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ABSTRACT OF DISSERTATION

Uniform Regularity Estimates for the Stokes System in Perforated Domains

We consider the Stokes equations in an unbounded domain ωε,η perforated by small
obstacles, where ε represents the minimal distance between obstacles and η is the ratio
between the obstacle size and ε. We are able to obtain uniform W 1,q estimates for
solutions to the Stokes equations in such domains with bounding constants depending
explicitly on ε and η.
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Chapter 1 Introduction

1.1 Background

Homogenization theory is a branch of partial differential equations concerned with
problems where a differential operator or domain depends on a parameter ε which
tends to zero. The homogenization of differential operators has vast applications
to physics and materials science, in particular to the study of mixed media consist-
ing of components with different physical properties (electrical/thermal conductivity,
elasticity, etc.). As an example, consider a medium consisting of a main material
containing small particles of a different material, placed periodically with a distance
of ε between them. A differential operator in this medium will have rapidly oscillating
coefficients due to the differing properties of the constituent materials. However, by
sending both the scale of periodicity ε and the particle size to zero, solutions to equa-
tions involving such a differential operator can converge, leading to a homogenized
equation.

Typical results of interest in the field of homogenization theory include obtaining
qualitative convergence in problems like those described above, obtaining convergence
rates once qualitative convergence has been shown, and establishing regularity results
for solutions during the homogenization process. To introduce results of historical
interest, we consider the Dirichlet problem{

−div(A(x/ε)∇uε) = F in Ω,

uε = f on ∂Ω,
(1.1.1)

where Ω is a bounded domain in Rd and A ∈ Rd×d has periodic, bounded, and
measurable entries, and satisfies the ellipticity condition

Aξ · ξ ≥ c0|ξ|2

for any ξ ∈ Rd, where c0 > 0. If F ∈ H−1(Ω) and f ∈ H1/2(∂Ω), it can be shown
that uε converges weakly in H1(Ω) to some u0 as ε → 0. Moreover, u0 satisfies the
homogenized equation {

−div(Â∇u0) = F in Ω,

u0 = f on ∂Ω,
(1.1.2)

where Â ∈ Rd×d is a constant matrix.
Early work in the field of homogenization, starting with the work of E. de Giorgi

and S. Spagnolo in the late 1960’s, was concerned with developing methods to prove
such qualitative convergence results. The very general viewpoint of Γ and G conver-
gence of operators introduced by de Giorgi gives an abstract framework for obtaining
convergence. Later methods include Tartar’s method of oscillating test functions,
which relies on energy estimates and a careful construction of test functions with
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similar periodic behavior to uε, and the notion of two-scale convergence developed by
G. Nguetseng [12] and G. Allaire [3], which is effective for problems with solutions uε
that don’t have limits in a classical sense. Classic monographs ([5], [7], [6], [11]) are
available on this topic.

More recent work ([10], [17], [15], [16]) has been concerned with quantitative
convergence results, including convergence rates and regularity theorems. In view of
the qualitative convergence above, convergence rates allow us to determine how well
the homogeneous solution u0 approximates the inhomogeneous solution uε. This is
of particular interest since numerically studying solutions to (1.1.1) can prove to be
extremely costly, as finite-difference methods require many computations at a scale
smaller than ε. By working with the homogenized equation, which we can view as
providing an approximation of the macroscopic behavior of solutions to (1.1.1), this
problem can be avoided. Regularity results are also of interest, with the main goal
being to establish W k,p estimates for solutions to (1.1.1) with explicit dependence on
ε. These regularity results can cover multiple cases, making them a powerful tool for
understanding behavior of solutions in a wide variety of settings.

1.2 Homogenization of the Stokes Equations

This dissertation focuses on regularity results for solutions to the Stokes equations in a
periodically perforated domain. We will begin by introducing periodically perforated
domains as well as some known results. For the Stokes equations, we can think of the
domain as a porous medium containing particles such as small rocks which obstruct
fluid flow. Consider a domain Ω in Rd. Let Y = [−1/2, 1/2]d be a closed unit cube in
Rd and T the closure of an open subset of Y . We may think of T as a model obstacle.
We then define a periodically perforated domain

Ωε = Ω\
⋃
k∈I

ε(k + ηT ), (1.2.1)

where η = η(ε) gives the ratio of obstacle size to periodicity, and the union is taken
over all k ∈ Zd such that ε(z + Q1) ⊂ Ω. For f ∈ L2(Ω;Rd), we aim to study the
solutions (uε, qε) ∈ H1

0 (Ωε;Rd)× [L2(Ωε)/R] to the problem{
−∆uε +∇qε = f in Ωε,

div(uε) = 0 in Ωε,
(1.2.2)

with a no-slip boundary condition on the obstacles. When necessary, we extend uε
by zero into the obstacles, and still call this extension uε.

Some qualitative convergence results are known in this setting. The behavior of
the solutions to (1.2.2) as ε→ 0 depends on η. In the simplest case, we assume that
the ratio of obstacle size to periodicity is constant, namely η = 1. In this case, it can
be shown that there exists an extension of qε, which we denote by q̃ε, such that

ε−2uε → u0 weakly in L2(Ω;Rd),

q̃ε → q0 strongly in L2(Ω)/R,

2



where (u0, q0) satisfies a Darcy law,
u0 = K(f −∇q0) in Ω,

div(u0) = 0 in Ω,

u0 · n = 0 on ∂Ω,

(1.2.3)

for a symmetric positive-definite matrix K.
Different assumptions on the scaling of obstacles as ε→ 0 lead to different behav-

ior of the limiting solution. G. Allaire ([1], [2]) studied the case where Ω is a bounded
domain and the obstacle size satisfies η → 0, known as the vanishing volume fraction
case. To explore qualitative convergence results in this setting, we first introduce a
parameter σε given by

σε =

{
εη

2−d
2 if d ≥ 3,

ε| ln(η/2)|1/2 if d = 2.
(1.2.4)

If the periodicity ε and relative obstacle size η satisfy σε → 1, we consider the
obstacle scaling to be “critical.” In this case, Allaire showed that the solutions to
(1.2.2) satisfy (uε, q̃ε) → (u0, q0) weakly in H1(Ω;Rd) × [L2(Ω)/R], where (u0, q0)
satisfies a Brinkman law,{

−∆u0 +∇q0 +Mu0 = f in Ω,

div(u0) = 0 in Ω,
(1.2.5)

for a symmetric positive definite matrix M . The new term Mu0 which appears in
the equation, called a “strange term” by D. Cioranescu and F. Murat [8], expresses
how the obstacles still affect the solution despite having disappeared in the limit.

If the obstacles are small relative to the critical scaling, i.e. σε → ∞, we say the
scaling regime is “subcritical.” Here, the presence of obstacles will no longer affect the
limiting equation. In particular, (uε, q̃ε) → (u0, q0) strongly in H1(Ω;Rd)×[L2(Ω)/R],
where (u0, q0) satisfies {

−∆u0 +∇q0 = f in Ω,

div(u0) = 0 in Ω.
(1.2.6)

Finally, if the obstacles are large relative to the critical scaling, i.e. σε → 0, we are
in the “supercritical” scaling regime. The case η = 1, which led to a Darcy law above,
can be viewed as a subcase of the supercritical case. In fact, if σε → 0, we once again
obtain a Darcy law for our homogenized equation: (σ−2

ε uε, q̃ε) → (u, q) strongly in
L2(Ω;Rd)× [L2(Ω)/R], where (u0, q0) satisfies (1.2.3) for a symmetric positive definite
matrix K.

1.3 Main Results

The main results of this dissertation are regularity estimates for the Stokes equations
in an unbounded periodically perforated domain, where the results are independent
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of the scaling regimes discussed above. As before, let Y = [−1/2, 1/2]d be a closed
unit cube in Rd and T the closure of an open subset of Y . Throughout this work, we
assume Y \T is connected and that

B(0, c0) ⊂ T and dist(∂T, ∂Y ) ≥ c0 > 0 (1.3.1)

for some c0 > 0. We then define

ωε,η = Rd\
⋃
k∈Zd

ε(k + ηT ), (1.3.2)

where 0 < ε, η < 1. In this setting, we consider the Stokes equations
−∆uε +∇pε = F + div(f) in ωε,η,

div(uε) = 0 in ωε,η,

uε = 0 on ∂ωε,η.

(1.3.3)

We wish to establish W 1,q estimates of the form

∥∇u∥Lq(ωε,η) ≤ Aq(ε, η)∥f∥Lq(ωε,η) +Bq(ε, η)∥F∥Lq(ωε,η), (1.3.4)

and
∥u∥Lq(ωε,η) ≤ Cq(ε, η)∥f∥Lq(ωε,η) +Dq(ε, η)∥F∥Lq(ωε,η), (1.3.5)

for 1 < q < ∞, where the bounding constants Aq(ε, η), Bq(ε, η), Cq(ε, η), Dq(ε, η)
depend explicitly on the parameters ε and η.

The following are the main results. The first result addresses the case d ≥ 3, while
the second deals with the case d = 2.

Theorem 1.3.1. Suppose d ≥ 3 and 1 < q < ∞. Let ωε,η be given by (1.3.2),
where T is the closure of an open subset of Y with C1 boundary. For any f ∈
Lq(ωε,η;Rd×d) and F ∈ Lq(ωε,η;Rd), the Stokes system (1.3.3) has a unique solution
in W 1,q

0 (ωε,η;Rd)× [Lq(ωε,η)/R]. Moreover, the solution satisfies the estimates

∥∇u∥Lq(ωε,η) ≤

{
Cη−d| 1

2
− 1

q
|∥f∥Lq(ωε,η) + Cεη1−

d
2∥F∥Lq(ωε,η) for 1 < q < 2,

Cη−d| 1
2
− 1

q
|∥f∥Lq(ωε,η) + Cεη1−d+ d

q ∥F∥Lq(ωε,η) for 2 ≤ q <∞,
(1.3.6)

and

∥u∥Lq(ωε,η) ≤

{
Cεη1−

d
q ∥f∥Lq(ωε,η) + Cε2η2−d∥F∥Lq(ωε,η) for 1 < q < 2,

Cεη1−
d
2∥f∥Lq(ωε,η) + Cε2η2−d∥F∥Lq(ωε,η) for 2 ≤ q <∞,

(1.3.7)
where C depends on d, q, and T .

Theorem 1.3.2. Suppose d = 2 and 1 < q < ∞. Let ωε,η be given by (1.3.2),
where T is the closure of an open subset of Y with C1 boundary. For any f ∈
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Lq(ωε,η;R2×2) and F ∈ Lq(ωε,η;R2), the Stokes system (1.3.3) has a unique solution
in W 1,q

0 (ωε,η;R2)× [Lq(ωε,η)/R]. Moreover, the solution satisfies the estimates

∥∇u∥Lq(ωε,η) ≤



Cη−2| 1
2
− 1

q
|| ln(η/2)|−

1
2∥f∥Lq(ωε,η) + Cε| ln(η/2)|

1
2∥F∥Lq(ωε,η)

for 1 < q < 2,

∥f∥L2(ωε,η) + Cε| ln(η/2)|
1
2∥F∥L2(ωε,η)

for q = 2,

Cη−2| 1
2
− 1

q
|| ln(η/2)|−

1
2∥f∥Lq(ωε,η) + Cεη−1+ 2

q ∥F∥Lq(ωε,η)

for 2 < q <∞,
(1.3.8)

and

∥u∥Lq(ωε,η) ≤


Cεη1−

2
q ∥f∥Lq(ωε,η) + Cε2| ln(η/2)|∥F∥Lq(ωε,η)

for 1 < q < 2,

Cε| ln(η/2)|
1
2∥f∥Lq(ωε,η) + Cε2| ln(η/2)|∥F∥Lq(ωε,η)

for 2 ≤ q <∞,

(1.3.9)

where C depends on q and T .

Existence and uniqueness for this problem are already known [15]. Furthermore,
the estimates in Theorems 1.3.1 and 1.3.2 are known for the case of fixed η [15],
in which the solutions to (1.3.3) approach the solutions of a Darcy law. The main
novelty of this work is that the bounds in (1.3.6)-(1.3.9) feature explicit dependence
on η. In particular, Theorems 1.3.1 and 1.3.2 provide information about the behavior
of solutions to (1.3.3) for any step of a convergence process in a periodically perforated
domain where the obstacles vanish in each periodic cell.

Such W 1,q estimates are also known for Laplace’s equation in periodically perfo-
rated domains. For the problem{

−∆u = F + div(f) in ωε,η,

u = 0 on ∂ωε,η,
(1.3.10)

where ωε,η is given in (1.3.2), the estimates given in Theorems 1.3.1 and 1.3.2 hold
with the same bounding constants [17]. Moreover, the estimates are sharp in this case.
We expect that the estimates are also sharp in the case of the Stokes equations, but
we have not proven this. A recent paper further [13] extended the results to the case
of Laplace’s equation in bounded perforated domains with non-periodic distribution
of obstacles.

The proofs of Theorems 1.3.1 and 1.3.2 rely on large-scale estimates for solutions
to the Stokes equations in perforated cubes, which are of interest on their own. We
define perforated cubes Qε,η

R by

Qε,η
R = QR ∩ ωε,η, (1.3.11)
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where QR = (−R/2, R/2)d. We then consider the problem in Qε,η
R ,

−∆u+∇p = 0 in Qε,η
R ,

div(u) = 0 in Qε,η
R ,

u = 0 on ∂Qε,η
R ∩ ∂ωε,η.

(1.3.12)

Theorem 1.3.3. Let (u, p) ∈ H1(Qε,η
R ;Rd)× L2(Qε,η

R ) be a weak solution to (1.3.12)
for some R ≥ ε. Then if ε ≤ r ≤ R,( 

Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

, (1.3.13)

where C depends on d.

Theorem 1.3.4. Let (u, p) ∈ H1(Qε,η
R ;Rd)× L2(Qε,η

R ) be a weak solution to (1.3.12)
for some R ≥ ε. Then if ε ≤ r ≤ R,( 

Qr

|u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

, (1.3.14)

where C depends on d.

Theorem 1.3.3 gives a large-scale Lipschitz estimate, while Theorem 1.3.4 gives a
large-scale L∞ estimate. By large-scale, we mean that averages are taken over cubes
whose side lengths are larger than the scale of periodicity. This allows us to exploit
the periodic structure to obtain the estimates.

We now describe our approach to proving Theorems 1.3.1 and 1.3.2. Much of the
argument, with some notable exceptions, follows the present author’s previous work
for the case of Laplace’s equation in a perforated domain [17]. We first note that the
powers of ε in (1.3.6)-(1.3.9) are dictated solely by scaling. This allows us to simplify
computations by rescaling so that ε = 1. By localizing and rescaling estimates in a
weighted Sobolev space for solutions to the Stokes equations in an exterior domain
Rd\T , we are able to reduce the Lq estimates of u and ∇u to the Lq estimates of the
average operators

Tε,η(F, f)(x) =

( 
x+εQ2

|u|2
)1/2

(1.3.15)

and

Sε,η(F, f)(x) =

( 
x+εQ2

|∇u|2
)1/2

(1.3.16)

for q > 2. Using a real-variable argument from [14], we establish the Lq boundedness
of Tε,η and Sε,η by proving weak reverse Hölder inequalities in a cube Q for solutions
to (1.3.3) with F = 0 and f = 0 in 4Q. The reverse Hölder inequalities follow from
the large-scale estimates in Theorems 1.3.3 and 1.3.4.

The proofs of Theorems 1.3.3 and 1.3.4 are significantly different in the case of the
Stokes equations compared to Laplace’s equation. This is due to the pressure term
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causing a Caccioppoli inequality in a perforated cube to only provide useful bounds
when applied to cubes whose side length is smaller than σε, where σε is defined in
(1.2.4). As such, proofs of the large-scale estimates will be separated into two cases.
For small cubes, we use an argument from [17], which relies on a discrete Sobolev
inequality for functions defined on Zd. For large cubes, we will be able to use a
modified version of the compactness method from [15], which treats the case of fixed
η.

The dissertation is organized as follows: In Chapter 2, we provide some basic
results which will be used frequently in the later chapters. In Chapter 3, we establish
the large-scale estimates in the case of small cubes, which we call the “subcritical”
case. The names of these cases are motivated by [1]. In Chapter 4, we finish the proofs
of the large-scale estimates by showing that they also hold in the case of large cubes,
which we call the “supercritical” case. In Chapter 5, we establish the bounds for the
average operators Tε,η and Sε,η defined in (1.3.15) and (1.3.16). In Chapters 6 and 7,
we present the localization argument for solutions in a periodic cell (1 + c0)Q1\ηT .
Finally, the proofs of Theorems 1.3.1 and 1.3.2 are given in Chapter 8.

Copyright© Jamison R. Wallace, 2024.
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Chapter 2 Preliminaries

This chapter is dedicated to establishing some basic results which will appear fre-
quently in the remainder of the dissertation. We begin by making note of the following
Poincaré inequality for functions supported on a perforated domain.

Lemma 2.0.1. Let Ω be a domain in Rd, and let Ωε,η = Ωε as defined in (1.2.1). Let
u ∈ H1(Ωε,η) with u = 0 on Ω\Ωε,η. If d ≥ 3, then

�
Ωε,η

|u|2 dx ≤ Cε2η2−d

�
Ωε,η

|∇u|2 dx, (2.0.1)

and if d = 2, then

�
Ωε,η

|u|2 dx ≤ Cε2| ln(η/2)|
�
Ωε,η

|∇u|2 dx, (2.0.2)

where C depends only on d and c0.

Proof. The proof is well known. See, for example, [10].

Remark 2.0.2. Let d ≥ 2. With the definition of σε given in (1.2.4), we may rephrase
the conclusion of Lemma 2.0.1 as�

Ωε,η

|u|2 dx ≤ Cσ2
ε

�
Ωε,η

|∇u|2 dx. (2.0.3)

2.1 Pressure Estimate

For future use, we establish the following pressure estimate.

Theorem 2.1.1. Suppose (uε, pε) ∈ H1(Qε,η
1 ;Rd)× L2(Qε,η

1 ) is a weak solution of
−∆uε +∇pε = f in Qε,η

1

div(uε) = 0 in Qε,η
1

uε = 0 on Q1 ∩ ∂ωε,η.

(2.1.1)

Then

∥pε −
 
Qε,η

1

pε∥L2(Qε,η
1 ) ≤ C(1 + σ−1

ε )(∥∇uε∥L2(Qε,η
1 ) + ∥f∥L2(Qε,η

1 )), (2.1.2)

where C depends only on d and T .
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The proof of Theorem 2.1.1 will rely on a restriction operator defined in [1] as
well as an estimate for a Bogovskĭi operator in a perforated domain. Define

Kη =

{
η

d−2
2 if d ≥ 3,

| ln(η/2)|−1/2 if d = 2.
(2.1.3)

We can view Kη as a substitute for σ−1
ε when ε = 1. Since we will frequently rescale

so ε = 1 to simplify computations, the term Kη will appear in many results and
proofs throughout this work.

Lemma 2.1.2. There exists a linear continuous operator L : H1(Q1) → H1(Q1\ηT )
such that for any u ∈ H1(Q1), Lu = u on ∂Q1, Lu = 0 on ∂(ηT ) and

∥∇(Lu)∥L2(Q1\ηT ) ≤ C(∥∇u∥L2(Q1) +Kη∥u∥L2(Q1)), (2.1.4)

where Kη is given by (2.1.3), and C depends only on d and T .

Proof. See [1].

The following classical result provides an estimate for a Bogovskĭi operator on a
domain in Rd.

Lemma 2.1.3. Let Ω be a bounded, connected, open set in Rd with Lipschitz bound-
ary. For any f ∈ L2(Ω) with

�
Ω
f = 0, there exists v ∈ H1

0 (Ω;Rd) such that
div(v) = f in Ω, the map f 7→ v is linear, and

∥v∥H1
0 (Ω) ≤ C∥f∥L2(Ω), (2.1.5)

where C depends only on Ω.

We can extend this result to the case of periodically perforated domains, with
explicit dependence on ε and η, as follows.

Lemma 2.1.4. Let T be the closure of an open subset of Y with C1 boundary. For
any f ∈ L2(Qε,η

1 ) with
�
Qε,η

1
f = 0, there exists v ∈ H1

0 (Q
ε,η
1 ;Rd) such that div(v) = f

in Qε,η
1 , the map f 7→ v is linear, and

∥∇v∥L2(Qε,η
1 ) ≤ C(1 +

1

σε
)∥f∥L2(Qε,η

1 ), (2.1.6)

where C depends only on d and T .

Proof. The idea of the proof is motivated by [1]. For ease of computations, we will
prove the lemma in a rescaled setting. Namely, we will show that for any f ∈ L2(Q1,η

1/ε)

with
�
Q1,η

1/ε
f = 0, there exists v ∈ H1

0 (Q
1,η
1/ε;R

d) such that div(v) = f in Q1,η
1/ε and

∥∇v∥L2(Q1,η
1/ε

) ≤ C(1 +
1

σε
)∥f∥L2(Q1,η

1/ε
). (2.1.7)
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By Lemma 2.1.3 and rescaling, we can find v∗ ∈ H1
0 (Q1/ε;Rd) such that div(v∗) = f

in Q1/ε and
∥∇v∗∥L2(Q1/ε) + ε∥v∗∥L2(Q1/ε) ≤ C∥f∥L2(Q1/ε). (2.1.8)

Write Zd =
⋃
ki, and let Qi = ki +Y , T i

η = ki + ηT . On each perforated cube Qi\T i
η,

we will find wi satisfying
div(wi) = f − div(Lv∗) in Qi\T i

η,

wi = 0 on ∂T i
η,

wi = 0 on ∂Qi,

(2.1.9)

and
∥∇wi∥L2(Qi\T i

η)
≤ C∥f − div(Lv∗)∥L2(Qi\T i

η)
, (2.1.10)

where L is the operator in Lemma 2.1.2.
Once we find each wi, we can obtain the desired function v. Indeed, set vi =

wi + Lv∗ in Qi. Then let v = vi in Qi with v = v∗ on ∂Qi. It follows from (2.1.9)
that div(v) = f in Qε,η

1 . To show (2.1.6), we observe

∥∇vi∥L2(Qi\T i
η)
≤ C(∥∇wi∥L2(Qi\T i

η)
+ ∥∇(Lv∗)∥L2(Qi\T i

η)
)

≤ C(∥f∥L2(Qi\T i
η)
+ ∥∇(Lv∗)∥L2(Qi\T i

η)
)

≤ C(∥f∥L2(Qi\T i
η)
+ ∥∇v∗∥L2(Qi\T i

η)
+Kη∥v∗∥L2(Qi\T i

η)
),

(2.1.11)

where Kη is defined in Lemma 2.1.2. By adding (2.1.11) over Qε,η
1 , we obtain

∥∇v∥L2(Q1,η
1/ε

) ≤ C(∥f∥L2(Q1,η
1/ε

) + ∥∇v∗∥L2(Q1,η
1/ε

) +Kη∥v∗∥L2(Q1,η
1/ε

))

≤ C(1 +
1

σε
)∥f∥L2(Q1,η

1/ε
),

(2.1.12)

where we have used (2.1.8) in the second step.
It remains to find wi. For simplicity, assume Qi = Q1. We will find w ∈

H1(Q1\ηT ;Rd) satisfying
div(w) = f − div(Lv∗) in Q1\ηT,

w = 0 on ∂(ηT ),

w = 0 on ∂Q1

(2.1.13)

and
∥∇w∥L2(Q1\ηT ) ≤ C∥f − div(Lv∗)∥L2(Q1\ηT ). (2.1.14)

Define f̃ by
f̃ = f in Q1\ηT, f̃ = 0 in ηT. (2.1.15)

By Lemma 2.1.3, we can find u ∈ H1
0 (Q1;Rd) such that div(u) = f̃ − div(Lv∗) in Q1

and
∥u∥H1

0 (Q1) ≤ C∥f − div(Lv∗)∥L2(Q1\ηT ), (2.1.16)
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where C depends only on d. We separate into two cases.
Case 1: Assume d ≥ 3. We will find ũ ∈ H1(Qη\ηT ) satisfying

div(ũ) = f − div(Lv∗) in Qη\ηT,
ũ = 0 on ∂(ηT ),

ũ = u on ∂Qη.

(2.1.17)

and
∥∇ũ∥L2(Qη\ηT ) ≤ C∥f − div(Lv∗)∥L2(Q1\ηT ). (2.1.18)

We can then obtain w satisfying (2.1.13) and (2.1.14) by setting w = u in Q1\Qη and
w = ũ in Qη\ηT .

It remains to find ũ. We rescale system (2.1.17) as follows: for x ∈ Q1\T , let
f0(x) = (f − div(Lv∗))(ηx), u0(x) = 1

η
u(ηx), and ũ0(x) = 1

η
ũ(x). We obtain the

system 
div(ũ0) = f0 in Q1\T,

ũ0 = 0 on ∂T,

ũ0 = u0 on ∂Q1.

(2.1.19)

By Lemma 2.1.3, there exists a solution ũ0 to (2.1.19) which satisfies

∥∇ũ0∥L2(Q1\T ) ≤ C(∥f0∥L2(Q1\T ) + ∥u0∥L2(Q1\T ) + ∥∇u0∥L2(Q1\T )). (2.1.20)

Rescaling, we obtain

∥∇ũ∥L2(Qη\ηT ) ≤ C(∥f − div(Lv∗)∥L2(Qη\ηT ) +
1

η
∥u∥L2(Qη\ηT ) + ∥∇u∥L2(Qη\ηT )).

(2.1.21)
The Hölder inequality in Qη gives

∥u∥L2(Qη) ≤ ∥u∥
L

2d
d−2 (Qη)

∥1∥Ld(Qη)

≤ Cη∥u∥
L

2d
d−2 (Q1)

.
(2.1.22)

Since d ≥ 3, we have the Sobolev embedding H1 ⊂ L
2d
d−2 (Q1). Therefore, (2.1.22)

becomes
∥u∥L2(Qη) ≤ Cη∥u∥H1

0 (Q1). (2.1.23)

As a result, we obtain (2.1.18) from (2.1.21).
Case 2: Assume d = 2. In this case, we will divide the interior of Q1 into annular

regions. Let n ∈ N such that
1

2n
> η ≥ 1

2n+1
.

Let A1 = Q1\B1/2. For 2 ≤ i ≤ n, let Ai = B1/2i−1\B1/2i . Finally, let An+1 =
B1/2n\ηT . In A1, we consider the problem

div(a1) = f − div(Lv∗) in A1,

a1 = 0 on ∂Q1,

a1 = u−
 
A1∪A2

u on ∂B1/2.

(2.1.24)
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If 2 ≤ i ≤ n, we consider the problem

div(ai) = f − div(Lv∗) in Ai,

ai = u−
 
Ai−1∪Ai

u on ∂B1/2i−1 ,

ai = u−
 
Ai∪Ai+1

u on ∂B1/2i .

(2.1.25)

Finally, in An+1, we consider the problem
div(an+1) = f − div(Lv∗) in An+1,

an+1 = u−
 
An∪An+1

u on ∂B1/2n ,

an+1 = 0 on ∂ηT.

(2.1.26)

Let a0(x) = 2iai(x/2
i), f0(x) = (f − div(Lv∗))(x/2

i), and u0(x) = 2iu(x/2i). The
problems in (2.1.25) for 3 ≤ i ≤ n− 1 become the rescaled problem

div(a0) = f0 in B2,

a0 = u0 −
 
B4\B1

u0 on ∂B2,

a0 = u0 −
 
B2\B1/2

u0 on ∂B1.

(2.1.27)

By Lemma 2.1.3, there exists a solution a0 to (2.1.27) satisfying

∥∇a0∥L2(B2) ≤ C(∥f0∥L2(B2) + ∥u0 −
 
B4\B1

u0∥L2(B2))

+ C∥u0 −
 
B2\B1/2

u0∥L2(B2)

≤ C(∥f0∥L2(B2) + ∥∇u0∥L2(B4\B1/2)),

(2.1.28)

where we have used the Poincaré inequality in the second step. It follows that for
3 ≤ i ≤ n− 1,

∥∇ai∥L2(Ai) ≤ C(∥f − div(Lv∗)∥L2(Ai) + ∥∇u∥L2(Ai−1∪Ai∪Ai+1)). (2.1.29)

The same approach can be applied to obtain similar estimates for the problems in
A1, A2, An, and An+1. By letting w = ai in Ai, we obtain w satisfying (2.1.13) and
(2.1.14), where (2.1.16) has been used.

We are now ready to prove the pressure estimate in Theorem 2.1.1.
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Proof of Theorem 2.1.1. Note that
�
Qε,η

1
(pε−

�
Qε,η

1
pε) = 0. Thus we can apply Lemma

2.1.4 to find vε satisfying div(vε) = pε −
�
Qε,η

1
pε in Q

ε,η
1 and

∥∇vε∥L2(Qε,η
1 ) ≤ C(1 +

1

σε
)∥f∥L2(Qε,η

1 ). (2.1.30)

Then�
Qε,η

1

|pε −
 
Qε,η

1

pε|2 =
�
Qε,η

1

(pε −
 
Qε,η

1

pε)div(vε)

≤ ∥∇pε∥H−1(Qε,η
1 )∥∇vε∥L2(Qε,η

1 )

≤ C(∥∇uε∥L2(Qε,η
1 ) + ∥f∥L2(Qε,η

1 ))(1 +
1

σε
)∥pε −

 
Qε,η

1

pε∥L2(Qε,η
1 ),

which yields the desired estimate.

2.2 Caccioppoli Inequality

The proofs of the large-scale estimates in Theorems 1.3.3 and 1.3.4 will rely on a
Caccioppoli inequality for solutions to the Stokes equations in a perforated cube. We
give the Caccioppoli inequality in a rescaled setting.

Theorem 2.2.1. Let (u, p) ∈ H1(Q1,η
R )× L2(Q1,η

R ) be a weak solution of
−∆u+∇p = f in Q1,η

R ,

div(u) = 0 in Q1,η
R ,

u = 0 on Q1,η
R ∩ ω1,η,

(2.2.1)

where 1 ≤ R ≤ η
2−d
2 if d ≥ 3, and 1 ≤ R ≤ | ln(η/2)|1/2 if d = 2. Then

�
Q1,η

R/2

|∇u|2 ≤ C

R2

�
Q1,η

R

|u|2 + CR2

�
Q1,η

R

|f |2, (2.2.2)

where C depends only on d and T .

Proof. Without loss of generality, we may assume R = 2k for some k ≥ 0. For
otherwise, we can cover QR with cubes of side length 2k and apply the result on
each cube. We can also assume

�
Q1,η

R
p = 0. We begin by rescaling as follows: let

ũ(x) = u(Rx), p̃(x) = Rp(Rx), and f̃(x) = R2f(Rx). We obtain the rescaled system
−∆ũ+∇p̃ = f̃ in Q

1/R,η
1 ,

div(ũ) = 0 in Q
1/R,η
1 ,

ũ = 0 on Q
1/R,η
1 ∩ ωε,η.

(2.2.3)
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Note that the assumptions on R imply that R ≤ K−1
η . By applying (2.1.2) with

ε = 1/R, we obtain

∥p∥L2(Q1,η
R ) = Rd−1∥p̃∥

L2(Q
1/R,η
1 )

≤ CRd−1(1 +RKη)(∥∇ũ∥L2(Q
1/R,η
1 )

+ ∥f̃∥
L2(Q

1/R,η
1 )

)

≤ C(∥∇u∥L2(Q1,η
R ) +R∥f∥L2(Q1,η

R )).

(2.2.4)

It follows that �
Q1,η

R

|p|2 ≤ C

�
Q1,η

R

(|∇u|2 +R2|f |2). (2.2.5)

Define
I = {t ∈ [1, R] : ∂Qt ∩ ∂ω1,η = ∅}. (2.2.6)

If t ∈ I, then (u, p) satisfies
−∆u+∇p = f in Q1,η

t ,

div(u) = 0 in Q1,η
t ,

u = 0 on Q1,η
t ∩ ω1,η.

(2.2.7)

Using u as a test function in (2.2.7) and integrating by parts, we obtain

�
Q1,η

t

|∇u|2 −
�
∂Qt

u · (∇un) +
�
∂Qt

pu · n =

�
Q1,η

t

f · u. (2.2.8)

Hence �
Q1,η

t

|∇u|2 ≤
�
∂Qt

(|∇u|+ |p|)|u|+
�
Q1,η

t

|f ||u|. (2.2.9)

Choose r, s ∈ I such that s− r ≥ 1
2
. Then for t ∈ I ∩ [r, s],

�
Q1,η

r

|∇u|2 ≤
�
∂Qt

(|∇u|+ |p|)|u|+
�
Q1,η

s

|f ||u|. (2.2.10)

Integrating both sides of (2.2.10) in t over [r, s]∩ I and using the Cauchy inequality,
we find for any δ ∈ (0, 1),

�
Q1,η

r

|∇u|2 ≤ C

s− r

�
Q1,η

s

(|∇u|+ |p|)|u|+
�
Q1,η

s

|f ||u|

≤ C

(s− r)2δ

�
Q1,η

s

|u|2 + Cδ

�
Q1,η

s

(|∇u|2 + |p|2) + C(s− r)2
�
Q1,η

s

|f |2

≤ C

(s− r)2δ

�
Q1,η

s

|u|2 + Cδ

�
Q1,η

s

|∇u|2 + CR2

�
Q1,η

s

|f |2,

(2.2.11)
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where (2.2.5) has been used to bound pressure terms. Repeatedly applying (2.2.11)
for r = ri and s = ri+1, where ri = R(1− 2−i), i = 1, . . . , k, we obtain

�
Q1,η

R/2

|∇u|2 ≤
k−1∑
i=1

(
C(4i+1)

R2δ
(Cδ)i−1

�
Q1,η

ri+1

|u|2 + (Cδ)i−1R2

�
Q1,η

ri+1

|f |2
)

+ (Cδ)k−1

�
Q1,η

R

|∇u|2.
(2.2.12)

Choosing δ > 0 such that Cδ < 1/4 and observing that (1/4)k−1 = 4R−2, we obtain

�
Q1,η

R/2

|∇u|2 ≤ C

R2

�
Q1,η

R

|u|2 + C

R2

�
Q1,η

R

|∇u|2 + CR2

�
Q1,η

R

|f |2. (2.2.13)

To deal with the term involving ∇u in the right side of (2.2.13), we consider the
problem 

−∆v +∇q = g in Q1+δ\ηT,
div(v) = 0 in Q1+δ\ηT,

v = 0 on ∂ηT,

(2.2.14)

where δ > 0 is small. In this case with only one obstacle, a classical Caccioppoli
inequality and classical pressure estimates for the Stokes system yield

�
Q1\ηT

|∇v|2 ≤ Cδ

�
Q1+δ\ηT

(|v|2 + |g|2). (2.2.15)

Covering Q1,η
R with cubes Q1,η

1 and applying (2.2.15) in (2.2.13) yields

�
Q1,η

R/2

|∇u|2 ≤ C

R2

�
Q1,η

R+1

|u|2 + CR2

�
Q1,η

R+1

|f |2. (2.2.16)

To obtain the desired result (2.2.2), we cover QR/2 by cubes of side length R−1
2

and
apply (2.2.16).

Copyright© Jamison R. Wallace, 2024.
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Chapter 3 Large-scale Estimates: Critical and Subcritical Cases

We will now begin to establish the large-scale estimates given in Theorems 1.3.3 and
1.3.4. Due to Theorem 2.2.1 only providing bounds when the cube’s side length R is
sufficiently small, the proofs of Theorems 1.3.3 and 1.3.4 will be split into multiple
cases depending on the size of R. The definitions of the cases are motivated by [1].

Suppose (u, p) satisfies (1.3.12). If ε ≤ R < σε, we say that the scaling regime
is “subcritical.” If R = σε, we say that the scaling regime is “critical.” Finally, if
R > σε, we say that the scaling regime is “supercritical.” In this chapter, we will
prove the large-scale estimates in the case of subcritical or critical scaling regime
using an approach from [17].

Theorem 3.0.1. Let d ≥ 2, and let ε, η ∈ (0, 1). Suppose (u, p) ∈ H1(Qε,η
R ;Rd) ×

L2(Qε,η
R ) is a weak solution to (1.3.12) for some ε ≤ R ≤ σε. Then if ε ≤ r ≤ R,( 

Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

, (3.0.1)

where C depends on d.

Theorem 3.0.2. Let d ≥ 2, and let ε, η ∈ (0, 1). Suppose (u, p) ∈ H1(Qε,η
R ;Rd) ×

L2(Qε,η
R ) is a weak solution to (1.3.12) for some ε ≤ R ≤ σε. Then if ε ≤ r ≤ R,( 

Qr

|u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

, (3.0.2)

where C depends on d.

Theorem 3.0.1 gives the large-scale Lipschitz estimate in the subcritical and crit-
ical cases, while Theorem 3.0.2 gives the large-scale L∞ estimates in these cases.

3.1 Correctors: The Case d ≥ 3

For u ∈ L1(Rd) and z ∈ Zd, define

û(z) =

�
z+Q1

u(x) dx. (3.1.1)

We will see later that Theorem 3.0.1 can be proven under the assumption that û(0) =
0 by applying the Caccioppoli inequality in Theorem 2.2.1 as well as a discrete Sobolev
inequality to u. However, we cannot assume that û(0) = 0. Furthermore, we cannot
apply the argument to u− û(0), as this function would not vanish on the obstacles.

To circumvent this issue, we define a matrix of corrector functions Mη which also
vanishes on the obstacles. By choosing α ∈ Rd such that w = u − Mηα satisfies
ŵ(0) = 0 and w = 0 in Rd\ωε,η, we will then be able to prove Theorem 3.0.1. The
corrector functions are defined using solutions to an exterior problem.
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Lemma 3.1.1. Suppose d ≥ 3. For k = 1, . . . , d, let (wk, πk) ∈ H1(Rd\T ;Rd) ×
L2(Rd\T ) solve the exterior problem

−∆wk +∇πk = 0 in Rd\T
div(wk) = 0 in Rd\T

wk = 0 on ∂T

wk → ek as |x| → ∞.

(3.1.2)

Then (wk, πk) satisfies at infinity

wk = ek −
1

2Sdrd−2

(
Fk

d− 2
+ (Fk · er)er

)
+O

(
1

rd−1

)
,

πk = − 1

Sdrd−1
(Fk · er) +O

(
1

rd

)
,

∇wk = O

(
1

rd−1

)
,

∂wk

∂r
− πker =

1

2Sdrd−1
(Fk + d(Fk · er)er) +O

(
1

rd

)
,

(3.1.3)

where er is the radial unit vector, Sd is the area of the unit sphere in Rd and

Fk =

�
∂T

(
∂wk

∂n
− πkn

)
. (3.1.4)

Moreover,

Fk · ei =
�
Rd\T

∇wk · ∇wi. (3.1.5)

Proof. See [1].

For d ≥ 3, we define correctors (wη
k, π

η
k) by{

wη
k = ek
πη
k = 0

in Y \B1/3,

{
−∆wη

k +∇πη
k = 0

div(wη
k) = 0

in B1/3\B1/4,
wη

k = wk

(
x

η

)
πη
k =

1

η
πk

(
x

η

) in B1/4\ηT,
{
wη

k = 0
πη
k = 0

in ηT.

(3.1.6)
Since wη

k = 1 on ∂Y , we can extend (wη
k, π

η
k) to Rd periodically.

Lemma 3.1.2. Assume d ≥ 3. Let (wη
k, π

η
k) be defined by (3.1.6) and extended

periodically to Rd. Then
−∆wη

k + χ∇πη
k = ηd−2C∗ek + div(f η

k ) in ω1,η,

div(wη
k) = 0 in ω1,η,

wη
k = 0 in Rd\ω1,η,

(3.1.7)
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where C∗ ∈ Rd×d is invertible, χ is the Y -periodic characteristic function such that

χ =

{
1 in B1/4\ηT,
0 elsewhere in Y,

(3.1.8)

and f η
k is Y -periodic and satisfies

|f η
k | ≤ Cηd−2 in Y \ηT, (3.1.9)

where C depends only on d and T . Furthermore,( 
Y

|∇wη
k|

2

)1/2

≤ Cη
d−2
2 , (3.1.10)

where C depends only on d and T .

Proof. Let φ ∈ C∞(Rd;Rd) be Y -periodic with φ = 0 in Rd\ω1,η. We need to show
that�

Y

∇wη
k · ∇φdx−

�
Y

χπη
k∇ · φdx = ηd−2C∗ek ·

�
Y

φdx−
�
Y

f η
k · ∇φdx, (3.1.11)

where C∗ is invertible and f η
k satisfies (3.1.9). We begin by observing that

�
Y

∇wη
k · ∇φdx−

�
Y

χπη
k∇ · φdx

=

�
B1/4\ηT

∇wη
k · ∇φdx+

�
B1/3\B1/4

∇wη
k · ∇φdx

−
�
B1/4\ηT

πη
k∇ · φdx

=

�
∂B1/4

(
∂wη

k

∂n
− πη

kn−
 
∂B1/4

(
∂wη

k

∂n
− πη

kn

))
· φdσ

+

 
∂B1/4

(
∂wη

k

∂n
− πη

kn

)
dσ ·

�
∂B1/4

φdσ

+

�
B1/3\B1/4

∇wη
k · ∇φdx

= I1 + I2 + I3.

For I3, we note that (3.1.3) implies

|∇wη
k| ≤ Cηd−2 in B1/3\B1/4. (3.1.12)
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We will now deal with I1. Observe that (3.1.3) implies∣∣∣∣∣
�
∂B1/4

(
∂wη

k

∂n
− πη

kn−
 
∂B1/4

(
∂wη

k

∂n
− πη

kn

))∣∣∣∣∣
≤ 2|∂B1/4| max

x∈∂B1/4

∣∣∣∣(∂wη
k

∂n
− πη

kn

)
(x)

∣∣∣∣
= 2|∂B1/4| max

x∈∂B1/(4η)

∣∣∣∣1η
(
∂wk

∂n
− πkn

)
(x)

∣∣∣∣
≤ Cηd−2.

(3.1.13)

Therefore

|I1| ≤ Cηd−2

�
∂B1/4

|φ− α|

= Cηd−2

�
∂B1/4

(x · n)|φ− α|

≤ Cηd−2

(�
B1/4

|φ− α|+
�
B1/4

|∇φ|

) (3.1.14)

for any α ∈ Rd. Choosing α =
�
B1/4

φ gives

|I1| ≤ Cηd−2

�
B1/4

|∇φ|. (3.1.15)

It remains to deal with I2. Note that

 
∂B1/4

(
∂wη

k

∂n
− πη

kn

)
·
�
∂B1/4

φ = ηd−2

�
∂B1/(4η)

(
∂wk

∂n
− πkn

)
·
 
∂B1/4

φ. (3.1.16)

Since (wk, πk) satisfies −∆wk + ∇πk = 0 in Bs\Br for any 1/4 ≤ r < s < ∞, it
follows that �

∂B1/(4η)

∂wk

∂n
− πkn =

�
∂B1

∂wk

∂n
− πkn

=
1

2Sd

�
∂B1

Fk + d(Fk · n)n

= C∗ek

(3.1.17)

where C∗ is the matrix whose columns are the vectors Fk given by (3.1.4). Next,
observe  

∂B1/4

φ =
4

|∂B1/4|

�
∂B1/4

(x · n)φ

= dCd

 
B1/4

φ+ Cd

 
B1/4

x · ∇φ,
(3.1.18)
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where Cd = |B1|/|∂B1|. Thus we can write∣∣∣∣  
∂B1/4

φ−
�
Y

φ

∣∣∣∣ ≤ dCd

 
B1/4

∣∣∣∣φ− 1

dCd

�
Y

φ

∣∣∣∣+ Cd

 
B1/4

|x · ∇φ|

≤ C

( �
Y

|∇φ|+
�
Y

|x · ∇φ|
)
.

(3.1.19)

It follows from (3.1.16), (3.1.17), and (3.1.19) that

 
∂B1/4

(
∂wη

k

∂n
− πη

kn

)
·
�
∂B1/4

φ = ηd−2

�
∂B1/(4η)

(
∂wk

∂n
− πkn

)
·
 
∂B1/4

φ

= ηd−2C∗ek ·
((  

∂B1/4

φ−
�
Y

φ

)
+

�
Y

φ

)
= ηd−2C∗ek ·

�
Y

φ−
�
Y

gηk · ∇φ,

(3.1.20)

where |gηk | ≤ Cηd−2. We obtain (3.1.11) from (3.1.12), (3.1.15), and (3.1.20).
It remains to show C∗ is invertible. We will show C∗ is symmetric and positive-

definite. Symmetry follows from (3.1.5). Let W be the matrix whose columns are wk

given by (3.1.2). We must show

ξ · C∗ξ =

�
Rd\T

|∇(Wξ)|2 ≥ c0|ξ|2 (3.1.21)

for any ξ ∈ Rd. It suffices to consider |ξ| = 1. Suppose (3.1.21) does not hold. Since
∇(Wξ) is continuous as a function of ξ, we must have

�
Rd\T

|∇(Wξ)|2 = 0 (3.1.22)

for some ξ ∈ Rd with |ξ| = 1. In particular, |∇(Wξ)| = 0 for all x ∈ Rd\T . This is
a contradiction, because wk = 0 on ∂T and wk = ek at infinity. Therefore, we obtain
(3.1.21).

Finally, a simple energy estimate shows that (3.1.10) holds. Indeed, using wη
k as

a test function in (3.1.7) yields

�
Y

|∇wη
k|

2 = ηd−2

�
Y

wη
k · C∗ek −

�
Y

f η
k · ∇wη

k

≤ Cηd−2

( 
Y

|wη
k|

2

)1/2

+ ηd−2

( 
Y

|∇wη
k|

2

)1/2

≤ Cη
d−2
2

( 
Y

|∇wη
k|

2

)1/2

.

(3.1.23)
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Given η > 0, we define Mη ∈ H1(ω1,η;Rd×d) to be the matrix whose columns are
the correctors wη

k.

Lemma 3.1.3. Assume d ≥ 3. The matrix M̂η(0) is invertible for sufficiently small
η, and

|M̂η(0)−1| ≤ C, (3.1.24)

where the constant C is independent of η.

Proof. We have

|ŵη
k(0)− ek| =

∣∣∣∣�
Y

wη
k − ek

∣∣∣∣
≤
�
ηT

1 +

�
B1/4\ηT

|wη
k − ek|+

�
B1/3\B1/4

|wη
k − ek|.

(3.1.25)

Using (3.1.3), we find �
B1/3\B1/4

|wη
k − ek| ≤ Cηd−2 (3.1.26)

and �
B1/4\ηT

|wη
k − ek| = ηd

�
B1/(4η)\T

|wk − ek|

≤ Cηd
� 1

4η

1

1

rd−2
rd−1 dr

≤ Cηd−2.

(3.1.27)

It follows that
|M̂η(0)− I| ≤ Cηd−2, (3.1.28)

which gives the invertibility of M̂η(0) for small η as well as (3.1.24).

3.2 Correctors: The Case d = 2

We will now define the corrector matrix in the case d = 2. The correctors are again
defined using the solutions of an exterior problem.

Lemma 3.2.1. Suppose d = 2. Let (wk, πk) ∈ H1(R2\T ;R2) × L2(R2\T ) solve the
exterior problem 

−∆wk +∇πk = 0 in R2\T,
div(wk) = 0 in R2\T,

wk = 0 on ∂T.

(3.2.1)
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Then (wk, πk) satisfies at infinity

wk = vk +
1

4π
ln(r)ek +

1

4π
(ek · er)er +O

(
1

r

)
,

πk = − 1

2π

ek · er
r

+O

(
1

r2

)
,

∇wk = O

(
1

r

)
,

∂wk

∂r
− πker =

1

4πr
(ek + 2(ek · er)er) +O

(
1

r2

)
,

(3.2.2)

where vk ∈ R2.

Proof. See [9].

For d = 2, we define the correctors (wη
k, π

η
k) by{

wη
k = ek
πη
k = 0

in Y \B1/3,

{
−∆wη

k +∇πη
k = 0

div(wη
k) = 0

in B1/3\B1/4,
wη

k =
4π

| ln(η)|
wk

(
x

η

)
πη
k =

4π

η| ln(η)|
πk

(
x

η

) in B1/4\ηT,
{
wη

k = 0
πη
k = 0

in ηT.

(3.2.3)
As before, we extend (wη

k, π
η
k) periodically to R2.

Lemma 3.2.2. Assume d = 2. Let (wη
k, π

η
k) be defined by (3.2.3) and extended

periodically to R2. Then
−∆wη

k + χ∇πη
k = 4π| ln(η)|−1ek + div(f η

k ) in ω1,η,

div(wη
k) = 0 in ω1,η,

wη
k = 0 in R2\ω1,η,

(3.2.4)

where χ is the Y -periodic characteristic function such that

χ =

{
1 in B1/4\ηT,
0 elsewhere in Y,

(3.2.5)

and f η
k is Y -periodic and satisfies

|f η
k | ≤ C| ln(η)|−1 in Y \ηT, (3.2.6)

where C depends only on d and T . Furthermore,( 
Y

|∇wη
k|

2

)1/2

≤ C| ln(η)|−1/2, (3.2.7)

where C depends only on d and T .
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Proof. Let φ ∈ C∞(R2;R2) be Y -periodic with φ = 0 in R2\ω1,η. We need to show
that�

Y

∇wη
k · ∇φdx−

�
Y

χπη
k∇ · φdx = 4π| ln(η)|−1ek ·

�
Y

φdx−
�
Y

f η
k · ∇φdx, (3.2.8)

where f η
k satisfies (3.2.6). We begin by observing that

�
Y

∇wη
k · ∇φdx−

�
Y

χπη
k∇ · φdx

=

�
B1/4\ηT

∇wη
k · ∇φdx+

�
B1/3\B1/4

∇wη
k · ∇φdx

−
�
B1/4\ηT

πη
k∇ · φdx

=

�
∂B1/4

(
∂wη

k

∂n
− πη

kn−
 
∂B1/4

(
∂wη

k

∂n
− πη

kn

))
· φdσ

+

 
∂B1/4

(
∂wη

k

∂n
− πη

kn

)
dσ ·

�
∂B1/4

φdσ

+

�
B1/3\B1/4

∇wη
k · ∇φdx

= I1 + I2 + I3.

For I3, we note that (3.2.2) implies

|∇wη
k| ≤ C| ln(η)|−1 in B1/3\B1/4. (3.2.9)

We will now deal with I1. Observe that (3.2.2) implies∣∣∣∣∣
�
∂B1/4

(
∂wη

k

∂n
− πη

kn−
 
∂B1/4

(
∂wη

k

∂n
− πη

kn

))∣∣∣∣∣
≤ 2|∂B1/4| max

x∈∂B1/4

∣∣∣∣(∂wη
k

∂n
− πη

kn

)
(x)

∣∣∣∣
= 2|∂B1/4| max

x∈∂B1/(4η)

∣∣∣∣ 4π

η| ln(η)|

(
∂wk

∂n
− πkn

)
(x)

∣∣∣∣
≤ C| ln(η)|−1.

(3.2.10)
Therefore

|I1| ≤ C| ln(η)|−1

�
∂B1/4

|φ− α|

≤ C| ln(η)|−1

�
∂B1/4

(x · n)|φ− α|

≤ C| ln(η)|−1

(�
B1/4

|φ− α|+
�
B1/4

|∇φ|

) (3.2.11)
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for any α ∈ R2. Choosing α =
�
B1/4

φ gives

|I1| ≤ C| ln(η)|−1

�
B1/4

|∇φ|. (3.2.12)

It remains to deal with I2. Note that

 
∂B1/4

(
∂wη

k

∂n
− πη

kn

)
·
�
∂B1/4

φ = 4π| ln(η)|−1

�
∂B1/(4η)

(
∂wk

∂n
− πkn

)
·
 
∂B1/4

φ.

(3.2.13)
Since (wk, πk) satisfies −∆wk + ∇πk = 0 in Bs\Br for any 1/4 ≤ r < s < ∞, it
follows that �

∂B1/(4η)

∂wk

∂n
− πkn =

�
∂B1

∂wk

∂n
− πkn

=
1

4π

�
∂B1

ek + 2xkn

= ek.

(3.2.14)

Next, observe  
∂B1/4

φ =
4

|∂B1/4|

�
∂B1/4

(x · n)φ

= 2C2

 
B1/4

φ+ C2

 
B1/4

x · ∇φ,
(3.2.15)

where C2 = |B1|/|∂B1|. Thus we can write∣∣∣∣ 
∂B1/4

φ−
�
Y

φ

∣∣∣∣ ≤ 2C2

 
B1/4

∣∣∣∣φ− 1

2C2

�
Y

φ

∣∣∣∣+ C2

 
B1/4

|x · ∇φ|

≤ C

(�
Y

|∇φ|+ C

�
Y

|x · ∇φ|
)
.

(3.2.16)

It follows from (3.2.13), (3.2.14), and (3.2.16) that

 
∂B1/4

(
∂wη

k

∂n
− πη

k

)
·
�
∂B1/4

φ = 4π| ln(η)|−1

�
∂B1/(4η)

(
∂wk

∂n
− πkn

)
·
 
∂B1/4

φ

= 4π| ln(η)|−1ek ·
((  

∂B1/4

φ−
�
Y

φ

)
+

�
Y

φ

)
= 4π| ln(η)|−1ek ·

�
Y

φ−
�
Y

gηk · φ,

(3.2.17)
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where |gηk | ≤ C| ln(η)|−1. We obtain (3.2.4) from (3.2.9), (3.2.12), and (3.2.17). To
show (3.2.7), we use wη

k as a test function in (3.2.4) to obtain

 
Y

|∇wη
k|

2 = 4π| ln(η)|−1|
�
Y

wη
k · ek +

�
Y

div(f η
k ) · w

η
k

≤ C| ln(η)|−1

( 
Y

|wη
k|

2

)1/2

+ C| ln(η)|−1

( 
Y

|∇wη
k|

2

)1/2

≤ C| ln(η)|−1/2

( 
Y

|∇wη
k|

2

)1/2

.

(3.2.18)

As before, we will need invertibility of M̂η(0), where Mη is the matrix whose
columns are the correctors wη

k.

Lemma 3.2.3. Assume d = 2. The matrix M̂η(0) is invertible for sufficiently small
η, and

|M̂η(0)−1| ≤ C, (3.2.19)

where the constant C is independent of η.

Proof. We have

|ŵη
k(0)− ek| =

∣∣∣∣�
Y

wη
k − ek

∣∣∣∣
≤
�
ηT

1 +

�
B1/4\ηT

|wη
k − ek|+

�
B1/3\B1/4

|wη
k − ek|.

(3.2.20)

Using (3.2.2), we find

�
B1/3\B1/4

|wη
k − ek| ≤ |B1/3\B1/4| max

x∈∂B1/4

|wη
k − ek|

≤ C| ln(η)|−1

(3.2.21)

and �
B1/4\ηT

|wη
k − ek| = η2

�
B1/(4η)\T

∣∣4π| ln(η)|−1wk − ek
∣∣

≤ Cη2| ln(η)|−1

� 1
4η

1

r dr

≤ C| ln(η)|−1.

(3.2.22)

It follows that
|M̂η(0)− I| ≤ C| ln(η)|−1, (3.2.23)

which gives the invertibility of M̂η(0) for small η as well as (3.2.19).
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3.3 Proofs of Large-scale Estimates: Critical and Subcritical Cases

We now introduce some results from [17] to be used in the proofs of Theorems 3.0.1
and 3.0.2.

Lemma 3.3.1. Let u ∈ H1(Qr+2), where r ≥ 1. Then( 
Qr

|u|2
)1/2

≤ C max
z∈Zd∩Qr+2

|û(z)|+ C

( 
Qr+2

|∇u|2
)1/2

, (3.3.1)

where C depends only on d.

Proof. See [17].

For a function g defined on Rd or Zd, we define

∆jg(x) = g(x+ ej)− g(x) (3.3.2)

for 1 ≤ j ≤ d, where ej = (0, . . . , 1, . . . , 0) with 1 in the jth position. For a multi-
index γ = (γ1, γ2, . . . , γd), we use the notation

∆γg = ∆γ1
1 ∆γ2

2 · · ·∆γd
d g (3.3.3)

if |γ| ≥ 1, and ∆γg = g if γ = 0. For an integer k ≥ 0, let ∂kg = (∆γ)g|γ|=k and

|∂kg| =

∑
|γ|=k

|∆γg|2
1/2

. (3.3.4)

It follows from the Fundamental Theorem of Calculus that

|∂k+1û(z)| ≤
(�

z+3Q1

|∇∂ku|2 dx
)1/2

(3.3.5)

for any z ∈ Zd.

Lemma 3.3.2. Let u ∈ H1(QR) for some R ≥ 100d. Then, for any r ∈ [1, R/100],

( 
Qr

|u− û(0)|2
)1/2

≤ Cr

N∑
k=0

Rk

( 
QR/2

|∇∂ku|2
)1/2

+C

( 
Q3r

|∇u|2
)1/2

, (3.3.6)

where N = [d/2] + 1 and C depends only on d.

Proof. See [17].

The following lemma provides a discrete Sobolev inequality for functions defined
on Zd.
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Lemma 3.3.3. Let g be a function defined on Zd. Then, for R ≥ 3d,

max
z∈Zd∩QR

|g(z)| ≤ C
N∑
k=0

Rk

 1

Rd

∑
z∈Zd∩Q2R

|∂kg(z)|2
1/2

, (3.3.7)

where N = [d/2] + 1 and C depends only on d.

Proof. See [18].

We are now ready to give the proof of Theorem 3.0.1.

Proof of Theorem 3.0.1. By rescaling, we may assume ε = 1. Since both sides of
(3.0.1) only feature ∇u, it is clear that this rescaling does not affect the estimate.
Note that after rescaling, the condition ε ≤ R ≤ σε becomes 1 ≤ R ≤ K−1

η . We can
also assume R is a large integer satisfying R ≥ δ−2d for some small δ. If R is not an
integer, we can cover R by cubes with integer side lengths. If 1 ≤ r ≤ R < δ−2d,
then the estimate is trivial. Indeed, in this case( 

Qr

|∇u|2
)1/2

≤
(
|QR|
|Qr|

 
QR

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

,

(3.3.8)

where C depends only on d and δ.
Define w = u −Mηα, where α ∈ Rd is chosen so that ŵ(0) = 0. It follows from

(3.1.24) that
|α| ≤ C|û(0)|. (3.3.9)

Furthermore, Lemmas 3.1.2 and 3.2.2 imply that there exists q ∈ L2(Rd) such that
−∆w +∇q = F η + div(f η) in Q1,η

R ,

div(w) = 0 in Q1,η
R ,

w = 0 in QR ∩ ∂ω1,η,

(3.3.10)

where F η and f η are Y -periodic and satisfy

|F η|+ |f η| ≤ C|α|K2
η . (3.3.11)

For 1 ≤ ρ ≤ R/2, the Caccioppoli inequality (2.2.2) and (3.3.11) imply( 
Qρ

|∇w|2
)1/2

≤ C

ρ

( 
Q2ρ

|w|2
)1/2

+ Cρ|α|K2
η . (3.3.12)

Let γ be a multi-index with 1 ≤ |γ| ≤ d. Since F η and f η are Y -periodic, we have
−∆(∆γw) +∇(∆γq) = 0 in QR−3|γ| ∩ ω1,η,

div(∆γw) = 0 in QR−3|γ| ∩ ω1,η,

∆γw = 0 on QR−3|γ| ∩ ∂ω1,η.

(3.3.13)
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In particular, if k ≥ 1, we may apply Theorem 2.2.1 to ∂kw to find( 
Qρ

|∇∂kw|2
)1/2

≤ C

ρ

( 
Q2ρ

|∂kw|2
)1/2

≤ C

ρ

( 
Q2ρ+3

|∇∂k−1w|2
)1/2

,

(3.3.14)

for any 1 ≤ ρ ≤ (R − 3d)/2, where for the second inequality we have used the
observation that ( �

z+Q1

|∆jw|2
)1/2

≤ C

( �
z+3Q1

|∇w|2
)1/2

. (3.3.15)

By induction, we obtain( 
Qρ

|∇∂kw|2
)1/2

≤ C

ρk

( 
QCρ

|∇w|2
)1/2

(3.3.16)

for any 0 ≤ k ≤ d, where C depends only on d. Let r ∈ [1, δR/2]. Using (3.3.12),
(3.3.16), and (3.3.6) applied to w, we see that( 

Qr

|∇w|2
)1/2

≤ C

r

( 
Q2r

|w|2
)1/2

+ Cr|α|K2
η

≤ C
n∑

k=0

Rk

( 
Q100δR

|∇∂kw|2
)1/2

+
C

r

( 
Q6r

|∇w|2
)1/2

+ Cr|α|K2
η

≤ C

( 
QR

|∇w|2
)1/2

+
C

r

( 
Q6r

|∇w|2
)1/2

+ CR|α|K2
η ,

(3.3.17)
where we have used the fact that ŵ(0) = 0. It follows that( 

Qr

|∇u|2
)1/2

≤
( 

Qr

|∇w|2
)1/2

+

( 
Qr

|∇(Mηα)|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

+
C

r

( 
Q6r

|∇u|2
)1/2

+ CR|α|K2
η

+ C

( 
Y

|∇(Mηα)|2
)1/2

,

(3.3.18)

where the Y -periodicity of Mη has been used. Then by using the corrector bounds
(3.1.10) and (3.2.7) as well as (3.3.9) to bound |α|, we obtain( 

Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

+
C

r

( 
Q6r

|∇u|2
)1/2

+ CKη|û(0)|. (3.3.19)
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For the last term, we note that (3.3.16) holds with w replaced by u. Together with
the discrete Sobolev inequality (3.3.7) and (3.3.5), we see that

|û(0)| ≤ C
N∑
k=0

Rk

 1

Rd

∑
z∈Zd∩Q2δR

|∂kû(z)|2
1/2

≤ C

( 
Q3δR

|u|2
)1/2

+ C

N∑
k=1

Rk

( 
Q3δR

|∇∂k−1u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

+ CR

( 
QR/2

|∇u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

≤ K−1
η

( 
QR

|∇u|2
)1/2

(3.3.20)

where the Caccioppoli inequality and the Poincaré inequality (2.0.1)-(2.0.2) have been
used. From (3.3.19) and (3.3.20), it follows that( 

Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

+
C

r

( 
Q6r

|∇u|2
)1/2

(3.3.21)

for any 1 ≤ r ≤ δR/2. In particular, for any 1 < s ≤ R, we have

sup
s≤r≤R

( 
Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

+
C

s
sup

s≤r≤R

( 
Qr

|∇u|2
)1/2

, (3.3.22)

where C depends only on d. By choosing s sufficiently large, we obtain

sup
s≤r≤R

( 
Qr

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

. (3.3.23)

Finally, if 1 ≤ r ≤ s, then( 
Qr

|∇u|2
)1/2

≤
(
|Qs|
|Qr|

 
Qs

|∇u|2
)1/2

≤ C

( 
Qs

|∇u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

,

(3.3.24)

where we have used (3.3.23) in the last inequality.
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Proof of Theorem 3.0.2. By rescaling, we may assume ε = 1. We may also assume R
is a large integer satisfying R ≥ δ−2d for some small δ. Let 1 ≤ r ≤ δR/2. Then by
the discrete Sobolev inequality (3.3.7),

max
z∈Zd∩Qr+2

|û(z)| ≤ max
z∈Zd∩QδR

|û(z)|

≤ C

N∑
k=0

Rk

 1

Rd

∑
z∈Zd∩Q2δR

|∂kû(z)|2
1/2

≤ C

( 
Q3δR

|u|2
)1/2

+ C

N∑
k=1

Rk

( 
Q3δR

|∇∂k−1u|2
)1/2

,

(3.3.25)

where N = [d/2] + 1 and (3.3.5) has been used. As before, (3.3.16) holds with w
replaced by u. Using this, (3.3.1), and (3.3.25), we obtain

( 
Qr

|u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

+ CR

( 
QR/2

|∇u|2
)1/2

+ C

( 
Q3r

|∇u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

+
C

r

( 
Q6r

|u|2
)1/2

.

(3.3.26)
As in the proof of Theorem 3.0.1, the result follows from (3.3.26).
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Chapter 4 Large-scale Estimates: Supercritical Case

In this chapter, we will complete the proofs of Theorems 1.3.3 and 1.3.4 by showing
that the large-scale estimates (1.3.13) and (1.3.14) also hold in the supercritical case,
i.e. when R > σε. We will utilize an approach from [15], which treats the Darcy law
case η = 1. First, we will use a reverse Hölder inequality to establish a boundary
layer estimate for solutions to the Stokes equations in a perforated cube.

4.1 Reverse Hölder Inequalities

Given a function uε ∈ H1(QR) for some R ≥ ε, define

gε(x) =

( 
Q(x,ε)

(σε|∇uε|+ |uε|)2
)1/2

. (4.1.1)

We wish to establish the following reverse Hölder inequality.

Theorem 4.1.1. Let (uε, pε) ∈ H1(Qε,η
2R;Rd)×L2(Qε,η

2R) be a weak solution of (1.3.12)
in Qε,η

2R with uε = 0 on Q2R ∩ ∂ωε,η, where 0 < ε ≤ 1, R ≥ ε, and σε < 1. Let gε be
defined by (4.1.1). Then there exist q > 2 and C > 0 such that( 

QR

|gε|q
)1/q

≤ C

( 
Q2R

(σε|∇uε|+ |uε|)2
)1/2

, (4.1.2)

where C depends only on d and T .

We will need a restriction operator defined in [2].

Lemma 4.1.2. Suppose 0 < ε, η < 1 satisfy σε < 1. Then for any r ≥ ε, there exists
a linear operator Rε : H

1
0 (Qr;Rd) → H1

0 (Q
ε,η
r ;Rd) such that

1. If u ∈ H1
0 (Q

ε,η
r ), then Rεu = u in Qε,η

r , where u has been extended by zero into
the obstacles,

2. If div(u) = 0 in Qr, then div(Rεu) = 0 in Qε,η
r , and

3. ∥∇(Rεu)∥L2(Qε,η
r ) ≤ C

(
∥∇u∥L2(Qr) +

1
σε
∥u∥L2(Qr)

)
, where C does not depend on

ε.

Proof. See [2].

Lemma 4.1.3. Let (v, τ) ∈ H1(Qt;Rd)× L2(Qt) be a weak solution of
−∆v +∇τ = 0 in Qt,

div(v) = 0 in Qt,

v = h on ∂Qt,

(4.1.3)
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for some t > 0, where h ∈ H1(∂Qt;Rd) satisfies the compatibility condition
�
∂Qt

h ·
n dσ = 0. Then there exist q0 ∈ (1, 2) and C > 0, depending only on d, such that( 

Qt

|v|2
)1/2

≤ C

( 
∂Qt

|h|q0
)1/q0

, (4.1.4)

and ( 
Qt

|∇v|2
)1/2

≤ C

( 
∂Qt

|∇tanh|q0
)1/q0

(4.1.5)

Proof. See [15].

We will use the following observation: for c0 given in (1.3.1), we have

dist(∂Qt;Rd\ωε,η) ≥ c0ε if dist(t, εN) ≤ c0ε. (4.1.6)

Lemma 4.1.4. Let (uε, pε) ∈ H1(Qε,η
2R;Rd)× L2(Qε,η

2R) be a weak solution of (1.3.12)
in Qε,η

2R with uε = 0 on Q2R ∩ ∂ωε,η, where 0 < ε ≤ 1, R ∈ εN, and σε < 1. Then

σε

( 
QR

|∇uε|2
)1/2

+

( 
QR

|uε|2
)1/2

≤ Cσε

( 
Q2R

|∇uε|q0
)1/q0

+ C

( 
Q2R

|uε|q0
)1/q0

,

(4.1.7)

where q0 ∈ (1, 2) is given by Lemma 4.1.3 and C depends only on d and T .

Proof. We will show that there exists t ∈ [R, 2R] such that dist(t, εN) ≤ c0ε and

�
∂Qt

(σq0
ε |∇uε|q0 + |uε|q0) dσ ≤ C1

�
Q2R

(σq0
ε |∇uε|q0 + |uε|q0) dx, (4.1.8)

where C1 depends on d and T . Suppose to the contrary that for any t ∈ [R, 2R] with
dist(t, εN) ≤ c0ε,

�
∂Qt

(σq0
ε |∇uε|q0 + |uε|q0) dσ > C1

�
Q2R

(σq0
ε |∇uε|q0 dx+ |uε|q0) dx.

Then integrating the above inequality with respect to t over the set

Eε,R = {t ∈ (R, 2R) : dist(t, εN) ≤ c0ε}

and using the observation that |Eε,R| ≥ c > 0 gives

�
Q2R\QR

(σq0
ε |∇uε|q0 + |uε|q0) dσ > C2C1

�
Q2R

(σq0
ε |∇uε|q0 + |uε|q0) dx, (4.1.9)

where C2 depends only on d and c0. By choosing C1 =
2
C2
, we reach a contradiction.
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Next, let (v, τ) be a weak solution of (4.1.3) in Qt with Dirichlet data h = uε on
∂Qt. Let vε = Rε(v), where Rε is the restriction operator defined in Lemma 4.1.2.
Since uε − vε satisfies

−∆(uε − vε) +∇pε = ∆vε in Qε,η
t ,

div(uε − vε) = 0 in Qε,η
t ,

uε − vε = 0 on ∂Qε,η
t ,

(4.1.10)

we can use uε − vε as a test function in (4.1.10) to see that

�
Qε,η

t

|∇(uε − vε)|2 = −
�
Qε,η

t

∇vε · ∇(uε − vε)

≤ ∥∇(uε − vε)∥L2(Qε,η
t )∥∇vε∥L2(Qε,η

t ).

(4.1.11)

Therefore
∥∇u∥L2(Qε,η

t ) ≤ 2∥∇vε∥L2(Qε,η
t )

≤ C(∥∇v∥L2(Qt) +
1

σε
∥v∥L2(Qt)),

(4.1.12)

where we have used the bounds for Rε given in Lemma 4.1.2 in the second step.
Together with Lemma 4.1.3 and (4.1.8), we conclude

σε∥∇uε∥L2(QR) + ∥uε∥L2(QR) ≤ C(σε∥∇v∥L2(Qt) + ∥v∥L2(Qt))

≤ C(σε∥∇tanuε∥Lq0 (∂Qt) + ∥uε∥Lq0 (∂Qt))

≤ C(σε∥∇uε∥Lq0 (Q2R) + ∥uε∥Lq0 (Q2R)).

(4.1.13)

Remark 4.1.5. Let (uε, pε) be a weak solution of (1.3.12) in Qε,η(x0, 4R) with uε = 0
on Q(x0, 4R) ∩ ∂ωε,η, where x0 ∈ Rd, 0 < ε ≤ 1, R ≥ 2ε, and σε < 1. Then

σε

( 
Q(x0,R)

|∇uε|2
)1/2

+

( 
Q(x0,R)

|uε|2
)1/2

≤ Cσε

( 
Q(x0,4R)

|∇uε|q0
)1/q0

+ C

( 
Q(x0,4R)

|uε|q0
)1/q0

,

(4.1.14)
where q0 ∈ (1, 2) is given by Lemma 4.1.3. Indeed, this follows from (4.1.7) by
choosing y0 ∈ εZd and R1 ∈ εN such that

Q(x0, R) ⊂ Q(y0, R1) and Q(y0, 2R1) ⊂ Q(x0, 4R),

which is possible since R ≥ 2ε.

Proof of Theorem 4.1.1. We may assume 0 < ε < cR where c > 0 is sufficiently
small. The case cR ≤ ε ≤ R is trivial. Indeed, in this case, for any q > 2, we would
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have (  
QR

|gε|q
)1/q

=

( 
QR

(  
Q(x,ε)

(σε|∇uε|+ |uε|)2
)q/2

)1/q

≤ C

( 
QR

(  
Q(x,R)

(σε|∇uε|+ |uε|)2
)q/2

)1/q

≤ C

( 
QR

(  
Q2R

(σε|∇uε|+ |uε|)2
)q/2

)1/q

= C

( 
Q2R

(σε|∇uε|+ |uε|)2
)1/2

.

(4.1.15)

Let q0 ∈ (1, 2) be given by Lemma 4.1.3. Define

Gε(y) = sup

( 
Q(z,r)

(σε|∇uε|+ |uε|)q0
)1/q0

, (4.1.16)

where the supremum is taken over all cubes Q(z, r) satisfying y ∈ Q(z, r), r ≥ 2ε,
and Q(z, r) ⊂ Q2R. We will show that( 

QR

|Gε|q
)1/q

≤ C

( 
Q2R

|Gε|2
)1/2

(4.1.17)

for some q > 2 depending only on d and T . For now, assume (4.1.17) holds. Since
the Hardy-Littlewood maximal operator M is bounded on L2/q0 , we have( 

Q2R

|Gε|2
)1/2

=

( 
Q2R

(
sup
Q(zr)

(  
Q(z,r)

(σε|∇uε|+ |uε|)q0
))2/q0

)1/2

≤
( 

Q2R

∣∣M((σε|∇uε|+ |uε|)q0
)∣∣2/q0)1/2

≤ C

( 
Q2R

(σε|∇uε|+ |uε|)2
)1/2

.

(4.1.18)

Also, by (4.1.14),

gε(x) ≤ C

( 
Q(x,2ε)

(σε|∇uε|+ |uε|)2
)1/2

≤ CGε(x)

(4.1.19)

for any x ∈ QR. Together with (4.1.17) and (4.1.18), we see that( 
QR

|gε|q
)1/q

≤ C

( 
QR

|Gε|q
)1/q

,

≤ C

( 
Q2R

(σε|∇uε|+ |uε|)2
)1/2

,

(4.1.20)
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which yields the desired estimate (4.1.2)
It remains to prove (4.1.17). By the self-improving property of weak reverse Hölder

inequalities, it suffices to show that( 
Q(x,t)

|Gε|2
)1/2

≤ C

( 
Q(x,8t)

|Gε|q0
)1/q0

(4.1.21)

for any x ∈ QR and 0 < t < cR. We divide the proof into two cases.
Case 1. Suppose 0 < t < 4ε. Suppose y, z ∈ Q(x, t). Observe that if a cube

Q(z0, r) contains z and satisfies r ≥ 2ε, then Q(z0, r) ⊂ Q(x, r+t) and y ∈ Q(x, r+t).
Taking supremum over such cubes, we find

Gε(z) ≤ C1

(  
Q(x,r+t)

(σε|∇uε|+ |uε|)q0
)1/q0

≤ C1 sup

(  
Q(y0,r)

(σε|∇uε|+ |uε|)q0
)1/q0

≤ C1Gε(y),

(4.1.22)

where the supremum in the second line is taken over cubes Q(y0, r) containing y and
satisfying r ≥ 2ε and Q(y0, r) ⊂ Q2R. Since the order of y and z in this argument
did not matter, we conclude that there exist C0 > 0 and C1 > 0 depending only on
d and T such that

C0Gε(y) ≤ Gε(z) ≤ C1Gε(y) for y, z ∈ Q(x, t). (4.1.23)

As a result, we immediately obtain (4.1.21) in this case.
Case 2. Suppose 4ε ≤ t < cR. For y ∈ Q(x, t), write

Gε(y) = max(G(1)
ε (y), G(2)

ε (y)), (4.1.24)

where G
(1)
ε is defined as in (4.1.16), but with the supremum taken over all cubes

Q(z, r) satisfying y ∈ Q(z, r), r ≥ 2ε, and Q(z, r) ⊂ Q(x, 2t). By (4.1.14),( 
Q(x,t)

|G(1)
ε |2

)1/2

≤ C

( 
Q(x,2t)

(σε|∇uε|+ |uε|)2
)1/2

≤ C

( 
Q(x,8t)

(σε|∇uε|+ |uε|)q0
)1/q0

≤ C

( 
Q(x,8t)

|Gε|q0
)1/q0

.

(4.1.25)

As in case 1,
G(2)

ε (y) ∼ G(2)
ε (z) for y, z ∈ Q(x, t). (4.1.26)

Hence we have ( 
Q(x,t)

|G(2)
ε |2

)1/2

≤ C

( 
Q(x,t)

|G(2)
ε |q0

)1/q0

≤ C

( 
Q(x,t)

|Gε|q0
)1/q0

.

(4.1.27)
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The following corollary gives a boundary layer estimate for solutions to the Stokes
equations in a perforated cube.

Corollary 4.1.6. Let (uε, pε) ∈ H1(Qε,η
3 ;Rd)×L2(Qε,η

3 ) be a weak solution of (1.3.12)
in Qε,η

3 with uε = 0 on Q3 ∩ ∂ωε,η, where 0 < σε < 1. Then(�
Q1+δ\Q1−δ

(σε|∇uε|+ |uε|)2
)1/2

≤ Cδγ
(�

Q3

(σε|∇uε|+ |uε|)2
)1/2

(4.1.28)

for any δ ∈ (ε, 1], where C and γ depend only on d and T .

Proof. We can assume δ ≤ 1/4. The case δ > 1/4 is trivial, as in this case (4.1.28)
follows immediately by expanding the domain of integration from Q1+δ\Q1−δ to Q3.
By Fubini’s Theorem and Hölder’s inequality,(�

Q1+δ\Q1−δ

(σε|∇uε|+ |uε|)2
)1/2

≤ C

(�
Q1+δ\Q1−δ

|gε|2
)1/2

≤ C|Q1+δ\Q1−δ|
1
2
− 1

q

(�
Q3/2

|gε|q
)1/q

≤ Cδγ

(�
Q3/2

|gε|q
)1/q

(4.1.29)

where q > 2 is given by Theorem (4.1.1) and γ = 1
2
− 1

q
> 0. the desired estimate

follows from (4.1.2).

4.2 Compactness

As in the previous chapter, we will need a matrix of correctors. We define (W η,Πη) ∈
H1(ω1,η;Rd×d)× L2(ω1,η;Rd) by

−∆W η
i +∇Πη

i = K2
ηei in Y \ηT,

div(W η
i ) = 0 in Y \ηT,
W η

i = 0 on ∂ηT,

(4.2.1)

where W η
i is the ith column of W η and Πη

i is the entry in the ith position of Πη, and
we have extended periodically to Rd.

Remark 4.2.1. An energy estimate combined with the Poincaré inequality (2.0.1) -
(2.0.2) yields

∥W η∥L2(Q1) ≤ C and ∥∇W η∥L2(Q1) ≤ CKη, (4.2.2)

where C depends only on d and T .
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Remark 4.2.2. It follows from Remark 4.2.1 that

∥Πη∥L2(Q1\ηT ) ≤ CKη, (4.2.3)

where C depends only on d and T . To see this, apply Lemma 2.1.4 to find v ∈
H1

0 (Q1\ηT ;Rd×d) such that

div(v) = Πη in Q1\ηT, (4.2.4)

and
∥∇v∥L2(Q1\ηT ) ≤ C∥Πη∥L2(Q1\ηT ). (4.2.5)

Using the equation for the correctors (4.2.1), we find that

∥Πη∥2L2(Q1\ηT ) =

�
Q1\ηT

Πη · div(v)

≤ ∥∇Πη∥H−1(Q1\ηT )∥∇v∥L2(Q1\ηT )

≤ (∥∇W η∥L2(Q1\ηT ) +K2
η)∥Πη∥L2(Q1\ηT ).

(4.2.6)

We obtain (4.2.3) from (4.2.2) and (4.2.6).

Lemma 4.2.3. The matrix of correctors W η satisfies W η → C−1
∗ in L2(Y ) as η → 0,

where C∗ is the matrix in (3.1.7) if d ≥ 3, and C∗ = 4πI if d = 2.

Proof. Let (wη
k, π

η
k) be the correctors defined in (3.1.6) if d ≥ 3 or (3.2.3) if d = 2.

Using wη
k as a test function in (4.2.1) yields

�
Y

∇W η
i · ∇wη

k = K2
η

�
Y

ei · wη
k. (4.2.7)

Similarly, using W η
i as a test function in (3.1.7) or (3.2.4) yields

�
Y

∇W η
i · ∇wη

k = K2
η

�
Y

C∗ek ·W η
i −

�
Y

f η
k · ∇W η

i , (4.2.8)

where |f η| ≤ K2
η . By subtracting equations (4.2.7) and (4.2.8), we obtain∣∣∣∣C∗

�
Y

W η −
�
Y

Mη

∣∣∣∣ ≤ K−2
η

�
Y

|f η||∇W η|

≤ C

( �
Y

|∇W η|2
)1/2

≤ CKη,

(4.2.9)

where we have used (4.2.2) in the last inequality. It is shown in [1] that

Mη → I in L2(Y ) as η → 0 (4.2.10)
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if d ≥ 3. The convergence still holds when d = 2. This follows from the observation
that �

B1/3\B1/4

|wη
k − ek|2 ≤ |B1/3\B1/4| max

x∈∂B1/4

|wη
k − ek|2

≤ C| ln(η)|−2

(4.2.11)

and �
B1/4\ηT

|wη
k − ek|2 = η2

�
B1/(4η)\T

∣∣4π| ln(η)|−1wk − ek
∣∣2

≤ Cη2| ln(η)|−2

� 1
4η

1

r dr

≤ C| ln(η)|−2,

(4.2.12)

where the estimates for the correctors (3.2.2) have been used. We find that(�
Y

|W η − C−1
∗ |2

)1/2

≤
(�

Y

|W η −
�
Y

W η|2
)1/2

+

∣∣∣∣�
Y

W η − C−1
∗

�
Y

Mη

∣∣∣∣
+ |C−1

∗ |
(�

Y

|Mη − I|2
)1/2

≤ CKη + |C∗|−1

( �
Y

|Mη − I|2
)1/2

,

(4.2.13)

where we have used (4.2.2) and (4.2.9). In view of 4.2.10, letting η → 0 in (4.2.13)
yields the result.

Remark 4.2.4. Let (uε, pε) be a weak solution to (1.3.12) in Qε,η
R . We extend uε to

QR by zero and still denote the extension by uε. When necessary, we will use Pε to
denote the extension of the pressure pε defined by

Pε(x) =


pε(x) if x ∈ Qε,η

R , 
ε(Y \ηT+zk)

pε if x ∈ ε(ηT + zk) and ε(Y + zk) ⊂ QR for some zk ∈ Zd.

(4.2.14)
Observe that if ε(Y + zk) ⊂ QR for some zk ∈ Zd, then

 
ε(Y+zk)

Pε =
1

εd

(�
ε(Y \ηT+zk)

pε +

�
ε(ηT+zk)

 
ε(Y \ηT+zk)

pε

)
=

1

εd

(
|ε(Y \ηT + zk)|

 
ε(Y \ηT+zk)

pε + |ε(ηT + zk)|
 
ε(Y \ηT+zk)

pε

)
=

 
ε(Y \ηT+zk)

pε
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Then if R ∈ εN, it follows that
 
QR

Pε =
∑
zk

 
ε(Y+zk)

Pε

=
∑
zk

 
ε(Y \ηT+zk)

pε

=

 
Qε,η

R

pε,

(4.2.15)

where the sum is taken over all zk ∈ Zd such that ε(Y + zk) ⊂ QR.

In what follows, we will use rescaled velocity terms. For a solution (uε, pε) to
(1.3.3), we write

ũε =
uε
σ2
ε

. (4.2.16)

We will need the following compactness theorem.

Theorem 4.2.5. Let {(uεj , pεj)} be a sequence of weak solutions to
−∆uεj +∇pεj = 0 in Q

εj ,ηj
4 ,

div(uεj) = 0 in Q
εj ,ηj
4 ,

uεj = 0 on Q4 ∩ ∂ωεj ,ηj ,

(4.2.17)

where εj → 0 and ηj → 0 satisfying σεj → 0. Assume

∥uεj∥L2(Q4) ≤ σ2
εj
. (4.2.18)

Then there exists a subsequence, still denoted (uεj , pεj), and p0 ∈ H1(Q1) such that

Pεj −
 
Q1

Pεj → p0 in L2(Q1), (4.2.19)

and
ũεj +W ηj(x/εj)∇p0 → 0 in L2(Q1;Rd), (4.2.20)

where Pεj is the extension of pεj defined in (4.2.14).

Proof. The assumption (4.2.18) implies

∥ũj∥L2(Q4) ≤ C. (4.2.21)

Note that Theorem 2.1.1 implies

∥Pεj −
 
Q1

Pεj∥L2(Q1) ≤ Cσ−1
εj
∥∇uεj∥L2(Q1) ≤ C, (4.2.22)
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where we have summed the Caccioppoli inequality (2.2.2) on cubes of size σε contained
in Q1 to justify the second step. Therefore, by passing to a subsequence, we can
assume

ũεj → u0 weakly in L2(Q1;Rd) (4.2.23)

and

Pεj −
 
Q1

Pεj → p0 weakly in L2(Q1). (4.2.24)

We can also assume that
�
Q1
p0 = 0.

Step 1. We show that

Pεj −
 
Q1

Pεj → p0 in L2(Q1). (4.2.25)

Let ψ ∈ H1
0 (Q1;Rd) and let Rεj be the restriction operator in Lemma 4.1.2. Then

|⟨∇Pεj , ψ⟩H−1(Q1)×H1
0 (Q1)| = |⟨∇pεj , Rεj(ψ)⟩H−1(Q

εj ,ηj
1 )×H1

0 (Q
εj ,ηj
1 )

|

= |⟨∆ũεj , Rεj(ψ)⟩H−1(Q
εj ,ηj
1 )×H1

0 (Q
εj ,ηj
1 )

|

≤ ∥∇ũεj∥L2(Q
εj ,ηj
1 )

∥∇Rεj(ψ)∥L2(Q
εj ,ηj
1 )

≤ C∥∇ũεj∥L2(Q
εj ,ηj
1 )

(
∥∇ψ∥L2(Q1) +

1

σεj
∥ψ∥L2(Q1)

)
.

(4.2.26)
Suppose to the contrary that (4.2.25) does not hold. Since

∥Pεj −
 
Q1

Pεj − p0∥L2(Q1) ≤ C∥∇Pεj −∇p0∥H−1(Q1), (4.2.27)

it follows that ∇Pεj does not converge to ∇p0 in H−1(Q1). In particular, there exists
a sequence {ψj} ⊂ H1

0 (Q1;Rd) satisfying ∥ψj∥H1
0 (Q1) = 1 and, after passing to a

subsequence,
|⟨∇Pεj −∇p0, ψj⟩H−1(Q1)×H1

0 (Q1)| ≥ C0 > 0. (4.2.28)

By passing to another subsequence we can assume ψn → ψ0 weakly in H1
0 (Q1;Rd).

We decompose

⟨∇Pεj −∇p0, ψj⟩H−1(Q1)×H1
0 (Q1) = ⟨∇Pεj , ψj − ψ0⟩H−1(Q1)×H1

0 (Q1)

− ⟨∇p0, ψj − ψ0⟩H−1(Q1)×H1
0 (Q1)

+ ⟨∇Pεj −∇p0, ψ0⟩H−1(Q1)×H1
0 (Q1).

(4.2.29)

Since the weak convergence in (4.2.24) implies

⟨∇Pεj −∇p0, ψ0⟩H−1(Q1)×H1
0 (Q1) → 0, (4.2.30)

it follows from (4.2.28) that

|⟨∇Pεj , ψj − ψ0⟩H−1(Q1)×H1
0 (Q1)| ≥ C0/2 (4.2.31)
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whenever j is sufficiently large. However, using ψ = ψj − ψ0 in (4.2.26) yields

|⟨∇Pεj , ψj − ψ0⟩H−1(Q1)×H1
0 (Q1)| ≤ C∥∇ũεj∥L2(Q1)∥∇(ψj − ψ0)∥L2(Q1)

+ Cσ−1
εj
∥∇ũεj∥L2(Q1)∥ψj − ψ0∥L2(Q1)

≤ Cσεj .

(4.2.32)

Since σεj → 0 as j → ∞, we reach a contradiction.
Step 2. We show that

uεj +W ηj(x/εj)∇p0 → 0 in L2(Q1;Rd). (4.2.33)

By the Poincaré inequality, we have

∥ũεj +W ηj(x/εj)∇p0∥L2(Q1) ≤ Cσεj∥∇(ũεj +W ηj(x/εj)∇p0)∥L2(Q1). (4.2.34)

Let φδ ∈ C∞(Q1) be a cutoff function satisfying φδ = 1 on Q1−δ, φδ = 0 on Q1\Q1−δ/2

and |∇φδ| ≤ C
δ
. To bound the right side of (4.2.34), we write

σ2
εj
∥∇(ũεj +W ηj(x/εj)∇p0)∥2L2(Q1)

= σ2
εj

�
Q1

∇(ũεj +W ηj(x/εj)∇p0) · ∇((ũεj +W ηj(x/εj)∇p0)φδ)

+ σ2
εj

�
Q1

∇(ũεj +W ηj(x/εj)∇p0) · ∇((ũεj +W ηj(x/εj)∇p0)(1− φδ))

= I1,j + I2,j.

(4.2.35)

We can further decompose

I1,j = σ2
εj

�
Q1

∇ũεj · ∇(ũεjφδ) + σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0) · ∇(ũεjφδ)

+ σ2
εj

�
Q1

∇ũεj · ∇(W ηj(x/εj)∇p0φδ)

+ σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0) · ∇(W ηj(x/εj)∇p0φδ)

= I11,j + I21,j + I31,j + I41,j.

(4.2.36)

We will treat each term separately. First, we have

I11,j = −σ2
εj

�
Q1

∆ũεj · ũεjφδ

= −
�
Q1

∇pεj · ũεjφδ

=

�
Q1

(Pεj −
�
Q1

Pεj)ũεj · ∇φδ

→
�
Q1

p0u0 · ∇φδ

(4.2.37)
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as j → ∞. For I21,j, we have

I21,j = −σ2
εj

�
Q1

∆(W ηj(x/εj)∇p0) · ũεjφδ

= −σ2
εj

�
Q1

(
1

εj2
∆W ηj(x/εj)∇p0 +

2

εj
∇W ηj(x/εj)∇2p0

)
· ũεjφδ

− σ2
εj

�
Q1

W ηj(x/εj)∆(∇p0) · ũεjφδ.

(4.2.38)

Note that regularity results for the Stokes equations imply that p0 ∈ C∞(Rd). It
follows from the corrector estimates (4.2.2) that

σ2
εj

∣∣∣∣�
Q1

W ηj(x/εj)∆(∇p0) · ũεjφδ

∣∣∣∣ ≤ Cσ2
εj
∥W ηj∥L2(Q1)∥ũεj∥L2(Q1)

≤ Cσ2
εj

→ 0

(4.2.39)

as j → ∞, where we have used the periodicity of W ηj . Similarly,

σ2
εj

εj

∣∣∣∣�
Q1

∇W ηj(x/εj)∇2p0 · ũεjφδ

∣∣∣∣ ≤ C
σ2
εj

εj
∥∇W ηj∥L2(Q1)∥ũεj∥L2(Q1)

≤ C
σ2
εj

εj
Kηj

= Cσεj
→ 0

(4.2.40)

as j → ∞. It remains to deal with the first term on the right in (4.2.38). Using
(4.2.1), we find

−
σ2
εj

εj2

�
Q1

∆W ηj(x/εj)∇p0 · ũεjφδ =
σ2
εj

εj2

�
Q1

(K2
ηj
I − εj∇Πηj(x/εj))∇p0 · ũεjφδ

=

�
Q1

∇p0 · ũεjφδ −
σ2
εj

εj2

�
Q1

∇Πηj(x/εj)∇p0 · ũεjφδ.

(4.2.41)
Integrating by parts and applying the weak convergence of ũεj , we see that

�
Q1

∇p0 · ũεjφδ → −
�
Q1

p0u0 · ∇φδ as j → ∞. (4.2.42)

Finally,

−
σ2
εj

εj

�
Q1

∇Πηj(x/εj)∇p0 · ũεjφδ =
σ2
εj

εj

�
Q1

Πηj(x/εj) · (∇2p0φδ +∇p0∇φδ)ũεj .

(4.2.43)
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By Remark 4.2.2, the right side of (4.2.43) satisfies∣∣∣∣∣σ2
εj

εj

�
Q1

Πηj(x/εj) · (∇2p0φδ +∇p0∇φδ)ũεj

∣∣∣∣∣ ≤ C
σ2
εj

εj
∥Πηj∥L2(Q1)∥ũεj∥L2(Q1)

≤ C
σ2
εj

εj
Kηj

= Cσεj
→ 0

(4.2.44)

as j → ∞, where we have used the periodicity of Πηj . Therefore

I21,j → −
�
Q1

p0u0 · ∇φδ as j → ∞. (4.2.45)

Next,

I31,j = −σ2
εj

�
Q1

∆ũεj ·W ηj(x/εj)∇p0φδ

= −
�
Q1

∇pεj ·W ηj(x/εj)∇p0φδ

=

�
Q1

(Pεj −
�
Q1

Pεj)(W
ηj(x/εj)∇p0 · ∇φδ + φδW

ηj(x/εj) · ∇2p0)

→
�
Q1

(p0C
−1
∗ ∇p0 · ∇φδ + φδp0C

−1
∗ · ∇2p0),

(4.2.46)

where we have used (4.2.24) as well as Lemma 4.2.3. Finally,

I41,j = −σ2
εj

�
Q1

∆(W ηj(x/εj)∇p0) ·W ηj(x/εj)∇p0φδ

= −σ2
εj

�
Q1

1

εj2
∆W ηj(x/εj)∇p0 ·W ηj(x/εj)∇p0φδ

− σ2
εj

�
Q1

(
2

εj
∇W ηj(x/εj)∇2p0 +W ηj(x/εj)∆(∇p0)

)
·W ηj(x/εj)∇p0φδ.

(4.2.47)
As before, we use the corrector estimates (4.2.2) to see that∣∣∣∣σ2

εj

�
Q1

(
2

εj
∇W ηj(x/εj)∇2p0 +W ηj(x/εj)∆(∇p0)

)
·W ηj(x/εj)∇p0φδ

∣∣∣∣
≤ Cσ2

εj

(
εj

−1∥∇W ηj∥L2(Q1) + ∥W ηj∥L2(Q1)

)
∥W ηj∥L2(Q1)

≤ Cσεj
→ 0

(4.2.48)
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as j → ∞. We will now treat the first term in (4.2.47). Using the corrector equation
(4.2.1), we obtain

−
σ2
εj

εj2

�
Q1

∆W ηj(x/εj)∇p0 ·W ηj(x/εj)∇p0φδ

=
σ2
εj

εj2

�
Q1

(K2
ηj
I − εj∇Πηj(x/εj))∇p0 ·W ηj(x/εj)∇p0φδ

=

�
Q1

∇p0 ·W ηj(x/εj)∇p0φδ

−
σ2
εj

εj

�
Q1

∇Πηj(x/εj)∇p0 ·W ηj(x/εj)∇p0φδ.

(4.2.49)

Integrating by parts and using the convergence of correctors in Lemma 4.2.3, we find
�
Q1

∇p0 ·W ηj(x/εj)∇p0φδ = −
�
Q1

p0W
ηj(x/εj) · (∇2p0φδ +∇p0∇φδ)

→ −
�
Q1

p0C
−1
∗ · ∇2p0φδ −

�
Q1

p0C
−1
∗ ∇p0 · ∇φδ.

(4.2.50)
Since∣∣∣∣σ2

εj

εj

�
Q1

∇Πηj(x/εj)∇p0 ·W ηj(x/εj)∇p0φδ

∣∣∣∣ ≤ C
σ2
εj

εj
∥Πηj∥L2(Q1)∥W ηj∥L2(Q1)

≤ Cσεj
→ 0

(4.2.51)
as j → ∞, we conclude that

I41,j → −
�
Q1

p0C
−1
∗ · ∇2p0φδ −

�
Q1

p0C
−1
∗ ∇p0 · ∇φδ. (4.2.52)

Using (4.2.37), (4.2.45), (4.2.46), and (4.2.52), we obtain

I1,j → 0 as j → ∞. (4.2.53)

We now wish to deal with I2,j. We begin by decomposing I2,j as

I2,j = σ2
εj

�
Q1

∇ũεj · ∇(ũεj(1− φδ)) + σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0) · ∇(ũεj(1− φδ))

+ σ2
εj

�
Q1

∇ũεj · ∇(W ηj(x/εj)∇p0(1− φδ))

+ σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0) · ∇(W ηj(x/εj)∇p0(1− φδ))

= I12,j + I22,j + I32,j + I42,j.
(4.2.54)
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Using properties of φδ, we have

|I12,j| ≤ σ2
εj

�
Q1

|∇ũεj |2(1− φδ) + σ2
εj

�
Q1

|∇ũεj ũεj · ∇(1− φδ)|

≤ σ2
εj

�
Q1\Q1−δ

|∇ũεj |2 + C
σ2
εj

δ
∥∇ũεj∥L2(Q1)∥ũεj∥L2(Q1)

≤ σ2
εj

�
Q1\Q1−δ

|∇ũεj |2 + C
σεj
δ
.

(4.2.55)

By the boundary layer estimate (4.1.28), we have

σ2
εj

�
Q1\Q1−δ

|∇ũεj |2 ≤ Cδγ
�
Q3

(σ2
εj
|∇ũεj |2 + |ũεj |2)

≤ Cδγ.

(4.2.56)

It follows that
lim sup
j→∞

|I12,j| ≤ Cδγ. (4.2.57)

Similarly,

|I22,j| ≤ σ2
εj

�
Q1

|∇(W ηj(x/εj)∇p0)||∇ũεj |(1− φδ)

+ σ2
εj

�
Q1

|∇(W ηj(x/εj)∇p0)||ũεj ||∇(1− φδ)|

≤ Cσεj∥∇ũεj∥L2(Q1\Q1−δ) + C
σεj
δ
∥ũεj∥L2(Q1)

≤ Cδγ + C
σεj
δ

(4.2.58)

and

|I32,j| ≤ σ2
εj

�
Q1

|∇ũεj ||∇(W ηj(x/ε)∇p0)|(1− φδ)

+ σ2
εj

�
Q1

|∇ũεj ||W ηj(x/εj)∇p0||∇(1− φδ)|

≤ Cσεj∥∇ũεj∥L2(Q1\Q1−δ) + C
σ2
εj

δ
∥∇ũεj∥L2(Q1)

≤ Cδγ + C
σεj
δ
.

(4.2.59)

It follows that

lim sup
j→∞

|I22,j| ≤ Cδγ, and lim sup
j→∞

|I32,j| ≤ Cδγ. (4.2.60)

Finally, we write

I42,j = σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0) · ∇(W ηj(x/εj)∇p0)(1− φδ)

+ σ2
εj

�
Q1

∇(W ηj(x/εj)∇p0)W ηj(x/εj)∇p0 · ∇(1− φδ).

(4.2.61)
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Since W ηj is periodic, we have

|I42,j| ≤ Cσ2
εj
∥∇W ηj∥2L2(Q1)

|Q1\Q1−δ|+ C
σ2
εj

δ
∥∇W ηj∥L2(Q1)∥W ηj∥L2(Q1)

≤ Cδ + C
σεj
δ
.

(4.2.62)

Therefore
lim sup
j→∞

|I42,j| ≤ Cδ. (4.2.63)

Letting δ → 0 gives (4.2.33).

Corollary 4.2.6. Under the same assumptions as Theorem 4.2.5, we can conclude

ũεj → −C−1
∗ ∇p0 in L2(Q1;Rd), (4.2.64)

where p0 is the limit in (4.2.24).

Proof. This follows from (4.2.33) and Lemma 4.2.3.

4.3 One-step Improvement

We can now prove the following theorem, known as a one-step improvement result.

Theorem 4.3.1. Let 0 < β < 1. There exist θ ∈ (0, 1/4) and σ0 ∈ (0, 1/4) such that

inf
E∈Rd

( 
Qε,η

θ

|ũε −W η(x/ε)E|2
)1/2

≤ θβ

( 
Qε,η

1

|ũε|2
)1/2

(4.3.1)

whenever 0 < σε < σ0, and (uε, pε) ∈ H1(Qε,η
1 ) × L2(Qε,η

1 ) is a weak solution of
(1.3.12) in Qε,η

1 with uε = 0 in Q1 ∩ ∂ωε,η.

Proof. The theorem is proved by contradiction. We first choose θ ∈ (0, 1/4) such that
C0θ ≤ (1/2)θβ, where C0 is the constant in (4.3.6). This is possible because β < 1.
Suppose no σ0 with the desired properties exists for this θ. Then there exists a
sequence of weak solutions (uεj , pεj) of the Stokes equations

−∆uεj +∇pεj = 0 in Q
εj ,ηj
1 ,

div(uεj) = 0 in Q
εj ,ηj
1 ,

uεj = 0 on Q1 ∩ ∂ωεj ,ηj ,

(4.3.2)

such that σεj → 0, ( 
Q1

|ũεj |2
)1/2

≤ 1, (4.3.3)

and

inf
E∈Rd

( 
Qθ

|ũεj +W ηj(x/εj)E|2
)1/2

> θβ. (4.3.4)
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It follows that

θβ < inf
E∈Rd

( 
Qθ

|ũεj +W ηj(x/εj)E|2
)1/2

≤
( 

Qθ

|ũεj + C−1
∗ ∇p0|2

)1/2

+ inf
E∈Rd

( 
Qθ

|C−1
∗ E − C−1

∗ ∇p0|2
)1/2

+ inf
E∈Rd

( 
Qθ

|W ηj(x/εj)E − C−1
∗ E|2

)1/2

≤
( 

Qθ

|ũεj + C−1
∗ ∇p0|2

)1/2

+ C|C−1
∗ |θ

+

( 
Qθ

|W ηj(x/εj)− C−1
∗ |2

)1/2

∥∇p0∥L∞(Qθ),

(4.3.5)

where C−1
∗ is the matrix in Lemma 4.2.3 and we have let E = ∇p0(0). By letting

j → ∞, we conclude
θβ ≤ C0θ. (4.3.6)

This is a contradiction with the choice of θ.

Remark 4.3.2. Note that if vε = W η
i (x/ε) and qε =

1
ε
Πη

i (x/ε)− 1
σ2
ε
xi, then

−∆vε +∇qε = 0 in Rd\ωε,η,

div(vε) = 0 in Rd\ωε,η,

vε = 0 on ∂ωε,η.

(4.3.7)

This allows us to replace ũε by ũε −W η(x/ε)E0 in Theorem 4.3.1 for any E0 ∈ Rd.
In particular, we can replace (4.3.1) by

inf
E∈Rd

( 
Qε,η

θ

|ũε −W η(x/ε)E|2
)1/2

≤ θβ inf
E∈Rd

( 
Qε,η

1

|ũε −W η(x/ε)E|2
)1/2

. (4.3.8)

This will allow us to repeatedly apply Theorem (4.3.1) in an induction argument to
obtain the following result.

Theorem 4.3.3. Let 0 < β < 1. Let θ, σ0 ∈ (0, 1/4) be given by Theorem 4.3.1.
Then

inf
E∈Rd

( 
Qε,η

θk

|ũε −W η(x/ε)E|2
)1/2

≤ θkβ

( 
Qε,η

1

|ũε|2
)1/2

, (4.3.9)

whenever 0 < σε < θk−1σ0 and (uε, pε) ∈ H1(Qε,η
1 ;Rd)× L2(Q1) is a weak solution of

(1.3.12) in Qε,η
1 with uε = 0 in Q1 ∩ ∂ωε,η.

Proof. We prove the theorem by induction. The case k = 1 is given by (4.3.8).
Suppose we have the estimate (4.3.9) for some k ≥ 1. Assume 0 < σε < θkσ0. Let

v = uε(θ
kx) and q(x) = θkpε(θ

kx). (4.3.10)
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Then 
−∆v +∇q = 0 in Qθ−kε,η

1 ,

div(v) = 0 in Qθ−kε,η
1 ,

v = 0 on Qθ−kε,η
1 ∩ ∂ωθ−kε,η.

(4.3.11)

Since θ−kσε < σ0, it follows from (4.3.8) that

inf
E∈Rd

( 
Qε,η

θk+1

|ũε −W η(x/ε)E|2
)1/2

= inf
E∈Rd

( 
Qε,η

θ

|ṽ −W η(x/(εθ−k))E|2
)1/2

≤ θ inf
E∈Rd

( 
Qε,η

1

|ṽ −W η(x/(εθ−k))E|2
)1/2

= θ inf
E∈Rd

( 
Qε,η

θk

|ũε −W η(x/ε)E|2
)1/2

≤ θ(k+1)β inf
E∈Rd

( 
Qε,η

1

|ũε −W η(x/ε)E|2
)1/2

,

(4.3.12)
where we have used the induction assumption for the last inequality. This completes
the induction argument.

Lemma 4.3.4. Let k ≥ 1 be an integer. Suppose (uε, pε) ∈ H1(Qε,η
1 ;Rd)× L2(Q1) is

a weak solution of (1.3.12) in Qε,η
1 with uε = 0 in Q1 ∩ ∂ωε,η, and 0 < σε < θk−1σ0,

where θ, σ0 ∈ (0, 1/4) are given by Theorem 4.3.1. Define E(k) ∈ Rd to be the vector
satisfying( 

Qε,η

θk

|ũε −W η(x/ε)E(k)|2
)1/2

= inf
E∈Rd

( 
Qε,η

θk

|ũε −W η(x/ε)E|2
)1/2

. (4.3.13)

Then
|E(k)| ≤ C∥ũε∥L2(Q1), (4.3.14)

where C is independent of k.

Proof. Observe that for any vector E ∈ Rd and r ≥ ε, it follows from the periodicity
of W η that

|E| ≤ C

( 
Qr

|W η(x/ε)E|2
)1/2

. (4.3.15)
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Define E(0) = 0. For any l ≥ 1, we use (4.3.15) and (4.3.9) to find

|E(l)− E(l − 1)| ≤ C

( 
Q

θl

|W η(x/ε)(E(l)− E(l − 1))|2
)1/2

≤ C

( 
Q

θl

|W η(x/ε)E(l)|2
)1/2

+ C

( 
Q

θl

|W η(x/ε)E(l − 1)|2
)1/2

≤ C

( 
Q

θl

|W η(x/ε)E(l)|2
)1/2

+ C

( 
Q

θl−1

|W η(x/ε)E(l − 1)|2
)1/2

≤ Cθlβ∥ũε∥L2(Q1).
(4.3.16)

Summing, we obtain

|E(k)| ≤
k∑

l=1

|E(l)− E(l − 1)|

≤ C∥ũε∥L2(Q1).

(4.3.17)

Remark 4.3.5. Suppose (uε, pε) ∈ H1(Qε,η
1 ;Rd) × L2(Q1) is a weak solution of

(1.3.12) in Qε,η
1 with uε = 0 in Q1 ∩ ∂ωε,η, and σε < σ0, where σ0 is defined in

Theorem 4.3.1 It follows from Theorem 4.3.3 and Lemma 4.3.4 that( 
Qr

|uε|2
)1/2

≤ C

( 
Q1

|uε|2
)1/2

(4.3.18)

whenever σε ≤ r ≤ 1. Indeed, by Theorem 4.3.3 and Lemma 4.3.4, we have( 
Q

θk

|ũε|2
)1/2

≤ C

( 
Q1

|ũε|2
)1/2

(4.3.19)

whenever σε < θk−1σ0, where θ is defined in Theorem 4.3.1. Therefore we obtain
(4.3.18) in the case σε/σ0 ≤ r ≤ 1. We may also obtain (4.3.18) in the case σε ≤ r ≤
σε/σ0 by noting that in this case,

( 
Qr

|uε|2
)1/2

≤ C

( 
Qσε/σ0

|uε|2
)1/2

, (4.3.20)

where C depends on σ0.

4.4 Proofs of Large-scale Estimates

We are now ready to prove the large-scale L∞ estimate in the general case.
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Proof of Theorem 1.3.4. We may assume R > σε, as the case ε ≤ R ≤ σε is treated
in Theorem 3.0.2. Let v(x) = u(Rx) and q(x) = Rp(Rx). Then (v, q) solves

−∆v +∇q = 0 in Q
ε
R
,η

1 ,

div(v) = 0 in Q
ε
R
,η

1 ,

v = 0 on Q
ε
R
,η

1 ∩ ∂ω ε
R
,η.

(4.4.1)

Remark 4.3.5 implies ( 
Qr

|v|2
)1/2

≤ C

( 
Q1

|v|2
)1/2

(4.4.2)

whenever σε/R ≤ r ≤ 1. By rescaling, we obtain the L∞ estimate( 
Qr

|u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

(4.4.3)

whenever σε ≤ r ≤ R.
It remains to treat the case ε ≤ r ≤ σε. In this case, we use Theorem 3.0.2 and

(4.4.3) to see that ( 
Qr

|u|2
)1/2

≤ C

( 
Qσε

|u|2
)1/2

≤ C

( 
QR

|u|2
)1/2

.

(4.4.4)

This concludes the proof.

Using the large-scale L∞ estimate, we can prove the large-scale Lipschitz estimate
in the general case.

Proof of Theorem 1.3.3. By rescaling, we may assume ε = 1. We may also assume
R > K−1

η , as the case 1 ≤ R ≤ K−1
η is treated in Theorem 3.0.1. If 1 ≤ r ≤ K−1

η , it
follows from Theorem 3.0.1 and Theorem 2.2.1 that( 

Qr

|∇u|2
)1/2

≤ C

(  
Q

K−1
η

|∇u|2
)1/2

≤ CKη

(  
Q

K−1
η

|u|2
)1/2

.

(4.4.5)

Next, we use the large scale L∞ estimate (1.3.14) and the Poincaré inequality (2.0.1)-
(2.0.2) to see that ( 

Q
K−1

η

|u|2
)1/2

≤ C

(  
QR

|u|2
)1/2

≤ CK−1
η

(  
QR

|∇u|2
)1/2

.

(4.4.6)
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Together with (4.4.5), we obtain the desired result when 1 ≤ r ≤ K−1
η .

If r > K−1
η , covering Qr by cubes with side length K−1

η and applying Theorem
2.2.1 yields ( 

Qr

|∇u|2
)1/2

≤ CKη

( 
Q2r

|u|2
)1/2

≤ C

( 
QR

|∇u|2
)1/2

,

(4.4.7)

where we have used the large-scale L∞ estimate and the Poincaré inequality in the
second step.

Copyright© Jamison R. Wallace, 2024.
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Chapter 5 Large-scale W 1,q Estimates

This chapter is dedicated to establishing Lq estimates for two average operators
needed in the proofs of Theorems 1.3.1 and 1.3.2. Let (u, p) ∈ H1

0 (ωε,η)×L2(ωε,η) be
a weak solution of 

−∆u+∇p = F + div(f) in ωε,η,

div(u) = 0 in ωε,η,

u = 0 on ∂ωε,η.

(5.0.1)

Define

Tε,η(F, f)(x) =

( 
x+εQ2

|u|2
)1/2

. (5.0.2)

It is clear that
∥Tε,η(F, f)∥L2(ωε,η) = ∥u∥L2(ωε,η). (5.0.3)

The following theorem gives Lq boundedness of Tε,η for q ≥ 2.

Theorem 5.0.1. Let d ≥ 2. Let 2 ≤ q < ∞ and let ωε,η be given by (1.3.2). Then
for any f ∈ C∞

0 (Rd;Rd×d) and F ∈ C∞
0 (Rd;Rd),

∥Tε,η(F, f)∥Lq(Rd) ≤ Cεη
2−d
2 ∥f∥Lq(ωε,η) + Cε2η2−d∥F∥Lq(ωε,η) (5.0.4)

if d ≥ 3, and

∥Tε,η(F, f)∥Lq(Rd) ≤ Cε| ln(η/2)|1/2∥f∥Lq(Rd) + Cε2| ln(η/2)|∥F∥Lq(Rd) (5.0.5)

if d = 2, where C depends on d, q, and T .

Remark 5.0.2. The case q = 2 follows from the Poincaré inequality (2.0.1)-(2.0.2)
and an energy estimate. Indeed, suppose (u, p) solves (5.0.1). Then using u as a test
function in (5.0.1) yields�

ωε,η

|∇u|2 =
�
ωε,η

F · u+
�
ωε,η

div(f) · u

≤ ∥F∥L2(ωε,η)∥u∥L2(ωε,η) + ∥f∥L2(ωε,η)∥∇u∥L2(ωε,η)

≤ C(∥f∥L2(ωε,η) + σε∥F∥L2(ωε,η))∥∇u∥L2(ωε,η).

(5.0.6)

Therefore
∥u∥L2(ωε,η) ≤ Cσε∥∇u∥L2(ωε,η)

≤ C(σε∥f∥L2(ωε,η) + σ2
ε∥F∥L2(ωε,η)).

(5.0.7)

The result follows from (5.0.3) and (5.0.7).

To deal with the case q > 2, we apply a real-variable argument and the large-scale
L∞ estimate proven in the previous sections.

An operator T is called sublinear if there is a constant K such that

|T (f + g)| ≤ K(|T (f)|+ |T (g)|). (5.0.8)
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Theorem 5.0.3. Let T be a bounded sublinear operator from L2(Rd;Rm) to L2(Rd)
with ∥T∥L2→L2 ≤ C0. Let p > 2. Suppose there exists a constant N such that( 

Q

|T (g)|p
)1/p

≤ N

{( 
2Q

|T (g)|2
)1/2

+ sup
Q′⊃Q

( 
Q

|g|2
)1/2

}
(5.0.9)

for any cube Q in Rd and for any g ∈ C∞
0 (Rd;Rm) with supp(g) ⊂ Rd\4Q. Then for

any f ∈ C∞
0 (Rd;Rm),

∥T (f)∥Lq(Rd) ≤ Cq∥f∥Lq(Rd), (5.0.10)

where 2 < q < p, and Cq depends at most on q, p, C0, N , and the constant K in
(5.0.8).

Proof. See [14].

Since, by linearity,

Tε,η(F, f)(x) ≤ Tε,η(F, 0) + Tε,η(0, f), (5.0.11)

we can treat the cases Tε,η(F, 0) and Tε,η(0, f) separately.

Lemma 5.0.4. Let d ≥ 2. Let 2 < q <∞ and let Tε,η be defined by (5.0.2). Then

∥Tε,η(F, 0)∥Lq(Rd) ≤

{
Cε2η2−d∥F∥Lq(ωε,η) if d ≥ 3,

Cε2| ln(η/2)|∥F∥Lq(ωε,η) if d = 2,
(5.0.12)

for any F ∈ C∞
0 (Rd;Rd), where C depends only on d, q, and T .

Proof. We may rescale so ε = 1. Let T (f) = K2
ηT1,η(F, 0). Then T satisfies (5.0.8)

with K = 1, and ∥T∥L2→L2 ≤ C0. Consider a cube Q ⊂ Rd. We will show that for
any G ∈ C∞

0 (Rd;Rd) with supp(G) ⊂ Rd\4Q, we have

∥T (G)∥L∞(Q) ≤ C

( 
2Q

|T (G)|2
)1/2

. (5.0.13)

By Theorem 5.0.3, we then deduce that T is bounded on Lq(Rd) for any 2 < q < ∞
which allows us to obtain (5.0.12) for any F ∈ C∞

0 (Rd;Rd).
Let Q = Q(x0, l) be a cube centered at x0 with side length l. Suppose that (u, p)

solves 
−∆u+∇p = G in ω1,η,

div(u) = 0 in ω1,η,

u = 0 on ∂ω1,η,

(5.0.14)

where G ∈ C∞
0 (Rd;Rd) and supp(G) ⊂ Rd\4Q. To show (5.0.13), we will use the

geometric observation( 
2Q

|T (G)|2
)1/2

= K2
η

(
1

(2l)d

�
Q(x0,2+2l)

|u(y)|2|Q(y, 2) ∩Q(x0, 2l)| dy
)1/2

,

(5.0.15)
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as well as the large-scale L∞ estimates proven in the previous sections. We consider
two cases. In the first case, assume 0 < l ≤ 2. Then for any x ∈ Q(x0, l), we have

T (G)(x) ≤ K2
η

(�
Q(x0,2+2l)

|u(y)|2 dy
)1/2

. (5.0.16)

Since |Q(y, 2) ∩Q(x0, 2l)| ≥ cld for y ∈ Q(x0, 2 + l), we obtain (5.0.13) from (5.0.15)
and (5.0.16), with C depending only on d.
In the second case, assume l > 2. It follows from Theorem 1.3.4 that( 

Q(x,2)

|u|2
)1/2

≤ C

( 
Q(x,l)

|u|2
)1/2

(5.0.17)

for any x ∈ Q(x0, l). Thus for any x ∈ Q(x0, l),

T (G)(x) ≤ CK2
η

( 
Q(x,l)

|u|2
)1/2

≤ CK2
η

( 
Q(x0,2l)

|u|2
)1/2

.

This shows

∥T (G)∥L∞(Q) ≤ CK2
η

( 
Q(x0,2l)

|u|2
)1/2

≤ C

( 
2Q

|T (G)|2
)1/2

,

where we have used (5.0.15) and the fact that |Q(y, 2) ∩ Q(x0, 2l)| ≥ C for any
y ∈ Q(x0, 2l). This gives (5.0.13) for any cube Q.

Lemma 5.0.5. Let d ≥ 2. Let 2 < q <∞ and Tε,η be defined by (5.0.2). Then

∥Tε,η(0, f)∥Lq(ωε,η) ≤

{
Cεη

2−d
2 ∥f∥Lq(ωε,η) if d ≥ 3,

Cε| ln(η/2)|1/2∥f∥Lq(ωε,η) if d = 2,
(5.0.18)

for any f ∈ C∞
0 (Rd;Rd×d), where C depends only on d, q, and T .

Proof. Again, we may assume ε = 1 by rescaling. Define the operator T by

T (f) = KηT1,η(0, f). (5.0.19)

Observe that T satisfies (5.0.8) with K = 1, and ∥T∥L2→L2 ≤ C0. Suppose (u, p) is a
weak solution to 

−∆u+∇p = div(g) in ω1,η,

div(u) = 0 in ω1,η,

u = 0 on ∂ω1,η,

(5.0.20)
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with g ∈ C∞
0 (Rd;Rd×d) and supp(g) ⊂ Rd\4Q, where Q is an arbitrary cube. The

same argument as in the proof of Lemma 5.0.4 yields

∥T (g)∥L∞(Q) ≤ C

( 
2Q

|T (g)|2
)1/2

. (5.0.21)

Therefore, by Theorem 5.0.3, we obtain

∥T (f)∥Lq(ω1,η) ≤ C∥f∥Lq(ω1,η)
(5.0.22)

for any 2 < q <∞. This yields (5.0.18) with ε = 1.

Proof of Theorem 5.0.1. Utilizing (5.0.11), the estimates in (5.0.4) follow immedi-
ately from (5.0.12) and (5.0.18).

Let (u, p) ∈ H1
0 (ωε,η) × L2(ωε,η) be a weak solution to (5.0.1). Similar to before,

we define

Sε,η(F, f)(x) =

( 
x+εQ2

|∇u|2
)1/2

(5.0.23)

and note that
∥Sε,η(F, f)∥L2(ωε,η) = ∥∇u∥L2(ωε,η). (5.0.24)

Theorem 5.0.6. Let d ≥ 2. Let 2 ≤ q < ∞ and let ωε,η be given by (1.3.2). Then
for any f ∈ C∞

0 (Rd;Rd×d) and F ∈ C∞
0 (Rd;Rd),

∥Sε,η(F, f)∥Lq(Rd) ≤ C∥f∥Lq(ωε,η) + Cεη
2−d
2 ∥F∥Lq(ωε,η) (5.0.25)

if d ≥ 3, and

∥Sε,η(F, f)∥Lq(Rd) ≤ C∥f∥Lq(ωε,η) + Cε| ln(η/2)|1/2∥F∥Lq(ωε,η) (5.0.26)

if d = 2, where C depends only on d, q, and T .

As before, we will use the linearity of Sε,η to divide into two cases. Namely,

Sε,η(F, f)(x) ≤ Sε,η(F, 0) + Sε,η(0, f), (5.0.27)

and we will treat the cases Sε,η(F, 0) and Sε,η(0, f) separately. First, we make the
following remark.

Remark 5.0.7. The case q = 2 in Theorem (5.0.6) follows from the Poincaré in-
equality (2.0.1)-(2.0.2) and an energy estimate. As in Remark 5.0.2, using u as a test
function in (5.0.1) yields

∥∇u∥L2(ωε,η) ≤ C(∥f∥L2(ωε,η) + σε∥F∥L2(ωε,η)). (5.0.28)

The result then follows from (5.0.24) and (5.0.28).
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Lemma 5.0.8. Let d ≥ 2. Let 2 < q <∞ and Sε,η be defined by (5.0.23). Then

∥Sε,η(F, 0)∥Lq(Rd) ≤

{
Cεη

2−d
2 ∥F∥Lq(ωε,η) if d ≥ 3

Cε| ln(η/2)|1/2∥F∥Lq(ωε,η) if d = 2,
(5.0.29)

for any F ∈ C∞
0 (Rd;Rd), where C depends only on d, q, and T .

Proof. We assume ε = 1 by rescaling. Define the operator S by

S(F ) = KηS1,η(F, 0). (5.0.30)

Note that S satisfies (5.0.8) with K = 1. Furthermore, by Remark 5.0.7 ∥S∥L2→L2 ≤
C0. Suppose (u, p) is a weak solution to (5.0.14) whereG ∈ C∞

0 (Rd;Rd) and supp(G) ⊂
Rd\4Q. As in the proof of Lemma 5.0.4, we make the geometric observation( 

2Q

|T (G)|2
)1/2

= Kη

(
1

(2l)d

�
Q(x0,2+2l)

|∇u(y)|2|Q(y, 2) ∩Q(x0, 2l)| dy
)1/2

.

(5.0.31)
If Q(x, l) satisfies 0 < l ≤ 2, then we obtain

∥S∥L∞(Q) ≤ C

( 
2Q

|S(G)|2
)1/2

(5.0.32)

using the same argument as in Lemma 5.0.4. If l > 2, we use the large-scale Lipschitz
estimates in Theorem 1.3.3 to see that( 

Q(x,2)

|∇u|2
)1/2

≤ C

( 
Q(x,l)

|∇u|2
)1/2

(5.0.33)

for any x ∈ Q(x0, l). It follows that for any x ∈ Q(x0, l),

S(G)(x) ≤ CKη

( 
Q(x,l)

|∇u|2
)1/2

≤ CKη

( 
Q(x0,2l)

|∇u|2
)1/2

≤ C

( 
2Q

|S(G)|2
)1/2

,

(5.0.34)

where we have used (5.0.31) and the fact that |Q(y, 2) ∩ Q(x0, 2l)| ≥ C for any
y ∈ Q(x0, 2l). This yields (5.0.32) in the case l > 2. By Theorem 5.0.3, we obtain
(5.0.29).

Lemma 5.0.9. Let d ≥ 2. Let 2 < q <∞ and Sε,η be defined by (5.0.23). Then

∥Sε,η∥Lq(Rd) ≤ C∥f∥Lq(ωε,η), (5.0.35)

where C depends only on d, q, and T .
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Proof. Again, assume ε = 1 by rescaling. Define the operator S by

S(f) = S1,η(0, f). (5.0.36)

Note that S satisfies (5.0.8) with K = 1 and by Remark 5.0.7, we have ∥S∥L2→L2 ≤
C0. Suppose (u, p) is a weak solution to (5.0.20) with g ∈ C∞

0 (Rd;Rd×d) and
supp(g) ⊂ Rd\4Q, where Q is an arbitrary cube. The same argument as in the
proof of Lemma 5.0.8 yields

∥S∥L∞(Q) ≤ C

( 
2Q

|S(G)|2
)1/2

(5.0.37)

We then apply Theorem 5.0.3 to S to obtain (5.0.35).

Proof of Theorem 5.0.6. In view of (5.0.27), the desired estimates follow readily from
(5.0.29) and (5.0.35).

Copyright© Jamison R. Wallace, 2024.
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Chapter 6 Estimates in an Exterior Domain

In this chapter, we establish an Lq estimate for ∇u, where (u, p) is a solution with
compact support of the Stokes equations in an exterior domain. Throughout this
section, we assume T is the closure of a bounded C1 domain in Rd. In Rd\T , consider
the problem 

−∆u+∇p = F in Rd\T,
div(u) = g in Rd\T,

u = 0 on ∂T.

(6.0.1)

The next theorem provides bounds in a weighted Sobolev space for solutions to (6.0.1).
We first introduce some notation. For 1 < q <∞ and q ̸= d, let

X1,q(Rd\T ) =
{
u ∈ W 1,q

loc (Rd\T ) : (1 + |x|)−1u ∈ Lq(Rd\T )
and ∇u ∈ Lq(Rd\T )

}
,

(6.0.2)

with the norm

∥u∥X1,q(Rd\T ) = ∥(1 + |x|)−1u∥Lq(Rd\T ) + ∥∇u∥Lq(Rd\T ). (6.0.3)

If q = d, let

X1,d(Rd\T ) =
{
u ∈ W 1,d

loc (R
d\T ) : ((1 + |x|) ln(2 + |x|))−1u ∈ Lq(Rd\T )

and ∇u ∈ Lq(Rd\T )
}
,

(6.0.4)

with

∥u∥X1,d(Rd\T ) = ∥((1 + |x|) ln(2 + |x|))−1u∥Ld(Rd\T ) + ∥∇u∥Ld(Rd\T ). (6.0.5)

It is shown in [4] that for u ∈ X1,q(Rd\T ),

∥u∥X1,q(Rd\T ) ≤ C∥∇u∥Lq(Rd\T ) if 1 < q < d,

inf
α∈Rd

∥u− α∥X1,q(Rd\T ) ≤ C∥∇u∥Lq(Rd\T ) if d ≤ q <∞. (6.0.6)

Let
X1,q

0 (Rd\T ) = {u ∈ X1,q(Rd\T ) : u = 0 on ∂T}, (6.0.7)

and X−1,q(Rd\T ) be the dual of X1,q′(Rd\T ), where q′ = q
q−1

.
We then define the null space

V q
0 (Rd\T ) = {(w, π) ∈ X1,q

0 (Rd\T )× Lq(Rd\T ) : −∆w +∇π = 0 in Rd\T
and div(w) = 0 in Rd\T}.

(6.0.8)
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Theorem 6.0.1. Let d ≥ 2 and 2 ≤ q < ∞. Let T be the closure of a bounded
C1 domain in Rd with connected boundary. Then, for any F ∈ X−1,q(Rd\T ) and
g ∈ Lq(Rd\T ), the problem (6.0.1) has a unique solution in
(X1,q

0 (Rd\T )× Lq(Rd\T ))/V q
0 (Rd\T ). Moreover, the solution satisfies

inf
(w,π)∈V q

0 (Rd\T )
(∥u+ w∥X1,q(Rd\T ) + ∥p+ π∥Lq(Rd\T )) ≤ C(∥F∥X−1,q(Rd\T ) + ∥g∥Lq(Rd\T )),

(6.0.9)

where C depends on d, q, and T .

Proof. See [4].

The following remarks, given in [4], provide a characterization of the null space.

Remark 6.0.2. If d ≥ 3 and 2 ≤ q < d, or d = q = 2, then

V q
0 (Rd\T ) = {(0, 0)}. (6.0.10)

In this case, Theorem 6.0.1 implies that the solution of (6.0.1) is unique and satisfies

∥u∥X1,q(Rd\T ) ≤ C(∥F∥X−1,q(Rd\T ) + ∥g∥Lq(Rd\T )). (6.0.11)

Remark 6.0.3. If d ≥ 3 and q ≥ d, then

V q
0 (Rd\T ) = span{(wk, πk)}dk=1, (6.0.12)

where for k = 1, . . . , d, (wk, πk) is the unique solution of the exterior problem (3.1.2).

Remark 6.0.4. If d = 2 and q > 2, then

V q
0 (Rd\T ) = span{(wk, πk)}2k=1, (6.0.13)

where for k = 1, 2, (wk, πk) is the unique solution of the exterior problem (3.2.1).

The following is the main result of this chapter.

Theorem 6.0.5. Let d ≥ 2 and 2 < q <∞. Let (u, p) ∈ W 1,q(Rd\T )×Lq(Rd\T ) be
a solution of 

−∆u+∇p = F + div(f) in Rd\T,
div(u) = g in Rd\T,

u = 0 on ∂T.

(6.0.14)

suppose that T ⊂ B(0, R) and supp(u), supp(F ), supp(f), supp(g) ⊂ B(0, R) for some
R ≥ 2. Then

∥∇u∥Lq(Rd\T ) ≤ CΦq(R)(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )), (6.0.15)

where

Φq(R) =


1 if d ≥ 3 and 2 < q < d,

(lnR)1−
1
d if d ≥ 3 and q = d,

R1− d
q if d ≥ 3 and d < q <∞,

R1− 2
q (lnR)−1 if d = 2 and 2 < q <∞,

(6.0.16)

and C depends only on d, q, and T .
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Proof. For any ψ ∈ X1,q′

0 (Rd\T ;Rd), we have∣∣∣∣�
Rd\T

F · ψ
∣∣∣∣ ≤ ∥F∥Lq(B(0,R)\T )∥ψ∥Lq′ (B(0,R)\T )

= ∥F∥Lq(B(0,R)\T )

(  
B(0,R)\T

|ψ|q′
(
1 + |x|
1 + |x|

)q′)1/q′

≤ (1 +R)∥F∥Lq(B(0,R)\T )∥(1 + |x|)−1ψ∥Lq′ (B(0,R)\T )

≤ 2R∥F∥Lq(Rd\T )∥ψ∥X1,q′ (Rd\T ),

(6.0.17)

where we have used supp(F ) ⊂ B(0, R). Also note that q′ ̸= d because q > 2.
Similarly, ∣∣∣∣�

Rd\T
div(f) · ψ

∣∣∣∣ ≤ ∥f∥Lq(B(0,R)\T )∥∇ψ∥Lq′ (B(0,R)\T )

≤ ∥f∥Lq(Rd\T )∥ψ∥X1,q′ (Rd\T ),

(6.0.18)

where we have used the fact that ψ = 0 on ∂T . Therefore

∥F + div(f)∥X−1,q(Rd\T ) ≤ C(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T )). (6.0.19)

By Theorem 6.0.1, we obtain,

inf
(w,π)∈V q

0 (Rd\T )
∥u+ w∥X1,q(Rd\T ) ≤ C(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )).

(6.0.20)
If d ≥ 3 and 2 < q < d, then by Remark 6.0.2, V q

0 (Rd\T ) = {0, 0}. It follows from
(6.0.20) that

∥∇u∥Lq(Rd\T ) ≤ C(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )). (6.0.21)

Now suppose d ≥ 3 and d ≤ q < ∞. By Remark 6.0.3,we know that V q
0 (Rd\T ) =

span{(wk, πk)}dk=1, where (wk, πk) solves the exterior problem (3.1.2). Let

inf
(w,π)∈V q

0 (Rd\T )
∥u+ w∥X1,q(Rd\T ) = ∥u−

d∑
k=1

αkwk∥X1,q(Rd\T ) (6.0.22)

for some α = (α1, . . . , αd) ∈ Rd. If d < q, it follows from (6.0.20) that

d∑
k=1

|αk|∥|x|−1wk∥Lq(Rd\B(0,R)) ≤ C(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )),

(6.0.23)
where we have used that u = 0 in Rd\B(0, R). Since wk ∼ ek for |x| large, we have

∥|x|−1wk∥Lq(Rd\B(0,R)) ≥ C

(�
Rd\B(0,R)

|x|−q

)1/q

= CR
d
q
−1.

(6.0.24)
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Hence

d∑
k=1

|αk| ≤ CR1− d
q (∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )). (6.0.25)

Therefore

∥∇u∥Lq(Rd\T ) ≤ ∥∇(u−
d∑

k=1

αkwk)∥Lq(Rd\T ) +
d∑

k=1

|αk|∥∇wk∥Lq(Rd\T )

≤ CR1− d
q (∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )).

(6.0.26)

If q = d, then (6.0.20) implies

d∑
k=1

|αk|∥(|x| ln |x|)−1wk∥Lq(Rd\B(0,R)) ≤ C(∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )),

(6.0.27)
where we have again used that u = 0 in Rd\B(0, R). By noting that wk ∼ ek for |x|
large, we find

∥(|x| ln |x|)−1wk∥Lq(Rd\B(0,R)) ≥ C

(�
Rd\B(0,R)

(|x| ln |x|)−q

)1/q

≥ C ln(R)
1
q
−1.

(6.0.28)

Therefore

d∑
k=1

|αk| ≤ CR1− 1
d (∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )), (6.0.29)

which yields

∥∇u∥Lq(Rd\T ) ≤ C(lnR)1−
1
d (∥f∥Lq(Rd\T ) +R∥F∥Lq(Rd\T ) + ∥g∥Lq(Rd\T )). (6.0.30)

Finally, suppose d = 2 and 2 < q <∞. By Remark 6.0.4, we know that V q
0 (R2\T ) =

span{(wk, πk)}2k=1, where (wk, πk) solves the exterior problem (3.2.1). Let

inf
(w,π)∈V q

0 (R2\T )
∥u+ w∥X1,q(R2\T ) = ∥u−

2∑
k=1

αkwk∥X1,q(R2\T ) (6.0.31)

for some α = (α1, . . . , αd) ∈ Rd. In this case, (6.0.20) implies

2∑
k=1

|αk|∥|x|−1wk∥Lq(R2\B(0,R)) ≤ C(∥f∥Lq(R2\T ) +R∥F∥Lq(R2\T ) + ∥g∥Lq(R2\T )),

(6.0.32)
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where we have again used that u = 0 in Rd\B(0, R). Since wk ∼ ln |x|ek for |x| large,
we see that

∥|x|−1wk∥Lq(R2\B(0,R)) ≥ C ln(R)

(�
R2\B(0,R)

|x|−q

)1/q

= C ln(R)R
2
q
−1.

(6.0.33)

We conclude that

∥∇u∥Lq(R2\T ) ≤ CR1− 2
q (lnR)−1(∥f∥Lq(R2\T ) +R∥F∥Lq(R2\T ) + ∥g∥Lq(R2\T )). (6.0.34)

This completes the proof.

To prove a corollary of Theorem 6.0.5, we will need the following interior estimate
for the Stokes equations.

Lemma 6.0.6. Suppose 2 < q < ∞. Let (u, p) ∈ H1(B2;Rd) × L2(B2) be a weak
solution of {

−∆u+∇p = F + div(f) in B2,

div(u) = 0 in B2.
(6.0.35)

Then(�
B1

|u|q
)1/q

+

(�
B1

|p− α|q
)1/q

≤ C

(�
B2

|u|2
)1/2

+ C

(�
B2

|F |q∗
)1/q∗

+ C

(�
B2

|f |q
)1/q

(6.0.36)

for any α ∈ R, where q∗ satisfies 1
q∗

= 1
q
+ 1

d
and C depends only on d.

Corollary 6.0.7. Let d ≥ 2 and 2 < q <∞. Let (u, p) be a solution of
−∆u+∇p = F + div(f) in RỸ \T,

div(u) = 0 in RỸ \T,
u = 0 on ∂T,

(6.0.37)

where Ỹ = (1 + c0)Q1. Then for R ≥ 3,

∥∇u∥Lq(QR\T ) ≤ CΦq(R)(∥f∥Lq(RỸ \T ) +R∥F∥Lq(RỸ \T ) +R
d
q
− d

2
−1∥u∥L2(RỸ \B(0,R/3))),

(6.0.38)
where Φq(R) is given by (6.0.16) and C depends only on d, q, and T .

Proof. Let φ ∈ C∞
0 ((1+ c0/3)QR) such that φ = 1 in QR and |∇φ| ≤ CR−1, |∇2φ| ≤

CR−2. Note that

−∆(uφ) = Fφ+ div(fφ)− f∇φ− 2div(u∇φ) + u∆φ+ p∇φ (6.0.39)
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in Rd\T , div(uφ) = u · ∇φ in Rd\T , and uφ = 0 on ∂T . By Theorem 6.0.5, we have

∥∇u∥Lq(QR\T ) ≤ ∥∇(uφ)∥Lq(Rd\T )

≤ Φq(R)

{
∥f∥Lq(RỸ \T ) +R∥F∥Lq(RỸ \T ) +

1

R
∥u∥Lq((1+c0/3)QR\QR)

+ ∥p∥Lq((1+c0/3)QR\QR)

}
,

(6.0.40)
where Φq(R) is given by (6.0.16). To bound the last two terms on the right side of
(6.0.40), we use Lemma 6.0.6 in a rescaled setting. Let v(x) = u(Rx), π(x) = Rp(Rx),
G(x) = F (Rx), and g(x) = Rf(Rx). Then (v, π) satisfies

−∆v +∇π = G+ div(g) in Ỹ \(R−1T ),

div(v) = 0 in T̃\(R−1T ),

v = 0 on ∂(R−1T ).

(6.0.41)

By covering (1+ c0
3
)Q1\Q1 with balls and using the interior estimate in Lemma 6.0.6,

we obtain(�
(1+

c0
3
)Q1\Q1

(|v|q + |π|q)
)1/q

≤ C

( �
Ỹ \B1/3

|v|2
)1/2

+ C

( �
Ỹ \B1/3

(|G|q + |g|q)
)1/q

,

(6.0.42)
where we have used the fact that q > q∗. By rescaling, we find that

∥u∥Lq((1+c0/3)QR\QR) +R∥p∥Lq((1+c0/3)QR\QR) ≤ CR
d
q
− d

2∥u∥L2(RỸ \T ) + CR∥f∥Lq(RỸ \T )

+ CR2∥F∥Lq(RỸ \T ).

(6.0.43)
Then (6.0.38) follows from (6.0.40) and (6.0.43).

Copyright© Jamison R. Wallace, 2024.
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Chapter 7 Local Estimates in a Cell

In this chapter, we wish to establish the following estimate for solutions to the Stokes
equations in a cell with a single obstacle.

Theorem 7.0.1. Let 2 < q <∞. Suppose (u, p) is a solution of
−∆u+∇p = F + div(f) in Ỹ \ηT,

div(u) = 0 in Ỹ \ηT,
u = 0 on ∂ηT,

(7.0.1)

with F ∈ Lq(Ỹ \ηT ;Rd) and f ∈ Lq(Ỹ \ηT ;Rd×d), where Ỹ = (1 + c0)Q1 and η ∈
(0, (4d)−1). Let α ∈ Rd. Then for d ≥ 3,

∥∇u∥Lq(Y \ηT ) ≤ C|α|η
d
q
−1 + CΦq(η

−1)

(�
Ỹ \ηT

(|F |q + |f |q) dx
)1/q

+ CΦq(η
−1)

(�
Ỹ \B(0,1/3)

|u− α|2 dx
)1/2

,

(7.0.2)

where Φq is defined in (6.0.16), and C depends only on d, q, and T . For d = 2,

∥∇u∥Lq(Y \ηT ) ≤ C|α|Φq(η
−1) + CΦq(η

−1)

(�
Ỹ \ηT

(|F |q + |f |q) dx
)1/q

+ CΦq(η
−1)

(�
Ỹ \B(0,1/3)

|u− α|2 dx
)1/2

,

(7.0.3)

where C depends only on q and T .

Lemma 7.0.2. Let 2 < q <∞. Let (u, p) be the same as in Theorem 7.0.1. Then

∥∇u∥Lq(Y \ηT ) ≤ CΦq(η
−1)(∥u∥L2(Ỹ \B(0,1/3)) + ∥F∥Lq(Ỹ \ηT ) + ∥f∥Lq(Ỹ \ηT )), (7.0.4)

where C depends only on d, q, and T .

Proof. This follows from Corollary 6.0.7 and a rescaling argument. Indeed, let ũ(x) =
u(ηx), p̃(x) = ηp(ηx), F̃ (x) = η2F (ηx), and f̃(x) = ηf(ηx). These rescaled functions
satisfy the system 

−∆ũ+∇p̃ = F̃ + div(f̃) in η−1Ỹ \T,
div(ũ) = 0 in η−1Ỹ \T,

u = 0 on ∂T.

(7.0.5)
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Therefore, by Corollary (6.0.7), we have

∥∇u∥Lq(Y \ηT ) = η
d
q
−1∥∇ũ∥Lq(Qη−1\T )

≤ Cη
d
q
−1Φ(η−1)

{
∥f̃∥Lq(η−1Ỹ \T ) +

1

η
∥F̃∥Lq(η−1Ỹ \T )

}
+ Cη

d
2Φ(η−1)∥ũ∥L2(η−1Y \B(0,η−1/3))

= CΦq(η
−1)(∥u∥L2(Ỹ \B(0,1/3)) + ∥F∥Lq(Ỹ \ηT ) + ∥f∥Lq(Ỹ \ηT )).

(7.0.6)

Note that if (u, p) is a solution of (7.0.1), then (u−α, p) is not a solution of (7.0.1)
because u−α ̸= 0 on the boundary of the obstacle. In order to deduce Theorem 7.0.1
from Lemma 7.0.2, we will need to use the corrector matrix Mη defined in Chapter
3. To bound error terms that appear from applying Lemma 7.0.2 to u −Mηα, we
will need W 1,q estimates for each corrector wη

k in the periodic cell Y .

Lemma 7.0.3. Let wη
k be defined by (3.1.6) if d ≥ 3 and (3.2.3) if d = 2. If d ≥ 3,

∥∇wη
k∥Lq(Y ) ≈


η

d
q
−1 if d′ < q <∞,

ηd−2| ln η|
1
q if q = d′,

ηd−2 if 1 < q < d′,

(7.0.7)

where d′ = d
d−1

. If d = 2,

∥∇wη
k∥Lq(Y ) ≈


η

2
q
−1| ln(η)|−1 if 2 < q <∞,

| ln(η)|−1/2 if q = 2,

| ln(η)|−1 if 1 < q < 2.

(7.0.8)

Proof. Consider the case d ≥ 3. Since wη
k(x) = wk(x/η) in B(0, 1/4)\ηT , we have

�
B(0,1/4)\ηT

|∇wη
k|

q dx = ηd−q

�
B(0,(4η)−1)\T

|∇wk|q dx

≈


ηd−q if d′ < q <∞,

ηd−q| ln(η)| if q = d′,

η(d−2)q if 1 < q < d′,

(7.0.9)

where we have used the asymptotic behavior of wk given in (3.1.3).
To bound ∇wη

k on B(0, 1/3)\B(0, 1/4), we note that ψk = wη
k − ek satisfies{

−∆ψk +∇πη
k = 0 in B(0, 1/3)\B(0, 1/4),

div(ψk) = 0 in B(0, 1/3)\B(0, 1/4),
(7.0.10)
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with ψk = 0 on ∂B(0, 1/3) and ψk = wk(x/η)− ek on ∂B(0, 1/4). Using (3.1.3) and
regularity estimates for solutions to (7.0.10), we obtain

|∇wη
k| = |∇ψk|

≤ max
x∈∂B(0,(4η)−1)

|wk(x)− ek|

≤ Cηd−2

(7.0.11)

in B(0, 1/3)\B(0, 1/4). Together with (7.0.9), we obtain (7.0.7).
Now consider the case d = 2. Since wη

k(x) =
4π

| ln(η)|wk(x/η) in B(0, 1/4)\ηT , we
have �

B(0,1/4)\ηT
|∇wη

k|
q dx =

(
4π

| ln(η)|

)q

η2−q

�
B(0,(4η)−1)\T

|∇wk|q dx

≈ (4π)q


η2−q| ln(η)|−q if 2 < q <∞,

| ln(η)|−1 if q = 2,

| ln(η)|−q if 1 < q < 2,

(7.0.12)

where we have used the asymptotic behavior of wk given in (3.2.2). As before, defining
ψk = wη

k − ek and applying regularity estimates for the Stokes equations gives

|∇wη
k| ≤ C| ln(η)|−1 in B(0, 1/3)\B(0, 1/4). (7.0.13)

Together with (7.0.12), we obtain (7.0.8).

Proof of Theorem 7.0.1. Let (u, p) be a solution of (7.0.1). Let Mη be the matrix
whose columns are the correctors wη

k, and let P η be the vector whose entries are πη
k ,

where (wη
k, π

η
k) are defined in (3.1.6) if d ≥ 3 and (3.2.3) if d = 2. For any α ∈ Rd,

we have u−Mηα = 0 on ∂(ηT ), and Lemmas 3.1.2 and 3.2.2 imply that there exist
F η
α and f η

α such that

−∆(u−Mηα) +∇(p− P η · α) = (F − F η
α) + div(f − f η

α) (7.0.14)

in Y \ηT , where |F η
α | ≤ C|α|K2

η and |f η
α| ≤ C|α|K2

η . It follows from Lemma 7.0.2
that(�

Y \ηT
|∇u|q dx

)1/q

≤ |α|
(�

Y \ηT
|∇Mη|q dx

)1/q

+ CΦq(η
−1)(∥f η

α∥∞ + ∥F η
α∥∞)

+ CΦq(η
−1)

(�
Ỹ \ηT

(|F |q + |f |q) dx
)1/q

+ CΦq(η
−1)

(�
Ỹ \B(0,1/3)

|u− α|2 dx
)1/2

.

(7.0.15)
Suppose d ≥ 3. By Lemma 7.0.3 the first two terms on the right side are bounded by

C|α|η
d
q
−1 + C|α|Φq(η

−1)ηd−2 ≤ C|α|η
d
q
−1. (7.0.16)

This yields (7.0.2). Similarly, if d = 2, the first two terms on the right side of (7.0.15)
are bounded by C|α|Φq(η

−1). In this case, we obtain (7.0.3).
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Corollary 7.0.4. Suppose d ≥ 2, and let 2 < q < ∞. Let (u, p) be the same as in
Theorem 7.0.1. Then

∥u∥Lq(Y \ηT ) ≤ C

(�
Ỹ \ηT

(|F |q + |f |q) dx
)1/q

+ C

(�
Ỹ

|T1,η(F, f)(x)|q dx
)1/q

,

(7.0.17)
where T1,η(F, f) is given by (5.0.2), and C depends only on d, q, and T .

Proof. By a Sobolev inequality,(�
Y \ηT

|u|q dx
)1/q

≤ C

(�
Y \ηT

|u|2 dx
)1/2

+ C

(�
Y \ηT

|∇u|q∗ dx
)1/q∗

, (7.0.18)

where 1
q∗

= 1
q
+ 1

d
. We split the proof into two cases. First, suppose d ≥ 3. Noting

that Φq∗ = 1 since q∗ < d, we can apply Theorem 7.0.1 to obtain(�
Y \ηT

|u|q dx
)1/q

≤ C

(�
Y \ηT

|u|2 dx
)1/2

+ C

(�
Ỹ \ηT

(|F |q∗ + |f |q∗) dx
)1/q∗

+ C

(�
Ỹ \B1/3

|u|2 dx

)1/2

≤ C

(�
Ỹ

|u|2 dx
)1/2

+ C

(�
Ỹ \ηT

(|F |q + |f |q) dx
)1/q

.

(7.0.19)
Using the observation that(�

Ỹ

|u|2 dx
)1/2

≤ C

(�
Ỹ

|T1,η(F, f)(x)|q dx
)1/q

, (7.0.20)

we obtain (7.0.17) from (7.0.19).
Next, suppose d = 2. Since q∗ < 2, we can write

∥∇u∥Lq∗ (Y \ηT ) ≤ C∥∇u∥L2(Y \ηT ). (7.0.21)

Therefore(�
Y \ηT

|u|q dx
)1/q

≤ C

(�
Y \ηT

|u|2 dx
)1/2

+ C

(�
Y \ηT

|∇u|2 dx
)1/2

≤ C

(�
Y \ηT

|u|2 dx
)1/2

+ C

(�
Y \ηT

(|F |2 + |f |2) dx
)1/2

,

(7.0.22)
where the second inequality follows from an energy estimate. As before, (7.0.17)
follows from (7.0.21).

Copyright© Jamison R. Wallace, 2024.
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Chapter 8 Proofs of Main Theorems

We are now ready to prove the W 1,q estimates in Theorems 1.3.1 and 1.3.2. To
simplify the proofs, we first make note of a relationship between the bounding con-
stants in (1.3.4) and (1.3.5). Let 1 < q < ∞, and let Aq(ε, η), Bq(ε, η), Cq(ε, η), and
Dq(ε, η) be the smallest bounding constants such that (1.3.4) and (1.3.5) hold. It
follows from a duality argument that Bq′(ε, η) = Cq(ε, η), Aq′(ε, η) = Aq(ε, η), and
Dq′(ε, η) = Dq(ε, η), where q

′ = q
q−1

. Indeed, suppose (u1, p1) solves
−∆u1 +∇p1 = F + div(f) in ωε,η,

div(u1) = 0 in ωε,η,

u1 = 0 on ∂ωε,η,

(8.0.1)

and (u2, p2) solves 
−∆u2 +∇p2 = G+ div(g) in ωε,η,

div(u2) = 0 in ωε,η,

u2 = 0 on ∂ωε,η.

(8.0.2)

Then using u2 as a test function in (8.0.1) and u1 as a test function in (8.0.2) yields�
ωε,η

G · u1 −
�
ωε,η

∇u1 · g =
�
ωε,η

∇u1 · ∇u2

=

�
ωε,η

F · u2 −
�
ωε,η

∇u2 · f.
(8.0.3)

By choosing g = 0 and F = 0, we find that∣∣∣∣∣
�
ωε,η

G · u1

∣∣∣∣∣ =
∣∣∣∣∣
�
ωε,η

∇u2 · f

∣∣∣∣∣
≤ ∥∇u2∥Lq′ (ωε,η)

∥f∥Lq(ωε,η)

≤ Bq′(ε, η)∥G∥Lq′ (ωε,η)
∥f∥Lq(ωε,η).

(8.0.4)

It follows that

∥u1∥Lq(ωε,η) = sup
G∈Lq′ (ωε,η ;Rd)
∥G∥

Lq′ (ωε,η)
=1

∣∣∣∣�
ωε,η

G · u1
∣∣∣∣

≤ Bq′(ε, η)∥f∥Lq(ωε,η).

(8.0.5)

Therefore Cq(ε, η) = Bq′(ε, η). Similarly, if we choose G = 0 and F = 0, we can use
(8.0.3) to see that ∣∣∣∣∣

�
ωε,η

∇u1 · g

∣∣∣∣∣ =
∣∣∣∣∣
�
ωε,η

∇u2 · f

∣∣∣∣∣
≤ ∥∇u2∥Lq′ (ωε,η)

∥f∥Lq(ωε,η)

≤ Aq′(ε, η)∥g∥Lq′ (ωε,η)
∥f∥Lq(ωε,η),

(8.0.6)
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which yields
∥∇u1∥Lq(ωε,η) ≤ Aq′(ε, η)∥f∥Lq(ωε,η) (8.0.7)

Therefore Aq′(ε, η) = Aq(ε, η). To see that Dq′(ε, η) = Dq(ε, η), we choose f = 0 and
g = 0 in (8.0.3) and follow the same argument as above.

In view of the duality discussed above, we will be able to only consider the case
q > 2 in many of the proofs in this chapter. We begin with an estimate for ∥u∥Lq(ωε,η).

Theorem 8.0.1. Let 1 < q < ∞. For any F ∈ Lq(ωε,η;Rd) and f ∈ Lq(ωε,η;Rd×d),
the Stokes system (1.3.3) has a unique solution inW 1,q

0 (ωε,η;Rd)×[Lq(ωε,η)/R]. More-
over, if 2 ≤ q <∞, the solution satisfies

∥u∥Lq(ωε,η) ≤ C(ε2η2−d∥F∥Lq(ωε,η) + εη1−
d
2∥f∥Lq(ωε,η)) (8.0.8)

if d ≥ 3, and

∥u∥Lq(ωε,η) ≤ C(ε2| ln(η/2)|∥F∥Lq(ωε,η) + ε| ln(η/2)|1/2∥f∥Lq(ωε,η)) (8.0.9)

for d = 2. The constant C depends only on d, q, and T .

Proof. By rescaling, we may assume ε = 1. If q ≥ 2, summing (7.0.17) over the whole
space and using Theorem 5.0.1 to bound terms involving T1,η yields

∥u∥Lq(ω1,η) ≤ C(η2−d∥F∥Lq(ω1,η) + η1−
d
2∥f∥Lq(ω1,η)) (8.0.10)

if d ≥ 3 and

∥u∥Lq(ω1,η) ≤ C(| ln(η/2)∥F∥Lq(ω1,η) + | ln(η/2)|1/2∥f∥Lq(ω1,η)) (8.0.11)

if d = 2. This gives the desired estimate when ε = 1.

We will now give estimates for ∥∇u∥Lq(ωε,η). We begin with the case F = 0.

Theorem 8.0.2. Let 1 < q < ∞. For any f ∈ Lq(ωε,η;Rd×d), the solution of the
Stokes system 

−∆u+∇p = div(f) in ωε,η,

div(u) = 0 in ωε,η,

u = 0 on ∂ωε,η,

(8.0.12)

satisfies the estimate

∥∇u∥Lq(ωε,η) ≤ Cη−d| 1
2
− 1

q
|∥f∥Lq(ωε,η) (8.0.13)

for d ≥ 3 and q ̸= 2, and

∥∇u∥Lq(ωε,η) ≤ Cη−2| 1
2
− 1

q
|| ln(η/2)|−1/2∥f∥Lq(ωε,η) (8.0.14)

for d = 2 and q ̸= 2, where C depends only on d, q, and T .
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Remark 8.0.3. If (u, p) solves (8.0.12), we can obtain estimates for q = 2 by a simple
energy estimate. Indeed, using u as a test function in (8.0.12) yields

�
ωε,η

|∇u|2 ≤ C∥∇u∥L2(ωε,η)∥f∥L2(ωε,η).

Therefore
∥∇u∥L2(ωε,η) ≤ C∥f∥L2(ωε,η). (8.0.15)

Proof of Theorem 8.0.2. By rescaling, we may assume ε = 1. Note that we are
looking for the bounding constant Aq(1, η) in (1.3.4). By duality, we know that
Aq(1, η) = Aq′(1, η). Thus we may assume q > 2. Consider the case d ≥ 3. Suppose
(u, p) is a solution of (8.0.12) with ε = 1. For any k ∈ Zd and α ∈ Rd, it follows from
Theorem 7.0.1 that�

k+(Y \ηT )

|∇u|q dx ≤ C|α|qηd−q + C[Φq(η
−1)]q

�
k+(Ỹ \ηT )

|f |q dx

+ C[Φq(η
−1)]q

(�
k+(Ỹ \B(0,1/3))

|u− α|2 dx
)q/2

.

(8.0.16)

By choosing

α =

 
k+(Ỹ \B(0,1/3))

u dx

and applying the Poincaré inequality, we obtain

�
k+(Y \ηT )

|∇u|q dx ≤ Cηd−q

�
k+(Ỹ \ηT )

|u|q dx+ C[Φq(η
−1)]q

�
k+(Ỹ \ηT )

|f |q dx

+ C[Φq(η
−1)]q

(�
k+(Ỹ \ηT )

|∇u|2 dx
)q/2

≤ Cηd−q

�
k+(Ỹ \ηT )

|u|q dx+ C[Φq(η
−1)]q

�
k+(Ỹ \ηT )

|f |q dx

+ C[Φq(η
−1)]q

�
k+Y

|S1,η(0, f)|q dx,

(8.0.17)

where S1,η is defined in (5.0.23). Then summing over k ∈ Zd yields

∥∇u∥Lq(ω1,η) ≤ Cη
d
q
−1∥u∥Lq(ω1,η) + CΦq(η

−1)(∥f∥Lq(ω1,η) + ∥S1,η(0, f)∥Lq(Rd))

≤ Cη
d
q
− d

2∥f∥Lq(ω1,η) + CΦq(η
−1)∥f∥Lq(ω1,η)

≤ Cη
d
q
− d

2∥f∥Lq(ω1,η),
(8.0.18)

where we have used the estimates (8.0.10) and (5.0.25) as well as the fact Φq(η
−1) ≤

Cη
d
q
− d

2 when d ≥ 3. We deduce (8.0.13) when ε = 1 and q > 2 in the case d ≥ 3.
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Similarly, if d = 2 we use (7.0.3) with α =
�
k+(Ỹ \B(0,1/3))

u dx to obtain

�
k+(Y \ηT )

|∇u|q dx ≤ C[Φq(η
−1)]q

�
k+(Ỹ \ηT )

(|u|q + |f |q) dx

+ C[Φq(η
−1)]q

(�
k+(Ỹ \ηT )

|∇u|2 dx
)q/2

,

(8.0.19)

where the Poincaré inequality has been used. Summing over k ∈ Zd, we see that

∥∇u∥Lq(ω1,η)
≤ Cη

2
q
−1| ln(η)|−1(∥u∥Lq(ω1,η)+∥f∥Lq(ω1,η)+∥S1,η(0, f)∥Lq(ω1,η)). (8.0.20)

The desired result then follows from (8.0.11) and (5.0.26).

We now consider the case f = 0.

Theorem 8.0.4. Let 1 < q <∞. For any F ∈ Lq(ωε,η;Rd), the solution (u, p) of the
Stokes system 

−∆u+∇p = F in ωε,η,

div(u) = 0 in ωε,η,

u = 0 on ∂ωε,η,

(8.0.21)

satisfies the estimate

∥∇u∥Lq(ωε,η) ≤

{
Cεη1−

d
2∥F∥Lq(ωε,η) for 1 < q ≤ 2,

Cεη1−d+ d
q ∥F∥Lq(ωε,η) for 2 < q <∞

(8.0.22)

for d ≥ 3 and

∥∇u∥Lq(ωε,η) ≤

{
Cε| ln(η/2)|1/2∥F∥Lq(ωε,η) for 1 < q ≤ 2,

Cεη−1+ 2
q ∥F∥Lq(ωε,η) for 2 < q <∞

(8.0.23)

for d = 2, where C depends only on d, q, and T .

Proof. We first treat the case 1 < q ≤ 2 using a duality argument. We have

∥∇u∥Lq(ωε,η) ≤ Cq′(ε, η)∥F∥Lq(ωε,η). (8.0.24)

Noting that q′ > 2, we may use Theorem 8.0.1 to obtain (8.0.22) and (8.0.23) in the
case 1 < q ≤ 2.

Now consider the case 2 < q <∞. We may assume ε = 1 by rescaling. Let (u, p)
be a solution of (8.0.21). Suppose d ≥ 3. As in the proof of Theorem 8.0.2, it follows
from Theorem 7.0.1 and summation that

∥∇u∥Lq(ω1,η) ≤ Cη
d
q
−1∥u∥Lq(ω1,η) + CΦq(η

−1)(∥F∥Lq(ω1,η) + ∥S1,η(F, 0)∥Lq(Rd))

≤ Cη1−d+ d
q ∥F∥Lq(ω1,η) + CΦq(η

−1)(∥F∥Lq(ω1,η) + η1−
d
2∥F∥Lq(ω1,η))

≤ Cη1−d+ d
q ∥F∥Lq(ω1,η),

(8.0.25)
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where we have used (8.0.10) and (5.0.25) in the second inequality. This gives (8.0.22)
when ε = 1. If d = 2, Theorem 7.0.1 gives

∥∇u∥Lq(ω1,η) ≤ Cη
2
q
−1| ln(η)|−1(∥u∥Lq(ω1,η) + ∥F∥Lq(ω1,η) + ∥S1,η(F, 0)∥Lq(ω1,η))

≤ Cη−1+ 2
q ∥F∥Lq(ω1,η),

(8.0.26)
where we have used (8.0.11) and (5.0.26) in the second inequality. We obtain (8.0.23)
in the case ε = 1.

Given 1 < q < ∞ and ε, η ∈ (0, 1], let Aq(ε, η), Bq(ε, η), Cq(ε, η), and Dq(ε, η) be
the smallest constants such that (1.3.4) and (1.3.5) hold. It follows from Theorem
8.0.2 and Remark 8.0.3 that

Aq(ε, η) ≤


Cη−d| 1

2
− 1

q
| if d ≥ 3,

Cη−2| 1
2
− 1

q
|| ln(η/2)|−1/2 if d = 2 and q ̸= 2,

1 if d ≥ 2 and q = 2.

(8.0.27)

By Theorem 8.0.4, we have

Bq(ε, η) = Cq′(ε, η) =


Cεη1−

d
2∥F∥Lq(ωε,η) if d ≥ 3 and 1 < q ≤ 2,

Cεη1−d+ d
q ∥F∥Lq(ωε,η) if d ≥ 3 and 2 < q <∞,

Cε| ln(η/2)|1/2∥F∥Lq(ωε,η) if d = 2 and 1 < q ≤ 2,

Cεη−1+ 2
q ∥F∥Lq(ωε,η) if d = 2 and 2 < q <∞.

(8.0.28)
Finally, it follows from Theorem 8.0.1 and duality that

Dq(ε, η) ≤

{
Cε2η2−d if d ≥ 3

Cε2| ln(η/2)| if d = 2.
(8.0.29)

Proof of Theorems 1.3.1 and 1.3.2. The estimates (1.3.6) and (1.3.8) follow from
(8.0.27) and (8.0.28), while the estimates (1.3.7) and (1.3.9) follow from (8.0.28) and
(8.0.29).

Copyright© Jamison R. Wallace, 2024.
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