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ABSTRACT OF DISSERTATION

Uniform Regularity Estimates for the Stokes System in Perforated Domains

We consider the Stokes equations in an unbounded domain w,, perforated by small
obstacles, where € represents the minimal distance between obstacles and 7 is the ratio
between the obstacle size and €. We are able to obtain uniform W' estimates for
solutions to the Stokes equations in such domains with bounding constants depending
explicitly on € and 7.
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Chapter 1 Introduction

1.1 Background

Homogenization theory is a branch of partial differential equations concerned with
problems where a differential operator or domain depends on a parameter € which
tends to zero. The homogenization of differential operators has vast applications
to physics and materials science, in particular to the study of mixed media consist-
ing of components with different physical properties (electrical /thermal conductivity,
elasticity, etc.). As an example, consider a medium consisting of a main material
containing small particles of a different material, placed periodically with a distance
of € between them. A differential operator in this medium will have rapidly oscillating
coefficients due to the differing properties of the constituent materials. However, by
sending both the scale of periodicity € and the particle size to zero, solutions to equa-
tions involving such a differential operator can converge, leading to a homogenized
equation.

Typical results of interest in the field of homogenization theory include obtaining
qualitative convergence in problems like those described above, obtaining convergence
rates once qualitative convergence has been shown, and establishing regularity results
for solutions during the homogenization process. To introduce results of historical
interest, we consider the Dirichlet problem

{—div(A(:E/S)VUa) =F  inQ, (1.1.1)

u. = f on 052,

where ) is a bounded domain in RY and A € R has periodic, bounded, and
measurable entries, and satisfies the ellipticity condition

AL € > cole]?

for any ¢ € R where ¢ > 0. If F € HY(Q) and f € HY?(99), it can be shown
that u. converges weakly in H'(Q2) to some ug as € — 0. Moreover, ug satisfies the
homogenized equation

{—dlv(AVuo) =F inQ, (11.2)

upg = f on 0f),

where A € R™? is a constant matrix.

Early work in the field of homogenization, starting with the work of E. de Giorgi
and S. Spagnolo in the late 1960’s, was concerned with developing methods to prove
such qualitative convergence results. The very general viewpoint of [' and G conver-
gence of operators introduced by de Giorgi gives an abstract framework for obtaining
convergence. Later methods include Tartar’s method of oscillating test functions,
which relies on energy estimates and a careful construction of test functions with



similar periodic behavior to u., and the notion of two-scale convergence developed by
G. Nguetseng [12] and G. Allaire 3], which is effective for problems with solutions u.
that don’t have limits in a classical sense. Classic monographs ([5], [7], [6], [I1]) are
available on this topic.

More recent work ([10], [I7], [I5], [I6]) has been concerned with quantitative
convergence results, including convergence rates and regularity theorems. In view of
the qualitative convergence above, convergence rates allow us to determine how well
the homogeneous solution uy approximates the inhomogeneous solution u.. This is
of particular interest since numerically studying solutions to can prove to be
extremely costly, as finite-difference methods require many computations at a scale
smaller than ¢. By working with the homogenized equation, which we can view as
providing an approximation of the macroscopic behavior of solutions to , this
problem can be avoided. Regularity results are also of interest, with the main goal
being to establish W*P estimates for solutions to ([1.1.1)) with explicit dependence on
. These regularity results can cover multiple cases, making them a powerful tool for
understanding behavior of solutions in a wide variety of settings.

1.2 Homogenization of the Stokes Equations

This dissertation focuses on regularity results for solutions to the Stokes equations in a
periodically perforated domain. We will begin by introducing periodically perforated
domains as well as some known results. For the Stokes equations, we can think of the
domain as a porous medium containing particles such as small rocks which obstruct
fluid flow. Consider a domain 2 in R%. Let Y = [-1/2,1/2]% be a closed unit cube in
R? and T the closure of an open subset of Y. We may think of 7" as a model obstacle.
We then define a periodically perforated domain

Q. =\ | Je(k +nT), (1.2.1)

kel

where 1 = n(e) gives the ratio of obstacle size to periodicity, and the union is taken
over all k € Z% such that e(z + Q) C Q. For f € L*(;R?Y), we aim to study the
solutions (u.,q.) € H}(Q:;R?) x [L2(£2.)/R] to the problem

—Au, + Vg, = in €,
ue t Ve =/ in (1.2.2)
div(u:) =0 in Q.,

with a no-slip boundary condition on the obstacles. When necessary, we extend u.
by zero into the obstacles, and still call this extension ..

Some qualitative convergence results are known in this setting. The behavior of
the solutions to as € — 0 depends on 7. In the simplest case, we assume that

the ratio of obstacle size to periodicity is constant, namely n = 1. In this case, it can
be shown that there exists an extension of ¢., which we denote by ¢., such that

e %u, — up weakly in L?(Q; RY),
G — qo strongly in L*(Q)/R,



where (ug, qo) satisfies a Darcy law,

Uy = K(f - qu) n Qa
div(ug) =0 in €, (1.2.3)
ug-n =70 on 0f),

for a symmetric positive-definite matrix K.

Different assumptions on the scaling of obstacles as ¢ — 0 lead to different behav-
ior of the limiting solution. G. Allaire ([1], [2]) studied the case where Q2 is a bounded
domain and the obstacle size satisfies  — 0, known as the vanishing volume fraction
case. To explore qualitative convergence results in this setting, we first introduce a
parameter 0. given by

1.2.4
elln(n/2)|V? ifd=2. (12.4)

B {67]25d itd>3,

If the periodicity ¢ and relative obstacle size n satisfy o. — 1, we consider the
obstacle scaling to be “critical.” In this case, Allaire showed that the solutions to
(1.2.2) satisfy (uc,G.) — (uo,qo) weakly in H*(;RY) x [L*(Q)/R], where (uq,qo)

satisfies a Brinkman law,

1.2.5
div(ug) =0 in Q, ( )

{—Auo + Vg + Mug=f inQ,
for a symmetric positive definite matrix M. The new term Mwug which appears in
the equation, called a “strange term” by D. Cioranescu and F. Murat [§], expresses
how the obstacles still affect the solution despite having disappeared in the limit.

If the obstacles are small relative to the critical scaling, i.e. 0. — 0o, we say the
scaling regime is “subcritical.” Here, the presence of obstacles will no longer affect the
limiting equation. In particular, (u.,G.) — (uo, o) strongly in H*(Q; R?) x [L%(Q)/R],
where (ug, qo) satisfies

~Aug+ Vo = in Q,
{ otV =/ i (1.2.6)

div(ug) =0 in €.

Finally, if the obstacles are large relative to the critical scaling, i.e. 0. — 0, we are
in the “supercritical” scaling regime. The case n = 1, which led to a Darcy law above,
can be viewed as a subcase of the supercritical case. In fact, if 0. — 0, we once again
obtain a Darcy law for our homogenized equation: (o> %u.,q.) — (u,q) strongly in
L2 RY) x [L2(2) /R], where (ug, qo) satisfies for a symmetric positive definite

matrix K.

1.3 Main Results

The main results of this dissertation are regularity estimates for the Stokes equations
in an unbounded periodically perforated domain, where the results are independent



of the scaling regimes discussed above. As before, let Y = [—1/2,1/2]¢ be a closed
unit cube in R% and T the closure of an open subset of Y. Throughout this work, we
assume Y'\T is connected and that

B(0,¢0) CT and dist(0T,0Y) > ¢o > 0 (1.3.1)
for some ¢y > 0. We then define
wey = R\ U e(k+nT), (1.3.2)
kezd
where 0 < €, < 1. In this setting, we consider the Stokes equations
—Au, + Vp. = F + div(f) in we,,
div(us) =0 in we,, (1.3.3)

u: =0 on Owe .
We wish to establish W14 estimates of the form

IVull L.,y < Ag(e: M F Lo + Bole MIF | o, (1.3.4)

and
lullzo(we.) < Coles M fllLae.) + Doles MIF | za(wr.y), (1.3.5)

for 1 < g < oo, where the bounding constants A,(e,n), B,y(e,n), Cy(e,n), Dy(e, n)
depend explicitly on the parameters € and 7.

The following are the main results. The first result addresses the case d > 3, while
the second deals with the case d = 2.

Theorem 1.3.1. Suppose d > 3 and 1 < q < oco. Let w., be given by ,
where T is the closure of an open subset of Y with C' boundary. For any f €
L9 (w, ;R and F € Li(w, ,; R?), the Stokes system has a unique solution
in Wy (wen; RY) x [LY(w,,,)/R]. Moreover, the solution satisfies the estimates

|V < {C"d'H”fHLq(wm + Cen' "2 || F| o) forl<gq<2,
L‘l(wgﬂ) — _g1_1 _ d
S o T e + Cen' | Fllia.,)  for2<g < oo,
(1.3.6)
and
1 < {anl_ZHf”Lq(we,n) + 0627]2_(1”F|’Lq(w5m) forl<qg<2,
LY(we,n) > 4 3
' Cen' 2| flloqwe.y + CEN* N Fll Lo,y for2<q < oo,
(1.3.7)

where C' depends on d,q, and T.

Theorem 1.3.2. Suppose d = 2 and 1 < q < oo. Let w., be given by ,
where T is the closure of an open subset of Y with C' boundary. For any f €



LY (w, ,; R**?) and F € LY(w,,,;R?), the Stokes system has a unique solution
in Wy (wen; R?) x [L9(we ) /R]. Moreover, the solution satisfies the estimates

( _9ll_1 _1 1
O~ 273 n(n/2) 2 | f | cagee.y + Cel(0/2)|2 | Fll (o)
forl < q <2,
1
112w,y + CelIn(n/2) 2| Fl 2. )
forq=2,
_g[l_1 _1 142
O~ 2274 n(n/2)] 2| f | o) + Con™ || Fll pao)
for2 < g < o0,

VUl Lag.,) <

\

(1.3.8)

and

_2
Cen' ™o || fll ooy + C* (/2| Fll 2o,
forl<qg<?2,

1
Ce|n(n/2)2 | fllza(n,) + C* [ m(n/2)|| F |l Lo
for 2 < q < oo,

ull zo (e, < (1.3.9)

where C' depends on q and T'.

Existence and uniqueness for this problem are already known [I5]. Furthermore,
the estimates in Theorems [1.3.1] and [1.3.2| are known for the case of fixed n [15],
in which the solutions to (|1.3.3) approach the solutions of a Darcy law. The main
novelty of this work is that the bounds in — feature explicit dependence
on 7. In particular, Theorems|1.3.1) and [1.3.2] provide information about the behavior
of solutions to for any step of a convergence process in a periodically perforated
domain where the obstacles vanish in each periodic cell.

Such W1 estimates are also known for Laplace’s equation in periodically perfo-
rated domains. For the problem

{—Au = F +div(f) in Wep, (1.3.10)

u=0 on Owe ),

where w, , is given in , the estimates given in Theorems |1.3.1] and |1.3.2| hold
with the same bounding constants [17]. Moreover, the estimates are sharp in this case.
We expect that the estimates are also sharp in the case of the Stokes equations, but
we have not proven this. A recent paper further [13] extended the results to the case
of Laplace’s equation in bounded perforated domains with non-periodic distribution
of obstacles.

The proofs of Theorems [1.3.1] and [1.3.2] rely on large-scale estimates for solutions
to the Stokes equations in perforated cubes, which are of interest on their own. We
define perforated cubes Q%" by

QR = Qr N wey, (1.3.11)



where Qr = (—R/2, R/2)?. We then consider the problem in Q%"

—Au+Vp=0 in Q%",
div(u) =0 in QF, (1.3.12)
u=0 on 0Q%" N dw .

Theorem 1.3.3. Let (u,p) € H'(QR"; R?Y) x L*(QF") be a weak solution to
for some R>¢e. Then ife <r <R,

<][ \Vu\2)1/2 <C (][R |Vu|2)1/2, (1.3.13)

where C' depends on d.

Theorem 1.3.4. Let (u,p) € H'(QF";RY) x L2(QF") be a weak solution to
for some R>¢e. Then ifec <r <R,

(7[ W)m =€ (]éR |“|2>1/27 (1.3.14)

Theorem [1.3.3] gives a large-scale Lipschitz estimate, while Theorem gives a
large-scale L™ estimate. By large-scale, we mean that averages are taken over cubes
whose side lengths are larger than the scale of periodicity. This allows us to exploit
the periodic structure to obtain the estimates.

We now describe our approach to proving Theorems|[1.3.1/and [1.3.2] Much of the
argument, with some notable exceptions, follows the present author’s previous work
for the case of Laplace’s equation in a perforated domain [17]. We first note that the
powers of € in — are dictated solely by scaling. This allows us to simplify
computations by rescaling so that € = 1. By localizing and rescaling estimates in a
weighted Sobolev space for solutions to the Stokes equations in an exterior domain
RIT, we are able to reduce the L? estimates of u and Vu to the L? estimates of the

average operators
1/2
T(F, )(a) = (][ |u|2) (13.15)
T+eQ2

Sea(F, )(@) = (]iEQQ IVu|2> - (1.3.16)

for ¢ > 2. Using a real-variable argument from [14], we establish the L? boundedness
of T, , and S, ,, by proving weak reverse Holder inequalities in a cube ) for solutions
to (1.3.3) with ' =0 and f = 0 in 4¢). The reverse Holder inequalities follow from
the large-scale estimates in Theorems [1.3.3| and [1.3.4]

The proofs of Theorems|1.3.3|and [1.3.4] are significantly different in the case of the
Stokes equations compared to Laplace’s equation. This is due to the pressure term

where C' depends on d.

and




causing a Caccioppoli inequality in a perforated cube to only provide useful bounds
when applied to cubes whose side length is smaller than o., where o, is defined in
. As such, proofs of the large-scale estimates will be separated into two cases.
For small cubes, we use an argument from [I7], which relies on a discrete Sobolev
inequality for functions defined on Z?. For large cubes, we will be able to use a
modified version of the compactness method from [15], which treats the case of fixed
7.

The dissertation is organized as follows: In Chapter 2, we provide some basic
results which will be used frequently in the later chapters. In Chapter 3, we establish
the large-scale estimates in the case of small cubes, which we call the “subcritical”
case. The names of these cases are motivated by [I]. In Chapter 4, we finish the proofs
of the large-scale estimates by showing that they also hold in the case of large cubes,
which we call the “supercritical” case. In Chapter 5, we establish the bounds for the
average operators T, and S., defined in (1.3.15)) and (1.3.16). In Chapters 6 and 7,
we present the localization argument for solutions in a periodic cell (1 + ¢)@Q1\nT.
Finally, the proofs of Theorems |1.3.1] and [1.3.2] are given in Chapter 8.

Copyright© Jamison R. Wallace, 2024.



Chapter 2 Preliminaries

This chapter is dedicated to establishing some basic results which will appear fre-
quently in the remainder of the dissertation. We begin by making note of the following
Poincaré inequality for functions supported on a perforated domain.

Lemma 2.0.1. Let Q be a domain in R, and let Q. = Q. as defined in . Let
u€ HY(Q.,) withu=0 on Q\Qe,. Ifd > 3, then

J
J.

where C' depends only on d and cy.

2 dz < Ce2p?— / IVl da, (2.0.1)

&,m QSW

and if d = 2, then

uf? de < 052|1n(n/2)|/ IVl da, (2.0.2)
Qe

M

Proof. The proof is well known. See, for example, [10]. O

Remark 2.0.2. Let d > 2. With the definition of o, given in ((1.2.4)), we may rephrase
the conclusion of Lemma as

/ lul? dx < C’ag/ |Vul? dx. (2.0.3)
Q (>

g,m Q sM
2.1 Pressure Estimate

For future use, we establish the following pressure estimate.

Theorem 2.1.1. Suppose (u.,p.) € H*(QT7";RY) x L*(Q7") is a weak solution of

—Au, +Vp. = f in Q7"
div(us) =0 in Q7" (2.1.1)
u, =0 on Q1 N Owe .

Then

Ip. f
Q

where C" depends only on d and T'.

WPEHLZ(Q?") < C(l + 0’;1)(HVUEHL2( <) -+ HfHL2(Q§’"))7 (2.1.2)

€,
1



The proof of Theorem will rely on a restriction operator defined in [I] as
well as an estimate for a Bogovskii operator in a perforated domain. Define

d—2
St if d >
_ {77 ’ ifd 23, (2.1.3)

|In(n/2)|"Y*  ifd=2.

We can view K, as a substitute for o_' when ¢ = 1. Since we will frequently rescale
so ¢ = 1 to simplify computations, the term K, will appear in many results and
proofs throughout this work.

Lemma 2.1.2. There exists a linear continuous operator L : H*(Q1) — HY(Q:\nT)
such that for any u € HY(Q1), Lu = u on 0Q,, Lu =0 on d(nT) and

IV (L) 2@uom < CUIVullzn + Kollullizn): (2.1.4)
where K, is given by , and C depends only on d and T.

Proof. See [1]. O

The following classical result provides an estimate for a Bogovskii operator on a
domain in R%.

Lemma 2.1.3. Let Q be a bounded, connected, open set in R? with Lipschitz bound-
ary. For any f € L*(Q) with [,f = 0, there exists v € H}(Q;R?) such that
div(v) = f in Q, the map f — v is linear, and

vl a2 ) < Cllf 2@, (2.1.5)
where C' depends only on 2.

We can extend this result to the case of periodically perforated domains, with
explicit dependence on € and 7, as follows.

Lemma 2.1.4. Let T be the closure of an open subset of Y with C' boundary. For
any f € L*(Q7") with an,n f =0, there exists v € H}(QT";RY) such that div(v) = f
1

in Q7", the map f+— v is linear, and
1
V]| p2geny < C(1+ J_€>||f||L2(Qi’")a (2.1.6)

where C' depends only on d and T'.

Proof. The idea of the proof is motivated by [I]. For ease of computations, we will
prove the lemma in a rescaled setting. Namely, we will show that for any f € LQ(Q}’/Z)

with me f =0, there exists v € Hy(Q71;R?) such that div(v) = f in @7 and

1
IVlliaqipy < OO+ M fllisarpy: (2.1.7)

(o)



By Lemma and rescaling, we can find v, € Hj(Q1/.;R?) such that div(v,) = f
in (/. and
R P P ey 215)

Write Z4 = | J k;, and let Q' = k; + Y, TZ = k; +nT. On each perforated cube Q" \
we will find w; satisfying

div(w;) = f — div(Lw,) in Q"\Tg,

w; =0 on 077, (2.1.9)
w; = 0 on ana
and
HVWHB(@'\T,;) < OHf - diV(LU*)”lp(Qi\Té), (2.1.10)

where L is the operator in Lemma [2.1.2]

Once we find each w;, we can obtain the desired function v. Indeed, set v; =
w; + Lo, in Q°. Then let v = v; in Q" with v = v, on 0Q". It follows from
that div(v) = f in Q7". To show ([2.1.6)), we observe

IVvill2onvriy < CUIVwillr2@invryy + IV (Lo | 22@ivr))
< ClIf 2@y + IV (Lva) |l L2@ivri) (2.1.11)
< Ol 2@y + IVodlzzngy + Enlloall2@ive)),
where K, is defined in Lemma [2.1.2| By adding (2.1.11)) over Q7", we obtain
||VUHL2(Q};VE) < C(HfHL?(Ql’") + HVU*HH(Q}’/Z) + KnHU*Hm(Q}»/Z))

(2.1.12)
<Cl+— )||f||L2 L)

where we have used (2.1.8) in the second step.
It remains to find w;. For simplicity, assume Q' = @Q;. We will find w €
HY(Q\nT;RY) satisfying

div(w) = f — div(Lv,) in Q1\nT,

w =10 on d(nT), (2.1.13)
w=20 on 0Q),
and
[Vl 2(@ua < CILF = dv(Ze)l|z(um (21.14)
Define f by . 3
f=r in Q1\nT, f=0 in nT. (2.1.15)

By Lemma we can find u € H}(Q1;R?) such that div(u) = f — div(Lv,) in Q4
and
lull a @y < CIIf — div(Lv) [ 2@\, (2.1.16)

10



where C' depends only on d. We separate into two cases.
Case 1: Assume d > 3. We will find @ € H'(Q,\nT) satisfying

div(a) = f — div(Lw,) in @Q,\n7T,

i =0 on d(nT), (2.1.17)
uU=1u on 0Q),,.
and
||Vﬂ||L2(Qn\nT) S CHf - div(-[/v*)HLQ(Ql\nT)- (2118)

We can then obtain w satisfying and by setting w = v in Q1\Q,, and
w=1uin Q,\nT.

It remains to find @. We rescale system as follows: for x € Q\T), let
fo(z) = (f — div(Lv))(nx), ue(z) = %u(nm), and Ug(x) = 71]71(33) We obtain the
system

div(ag) = fo in Q\T,
U =0 on 0T, (2.1.19)
’ao = Up on an

By Lemma [2.1.3] there exists a solution g to (2.1.19) which satisfies
IV | 2@iry < Cllfolle2@uvry + lluoll 2@y + I Vuoll 2 @ivr))- (2.1.20)

Rescaling, we obtain

. , 1
|Vl 20,\nr) < CUIf — div(Lv.) || 2@\ + 5||U||L2<Qn\nT> + [Vl 2@, \nr))-

(2.1.21)
The Holder inequality in @), gives

[ullr2q,) < ||U||L%(Qn)||1||m(@,,)

(2.1.22)
< Cnlull, 2,

Q1)

Since d > 3, we have the Sobolev embedding H' C Ld%(@l). Therefore, (|2.1.22])
becomes

[ullz2@,) < Cnllullmy@y- (2.1.23)

As a result, we obtain (2.1.18)) from ([2.1.21]).

Case 2: Assume d = 2. In this case, we will divide the interior of (), into annular

regions. Let n € N such that

1 S 1
2_n>n—2n+1'

Let A = Q1\Bij2. For 2 < i < n, let A; = Bj9i-1\By/e. Finally, let A, =
Bijon\nT. In Ay, we consider the problem

div(a) = f — div(Lw,) in Ay,
a; =0 on 0Q1,

aq :u—][ U on 9B s.
A1UA9

11

(2.1.24)



If 2 <i < n, we consider the problem

(div(a;) = f — div(Lv,) in A,
i =Uu— OBy jgi-1,
a u fAilUAi u on 1/2i-1 (2125>

ai:u—][ u  on dBy ).
\ AiUAi+1

Finally, in A,,,1, we consider the problem

div(ans1) = f — div(Lo,) in A1,
App1 = U — ][ uw on JByjon, (2.1.26)
AnUAn+1

apy1 =0 on onT.

(f — div(Lv,))(z/2"), and ug(z) = 2'u(z/2"). The

Let ag(z) = 2'a;(x/2Y), fo(z) =
< i <n —1 become the rescaled problem

problems in ([2.1.25)) for 3
(diV(CLo) = fo in BQ,

ag = Uy — ][ Uo on 8327
B4\B1 (2127)

aozuo—][ uy on dB;.
\ B2\Bl/2

By Lemma [2.1.3] there exists a solution ag to (2.1.27)) satisfying

IVaollaay < Clllfallzzmn + o= F  woliao)

B4\ B1

+Ww—f woll 2
B2\By 2

< C(|[follr2(ma) + Vol 2B, )

(2.1.28)

where we have used the Poincaré inequality in the second step. It follows that for
3<i<n—1,

||vai||L2(Ai) < O(Hf - diV(LU*>||L2(Ai) + ||vu||L2(Ai—1UAiUAi+1))' (2129>

The same approach can be applied to obtain similar estimates for the problems in
Ay, Ao, Ay, and A, yq. By letting w = a; in A;, we obtain w satisfying (2.1.13)) and

(2.1.14]), where (2.1.16]) has been used.
O

We are now ready to prove the pressure estimate in Theorem [2.1.1}

12



Proof of Theorem |2.1.1. Note that er,n (pe —ng,n pe) = 0. Thus we can apply Lemma
1 1
2.1.4] to find v, satisfying div(v.) = p. — fQi’" p. in Q7" and

1
HVUEHLQ(Q?W) < C(1+ 0__)HfHL2(Qi’”)‘ (2.1.30)

/ e —][ el =/ (pe —][ pe)div(ve)
€,m £,m £,Mm iﬂl

< IVp:ll-r@en Ve llagsm

1
< Ol + W)+ Dl = £ peliaiaroy
: ,

1

which yields the desired estimate. O

2.2 Caccioppoli Inequality

The proofs of the large-scale estimates in Theorems and will rely on a
Caccioppoli inequality for solutions to the Stokes equations in a perforated cube. We
give the Caccioppoli inequality in a rescaled setting.

Theorem 2.2.1. Let (u,p) € H'(Qp") x L*(Q3") be a weak solution of

—Au+Vp=f in QR
div(u) =0 in Qy", (2.2.1)

1
u=20 on Qp" Nwy .

where 1 < R < n%d ifd >3, and 1 < R < |In(n/2)|"? if d = 2. Then

C
[k [ wpecr [ (222)
Q R Jqim QL

where C' depends only on d and T'.

1,n
R/2

Proof. Without loss of generality, we may assume R = 2% for some k& > 0. For

otherwise, we can cover Qp with cubes of side length 2¥ and apply the result on

each cube. We can also assume le,n p = 0. We begin by rescaling as follows: let
R

i(x) = u(Rx), p(z) = Rp(Rz), and f(x) = R?f(Rx). We obtain the rescaled system

~Aa+Vp=f inQ/"
div(@) =0  in Q)" (2.2.3)

. 1/R,
u=0 on Q1/ TN wey.

13



Note that the assumptions on R imply that R < K. By applying (2.1.2) with

e = 1/R, we obtain
||p||L2(Q};7) - Rd_l”ﬁHLg(Qi/R,n)
< ORI (1 RE) IVl gy + 1l gy
< C(HVUHLQ(Q}{’”) + RHf”[ﬂ(Q}{m)).

It follows that
[owE<c [ (vap s R,
Q" Qr"

Define
I={te[l,R]: 0Q:Ndwy, = 0}.

If t € Z, then (u, p) satisfies

—Au+Vp=f in Q,",
div(u) =0 in Q;",

1
u=0 on Q;" Nwy,y,.

Using u as a test function in (2.2.7)) and integrating by parts, we obtain

/ |Vu\2—/ u-(Vun)—i—/ pu-n = [ u.
2 0Q 0Qu ;"

t

J vl < [ qval e bl + [ il
thﬂ 8Qt Qt’n

Choose 7, s € T such that s —r > 1. Then for ¢t € ZN [r, s],

J vl < [ qval e bl + [ ikl
Q" Qs Qs

Hence

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

Integrating both sides of (2.2.10)) in ¢ over [r, s N Z and using the Cauchy inequality,

we find for any § € (0, 1),

C
/ (p—— / (V] + [p]) ] + / £l
L s =7 Join QL
C

C
< —2/ |u\2+05/ |Vu|2+CR2/ 2,
(5 =7)%0 Join QL QL

14

< — u2—|—05/ Vul* + |p|? —I—Cs—r2/ fI?
a5 o 0 [ (9 )4 Ot [ i

(2.2.11)



where (2.2.5) has been used to bound pressure terms. Repeatedly applying ([2.2.11])

for r = r; and s = 7,1, where r; = R(1 —27%),4=1,...,k, we obtain
/ WW<§: oy [ o [ g
Ql M R25 Q Ql,‘n
Fy i i (2.2.12)

+ (06)’“‘1/ V2.
QR"

R

Choosing ¢ > 0 such that C§ < 1/4 and observing that (1/4)~1 = 4R~2  we obtain
C C
[l < [l W/rwm@m/|m (22.13)
QR/z Qx" Qy"

To deal with the term involving Vu in the right side of (2.2.13)), we consider the
problem

—Av+Vg=g in Q145\n7,
div(v) =0 in Q146\n7, (2.2.14)
v=_0 on onT,

where 0 > 0 is small. In this case with only one obstacle, a classical Caccioppoli
inequality and classical pressure estimates for the Stokes system yield

[owrse [ ek rigp. 2:215)
Q1\nT Qu45\nT

Covering Q" with cubes Q) and applying (2.2.15) in (2.2.13) yields

C
/Q Vul? < R?/, ]u\z—l—CRZ/QM IfI%. (2.2.16)

B2 @Rt R+1

To obtain the desired result 1) we cover Qg2 by cubes of side length % and

apply ([2.2.16]). O]

Copyright© Jamison R. Wallace, 2024.
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Chapter 3 Large-scale Estimates: Critical and Subcritical Cases

We will now begin to establish the large-scale estimates given in Theorems [1.3.3] and
[1.3.4 Due to Theorem [2.2.1] only providing bounds when the cube’s side length R is
sufficiently small, the proofs of Theorems [1.3.3| and [1.3.4] will be split into multiple
cases depending on the size of R. The definitions of the cases are motivated by [I].

Suppose (u, p) satisfies . If e < R < 0., we say that the scaling regime
is “subcritical.” If R = 0., we say that the scaling regime is “critical.” Finally, if
R > 0., we say that the scaling regime is “supercritical.” In this chapter, we will
prove the large-scale estimates in the case of subcritical or critical scaling regime
using an approach from [17].

Theorem 3.0.1. Let d > 2, and let €,n € (0,1). Suppose (u,p) € H(QF";R?) x
L*(Q%") is a weak solution to for some e < R<o.. Then ife <r <R,

<][ |vu|2)l/2 <C (]éR |Vu|2)1/2, (3.0.1)

Theorem 3.0.2. Let d > 2, and let e,n € (0,1). Suppose (u,p) € H*(QF";RY) x
LA(Q%") is a weak solution to for somee < R<o.. Thenife <r <R,

(][ W)l/z =C (]éR |“|2> 1/2’ (3.0.2)

Theorem [3.0.1] gives the large-scale Lipschitz estimate in the subcritical and crit-
ical cases, while Theorem [3.0.2] gives the large-scale L* estimates in these cases.

where C' depends on d.

where C' depends on d.

3.1 Correctors: The Case d > 3

For u € L'(R?) and z € Z%, define
u(z) :/ u(z) de. (3.1.1)
2+Q1

We will see later that Theorem [3.0.1]can be proven under the assumption that 4(0) =
0 by applying the Caccioppoli inequality in Theorem[2.2.1)as well as a discrete Sobolev
inequality to u. However, we cannot assume that @(0) = 0. Furthermore, we cannot
apply the argument to u — 4(0), as this function would not vanish on the obstacles.

To circumvent this issue, we define a matrix of corrector functions M" which also
vanishes on the obstacles. By choosing o € R such that w = u — M"« satisfies
w(0) = 0 and w = 0 in RN\w,,, we will then be able to prove Theorem . The
corrector functions are defined using solutions to an exterior problem.

16



Lemma 3.1.1. Suppose d > 3. For k = 1,....d, let (wy,m;) € HY(RN\T;RY) x
L2(RAT) solve the exterior problem

—Awy, +Vm, =0 m Rd\T
div(wy) =0 in RN\T

3.1.2
w =0 on 0T ( )
wE — e, as |x| — oo.
Then (wy, 7y) satisfies at infinity
1 Fy 1
wk:ek_QSdrd_2 (d—2+(Fk.er)er>+O(_7’d_1>’
1 1
Tk — (Fk GT)—FO(—),
G pd—1 d
ar : (3.1.3)

(Fy +d(Fy - e,)e,) + O (i) :

— —me, = ————
or " 28, rd-1 rd

where e, is the radial unit vector, Sy is the area of the unit sphere in R? and
8wk
or \ On ( )

Fy e, = Vuwy - Vw;. (3.1.5)

Moreover,

Proof. See [1]. O

For d > 3, we define correctors (wy, 7)) by

w) = ey, ) —Aw! + V! =0 .
x
U}k = Wg <—) wn _ O
" in By/4\nT, {W’f] _0 in nT
s

(3.1.6)
Since w)! = 1 on 9Y, we can extend (w}, 7}) to R? periodically.

Lemma 3.1.2. Assume d > 3. Let (w],m}) be defined by (3.1.6) and extended
periodically to RY. Then

—Aw] + XV = 172Chep, + div(f) in Wi,
div(wy) =0 in wyy, (3.1.7)

n_ - d
w! =0 in R\wy ,

17



where C, € R™? is invertible, x is the Y -periodic characteristic function such that

1 in By \nT),
X =

0 elsewhere in 'Y, (318)
and f, is 'Y -periodic and satisfies
£ < Cn*? in Y\nT, (3.1.9)
where C' depends only on d and T'. Furthermore,

1/2 iy
(][ IVwZIQ) <Cn'7,
Y

(3.1.10)
where C depends only on d and T'.

Proof. Let ¢ € C*(R% R?) be Y-periodic with ¢ = 0 in R*\w;,. We need to show
that

/VwZ~chdw—/XWZV-cpdx:nd_QC*ek'/cpdx—/f,?-Vgpdx, (3.1.11)
Y Y Y Y

where C, is invertible and f;! satisfies (3.1.9). We begin by observing that

/VwZ-Vgpda:—/XWZV-goda:
Y Y

:/ Vw] - Vedr +/
Bia\nT

B1/3\Bi/4
n
— / T,V - pdx
Byys\nT

" n
:/ Oy min —][ <8wk - WZH) ~pdo
OB 4 on 0By 4 on
n
—l—][ (ka —WZN) do / odo
9By /4 on 9B, /4

+ / Vuw) - Vedz
B1/3\B1/4

=10+ 1+ Is.
For I3, we note that (3.1.3]) implies

Vw)! - Vedr

[Vwjl| < Cn™? in Bi/3\Bi/a. (3.1.12)

18



We will now deal with I;. Observe that (3.1.3) implies

dwyl n ][ (C%UZ n ))
—= —7min— —=E —7'n
|/631/4 ( on g 9B 4 on b

S 2|8Bl/4| max

(agff _ ﬁgn) ()

BBy (3.1.13)
1 f??l)k
_ 210B S (2
o5 gy |5 (G =) @
Therefore
nlon? [ jo-al
= Cn‘“/ (z-n)l —af (3.1.14)
8B1/4
<ci ([ Je-al+ [ 94l
By B4
for any o € R?. Choosing o = me © gives
<o [ vl (3.1.15)

By

It remains to deal with I,. Note that

n
][ (awk — ﬁZn) / p = nd_2/ (% — Wkn) ][ . (3.1.16)
051/, \ ON 9B1/4 0By jam \ O 9B/,

Since (wg, ) satisfies —Awy + Vr, = 0 in B,\B, for any 1/4 < r < s < o0, it

follows that
— — N = — — N
9B /(an) on 0B, on

1
Y (3.1.17)
QSd 0B;

= C’*ek
where C, is the matrix whose columns are the vectors Fj given by (3.1.4). Next,

observe
f . (& n)
Y= T-n)p
9B, 4 0B1/4 Jos,,,

:dC’d][ go—i—C'd][ x -V,
Bya By

(3.1.18)
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where Cy = |By|/|0By|. Thus we can write

1

][ SO_/SD'SdCd][ W—W/ '+Cd][ |z - Ve
0By 4 Y B4 d Biya
<o [1vel+ [1o-v4).
Y Y
It follows from ((3.1.16)), (3.1.17), and (3.1.19)) that
n

0By /4 on 0By 4 0B/ (4n) 331/4

=1"2Chey - (( ) + 90) (3.1.20)
831/4 Y
:nd_20*€k'/ 90—/ gLV,
Y Y

where |g]| < Cn?=2. We obtain from (3.1.12)), (3.1.15)), and ([3.1.20)).

It remains to show C., is invertible. We will show C, is symmetric and positive-
definite. Symmetry follows from . Let W be the matrix whose columns are wy,
given by . We must show

(3.1.19)

£-Cuf = [V(WE)? > eolé? (3.1.21)
RA\T

for any ¢ € RY. Tt suffices to consider |¢] = 1. Suppose (3.1.21)) does not hold. Since
V(W¢) is continuous as a function of £, we must have

/Rd\T IV(WE? =0 (3.1.22)

for some ¢ € R? with [¢] = 1. In particular, [V(WE)| = 0 for all x € R\T. This is
a contradiction, because wy = 0 on J7T and wy = e; at infinity. Therefore, we obtain
(13.1.21)).

Finally, a simple energy estimate shows that (3.1.10) holds. Indeed, using w; as
a test function in ([3.1.7)) yields

[rwutp =t [ - coo- / fi -V
- (][ |w"|2) oyt (f |w|2) (3.1.23)
< oy’ (][ |vwg|2)
Y
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Given 1 > 0, we define M7 € H'(wy,; R¥?) to be the matrix whose columns are
the correctors wy.

Lemma 3.1.3. Assume d > 3. The matriz ]/\4\77(0) 15 tnvertible for sufficiently small
n, and -
|M"(0)7] < C, (3.1.24)

where the constant C' is independent of 1.

/wZ—ek
Y

Proof. We have

|, (0) — ex| =

(3.1.25)
§/ 1+/ ]w,Z—ek\—k/ |w)! — ex.
nT By4\nT B1/3\B1/4
Using (3.1.3)), we find
/ lwy — ey < On*2 (3.1.26)
B1/3\B1/4
and
[ owi-al=nt[ e
By/4\nT Bijam\T
1
g [ 1 4 (3.1.27)
<Cn /1 L dr
It follows that -
|M"(0) — I| < On?2, (3.1.28)
which gives the invertibility of M 1(0) for small 1 as well as ([3.1.24]). O

3.2 Correctors: The Case d = 2

We will now define the corrector matrix in the case d = 2. The correctors are again
defined using the solutions of an exterior problem.

Lemma 3.2.1. Suppose d = 2. Let (wy,m) € HY(R?*\T;R?) x L*(R*\T) solve the
exterior problem
—Awy, +Vm, =0 in R*\T,
div(wg) =0 in R*\T, (3.2.1)
w, =0 on OT.
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Then (wy, Ty) satisfies at infinity

1 1 1
= —1
Wy Uk+471’ n(r )e;.c—l—4 (e - er)er+0<r)

1 e e, 1
- o=
= o T, + <r2) ’

. (3.2.2)
Vwk =0 <—) ,
r
oy ke = —(ex +2(ex - er)e,) + O <r2> :
where v, € R?.
Proof. See [9]. O
For d = 2, we define the correctors (wy, ) by
wl = e . —Aw! + V! =0 :
(i e B0 B
W — 4r we [ E
F ()] \n ‘ wp=0 .
, An p in By/4\nT, =0 in nT.
7Tk g 7Tk‘ —
()| \n 523

As before, we extend (w), 7)) periodically to R2.

Lemma 3.2.2. Assume d = 2. Let (w],n]) be defined by (3.2.3) and extended
periodically to R?. Then

—Aw)] 4+ xVr] = 4n| In(n)| ter + div(f) in wi,
div(wy) =0 N wi gy, (3.2.4)

n_ 2
w, =0 in R*\wi ,

where x s the Y -periodic characteristic function such that

1 m B1/4\7]T,
= 3.2.5
X {0 elsewhere in 'Y, ( )
and f, is Y -periodic and satisfies
< Clin(m)[™ in Y\, (3.2.6)

where C depends only on d and T. Furthermore,

(][ |Vw"]2) < C|1n(n)| 72, (3.2.7)

where C' depends only on d and T'.
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Proof. Let p € C°°(R?* R?) be Y-periodic with ¢ = 0 in R*\w;,. We need to show
that

/ Vuw! - Vedr — / XTIV - pdx = 47| In(n)| ey / pdr — / - Vedr, (3.2.8)
Y Y Y Y
where f;! satisfies (3.2.6). We begin by observing that

/VwZ-Vgoda:—/XWZV~godx
Y %

= / Vw] - Vedz + /
B1/4\77T

Vw] - Vydzx
B1/3\B1/4
- / TV - pdr

Bis\nT

+ / Vw] - Vedx
B1/3\B1/4

=L+ L+ 1
For I3, we note that implies

[Vw)| < ClIn(n)] ™ in By/3\Bi/a.

We will now deal with I;. Observe that implies

n n
fo (Gt =rtn= o, (5 =min))
0By, on 0By,

< 2/0By4| max

(3.2.9)

n

(25 ) o

336(931/4
47 owy,

= 2|0B -
0Byl B T ( on ”’“”) )

< ClIn(n)| "

(3.2.10)
Therefore
< Cl)l ™ [ fo-a
0B1/4
< (| 1n(n)|‘1/ (z-n)lp —af (3.2.11)

0B14

< Oy (/ |so—a|+/ |W|>
By By
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for any o € R%. Choosing o = wa @ gives

Bl < el [ (9l (3.2.12)

Bija

It remains to deal with I,. Note that

ow; ow
oGt -mn) [ omsmmi [ (G ema)f
9B, /4 n 9B, /4 9B /(an) n 9B, /4

(3.2.13)
Since (wg, ) satisfies —Awy + V= 0 in B,\B, for any 1/4 < r < s < o0, it
follows that
d/f é?luk é)lUk
— —mn = — —mn
OB, /4y O o On
1
_ L er+ 20 (3.2.14)
47T 0B,
= €.
Next, observe
4
¥ =15 (- n)p
0B1/4 | 1/4| OB /4 (32 15)
= 2(:23;7[ -+ (72 J(? X - ‘799,
By By
where Cy = |By|/|0B;|. Thus we can write
1
f w—/w‘ §202][ Y= 5e 90’+02][ [z - Vol
OB1 /4 Y Bi/a 2JY Bi/a (3.2.16)

<c([1vac [ levi).

It follows from ((3.2.13)), (3.2.14)), and (3.2.16]) that

n
][ <% - WZ) . / @ = 4| ]n(n)‘l/ (% - 7Tk”> . ][ ©
9By /4 on 9B 4 9By /(an) on 9By /4
—aru e (£ o= [o)+ [ )
9B 4 Y Y

— x| In(n)| er / o / -
Y Y

(3.2.17)

24



where |g | < C|In(n)|~'. We obtain (3.2.4) from (3.2.9), (3.2.12)), and (3.2.17). To
show (3.2.7)), we use w as a test function in (3.2.4) to obtain

][Y|Vw2|2:47r|ln(n)\_l\/w2-6k+/div(f,?)~w”
< C|In(n) (][ \w"\2> + C|1n(n) (][ wa"P) (3.2.18)
1/2
< Clin(m)| 2 (f |sz|2) |
Y

As before, we will need invertibility of M "(0), where M" is the matrix whose
columns are the correctors wy.

]

Lemma 3.2.3. Assume d = 2. The matrix ]\/4\’7(0) 15 invertible for sufficiently small

n, and .
|IM"(0)7Y < C, (3.2.19)

where the constant C' is independent of 7.

/wZ—ek
Y

Proof. We have

|5 (0) — ex| =

(3.2.20)
g/ 1+/ !wZ—ekH/ |wy — exl.
nT By 4\nT B1/3\B1/4
Using (3.2.2)), we find
|wi — ex| < |By1s\Biy4] max |w] — ey
/31/3\31 P [T o, (3.2.21)
< C|In(n)|™
and
/ lw)! — ep| = 772/ }47r| 1n(n)|_1wk — e
By/4\nT B1um\T
i 3.2.22
S e
1
< Cln(n)[~.
It follows that .
|M"(0) — I < C|In(n)| (3.2.23)
which gives the invertibility of M 1(0) for small n as well as (3.2.19)). O
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3.3 Proofs of Large-scale Estimates: Critical and Subcritical Cases

We now introduce some results from [I7] to be used in the proofs of Theorems [3.0.]]
and 3.0.2

Lemma 3.3.1. Let u € H(Q,42), where r > 1. Then

1/2 1/2
|u)? <C max |u(z)|+C |Vul? , (3.3.1)
, 2€Z9NQr 42 Qri2

where C' depends only on d.
Proof. See [17]. O

For a function g defined on R? or Z4, we define

Ajg(x) = g(z +e;) — g(x) (3.3.2)
for 1 < j <d, where e; = (0,...,1,...,0) with 1 in the jth position. For a multi-
index v = (71,72, - - -, 7a), We use the notation

Ag=AT"AP---Alg (3.3.3)

if || > 1, and A?g = g if v = 0. For an integer k > 0, let 9"g = (A7)g}, =1 and
1/2

DFgl = D 1A% ) . (3.3.4)

Iv|=k

It follows from the Fundamental Theorem of Calculus that

1/2
9152 < ( / IV*ul? da:) (3.3.5)
2+3Q1

for any z € Z.

Lemma 3.3.2. Let u € H'(QR) for some R > 100d. Then, for any r € [1, R/100],

1/2 N 1/2 1/2
( lu — a(o)P) <Cr) R <][ \vakuE) +C <][ |Vu]2) , (3.3.6)
Qr k= QR/Q 3r

0

where N = [d/2] + 1 and C' depends only on d.
Proof. See [17T]. O

The following lemma provides a discrete Sobolev inequality for functions defined
on Z.
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Lemma 3.3.3. Let g be a function defined on Z¢. Then, for R > 3d,

1/2
N
1
max () <O R S @eer] . @37
2€749NQR — R y
2€Z°NQ2R

where N = [d/2] + 1 and C' depends only on d.
Proof. See [18]. O

We are now ready to give the proof of Theorem |3.0.1}

Proof of Theorem |3.0.1. By rescaling, we may assume € = 1. Since both sides of
only feature Vu, it is clear that this rescaling does not affect the estimate.
Note that after rescaling, the condition ¢ < R < . becomes 1 < R < Kv; L. 'We can
also assume R is a large integer satisfying R > §—2d for some small §. If R is not an
integer, we can cover R by cubes with integer side lengths. If 1 < r < R < §2d,
then the estimate is trivial. Indeed, in this case

1/2 Qx| 1/2
(f,mr) = (@i, )
r ‘QT’ Qr
1/2
<C (][ \Vu\2> ,
where C' depends only on d and 9.

Define w = u — M"a, where o € R? is chosen so that @(0) = 0. It follows from

(3.1.24) that

(3.3.8)

la| < Cla(0)). (3.3.9)
Furthermore, Lemmas [3.1.2 and [3.2.2] imply that there exists ¢ € L*(R?) such that
—Aw+Vqg=F"+div(f")  in Qp",
div(w) = 0 in Q" (3.3.10)
w=20 in Qr N Owi,,

where F and f7 are Y-periodic and satisfy
[F" 4+ | "] < Cla|K;. (3.3.11)
For 1 < p < R/2, the Caccioppoli inequality (2.2.2)) and (3.3.11)) imply

(L) <5 (1

Let v be a multi-index with 1 < |y| < d. Since F'" and f" are Y-periodic, we have
—A(A"w) 4+ V(A7) =0 in Qpr—3jy N w1y,
div(A7w) =0 in Qr—3y Nwiy, (3.3.13)
ATw =0 on Qr—3y N 0wy .

1/2
]w[2> + Cplal K} (3.3.12)
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In particular, if £ > 1, we may apply Theorem to O%w to find

1/2 1/2
voul?| < f O w?
Qp Q2p
1/2
< f Vo twl?)
Q2p+3

for any 1 < p < (R — 3d)/2, where for the second inequality we have used the

observation that
1/2 1/2
(/ |Ajw|2) < c(/ va|2> | (3.3.15)
z+Q1 2+3Q1

By induction, we obtain

1/2 o 1/2
|V w|? < — ][ |Vw|? (3.3.16)
Qo P Qcp

for any 0 < k < d, where C' depends only on d. Let r € [1,0R/2]. Using (3.3.12)),
(3.3.16)), and (3.3.6) applied to w, we see that

2 o 1/2
(][ |Vw|2> < <][ ]w|2> + Crlo|K?
' N 2 1/2
< C'ZRk (][ \V@kwlz) + — (][ |Vw\2> +Crlo|K?
k=0 Q1006 R r 6r
V2 o 1/2
<C (][ |Vw|2) + = (][ |Vw|2) + CR|a|K?,
QR r 67
where we have used the fact that w(0) = 0. It follows that
1/2 1/2 1/2
(f wae) < (f wek) 4 (f 1wrmae)
T e QT
12 1/2
<c <][ |Vu|2> 4 C (][ |Vu|2) L CRoJK?  (33.18)
QR r 61

ve(f |V<Mﬂa>|2)1/27

where the Y-periodicity of M" has been used. Then by using the corrector bounds

(3.1.10) and (3.2.7)) as well as (3.3.9) to bound |«|, we obtain

1/2 1/2 C 1/2
(][ |w|2> <C (][ |Vu|2> +— (][ |Vu|2> + CK,la(0)]. (3.3.19)
r QR 67
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For the last term, we note that (3.3.16)) holds with w replaced by u. Together with
the discrete Sobolev inequality (3.3.7)) and (3.3.5)), we see that

1/2

GOl <Y R = S tae)P

k=0 2€Z4NQas R

1/2 N 1/2
C (7[ |uy2) +CY R (][ |V8k_1u|2)
Q3sr k=1 Q3sR
1/2 1/2 3.3.20
<c (][ |u|2) +CR ][ Va2 (3.3.20)
Qr QRry/2

1/2
<c(f W)
"’ 1/2
< K;! (][ yw?)

where the Caccioppoli inequality and the Poincaré inequality (2.0.1))-(2.0.2)) have been
used. From ({3.3.19) and (3.3.20)), it follows that

(][ |Vu|2> " <C <]£2R |Vu|2>1/2 +g (][6 |Vu|2>1/2 (3.3.21)

for any 1 <r < JR/2. In particular, for any 1 < s < R, we have

1/2 12~ 1/2
sup (][ |Vu|2) SC’(][ |Vu|2) + — sup (][ |Vu|2> . (3.3.22)
ssr<hi v Qr S s<r<R .

where C' depends only on d. By choosing s sufficiently large, we obtain

1/2 1/2
sup (][ |Vu|2) <C <][ |Vu|2> : (3.3.23)
s<r<R » R

Finally, if 1 <r <s, then

()< (31 )

IN

1/2
< |Vu|2) (3.3.24)
1/2
<o(f war)
Qr
where we have used (3.3.23)) in the last inequality. [
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Proof of Theorem[3.0.3 By rescaling, we may assume ¢ = 1. We may also assume R
is a large integer satisfying R > 62d for some small 6. Let 1 < r < §R/2. Then by
the discrete Sobolev inequality (3.3.7),

max |u(z)| < max |au(2)]

2€Z24NQ 712 2€Z4NQs R
1/2
al 1
k ko 2
<SCY R4 Dl 10%a()] (3.3.25)
k=0 ZedeQQ(SR

1/2 N 1/2
<C (][ |u|2) +CY R (][ |V8k_1u|2) ,
Q3sr k=1 Q3R

where N = [d/2] + 1 and (3.3.5) has been used. As before, (3.3.16) holds with w
replaced by u. Using this, (3.3.1]), and (3.3.25)), we obtain

1/2 1/2 1/2 1/2
(][ |u|2> go(][ |u|2) +CR ][ IV +0<][ |vuy2)
r Qr Qr/2 3r
celf) "5 )
QR r 6r
(3.3.26)

As in the proof of Theorem [3.0.1] the result follows from (i3.3.26]). O

Copyright© Jamison R. Wallace, 2024.
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Chapter 4 Large-scale Estimates: Supercritical Case

In this chapter, we will complete the proofs of Theorems |1.3.3| and [1.3.4] by showing
that the large-scale estimates and also hold in the supercritical case,
i.e. when R > o.. We will utilize an approach from [I5], which treats the Darcy law
case n = 1. First, we will use a reverse Holder inequality to establish a boundary
layer estimate for solutions to the Stokes equations in a perforated cube.

4.1 Reverse Holder Inequalities

Given a function u. € H'(Qg) for some R > ¢, define

ge(x) = (JZQ(M)(UEW%I + Iual)g)m- (4.1.1)

We wish to establish the following reverse Holder inequality.

Theorem 4.1.1. Let (u.,p.) € HY(Q5p; RY) x L2(Q37) be a weak solution of
in Q5p with u. =0 on Qo N Ow,,y, where 0 < e <1, R > ¢, and 0. < 1. Let g. be
defined by . Then there exist ¢ > 2 and C > 0 such that

<][QR |ge|q) Uq <C <]€?2R(05|Vu5| + |u€|)2)1/2, (4.1.2)

where C' depends only on d and T'.
We will need a restriction operator defined in [2].

Lemma 4.1.2. Suppose 0 < e, < 1 satisfy 0. < 1. Then for any r > ¢, there exists
a linear operator R. : H}(Q,; RY) — HL(Q>"; R?) such that

1. Ifu e HJ(Q>), then Rou = u in Q5", where u has been extended by zero into
the obstacles,

2. Ifdiv(u) =0 in Q,, then div(R.u) = 0 in Q2", and

r

3. IV (Rew)|| r2gzmy < C([[Vull 2o, + U%HUHLQ(QT)); where C' does not depend on
£.

Proof. See [2]. O
Lemma 4.1.3. Let (v,7) € HY(Q4; R?Y) x L*(Q;) be a weak solution of

—Av+V7=0 mn Qy,
div(v) =0 in Q, (4.1.3)
v=nh on 0Qy,
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for some t > 0, where h € H*(0Q4; R?) satisfies the compatibility condition faQt h -
ndo = 0. Then there exist qo € (1,2) and C > 0, depending only on d, such that

1/2 1/q0
<][ W) <c <][ quo) , (4.1.4)
t Q¢
1/2 1/a
(f)ﬁmﬁ) f;C(fj|VmﬁH> (4.1.5)
t Q1

Proof. See [15]. O

and

We will use the following observation: for ¢y given in (|1.3.1)), we have
dist(0Qs; R\w. ) > coe if  dist(¢,eN) < ¢pe. (4.1.6)

Lemma 4.1.4. Let (ue,p.) € H'(Q5m; R?Y) x L*(Q57) be a weak solution of
in Qyp with u: =0 on Qap N 0w, where 0 < e <1, R€eN, and 0. < 1. Then

1/2 1/2 1/q0
o8 (][ |Vu6|2> +<][ |ug|2) < Co. (][ |Vu5|q°)
Qr Qr Q2r
1/qo0
+C<][ |u5|q0) ,
Q2r

where qo € (1,2) is given by Lemma and C' depends only on d and T

(4.1.7)

Proof. We will show that there exists ¢ € [R,2R] such that dist(¢,eN) < ¢pe and

/ (0| V| + |u.|®) dor < 01/ (0™ |V | + [u|) d, (4.18)
o0Q¢

2R

where C depends on d and T'. Suppose to the contrary that for any t € [R, 2R] with
dist(t, eN) < cpe,

/ (UEOIVus\qur\us\qo)da>01/ (0™ V| dar + [uc]®) da
o0Qt

2R

Then integrating the above inequality with respect to ¢ over the set
E.r={t € (R,2R) : dist(t,eN) < ¢pe}

and using the observation that |E. g| > ¢ > 0 gives

/ (9| + 1| dor > 0201/ (00 Vul® 1 [w®)de,  (4.1.9)
Q2r\QR Q2r

where C5 depends only on d and ¢y. By choosing C} = C%, we reach a contradiction.
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Next, let (v,7) be a weak solution of (4.1.3) in @; with Dirichlet data h = u. on
0Q¢. Let v. = R.(v), where R, is the restriction operator defined in Lemma m
Since u. — v, satisfies

—A(ue —v.) + Vp. = Av, in Q;",
div(ue —v:) =0 in Q7" (4.1.10)

U — v, = 0 on 9Q;",

we can use u, — v, as a test function in (4.1.10)) to see that

V(u. —v)]? = — Vo, - V(us — v,
/Q V=) y (e — v.) i

< IV (ue — UE)HLQ(Q?”)

VUSHLQ(Q?U).

Therefore
IVul[p2sm) < 2[[Vvel| 2 gsn

1 (4.1.12)
< ClIVullzz@n + —lvllz@n),

£

where we have used the bounds for R. given in Lemma in the second step.
Together with Lemma [4.1.3| and (4.1.8]), we conclude

< C(oe||Vollrzn + lvllcz@u)
S C<U€Hvtanus‘|[,qo(aQt) + HUEHqu(aQt)) (4113)
< C(0e|| Ve Lo (Qur) + [[tell 290 (@un))-

‘76||vu6||L2(QR) + ||U€||L2(QR)

O

Remark 4.1.5. Let (u., p.) be a weak solution of (1.3.12)) in Q=" (zo,4R) with u. =0
on Q(xg,4R) N Ow, ), where 5 € R4, 0 < e <1, R> 2¢, and 0. < 1. Then

1/2 1/2 l/q()
0. (][ |Vus|2> +(][ |u5|2> < Co. <][ ]Vus\qo)
Q(zo,R) Q(zo,R) Q(z0,4R)
1/q0
+C’<][ ]uslq‘)) ,
Q(z0,4R)

(4.1.14)
where ¢y € (1,2) is given by Lemma [£.1.3] Indeed, this follows from (4.1.7) by
choosing 1y € €Z¢ and R, € eN such that

Q(x()u R) C Q(y07 Rl) and Q(y(b 2R1) - Q(IO, 4R)7
which is possible since R > 2¢.

Proof of Theorem[{.1.1. We may assume 0 < ¢ < ¢R where ¢ > 0 is sufficiently
small. The case cR < ¢ < R is trivial. Indeed, in this case, for any ¢ > 2, we would
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have

1/q

(]éR |ga|q> Y - (JQR (]2(175)(05|VUE| " |U5|)2>q/2> 1/g
C(JQR (]é(xﬂ)(aelvus| X |u5|>2> Q/2>

][R (][QR(JsIVuEy 4 |u€|)2) q/2> 1/
=C (]ZQR(OEIVUE\ T |u€|>2) 1/2'

Let go € (1,2) be given by Lemma [4.1.3] Define

(4.1.15)

<C

1/q0
Ge(y) = sup (][ (0| Vue| + !ugl)q°> : (4.1.16)
Q(zﬂn)

where the supremum is taken over all cubes Q(z,7) satisfying y € Q(z,r), r > 2¢,
and Q(z,7) C Qar. We will show that

(]QR !Ge\q> " <C (izm |GE|2> 1/2 (4.1.17)

for some ¢ > 2 depending only on d and 7. For now, assume (4.1.17)) holds. Since
the Hardy-Littlewood maximal operator M is bounded on L*% we have

1/2 2/qo 1/2
Q2r Q2r \ Q(zr) Q(z,r)

1/2
= (][ | M (0| Vue| + Iu5|)q°)|2/q°) (4.1.18)
Q2r
1/2
S C (][ (Ua|vua| + |ua|)2> .
Q2r
Also, by (ETTH),
1/2
ge\X SC(][ Usvu5+us 2)
v Q<%2€>( Vil D (4.1.19)
< CG.(x)

for any x € Q. Together with (4.1.17]) and (4.1.18]), we see that

1/q 1/q
<][ Igs|q> <C (][ IGEIq) 7
Qr Qr
1/2
<C (][ (0| Vu| + |u€|)2) ,
Q2R
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which yields the desired estimate (4.1.2])
It remains to prove (4.1.17)). By the self-improving property of weak reverse Holder
inequalities, it suffices to show that

1/2 1/q0
(][ |G6|2) <C (f |G6|q0) (4.1.21)
Q(zt) Q(z,8t)

for any x € Qr and 0 < t < cR. We divide the proof into two cases.

Case 1. Suppose 0 < t < 4e. Suppose y,z € Q(x,t). Observe that if a cube
Q(z0,7) contains z and satisfies r > 2¢, then Q(z,7) C Q(z,r+t) and y € Q(x,r+t).
Taking supremum over such cubes, we find

1/q0
o <o f vl +lupn)
Q(z,r+t)

1/q0
< Cy sup (][ (0:|Vu.| + |u€|)q°>
Q(yo,r)
S OlGE(y)7

where the supremum in the second line is taken over cubes Q(yo, ) containing y and
satisfying r > 2e and Q(yo,7) C Q2r. Since the order of y and z in this argument
did not matter, we conclude that there exist Cy > 0 and C; > 0 depending only on
d and T such that

CoG:(y) < Ge(2) < C1G.(y) fory,z € Q(x,t). (4.1.23)

As a result, we immediately obtain (4.1.21]) in this case.
Case 2. Suppose 4e <t < cR. For y € Q(x,t), write

Ge(y) = max(G(y), GP(y)), (4.1.24)

£

(4.1.22)

where G is defined as in (4.1.16[), but with the supremum taken over all cubes
Q(z,r) satisfying y € Q(z,7), r > 2¢, and Q(z,r) C Q(x,2t). By (4.1.14)),

1/2 1/2
(f |GS>|2) <c (f (0. V] + |ua|>2)
Q(Ivt) ./Ezt)

1/q0

<C ( (0.|Vue| + |u5|)q°) (4.1.25)

Q(x,8t)

1/qo
C’( |Ge |q0) )
Q(x,8t)
As in case 1,

GO(y) ~ G2 (2) fory,z € Q(x,1). (4.1.26)

Hence we have

1/2 1/q0
(f |G9>|2) sc(f |G§2>|q°)
Q(z,t) Q(z,t)
1/qo0
SC(f |G5|q0) .
Q(z,t)
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]

The following corollary gives a boundary layer estimate for solutions to the Stokes
equations in a perforated cube.

Corollary 4.1.6. Let (u.,p.) € HY(Q3";RY) x L2(Q3") be a weak solution of
in Q3" with u. =0 on Q3 N Ow:,,, where 0 < 0. < 1. Then

1/2 12
/ (0| Viue| + Jucl)? < 0o (/ (0| Vue| + |u€|)2> (4.1.28)
Q1+6\Q1-5 Q3

for any 6 € (e,1], where C' and ~ depend only on d and T

Proof. We can assume § < 1/4. The case 0 > 1/4 is trivial, as in this case (4.1.28])
follows immediately by expanding the domain of integration from Qq,5\Q1_s to Q3.
By Fubini’s Theorem and Holder’s inequality;,

1/2 1/2

( [ v+ |ue|>2> <c ( / |g5|2>

Q1+5\Q1-5 Q1+5\Q1-5

1/q

(/ |g€‘q> (4129)

Q3/2

1/q
<co ( / rgswq)
Q3/2

where ¢ > 2 is given by Theorem 1) and v = 5 — % > 0. the desired estimate
follows from (4.1.2)). O]

Q=

< C|Q1+§\Q175|é_

4.2 Compactness

As in the previous chapter, we will need a matrix of correctors. We define (W, 117) €
H' (w1, R x L2(wy ,; RY) by

—AW+VII! = K2e;  in Y\nT,
div(W") =0 in Y\nT, (4.2.1)
W!'=0 on onT,

where W." is the ith column of W and II} is the entry in the ith position of IT7, and
we have extended periodically to R

Remark 4.2.1. An energy estimate combined with the Poincaré inequality (2.0.1]) -
(12.0.2) yields

||Wn||L2(Q1) S C and ||VW77”L2(Q1) S CKn, (422)

where C' depends only on d and T'.
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Remark 4.2.2. Tt follows from Remark [4.2.1] that
1117 r2(\nry < CK,y, (4.2.3)

where C' depends only on d and T. To see this, apply Lemma to find v €
H(Q\nT;R¥4) such that

div(v) =117  in Q1\nT, (4.2.4)
and
Vol 2@y < CIII L2 (@uvnry- (4.2.5)
Using the equation for the correctors (4.2.1)), we find that
gy, = [ 07-divio

1\nT
< VI g1 @i VUl 22(@uvim)
< (VW[ 2 @uvnry + KON 2\

We obtain (4.2.3)) from (4.2.2)) and (4.2.6)).

Lemma 4.2.3. The matriz of correctors W7 satisfies W7 — C;t in L*(Y) asn — 0,
where C, is the matrixz in ifd>3, and C, = 4rnl if d = 2.

(4.2.6)

Proof. Let (w}, /) be the correctors defined in (3.1.6) if d > 3 or (3.2.3)) if d = 2.
Using w)! as a test function in (4.2.1)) yields

/ VW Vuw] = Kg/ e wy. (4.2.7)
Y Y

Similarly, using W) as a test function in (3.1.7)) or (3.2.4) yields

/VWi”‘VwZ=K$/0*6k~Wi”—/f,’j-VWﬁ, (4.2.8)
Y Y Y

where |f7] < K?. By subtracting equations (4.2.7) and (4.2.8), we obtain

c. [wr— [ ar
Y Y

< Kf/ Tl
Y

1/2 4.2.9
Y
< CK,,

where we have used (4.2.2)) in the last inequality. It is shown in [I] that

M" — I'in L*(Y) asn — 0 (4.2.10)
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if d > 3. The convergence still holds when d = 2. This follows from the observation
that

lw] — ex|? < |Bis\Bia max |w] — eg|?
/31/3\31/4 ‘ / / ©€0B1/4 g (4.2.11)

< C|In(y)|~?

[ w-al =g [ i)t of
By/4\nT Bijam\T

ﬁ
< C772|1n(77)\_2/ rdr
1
< C|In(n)| ™,
where the estimates for the correctors (3.2.2)) have been used. We find that

()= (e o) | for-e
wles ([ e ae) (42.13)

1/2
smq+mr(/MW—m),
Y

where we have used (4.2.2) and (4.2.9). In view of 4.2.10| letting n — 0 in (4.2.13])
yields the result. O]

and

(4.2.12)

Remark 4.2.4. Let (u.,p.) be a weak solution to (1.3.12)) in Q%". We extend u,. to
Qr by zero and still denote the extension by u.. When necessary, we will use P. to
denote the extension of the pressure p. defined by

pe(z) if v € Q3"
][ Pe if 2 € e(nT + z,) and e(Y + 2;) C Qg for some z;, € Z°.
(Y\nT+z)
(4.2.14)

P.(x) =

Observe that if e(Y + z;,) C Qg for some z, € Z4, then

1
fo P —d(/ wef A )
e(Y+zx) (Y\nT+zy) (NT+zi) J e(Y\nT+zx)
_ OdYWT+%|f m+ka+%Hf m)
(Y\nT+2zx) e(Y\nT+zk)

= ][ Pe
e(Y\nT+z)
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Then if R € €N, it follows that

P. = ][ P.
][R ; e(Y+zg)

=) ][ P (4.2.15)
e(Y\nT+z)

2k

= ][ De,
&€,1M

R
where the sum is taken over all z, € Z% such that e(Y + 2;) C Q.
In what follows, we will use rescaled velocity terms. For a solution (u.,p.) to
(11.3.3), we write

Ue

i, = (4.2.16)

0-_62.
We will need the following compactness theorem.

Theorem 4.2.5. Let {(u.,,p.,)} be a sequence of weak solutions to

—Au, + Vp., =0 in Q7"
div(u,) =0 in Q7", (4.2.17)

ue; =0 on Q4 N Owe; 4,
where €5 — 0 and n; — 0 satisfying 0., — 0. Assume
e | 22 (Qa) < 02 (4.2.18)

Then there exists a subsequence, still denoted (ue,, pe;), and py € H'(Q1) such that

P, —][ P., = po in L*(Q1), (4.2.19)
Q1
and
e, + W (x/2;)Vpo — 0 in L*(Q1;R?), (4.2.20)
where P., is the extension of p., defined in (4.2.14)).
Proof. The assumption (4.2.18)) implies

iz < ©: (1221)
Note that Theorem [2.1.1| implies
Hst _]é P5j||L2(Q1) < CJ;_IHVU&].H[;(QI) <C, (4'2'22)
1
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where we have summed the Caccioppoli inequality on cubes of size o, contained
in ()1 to justify the second step. Therefore, by passing to a subsequence, we can
assume

., = up weakly in L*(Q1;R?) (4.2.23)

and
P, — ][ P., — py weakly in L*(Q1). (4.2.24)
@

We can also assume that le po = 0.
Step 1. We show that

P, —][ P, —py  in L*(Qn). (4.2.25)

Let v € H}(Qq;R?) and let R, be the restriction operator in Lemma . Then

VP, V) i-1@uyxagul = (Ve Be, (0)) s i)y @)
= ’<Aﬂ/5j7 R!:‘j (¢)>H71(Q‘ii”7j)XHé(Qij’”j)‘

< HVﬂstp(Qiﬂ”"ﬂ')HVRej (1/1)”112@?,%)
- 1
< UV g, (19900 + - Wlren )
€
(4.2.26)
Suppose to the contrary that (4.2.25)) does not hold. Since
1P, - 72 P = pollirn < CIVP, —Vpollnr@ys  (4:227)
1

it follows that VP., does not converge to Vpy in H~'(Q1). In particular, there exists
a sequence {1;} C H}(Qq;R?) satisfying 1¥jllHa@y = 1 and, after passing to a
subsequence,

(VP = Vo, ¥) -1 (0uxmian) = Co > 0. (4.2.28)

By passing to another subsequence we can assume 1, — ¥y weakly in H}(Q;R?).
We decompose

<VP vp07wj> Q1)><H1(Q1 <VP€j71/}j ¢0> Ql)XH (Q1)
—(VD0, 5 = P0) -1(Qu)x H2(Q1) (4.2.29)
+(VE, = Vo, ¥o) n-1Quxai(@):

Since the weak convergence in (4.2.24)) implies

<VP6]- - VP07¢O>H*1(Q1)><H§(Q1) — 0, (4.2.30)
it follows from (4.2.28)) that
(VP b = do) n-1@uyxmi@n| = Co/2 (4.2.31)
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whenever j is sufficiently large. However, using ¢ = 1; — 1g in (4.2.26) yields

(VP 05 = o) -1quyx i an)| < ClIVi, [l 20 IV (05 — o)l 2
+ Co3 Vi, | 2on 195 — Yollz@n  (4.2.32)
< Co,,.

Since 0., — 0 as j — oo, we reach a contradiction.
Step 2. We show that

U, + W (z/e;)Vpo — 0 in L*(Q1; RY). (4.2.33)
By the Poincaré inequality, we have
H/&Ej + an (Z’/€j)vp0|lL2(Q1) S CUaj ||V(1~L5J + an ($/€j)vp0)‘|L2(Q1). (4234)

Let 5 € C°°(Q1) be a cutoff function satisfying ¢5; = 1 on Q1_s, ¢5 = 0 on Q1\ Q152
and |Vs| < C . To bound the right side of (4.2.34 m, we write

02 IV (i, + W (2 /23) Vo) B2

=02 [ Ve, + W (2/2) Vo) - V(@e, + W (1/e5) Vo))
Qs (4.2.35)
+o? /Q Ve, + W (2/2,)Vp0) - V((iie, + W (/=)o) (1~ 05))

=1+ 1.

We can further decompose

[17]' = U?j Vﬂfj : V(aé?jgpt;) + Ugj / V(an (x/gj)Vpo) ' V(’llngDé)
Q1 Q1

+ 02 Vi, - V(W (x/e;)V
"o (Wle/es)Vaors) (4.2.36)

to? / V(W (2/e;)Vpo) - V(W (2 /2;)Vpops)
Q1

We will treat each term separately. First, we have
I = _Ufj/ Alle; - Ue; Ps
1

=— [ Ve - Ue,ps
@ (4.2.37)

:/ (Pej _/ SJ)UEJ V%
1 Q1

— Dol - Vs
Q1
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2

as j — oo. For If ;, we have

By= =0t [ AW/ Tm) s

1

1 2
= —agj / <8—2AW”1 (x/e;)Vpo + E—VW”J' (x/aj)VZpo) e, s (4.2.38)
Q1 J J

—oZ [ W (x/g;)A(Vpo) - e, 5.

€j

Q1

Note that regularity results for the Stokes equations imply that py € C°°(R%). It
follows from the corrector estimates (4.2.2)) that

2

o,

W (x/e;)A(Vpo) - Ue, s
Q1

< CoZ W[ (g lltie, |2 (@)

<co? (4.2.39)

—0

as j — oo, where we have used the periodicity of W™ . Similarly,

2
€j

€5

2

[ ] ~
< CfHVWm||L2(Q1)||Ua]-||L2(Q1)
J
2

g_.
< C—K,, (4.2.40)
€j

= Coy
— 0

VW (z/e;)V?py - Ue,; Ps
Q1

as j — oo. It remains to deal with the first term on the right in (4.2.38)). Using
(4.2.1f), we find

2 0.2

o-. .
——6; AW (x/e;)Vpg - U, p5 = —E; (ng] —&;VII" (x/€;)) Vo - tie, s
it Jan &i" Jau
2
= | Vpo-ieps— —5 | VI (x/2;)Vpo - e, 05
Q1 J J
(4.2.41)
Integrating by parts and applying the weak convergence of 4., we see that
Vpo - Ui, 05 — — pouo - Vs as j — oo. (4.2.42)
Q1 Q1
Finally,
o2, | ) oZ | ) )
——= [ VI"(x/e;)Vpo - te,05 = — | T (x/e;) - (Vpos + Vo Vips)ile, -
€ Ju & Jau
(4.2.43)

42



By Remark |4.2.2] the right side of (4.2.43)) satisfies

2

o2 , .
—]/ % (z/e;) - (V2pows + VpoVes) e,

2
(o ) ~
< CfHH’“|!L2(Q1>|!Ue]~||L2(Q1>
J

€j 1
o2
< CﬁKnj (4.2.44)
<j
= Co,
— 0
as j — 0o, where we have used the periodicity of I1"i. Therefore
]fj — — polg - Vs as j — 0o. (4.2.45)
Q1
Next,
I = _Ugj/ Atie, - W (x/2;)Vpops
=— [ Vpe, - W"(x/e;)Vpops
@ (4.2.46)
N / (Fe; = / Po) (W (x/e5)Vipo - Vips + @sW (/) - Vpo)
1 Q1

— [ (poC.'Vpo - Vs + pspoCt - V),
Q1

where we have used (4.2.24) as well as Lemma m Finally,

Ito= =02 | AW (x/e;)Vpo) - W (x/e;)Vipows

1,5 €j
Q1

1 _ _
a2 [ AW /e Vi W (/) Vs
Q1 <J
2 , . .
_ afj/ (—VW% (a:/gj)v2p0 4 W (x/gj)A(vpo)) V. VAl (x/gj)vpo%_

€
(4.2.47)
As before, we use the corrector estimates (4.2.2) to see that

€j

o [ (B9l Vo W) AT ) - W) T

< O (e VW 2@y + W || 2@ W™ || 2 (1) (4.2.48)
S CUEj
—0

43



as 7 — 0o. We will now treat the first term in (4.2.47). Using the corrector equation
(4.2.1), we obtain

2

0-6' . A
_5_; AW (x/e;)Vpo - W (2 /e;)Vpops
J J
o2
= 5 | (K3 1— VI (2/e;)) Vo - W (2/e;) Vaops
J Q1 (4.2.49)

= [ Vpo-W"(x/c;)Vpops
o)
2

0-6]' . .
- V11" (2 /e;)Vpo - W (z/2;)Vpops.
J JQ

Integrating by parts and using the convergence of correctors in Lemma [4.2.3] we find

Vpo - W (z/e;)Vpops = —/ poW™ (x/e;) - (V?pos + VpoVips)

Q1 1
= — [ poCot - Vipops — / poC, 'Vpo - Vs
Q1 1
(4.2.50)
Since
o? o?
5—]/ VI (2/;)Vpo - W™ (2/€;)Vpops | < Cfllﬂ’”||L2<Q1)||W""||L2<Q1>
J 1 J
< Co,
— 0
(4.2.51)
as j — oo, we conclude that
Ii; = = 0 PoCIt - Vipows —/ poC, Vg - Vips. (4.2.52)
1 1
Using (4.2.37)), (4.2.45)), (4.2.46)), and (4.2.52)), we obtain
IL; —»0 asj— oo. (4.2.53)

We now wish to deal with I, ;. We begin by decomposing I, ; as

Lj=o02 [ Vi, -V(i,(1—ps)+ aﬁj V(W (x/e;)Vpo) - V(e (1 — ps))
Q1

’ Q1
w0 [ Vi VOV (/) (1 - )
Q1

w0 [ V(e /) V) - VOV (a/25) V(1 ~ 1)
Q1

(4.2.54)
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Using properties of y;s, we have
Bl <o [ Vi P- g o [ Vi, V- )
Q1 Q1
2
2 -2 % 1o~ ~
<t [ Va4 OOV el e
Q1\Q1-s5

o

SO’?],/ ]Vﬂ5]|2+CT
Q1\Q1-s

By the boundary layer estimate (4.1.28]), we have

[ s on [ v )
Q1\Q1—5

Qs

< 9.

It follows that
limsup |, ;| < C§”.

j—00
Similarly,
12, < o2 /Q V(W (2 2,) Vo) [ Vi, | (1 — )
to? /Q V(W (/) Vo) e, ||V (1 — 5)
~ JEj ~

< CU€j||Vufj||L2(Q1\Q1_a) + CT”Uaj ||L2(Q1)

gcw7+c%;
and

13,1 < o2, /Q Vi, ||V (W™ (x/2)Vpo)| (1 — ¢s)
to? /Q Vit W (/) Vol [V (1 — 3)]
2

O-Ej ~
5 INE RIS

S C(ng HVﬁJaJ HLz(Ql\Ql—é) + c
gom+c%2
It follows that

limsup |5 ;| < C§7, and limsup |3 ;| < C§”.

j—00 j—00

Finally, we write

L =0, / VW™ (x/e;)Vpo) - VW™ (x/€;)Vpo) (1 = ¢s)

1

w02, [ VOV W o)y V(1= ).
Q1
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Since W is periodic, we have

2

Uéj . .
[ Io4] < CoZ IV 12| QN\Qus] + C—IVIV |2 W [l 2(@1) (1.2.62)

O,
<Co+ OTJ'

Therefore
limsup | ;| < C4. (4.2.63)

j—00
Letting § — 0 gives (4.2.33)). O
Corollary 4.2.6. Under the same assumptions as Theorem [{.2.5, we can conclude

., - —C,'Vpy in L*(Q1;R?), (4.2.64)
where pgy is the limit in (4.2.24).
Proof. This follows from (4.2.33)) and Lemma m ]

4.3 One-step Improvement

We can now prove the following theorem, known as a one-step improvement result.

Theorem 4.3.1. Let 0 < < 1. There exist 0 € (0,1/4) and oy € (0,1/4) such that

1/2 1/2
inf ][ |G — W"(z/e)E|? < ¢’ ][ || (4.3.1)
EcRd Q" s

whenever 0 < 0. < g, and (us,p.) € HY(QT") x L*(QT") is a weak solution of
in Q7" with ue = 0 in Q1 N w,,).

Proof. The theorem is proved by contradiction. We first choose 6 € (0,1/4) such that
Cof) < (1/2)67, where Cy is the constant in (4.3.6). This is possible because 8 < 1.
Suppose no oy with the desired properties exists for this #. Then there exists a
sequence of weak solutions (ue,, p.,) of the Stokes equations

_Ausj + vst =0 n Qijmja
div(u.,) =0  in Q7" (4.3.2)

ue; =0 on Q1 N dwe; ;s

(][1 |agj\2>1/2 <1, (4.3.3)

1/2
inf (][ |, + W’U(x/sj)EF) > 0°. (4.3.4)
Qo

EcRd

such that o, — 0,

and
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It follows that

1/2
0° < inf (][ ]ﬁgj—l—WTij(;c/aj)EP)
Qe

EcRd
1/2 1/2
< <][ |, —i—C*leo\Q) + inf (][ \C*lE—C*IVpO|2>

EcR4 Q

6 6
1/2
+ inf ( \W(z/e;)E — C*1E|2> (4.3.5)

EeRd Qo

1/2
s(f ’ﬁsj—i‘c*lvpo\z) +C|Co
Qo

1/2
; ( SLLCOE 0*1\2) 190l 200
]

where C ! is the matrix in Lemma and we have let £ = Vpy(0). By letting
J — o0, we conclude
07 < Cob. (4.3.6)

This is a contradiction with the choice of 6. O]

Remark 4.3.2. Note that if v. = W/(z/¢) and ¢. = 1117 (2 /¢) — Z5a;, then

~Av.+Vg. =0  in R\w,,,
div(v.) =0 in RN\w,,, (4.3.7)

ve =0 on Ow, .

This allows us to replace @, by 4. — W"(x/e)Ey in Theorem for any E, € R%.
In particular, we can replace (4.3.1)) by

1/2 1/2
inf . — Wz /e)E? | <67 inf ][ . — W'(z/e)E” | . (4.3.8
nf (72 i = W(e/e)E ) < E( S LR IR

This will allow us to repeatedly apply Theorem (4.3.1]) in an induction argument to
obtain the following result.

Theorem 4.3.3. Let 0 < f < 1. Let 0,00 € (0,1/4) be given by Theorem |4.3.1,

Then
1/2

1/2
inf <][ |t — W”(x/a)EP) < gkP (7[ \aﬁ) : (4.3.9)
EcRd Qz}cn Q"

<
whenever 0 < 0. < 0" og and (u.,p.) € HY(QT";R?Y) x L*(Q1) is a weak solution of

in Q7" with ue = 0 in Q1 N dwy,.

Proof. We prove the theorem by induction. The case kK = 1 is given by (4.3.8]).
Suppose we have the estimate (4.3.9)) for some k£ > 1. Assume 0 < 0. < 6%0q. Let

v =u.(0"z) and q(z) = 0"p.(0*x). (4.3.10)
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Then »
—Av+Vg=0 inQ! "

div(v) =0  in Q7 ", (4.3.11)
v=0 on Q?iks’" N Owy—re -
Since %0, < 0y, it follows from (4.3.8)) that
1/2 1/2
inf . — W" E)? = inf ][ o — W 0N E?
ot (][ = Wa/e)B] ) ( Ll W)

ok+1

EcRd

1/2
=0 i 0. — Wn 2
jnf (fQ ic— W (x/e>E|)
ok

1/2
< @ inf (i)m 0 — Wn(x/(ae—k))Eb)

1/2
(k+1)B ; ST 2
<60 it <]é i — W(x/2)E ) ,
(4.3.12)
where we have used the induction assumption for the last inequality. This completes
the induction argument. O]

Lemma 4.3.4. Let k > 1 be an integer. Suppose (ue,p.) € HY(Q7";RY) x L?(Q,) is
a weak solution of in Q5" with u. = 0 in Qy N dw.,, and 0 < 0. < O Loy,
where 0,04 € (0,1/4) are given by Theorem |4.3.1. Define E(k) € R? to be the vector
satisfying

1/2 1/2
<][ |tie — W"(x/g)E(k)P) = inf (7[ |tie — W”(a:/a)E]Q) . (4.3.13)
n EeR Q;}:z

,
ok

Then
|E(F)| < Clltc|lz2(q), (4.3.14)

where C' is independent of k.

Proof. Observe that for any vector £ € R? and r > ¢, it follows from the periodicity
of W" that

Bl <C (]é ]W”(x/a)E|2>l/2. (4.3.15)
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Define E(0) = 0. For any [ > 1, we use (4.3.15)) and (4.3.9) to find

1/2
(W(a/e)(E(l) — E(l - 1))\2>

1/2
<C ]{2 |W"(w/5)E(l)|Z) +0(]€2

1/2 1/2
<C ]é |W"<x/e)E(l)l2> +C<]é |W"<x/s)E(l—1)|2>

< CO" || || r2q)-

|[E()-E(l-1)|<C ]é

ol

1/2
(W"(x/e)E(l — 1)|2)

ol ol

(4.3.16)
Summing, we obtain
k
E(k)| < E(l)-—E(l-1
B0 < 3 1B0 - B0 -1) i
< COllte[| z2q)-
]

Remark 4.3.5. Suppose (u.,p.) € HYQT";RY) x L*(Q,) is a weak solution of
(1.3.12) in Q7" with u. = 0 in Q1 N Jdw,,, and o. < 0y, where oy is defined in
Theorem K.3.11 It follows from Theorem [4.3.3] and Lemma [£.3.4] that

<][ ‘%P) <o <][ |“€‘2) " (4.3.18)

whenever . < r < 1. Indeed, by Theorem {4.3.3[ and Lemma 4.3.4] we have

(]éek |aa|2) N <C (]él |aa|2) " (4.3.19)

whenever 0. < 6* oy, where @ is defined in Theorem m Therefore we obtain

(4.3.18)) in the case 0./0g < r < 1. We may also obtain (4.3.18]) in the case 0. < r <

o./0g by noting that in this case,

1/2 1/2
(][ ]u5]2) <C (7[ |u€|2) , (4.3.20)
T QU&/UO

where C' depends on oy.

4.4 Proofs of Large-scale Estimates

We are now ready to prove the large-scale L> estimate in the general case.
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Proof of Theorem|1.53.4]. We may assume R > 0., as the case ¢ < R < 0, is treated
in Theorem [3.0.2} Let v(z) = u(Rx) and ¢(x) = Rp(Rx). Then (v, q) solves

—Av+Vqg=0 in QI%’H,
div(y) =0  in QF", (4.4.1)
v=20 on Q?nﬂ&ug

R

(][ |v|2)1/2 <c (][ |v|2)l/2 (4.4.2)

whenever o./R < r < 1. By rescaling, we obtain the L> estimate

1/2 1/2
(][ W) <C (][ \u|2> (4.4.3)
s R
whenever o, <r < R.

It remains to treat the case ¢ < r < o.. In this case, we use Theorem and

(4.4.3) to see that
1/2 1/2
(f 1) “<e(f we)

1/2
cof )"
QR

This concludes the proof. O

Remark implies

(4.4.4)

Using the large-scale L* estimate, we can prove the large-scale Lipschitz estimate
in the general case.

Proof of Theorem[1.53.5. By rescaling, we may assume ¢ = 1. We may also assume
R > Kn_l, as the case 1 < R < Kn_l is treated in Theorem fl1<r< Kn_l, it
follows from Theorem [B.0.1] and Theorem [2.2.1] that

1/2 1/2
<][ \Vu\z) §C<][ yvu|2>
4 QK771
1/2
§CKU(]£ \u|2> :

Next, we use the large scale L™ estimate ({1.3.14]) and the Poincaré inequality ([2.0.1])-

(2.0.2) to see that
1/2 1/2
(£, ) =e(f, )
Q-1 Qr

5 (4.4.6)
1/2
gcm;l(][ |Vu|2) |
Qr

20

(4.4.5)



Together with (4.4.5)), we obtain the desired result when 1 <r < K.
Itr> K, 1 covering @, by cubes with side length K, 1 and applying Theorem

yields
1/2 1/2
(f |Vu|2) < CK, (][ |u|2)
r Q2'r

1/2
sc(f |Vu|2) ,
Qr

where we have used the large-scale L™ estimate and the Poincaré inequality in the
second step. O

(4.4.7)

Copyright© Jamison R. Wallace, 2024.
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Chapter 5 Large-scale W!¢ Estimates

This chapter is dedicated to establishing LY estimates for two average operators
needed in the proofs of Theorems |1.3.1]and [1.3.2 Let (u,p) € Hg(w.,;) X L*(w.,) be
a weak solution of

—Au+ Vp = F +div(f) in we ),

div(u) =0 in we ), (5.0.1)
u=20 on Owe .
Define
1/2
T n(F, f)(z) = <][ Iul2) : (5.0.2)
r+eQ2
It is clear that
“TEJI(Fv f)HLQ(wg,n) = ”uHL?(w&n)- (5.0.3)

The following theorem gives L? boundedness of T , for ¢ > 2.

Theorem 5.0.1. Let d > 2. Let 2 < q < oo and let w., be given by . Then
for any f € C&(RY R and F € C° (R RY),
2—d _
T2y (F, Pl oy < Cen' || fllzagon.y + O™ Fllzage.y) (5.0.4)
if d > 3, and

T2y (F, )| ozay < Celn(n/2)["?|| f|l arey + C* [ n(n/2)|[| Fl Loy (5.0.5)
if d =2, where C' depends on d, q, and T

Remark 5.0.2. The case ¢ = 2 follows from the Poincaré inequality (2.0.1))-(2.0.2)
and an energy estimate. Indeed, suppose (u, p) solves (5.0.1)). Then using u as a test

function in ([5.0.1) yields

/w|Vu|2:/w F-u+/w div(f) - u

e,m &,1n
(5.0.6)
S ||F||L2(w5,n)||u||L2(UJE,n) + ||f||L2(Wa,n)||Vu||L2(UJ5,n)

S C(HfHLQ(WE,n) + 05"F|’L2(W£,n)>HVUHL2(WE,7])'

Therefore
u 2(w < CO'E u 2(w
Jullz (we,p) = IVl (we,n) (5.0.7)

< C(oell fll2onn) + 02 F |2,y
The result follows from (5.0.3)) and (5.0.7)).

To deal with the case ¢ > 2, we apply a real-variable argument and the large-scale
L estimate proven in the previous sections.
An operator T is called sublinear if there is a constant K such that

T(f +9) < K(T(H) +1T(9)])- (5.0.8)
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Theorem 5.0.3. Let T be a bounded sublinear operator from L*(R%R™) to L*(RY)
with | T 122 < Cy. Let p > 2. Suppose there exists a constant N such that

(éunmﬂvpgw{(ﬁwawﬁ”3+§%(iﬂﬁ)m} 5.09)

for any cube Q in RY and for any g € C°(RY;R™) with supp(g) C RAN4AQ. Then for
any f € C3°(RGR™),
1T () za@ay < Coll fl| Laay, (5.0.10)
where 2 < q¢ < p, and C, depends at most on q, p, Cy, N, and the constant K in
2K
Proof. See [14]. O
Since, by linearity,

Te(F, f)(z) < T (F,0) + T (0, f), (5.0.11)

we can treat the cases 1., (F,0) and T;,(0, f) separately.

Lemma 5.0.4. Let d > 2. Let 2 < g < oo and let T.,, be defined by . Then

O F | tagon ifd>3,

. (5.0.12)
e’ (n/2)||Flleo.,y  ifd=2,

7% (F, 0) || paray < {

for any F € C°(R% R?), where C' depends only on d, q, and T.

Proof. We may rescale so ¢ = 1. Let T(f) = K}T1,(F,0). Then T satisfies (5.0.8)
with K = 1, and ||T||z2-22 < Cp. Consider a cube Q@ C RY. We will show that for
any G € C5°(R% R?) with supp(G) € RH\4Q, we have

1/2
nﬂmmﬂ@sc(ﬁdﬂGw) | (5.0.13)

By Theorem we then deduce that 7' is bounded on L4(R?) for any 2 < ¢ < oo
which allows us to obtain (5.0.12) for any F' € C5°(R%; RY).
Let @ = Q(xo,1) be a cube centered at zo with side length I. Suppose that (u,p)

solves
—Au+Vp=G in wy,,

div(u) =0 in wy,, (5.0.14)

u=20 on dwy ),

where G € C§°(R%RY) and supp(G) C RA\4Q. To show (5.0.13), we will use the

geometric observation

(. ir@r) " =xi (g [ w2 0@t 20la)
| (5.0.15)
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as well as the large-scale L™ estimates proven in the previous sections. We consider
two cases. In the first case, assume 0 < [ < 2. Then for any = € Q(xo,[), we have

T«n@>SKﬁ(émﬂwwwwn%m)w. (5.0.16

Since |Q(y,2) N Q(xo,2l)| > cl? for y € Q(xg,2 + 1), we obtain (5.0.13) from ([5.0.15)
and (5.0.16|), with C' depending only on d.
In the second case, assume [ > 2. It follows from Theorem that

1/2 1/2
(][ |u|2) <C (][ |u|2> (5.0.17)
Q(z,2) Q1)
for any = € Q(x0,!). Thus for any = € Q(zo, (),
1/2
T(G)(z) < CK% (f |u|2)
Q)

1/2
gc@(f |u|2) |
Q(z0,21)

1/2
M@ < OK2 (£ 1)
Q(x0,21

)
SC(igﬂGﬁyﬂ,

where we have used ([5.0.15) and the fact that [Q(y,2) N Q(zo,2l)| > C for any
y € Q(x0,2l). This gives (5.0.13)) for any cube Q. O

Lemma 5.0.5. Let d > 2. Let 2 < g < 0o and T, be defined by . Then

This shows

2-d .
mamjmmmms{0”2”ﬁﬁwv fd=3, (5.018)
Cel (/1" f Lo,y — ifd=2,
for any f € C(RY R™?), where C depends only on d, q, and T.
Proof. Again, we may assume € = 1 by rescaling. Define the operator T" by
T(f) = K,T1,4(0, ). (5.0.19)

Observe that T satisfies ((5.0.8) with K =1, and ||T'||z2_ 2 < Cy. Suppose (u,p) is a

weak solution to
—Au+ Vp = div(g) in wiy,

div(u) =0 in wy ), (5.0.20)

u=>0 on Ow y,
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with ¢ € C5°(R%;R¥9) and supp(g) C R¥\4Q, where @ is an arbitrary cube. The
same argument as in the proof of Lemma yields

1/2
Tl <€ (f, k) (5.0.21)
Therefore, by Theorem [5.0.3, we obtain
1T ()| 2e@r < Clf o, (5.0.22)
for any 2 < ¢ < oo. This yields (5.0.18) with ¢ = 1. [
Proof of Theorem[5.0.1 Utilizing (5.0.11)), the estimates in (5.0.4) follow immedi-
ately from ([5.0.12) and (5.0.18)). O

Let (u,p) € Hy(wey) X L*(we,) be a weak solution to (5.0.1)). Similar to before,
we define

Sen(F, f)(2) = <]£+ng IVu|2> - (5.0.23)

and note that
||S‘€777(F’ f)HLQ(ws,n) - ||VU/”L2(UJ5,U)‘ (5024)

Theorem 5.0.6. Let d > 2. Let 2 < q < oo and let w., be given by . Then
for any f € C(RY; R and F € C°(R%RY),

2—d
15eq (Es )l omay < Cllf 2o + Cen > [ Fllzae.,) (5.0.25)
if d >3, and
1Sen(F, Pl zagay < Cllfllzon) + Celm(n/2)[2(1F | Lo (5.0.26)
if d =2, where C' depends only on d, q, and T'.
As before, we will use the linearity of S, , to divide into two cases. Namely,
Sen(E, () < 520(F,0) + 5:4(0, f), (5.0.27)

and we will treat the cases S.,(F,0) and S.,(0, f) separately. First, we make the
following remark.

Remark 5.0.7. The case ¢ = 2 in Theorem ([5.0.6) follows from the Poincaré in-

equality (2.0.1)-(2.0.2) and an energy estimate. As in Remark[5.0.2] using u as a test
function in ([5.0.1f) yields

HVUHL2(UJE,T}) S C(Hf||L2(WE,77) + 0-5HF|’L2(UJE,17))' (5028)

The result then follows from (5.0.24]) and (5.0.28]).
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Lemma 5.0.8. Let d > 2. Let 2 < q < 0o and S, be defined by . Then

[|Se.n(F, O)HLq {0877 ”FHL;;;” lfd =3 (5.0.29)
Celn(n/2)[ | Fllo.,y — ifd=2,
for any F € C°(R%R?), where C depends only on d, q, and T.
Proof. We assume € = 1 by rescaling. Define the operator S by
S(F) = K,S1,(F,0). (5.0.30)

Note that S satisfies with K = 1. Furthermore, by Remark [5.0.7||S|| 272 <
Co. Suppose (u,p)is a Weak solution to ((5.0.14)) where G € C5°(R%; Rd) and supp(G) C

RAN\4Q. As in the proof of Lemma [5.0.4) we make the geometric observation

(]fQ |T<G>|2)1/2 — 5, (g /Q o TV FIR0.2) 01 2) ) "

(5.0.31)
If Q(x,1) satisfies 0 < I < 2, then we obtain

ISl < C (][Q 61 " (5.0.32)

using the same argument as in Lemma [5.0.4] If [ > 2, we use the large-scale Lipschitz
estimates in Theorem [1.3.3] to see that

1/2 1/2
(][ |Vu]2) <C (][ |Vu]2) (5.0.33)
Q(z,2) Q(z,0)

for any x € Q(xo,1). It follows that for any = € Q(x,!),

1/2
s©) @ <o, (fw?)
Q)
1/2
< CK, (f |Vu|2> (5.0.34)
Q(z0,21)

ce(f )"

where we have used ([5.0.31)) and the fact that [Q(y,2) N Q(zo,2l)| > C for any

y € Q(xo,2l). This yields (5.0.32)) in the case [ > 2. By Theorem we obtain
(5.0.29). 0

Lemma 5.0.9. Let d > 2. Let 2 < q < 00 and S, be defined by . Then
HSe,nHLfI(Rd) < OHf”L‘Z(wE,n% (5.0.35)

where C' depends only on d, q, and T'.
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Proof. Again, assume € = 1 by rescaling. Define the operator S by

S(f) = S1y(0, f). (5.0.36)

Note that S satisfies (5.0.8) with K = 1 and by Remark [5.0.7, we have ||S||p272 <
Co. Suppose (u,p) is a weak solution to (5.0.20) with ¢ € Cg°(R%R¥>9) and
supp(g) C RN4Q, where Q is an arbitrary cube. The same argument as in the

proof of Lemma yields

1/2
ISli~@ <€ (£, 156GP) (5.0.7)
2Q
We then apply Theorem to S to obtain ([5.0.35]). O
Proof of Theorem[5.0.6. In view of (5.0.27), the desired estimates follow readily from
(5.0.29) and (5.0.35). 0

Copyright© Jamison R. Wallace, 2024.
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Chapter 6 Estimates in an Exterior Domain

In this chapter, we establish an L7 estimate for Vu, where (u,p) is a solution with
compact support of the Stokes equations in an exterior domain. Throughout this
section, we assume 7 is the closure of a bounded C* domain in R?. In RY\T', consider
the problem

—Au+Vp=F in RU\T,
div(u) = g in RU\T, (6.0.1)
u =10 on 07T

The next theorem provides bounds in a weighted Sobolev space for solutions to (6.0.1)).
We first introduce some notation. For 1 < ¢ < oo and q # d, let

XMRAT) = {ue WL (RNT) : (1+ |z|) " u € LYRNT)

and Vu € LY(RN\T)}, (6.0.2)

with the norm

HUHXL‘Z(Rd\T) = [|(1+ |$|)_1U||L4(Rd\T) + ||VU||L4(Rd\T)- (6.0.3)

If g =d, let

XLYRAT) = {u e Wli’cd(]Rd\T) (1) In2 + |2]) " tu € LYRNT) (6.0.4)
and Vu € LY(RN\T)},

with
lull xraayry = (1 + ) In(2 + [2])) " ull pagayr) + | Vull pagayr.- (6.0.5)
It is shown in [4] that for u € X 9(RIN\T),

ul| x1.0avry < CVU| Loravr) if 1 <gq<d,

iélﬂgd |u—a|xiegar) < C|Vulpagary — ifd < g <oo. (6.0.6)

Let
Xg ' RAT) = {u € XY(RNT) : =0 on 9T}, (6.0.7)
and X~ 19(RAT) be the dual of X9 (RN\T), where ¢ = 4
We then define the null space
VIRAT) = {(w,7) € Xg(RNT) x LIRNT) : —Aw + Vr =0 in R\T

and div(w) = 0 in R\T}.
(6.0.8)
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Theorem 6.0.1. Let d > 2 and 2 < q < oo. Let T be the closure of a bounded
C* domain in R? with connected boundary. Then, for any F € X Y4(RN\T) and
g € LYRNT), the problem has a unique solution in

(XgU(RNT) x LYRNT))/VERNT). Moreover, the solution satisfies

(w’w)ei‘%qfakd\ﬂ(||“ + |l xra@a) + [P+ Tl Loear) < CUIF | x-ra@ar) + 19/l a@arr)),
(6.0.9)
where C' depends on d, ¢, and T
Proof. See [4]. O
The following remarks, given in [4], provide a characterization of the null space.
Remark 6.0.2. If d >3 and 2 < ¢ < d, or d =q = 2, then
VI(RAT) = {(0,0)}. (6.0.10)
In this case, Theorem implies that the solution of is unique and satisfies

ull xra@avry < C(|F |l x-1a@ary + |9/l La@avt))- (6.0.11)

Remark 6.0.3. If d > 3 and ¢ > d, then
VA(RNT) = span{(wy, m) Hi_;, (6.0.12)
where for k = 1,...,d, (wg, m) is the unique solution of the exterior problem ({3.1.2]).

Remark 6.0.4. If d = 2 and ¢ > 2, then
VIH(RNT) = span{(wg, m) Yoy, (6.0.13)
where for k = 1,2, (wy, mx) is the unique solution of the exterior problem .
The following is the main result of this chapter.

Theorem 6.0.5. Let d > 2 and 2 < ¢ < oo. Let (u,p) € WH(RNT) x LI(RANT) be
a solution of
—Au+Vp=F+div(f)  inRNT,
div(u) =g in RU\T, (6.0.14)
u=20 on OT.

suppose that T C B(0, R) and supp(u), supp(F'), supp(f), supp(g) C B(0, R) for some
R > 2. Then

IVullpaavry < CP(R)(| fl|Lagavry + RIF | Laeavr) + [|9]l Lagerr)), — (6.0.15)

where

1 ifd>3 and 2 < g <d,

T Ry=  §d>3andg=d (6.0.16)
I R4 ifd>3 and d < q < oo,
R"i(InR)™' ifd=2 and 2 < q < oo,

and C' depends only on d,q, and T.
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Proof. For any 1) € Xé’q/ (RAT; RY), we have

L 7| U lamomn ol
RA\T

1 + ‘.Z" I\ e
= ||F||Lq B(0,R)\T (][ || ( > 6.0.17
N B(O,R\T 1+ [z] ( )

(1 + R)F (| zaso,mn I (1 + 1) 7] 1o (50 my\1)

2R F || Loevn) 19| xra vy,

<
<

where we have used supp(F) C B(0,R). Also note that ¢ # d because ¢ > 2.
Similarly,

[, i ‘<|\me om0 I8 Lo s
RAT

(6.0.18)
< [ fllzo@ay 19l x10 @y
where we have used the fact that ¥ = 0 on 9T. Therefore
1F + div(f)l| x-ra@ar) < CU|fllawavry + BIFl|Laga))- (6.0.19)
By Theorem [6.0.1, we obtain,
(w,n)eiVanf(Rd\T) [u+ wlxra@ary < C|fllLa@ar) + BIF || Lagavry + 9] Lagavr))-
(6.0.20)

If d >3 and 2 < g < d, then by Remark [6.0.2, Vi/(RIN\T) = {0,0}. It follows from

(6.0.20) that
IVull poavry < C(||f Loty + BIIF || Lawavry + |9l Lo@avry)- (6.0.21)

Now suppose d > 3 and d < ¢ < co. By Remark [6.0.3lwe know that Vi/(RN\T) =
span{(wg, m) }4_,, where (wy, m;) solves the exterior problem (3.1.2). Let

d

inf = |lu— 6.0.22
(w,rr)el‘%(Rd\T o+ wllxraavry = [lu ;akwkalqum ( )

for some o = (a, ..., aq) € R If d < g, it follows from (6.0.20)) that

d
Z ’O‘km’x‘ilwk”L‘I(Rd\B(o,R)) < C(HfHLq(Rd\T) + R”F”L‘I(Rd\T) + Hg”L‘I(Rd\T))a

k=1
(6.0.23)
where we have used that v = 0 in R%\ B(0, R). Since wy, ~ e, for |z| large, we have
1/q
2| " wg || po(ra >C’</ x_q>
Il wnlln @z 2 R\ B(0,R) i (6.0.24)



Hence
d d
> law] < CR7 A (| f | pawerey + BIF |l za@avy) + 191l oeary)- (6.0.25)
k=1
Therefore

d d
||VU||Lq(Rd\T) <|[[V(u~— Z akwk‘)”Lq(Rd\T) + Z | ”vwkHL‘l(Rd\T)
k=1 k=1

(6.0.26)
1—4
< CR ™| fllzaavry + RIF || Laavry + |9l La@arry)-
If ¢ = d, then (6.0.20]) implies
d

Z ok ][ (|| In \$’)71wk\\Lq(Rd\B(0,R)) < C(HfHLq(Rd\T) + RHFHLQ(W\T) + HgHLq(Rd\T))a

k=1
(6.0.27)

where we have again used that « = 0 in R?\ B(0, R). By noting that wy, ~ e, for |z|
large, we find

1/q
(|| 0 2]) ™ wil| Lo o,y = C </R (Jz|In le)">

4\ B(0,R) (6.0.28)
> Cln(R)%_l.
Therefore
d
_1
> law] < CR7a(| £l pawerey + BIF |l za@avy) + 191l oeary), (6.0.29)
k=1

which yields

VUl pagavry < CInR)' "4 (|| £l Loavry + RIF || a@avr) + |9]l o@avr))- (6.0.30)

Finally, suppose d = 2 and 2 < ¢ < co. By Remark [6.0.4] we know that V{(R*\T') =
span{(wg, m) }2_,, where (wy, ;) solves the exterior problem (3.2.1)). Let

2

inf U+ w|| x1, = |ju— apw : 6.0.31
(w77r)6V0q(R2\T) H HXI 4(R2\T) H ; k k”X1 2(R2\T) ( )

for some o = (o, ..., aq) € RY In this case, (6.0.20)) implies

2

Z || l|| " wie|| o\ o, R)) < CUIf |l Laeerry + BIIF || Lagevry + |19]lLa@2\r)),
k=1

(6.0.32)
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where we have again used that u = 0 in R%\ B(0, R). Since wy ~ In|z|e;, for |z| large,
we see that

1/q
2|~ wi|| a2\ Bo,R)) = C In(R) (/ \:v]‘q)
R2\B(0,R)

— C'In(R)R7 .

(6.0.33)

We conclude that

_2 _
HVUHL‘I(R2\T) S ORl q (111 R) 1(||fHLq(]R2\T) + R||FHL‘1(R2\T) + ||g||Lq(R2\T)>. (6034)
This completes the proof. O

To prove a corollary of Theorem [6.0.5, we will need the following interior estimate
for the Stokes equations.

Lemma 6.0.6. Suppose 2 < q < oo. Let (u,p) € H'(Bo;RY) x L?(By) be a weak
solution of

—Au+ Vp = F +div(f) in Bs, (6.0.35)
div(u) =0 in Bsy. o
Then
1/q 1/q 1/2 A\ YT
() (o) "o ) "o ()
B1 B1 Bs Bo
Vg (6.0.36)
o ([ )
Bs
for any o € R, where q* satisfies qi* = % + é and C' depends only on d.
Corollary 6.0.7. Let d > 2 and 2 < g < co. Let (u,p) be a solution of
—Au+Vp=F+div(f)  in RY\T,
div(u) = 0 in RY\T, (6.0.37)

u=20 on OT,

where Y = (1 + ¢)Q1. Then for R > 3,

d_d_
IVullpa@r\r) < CP(R)( fll poringy + BIE | pagring) + Re 2 IHUHL2(RY\B(O,R/3)))7
(6.0.38)
where ®4(R) is given by and C depends only on d,q, and T.

Proof. Let p € C5°((1+¢y/3)Qr) such that ¢ = 1in Qg and [Vp| < CR™!, |VZp| <
CR™2. Note that

—A(up) = Fo+ div(fe) — fVe —2div(uVe) + uAp + pVe (6.0.39)
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in RAT, div(up) = u- Ve in R\T, and up = 0 on 9T. By Theorem we have
IVullLa@avry < IV ()|l o@evr

1
< q)Q(R){HfHLq(RY\T) + RHFHLQ(RY\T) + E“u"Lq((l+CO/3)QR\QR)

+ HpHLq((um/s)QR\QR)},

(6.0.40)
where ®,(R) is given by (6.0.16). To bound the last two terms on the right side of
(6.0.40)), we use Lemmal6.0.6]in a rescaled setting. Let v(z) = u(Rz), 7(z) = Rp(Rz),
G(z) = F(Rz), and g(x) = Rf(Rx). Then (v, ) satisfies

—Av+ V7 =G +div(g) in Y\(R™'T),
div(v) =0 in T\(R™'T), (6.0.41)
v=0 on O(R'T).

By covering (1+ %)Q1\@1 with balls and using the interior estimate in Lemma ,
we obtain

1/q 1/2 1/q
([ o i) <e( [ we) ve( [ gerelan)
(1+)Q1\Q1 Y\Bj1/3 Y\Bj1/3

(6.0.42)
where we have used the fact that ¢ > ¢*. By rescaling, we find that

d_d
lullLaq+eorn@mi@n) T BlIPILstesmeman < CR 2l 2minry + ORI fll orinr)
+ CRZHFHLq(Rff\T)'

(6.0.43)
Then (6.0.38)) follows from (|6.0.40)) and (6.0.43)). m

Copyright© Jamison R. Wallace, 2024.
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Chapter 7 Local Estimates in a Cell

In this chapter, we wish to establish the following estimate for solutions to the Stokes
equations in a cell with a single obstacle.

Theorem 7.0.1. Let 2 < g < oo. Suppose (u,p) is a solution of
—Au+Vp=F+div(f)  inY\nT,

div(u) = 0 in Y\nT, (7.0.1)
u=20 on onT,
with F € Lq(f/\nT; R%) and f € Lq(ff\nT;RdXd), where Y = (14 c0)Qr and n €
(0, (4d)™1). Let o € RY. Then for d > 3,

. 1/q
IVlnonon < Clalyt™ + Co,r) ([ (rp+ 1517 o)
Y

\nT

1/2
+Cd,(n7h) (/ lu — af? dx) :
Y\B(0,1/3)

where ®, is defined in , and C depends only on d, q, and T. For d = 2,

(7.0.2)

1/q
|WmemSCM%Wﬂ+C%Wﬂ(L aﬂwﬂwwﬂ

\nT

1/2
+Cd,(n7h) (/ lu — al? dx) :
Y\B(0,1/3)

where C' depends only on q and T.

(7.0.3)

Lemma 7.0.2. Let 2 < q < co. Let (u,p) be the same as in Theorem[7.0.1 Then

IVull Lagrinr) < C(I)q(n_l)(HUHLQ(Y/\B(O,l/S)) + 1 Fl pavyry + 1l pagrry)s  (7.0.4)
where C' depends only on d, q, and T
Proof. This follows from Corollary and a rescaling argument. Indeed, let @(z) =

u(nx), p(z) = np(nx), F(x) = n?F(nz), and f(x) = nf(nx). These rescaled functions
satisfy the system
— A+ Vp = F +div(f) in nY\T,
div(@) = 0 in 7Y \T, (7.0.5)
u=0 on OT.
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Therefore, by Corollary (6.0.7)), we have

d_q ~
IVullzaary = 0o (V]| Lo, - \1)

d_ - 7 1z
< Oni o 1){||f||Lq(n1;7\T)+5||F\|Lq<n1?\T)} (7.0.6)

4 -
+ Cnz2®(n7)||all 21\ BOM-1/3)
= C(I)fI(nil)(HUHLQ(Y’\B(OJ/S)) + 1 El oy + 1 L pagr)-

]

Note that if (u, p) is a solution of ([7.0.1)), then (u—a, p) is not a solution of ([7.0.1])
because u—a # 0 on the boundary of the obstacle. In order to deduce Theorem [7.0.1

from Lemma [7.0.2] we will need to use the corrector matrix M" defined in Chapter
3. To bound error terms that appear from applying Lemma to u — M"a, we
will need W4 estimates for each corrector w; in the periodic cell Y.

Lemma 7.0.3. Let w] be defined by if d >3 and ifd=2. If d >3,

d_q

na if d < q < o0,
IVl payy = { %2 Innls  ifq=d, (7.0.7)
nt=2 ifl<qg<d,

where d = 5%, If d = 2,

d—1

()72 < g < oc,
VWl aevy = < | In(n)| /2 if q =2, (7.0.8)
| In(n)|~* if 1 <q<2.

Proof. Consider the case d > 3. Since w}(x) = wy(z/n) in B(0,1/4)\nT, we have

/ \Vw]!|?de = nd_q/ |Vwy|? dx
B(0,1/4)\nT B(0,(4n)~\T

nta if d < g < oo, (7.0.9)
~qn?in(m)|  ifg=d,
nld=2) ifl<qg<d,

where we have used the asymptotic behavior of wy given in ((3.1.3).
To bound Vw on B(0,1/3)\B(0,1/4), we note that ¢ = w] — e, satisfies

(7.0.10)

A+ VIl =0 in B(0,1/3)\B(0,1/4),
div(ey) =0 in B(0,1/3)\B(0,1/4),
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with ¢, = 0 on 0B(0,1/3) and ¢, = wg(x/n) — ex on 9B(0,1/4). Using (3.1.3)) and
regularity estimates for solutions to ([7.0.10)), we obtain

[Vl = Vx|
< —
S comtiiy - [oe®) —ed (7.0.11)
< Oﬁd_2
in B(0,1/3)\B(0,1/4). Together with ((7.0.9)), we obtain ((7.0.7]).
Now consider the case d = 2. Since w}(z) = “;fﬁwk(x/n) in B(0,1/4)\nT, we
have
4 q
/ |Vwl|?de = ( " ) 772_‘1/ |Vwy|? dx
B(0,1/4)\nT [ In(n)] B(0,(4n)=H\T
>~ In(n)|~7 if 2 < g < oo, (7.0.12)
~ (4m)?  [In(n)[™! if =2,
| In(n)|~4 if 1 <q<2,

where we have used the asymptotic behavior of wy given in (3.2.2)). As before, defining
Y = w] — e, and applying regularity estimates for the Stokes equations gives

|Vw)| < C|In(n)| ™ in B(0,1/3)\B(0,1/4). (7.0.13)
Together with ([7.0.12]), we obtain ((7.0.8)). O

Proof of Theorem[7.0.1. Let (u,p) be a solution of (7.0.1)). Let M" be the matrix

whose columns are the correctors w), and let P be the vector whose entries are 7/,

where (w), 7]) are defined in (3.1.6)) if d > 3 and (3.2.3)) if d = 2. For any a € R,
we have u — M"a = 0 on 9(nT), and Lemmas [3.1.2| and [3.2.2] imply that there exist

F"and f7 such that

—A(u—M"a) +V(p—P" - «a)=(F—F+div(f— f1) (7.0.14)
in Y\nT, where |F]| < Cla|K? and [f] < Cla|K?. It follows from Lemmam
that

1/q 1/q
([ rwaras) " <tal ([ 1warinar) ool + 1)
Y\nT Y\nT

row ([ aFr g i) "

1/2
+Cd,(n7h) (/ lu — af? dx) :
Y\B(0,1/3)

(7.0.15)

Suppose d > 3. By Lemma the first two terms on the right side are bounded by
Clalns ™" + Cla]@, (3 )™ < Clalys ™. (7.0.16)

This yields (7.0.2)). Similarly, if d = 2, the first two terms on the right side of ((7.0.15))
are bounded by Cla|®,(n™"). In this case, we obtain (7.0.3). ]
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Corollary 7.0.4. Suppose d > 2, and let 2 < q < co. Let (u,p) be the same as in
Theorem [7.0.1. Then

1/q 1/q
||u||Lq<Y\nT>sc(L \T(|F|q+|f|q)drc) +0(L ITl,n(F,f)(l’)lqdw) |
n

(7.0.17)
where Ty ,(F, f) is given by , and C' depends only on d, q, and T.

Proof. By a Sobolev inequality,

1/q 1/2 . 1/q*
(/ |ul? dm) <C (/ |u|2 dm) +C (/ |Vul? dm) , (7.0.18)
Y\nT Y\nT Y\nT

where q% = é + %l. We split the proof into two cases. First, suppose d > 3. Noting

that @, = 1 since ¢* < d, we can apply Theorem to obtain

1/q 1/2 1/q"
(/ |ul? daz) <(C (/ |u)? dx) +C (/ (|1F|1™ + | f]7) dx)
Y\nT Y\nT Y\nT
1/2
+C (/ |u)? dx)
Y\By 3
1/2 1/q
gc(/ ]u|2d:v) +c(/ (|F]q+!f|q)dx) |
v Y\nT

(7.0.19)
Using the observation that

(/Y IU\de) " <C (/Y T, (F, f)($)|qu> l/q, (7.0.20)

we obtain (7.0.17)) from ([7.0.19)).

Next, suppose d = 2. Since ¢* < 2, we can write
HVUHL‘I*(Y\nT) < CHVUHLQ(Y\WT). (7.0.21)

Therefore

1/q 1/2 1/2
(/ |u|qu) <C (/ |u|2d:v) +C (/ |Vul|? dx)
Y\nT Y\nT Y\nT
1/2 1/2
<o wpar) we([ arreimia)
Y\nT Y\nT

(7.0.22)
where the second inequality follows from an energy estimate. As before, (7.0.17))
follows from ([7.0.21)). O

Copyright© Jamison R. Wallace, 2024.
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Chapter 8 Proofs of Main Theorems

We are now ready to prove the W14 estimates in Theorems and To
simplify the proofs, we first make note of a relationship between the bounding con-
stants in and (1.3.5). Let 1 < ¢ < oo, and let Ay(e,n), By(e,n),Cyle,n), and
D,(e,n) be the smallest bounding constants such that and hold. It
follows from a duality argument that B, (c,n) = Cy(e,n), Ay(e,n) = Ay(e,n), and
Dy (e,m) = Dy(e,n), where ¢ = L. Indeed, suppose (u1,p;) solves

q—1"
(—Auy + Vp, = F + div(f) in wey,
div(uy) =0 in we,, (8.0.1)
\ u; =0 on Owe ),

and (ug, pa) solves
(—Auy + Vpy = G + div(g) in we,,
div(ug) =0 in wey, (8.0.2)

uy =0 on Owe .

\

Then using uy as a test function in (8.0.1) and u; as a test function in (8.0.2)) yields

/G-ul—/ Vul-g:/ Vui - Vug

" (8.0.3)
By choosing ¢ = 0 and F' = 0, we find that

:/ F.uQ—/ Vs - f.
/ G'Ul / VUQf

i

(8.0.4)
< Vel por o ) 1 F 29 e
< By (e, MG 1ot oy 1 a(@e.0)-
It follows that
o= s | [ Geu
fgﬁq}z:}i} e (8.0.5)

S Bq/<57 n)||f||Lq(Ws,n)
Therefore C,(e,m) = By(e,n). Similarly, if we choose G = 0 and F' = 0, we can use

(8.0.3) to see that
/ Vuy - g / Vuy - f

< ||vu2||LQ’(wgm)HfHL‘l(wa,n)
< Ag (@ mMNgll e oy 1 2o

(8.0.6)
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which yields
||vu1||Lq(wE,n) S Aq/(€7 /’7)||f||Lq(W5,n) (807)

Therefore Ay (e,n) = A,(e,n). To see that Dy(e,n) = D,(e,n), we choose f =0 and
g = 0in (8.0.3) and follow the same argument as above.
In view of the duality discussed above, we will be able to only consider the case

q > 2 in many of the proofs in this chapter. We begin with an estimate for ||u|| z4(w..,)-

Theorem 8.0.1. Let 1 < g < co. For any F € Li(w.,;R?) and f € Li(w, ,; R™*9),
the Stokes system has a unique solution in Wy (we.,;; RY) x [L9(w..,)/R]. More-
over, if 2 < q < 0o, the solution satisfies

_ _4d
||u||Lq(w5m) S C<€2T]2 dHFHLq(UJs,n) + 8771 2 ||fHLq(Ws,77)) (808>
if d > 3, and
ull Laoe.y < CE D/ F | zage.) + el Wn/2) V2] Fll o) (8.0.9)

for d =2. The constant C' depends only on d,q, and T.

Proof. By rescaling, we may assume € = 1. If ¢ > 2, summing ((7.0.17]) over the whole
space and using Theorem to bound terms involving 71 ,, yields

_ _d
ull Lar) < CO*UNE | ragr,) 0" 2| fll o)) (8.0.10)

ifd> 3 and
el 2o,y < CUMM/2F N 2on,,) + (/212 fll o) (8.0.11)
if d = 2. This gives the desired estimate when ¢ = 1. O]

We will now give estimates for ||Vu| ze(..,). We begin with the case F' = 0.

Theorem 8.0.2. Let 1 < q < co. For any f € Li(w.,; R™>?), the solution of the
Stokes system
—Au+ Vp = div(f) N We ),

div(u) =0 N We (8.0.12)
u=20 on Owe ),
satisfies the estimate
_qli_1

HquLq(Ws,n) S 077 ‘2 Q|HfHLq(WE,n) (8013>

ford >3 and q # 2, and

g1 _

IVl ooy < O~ tn(n/2) /20 o (8.0.14)

for d =2 and q # 2, where C depends only on d, q, and T.
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Remark 8.0.3. If (u, p) solves (8.0.12]), we can obtain estimates for ¢ = 2 by a simple
energy estimate. Indeed, using u as a test function in (8.0.12)) yields

/ Vul < ClVall sz 12
We

Therefore
IVull 2.y < Cllfllz2(we.)- (8.0.15)

Proof of Theorem[8.0.3. By rescaling, we may assume ¢ = 1. Note that we are
looking for the bounding constant A,(1,7) in (1.3.4). By duality, we know that
A,(1,n) = Ay(1,n). Thus we may assume g > 2. Consider the case d > 3. Suppose
(u, p) is a solution of (8.0.12)) with e = 1. For any k € Z¢ and o € R, it follows from
Theorem [.0.1] that

/ Vul'de < Clal® 4+ C[d, (")) / O fde
k+(Y'\nT) k+(Y'\nT)

J2  (80.16)
et ([ u-alds)
k+(Y\B(0,1/3))

By choosing

a = f wdx
k+(Y\B(0,1/3))

and applying the Poincaré inequality, we obtain

[ wrarsopt [ utdesceay [ jfide
k+(Y\nT) k+(Y'\nT) E+(Y'\nT)

a/2
e ([ )
k+H(Y\nT) (8.0.17)

<ot [ e oy [ flrds
k+(Y\nT) k+(Y'\nT)

O, (7)) / 11.,(0, £)[7 da,

k+Y

where Sy, is defined in (5.0.23)). Then summing over k € Z? yields

d__ _
IVl Loy < Cne ™ ullzagr,) + CPq™) (11 Lawry) + 15100, Il paray)
d_d _
< Cna 2| fllagr,) + CP(n ) F Lo ()

d_d
< Cna 2 || fll o)
(8.0.18
where we have used the estimates (8.0.10)) and (5.0.25]) as well as the fact ®,(n~!) <
d

C’ng_§ when d > 3. We deduce (8.0.13)) when ¢ = 1 and ¢ > 2 in the case d > 3.

~—
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Similarly, if d = 2 we use (|7.0.3|) with o = ka ) udz to obtain

Y\B(0,1/3)

[ vards<cere [ () de
k+(YAnT)

k+(Y\nT)

a/2
e ([ ki)
k+(Y\nT)

where the Poincaré inequality has been used. Summing over k € Z%, we see that

(8.0.19)

2_ _
IVullLa,.,, < Cna™ ()|~ (lull o )+ f o) + 15100, )l agn,,))- (8-0.20)
The desired result then follows from (8.0.11)) and ([5.0.26)). O

We now consider the case f = 0.

Theorem 8.0.4. Let 1 < g < oo. For any F € L(w, ,; RY), the solution (u,p) of the
Stokes system
—Au+Vp=F N We .

div(u) =0 N We (8.0.21)
u=2>0 on Owe ),

satisfies the estimate

Cen' 2| Fllia.,) forl<aq<2,
||quLq(WS,n) S 1_d+g ( ' ) (8022)
Con' ™| Fllis,) for2<g<oc
ford >3 and
Celn(n/2)"*|F Lo,y for1<q<2,
IVull Lo,y < 2 (wen) (8.0.23)
Cen™ 74| F|| rawe.,) for2 < q < oo

for d =2, where C' depends only on d, q, and T'.

Proof. We first treat the case 1 < ¢ < 2 using a duality argument. We have
19l a0 ) < Core,m) 1l (8.0.24)
Noting that ¢’ > 2, we may use Theorem to obtain (8.0.22]) and (8.0.23|) in the

case 1 < g < 2.
Now consider the case 2 < ¢ < co. We may assume ¢ = 1 by rescaling. Let (u,p)

be a solution of (8.0.21)). Suppose d > 3. As in the proof of Theorem [8.0.2] it follows
from Theorem [7.0.1] and summation that

d_ .
IVl zagory) < Cno ™ ullar,) + C (01 [ 2o(r,p) + 1514(F, 0)|ageay)

—d+ a2 _ _d
< O F sy + O )N F | zagor) + 7 21 F | o(er.0))

_dad
< 07]1 d+9 ||F||L‘1(W1,n)7 : )
8.0.25

71



where we have used (8.0.10)) and ([5.0.25)) in the second inequality. This gives ([8.0.22])
when ¢ = 1. If d = 2, Theorem [7.0.1] gives

2_ _
IVl Loy < Cne )| (]l Loy + 1 Fl parn) + 1510 (F 0) || 2w
< O F |

win)?
(8.0.26)
where we have used (8.0.11)) and ([5.0.26)) in the second inequality. We obtain ([8.0.23|)
in the case ¢ = 1. O

Given 1 < ¢ < oo and ¢,n € (0,1], let A (e,n), By(e,n), Cy(e,n), and D,(e,n) be
the smallest constants such that (1.3.4) and (1.3.5) hold. It follows from Theorem
B.0.2l and Remark B.0.3 that

o il if d >3,
Aq(e,m) < C’n_2|%_él| In(n/2)|1/? if d=2 and q # 2, (8.0.27)
1 ifd>2and q=2.
By Theorem we have
Cenl_gHFHLq(wsm) ifd>3and 1 <q<2,
Cen' ™4 || F|| oo if >3 and 2 < ¢ < oo,
Bq(€, T/) = Cq’(5777) = 1/2L ( »77) .
Ce|lln(n/2)|" || F|l La(w..,) ifd=2and1<q<2,
087771+§||F||L<1(w5m) ifd=2and 2 < ¢q < oc.
(8.0.28)
Finally, it follows from Theorem and duality that
Ce?n*d ifd>3
Dy(e.n) < = 8.0.29
o(&m) < {0621 In(n/2)]  ifd=2 (8.029)

Proof of Theorems|1.5.1 and|1.5.2. The estimates (|1.3.6|) and (|1.3.8)) follow from

8.0.27) and (8.0.28]), while the estimates (1.3.7]) and (1.3.9) follow from ({8.0.28)) and
8.0.29)). [

Copyright© Jamison R. Wallace, 2024.
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