. With the exception of Mg, these

five metals contain significant numbers of compressed

angles and they form a normal-like distribution. If we

associate the smallest angle based on its binding ligand’s

type, such as whether it is one of the 20 standard amino

acids, water, or something else, or whether it is biden-

tated or not, most of the compressed angles consist of

bidentated standard amino acid ligand residues.

Different metals have different amounts of compressed

angles. Ca has the highest fraction of compressed angles

partly due to its ability to bind 7or 8 ligands, which

increases atom density, resulting in increased numbers of

compressed angles. Hexagonal bipyramidal and its associat-

ed minor CGs have expected angles of 608, but they only

compose a small portion of calcium’s CGs.16 Mg and Na

have a much smaller proportion of compressed angles. The

reason may be due to the fact that a large amount of their

ligands are H2O, which cannot form a bidentation with the

metal. Though water may not be a causal factor, the high

percentage of H2O could limit the amount of the other pos-

sible ligands that could develop bidentation with the metal.

Angle-space descriptions of CG

Instead of an all-to-all mapping of ligands followed by

comparing all corresponding angles, we first ordered the

angles by finding the largest and smallest opposite angles

so that the basic orientation of the metal structure was

anchored at the ends of the ordered tuple. Then the middle

angles were sorted from small to large to prevent any

scrambling that may be introduced by ligand positioning.

This ordering allows us to compare an individual metal fc-

shell not only to canonical CGs, but also to other metal fc-

shells. Thus, we were able to explore the similarity between

metal structures. Moreover, different CG models possess

very distinct ordered angles and are easily separable by

clustering algorithms. We then further reduced the full-

angle space to a 6-angle space so that metal sites with dif-

ferent numbers of ligands are comparable to each other

and can be analyzed together. As shown in Table III, this

ordered angle selection method tends to capture a discrim-

inating angle profile for each CG. The largest angle and its

smallest opposite angle are kept. The middle angles are

evenly sampled based on their position in the ordering to

preserve the key information needed for separating each

CG while reducing the redundancy.

In the test of using full-angle space instead of 6-angle

space (results not shown), we observed very little

decrease in the performance in terms of the functional

tendency, especially in 5- and 6- ligand structures. This

suggested that this angle space reduction was effectively

picking up the functional relevant angle information,

while removing the noisy redundancy coming from the

structurally equivalent repeating angles. However, as the

ligand number goes above 6, the collapsed 6-angle space

represents less and less of the total angle information

present. This is not surprising since it is harder to cap-

ture 21 (7-ligand) and 28 (8-ligand) angles worth of

information in just 6 representative angles. We observed

a slightly unstable correlation for 7- and 8-ligand Ca (see

Fig. 10), which could be a synergistic contribution from

Figure 10
Scatter plot of the structure-function Spearman’s rank correlation coefficient (rho) as a function of data size for real datasets. On the left panel, red

points represent structure-function correlation coefficients for datasets combined by metal. Green points represent structure-function correlation
coefficients for datasets combined by coordination number. Blue points represent structure-function correlation coefficients of datasets specific to

the metal and coordination number. On the right panel is the same graph with individual metal and coordination number identified. A data size
cutoff of 600 is shown as a black line on both panel. For data points with a size smaller than 600, the correlation rho and p-value are not reliable.

[Color figure can be viewed at wileyonlinelibrary.com]
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both small data size and inadequate angle space repre-

sentation. Since the majority of metal ions in this study

have coordination numbers of 4 to 6, this effect needs

further investigation as more high-coordination-number

metal binding sites are analyzed.

K-means clustering and assignment

K-means clustering was conducted with respect to

each metal and each number of ligands separately, and

on combined metals and combined number of ligands as

well. An optimal cluster number k was manually picked

for each group to maximize all four measures and to

ensure a p-value <0.01. Figure 10 indicates that the abili-

ty to obtain good functional relevant (high rho) clusters

is largely influenced by the size of the data to be clus-

tered. The rho increases dramatically at lower counts and

plateaus at higher counts. In other words, to achieve a

stable high value of rho (�0.8), the data size should be

at least 600. Therefore, in some of the groups, such as 4-

ligand compressed zinc with a size of 94, the lack of data

could greatly hinder our ability to detect a sensible

structure-function relationship.

A simulation on the 4-ligand normal zinc sites exhibits

the same trend. A series of subsets of the data were sam-

pled without replacement. The sizes of the subset

sequence were selected as 1/20, 1.5/20, 2/20, 3/20, 4/20. . .
of the original data, and each size was repeated for 20

times. k 5 6, 10, and 13 were used for all subsets to

acquire the rho. As shown in Figure 11, the average rho

increases as the size grows regardless of the selected k.

Therefore, to detect a plateauing Spearman’s correlation

between structural and functional distance metrics, at

least 600 nonredundant metal binding sites is required.

In only the last few years has the structural data neces-

sary become available to reliably detect the existence of

compressed angles in CGs.17 Both the real and simulated

data suggest that when the number of data points is

<600, the derived rho value is not reliable. Therefore, for

categories with <600 metal sites, the optimal k was

selected based solely on the sum of absolute difference

and the Jaccard index to avoid the over-interpretation of

structure-function relationships between the clusters

when the data size is insufficient for this interpretation.

In general, combining different metals with the same

number of ligands (combineMetal) shows a better perfor-

mance than combining different ligand numbers of the

same metal (combineNumLig), even though they both

enlarge the size of the group (Table V). In particular, the

6-ligand normal group had the second highest rho value

of 0.9464 (p-value< 2.2 3 10216) for groups with 6001

data points. We believe this is partially due to how the

6-angle space collapses angle information from full angle

spaces of different dimensionality. Also for a given num-

ber of ligands, there are only a fixed number of possible

canonical CGs and thus less heterogeneity, even with

different metals together. It is interesting though that

these different metals exhibit similar functional trends as

long as they have similar sets of CGs. This may imply

that different metals are somewhat interchangeable as

long as the structure remains the same, and that the

structures have higher impact on functions than the met-

al itself. It also provides evidence that we can combine

metals with the same ligand numbers in analyzing the

less abundant metals and thus have enough data to

determine full structure-function correlations (rho).

We further evaluated the clustering results in compari-

son to our previous study on only 4-ligand zinc sites. An

additional criterion was used other than the four mea-

sures, that is, whether all known canonical CGs have at

least one cluster representation. It turns out that even

when k 5 30, we did not see a square planar (Spl) CG.

This is probably because fewer metal sites with Spl CG

passed the extensive set of filters and the predominant

CG is Tet for 4-ligand zinc sites. Thus, if we want to

detect a small Spl cluster, we need to use a k >30, but

that will also cause the large sized CGs, such as Tet, to

be broken down into smaller sub-clusters. This unequal

density of clusters is a fundamentally hard problem to

solve for clustering algorithms.53 We also noticed that as

we increase the cluster number k, two other small size

CGs, square pyramidal vacancy (Spv) and trigonal bipy-

ramidal vacancy planar (Bvp), started to separate when

k 5 13. What is interesting is that there is a clear peak at

k 5 13 for rho value when all four ligands in the zinc site

are required to be mapped to its annotations (4-ligand-

mapping). In comparison to the lower ligand-mapping

sites, the 4-ligand-mapping sites exhibit the best rho

Figure 11
The structure-function Spearman’s rank correlation coefficient (rho) as a

function of data size for subsampled zinc 4-ligand datasets. The average
rho was calculated for k 5 6, 10, and 13 respectively based on 21 indepen-

dent subsamplings of the original zinc 4-ligand dataset at each specific
dataset size. [Color figure can be viewed at wileyonlinelibrary.com]
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Table V
Optimal k and Corresponding rho and p-value for Each Metal and Ligand Number

Metal
Ligand
number Group Size Optimal k

Functionally
mapped n_lig Rho p-value Category

Zn 4 normal 3300 10 4 0.8976 0.0000 single
Zn 4 compressed 94 - - - - single
Zn 4 combined 3398 11 4 0.9053 0.0000 single
aZn 5 normal 584 8 2 0.6420 0.0003 single
aZn 5 compressed 518 7 2 0.7494 0.0001 single
Zn 5 combined 1103 7 2 0.8831 0.0000 single
aZn 6 normal 150 6 2 0.6935 0.0041 single
aZn 6 compressed 128 - - - - single
aZn 6 combined 298 7 3 0.8303 0.0056 single
Zn combined normal 4034 7 2 0.8545 0.0000 combineNumLig
Zn combined compressed 741 10 3 0.3953 0.0072 combineNumLig
Zn combined combined 4800 9 1 0.6785 0.0000 combineNumLig
aMg 4 normal 280 7 1 0.2956 0.1933 single
aMg 4 compressed 44 - - - - single
aMg 4 combined 326 13 3 0.6215 0.0026 single
aMg 5 normal 530 5 1 0.6848 0.0351 single
Mg 5 compressed 74 - - - - single
Mg 5 combined 608 21 3 0.3553 0.0001 single
Mg 6 normal 1665 5 1 b0.9515 0.0000 single
aMg 6 compressed 173 8 1 0.2403 0.2180 single
Mg 6 combined 1843 6 1 0.9321 0.0000 single
Mg combined normal 2477 11 1 0.6732 0.0000 combineNumLig
aMg combined compressed 319 6 2 0.7964 0.0006 combineNumLig
Mg combined combined 2813 7 3 0.6299 0.0028 combineNumLig
aCa 4 normal 293 5 4 0.0857 0.9194 single
Ca 4 compressed 88 - - - - single
aCa 4 combined 391 5 1 0.2242 0.5367 single
aCa 5 normal 369 7 3 0.5857 0.0061 single
aCa 5 compressed 181 6 4 0.2824 0.3078 single
aCa 5 combined 575 5 1 0.4303 0.2180 single
Ca 6 normal 776 6 3 0.7000 0.0049 single
aCa 6 compressed 401 8 2 0.3645 0.0572 single
Ca 6 combined 1241 8 1 0.7630 0.0000 single
aCa 7 normal 335 8 3 0.3361 0.0809 single
Ca 7 compressed 1077 10 1 0.4929 0.0007 single
Ca 7 combined 1518 11 1 0.3527 0.0086 single
aCa 8 normal 80 - - - - single
aCa 8 compressed 123 4 3 0.8857 0.0333 single
aCa 8 combined 350 10 4 0.5710 0.0003 single
Ca combined normal 1853 6 2 0.8643 0.0000 combineNumLig
Ca combined compressed 1870 10 4 0.8664 0.0000 combineNumLig
Ca combined combined 4080 13 4 0.8176 0.0000 combineNumLig
aFe 4 normal 184 5 1 0.6688 0.0345 single
Fe 4 compressed 38 - - - - single
aFe 4 combined 222 5 1 0.5273 0.1228 single
aFe 5 normal 533 7 4 0.9605 0.0000 single
aFe 5 compressed 111 4 3 0.8286 0.0583 single
Fe 5 combined 644 10 4 0.8327 0.0000 single
Fe 6 normal 1349 7 1 0.9000 0.0000 single
aFe 6 compressed 149 4 2 0.8286 0.0583 single
Fe 6 combined 1503 7 1 0.8377 0.0000 single
Fe combined normal 2066 7 1 0.6571 0.0016 combineNumLig
aFe combined compressed 298 6 1 0.7571 0.0016 combineNumLig
Fe combined combined 2370 6 1 0.7571 0.0016 combineNumLig
aNa 4 normal 212 10 1 0.6049 0.0000 single
aNa 4 compressed 25 10 2 0.4926 0.0006 single
Na 4 combined 240 - - - - single
aNa 5 normal 360 7 3 0.7239 0.0002 single
aNa 5 compressed 37 10 1 0.3321 0.0258 single
aNa 5 combined 406 - - - - single
aNa 6 normal 362 7 2 0.7636 0.0001 single
aNa 6 compressed 82 6 3 0.8036 0.0005 single
aNa 6 combined 471 - - - - single
Na combined normal 946 7 3 0.8481 0.0000 combineNumLig
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values across all k in the 4-ligand zinc category. There-

fore, functional mapping of all four ligands provides

both the best structure-function correlation and sensitivi-

ty to the k used for clustering.

For all categories, the cluster centers and a characteristic

average probability of each cluster are in Supporting Infor-

mation, together with the full list of metal IDs of each clus-

ter. Figure 12A–C uses normal combined metalloproteins as

examples to illustrate the structural vs. functional dendro-

gram comparison, since only combined metals provide

enough data for evaluating both 4-, 5-, and 6-ligand. The

average probabilities for each cluster with respect to appro-

priate canonical CG models (Fig. 12D–F) provides a charac-

terization of each cluster with respect to canonical CG

models, with the highest canonical CG model probability

for each cluster shaded. According to the highest v2 proba-

bilities for 4-ligand (Fig. 12A and D), clusters 1, 3, and 5 are

all sub-classes of the Tet CG, which are well identified

together in the dendrograms based on both structural and

functional distances. Cluster 2 and 6 are both sub-clusters of

Spv according to their v2 probabilities and are well grouped

together both structurally and functionally. As for cluster 4,

it shows the highest probability in both Bvp, and it is both

structurally and functionally adjacent to the Spv group. For

5-ligand combined metalloproteins (Fig. 12B and E), cluster

1, 3, 4, and 6 show the highest probability in Square pyrami-

dal (Spy), and are close in both structural and functional

dendrograms. Cluster 5 and 9 are both classified as Tbp,

and Cluster 7 and 8 are both classified as Trigonal prismatic

vacancy (Tpv). These two pairs show greater separation

functionally than they do structurally. Cluster 2 is character-

ized as Tpv but with relatively low probability (0.62). It is

closer to the Spy group both structurally and functionally,

which makes it interesting to be explored further. Similarly,

in 6-ligand (Fig. 12C and F), clusters 1, 2, 3, and 6 are all

sub-clusters of Oct CG. They are also first sub-grouped

according to the order of their probabilities: Cluster 1 and 2

are grouped first with high probabilities (0.516 and 0.438),

and Cluster 3 and 6 are grouped together with relatively low

probabilities (0.219 and 0.282). Cluster 4 and 5 can be both

characterized as Pentagonal bipyramidal vacancy planar

(Pvp) based on their highest probabilities. They are also

structurally and functionally related to the Oct CGs as indi-

cated in the dendrograms. Cluster 5 is recruited first with a

higher Oct probability (0.078), while Cluster 4 last with a

low Oct probability (0.008). All these figures demonstrate

the feasibility of analyzing all metals combined in different

ligand numbers. They also revealed that our CG cluster rep-

resentations have very strong functional implications, as the

structural and functional distances were calculated indepen-

dently from different sources of information. In particular,

the normal 4-ligand, 5-ligand, 6-ligand combined metal

cluster analyses yielded structure-function Spearman rho

values of 0.9071, 0.8077, and 0.9464, respectively. And it is

only through the CG clusters that this level of similarity is

observed in the dendrograms. Likewise, similar dendro-

grams and patterns for the rest of the metals can be found

in the Supporting Information.

Aberrant CG clusters and their functional
significance

Of the 15,150 metal binding sites analyzed, roughly

19% contain compressed angles (see Table V); however,

Table V
(Continued)

Metal
Ligand
number Group Size Optimal k

Functionally
mapped n_lig Rho p-value Category

aNa combined compressed 173 5 4 0.7939 0.0098 combineNumLig
Na combined combined 1184 8 2 0.6085 0.0034 combineNumLig
combined 4 normal 4269 6 3 0.9071 0.0000 combineMetal
acombined 4 compressed 289 5 3 0.6606 0.0440 combineMetal
combined 4 combined 4577 7 4 0.7610 0.0001 combineMetal
combined 5 normal 2376 9 1 0.8077 0.0000 combineMetal
combined 5 compressed 921 7 4 0.7753 0.0001 combineMetal
combined 5 combined 3336 7 3 0.7831 0.0000 combineMetal
combined 6 normal 4302 6 1 0.9464 0.0000 combineMetal
combined 6 compressed 933 12 1 0.5146 0.0000 combineMetal
combined 6 combined 5356 9 1 0.9019 0.0000 combineMetal
acombined 7 normal 347 10 3 0.5428 0.0001 combineMetal
combined 7 compressed 1133 12 3 0.5049 0.0000 combineMetal
combined 7 combined 1613 12 1 0.4860 0.0000 combineMetal
acombined 8 normal 82 6 2 0.4857 0.3556 combineMetal
acombined 8 compressed 125 4 3 0.8857 0.0333 combineMetal
acombined 8 combined 360 10 2 0.4951 0.0021 combineMetal
combined combined normal 11376 7 4 0.7312 0.0002 combinedAll
combined combined compressed 3401 7 3 0.7013 0.0006 combinedAll
combined combined combined 15247 8 4 0.8396 0.0000 combinedAll

aThe structure-function correlation rho and associated p-value is not reliable because of the low count of the data.
bHighest correlation rho value for all structure-function analyses with data counts above 600.
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this is probably an underestimation due to the filtering

out of some real multidentation metal binding sites by

step 4. While coordination geometries that contain unex-

pected compressed angles would be considered aberrant,

some CG clusters are clearly highly aberrant with low

similarity to any canonical CGs. Table VI shows example

clusters that have the largest size for each compressed

group, while Table VII is a compilation of the most aber-

rant CG clusters from each metal and ligand numbers of

the full CG cluster description tables in the Supporting

Information. They all show abnormal deviations from

the canonical CGs, and should be considered as aberrant

CG descriptions, especially when they are also showing

high functional associations. However, special attention

needs to be paid when interpreting structure-function

correlations, when the total number of the compressed

metal sites is lower than 600. These aberrant CG clusters

can be found in all 4- to 6-ligand metals. Some of the

clusters have a small cluster size in comparison to clus-

ters in the normal groups, simply reflecting that only

19% of the nonredundant CGs are in the compressed

groups. As more nonredundant metalloprotein structures

are deposited in the wwPDB, we expect the detected

aberrant clusters to grow in size and potentially new

aberrant clusters to emerge with distinct structure-

function propensities. Also, 7- and 8-ligand metal sites

tend to be less distorted from canonical CGs. This is pri-

marily due to the presence of some small ideal angles in

7- and 8-ligand CG models. Thus, the differences

between expected and compressed angles are much less

distinct for these metal sites.

Figures 13 and 14 provide specific structural examples

for each aberrant metal cluster described in Tables VI

and VII. These images were generated using LiteMol54

and illustrate well-defined metal-ion coordinating struc-

tures overlaid onto their respective electron density maps

in blue mesh (2Fo – Fc) with very little red and green

mesh present that would indicate 31 standard deviation

discrepancies between calculated and observed electron

density (Fo – Fc). Also, the structures represented in

Figure 12
Three examples of structural versus functional dendrograms and the characteristic v2 probabilities of k-means clusters. All dendrogram pairs show
high similarity between each other, and also match their highest probability canonical CG model descriptions. (A, D) 4-ligand normal combined

metalloproteins. (B, E) 5-ligand normal combined metalloproteins. (C, F) 6-ligand normal combined metalloproteins. Similar graphs for the other
metalloproteins can be found in the Supporting Information material. [Color figure can be viewed at wileyonlinelibrary.com]
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these images have crystallographic resolutions ranging

from 1.40 Å to 2.50 Å, but with 9 of the 12 structures

having crystallographic resolutions of 2.00 Å or below.

When checking the fitness between the structure models

and their electron density maps, the structural data

deposited in the wwPDB are not always the best quality,

as inaccuracies, misinterpretations, and even errors are

often observed in different regions of a given structure.

These imperfections appear in structures with normal

and compressed metal binding sites. As illustrated in this

study, these imperfections in PDB entries, while making

detection of aberrant CG detection difficult, can be man-

aged by using a series of quality control filters and statis-

tical methods that are more resistant to error and

outliers. Our analysis has demonstrated that these aber-

rant CGs are not just analytical and/or interpretive arti-

facts, but are true phenomena supported by rigorous

statistical analyses and solid structural examples.

Furthermore, these aberrant CGs also have distinct

functional propensities from normal CGs. As can be

observed in the Supporting Information tables (Support-

ing Information Tables S149–S168), the GO terms

enriched in the normal and compressed sites are

completely different, implying that they are functionally

distinct when considered as a group. There are no cases

where the same term has a corrected or raw p-value <5

0.05 in both the normal and compressed sites within a

particular enrichment analysis (see Supporting Informa-

tion Fig. S29). This is not to say that a particular GO

term does not show up at all in both groups, however, as

a function of appearing more than expected by chance,

the GO terms are specific to the normal and compressed

sites. This holds for each metal and number of ligands,

as well as considering all of the metals together, or all of

the numbers of ligands for a particular metal. However,

inconsistencies between analyses are observed and

marked in the analyses that combine the metals being

analyzed.

Overall, a wide variety of metal-specific annotation

differences exist between the normal and compressed

Table VI
Instances of Largest Size Aberrant Clusters of the Compressed Group for Different Metals. The Complete Cluster Information can be Found in

Supporting Information Material

Metal
Ligand

Number
Cluster
Number Size Angle 1a Angle 2a Angle 3a Angle 4a Angle 5a Angle 6a Tetb Bvab Bvpb Spvb Splb

Combined 4 7 79 142.5 6 12.1 56 6 3.7 87.6 6 8.1 99.1 6 7.4 107 6 8 101.3 6 11 0.027 0.034 0.024 0.048 0
Tbpb Spyb Tpvb

Zn 5 3 128 148.5 6 4.6 56.5 6 2.8 93.1 6 3.2 101.1 6 3.4 134.6 6 3.8 102.3 6 3.2 0.091 0.002 0.112
Ca 5 6 59 160.2 6 5.8 51.8 6 3 81.8 6 4.7 91.1 6 4.5 144.5 6 5.4 79.6 6 7.3 0.01 0.007 0.083
Fe 5 1 41 151.1 6 8.1 58 6 3.5 91.1 6 3.6 101.9 6 3.7 134.2 6 7.7 100.4 6 6.8 0.008 0 0.004
Combined 5 2 202 156.5 6 6.8 56 6 3.4 90.4 6 4.2 102.8 6 3.5 124.1 6 4.9 105.7 6 5.1 0.095 0 0.064

Octb Tprb Pvpb Pvab

Mg 6 8 41 175.6 6 2.2 84.3 6 2.7 90.2 6 1.2 96.6 6 2.1 158.7 6 2.9 58.8 6 1.9 0.342 0 0 0.166
Ca 6 3 75 161.3 6 4 72.9 6 3.7 84.1 6 3.1 104.7 6 5.6 155.2 6 2.8 51.3 6 2.7 0.01 0.071 0.063 0.072
Fe 6 2 54 172.9 6 3.6 81.3 6 3.5 90.2 6 1.7 97.4 6 2.2 164.6 6 4.6 60.6 6 3.5 0.025 0 0 0.004
Combined 6 2 107 174.3 6 3.1 82.3 6 3.2 90.2 6 1.8 97.2 6 2.4 157.5 6 2.9 58.4 6 2.9 0.177 0.003 0 0.11

aAngle positions are based on the 6-angle space description.
bCG abbreviations are based on Figure 1.

Table VII
Instances of Highly Aberrant Clusters of the Compressed Group for Different Metals. The Complete Cluster Information can be Found in Support-

ing Information Material

Metal
Ligand

Number
Cluster
Number Size Angle 1a Angle 2 a Angle 3 a Angle 4 a Angle 5 a Angle 6 a Tetb Bvab Bvpb Spvb Splb

Combined 4 2 41 155.4 6 10.8 54.9 6 5.6 79.2 6 9.1 107.3 6 13.4 134.5 6 10.8 90.5 6 15.5 0 0.013 0 0.001 0
Tbpb Spyb Tpvb

Zn 5 5 61 164.2 6 5.7 56.8 6 4.7 87.3 6 4.1 104.5 6 3.6 123.6 6 5.9 103.8 6 5.7 0.038 0.001 0.022
Ca 5 3 14 144 6 8.4 56.1 6 6.9 74.2 6 5.9 86 6 7 126.7 6 7.6 62.6 6 8.5 0.001 0.008 0.017
Fe 5 3 22 147.4 6 4.5 59.2 6 6.1 87.2 6 6 96 6 4.3 141 6 4.7 78.9 6 8.5 0 0 0
Combined 5 5 121 156.1 6 8 53.1 6 4.3 80.6 6 5.7 95.5 6 9 141.6 6 7.2 75.2 6 6 0.006 0.006 0.063

Octb Tprb Pvpb Pvab

Mg 6 4 13 166.8 6 4.5 61.2 6 5.8 87.1 6 3.7 104 6 5.8 155.5 6 6.1 63 6 4.4 0 0 0 0
Ca 6 4 45 169 6 5.2 51 6 3.1 84.6 6 3.7 102.2 6 4.9 159 6 5.9 73.5 6 6.5 0.012 0.032 0.004 0.067
Fe 6 4 21 162.4 6 8 59.8 6 3.2 87.8 6 3 104.8 6 4.6 155 6 7.9 70.2 6 6.8 0 0 0 0.001
Combined 6 10 88 168.3 6 4.3 52.7 6 4.8 85.8 6 4 104.9 6 4.9 155.6 6 6.5 72 6 5.7 0.015 0.03 0.003 0.048

aAngle positions are based on the 6-angle space description.
bCG abbreviations are based on Figure 1.
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Figure 13
PDB structure and electron density maps of examples from clusters listed in Table VI. Aberrant CG structures are shown in balls and sticks, featured by
bidentated compressed angles. These structures are also supported by their fitness to the electron density maps. All structures were generated in LiteMol

Viewer 54, with 2Fo – Fc at 1.5r and Fo – Fc at 23r (red) and 3r (green), except for panel E with 2Fo – Fc at 1.01 r. Metal ions are put at the center of
each subgraph with larger size, where Zn is represented as light blue, Fe as purple, and Mg and Ca as green. The cluster identifier, PDB metal site ID,

and its resolutions are as follows: A, 5-ligand Zn, cluster 3, 2B13.B.401, resolution 1.55 Å; B, 5-ligand Ca, cluster 6, 3RYD.C.267, resolution 2.37 Å; C, 5-
ligand Fe, cluster 1, 4AM4.A.1161, resolution 1.68 Å; D, 6-ligand Mg, cluster 8, 3ETH.A.402, resolution 1.60 Å; E, 6-ligand Ca, cluster 3, 4P99.B.509 res-

olution 1.80 Å; F, 6-ligand Fe, cluster 2, 2GYQ.B.404, resolution 1.40 Å. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 14
PDB structure and electron density maps of examples from clusters listed in Table VII. Aberrant CG structures are shown in balls and sticks, featured by

bidentated compressed angles. These structures are also supported by their fitness to the electron density maps. All structures were generated in LiteMol
Viewer 54, with 2Fo – Fc at 1.5r and Fo – Fc at 23r (red) and 3r (green), except for panel C with 2Fo – Fc at 1.02 r. Metal ions are put at the center of

each subgraph with larger size, where Zn is represented as light blue, Fe as purple, and Mg and Ca as green. The cluster identifier, PDB metal site ID,

and its resolution are as follows: A, 5-ligand Zn, cluster 5, 2R2D.A.277, resolution 1.75 Å; B, 5-ligand Ca, cluster 3, 3HR4.H.202, resolution 2.50 Å; C, 5-
ligand Fe, cluster 3, 2VZB.B.6204; resolution 2.30 Å; D, 6-ligand Mg, cluster 4, 3CVJ.C.243, resolution 2.00 Å; E, 6-ligand Ca, cluster 4, 1LHV.A.401, res-

olution 2.00 Å; F, 6-ligand Fe, cluster 4, 3DHI.A.601, resolution 1.68 Å. [Color figure can be viewed at wileyonlinelibrary.com]
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sites and the vast majority of enrichment results are spe-

cific to metal and ligand number (Supporting Informa-

tion Tables S149–S168). In an attempt to see general

annotation trends across all metals analyzed, we filtered

the all-metal, all-ligand-number enrichment results based

on consistency with all other enrichment analyses and a

max metal enrichment usage fraction of <0.5. These

results are shown in Table VIII. Only two general differ-

ences emerge: (a) normal metal ion coordination is

enriched in biosynthetic metabolic processes and (b)

compressed metal ion coordination is enriched in ion

transport. While it is hard to comment on the enrich-

ment in biosynthetic metabolic processes in normal CGs,

the ion transport enrichment in compressed CGs is

directly explainable. Ion transport requires transient

interaction with an ion, which may be facilitated by flexi-

ble and looser binding afforded by compressed CGs.

CONCLUSIONS

We have improved our analyses and expanded their

scope to cover a range of metal ions in a much wider set

of coordination geometries. The inclusion of additional

quality control filters has improved the quality of the

results. This is especially evident by the improved Spear-

man correlation between functional and structural dis-

tance metrics from our previously published analysis on

4-ligand zinc ion coordination: going from a rho of 0.88

(p-value< 2.2 3 10216) to 0.8976 (p-value< 2.2 3

10216) and the presence of multiple rho values above

0.9, including the Mg combined cluster analysis yielding

a rho above 0.9515 (p-value< 2.2 3 10216) and the 6-

ligand combined cluster analysis yielding a rho above

0.9464 (p-value< 2.2 3 10216). Also, our ligand detec-

tion method is statistically rigorous, producing an esti-

mated false positive rate of �0.11% and an estimated

false negative rate of �1.2%. No prior protein metal

binding site analysis methodology has undergone this

level of statistical evaluation nor demonstrated this level

of rigorous performance. Moreover, these results demon-

strate high consistency (low unimodal variance) in

metal-ligand bond-lengths in metalloproteins reflecting

expected strong dependency on physiochemical proper-

ties of metal ion coordination. Also, distinct multidenta-

tion bond-length modes specific to highly-prevalent

chemical functional groups were observed.

With respect to the first question posed in the intro-

duction, can functionally-relevant structural descriptions

of CG be constructed for other common metals, involv-

ing different numbers of ligands? Results in Table V, Fig-

ures 10 and 12 demonstrate that we can. With respect to

the second question posed in the introduction, would

similar or even new structural constraints and aberrant

CGs be detected? Tables (V–VII) and related tables in

our Supporting Information material clearly indicate thatTa
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roughly 19% of metal binding sites exist in aberrant CGs

across the five types of metalloproteins examined in these

analyses. These aberrant CG clusters are further sup-

ported by well-defined structural examples in Figures 13

and 14. Most of these aberrant CGs are derived from the

presence of unexpected compressed angles and that most

of these compressed angles arise from multidentation.

Moreover, these CGs with compressed angles have dis-

tinct functions from CGs without compressed angles as

demonstrated in our functional annotation enrichment

analyses. The reason that previous analyses have not

detected these compressed angles in large numbers is due

to the biased nature of prior analyses selecting ligands

that fit expected canonical CGs. For instance, CheckMy-

Metal purposely analyzes each ligand atom and a

pseudo-atom representation of possible bidentation

ligand residues and picks the “best fit” to expected

canonical CGs.15 Clearly such a biased search will not

easily find unexpected results.

In summary, the improvement in our methods and

analyses provide a statistically rigorous result highly sup-

porting the existence of large numbers of unexpected

compressed angles and thus significant numbers of aber-

rant metal ion coordination geometries within structural-

ly known metalloproteins. By recognizing these aberrant

CGs in clustering, high correlations are achieved between

structural and functional descriptions of metal ion coor-

dination. But the broader implication is that the wide

range and percentage of aberrant CGs in metalloproteins,

especially with respect to bond angles, reflects metal

binding site variation necessary for the implementation

of a diverse set of biochemical functions.
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