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ABSTRACT OF DISSERTATION

Pairs of Quadratic Forms over p-Adic Fields

Given two quadratic forms Q1, Q2 over a p-adic field K in n variables, we consider
the pencil PKpQ1, Q2q, which contains all nontrivial K-linear combinations of Q1 and
Q2. We define D to be the maximal dimension of a subspace in Kn on which Q1 and
Q2 both vanish. We define H to be the maximal number of hyperbolic planes that a
form in PKpQ1, Q2q splits off over K. We will determine which values for pD,Hq are
possible for a nonsingular pair of quadratic forms over a p-adic field K.
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Chapter 1 Introduction

Let Q1, Q2 P KrX1, . . . , Xns be quadratic forms defined over a field K. We begin by
stating a few of the main definitions. We define PKpQ1, Q2q to be the set of nontrivial
K-linear combinations of Q1 and Q2. We call PKpQ1, Q2q the K-pencil of Q1 and
Q2. We define D � DKpQ1, Q2q to be the maximal dimension of a subspace in Kn

on which Q1 and Q2 both vanish. We define H � HKpQ1, Q2q to be the maximal
number of hyperbolic planes that a form in PKpQ1, Q2q splits off over K. We say
that the pair tQ1, Q2u is nonsingular if the projective variety V : Q1 � Q2 � 0 is
nonsingular. We will elaborate on the definition of nonsingularilty and the definitions
of D and H in chapter 2.

In chapter 2, we will show that if K is a p-adic field, and the pair tQ1, Q2u is
nonsingular, then the following inequalities hold:

n� 8

2
¤ D ¤ H ¤ n

2

and
n� 4

2
¤ H ¤ n

2
.

In Theorem 2.2.11, we will show that D   n
2
. Thus n�8

2
¤ D ¤ n�1

2
. These in-

equalities lead us to ask what pairs of pD,Hq are possible for a nonsingular pair of
quadratic forms over a p-adic field? Answering this question is the purpose of this
paper. We will refer to this problem as the pD,Hq problem over p-adic fields.

The motivation for the definitions of D and H came from a paper by Heath-
Brown. Heath-Brown [7, Thm 1] proved the Hasse principle for nonsingular pairs
of quadratic forms in 8 variables defined over number fields. A major part of his
proof was solving a local problem over p-adic fields [7, Thm 2]. Using our D and
H notation, Heath-Brown’s [7, Thm 2] implies that if Q1, Q2 P KrX1, . . . , X8s is a
nonsingular pair of quadratic forms defined over a p-adic field K, DKpQ1, Q2q ¥ 1,
and the size of residue field is ¥ 32, then HKpQ1, Q2q ¥ 3. Therefore, Heath-Brown’s
result implies that the pairs pD ¥ 1, H � 2q are impossible provided the size of the
residue field is ¥ 32. Our original goal was to generalize [7, Thm 2] to nonsingular
pairs in n variables. Studying how [7, Thm 2] would generalize to nonsingular pairs
in n variables is what led us to consider the pD,Hq problem.

The tables on the next page show the pairs of pD,Hq that are possible and not
possible. The tables include links to the theorems where we prove that the corre-
sponding pD,Hq values are possible or not possible. There are four open cases in the
tables. For these open cases, we do not know if there exists a nonsingular pair of
quadratic forms with the corresponding D and H values. We are currently working
on solving these open cases.

1



n: the number of variables
k: the residue field of the p-adic field
|k|: the cardinality of the residue field
✓: there is an example with the corresponding pD,Hq values

Table 1.1: pD,Hq values for n even

n even
DzH n�4

2
n�2
2

n
2

n�8
2 , n � 10 open ✓Thm 9.4.3 ✓Thm 9.4.1

n�8
2 , n ¥ 8, n � 10 ✓Thm 9.4.4 ✓Thm 9.4.2 ✓Thm 9.4.1

n�6
2 , n � 6, |k| ¥ 4 No examples Thm 11.2.2 ✓Thm 9.3.2 ✓Thm 9.3.1

n�6
2 , n � 6, |k|   4 open ✓Thm 9.3.2 ✓Thm 9.3.1

n�6
2 , n � 8, |k| ¥ 4 No examples Thm 11.2.3 ✓Thm 9.3.2 ✓Thm 9.3.1

n�6
2 , n � 8, |k|   4 open ✓Thm 9.3.2 ✓Thm 9.3.1

n�6
2 , n � 12 ✓Thm 9.3.4 ✓Thm 9.3.2 ✓Thm 9.3.1

n�6
2 n ¥ 10, n � 12 ✓Thm 9.3.3 ✓Thm 9.3.2 ✓Thm 9.3.1

n�4
2 , n � 4 No examples Thm 2.2.14 ✓Thm 9.2.2 ✓Thm 9.2.1

n�4
2 , n � 6 No examples Thm 2.2.14 ✓Thm 9.2.3 ✓Thm 9.2.1

n�4
2 , n � 8 No examples Thm 2.2.14 ✓Thm 9.2.2 ✓Thm 9.2.1

n�4
2 , n � 10 No examples Thm 2.3.15 ✓Thm 9.2.4 ✓Thm 9.2.1

n�4
2 , n � 14 ✓Thm 9.2.10 ✓Thm 9.2.2 ✓Thm 9.2.1

n�4
2 , n ¥ 12, n � 14 ✓Thm 9.2.5 ✓Thm 9.2.2 ✓Thm 9.2.1

n�2
2 , n � 2 No examples No examples Thm 2.2.14 ✓Thm 9.1.1

n�2
2 , n � 4 No examples No examples Thm 2.3.15 ✓Thm 9.1.1

n�2
2 , n ¥ 6 No examples ✓Thm 9.1.2 ✓Thm 9.1.1

Table 1.2: pD,Hq values for n odd

n odd
DzH n�3

2
n�1
2

n�7
2 , n � 9 ✓Thm 10.4.3 ✓Thm 10.4.1

n�7
2 , n � 7, n ¥ 11 ✓Thm 10.4.2 ✓Thm 10.4.1

n�5
2 , n � 5, |k| ¥ 4 No examples Thm 11.1.1 ✓Thm 10.3.1

n�5
2 , n � 5, |k|   4 open ✓Thm 10.3.1

n�5
2 , n ¥ 7 ✓Thm 10.3.2 ✓Thm 10.3.1

n�3
2 , n � 3, 5 No examples Thm 2.2.14 ✓Thm 10.2.1
n�3
2 , n � 7 No examples Thm 2.3.15 ✓Thm 10.2.1

n�3
2 n ¥ 9 ✓Thm 10.2.2 ✓Thm 10.2.1

n�1
2 n ¥ 1 No examples ✓Thm 10.1.1

2



We will now describe our plan of attack for solving the pD,Hq problem over p-adic
fields. In chapter 2, we will prove some preliminary results about quadratic forms
and establish some results about the D and H values for pairs of quadratic forms. In
chapter 3, we will construct an important example that will be used in various places
throughout the paper. Every example in the above tables is required to be a non-
singular pair. In general, it can be difficult to determine whether a pair of quadratic
forms is nonsingular. To get around this difficulty, we will establish in chapter 4
a process by which we can make a pair of integral quadratic forms nonsingular by
adjusting their coefficients.

Most of the examples in the above tables will be constructed in the following way.
We will define two types of pairs of quadratic forms: type A and type B. Most of the
examples in the tables are built using these two types of pairs. Chapter 5 contains
the definitions of type A and type B pairs along with some fundamental results. Most
of our type A and type B pairs are constructed by first considering a suitable pair of
quadratic forms over the residue field of the p-adic field. The type A and B pairs are
then obtained by lifting the residue field pair up to the ring of integers in a particular
way. The residue field pairs are constructed in chapter 7; these constructions are
done over arbitrary finite fields.

In chapter 8, we will construct all the type A and type B pairs that we need;
as previously mentioned, most of these will be obtained by lifting residue field pairs
from chapter 7 to the ring of integers. Then, in chapters 9 and 10, we will use the
type A and type B pairs to construct most of the examples in the tables.

As shown in the tables, there are pairs of pD,Hq for which no examples exist.
In particular, we see from the tables that there are no examples for the cases where
pn � 5, D � 0, H � 1q, pn � 6, D � 0, H � 1q, and pn � 8, D � 1, H � 2q, provided
|k| ¥ 3. Chapter 11 deals with proving that no examples exist for these three cases.
Our proof of Theorem 11.1.1 in chapter 11 follows the method that Heath-Brown
used in [7, Theorem 2].

Throughout this paper, we will make use of various results that are not directly
related to the pD,Hq problem; for example, certain results from basic quadratic form
theory. In order for this to be a self-contained document, we provide proofs and
references of these various results in the appendices.

Copyright© John R. Hall 2024
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Chapter 2 Definitions, Preliminary Results, and Notation

2.1 Quadratic Form Theory

In this section, we discuss basic definitions and results from quadratic form theory.
The reader who is familiar with quadratic form theory may wish to skip this section
and start with section 2.2.

Let V be a vector space over a field k with dimpV q � n   8. Let kalg denote the
algebraic closure of k.

Definition 2.1.1. A map f : V Ñ k is said to be quadratic map if

1. fpcvq � c2fpvq for all c P k and v P V , and

2. the map Bf : V �V Ñ k given by Bf pv, wq � fpv�wq� fpvq� fpwq is bilinear
over k.

Note that Bf is symmetric. We call Bf the symmetric bilinear form associated to f .
We may also refer to the pair pf, V q as a quadratic module.

Definition 2.1.2. A quadratic form is a polynomial q P krx1, . . . , xns that can be
written as

q �
¸

1¤i¤j¤n

aijxixj,

where each aij P k.

We can regard a quadratic form q P krx1, . . . , xns as a map from kn to k. With
some work, one can show that q : kn Ñ k is quadratic map. On the other hand, given
a quadratic map f : V Ñ k, we can associate to f a quadratic form in krx1, . . . , xns
as follows. Let A � tα1, . . . , αnu be a k-basis of V . Given px1, . . . , xnq P kn, we have

fpx1α1 � � � � � xnαnq �
ņ

i�1

fpαiqx2
i �

¸
1¤i j¤n

Bf pαi, αjqxixj. (2.1.1)

This formula can be proved by induction on n. Note that the right-hand side of
equation 2.1.1 is a quadratic form over k in the variables x1, . . . , xn.

Definition 2.1.3. Given a quadratic map f : V Ñ k, and a k-basis A � tα1, . . . , αnu
of V , we define the quadratic form associated to f with respect to the basis A as

ņ

i�1

fpαiqx2
i �

¸
1¤i j¤n

Bf pαi, αjqxixj.

Definition 2.1.4. A quadratic form q P krx1, . . . , xns is said to be isotropic over k if
there exist a nonzero v P kn such that qpvq � 0. We say q is anisotropic over k if q
does not have any nontrivial zeros in kn.

4



Let Mf �M
pAq
f denote the n�n matrix given by pMf qij � Bf pαi, αjq; that is, the

pi, jq entry of Mf is Bf pαi, αjq. Since Bf is symmetric, we see that Mf is a symmetric
matrix. We call Mf the symmetric matrix of f with respect to the basis A. Note
that Mf is the symmetric matrix of the bilinear form Bf with respect to the basis A.

Let S � te1, . . . , enu denote the standard basis for kn and let q P krx1, . . . , xns be
a quadratic form. We will compute the matrix M

pSq
q . Write

q �
¸

1¤i¤j¤n

aijxixj,

where aij P k. Note that qpeiq � aii and qpei � ejq � aij � aii � ajj. Observe that

Bqpei, eiq � qp2eiq � 2qpeiq � 4qpeiq � 2qpeiq � 2qpeiq � 2aii,

and for i � j, we have

Bqpei, ejq � qpei � ejq � qpeiq � qpejq � paij � aii � ajjq � aii � ajj � aij.

Therefore, the matrix Mq �M
pSq
q is given by

pMqqij �

$'&'%
aij i   j

2aij i � j

aji i ¡ j.

Often, this will be our preferred matrix to use when dealing with quadratic forms.
We therefore establish the following definition.

Definition 2.1.5. For a quadratic form q P krx1, . . . , xns with

q �
¸

1¤i¤j¤n

aijxixj,

we let Mpqq �Mq denote the matrix of q, where

pMqqij �

$'&'%
aij i   j

2aij i � j

aji i ¡ j.

Thus Mq is the matrix of q with respect to the standard basis of kn.

For example, suppose qpx, yq � x2 � xy � y2. Then

Mq �
�
2 1
1 2

�
.

Suppose A1 and A2 are bases of V over k. For a quadratic map f : V Ñ k, let
M1 � M

pA1q
f and M2 � M

pA2q
f . Thus Mi is the matrix of Bf with respect to the

5



basis Ai. With some work, it can be shown that there exists an invertible matrix
U P GLnpkq such that M1 � U tM2U , where U t denotes the transpose. It follows that
detpM1q � detpUq2detpM2q. We therefore define the determinant of f as detpM1q,
hence the determinant of f is unique up to a square. We regard detpfq as an element
of k{k2, where k2 denotes the set of squares in k.

Definition 2.1.6. Let f : V Ñ k be a quadratic map. Let A be a k-basis of V , and
Mf �M

pAq
f . We define the determinant of f as follows:

detpfq � detpMf q.
We regard detpfq as an element of k{k2.

In the case where f � q P krx1, . . . , xns is a quadratic form, we can use the matrix
Mq from definition 2.1.5 to compute detpqq.
Definition 2.1.7. For a quadratic form q P krx1, . . . , xns with

q �
¸

1¤i¤j¤n

aijxixj,

we define the determinant of q as

detpqq � detpMqq,
where Mq is the matrix of q as defined in Definition 2.1.5.

Unless stated otherwise, will always use the matrix Mq from Definition 2.1.5 when
computing the determinant of a quadratic form.

Lemma 2.1.8. Let k be any field and let n ¥ 1 be odd. Suppose A is an n � n
symmetric matrix over k such that the pi, iq entry is 2aii, and for i � j, the pi, jq entry
is aij. There exists a polynomial h P Zrxijs of degree n such that detpAq � 2hpaijq.
Proof. We go by induction on n. The case n � 1 is clear. For n ¥ 3, assume by
induction that the result holds for n�2. Suppose the entries a12, a13, . . . , a1n are each
divisible by 2. Then every entry in row 1 of A is divisible by 2. We can therefore fac-
tor out 2 from row 1, leaving us with a new matrix A1. Thus detpAq � 2detpA1q, and
we can express detpA1q � hpaijq for some polynomial h P Zrxijs of degree n, as desired.

On the other hand, suppose at least one of the entries a12, a13, . . . , a1n is not divis-
ible by 2. To keep A symmetric, every row operation will be followed by an analogous
column operation, and vice versa. By performing column and row operations, we can
assume that a12 � a21 is not divisible by 2. Then by performing column and row
operations, we can assume that ai1 � a1i � 0 for i ¥ 3 and ai2 � a2i � 0 for i ¥ 3.
Let B denote this new matrix. Thus B is a symmetric block diagonal matrix. We
have

detpAq � detpBq � p4a11a22 � a212qdetpCq,
where C is some pn � 2q � pn � 2q matrix. By induction, detpCq � 2h1paijq for
some h1 P Zrxijs of degree n � 2. Then detpAq � 2p4a11a22 � a212qh1paijq. Take
h � p4x11x22�x2

12qh1pxijq. Then h has degree n and detpAq � 2hpaijq, as desired.

6



Let f : V Ñ k be quadratic map. Assume charpkq � 2 and dimpV q � n is odd.
Then the matrix of f with respect to any k-basis tα1, . . . , αnu of V is a symmetric
n� n matrix. The diagonal entries are 2fpαiq � 0. Lemma 2.1.8 implies that detpfq
is divisible by 2. So for charpkq � 2, the determinant will be zero. In this scenario, we
can formally divide detpfq by 2; doing so gives us what we call the half-determinant.

Definition 2.1.9. Let k be a field with charpkq � 2. Let f : V Ñ k be a quadratic
map with dimpV q � n odd. We define the half-determinant of f , denoted det 1

2
pfq, as

follows:

det 1
2
pfq � 1

2
detpfq.

Let f : V Ñ k be a quadratic map.

Definition 2.1.10. We define

radpBf q � tv P V | Bf pv, wq � 0 for all w P V u.
We call radpBf q the radical of the bilinear form Bf .

Definition 2.1.11. We define

radpfq � tv P V | fpvq � 0 and v P radpBf qu.
We call radpfq the radical of f .

Definition 2.1.12. We define the order and rank of f : V Ñ k as follows.

ordpfq � orderpfq � dimpV q � dimpradpfq.
rkpfq � rankpfq � dimpV q � dimpradpBf qq.

Note that radpqq � radpBqq. Thus rankpqq ¤ orderpqq ¤ dimpV q � n. Observe
that if v P radpBf q, then

0 � Bf pv, vq � 2fpvq.
Therefore, if charpkq � 2, then fpvq � 0 and v P radpfq. It follows that for
charpkq � 2, radpfq � radpBf q and orderpfq � rankpfq.

We also note that rankpfq equals the rank of the bilinear form Bf . Therefore, the
rank of f equals the rank of the matrix of the bilinear form Bf :

rankpfq � rankpMf q.
It follows that rankpfq � n if and only if detpMf q � 0.

Definition 2.1.13. We say a quadratic map f : V Ñ k is nondegenerate if radpfq �
0. We say Bf is nondegenerate if radpBf q � 0.

From the definitions, orderpfq � n if and only if f is nondegenerate, and rankpfq �
n if and only if Bf is nondegenerate.
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Lemma 2.1.14. Let q : V Ñ k be a quadratic map.

1. If charpkq � 2, then orderpqq � n if and only if detpqq � 0.

2. If charpkq � 2, n is even, and k is perfect, then orderpqq � n if and only if
detpqq � 0.

3. If charpkq � 2, n is odd, and k is perfect, then orderpqq � n if and only if
det 1

2
pqq � 0

Proof. For proof, see Lemma B.1.5 in the appendix.

Definition 2.1.15. Let f : V Ñ k be a quadratic map. A vector v P V is said to be
a singular zero of f if fpvq � 0 and v P radpfq. We say v is a nonsingular zero of f
if fpvq � 0 and v R radpfq.

Let V be a vector space over k of dimension n. Let A � tα1, . . . , αnu � V be a k-
basis for V . Let v, w P V and let y, z P kn denote the coordinates of v, w, respectively,
with respect to the basis A. Thus, if y � pyiq and z � pziq, then v � °n

i�1 yiαi and
w � °n

i�1 yiαi. With some work, we obtain

Bf pv, wq � ytMfz. (2.1.2)

Given a quadratic form q P krx1, . . . , xns, we define

▽q � pqx1 , qx2 , . . . , qxnq,

where qxi
is the partial derivative of q with respect to xi. Thus qxi

P krx1, . . . , xns is
a linear form. For u P kn, we define

▽qpuq � pqx1puq, qx2puq, . . . , qxnpuqq.

Lemma 2.1.16. Let f : V Ñ k be a quadratic map. Let A be a k-basis of V . For
v, w P V , let y, z P kn denote the coordinates of v, w, respectively, with respect to the
basis A. Let q P krX1, . . . , Xns denote the quadratic form associated to f with respect
to A. Then

Bf pv, wq � y 
 ▽qpzq,
where y 
 ▽qpzq denotes the dot product of y and ▽qpzq.
Proof. We will show that

fpv � wq � fpvq � fpwq � y 
 ▽qpzq.

Write y � pyiq and z � pziq. Let

q �
�

ņ

i�1

aiX
2
i

�
�
� ¸

1¤i j¤n

aijXiXj

�
,
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where ai, aij P k. Note fpv � wq � qpy � zq, fpvq � qpyq, and fpwq � qpzq. We have

qpy � zq �
�

ņ

i�1

aipyi � ziq2
�
�
� ¸

1¤i j¤n

aijpyi � ziqpyj � zjq
�
.

� qpyq � qpzq �
�

ņ

i�1

ai2yizi

�
�
� ¸

1¤i j¤n

aijpyizj � yjziq
�
.

To finish, observe that�
ņ

i�1

ai2yizi

�
�
� ¸

1¤i j¤n

aijpyizj � yjziq
�

� y 
 p2a1z1, . . . , 2anznq
� y1pa12z2 � a13z3 � � � � � a1nznq
� y2pa12z1 � a23z3 � � � � � a2nznq
...

� ynpa1nz1 � a2nz2 � � � � � an�1,nzn�1q
� y 
 ▽qpzq.

Since Bf is symmetric, we have Bf pv, wq � Bf pw, vq. Combining this fact with
equation 2.1.2 and Lemma 2.1.16 gives us the following identities.

Bf pv, wq � ytMfz � y 
 ▽qpzq � ▽qpyq 
 z � ztMfy � Bf pw, vq.

The next lemma relates singular zeros to partial derivatives.

Lemma 2.1.17. Let f : V Ñ k be a quadratic map. Let A be a k-basis of V . For
v P V , let y P kn denote the coordinates of v with respect to A. Let q P krx1, . . . , xns
be the quadratic form associated to f with respect to A. Then v is a nonsingular zero
of f if and only if qpyq � 0 and ▽qpyq � 0.

Proof. Suppose v is a nonsingular zero of f . Then fpvq � 0 and v R radpBf q. Then
there exists w P V such that Bf pv, wq � 0. Let z P kn denote the coordinates of w
with respect to A. We have Bf pv, wq � ▽qpyq 
 z. Thus ▽qpyq � 0.

Conversely, suppose qpyq � 0 and ▽qpyq � 0. Write ▽qpyq � pc1, . . . , cnq, where
each ci P k. Since ▽qpyq � 0, there exists 1 ¤ j ¤ n such that cj � 0. Let ej P kn

denote the jth standard basis vector of kn. Note that ej 
 ▽qpyq � cj. Let u P V be
the vector whose coordinates respect to A are ej. We have

Bf pu, vq � ej 
 ▽qpyq � cj � 0.

Thus v R radpBqq and so v is a nonsingular zero of f .
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Lemma 2.1.18. Let f : V Ñ k be a quadratic map. If f is nondegenerate, then
every nontrivial zero of f is nonsingular.

Proof. Suppose v is a singular zero of f . Let q be the quadratic form associated to f
with respect to a basis A. Let y P kn denote the coordinates of v with respect to A.
Lemma 2.1.17 implies that ▽qpyq � 0. Let w P V and z P kn denote the coordinates
of w with respect to A. We have

Bf pv, wq � ▽qpyq 
 z � 0.

Therefore, v P radpBf q. Since fpvq � 0, v P radpfq as well. Because f is nondegen-
erate, radpfq � 0, hence v � 0.

Definition 2.1.19. Let f : V Ñ k be a quadratic map. Suppose V1, . . . , Vj � V are
subspaces such that V � V1 ` � � � ` Vj and Bf pVi, Vtq � 0 for i � t. Then we say V
is the orthogonal direct sum of V1, . . . , Vj with respect to f , and we write

V � V1 p̀ f � � � p̀ fVj.

If f is clear from context, we may also write

V � V1 p̀ � � � p̀Vj.

Definition 2.1.20. Let f : V Ñ k be a quadratic map. A subspace H � V is said to
be hyperbolic if the following conditions are satisfied.

1. dimpHq � 2.

2. H � spanpv, wq, where v, w P V with fpvq � fpwq � 0.

3. Bf pv, wq � 0.

The quadratic form associated to g � f |H with respect to the basis tv, wu is

fpvqX2 �Bf pv, wqXY � fpwqY 2 � Bf pv, wqXY.

Moreover, Bg is nondegenerate.

Definition 2.1.21. We say a quadratic map f : V Ñ k splits off j hyperbolic planes
over k if there exist subspaces H1, . . . ,Hj, V0 � V such that

V � H1 p̀ � � � p̀Hj p̀V0,

where the Hi are hyperbolic.

Definition 2.1.22. Let f, g P RrX1, . . . , Xns be quadratic forms over a ring R. We
say that f and g are equivalent over R if there exists an invertible matrix T P GLnpRq
such that fpTXq � gpXq, where X � pX1, . . . , Xnq. If f and g are equivalent over
R, then we write f �R g or f � g when the underlying ring is clear.
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In terms of quadratic forms, Definition 2.1.21 translates to the following.

Definition 2.1.23. We say a quadratic form q P krX1, . . . , Xns splits off j hyperbolic
planes over k if there exists T P GLnpkq such that

qpTXq � X1X2 �X3X4 � � � � �X2j�1X2j � q0pX2j�1, . . . , Xnq
where X � pX1, . . . , Xnq and q0 is some quadratic form over k.

Definition 2.1.24. Let Q1, Q2 P krX1, . . . , Xns be quadratic forms. An element
x P pkalgqn is said to be singular common zero of tQ1, Q2u if Q1pxq � Q2pxq � 0 and
the 2� n matrix �

▽Q1pxq
▽Q2pxq

�
�
�
BQ1

BX1
pxq BQ1

BX2
pxq � � � BQ1

BXn
pxq

BQ2

BX1
pxq BQ2

BX2
pxq � � � BQ2

BXn
pxq

�

has rank   2.

Definition 2.1.25. Let Q1, Q2 P krX1, . . . , Xns be quadratic forms. We say that the
pair tQ1, Q2u is nonsingular over k if Q1 and Q2 do not have any nontrivial singular
common zeros defined over kalg.

From Definitions 2.1.24 and 2.1.25, we see that a pair Q1, Q2 P krX1, . . . , Xns is
nonsingular if and only if for each nonzero x P pkalgqn such that Q1pxq � Q2pxq � 0,
the matrix �

▽Q1pxq
▽Q2pxq

�
�
�
BQ1

BX1
pxq BQ1

BX2
pxq � � � BQ1

BXn
pxq

BQ2

BX1
pxq BQ2

BX2
pxq � � � BQ2

BXn
pxq

�
has rank 2.

Lemma 2.1.26. Let k be a field with charpkq � 2 and |k| ¥ n. Let Q1, Q2 P
krx1, . . . , xns be quadratic forms. Suppose that no form in PkpQ1, Q2q has order n.
Then Q1, Q2 has a singular nontrivial common zero defined over k.

Proof. Suppose orderpQ1q � m   n. If m � 0, then Q1 � 0. Since orderpQ2q   n,
radpQ2q � 0 in which case Q2 has a nontrivial zero. This nontrivial zero is a nontrivial
singular zero of the pair Q1, Q2.

Suppose m � 0. Then we can write Q1px1, . . . , xnq � Q1
1px1, . . . , xmq, where Q1

1

has order m. Since charpkq � 2, rankpQ1
1q � m, hence detpQ1

1q � 0. Let gpλ, µq �
detpλQ1�µQ2q. Then gpλ, µq � 0 for all λ, µ P k. Either g � 0 or g is a homogeneous
form of degree n. Since |k| ¥ n, then g � 0. Then the coefficient of λm in g is 0. The
coefficient of λm in g is

detpQ1
1qdetpµQ2p0, . . . , 0, xm�1, . . . , xnqq.

Since this equals zero, with detpQ1
1q � 0, we deduce that

detpµQ2p0, . . . , 0, xm�1, . . . , xnqq � 0.
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Then Q2p0, . . . , 0, xm�1, . . . , xnq has order   n�m. It follows that
radpQ2p0, . . . , 0, xm�1, . . . , xnqq � 0, in which case Q2p0, . . . , 0, xm�1, . . . , xnq has a
nontrivial zero p0, . . . , 0, cm�1, . . . , cnq over k. Then p0, . . . , 0, cm�1, . . . , cnq is a non-
trivial singular zero over k of Q1, Q2.

Let f, g P Krx1, . . . , xns be quadratic forms. Let h � detpλf � µgq. Then h P
Krλ, µs and either h � 0 or h is a homogeneous form of degree n. If h is nonzero,
then h factors over Kalg into a product of linear factors.

Theorem 2.1.27. Let K be a field with charpKq � 2. Let f, g P KrX1, . . . , Xns be
quadratic forms. Let h � detpλf � µgq.

1. If tf, gu is a nonsingular pair, then every form in PKalgpf, gq has rank either n
or n� 1. (The converse does not hold.)

2. If h has distinct linear factors over Kalg, then tf, gu is a nonsingular pair. (The
converse holds.)

3. If tf, gu has a nontrivial singular zero defined over K, then some form in
PKpf, gq has rank ¤ n� 1.

Proof. See [8, Proposition 2.1, p.13] or [14, Propositions 7.2 and 7.3].

Lemma 2.1.28. Let K be a field with characteristic of K not equal to 2. Let f, g :
Kn Ñ K be quadratic maps with associated symmetric bilinear forms Bf , Bg : K �
K Ñ K. Assume that f, g is a nonsingular pair. Suppose that PKpf, gq contains a
form having order n � 1. Then there is a basis of Kn such that when f and g are
written with respect to this basis then

f � f1px1, . . . , xn�1q � ax2
n

g � g1px1, . . . , xn�1q � bx2
n

where f1, g1 : K
n�1 Ñ K are quadratic maps and a, b P K.

Proof. Without loss of generality, f has order n � 1. There is a basis tv1, . . . , vnu of
Kn such that radpfq � spanKpvnq.

Suppose that gpvnq � 0. Then vn would be a nontrivial singular zero of f, g, which
is excluded. Thus gpvnq � 0, and since charpKq � 2, we have Bgpvn, vnq � 0.

Let V be the orthogonal complement of vn with respect to Bg. Thus Kn �
V ` pK � vnq and BgpV, vnq � 0. For example, a basis of V is given by tw1, . . . , wn�1u
where wi � vi � civn with ci � Bgpvi, vnq{Bgpvn, vnq.

If f, g are written with respect to the basis w1, . . . , wn�1, vn, then since vn P radpfq,
and BgpV, vnq � 0, we have

f � f1px1, . . . , xn�1q
and

g � g1px1, . . . , xn�1q � cx2
n

for some c P K�. Note that c � 0 because otherwise vn would be a singular zero of
f, g.
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2.2 DKpf, gq and HKpf, gq

Let K be a field. Let Q, f, g P KrX1, . . . , Xns be quadratic forms. For 1 ¤ i ¤ n, let
ei denote the standard basis vectors of Kn.

Definition 2.2.1. Let DKpQq denote the largest integer such that Q vanishes on a
subspace in Kn of dimension DKpQq.

For example, if Q � X1X2, then Q vanishes on spanKpe1q � K2, where e1 � p1, 0q.
Note that Q does not vanish on a 2-dimensional space in K2. Therefore, DKpQq � 1.

Definition 2.2.2. Let D � DKpf, gq denote the largest integer such that f and g
both vanish on a subspace in Kn of dimension D.

Thus, if we let S be the set of subspaces in Kn, then

DKpf, gq � maxtdimpUq | U P S and fpUq � gpUq � 0u.

For example, if f � X2
1 and g � X1X2, then f and g both vanish on spanKpe2q �

K2, where e2 � p0, 1q. Thus DKpf, gq � 1. On the other hand, if f � X2
1 and g � X2

2 ,
then DKpf, gq � 0.

Definition 2.2.3. Let HKpQq denote the largest integer such that Q splits off HKpQq
hyperbolic planes over K.

For example, if Q � X2
1 � X1X2 � X2

3 , then after an invertible linear change of
variables, we see that Q � X1X2 �X2

3 . Thus HKpQq � 1.

Definition 2.2.4. We define HKpf, gq � maxtHKpQq | Q P PKpf, gqu.
Lemma 2.2.5. For any field K, and for any quadratic forms Q, f, g P KrX1, . . . , Xns,
we have

1. DKpf, gq ¤ maxtDKpfq, DKpgqu.
2. 2HKpQq ¤ n.

3. HKpQq ¤ DKpQq.
Proof. Statements (1) and (2) are clear from the definitions. As for (3), by definition,
Q splits off h � HKpQq hyperbolic planes over K. So after an invertible linear change
of variables, we can assume Q � X1X2 � � � � � X2h�1X2h � Q0pX2h�1, . . . , Xnq for
some quadratic form Q0 over K. Observe that Q vanishes on spanKpe2, e4, . . . , e2hq,
a subspace of dimension h. Thus h � HKpQq ¤ DKpQq.
Lemma 2.2.6. Let Q P KrX1, . . . , Xns be a quadratic form over a field K. Let
j � orderpQq. Then DKpQq � HKpQq � n� j. In particular, if Q has order n, then
DKpQq � HKpQq ¤ n

2
.
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Proof. If Q has order n, then Theorem B.1.1 implies that Q splits off DKpQq hy-
perbolic planes. Thus DKpQq ¤ HKpQq. On the other hand, since Q splits off
HKpQq hyperbolic planes, Q vanishes on a subspace of dimension HKpQq, hence
HKpQq ¤ DKpQq. This proves the case where Q has order n.

Suppose orderpQq � j   n. Then there is an invertible linear change of variables
over K so that Q � Q1pX1, . . . , Xjq, where Q1 has order j. It follows that DKpQq �
DKpQ1q � n � j. By our special case above, DKpQ1q � HKpQ1q. Since HKpQ1q �
HKpQq, we obtain DKpQq � HKpQq � n� j.

Lemma 2.2.7. Let K be a field with charpKq � 2 and let f, g P KrX1, . . . , Xns be a
nonsingular pair of quadratic forms. Assume |K| ¥ n. Then DKpf, gq ¤ HKpf, gq.
Proof. Lemma 2.1.26 implies that there exists Q P PKpf, gq such that orderpQq � n.
Note DKpQq ¥ DKpf, gq. Theorem B.1.1 implies that Q splits off at least DKpf, gq
hyperbolic planes over K. Thus DKpf, gq ¤ HKpQq ¤ HKpf, gq.
Theorem 2.2.8 (Amer’s Theorem). Let K be an arbitrary field. Let Q1, Q2 P
KrX1, . . . , Xns be quadratic forms. Then Q1 and Q2 both vanish on an i-dimensional
space over K if and only if Q1 � tQ2 vanishes on an i-dimensional space over Kptq.
Proof. Amer proved the case where charpKq � 2 [1]. Leep gave a proof that was
independent of the characteristic of the field [11].

Lemma 2.2.9. Let K be a field and n ¥ 1. If charpKq � 2, then assume n is even.
Suppose f, g P KrX1, . . . , Xns are quadratic forms with rankpfq � n or rankpgq � n.

1. tf, gu vanishes on a j-dimensional space over K if and only if f � tg splits off
at least j hyperbolic planes over Kptq.

2. DKpf, gq � HKptqpf � tgq.

Proof.

1. Note detpf � tgq is a polynomial in t; the constant term is detpfq, and the
coefficient of tn is detpgq. Since rankpfq � n or rankpgq � n, then either
detpfq � 0 or detpgq � 0, respectively. In either case, detpf � tgq is a nonzero
polynomial in t; that is, detpf � tgq � 0 in Kptq. Thus f � tg has rank n over
Kptq. By Amer’s theorem (Theorem 2.2.8), tf, gu vanishes on a j-dimensional
space over K if and only if f � tg vanishes on a j-dimensional space over Kptq.
Since f � tg has rank n over Kptq, we conclude from Theorem B.1.1 that f � tg
vanishes on a j-dimensional space if and only if f � tg splits off at least j
hyperbolic planes over Kptq.

2. Since tf, gu vanishes on a subspace over K of dimension DKpf, gq, statement
(1) implies that f � tg splits off at least DKpf, gq hyperbolic planes over Kptq,
hence HKptqpf � tgq ¥ DKpf, gq. On the other hand, since f � tg splits off at
least HKptqpf�tgq hyperbolic planes overKptq, statement (1) implies that tf, gu
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vanishes on a subspace over K of dimension HKptqpf�tgq. Thus HKptqpf�tgq ¤
DKpf, gq and so DKpf, gq � HKptqpf � tgq.

Theorem 2.2.10. Let K be an infinite field with charpKq � 2. Let Q1, Q2 P
KrX1, . . . , Xns be linearly independent quadratic forms in n ¥ 2 variables. Sup-
pose radpQ1q X radpQ2q � 0. Then there are infinitely forms in PKpQ1, Q2q that split
off at least 1 hyperbolic plane. In particular, HKpQ1, Q2q ¥ 1.

Proof. First, we will show that there is a form in PKpQ1, Q2q that splits off at least one
1 hyperbolic plane. We begin by considering the case where every form in PKpQ1, Q2q
has order   n. Then Lemma 2.1.26 implies that Q1 and Q2 have a nontrivial singular
common zero over K, say x P Kn. By a change of variable, we can assume x � e1,
the first standard basis vector in Kn. Then

Q1 � X1L1pX2, . . . , Xnq �Q3pX2, . . . , Xnq

and
Q2 � X1L2pX2, . . . , Xnq �Q4pX2, . . . , Xnq

for some linear forms L1, L2 and some quadratic forms Q3, Q4, all defined over K.
Since radpQ1qX radpQ2q � 0, we know that not both L1 and L2 can be zero. Without
loss of generality, assume L1 � 0. Then e1 is a nonsingular zero of Q1. Therefore,
Theorem B.1.1 implies that Q1 splits off at least one hyperbolic plane over K, as
desired.

Now, assume that PKpQ1, Q2q contains at least one form of order n (i.e. rank n
since charpKq � 2). Let F pλ, µq � detpλQ1 � µQ2q. Then F pλ, µq is a homogeneous
form of degree n in λ, µ over K. Since there is a form in PKpQ1, Q2q of rank n,
we know F pλ, µq is a nonzero homogeneous form. Therefore, there are only finitely
many forms in PKpQ1, Q2q that have rank   n. If a form in PKpQ1, Q2q has rank
n, then its radical is zero. On the other hand, if a form in PKpQ1, Q2q has rank
  n, then its radical is a proper, nonempty subset of Kn. Therefore, there are only
finitely many nontrivial radicals (i.e. radicals that are proper, nonempty subsets of
Kn). Let R1, . . . , Rj denote the nontrivial radicals. Because K is an infinite field,
the union of finitely many proper subspaces of Kn is also a proper subset. Thus,
R � R1 Y � � � Y Rj is a proper subset of Kn. Choose an element p P KnzR. Then
p � 0⃗. By taking an appropriate linear combination of Q1 and Q2, we can find a form
Q in the pencil PKpQ1, Q2q that vanishes at p. Note that since Q1 and Q2 are linearly
independent, we know Q � 0. Then p will be a nontrivial zero of Q that is not in the
radical of Q, in which case Q will split off at least one hyperbolic plane. This shows
that there is a form in the pencil PKpQ1, Q2q that splits off at least 1 hyperbolic plane.

Next, we will show that there are infinitely forms in PKpQ1, Q2q that split off at
least 1 hyperbolic plane. Suppose there are m forms in PKpQ1, Q2q that split off at
least 1 hyperbolic plane, let’s say G1, . . . , Gm. Each of the radicals R1, . . . , Rj lies in
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a subspace of dimension n � 1, and this subspace is given by the zeros of a nonzero
linear form. That is, there exist nonzero linear forms L1, . . . , Lj such that

Ri � tx P Kn | Lipxq � 0u.
Let S � L1 � � �LjG1 � � �Gm. Thus, S is a nonzero homogeneous form of degree j�2m
over K. Because K is an infinite field, we can find a vector p1 P Kn such that
Spp1q � 0. Consequently, none of the linear forms L1, . . . , Lj vanish at p1, and none
of the quadratic forms G1, . . . , Gm vanish at p1. By taking an approprate linear
combination of Q1 and Q2, we can a find a form Q1 in the pencil PKpQ1, Q2q that
vanishes at p1. Because p1 is not a zero of any of the linear forms L1, . . . , Lj, we know
that p1 is not in the radical of Q1. Therefore Q1 splits off at least one hyperbolic plane.
Because p1 is not a zero of any of the quadratic forms G1, . . . , Gm, it follows that Q

1

is not a multiple of any of G1, . . . , Gm. Therefore, G1, G2, . . . , Gm, Q
1 are all distinct

forms in PKpQ1, Q2q. This proves that there are infinitely forms in PKpQ1, Q2q that
split off at least 1 hyperbolic plane.

Theorem 2.2.11. Let K be a field. Suppose f, g P KrX1, . . . , Xns are quadratic
forms such that tf, gu is nonsingular. Then DKpf, gq   n

2
.

Proof. For sake of contradiction, assume DKpf, gq ¥ n
2
. Let W � Kn be a subspace

of dimension DKpf, gq where f and g both vanish. There exist λ0, µ0 P Kalg, not
both zero, such that detpλ0f � µ0gq � 0. Let h � λ0f � µ0g. From Lemma 2.1.14,
we know orderphq   n.

Suppose v P W is a nonzero singular zero of h. By Lemma 2.1.17, we have
▽hpvq � 0. Therefore,

0 � ▽hpvq � λ0▽fpvq � µ0▽gpvq.

This proves that the matrix

�
▽fpvq
▽gpvq

�
has rank   2, hence v is a singular zero of tf, gu.

According to Definition 2.1.25, this is contrary to the pair tf, gu being nonsingular.

Therefore, every nonzero element of W is a nonsingular zero of h. Then Lemma
B.1.1 implies that h splits off dimpW q ¥ n

2
hyperbolic planes. Then orderphq ¥

2dimpW q ¥ n. This is contrary to orderphq   n.

Remark: For charpKq � 2 and |K| ¥ n, we can give another proof of Theorem
2.2.11 as follows. Since tf, gu is nonsingular, Lemma 2.1.26 implies that PKpf, gq
contains a form of order n. Without loss of generality, assume g has order n. By
Amer’s Theorem, if f, g both vanish on a subspace of dimension n{2, then f � tg
vanishes on a subspace of dimension n{2 over Kptq. Since g has order n over K, the
form f � tg has order n over Kptq. Lemma B.1.1 then implies that f � tg splits off
n{2 hyperbolic planes over Kptq. This implies that detpf � tgq has a repeated linear
factor. According to Theorem 2.1.27, this is contrary to tf, gu being a nonsingular
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pair.

Theorem 2.2.12 is due to David Leep.

Theorem 2.2.12. Let K be a field. Let tf, gu be a pair of linearly independent
quadratic forms defined over K in n variables. Suppose that tf, gu vanishes on a
subspace W of Kn with dimpW q � m. Assume that every form in PKpf, gq has rank
n.

If n ¥ 3m � 1, then there exist λ, µ P K, not both zero, such that λf � µg splits
off m� 1 hyperbolic planes.

Proof. Let te1, . . . , enu be the standard basis of Kn. We can assume that W �
Spanpe1, . . . , emq. Then

f �
m̧

i�1

xiLipxm�1, . . . , xnq �Qpxm�1, . . . , xnq

g �
m̧

i�1

xiL
1
ipxm�1, . . . , xnq �Q1pxm�1, . . . , xnq,

where Li, L
1
i are linear forms and Q,Q1 are quadratic forms.

Note that there are 2m linear forms Li, L
1
i, and each linear form is in terms of

n �m variables. Since n �m ¡ 2m, we can perform an invertible linear change of
variables so that Li, L

1
i P Krxm�1, . . . , x3ms. Therefore

f �
m̧

i�1

xiLipxm�1, . . . , x3mq �Qpxm�1, . . . , xnq,

and

g �
m̧

i�1

xiL
1
ipxm�1, . . . , x3mq �Q1pxm�1, . . . , xnq.

There exist λ, µ P K, not both zero, such that the coefficient of x2
n in λf � µg is

zero. Since n � 1 ¥ 3m, we can set xm�1 � � � � � x3m � � � � � xn�1 � 0 in λf � µg
and let h � pλf � µgqpx1, . . . , xm, 0, . . . , 0, xnq. Since the coefficient of x2

n in λf � µg
is zero, it follows that h � pλf � µgqpx1, . . . , xm, 0, . . . , 0, xnq � 0. Thus λf � µg
vanishes on a subspace of dimension m� 1. Since λf �µg has rank n, it follows that
λf � µg splits off m� 1 hyperbolic planes.

Remark: In Theorem 2.2.12, if there are forms in PKpf, gq that have rank   n,
then it is possible for the result to fail. For example, let NpX, Y q P KrX, Y s be
anisotropic of rank 2, and let f, g P KrX1, . . . , X4s be given by

f � X1X2 �X2
2 �NpX3, X4q,

and
g � X1X2.
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Then g has rank 2, and p1, 0, 0, 0q is a common zero of tf, gu. Thus tf, gu vanish on
a subspace of dimension 1, and the inequality n ¥ 3m � 1 is satisfied for n � 4 and
m � 1. Let λ, µ P K, not both zero. Observe

λf � µg � X2ppλ� µqX1 � λX2q � λNpX3, X4q.
If λ�µ � 0, then λf �µg does not split off 2 hyperbolic planes over K. If λ�µ � 0,
then we can perform the change of variable

X 1
1 � pλ� µqX1 � λX2.

Doing so yields
λf � µg � X 1

1X2 � λNpX3, X4q,
and this form does not split off 2 hyperbolic planes. Thus, there are no forms in
PKpf, gq that split off 2 hyperbolic planes.

Theorem 2.2.13. Let K be a field. If charpKq � 2, then assume K is perfect.
Assume that K is an infinite field (or a field with at least 2n elements). Let f, g P
Krx1, . . . , xns be quadratic forms that satisfy the following three properties.

1. PKpf, gq contains a form of order n.

2. Every form in PKpf, gq has order ¥ n� 1.

3. tf, gu vanishes on a subspace W of Kn with dimpW q � m.

If n ¥ 3m � 2, then there exist λ, µ P K, not both zero, such that λf � µg splits
off m� 1 hyperbolic planes.

Proof. Let te1, . . . , enu be the standard basis of Kn. By an invertible linear change
of variables, we can assume that tf, gu vanish on W � Spanpe1, . . . , emq. Then

f �
m̧

i�1

xiLipxm�1, . . . , xnq �Qpxm�1, . . . , xnq

g �
m̧

i�1

xiL
1
ipxm�1, . . . , xnq �Q1pxm�1, . . . , xnq,

where Li, L
1
i are linear forms and Q,Q1 are quadratic forms.

Note that there are 2m linear forms Li, L
1
i, and each linear form is in terms of

n �m variables. Since n �m ¡ 2m, we can perform an invertible linear change of
variables so that Li, L

1
i P Krxm�1, . . . , x3ms. Therefore

f �
m̧

i�1

xiLipxm�1, . . . , x3mq �Qpxm�1, . . . , xnq.

g �
m̧

i�1

xiL
1
ipxm�1, . . . , x3mq �Q1pxm�1, . . . , xnq.

(2.2.1)
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If n is even, then let P � detpλf�µgq, and if n is odd, then let P � det 1
2
pλf�µgq.

In either case, P is a homogeneous form of degree n in the variables λ, µ. For λ0, µ0 P
K, Lemma 2.1.14 implies that λ0f � µ0g has order n if and only if P pλ0, µ0q � 0.
Therefore, since PKpf, gq contains a form of order n, we deduce that P is nonzero.
As a nonzero homogeneous form of degree n, P has at most n distinct linear factors.
Therefore, there are at most n forms in PKpf, gq that have order   n.

Let h1, . . . , hj be the forms in the K-pencil of f and g such that orderphiq   n.
Thus j ¤ n. Let hi � λif � µig, for 1 ¤ i ¤ j. Let

f1px3m�1, . . . , xnq � fp0, . . . , 0, x3m�1, . . . , xnq,
and

g1px3m�1, . . . , xnq � gp0, . . . , 0, x3m�1, . . . , xnq.
Then f1 and g1 are quadratic forms in n�3m ¥ 2 variables. Let S �±j

i�1pλif1�
µig1q.

Suppose first that S is a nonzero polynomial. Since S is a homogeneous form with
degpSq � 2j, and |K| ¥ 2n ¥ 2j, there exists v P Kn�3m � Spanpe3m�1, . . . , enq such
that Spvq � 0. There exist λ, µ P K, not both zero, such that pλf1 � µg1qpvq � 0.
Since pλf1�µg1qpvq � 0 and Spvq � 0, we deduce that pλ, µq � pλi, µiq for 1 ¤ i ¤ j.
It follows that h :� λf � µg has order n. Note h vanishes on Spanpe1, . . . , em, vq.
Lemma B.1.1 implies that h splits off m� 1 hyperbolic planes.

Now suppose that S is the zero polynomial. Then some λif1�µig1 is the zero poly-
nomial. Let h � λif�µig. Then hp0, . . . , 0, x3m�1, x3m�2, . . . , xnq � 0. This, together
with equation 2.2.1, implies that h vanishes whenever xm�1 � xm�2 � � � � � x3m � 0.
Thus, h vanishes on a subspace in Kn of dimension n� 3m ¥ m� 2.

If h has order n, then Theorem B.1.1 implies that h splits off at least m � 2
hyperbolic planes, which is sufficient.

Suppose h has order n � 1. We can perform a change of variables so that h �
h1px1, . . . , xn�1q, where h1 is a quadratic form of order n�1 overK. LetW1 � Kn be a
subspace of dimensionm�2 on which h vanishes. LetW2 � tpa1, a2, . . . , an�1, 0q | ai P
Ku. Thus W2 is a subspace in Kn of dimension n�1. It follows that dimpW1XW2q ¥
m � 1. Thus h1 vanishes on W1 XW2. Theorem B.1.1 implies that h1 splits off at
least m� 1 hyperbolic planes over K.

Theorem 2.2.14. Suppose tf, gu is a nonsingular pair of quadratic forms in n vari-
ables over a field K.

1. If n � 2 and DKpf, gq � 0, then HKpf, gq � 1.
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2. If n � 3 and DKpf, gq � 0, then HKpf, gq � 1.

3. If n � 4 and DKpf, gq � 0, then HKpf, gq ¥ 1.

4. If n � 5 and DKpf, gq � 1, then HKpf, gq ¥ 2. Therefore, the case D � H �
n�3
2

is impossible for n � 5.

5. If n � 6 and DKpf, gq � 1, then HKpf, gq ¥ 2. Therefore, the case D � H �
n�4
2

is impossible for n � 6.

6. If n � 8 and DKpf, gq � 2, then HKpf, gq ¥ 3. Therefore, the case D � H �
n�4
2

is impossible for n � 8.

Proof. Suppose tf, gu is a nonsingular pair over K in n ¥ 2 variables. Theorem 2.2.10
implies that there is always a form in PKpf, gq that splits off at least one hyperbolic
plane. This proves (1), (2), and (3). Alternately, Theorem 2.2.13 implies (1), (2),
and (3) as well. Further, Theorem 2.2.13 also implies (4), (5), and (6).

Lemma 2.2.15. Let F be any field and let Q P F rX1, . . . , Xns be a quadratic form.
If Q is anisotropic over F , then Q is anisotropic over F ptq.
Proof. For sake of contradiction, suppose Qpx1, . . . , xnq � 0, where xi P F ptq, not all
zero. By multiplying px1, . . . , xnq by a suitable polynomial in t, we can assume that
each xi P F rts. Then, by multiplying px1, . . . , xnq by a suitable power of t, we can
assume that not all xi are divisible by t.

Note that Qpx1, . . . , xnq is a polynomial in t. Let c1, . . . , cn P F denote the con-
stant terms of x1, . . . , xn, respectively. Then the constant term of Qpx1, . . . , xnq is
Qpc1, . . . , cnq. Thus Qpc1, . . . , cnq � 0. Since Q is anisotropic over F , we see that
each ci � 0. It follows that each xi is divisible by t, a contradiction.

2.3 Quadratic Forms over p-Adic Fields

For this section, let K denote a p-adic field with ring of integers OK and residue field
k. Thus k is a finite field. Let Kalg denote the algebraic closure of K. For 1 ¤ i ¤ n,
let ei P Kn denote the ith standard basis vector of Kn.

Let m be the unique maximal ideal of OK and suppose that m � pπq. Thus
k � OK{pπq. Let v : K Ñ ZY t8u denote the p-adic valuation. Assume vpπq � 1.

If A P OK , let A denote the image of A in k. If Q P OKrX1, . . . , Xns is a quadratic
form, then let Q P krX1, . . . , Xns denote the quadratic form obtained by reducing the
coefficients modulo π. Thus, if Q � °1¤i¤j¤n aijXiXj, then Q � °1¤i¤j¤n aijXiXj.

Given two quadratic forms Q1 P KrX1, . . . , Xns and Q2 P KrX1, . . . , Xms, we let
Q1 K Q2 denote the orthogonal direct sum of Q1 and Q2. The form Q1 K Q2 is
obtained by adding together Q1 and Q2 but making their variables disjoint. Thus
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Q1 K Q2 is a form in n � m variables. For example, if Q1 � X1X2 and Q2 � X2
1 ,

then one may regard Q1 K Q2 as X1X2 �X2
3 .

By Chevalley’s Theorem, any quadratic form over a finite field in at least 3 vari-
ables is isotropic. Since the residue field k is a finite field, Lemma B.2.5 implies
that there exists a unique (up to equivalence) anisotropic quadratic form npX, Y q P
krX, Y s. Therefore, if we let N P OKrX, Y s be any lift of n, then N is anisotropic
over k.

Lemma 2.3.1. Let N1 P OKrX1, . . . , Xn1s and N2 P OKrY1, . . . , Yn2s be quadratic
forms such that N1 and N2 are anisotropic over k (thus n1, n2 ¤ 2). Suppose Q is
a quadratic form over OK in the variables Xi, Yj such that Q � N1 � πN2 mod π2.
Then Q is anisotropic over K.

Proof. Suppose v � px1, . . . , xn1 , y1, . . . , yn2q P Kn1�n2 is a nontrivial zero of Q. By
multipling v by a sufficient power of π, we can assume that each xi, yj P OK , not all
divisible by π. We have Q � N1�πN2�π2Q0, where Q0 is some quadratic form over
OK in the variables Xi, Yj. Note that

N1px1, . . . , xn1q � πN2py1, . . . , yn2q � π2Q0pvq � 0

We must have π � N1px1, . . . , xn1q. Thus π � x1, . . . , xn1 since N1 is anisotropic.
Then π2 � N1px1, . . . , xn1q. It follows that π � N2py1, . . . , yn2q. As before, this implies
π � y1, . . . , yn2 , which is a contradiction. Therefore Q is anisotropic over K.

Lemma 2.3.2. Suppose Q P OKrX1, . . . , Xns is a quadratic form such that Q �
NpX1, . . . , Xmq � πGpXm�1, . . . , Xnq, where G and N are quadratic forms over OK

with N anisotropic over k. Then DKpQq ¤ DkpGq. In particular, Q splits off at most
DkpGq hyperbolic planes.

Proof. Suppose that Q vanishes on a subspace U � Kn of dimension d. We will show
that d ¤ DkpGq. By Theorem C.0.1, we arrange for U � spanKpv1, . . . , vdq, where
vi P pOKqn are linearly independent modulo π. Write vi � pai1, ai2, . . . , ainq, where
aij P OK . Since Qpviq � 0, we have

0 � Npai1, . . . , aimq � πGpai,m�1, . . . , ainq.

Thus π � Npai1, . . . , aimq, hence π divides the first m coordinates of each vi. Let
w1

i denote the projection of vi onto the first m coordinates. Thus π � w1
i and so

π2 � Npw1
iq. Let v1i denote the projection of vi onto the last n�m coordinates. Since

v1, . . . , vd are linearly independent modulo π, we deduce that v11, . . . , v
1
n are linearly

independent modulo π. Let

U 1 � tb1v11 � � � � � bdv
1
d | bi P OKu.

Then U 1 is a subspace over k of dimension d. Since π2 � Npw1
iq, and QpUq � 0, we

deduce that π � GpU 1q. Thus d ¤ DkpGq.
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Lemma 2.3.3. Suppose Q P OKrX1, . . . , Xns is a quadratic form such that Q �
GpX1, . . . , Xmq � πNpXm�1, . . . , Xnq, where G and N are quadratic forms over OK

with N anisotropic over k. Then DKpQq ¤ DkpGq. In particular, Q splits off at most
DkpGq hyperbolic planes.

Proof. Let T be the n� n diagonal matrix given by

T � diagpπ, π, . . . , π, 1, 1, . . . , 1q,
where the first m entries are π’s and the last n � m entries are ones. Let Q1 �
π�1QpTXq, where X � pX1, . . . , Xnq. Then

Q1 � πGpX1, . . . , Xmq �NpXm�1, . . . , Xnq.
Thus, Lemma 2.3.2 implies that DKpQ1q ¤ DkpGq. The same is true for Q.

Lemma 2.3.4. Let N1, N2 P OKrX, Y s be quadratic forms such that N1 and N2 are
anisotropic of order 2 over k. Suppose Q P OKrX1, . . . , X4s is a quadratic form such
that Q � N1pX1, X2q �NpX3, X4q mod π. Then Q splits off 2 hyperbolic planes over
OK.

Proof. By Lemma B.2.6, Q � N1pX1, X2q�N2pX3, X4q splits off 2 hyperbolic planes
over k. By Lemma A.1.2, it follows that Q splits off 2 hyperbolic planes over OK .

Lemma 2.3.5. Let QpX1, . . . , Xnq be a quadratic form over K in n � 2m variables
of rank n. If detpQq � p�1qma, where a P K is a nonsquare, then Q splits off exactly
n�2
2

hyperbolic planes.

Proof. Since Q has rank n, Q splits off at least n�4
2
� m� 2 hyperbolic planes:

Q � X1X2 � � � � �Xn�5Xn�4 �Q1pXn�3, Xn�2, Xn�1, Xnq.
This implies that

p�1qm�2detpQ1q � detpQq � p�1qma.
So detpQ1q � a, hence Q1 has a nonsquare determinant. As a form in four variables
over a p-adic field whose determinant is not a square, we knowQ1 splits off a hyperbolic
plane, hence Q splits off at least m � 1 hyperbolic planes. To show that Q splits off
exactly m� 1 hyperbolic planes, note that

Q � X1X2 � � � � �X2m�3X2m�2 �Q2pX2m�1, X2mq,
where

detpQ2q � p�1qm�1detpQq � p�1qm�1p�1qma � �a.
Since a is a nonsquare, this shows that Q2 is not hyperbolic.

Proof. We can write Q1 � X1X2�� � ��X2h1�1X2h1 �Q1
1pX2h1�1, . . . , Xn1q, where Q1

1

is either zero or is anisotropic modulo π. Likewise, we can write Q2 � Y1Y2 � � � � �
Y2h2�1Y2h2 �Q1

2pY2h2�1, . . . , Yn2q, where Q1
2 is either zero or is anisotropic modulo π.

By Lemma 2.3.1, the form Q1
1 K πQ1

2 is anisotropic over K. Thus Q1 K πQ2 splits
off exactly h1 � h2 hyperbolic planes over K.
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Lemma 2.3.6 (Hensel’s Lemma). Let Q1, Q2 P OKrX1, . . . , Xns be quadratic forms.
If tQ1, Q2u have a common nonsingular zero over k, then tQ1, Q2u have a common
nonsingular zero over K.

Proof. See [4, Lemma 6, p.113].

The symbol upKq denotes the u-invariant of K, which is defined as the largest in-
teger n such that there exists a quadratic form Q P Krx1, . . . , xns having no nontrivial
zero defined over K.

We let u2pKq denote the largest integer n such that there exists a pair of quadratic
forms f, g P Krx1, . . . , xns having no nontrivial common zero defined over K.

Lemma 2.3.7. Let K be a p-adic field. The following statements hold.

1. upKq � 4.

2. upKptqq � 8.

3. u2pKq � 8.

Proof. For a proof of upKq � 4, see [9, Theorem 2.12, p.158]. Parimala and Suresh
[16] proved upKptqq � 8 for the case where the characteristic of the residue field of
K is not 2. Then Leep [12] gave a proof of upKptqq � 8 that was independent of the
characteristic of the residue field. Demyanov was the first to prove u2pKq � 8; Birch,
Lewis, and Murphy gave a simpler proof [4, Theorem 1, p.113].

Corollary 2.3.8. Let K be a p-adic field and let Q be a quadratic form over Kptq
in n ¥ 8 variables. Then Q vanishes on a subspace over Kptq of dimension at least
n�8
2
.

Proof. We go by induction on n. If n � 8, then there is nothing to prove. If
n � 9, then Lemma 2.3.7 implies that upKptqq � 8, hence Q has a common non-
trivial zero and the result follows. Now suppose n ¥ 10, and assume by induction
that the result holds for quadratic forms over Kptq that have   n variables. Given
Q P pKptqqrX1, . . . , Xns, we consider the cases where Q has rank n and rank   n
separately.

First, suppose Q has rank n. Since upKptqq � 8, we see that Q has a common
nontrivial zero. Thus Theorem B.1.1 implies that Q splits off a hyperbolic plane over
Kptq. This means there is an invertible linear change of variable over Kptq so that

Q � Q0pX1, . . . , Xn�2q �Xn�1Xn

where Q0 is some quadratic form over Kptq. By induction, Q0 vanishes on a subspace
over Kptq of dimension at least n�10

2
. It follows that Q vanishes on a subspace over

Kptq of dimension at least n�8
2
.

Next, suppose Q has rank j   n. Then there is an invertible linear change
of variable over Kptq so that Q � Q1pX1, . . . , Xjq. By induction, Q1 vanishes on a
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subspace overKptq of dimension at least j�8
2
. It follows that Q vanishes on a subspace

over Kptq of dimension at least

j � 8

2
� n� j � 2n� j � 8

2
¥ n� 8

2
.

Corollary 2.3.9. Let K be a p-adic field and let f, g P KrX1, . . . , Xns be quadratic
forms in n ¥ 8 variables. Then DKpf, gq ¥ n�8

2
.

Proof. By Theorem 2.2.8, it is sufficient to show that Q1�tQ2 vanishes on a subspace
over Kptq of dimension ¥ n�8

2
. This follows from Corollary 2.3.8.

Corollary 2.3.10. Let K be a p-adic field. Let Q P KrX1, . . . , Xns be a quadratic
form of rank n. Then HKpQq � DKpQq ¥ n�4

2
.

Proof. We know from Lemma 2.3.7 that upKq � 4. This, together with Theorem
B.1.1, implies that HKpQq ¥ n�4

2
. Lemma 2.2.6 implies that HKpQq � DKpQq.

Lemma 2.3.11. Let K be a p-adic field and tf, gu be a nonsingular pair of quadratic
forms over K in n variables. Then

n� 8

2
¤ DKpf, gq ¤ HKpf, gq ¤ n

2
,

and
n� 4

2
¤ HKpf, gq ¤ n

2
.

Proof. Since K is a p-adic field, we know charpKq � 2 and K is infinite. Since tf, gu
is nonsingular, Lemma 2.2.7 implies that DKpf, gq ¤ HKpf, gq. Corollary 2.3.9 im-
plies that DKpf, gq ¥ n�8

2
. Lemma 2.2.5 implies that HKpf, gq ¤ n

2
.

Since tf, gu is nonsingular, Lemma 2.1.26 implies that PKpf, gq contains a form
Q of rank n. Corollary 2.3.10 then implies that Q splits off at least n�4

2
hyperbolic

planes over K, hence HKpf, gq ¥ n�4
2
.

Thus, for a p-adic field K and a nonsingular pair of quadratic forms f, g in n
variables defined over K, we ask what values pDKpf, gq, HKpf, gqq can occur? We
already showed in Lemma 2.2.14 that certain pairs of pDKpf, gq, HKpf, gqq are im-
possible; note that the results in Lemma 2.2.14 were over arbitrary fields. Also, in
Theorem 2.2.11, we showed that DKpf, gq   n

2
for a nonsingular pair of quadratic

forms over any field. In Lemma 2.3.15, we will prove that there are no examples of
nonsingular pairs of quadratic forms over p-adic fields with pn � 4, D � 1, H � 1q,
pn � 7, D � 2, H � 2q, and pn � 10, D � 3, H � 3q. First, we will need to prove the
following lemmas. The proof of Lemma 2.3.12 is due to David Leep.

Lemma 2.3.12. Let K be a p-adic field. Let f, g P KrX1, . . . , Xns be a nonsingular
pair of quadratic forms with n ¥ 2. Suppose PKpf, gq contains a form of rank n � 1
that splits off m hyperbolic planes over K, with 0 ¤ m ¤ n�2

2
. Then HKpf, gq ¥ m�1.
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Proof. Without loss of generality, assume f has order n�1 and splits offm hyperbolic
planes over K. By an invertible linear change of variable, we can assume

f � Q1pX1, . . . , Xn�1q
g � Q2pX1, . . . , Xn�1q �XnLpX1, . . . , Xn�1q � bX2

n

(2.3.1)

for suitable quadratic forms Q1, Q2, a linear form L, and some b P K. Since f has
order n�1, the form Q1 has order n�1. Since tf, gu is nonsingular, b � 0; otherwise,
en would be a nonsingular common zero of f and g.

Claim: By a change of variable, we can assume that L � 0.

Proof of Claim. To prove the claim, let F,G : Kn Ñ K be quadratic maps such that
for px1, . . . , xnq P Kn, we have F px1e1 � � � � � xnenq � fpx1, . . . , xnq and Gpx1e1 �
� � � � xnenq � gpx1, . . . , xnq. Thus, f and g are the quadratic forms associated to F
and G with respect to the standard basis of Kn. Note that Bgpen, enq � 2gpenq � 0.

For each 1 ¤ i ¤ n� 1, let ci � �Bgpei,enq
Bgpen,enq

. Consider the basis

S � te1 � c1en, . . . , en�1 � cn�1en, enu.
Let f 1, g1 be the quadratic forms associated to F,G with respect to this new basis.
Notice that f 1 � f . By our choice of ci, the form g1 has the shape

g � Q1
2pX1, . . . , Xn�1q � b1X2

n

for some quadratic form Q1
2 and some b1 P K. This allows us, in effect, to assume

that L � 0 in equation 2.3.1. This proves the claim.

Since f � Q1pX1, . . . , Xn�1q splits off m hyperbolic planes, we can perform an
invertible linear change of variables over K involving only the variables X1, . . . , Xn�1

so that

f � X1X2 �X3X4 � � � � �X2m�1X2m �Q1
1pX2m�1, . . . , Xn�1q

g � Q1
2pX1, . . . , Xn�1q � bX2

n

for some quadratic forms Q1
1 and Q1

2 over K. Since f has order n � 1, the form Q1
1

is nondegenerate (i.e. has order n� 1� 2m). By multiplying f and g by a sufficient
power of π, we can assume Q1

1 and Q1
2 have coefficients in OK and b P OK . Let

f0 � X1X2 �X3X4 � � � � �X2m�1X2m �Q1
1pX2m�1, . . . , Xn�1q.

Since f0 has order n � 1, Theorem E.0.2 implies that there exists a positive integer
N depending on f0 such that if a quadratic form q P OKrX1, . . . , Xn�1s is congruent
to f0 modulo πN , then f0 and q will be equivalent over OK . Consequently, for any
d P OK , the form f0 � πNdQ1

2 is equivalent to f0 over OK . Let

d � �Q1
1pπNb, . . . , πNbq

πNb
.
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Then d P OK . Consider f � πNdg. After an invertible linear change of variable
involving only the variables X1, . . . , Xn�1, we can write

f � dπNg � X1X2 �X3X4 � � � � �X2m�1X2m�
�Q1

1pX2m�1, . . . , Xn�1q � dπNbX2
n.

Notice that pπNb, πNb, . . . , πNb, 1q P Kn�2m is an isotropic vector ofQ1
1pX2m�1, . . . , Xn�1q�

dπNbX2
n. Since Q1

1 � dπNbX2
n is isotropic of order n � 2m, Theorem B.1.1 implies

that it splits off at least one hyperbolic plane, in which case f � dπNg splits off at
least m� 1 hyperbolic planes. This completes the proof.

The proof of Lemma 2.3.13 is due to David Leep.

Lemma 2.3.13. Let K be a p-adic field. Let f, g P KrX1, . . . , Xns be a nonsingular
pair of quadratic forms in n ¥ 2 variables. Suppose PKpf, gq contains a form of
order   n. If tf, gu vanish on a subspace over K of dimension m ¤ n�2

2
, then

PKpf, gq contains a form that splits off at least m � 1 hyperbolic planes. Therefore,
if DKpf, gq ¥ m, then HKpf, gq ¥ m� 1.

Proof. Note that since tf, gu is a nonsingular pair, Theorem 2.1.27 implies that every
form in PKpf, gq has order ¥ n � 1. By hypothesis, there is a form in PKpf, gq of
order   n. Therefore, PKpf, gq contains a form of order n � 1, and we may apply
Lemma 2.1.28, which implies that there is an invertible linear change of variables over
K so that

f � Q1pX1, . . . , Xn�1q � aX2
n

g � Q2pX1, . . . , Xn�1q � bX2
n

for some quadratic formsQ1, Q2 overK and some a, b P K. Since tf, gu is nonsingular,
not both a and b can be zero. Without loss of generality, assume b � 0. By adding a
multiple of g to f , we can assume a � 0. We therefore have

f � Q1pX1, . . . , Xn�1q.
g � Q2pX1, . . . , Xn�1q � bX2

n.

Next, we will show that Q1 vanishes on a subspace in Kn�1 of dimension m. By
hypothesis, tf, gu vanish on a subspace U � Kn of dimension m. Suppose U �
spanpv1, . . . , vmq, where vi P Kn are linearly independent, 1 ¤ i ¤ m. For each
1 ¤ i ¤ m, let v1i P Kn�1 denote the projection of vi onto the first n � 1 coordi-
nates. Note that Q1 vanishes on spanpv11, . . . , v1mq. For sake of contradiction, assume
that v11, . . . , v

1
m are linearly dependent over K. Then there exists a nonzero vector

v P spanpv1, . . . , vmq such that v � p0, . . . , 0, cq, where c P K is nonzero. But notice
that v is a singular common zero of tf, gu, a contradiction. Therefore, v11, . . . , v

1
m

are linearly inedpendent, and we deduce that Q1 vanishes on subspace in Kn�1 of
dimension m, namely the space spanpv11, . . . , v1mq.

Since Q1 has order n � 1 and vanishes on a subspace in Kn�1 of dimension m,
Theorem B.1.1 implies that Q1 splits off m hyperbolic planes over K. Then Lemma
2.3.12 implies that HKpf, gq ¥ m� 1, as desired.
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We can now prove a version of Lemma 2.2.12 that holds for nonsingular pairs of
quadratic forms over p-adic fields.

Lemma 2.3.14. Let K be a p-adic field. Let f, g P KrX1, . . . , Xns be a nonsingular
pair of quadratic forms in n ¥ 2 variables. If tf, gu vanish on a subspace over K of
dimension m and n ¥ 3m � 1, then PKpf, gq contains a form that splits off at least
m�1 hyperbolic planes. Therefore, if DKpf, gq ¥ m, then HKpf, gq ¥ m�1 provided
n ¥ 3m� 1.

Proof. If PKpf, gq contains a form of order   n, then Lemma 2.3.13 proves the result.
If every form in PKpf, gq order n, then Lemma 2.2.12 proves the result.

Lemma 2.3.14 tells us that there no examples exist for the following pairs of
pDKpf, gq, HKpf, gqq.
Theorem 2.3.15. Suppose tf, gu is a nonsingular pair of quadratic forms in n vari-
ables over a p-adic field K.

1. If n � 4 and DKpf, gq � 1, then HKpf, gq ¥ 2. Therefore, the case D � H �
n�2
2

is impossible for n � 4.

2. If n � 7 and DKpf, gq � 2, then HKpf, gq � 3. Therefore, the case D � H �
n�3
2

is impossible for n � 7.

3. If n � 10 and DKpf, gq � 3, then HKpf, gq ¥ 4. Therefore, the case D � H �
n�4
2

is impossible for n � 10.

Proof. Apply Lemma 2.3.14 with pn � 4,m � 1q, pn � 7,m � 2q, and pn � 10,m �
3q.
Lemma 2.3.16. Let f, g P OKrX1, . . . , Xns be quadratic forms. Then DKpf, gq ¤
Dkpf, gq.
Proof. Let U � Kn be a subspace where fpUq � gpUq � 0 and dimpUq � DKpf, gq.
By Theorem C.0.1, there exists a basis for U , say w1, . . . , wt, t � DKpf, gq, such that
each wi has coordinates in OK and w1, . . . , wt are linearly independent over k. For
each i, we have fpwiq � gpwiq � 0, hence fpwiq � gpwiq � 0. Thus tf, gu vanish on a
subspace over k of dimension DKpf, gq. This implies that DKpf, gq ¤ Dkpf, gq.
Lemma 2.3.17. Let f1, g1 P OKrX1, . . . , Xℓs be quadratic forms and let f2, g2 P
OKrXℓ�1, . . . , Xns be quadratic forms. Let f � f1 K πf2 and g � g1 K πg2. Then

DKpf1, g1q �DKpf2, g2q ¤ DKpf, gq ¤ Dkpf1, g1q �Dkpf2, g2q.

Proof. It’s clear that DKpf1, g1q � DKpf2, g2q ¤ DKpf, gq. For the other inequality,
let m � DKpf, gq, m1 � Dkpf1, g1q, and m2 � Dkpf2, g2q. We will show m ¤ m1�m2.
LetW � Kn be a subspace with dimpW q � m such that fpW q � gpW q � 0. Theorem
C.0.1 implies that there exists a basis ty1, . . . , ymu of W such that each yi P pOKqn
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and ty1, . . . , ymu are linearly independent modulo π.

Let y11, . . . , y
1
m be the projection of the vectors y1, . . . , ym onto the first ℓ coordi-

nates, respectively. Thus each y1i P Kℓ. Let y21, . . . , y
2
m be the projection of the vectors

y1, . . . , ym onto the last n� ℓ coordinates. Thus each y2i P Kn�ℓ.

Let W1 � spanKpy11, . . . , y1mq and let W2 � spanKpy21, . . . , y2mq. Thus W1 � Kℓ and
W2 � Kn�ℓ. Since fpW q � gpW q � 0, it follows that after reducing modulo π, we
get f1pW1q � g1pW1q � 0. Thus dimpW1q ¤ m1.

Let j � dimpW1q. Thus j ¤ m1. By relabeling appropriately, we can assume that
ty11, . . . , y1ju is a basis of W1. We can assume that y1j�1 � y1j�2 � � � � � y1m � 0; that
is, π � y1j�1, . . . , y

1
m. In other words, the first ℓ coordinates of yj�1, . . . , ym are each

divisible by π. This, combined with the fact that y1, . . . , ym are linearly indepen-
dent modulo π, implies that ty2j�1, . . . , y

2
mu are linearly independent modulo π, hence

dimpW2q � n� j.

Since π � y1j�1, . . . , y
1
m, and fpW q � gpW q � 0, we get that f2pW2q � g2pW2q � 0.

Thus
n� j � dimpW2q ¤ DKpf2, g2q � m2.

The inequalities j ¤ m1 and m� j ¤ m2 imply that m ¤ m1 �m2.

Remark: why were we able to assume π � y1i for j � 1 ¤ i ¤ m? Because
ty11, . . . , y1ju are linearly independent over k, for each j � 1 ¤ i ¤ m, there exist
ci1, . . . , cij P k such that

ci1y11 � � � � � cijy1j � yi � 0.

This translates to scalars di1, . . . , dij P OK such that

di1y
1
1 � � � � � dijy

1
j � y1i � 0 mod π.

Therefore, for each j � 1 ¤ i ¤ m, we can replace yi with zi � di1y1 � � � � �
dijyj� yi. Because y1, . . . , ym are linearly independent modulo π, the same is true for
y1, . . . , yj, zj�1, . . . , zm. This allows us in effect to assume that y1i � 0 mod π for each
j � 1 ¤ i ¤ m.

Corollary 2.3.18. Let f1, g1 P OKrX1, . . . , Xℓs be quadratic forms and let f2, g2 P
OKrXℓ�1, . . . , Xns be quadratic forms. Let f � f1 K πf2 and g � g1 K πg2. If
DKpfi, giq � Dkpfi, giq for i � 1, 2, then DKpf, gq � DKpf1, g1q �DKpf2, g2q.
Proof. This follows from Lemma 2.3.17.

Copyright© John R. Hall 2024
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Chapter 3 Pairs of Forms in n � 2m� 1 Variables: An Important Example

In this chapter, we begin by proving Theorem 3.0.1, which is a result that holds over
arbitrary communitive rings with identity 1.

Theorem 3.0.1. Let R be a communitive ring with identity 1. Let m ¥ 0 and
n � 2m � 1. For each m � 1 ¤ i ¤ 2m � 1, let ai and bi be elements of R. Let
f, g P RrX1, . . . , Xns be the quadratic forms

f � X1Xm�1 �X2Xm�2 � � � � �XmX2m �
2m�1¸
i�m�1

aiX
2
i .

g � X1Xm�2 �X2Xm�3 � � � � �XmX2m�1 �
2m�1¸
i�m�1

biX
2
i .

Then

detpλf � µgq � 2p�1qmpa1�mλµ
2m � b1�mµ

2m�1q
� 2p�1qmpa2�mλ

3µ2m�2 � b2�mλ
2µ2m�1q

...

� 2p�1qmpa2m�1λ
2m�1 � b2m�1λ

2mµq.
Proof. We go by induction on m. For m � 0, we have f � a1X

2
1 and g � b1X

2
1 . Thus

detpλf � µgq � 2pa1λ� b1µq.

For m ¥ 1, assume by induction that the result holds for m � 1. Let A � pai,jq
denote the p2m� 1q � p2m� 1q matrix of λf � µg. Notice that column 2m� 1 of A
contains only two nonzero terms, namely am,2m�1 � µ and a2m�1,2m�1 � 2pa2m�1λ�
b2m�1µq. Given 1 ¤ i ¤ j ¤ 2m � 1, let Ai,j denote the p2mq � p2mq matrix obtain
by deleting row i and column j of A. Performing cofactor expansion along column
2m� 1 yields

detpAq � p�1qm�1µdetpAm,2m�1q
� 2pa2m�1λ� b2m�1µqdetpA2m�1,2m�1q.

(3.0.1)

Claim: detpA2m�1,2m�1q � p�1qmλ2m.

Proof of Claim. We know A2m�1,2m�1 is obtain by deleting row 2m � 1 and column
2m � 1 from A. This corresponds to deleting the monomials XmX2m�1 and X2

2m�1

from λf � µg. Therefore, by letting

f0 � X1Xm�1 �X2Xm�2 � � � � �Xm�1X2m�1 �XmX2m �
2m̧

i�m�1

aiX
2
i ,

g0 � X1Xm�2 �X2Xm�3 � � � � �Xm�1X2m �
2m̧

i�m�1

biX
2
i ,
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we see that detpA2m�1,2m�1q � detpλf0 � µg0q. Write A2m�1,2m�1 � pci,jq1¤i,j¤2m.
Then

detpλf0 � µg0q �
¸

σPS2m

sgnpσq
2m¹
i�1

ci,σpiq.

Let τ P S2m be a permutation such that
±2m

i�1 ci,τpiq � 0. Suppose py, zq is a 2-cycle
in τ , where y P t2, . . . ,mu and z � y �m. Thus τpyq � y �m and τpy �mq � y.
Consider the monomials

Xy�1Xy�1�m pin f0q,
and

Xy�1Xy�m pin g0q.
These are the only monomials in f0 and g0 that contain the variable Xy�1. Therefore,
τpy � 1q P ty � 1�m, y �mu and either τpy � 1�mq � y � 1 or τpy �mq � y � 1.
Since τpyq � y � m and τpy � mq � y, we deduce that τpy � 1q � y � 1 � m and
τpy � 1�mq � y � 1. Thus py � 1, y � 1�mq � py � 1, z � 1q is a 2-cycle.

With that in mind, notice that if τ P S2m satisfies
±2m

i�1 ci,τpiq � 0, then τpmq � 2m
and τp2mq � m since XmX2m is the only monomial in λf0 � µg0 that contains the
variable Xm. Therefore pm, 2mq is a 2-cycle. Iterating our previous calculation, we
obtain the following 2-cycles in τ :

pm, 2mqpm� 1, 2m� 1q � � � p2, 2�mqp1, 1�mq.

This is the disjoint cycle decomposition of τ , hence τ is the only permutation in S2m

that satisfies
±2m

i�1 ci,τpiq � 0. Since the sign of 2-cycle is �1, and sgn : S2m Ñ t�1, 1u
is a group homomorphism, we see that sgnpτq � p�1qm. We conclude that

detpλf0 � µg0q �
¸

σPS2m

sgnpσq
2m¹
i�1

ci,σpiq.

� p�1qm
2m¹
i�1

ci,τpiq.

� p�1qmpc1,m�1q2pc2,m�2q2 � � � � pcm,2mq2.
� p�1qmλ2m.

This completes of the proof of the claim.

Combining our claim with equation 3.0.1 yield

detpAq � p�1qm�1µdetpAm,2m�1q
� 2p�1qmpa2m�1λ

2m�1 � b2m�1λ
2mµq. (3.0.2)

It remains to determine detpAm,2m�1q. LetA1 � Am,2m�1, henceA
1 is a p2mq�p2mq

matrix. Write A1 � pa1ijq1¤i,j¤2m. Row 2m � 1 of matrix A has only two nonzero
entries, namely a2m�1,m � µ and a2m�1,2m�1 � 2pa2m�1λ � b2m�1µq. Therefore, row
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2m of A1 � pa1i,jq has only one nonzero entry, namely a12m,m � µ. We perform cofactor
expansion on A1 along row 2m; doing so yields

detpAm,2m�1q � detpA1q � p�1q3mµdetpA1
2m,mq � p�1qmµdetpA1

2m,mq, (3.0.3)

where A1
2m,m is obtain by deleting rows 2m and m of matrix A1. Thus A1

2m,m is a
p2m� 1q� p2m� 1q matrix. Since a12m,m � µ was originally the entry a2m�1,m � µ in
A, we observe that deleting row 2m and column m in A1 corresponds to deleting row
2m� 1 and column m in A. In total, we see that A1

2m,m is obtained by deleting rows
m, 2m� 1 and columns m, 2m� 1 in matrix A. This in turn corresponds to deleting
the monomials XmX2m�1, XmX2m, Xm�1X2m, and X2

2m�1 in λf � µg. Therefore, by
letting

f 1 � X1Xm �X2Xm�1 � � � � �Xm�1X2m�2 �
2m̧

i�m�1

aiX
2
i�1,

g1 � X1Xm�1 �X2Xm�3 � � � � �Xm�1X2m�1 �
2m̧

i�m�1

biX
2
i�1,

we see that detpA1
2m,mq � detpλf 1�µg1q. To see why the subscript for X2

i�1 is correct,
note that for i ¥ m � 1, the pi, iq entry in our original matrix A is aiλ � biµ. When
we delete column m, the entry aiλ� biµ is now in column i� 1 of the matrix A1

2m,m,
hence it corresponds to the variable Xi�1.

By induction, we have

detpA1
2m,mq � 2p�1qm�1pa1�mλµ

2m�2 � b1�mµ
2m�1q

� 2p�1qm�1pa2�mλ
3µ2m�4 � b2�mλ

2µ2m�3q
...

� 2p�1qm�1pa2mλ2m�1 � b2mλ
2m�2µq.

(3.0.4)

Combining equations 3.0.3 and 3.0.4 yield

detpAm,2m�1q � �2pa1�mλµ
2m�1 � b1�mµ

2mq
� 2pa2�mλ

3µ2m�3 � b2�mλ
2µ2m�2q

...

� 2pa2mλ2m�1µ� b2mλ
2m�2µ2q.

(3.0.5)

Combining equations 3.0.2 and 3.0.5 yield

detpAq � 2p�1qmpa1�mλµ
2m � b1�mµ

2m�1q
� 2p�1qmpa2�mλ

3µ2m�2 � b2�mλ
2µ2m�1q

...

� 2p�1qmpa2mλ2m�1µ2 � b2mλ
2m�2µ3q

� 2p�1qmpa2m�1λ
2m�1 � b2m�1λ

2mµq.

(3.0.6)
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For any field F , we let e1, . . . , en denote the standard basis vectors in F n.

Corollary 3.0.2. Let R be a commutative ring with identity 1. Let F be a field
containing R. Let m ¥ 0 and n � 2m � 1. Let P pλ, µq P Rrλ, µs denote a ho-
mogeneous form of degree n in the variables λ, µ. Then there exist quadratic forms
f, g P RrX1, . . . , Xns such that tf, gu vanish on spanF pe1, . . . , emq and detpλf �µgq �
2p�1qmP pλ, µq.
Proof. We can write P pλ, µq in the following way:

P pλ, µq � a1�mλµ
2m � b1�mµ

2m�1

� a2�mλ
3µ2m�2 � b2�mλ

2µ2m�1

...

� a2mλ
2m�1µ2 � b2mλ

2m�2µ3

� a2m�1λ
2m�1 � b2m�1λ

2mµ,

where ai, bi P R. Let f and g be as in Theorem 3.0.1. Then tf, gu vanish on
spanF pe1, . . . , emq and detpλf � µgq � 2p�1qmP pλ, µq.

Copyright© John R. Hall 2024
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Chapter 4 A Method for Producing Nonsingular Pairs over p-Adic Fields

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We will use the same notation given at the beginning of section 2.3.

Our goal in this chapter is to show how we can adjust the coefficients of a pair
of quadratic forms in OKrX1, . . . , Xns modulo a power of π so that the pair becomes
nonsingular. We begin with Lemmas 4.0.1 and 4.0.2. Lemma 4.0.1 is essentially
Gauss’s lemma, and Lemma 4.0.2 is a simple generalization of [5, Lemma 2.1, p.2].

Lemma 4.0.1. Let gpxq P krxs be a monic polynomial that is irreducible over k.
Let Gpxq P OKrxs be a monic polynomial such that the reduction of G modulo π is
g, degpGq � degpgq, and with the convention that 0 lifts to 0. Then the nonzero
coefficients of G are units in OK, and G is irreducible over K.

Proof. Since 0 lifts to 0, the nonzero coefficient of G are units in OK . To prove that
G is irreducible over K, we go by contrapositive. Assume G is reducible over K. We
will show g is reducible over k. Write Gpxq � ApxqBpxq, where Apxq, Bpxq P Krxs,
degpAq ¥ 1, and degpBq � 1. By multiplying both sides of this equation by a sufficient
positive power of π, we can assume Apxq, Bpxq P OKrxs. Upon doing this, we obtain
a new equation: πNGpxq � A1pxqB1pxq, where N ¥ 0, and A1pxq, B1pxq P OKrxs
with degpA1q � degpAq ¥ 1 and degpB1q � degpBq ¥ 1. If N � 0, then reducing
modulo π gives a nontrivial factorization of gpxq.

Assume N ¥ 1. Then reducing modulo π gives 0 � a1pxqb1pxq, where A1pxq �
a1pxq and B1pxq � b1pxq. Since krxs is an integral domain, at least one of either a1pxq
or b1pxq is zero. Without loss of generality, suppose a1pxq � 0. Then π � A1pxq.
We can then cancel a factor of π from πNGpxq � A1pxqB1pxq to obtain πN�1Gpxq �
A1

1pxqB1pxq, where A1
1pxq P OKrxs with πA1pxq � A1

1pxq, hence degpA1
1q � degpA1q ¥

1. If N � 1 � 0, then as before, reducing modulo π gives a nontrivial factorization of
gpxq. If N � 1 ¡ 0, then we may repeat this process again. The process terminates
once all the factors of π are canceled, which in turn gives us a nontrivial factorization
of gpxq.
Lemma 4.0.2 (Chakri, Leep). Let S be a ring such that OK � S. Suppose h P
SrX1, . . . , Xns is a nonzero polynomial, and let b1, . . . , bn P OK. Let j be a positive
integer. Then there exist a1, . . . , an P OK such that hpa1, . . . , anq � 0 and ai �
bi mod πj, 1 ¤ i ¤ n.

Proof. The proof is essentially identical to [5, Lemma 2.1, p.2]. Note that in [5,
Lemma 2.1, p.2], they use R to denote the ring of integers, and they use k to denote
the p-adic field.

Lemma 4.0.3. Let L1, . . . , Lt P Kalgrλ, µs be a finite collection (possibly empty) of
linear forms such that for i � j, Li and Lj and not multiplies of each other. Let
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n ¥ 1 be a positive integer and d be an integer such that 0 ¤ d ¤ n�1
2
. There exist

quadratic forms f, g P KrX1, . . . , Xns with the following properties.

1. tf, gu is nonsingular.

2. For each 1 ¤ i ¤ t, Li � detpλf � µgq.
3. tf, gu vanish on spanKpe1, . . . , edq (if d � 0 then we simply assert that tf, gu

vanish on the zero space.)

Proof. First, consider the case where n ¥ 1 is odd. Write n � 2m�1 for some m ¥ 0.
Since K is a infinite field, we can choose P pλ, µq P Krλ, µs to be a homogeneous form
of degree n in the variables λ, µ such that P pλ, µq has distinct linear factors and
Li � P for each 1 ¤ i ¤ t.

By Corollary 3.0.1, there exist quadratic forms f, g P KrX1, . . . , Xns such that
tf, gu vanish on spanKpe1, . . . , emq and

detpλf � µgq � 2p�1qmP pλ, µq.
Since P pλ, µq has distinct linear factors, Theorem 2.1.27 implies that tf, gu is non-
singular. Statement (2) follows from our choice of P . Statement (3) follows from the
fact that d ¤ n�1

2
and m � n�1

2
.

Suppose n ¥ 2 is even. Write n � 1 � 2m1 � 1 for some m1 ¥ 0. Since n is
even, d ¤ n�2

2
. Since K is an infinite field, we can choose P 1pλ, µq P Krλ, µs to be a

homogeneous form of degree n�1 in the variables λ, µ such that P 1pλ, µq has distinct
linear factors and Li � P 1 for each 1 ¤ i ¤ t.

By Corollary 3.0.1, there exist quadratic forms f 1, g1 P KrX1, . . . , Xn�1s such that
tf 1, g1u vanish on spanKpe1, . . . , em1q and

detpλf 1 � µg1q � 2p�1qm1

P 1pλ, µq.
Since K is infinite, we can choose a, b P K, not both zero, so that L1 � aλ� bµ does
not divide P 1pλ, µq and L1 is not a multiple of Li, 1 ¤ i ¤ t. Take f � f 1 � aX2

n

and g � g1 � bX2
n. Theorem 2.1.27 implies that tf, gu is nonsingular. Statement (2)

follows from our choice of P 1, a, and b. Statement (3) follows from the fact that
d ¤ n�2

2
and m1 � n�2

2
.

Let n ¥ 1 be a positive integer and d be an integer such that 0 ¤ d ¤ n�1
2
. Let

U � tpi, jq | 1 ¤ i ¤ j ¤ n and j ¥ d� 1u. (4.0.1)

For each pi, jq P U , let tij and t1ij be indeterminants (i.e. variables). Let F,G be the
quadratic forms defined by

F � Ftij �
¸

pi,jqPU

tijXiXj.

G � Gt1ij
�

¸
pi,jqPU

t1ijXiXj.
(4.0.2)

34



In general, for a subring R � K, a pair of quadratic forms f, g P RrX1, . . . , Xns
vanish on the subspace spanKpe1, . . . , edq if and only if there exist sij, s

1
ij P R so that

f � Fsit and g � Gs1ij
.

Lemma 4.0.4. Let U , F , and G be as above. Let L1, . . . , Lt P Kalgrλ, µs be a finite
collection (possibley empty) of linear forms such that for i � j, Li and Lj are not
multiples of each other.

There exists a nonzero polynomial h � hptij, t1ijq P Kalgrttij, t1ijus with the property
that if sij, s

1
ij P K and hpsij, s1ijq � 0, then the pair tFsij , Gs1ij

u is nonsingular, and

Lm � detpλFsij � µGs1ij
q for each 1 ¤ m ¤ t.

Proof. Note that detpλF � µGq P pZrttij, t1ijusqrλ, µs is a homogeneous form. Let
P pλ, µq � detpλF � µGqL1L2 � � �Lt. Then P pλ, µq is a homogeneous form in λ, µ.
Let

h � discpP pλ, µqq
� discpdetpλF � µGqL1L2 � � �Ltq.

(4.0.3)

By Theorem D.1.3, h is a polynomial over Z in the coefficients of P pλ, µq. In particu-
lar, since detpλF � µGq has coefficients in Zrttij, t1ijus, and the Li have coefficients in
Kalg, we deduce that h is a polynomial over Kalg in the variables ttij, t1iju. To express
this, we write h � hptij, t1ijq.

Next, we will show that h is a nonzero polynomial. By Lemma 4.0.3, there exist
quadratic forms f0, g0 P KrX1, . . . , Xns such that tf0, g0u vanish on spanKpe1, . . . , edq,
tf0, g0u is nonsingular, and Lm � detpλf0 � µg0q, 1 ¤ m ¤ t. Since tf0, g0u vanish on
spanKpe1, . . . , edq, we can write f0 and g0 in the following way:

f0 �
¸

pi,jqPU

cijXiXj

g0 �
¸

pi,jqPU

dijXiXj

for suitable cij, dij P K. Notice that Fcij � f0 and Gdij � g0. Observe that

hpcij, dijq � discpdetpλf0 � µg0qL1L2 � � �Ltq.

Since tf0, g0u is nonsingular, Theorem 2.1.27 implies that detpλf0 � µg0q has no re-
peated linear factors. It follows that the homogeneous form detpλf0�µg0qL1L2 � � �Lt

has no repeated linear factors. Lemma D.1.2 then implies that hpcij, dijq � 0. Thus
h is a nonzero polynomial.

Likewise, for sij, s
1
ij P K, if hpsij, s1ijq � 0, then the pair tFsij , Gs1ij

u is a nonsingular
pair of quadratic over K such that Lm � detpλFsij � µGs1ij

q for each 1 ¤ m ¤ t.
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Lemma 4.0.5. Let L1, . . . , Lt P Kalgrλ, µs be a finite collection (possibly empty) of
linear forms such that for i � j, Li and Lj and not multiplies of each other.

Let n ¥ 1 be a positive integer and d be an integer such that 0 ¤ d ¤ n�1
2
. Let

f, g P OKrX1, . . . , Xns be quadratic forms. Suppose tf, gu vanish on spanKpe1, . . . , edq
(if d � 0 then we simply assert that tf, gu vanish on the zero space.)

Let j ¥ 1 be a positive integer. We can adjust the coefficients of f and g modulo
πj so that

1. tf, gu is nonsingular,

2. Li � detpλf � µgq for each 1 ¤ i ¤ t, and

3. the pair tf, gu still vanishes on spanKpe1, . . . , edq.
Proof. We will show that there exist quadratic forms f 1, g1 P OKrX1, . . . , Xns such
that f 1 � f mod πj, g1 � g mod πj, and f 1, g1 satisfy properties (1), (2), and (3).

Since tf, gu vanish on spanKpe1, . . . , edq, we can write f and g in the shape of
equation 4.0.2:

f �
¸

pi,jqPU

aijXiXj

g �
¸

pi,jqPU

bijXiXj

for appropriate aij, bij P OK . Let h � hptij, t1ijq be as Lemma 4.0.4. Since h is a
nonzero polynomial over Kalg, Lemma 4.0.2 implies that for each pi, jq P U , there
exist a1ij, b

1
ij P OK such that a1ij � aij mod πj, b1ij � bij mod πj, and hpa1ij, b1ijq � 0.

Let

f 1 �
¸

pi,jqPU

a1ijXiXj.

g1 �
¸

pi,jqPU

b1ijXiXj.

Then f 1 � f mod πj and g1 � g mod πj. Since hpa1ij, b1ijq � 0, we know that tf 1, g1u
is nonsingular and Li � detpλf 1 � µg1q for each 1 ¤ i ¤ t. By our definition of U in
equation 4.0.1, we know tf 1, g1u vanish on spanKpe1, . . . , edq.

Using Lemma 4.0.5, we obtain the following result.

Lemma 4.0.6. Let L1, . . . , Lt P Kalgrλ, µs be a finite collection (possibly empty) of
linear forms such that for i � j, Li and Lj and not multiplies of each other.

Let n ¥ 1 and let q1, q2 P krX1, . . . , Xns be quadratic forms. Suppose that tq1, q2u
vanish on a subspace over k of dimension d, where 0 ¤ d ¤ n�1

2
. There exist quadratic

forms Q1, Q2 P OKrX1, . . . , Xns that satisfy the following properties.
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1. Q1 � q1 and Q2 � q2.

2. tQ1, Q2u is nonsingular.

3. Li � detpλQ1 � µQ2q for each 1 ¤ i ¤ t

4. DKpQ1, Q2q ¥ d; in particular, tQ1, Q2u vanish on spanKpe1, . . . , edq.
Proof. By a change of variables, we can assume that q1 and q2 both vanish on
spankpe1, . . . , edq. Therefore, we can express q1 and q2 in the following way:

q1 �
ḑ

i�1

XiℓipXd�1, . . . , Xnq � q3pXd�1, . . . , Xnq

q2 �
ḑ

i�1

XisipXd�1, . . . , Xnq � q4pXd�1, . . . , Xnq

for suitable linear forms ℓi, si and quadratic forms q3, q4, all defined over k. Let
Q1, Q2 P OKrX1, . . . , Xns be lifts of q1, q2, respectively, such that 0 lifts to 0. There-
fore, Q1 and Q2 have the shape

Q1 �
ḑ

i�1

XiSipXd�1, . . . , Xnq �Q3pXd�1, . . . , Xnq

Q2 �
ḑ

i�1

XiTipXd�1, . . . , Xnq �Q4pXd�1, . . . , Xnq

for suitable linear forms Si, Ti and quadratic forms Q3, Q4, all defined over OK . In
particular, we see that tQ1, Q2u vanish on spanKpe1, . . . , edq. Since 0 ¤ d ¤ n�1

2
,

we can apply Lemma 4.0.5 to the pair tQ1, Q2u (in the lemma, we use j � 1).
According to Lemma 4.0.5, we can adjust the coefficients of Q1 and Q2 modulo π so
that tQ1, Q2u is nonsingular, and the pair tQ1, Q2u still vanishes on spanKpe1, . . . , edq.
Thus DKpQ1, Q2q ¥ d.

Copyright© John R. Hall 2024
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Chapter 5 Definition and Properties of Type A and B Pairs

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We will use the same notation given at the beginning of section 2.3.

Definition 5.0.1 (Type A). Let Q1, Q2 P OKrX1, . . . , Xns be quadratic forms. The
pair tQ1, Q2u is said to be type A if there exist nonnegative integers d and h such that
the following properties hold.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � d.

3. tQ1, Q2u vanish on spanKpe1, . . . , edq.
4. For every λ, µ P OK, not both divisible by π, there is an invertible linear change

of variable over OK so that

λQ1 � µQ2 � X1X2 � � � � �X2h�1X2h �NpX2h�1, . . . , Xnq

where N P OKrX2h�1, . . . , Xns is a quadratic form such that N is anisotropic
over k. Therefore, HKpQ1, Q2q � h.

We will write Qi � Qipn,A, d, hq to denote a type A pair.

Definition 5.0.2 (Type B). Let Q1, Q2 P OKrX1, . . . , Xns be quadratic forms. The
pair tQ1, Q2u is said to be type B if there exist nonnegative integers d and h such that
the following properties hold.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � d.

3. tQ1, Q2u vanish on spanKpe1, . . . , edq.
4. HkpQ1, Q2q � HkpQ1q � h.

5. For every q P PkpQ1, Q2q, Dkpqq ¤ h.

We will write Qi � Qipn,B, d, hq to denote a type B pair.

Lemma 5.0.3. Every type A pair is also a type B pair.

Proof. Property (4) of Definition 5.0.1 implies that every form in Pkpq1, q2q has order
n and splits off exactly h hyperbolic planes over k. This implies properties (4) and
(5) of Definition 5.0.2.
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Lemma 5.0.4. Let Qi � Qipn, T , d, hq, 1 ¤ i ¤ 2, where T P tA,Bu, be a type
A (or type B) pair. Let L1, . . . , Lt P Kalg be a finite collection (possibly empty) of
linear forms. We can adjust the coefficients of Q1 and Q2 modulo π so that Li �
detpλQ1�µQ2q and so that the pair tQ1, Q2u remains a type A (or type B) pair with
the same values for d and h.

Proof. By Lemma 4.0.5 with j � 1, we can adjust the coefficients ofQ1 andQ2 modulo
π so that tQ1, Q2u remains nonsingular, Li � detpλQ1 � µQ2q for each 1 ¤ i ¤ t, and
the pair tQ1, Q2u still vanishes on spanKpe1, . . . , edq. Having tQ1, Q2u still vanish on
spanKpQ1, Q2q implies that DKpQ1, Q2q ¥ d. On the other hand, since we adjusted
the coefficients of Q1 and Q2 modulo π, we know that Dkpq1, q2q is still equal to d.
By Lemma 2.3.16, DKpQ1, Q2q ¤ Dkpq1, q2q � d. Thus DKpQ1, Q2q � Dkpq1, q2q � d.
Adjusting the coefficients modulo π does not affect property (4) of Definition 5.0.1
or properties (4) and (5) of Definition 5.0.2.

Lemma 5.0.5. Let Q1, Q2 P OKrX1, . . . , Xns be a nonsingular pair of quadratic
forms (not necessarily type A or B). Let Q1

i � Q1
ipn, T , d, hq, 1 ¤ i ¤ 2, where

T P tA,Bu, be a type A (or type B) pair. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2.
Then the coefficients of Q1

1 and Q1
2 can be adjusted modulo π so that the pair tf, gu

is nonsingular and so that the pair tQ1
1, Q

1
2u remains a type A (or type B) pair with

the same values for d and h.

Proof. Since tQ1
1, Q

1
2u is nonsingular, Theorem 2.2.11 implies that 0 ¤ d1 ¤ n1�1

2
.

Since tQ1, Q2u is nonsingular, Theorem 2.1.27 implies that detpλQ1 � µQ2q has dis-
tinct linear factors. Suppose L1, . . . , Ln P Kalg are the linear factors in detpλQ1 �
µQ2q. By Lemma 5.0.4, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that

Li � detpλQ1
1 � µQ1

2q, 1 ¤ i ¤ n, and so that the pair tQ1
1, Q

1
2u remains a type A

(or type B) pair. It follows that detpλf � µgq has no repeated linear factors, hence
Theorem 2.1.27 implies that tf, gu is nonsingular.
Lemma 5.0.6. Let Qi � Qipn,A, d, hq, 1 ¤ i ¤ 2, be a type A pair, and let Q1

i �
Q1

ipn1, T , d1, h1q, 1 ¤ i ¤ 2, where T P tA,Bu, be a type A or B pair. Let f � Q1 K
πQ1

1 and g � Q2 K πQ1
2. Then the coefficients of Q1

1 and Q1
2 can be adjusted modulo

π so that

1. tf, gu is nonsingular,

2. DKpf, gq � d� d1, and

3. HKpf, gq � h� h1.

Proof. By Lemma 5.0.3, every type A pair is also a type B pair. So without loss of
generality, we can assume T � B.

(1) By Lemma 5.0.5, we can adjust the coefficients of Q1
1, Q

1
2 modulo π so that

tf, gu is nonsingular and so that properties (1) - (5) in Definition 5.0.2 are preserved.
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(2) Corollary 2.3.18 implies that DKpf, gq � d� d1.

(3) By Definition 5.0.2, Hkpq11, q12q � HKpq11q � h1. By Lemma A.1.2, Q1
1 splits off

h1 hyperbolic planes over OK . By Definition 5.0.1, the form Q1 splits off h hyper-
bolic planes over OK . Therefore, f splits off h� h1 hyperbolic planes over OK , hence
HKpf, gq ¥ h� h1.

To prove that HKpf, gq ¤ h� h1, it is sufficient to show that for every λ, µ P OK ,
not both divisible by π, the form λf � µg splits off at most h� h1 hyperbolic planes.
By Definition 5.0.1, we can perform an invertible linear change of variable over OK

so that

λf � µg � X1X2 � � � � �X2h�1X2h �NpX2h�1, . . . , Xnq K πpλQ1
1 � µQ1

2q.

Let Q0 � NpX2h�1, . . . , Xnq K πpλQ1
1 � µQ1

2q. By Lemma 2.3.2,

DKpQ0q ¤ DkpλQ1
1 � µQ1

2q.

By Definition 5.0.2,
DkpλQ1

1 � µQ1
2q ¤ h1.

Therefore, Q0 vanishes on a subspace over K of dimension at most h1. This proves
that λf � µg splits off at most h� h1 hyperbolic planes.

Lemma 5.0.7. Let Qi � Qipn,B, d, hq, 1 ¤ i ¤ 2, be a type B pair, and let Q1
i �

Q1
ipn1,B, d1, h1q, 1 ¤ i ¤ 2, be a type B pair. Let f � Q1 K πQ1

1 and g � Q2 K πQ1
2.

Suppose that h� h1 �
#

n�n1

2
if n� n1 is even

n�n1�1
2

if n� n1 is odd.
Then the coefficients of Q1

1 and Q1
2

can be adjusted modulo π so that

1. tf, gu is nonsingular,

2. DKpf, gq � d� d1, and

3. HKpf, gq � h� h1.

Proof. (1) By Lemma 5.0.5, we can adjust the coefficients of Q1
1, Q

1
2 modulo π so that

tf, gu is nonsingular and so that properties (1) - (5) in Definition 5.0.2 are preserved.

(2) Corollary 2.3.18 implies that DKpf, gq � d� d1.

(3) Since Hkpq1q � h and Hkpq11q � h1, Lemma A.1.2 implies that Q1 splits off h
hyperbolic planes and Q1

2 splits off h1 hyperbolic planes. Therefore, f splits off h�h1

hyperbolic planes, henceHKpf, gq ¥ h�h1. Since h�h1 �
#

n�n1

2
if n� n1 is even

n�n1�1
2

if n� n1 is odd,
,

we deduce that HKpf, gq � h� h1.
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Chapter 6 The Transfer Map

Let F be a field and let K{F be an algebraic extension with rK : F s � m, m ¥ 1.
Let V be a finite dimensional vector space over K with dimKpV q � t. Then V is a
vector space over F with dimF pV q � mt.

Let s : K Ñ F be a nonzero F -linear map. That is, s : K Ñ F is a nonzero linear
transformation of F -vector spaces.

Let Q : V Ñ K be a quadratic map. Thus

1. Qpavq � a2Qpvq for all a P K and v P V .

2. BQ : V �V Ñ K defined by BQpv, wq � Qpv�wq�Qpvq�Qpwq for all v, w P V
is a symmetric bilinear form.

This gives BQpv, vq � Qp2vq �Qpvq �Qpvq � 2Qpvq for all v P V .
Define s�pQq : V Ñ F by s�pQqpvq � spQpvqq for all v P V . We now show that

s�pQq is a quadratic map.

s�pQqpavq � spQpavqq � spa2Qpvqq � a2spQpvqq � a2s�pQqpvq.

Bs�pQqpv, wq � s�pQqpv � wq � s�pQqpvq � s�pQqpwq
� spQpv � wqq � spQpvqq � spQpwqq
� spQpv � wq �Qpvq �Qpwqq � spBQpv, wqq.

Since s is a linear transformation, it follows easily that Bs�pQq is a symmetric bilinear
form.

Note that s�pQq is a quadratic map corresponding to a quadratic form of dimen-
sion mt, which is dimF pV q.

Lemma 6.0.1. Suppose q P KrX1, . . . , Xns is a quadratic form and s : K Ñ F be a
nonzero F -linear map. Let h � s�pqq. If bq is nondegenerate, then bh � s�pbqq is also
nondegenerate.

Proof. We are assuming that bq is nondegenerate. Therefore, there exists pv, wq P
K �K such that bqpv, wq � 0. Since we are assuming that s is nonzero, there exists
a P K such that spaq � 0. Choose c P K so that cbqpv, wq � bqpcv, wq � a. Then
bhpcv, wq � s�pbqpcv, wqq � 0. This proves that bh is nondegenerate.

Lemma 6.0.2. Suppose q P KrX1, . . . , Xns is a quadratic form such that bq is non-
degenerate. Suppose K � F pθq with rK : F s � m ¡ 1. Let s : K Ñ F be a nonzero
F -linear map, f � s�pqq, and g � s�pθqq. Then for every λ, µ P F , not both zero, the
form h � λf � µg is nondegenerate. In particular, bh is nondegenerate.
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Proof. Let h � λf � µg. Observe that

h � λf � µg � λs�pqq � µs�pθqq.
� s�pλq � µθqq.
� s�ppλ� µθqqq.

Since m ¡ 1, we know that θ R F . Thus λ � µθ � 0. Because bq is nondegen-
erate, we get that bpλ�µθqq is nondegenerate. Thus, Lemma 6.0.1 implies that bh is
nondegenerate, hence h is nondegenerate.

Lemma 6.0.3. Let F be an arbitrary field and let n ¥ 2. Assume that F has a finite
simple extension of degree n. There exist quadratic forms h1, h2 P F rX1, . . . , X2ns
such that

1. every form in the pencil PF ph1, h2q splits off n hyperbolic planes, and

2. DF ph1, h2q � n.

Proof. Let L � F pθq be a finite simple extension of degree n. Thus

L � spanF p1, θ, . . . , θn�1q.

Let qpX, Y q P LrX, Y s be the quadratic form q � XY . Let s : L Ñ F be a nonzero
F -linear map. Take h1 � s�pqq and h2 � s�pθqq. Then h1 and h2 are quadratic maps
from L2 Ñ F of dimension 2n. Observe that h1 and h2 both vanish on the subspace

U � spanF

�
p1, 0q, pθ, 0q, . . . , pθn�1, 0q



� L2.

Note that dimF pUq � n. Thus DF ph1, h2q ¥ n.

Next, we will show that every form in PF ph1, h2q splits off n hyperbolic planes.
Since n ¥ 2, we deduce that θ R F . It follows that λ�µθ � 0 for all λ, µ P F , not both
zero. Note λh1�µh2 � s�ppλ�µθqqq. Since λ�µθ � 0, and q has rank 2, we deduce
that pλ � µθqq also has rank 2. Then Lemma 6.0.1 implies that λh1 � µh2 has rank
2n. Since h1 and h2 both vanish on U , the form λh1 � µh2 also vanishes on U . Then
Theorem B.1.1 implies that λh1 � µh2 splits off n hyperbolic planes. This proves
(1). In particular, every formPF ph1, h2q has rank n. Thus, if DF ph1, h2q ¡ n, then
Theorem B.1.1 would imply that every form in PF ph1, h2q splits off ¡ n hyperbolic
planes, which is note true. Thus DF ph1, h2q � n, which proves (1).

Let F be a field and let K{F be an algebraic extension with rK : F s � m, m ¥ 2.

Recall that if a1, . . . , an P K�, then xa1, . . . , any denotes the quadratic form a1x
2
1�

� � � � anx
2
n. From definitions 2.1.5 and 2.1.7, we get that

detpxa1, . . . , anyq � 2na1 � � � an.
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In terms of quadratic maps, let V � Kn and let e1, . . . , en denote the standard basis
of Kn. Define Q : V Ñ K by setting Qpeiq � ai, 1 ¤ i ¤ n, and bQpei, ejq � 0 for all
i � j.

Suppose that K � F pθq for some θ P K. (If K{F is a separable extension, then
this is always possible.) Let j P F rxs be the minimal polynomial satisfied by θ. Thus
j is monic, irreducible, and jpθq � 0. Let Jpλ, µq denote the homogenization of j. It
follows that

NK{F px� θq � jpxq, NK{F pλ� µθq � Jpλ, µq.
Let s : K Ñ F be a nonzero F -linear map. Let β P K� and let

f � s�pxβyq, g � s�pxβθyq.

Then

λf � µg � λs�pxβyq � µs�pxβθyq � s�pxλβ � µβθyq � s�pβxλ� µθyq.

We note that λ�µθ � 0 for every λ, µ P F , not both zero, because rF pθq : F s � m ¥ 2
and thus 1, θ are linearly independent over F .

[17, Theorem 5.12, p. 51] implies that

detpλf � µgq � detps�pβxλ� µθyqq
� detps�px1yqqNK{F pdetpβxλ� µθyq
� detps�px1yqqNK{F p2βpλ� µθqq
� detps�px1yqqNK{F p2βqNK{F pλ� µθq
� 2m detps�px1yqqNK{F pβqJpλ, µq.

Since rK : F s � rF pθq : F s � m, it follows that t1, θ, . . . , θm�1u is an F -basis of
K. Define the F -linear map s : K Ñ F by

sp1q � � � � � spθm�2q � 0, spθm�1q � 1.

Then [2, Lemma 2.3] implies that

detps�px1yq �
#
2mp�1qℓ if m � 2ℓ

2mp�1qℓ if m � 2ℓ� 1.

We summarize the above results with the following theorem.

Theorem 6.0.4. For any field F , let K � F pθq be an extension of F of degree m ¥ 2.
Let jpxq P F rxs be the minimal polynomial of θ.
Let Jpλ, µq denote the homogenization of jpxq.
Define the linear map s : K Ñ F by sp1q � spθq � � � � � spθm�2q � 0 and
spθm�1q � 1.
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For the quadratic maps f � s�pxβyq and g � s�pxβθyq, we have

detpλf � µgq � 2mdetps�px1yqqNK{F pβqJpλ, µq,

where

detps�px1yq �
#
2mp�1qℓ if m � 2ℓ

2mp�1qℓ if m � 2ℓ� 1.

In the next theorem, we find subspaces where the quadratic maps f and g vanish.

Theorem 6.0.5. Assume that K � F pθq, rK : F s � m ¥ 2, and define the F -linear
map s : K Ñ F by sp1q � � � � � spθm�2q � 0, spθm�1q � 1.

Let f � s�px1yq, g � s�pxθyq, and h � s�pxθ2yq. The following statements hold.

1. f vanishes on

#
Spanp1, θ, . . . , θm�2

2 q if m is even

Spanp1, θ, . . . , θm�3
2 q if m is odd.

2. g vanishes on

#
Spanp1, θ, . . . , θm�4

2 q if m is even, m ¥ 4,

Spanp1, θ, . . . , θm�3
2 q if m is odd.

3. h vanishes on

#
Spanp1, θ, . . . , θm�4

2 q if m is even, m ¥ 4,

Spanp1, θ, . . . , θm�5
2 q if m is odd, m ¥ 5.

Proof. Let β P K, and let q � s�pxβyq. Observe that

Bqpθi, θjq � qpθi � θjq � qpθiq � qpθjq.
� spβpθi � θjq2q � spβθ2iq � spβθ2jq.
� sp2βθi�jq.
� 2spβθi�jq

For (1), take β � 1, and note that spθi�jq � 0 whenever i� j ¤ m� 2.

For (2), take β � θ, and note that spθi�j�1q � 0 whenever i� j ¤ m� 3.

For (3), take β � θ2, and note that spθi�j�2q � 0 whenever i� j ¤ m� 4.

Copyright© John R. Hall 2024
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Chapter 7 Pairs of Quadratic Forms over Finite Fields

Our goal for this chapter to build examples of pairs of quadratic forms over finite
fields.

Lemma 7.0.1. Let k be a finite field and n ¥ 2 be even. There exist quadratic forms
f, g P krX1, . . . , Xns that satisfy the following properties.

1. There are no forms in Pkpf, gq that vanish on a subspace over k of dimension
n�2
2
.

2. Dkpf, gq �
#
0 if n � 2
n
2

if n ¥ 4.

3. Hkpf, gq � Hkpfq � n
2
.

4. If n ¥ 4, then every form in Pkpf, gq splits off n
2
hyperbolic planes, hence every

form in Pkpf, gq has rank n.

Proof. For n � 2, let f � X1X2 and let g P krX1, X2s be anisotropic. Then
Dkpf, gq � 0, and Hkpf, gq � Hkpfq � 1. Also, note that f, g are linearly inde-
pendent.

If there exist λ, µ P k, not both zero, such that λf � µg vanishes on a subspace
over k of dimension 2, then λf � µg would vanish on k2, hence λf � µg � 0. This,
however, is contrary to f, g being linearly independent. This completes the proof for
n � 2.

For n ¥ 4, note that as a finite field, k has a simple extension of degree n
2
. Thus,

Lemma 6.0.3 implies that there exist quadratic forms f, g P krX1, . . . , Xns such that
Dkpf, gq � n

2
and every form in Pkpf, gq splits off n

2
hyperbolic planes. This implies

that every form in Pkpf, gq has rank n. Theorem B.1.1 implies that there are no
forms in Pkpf, gq that vanish on a subspace over k of dimension n�2

2
.

Recall from Definition 2.2.1 that Dkpqq denotes the maximal dimension of a sub-
space in kn on which q vanishes.

Lemma 7.0.2. Let k be a finite field and n ¥ 2 be even. There exist quadratic forms
f, g P krX1, . . . , Xns that satisfy the following properties.

1. Dkpf, gq � n�2
2
.

2. Hkpf, gq � Hkpfq � n
2
.

3. Dkpqq ¤ n
2
for all q P Pkpf, gq.
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Proof. Let npX, Y q P krX, Y s be an anisotropic quadratic form. Lemma 7.0.1 pro-
vides an example for n � 2. We will do n � 4 last. For n ¥ 6, let q1, q2 P
krX1, . . . , Xn�2s be as in Lemma 7.0.1. Take f � q1 � Xn�1Xn and g � q2 �
npXn�1, Xnq. Then Hkpf, gq � Hkpfq � n

2
. Lemma 7.0.1 implies that Dkpq1, q2q �

n�2
2
. Thus Dkpf, gq ¥ n�2

2
. Note that g has order n and splits off exactly n�2

2
hyper-

bolic planes. Thus, Theorem B.1.1 implies that g can not vanish on a subspace over
k of dimension n

2
, in which case Dkpf, gq � n�2

2
. As for (1), Lemma 7.0.1 implies that

every form in Pkpq1, q2q has order n � 2. It follows that every form in Pkpf, gq has
order ¥ n � 1. Then Lemma 2.2.6 implies that every form in Pkpf, gq vanishes on a
subspace of dimension at most n

2
, as desired.

For n � 4, consider
f � X1X2 �X3X4.

g � X1X3 � npX2, X4q.
Then Hkpf, gq � Hkpfq � 2. Note that tf, gu both vanish on spanpe1q, hence
Dkpf, gq ¥ 1. Since g has order 4 and splits off exactly 1 hyperbolic plane, we
know from Theorem B.1.1 that g can not vanish on a two-dimensional subspace over
k. Thus Dkpf, gq � 1. As for (1), we will show that every form in Pkpf, gq has order
¥ 3. Then Lemma 2.2.6 implies (1).

Consider λf � µg, where λ, µ P k, not both zero. If λ � 0, then µ � 0 and this
form has order 4. Assume λ � 0. We can multiply by λ�1, so we consider the form
f � µ1g, where µ1 � λ�1µ. Observe that

f � µ1g � X1pX2 � µ1X3q �X3X4 � µ1npX2, X4q.

Apply the change of variables given by

Y2 � X2 � µ1X3

Yi � Xi i � 2

to obtain

f � µ1g � Y1Y2 � Y3Y4 � µ1npY2 � µ1Y3, Y4q.

We can write µ1npY2�µ1Y3, Y4q � Y2ℓpY2, Y3, Y4q�µ1np�µ1Y3, Y4q for some linear form
ℓ over k. Apply the change of variable where Y1 is replaced with Y1 � ℓpY2, Y3, Y4q to
obtain

f � µ1g � Y1Y2 � Y3Y4 � µ1np�µ1Y3, Y4q.

If µ1 � 0, then this form has order 4. If µ1 � 0, then observe that the coefficient of Y 2
4

in µ1npµ1Y3, Y4q is nonzero because n is anisotropic. It follows that Y3Y4�µ1npµ1Y3, Y4q
has order ¥ 1, hence f � µ1g has order ¥ 3.
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Theorem 7.0.3. Let n ¥ 6 be even with n � 8. Let k be a finite field. There exist
quadratic forms f, g P krX1, . . . , Xns that satisfy the following properties.

1. Dkpf, gq � n�2
2
.

2. Every form in Pkpf, gq has rank n.

3. HKpf, gq � n�2
2
; moreover, if q P Pkpf, gq, then q splits off exactly n�2

2
hyper-

bolic planes; that is,

q � X1X2 � � � � �Xn�3Xn�2 � q0pXn�1, Xnq,

where q0 is anisotropic of rank 2 over k.

First, we will show that if Theorem 7.0.3 holds when n ¥ 6 with n � 2 mod 4,
then the theorem holds when n ¥ 12 with n � 0 mod 4.

Lemma 7.0.4. Assume Theorem 7.0.3 holds when n ¥ 6 with n � 2 mod 4. Then
Theorem 7.0.3 holds when n ¥ 12 with n � 0 mod 4.

Proof. Since n ¥ 12 with n � 0 mod 4, we get that n�6 ¥ 6 and n�6 � 2 mod 4. Let
f0, g0 P krX1, . . . , Xn�6s be quadratic forms satisfying Theorem 7.0.3. Thus, tf0, g0u
satisfy the following properties.

(i) Dkpf0, g0q � n�8
2
.

(ii) For every λ, µ P k, not both zero, there is an invertible change of variable over
k so that

λf0 � µg0 � X1X2 � � � � �Xn�9Xn�8 � q0pXn�7, Xn�6q,

where q0 is anisotropic of rank 2 over k.

Let q1, q2 P krXn�5, . . . , Xns be as in Lemma 6.0.3; note that this Lemma can
be applied since as a finite field, k has a finite simple extension of degree 3. From
Lemma 6.0.3, we see that

(iii) Dkpq1, q2q � 3, and

(iv) every form in Pkpq1, q2q splits off 3 hyperbolic planes over k.

Let f, g P krX1, . . . , Xns be defined by

f � f0 � q1,

and
g � g0 � q2.

Properties (i) and (iii) imply that Dkpf, gq ¥ n�8
2
� 3 � n�2

2
. Further, notice that

properties (ii) and (iv) imply that every form in Pkpf, gq has rank n over k and splits
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off exactly n�2
2

hyperbolic planes over k, hence Hkpf, gq � n�2
2
.

Notice that ifDkpf, gq ¥ n
2
, then every form in Pkpf, gq would vanish on a subspace

of dimension n
2
. Since every form in Pkpf, gq has rank n, Theorem B.1.1 implies that

every form in Pkpf, gq would split off n
2
hyperbolic planes, a contradiction. Therefore,

Dkpf, gq � n�2
2
.

To prove Theorem 7.0.3 when n ¥ 6 with n � 2 mod 4, we consider the cases
charpkq � 2 and charpkq � 2 separately.

Lemma 7.0.5. Let k be a finite field of characteristic not 2. Let n ¥ 6 with n �
2 mod 4. There exist quadratic forms f, g P krX1, . . . , Xns that satisfy the following
properties.

1. Dkpf, gq � n�2
2
.

2. Every form in Pkpf, gq has rank n.

3. HKpf, gq � n�2
2
; moreover, if q P PKpf, gq, then q splits off exactly n�2

2
hyper-

bolic planes; that is,

q � X1X2 � � � � �Xn�3Xn�2 � q0pXn�1, Xnq,
where q0 is anisotropic of rank 2 over k.

Proof. We can write n � 2m, where m ¥ 3 is odd. Since k is a finite field, there
exists a simple extension ℓ{k of degree m. Write ℓ � kpθq, where θ P ℓ. Since
m ¡ 1, we know θ R k. Let jpxq P krxs denote the minimal polynomial of θ over
k. Let Jpλ, µq denote the homogenization of jpxq. Note that as a k-vector space,
ℓ � spankp1, θ, . . . , θm�1q. Define the linear map s : ℓÑ k by

sp1q � spθq � � � � � spθm�2q � 0 spθm�1q � 1.

Let d P k� be a nonsquare, which is possible since |k| ¥ 3 and charpkq � 2. Let
β � �d.

Consider the following quadratic forms.

f1 � s�px1yq f2 � s�pxβyq

g1 � s�pxθyq g2 � s�pxβθyq.
Let f � f1 K f2 and g � g1 K g2. By Theorem 6.0.4, f and g are quadratic forms in
2m variables over k such that

detpλf � µgq � 2ndetps�px1yqq2Nℓ{kp1qNℓ{kpβqJpλ, µq2
� 2np�1qmdmJpλ, µq2.

48



Since jpxq is irreducible over k, we know jpxq has no roots in k. Thus, if λ, µ P k,
not both zero, then Jpλ, µq � 0. It follows that for λ, µ P k, not both zero,
detpλf � µgq � 0. This proves (2). To prove (3), note that since m ¥ 3 is odd,

we can write dm � dpd2qm�1
2 . It follows that detpλf � µgq P dpk�q2. Lemma B.2.1

implies (3).

To prove (1), let U � spankp1, θ, . . . , θ
m�3

2 q. By Theorem 6.0.5, tf1, g1u vanishes
on U . Note that since β P k and s is k-linear, we have s�pβq � βs�px1yq and
s�pxβθyq � βs�pxθyq. Then Theorem 6.0.5 implies that tf2, g2u also vanishes on U . It
follows that tf, gu vanishes on a subspace of kn of dimension m�1

2
� m�1

2
� m � 1 �

n�2
2
. Thus Dkpf, gq ¥ n�2

2
. By Lemma 2.2.7, Dkpf, gq ¤ HKpf, gq � n�2

2
. Thus

Dkpf, gq � n�2
2
.

Our goal now is to prove Lemma 7.0.5 for finite fields of characteristic 2.

Let k be a finite field of characteristic 2, and let ℓ{k be a finite extension. Let
tr : ℓÑ k be the trace map. Note that tr is a k-linear map. Since k is finite field, the
extension ℓ{k is a separable extension. Then tr is a nonzero k-linear map. Recall that
the Arf invariant is defined for quadratic forms over a finite field in an even number
of variables when the associated symmetric bilinear form is nondegenerate. For a
binary form cX2�dXY � eY 2 with d � 0, we have ArfpcX2�dXY � eY 2q � ce

d2
. We

have the following theorem.

Theorem 7.0.6. Arfps�pqqq � trpArfpqqq.
Proof. See [3, Lemma 2.3 (ii) and Corollary 2.6] and [19, Proposition 2.4].

Now assume that m, the degree of the extension ℓ{k, is odd and ¥ 3. Since ℓ{k is
separable, there exists θ P ℓ such that ℓ � kpθq (every finite exension of a perfect field
is separable.) Note that as k-vector space, ℓ � spankp1, θ, . . . , θm�1q. Let s : ℓ Ñ k
be the k-linear map defined by

sp1q � spθq � � � � � spθm�2q � 0 and spθm�1q � 1.

Lemma 7.0.7. Let b P ℓ and q1 � X2�XY �bY 2. Let q2 � θq1 � θX2�θXY �θbY 2.
Let f � s�pq1q and g � s�pq2q, hence f and g are quadratic forms with coefficients in
k in n � 2m variables. The quadratic forms f and g both vanish on a subspace of kn

of dimension n�2
2
.

Proof. Consider the subspace

W � spankp1, θ, . . . , θ
m�3

2 q ` spankp1, θ, . . . , θ
m�3

2 q � ℓ2.

Thus dimkpW q � m � 1. We will show that f and g both vanish on W . Suppose
tw1, . . . , wm�1u is a k-basis for W . Let x1, . . . , xm�1 P k and w � x1w1 � � � � �
xm�1wm�1. Then

fpwq �
m�1̧

i�1

fpwiqx2
i �

¸
1¤i j¤m�1

bf pwi, wjqxixj,
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and

gpwq �
m�1̧

i�1

gpwiqx2
i �

¸
1¤i j¤m�1

bgpwi, wjqxixj.

Therefore, to show that f and g both vanish on W , it is enough to show that
fpwiq � gpwiq � 0 for each 1 ¤ i ¤ m � 1, and bf pwi, wjq � bgpwi, wjq � 0 for
each 1 ¤ i   j ¤ m� 1.

To that end, we first choose a basis for W . We will use the basis

tp1, 0q, pθ, 0q, . . . , pθm�3
2 , 0q, p0, 1q, p0, θq, . . . , p0, θm�3

2 qu.

Recall q1 � X2 �XY � bY 2, f � s�pq1q, and g � s�pθq1q. For 0 ¤ i ¤ m�3
2

, observe
that

fpθi, 0q � spq1pθi, 0qq � spθ2iq,
fp0, θiq � spq1p0, θiqq � bspθ2iq,
gpθi, 0q � spθq1pθi, 0qq � spθ2i�1q,

and
gp0, θiq � spθq1p0, θiqq � bspθ2i�1q.

Since 2i ¤ 2i� 1 ¤ m� 2, we have spθ2iq � spθ2i�1q � 0. We have shown that f and
g both vanish on the basis vectors of W .

Now we consider bf and bg. Let 0 ¤ i, j ¤ m�3
2

, we already showed that fp0, θiq �
fpθi, 0q � gpθi, 0q � gp0, θiq � 0. It follows that

bf pp0, θiq, p0, θjqq � fpp0, θi � θjqq.
� spq1p0, θi � θjqq.
� bspθi � θjq2.
� bspθ2iq � bspθ2jq.
� 0.

Likewise, bgpp0, θiq, p0, θjqq � bspθ2i�1q � bspθ2j�1q � 0. Similarly, we have

bf pp0, θiq, pθj, 0qq � fpθj, θiq.
� spθ2j � θi�j � bθ2jq.
� spθ2jq � spθi�jq � bspθ2jq.
� 0.

Likewise, bgpp0, θiq, pθj, 0qq � spθ2j�1q � spθi�j�1q � bspθ2j�1q � 0.
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We have

bf ppθi, 0q, pθj, 0qq � fpθi � θj, 0q.
� sppθi � θjq2q.
� spθ2i � θ2jq.
� spθ2iq � spθ2jq.
� 0.

Likewise, bgppθi, 0q, pθj, 0qq � spθ2i�1q � spθ2j � 1q � 0.

Finally, we have

bf ppθi, 0q, p0, θjqq � fpθi, θjq.
� spθ2i � θi�j � bθ2jq.
� spθ2iq � spθi�jq � bspθ2jq.
� 0.

Likewise, bgppθi, 0q, p0, θjqq � spθ2i�1q � spθi�j�1q � bspθ2j�1q � 0. This completes the
proof of (1).

We are ready to prove a version of Lemma 7.0.5 for finite fields of characteristic
2.

Lemma 7.0.8. Let k be a finite field of characteristic 2. Let n ¥ 6 be even with
n � 2 mod 4. There exist quadratic forms f, g P krX1, . . . , Xns that have the following
properties.

1. f and g both vanish on a subspace of kn of dimension n�2
2
.

2. For every λ, µ P k, not both zero, let h � λf � µg. Then bh is nondegenerate;
in particular, h is nondegenerate.

3. Every form in the pencil Pkpf, gq splits off exactly m� 1 hyperbolic planes with
a two-dimensional anisotropic binary form left over. Thus Hkpf, gq � m� 1 �
n�2
2
, where n � 2m.

4. Dkpf, gq � m� 1 � n�2
2
, where n � 2m.

Proof. Let f � s�pq1q and g � s�pθq1q be as in Lemma 7.0.7, hence q1 � X2 �
XY � bY 2 where b P ℓ. Then Lemma 7.0.7 implies property (1). Lemma 6.0.2 im-
plies property (2). To prove properties (3) and (4), we will choose a specific value for b.

We let ℘pkq denote the Artin-Schreier subgroup of k. Thus ℘pkq � ta�a2 | a P ku
and rk : ℘pkqs � 2. Having rk : ℘pkqs � 2 implies that ℘pkq is a proper subgroup of
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k. Then there exists b P k such that b R ℘pkq. Thus x2 � x � b is irreducible over
k. Since m is odd, x2 � x� b is also irreducible over ℓ (proof: suppose r is a root of
x2 � x� b. Then rkprq : ks � 2, and since m is odd, this implies that kprq � ℓ, hence
x2 � x� b has no roots in ℓ.)

Let h � λf � µg. Since bh is nondegenerate, we can take the Arf invariant of h.
We will show that Arfphq � b R ℘pkq, which will prove (3). Observe

Arfpλf � µgq � Arfps�ppλ� µθqq1qq.
� trpArfppλ� µθqq1qq.
� trpArfppλ� µθqX2 � pλ� µθqXY � pλ� µθqbY 2qq.

� tr

�pλ� µθq2b
pλ� µθq2



.

� trpbq.
� mb.

� b.

In the last equality, we used the fact that since chpkq � 2, and m is odd, m � 1 in
the field k. Because b R ℘pkq, we get that for every λ, µ P k, not both zero, λf � µg
is an orthogonal sum of m � 1 hyperbolic planes and an anisotropic binary form of
dimension 2. This proves (3).

Finally, to prove (4), note that if Dkpf, gq � n
2
, then every form in the pencil

Pkpf, gq would vanish on a subspace of dimension n
2
. From (2), we know that there is a

form in the pencil Pkpf, gq that is nondegenerate (in fact every form is nondegenerate.)
Theorem B.1.1 would then imply that there is a form in the pencil that splits off n

2

hyperbolic planes, which would be contrary to property (3).

Lemma 7.0.9. Let k be a finite field of characteristic not 2. There exist quadratic
forms f, g P krx1, x2, x3, x4s such that the following conditions hold.

1. λf � µg has rank 4 for every λ, µ P k, not both zero.

2. If q P Pkpf, gq, then there is an invertible change of variable over k so that

q � x1x2 � npx3, x4q,

where npx3, x4q is anisotropic of rank 2 over k. Thus Hkpf, gq � 1.

3. Dkpf, gq � 0.

Proof. Let k � Fq be the finite field with q elements, where q is odd since charpkq � 2.
Let d P F�q be a nonsquare. Then F�q � pF�q q2 Y dpF�q q2. We can write d � s2 � t2,
where s, t P Fq. Since d is a nonsquare, it follows that s, t are both nonzero.
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Let

f � 2x1x2 � sx2
3 � 2tx3x4 � sx2

4

g � x2
1 � dx2

2 � dx2
3 � dx2

4.

Then

detpλf � µgq � det

�
µ λ
λ dµ



det

�
dµ� sλ tλ

tλ dµ� sλ



� pdµ2 � λ2qpd2µ2 � s2λ2 � t2λ2q
� p�1qpλ2 � dµ2qpd2µ2 � dλ2q
� p�1qpλ2 � dµ2qp�dqpλ2 � dµ2q
� dpλ2 � dµ2q2.

This calculation shows that for every λ, µ P Fq, not both zero, λf � µg has rank
4 and nonsquare determinant d because λ2 � dµ2 � 0 if λ, µ are not both zero.

To prove (3), let q P PFqpf, gq. Then q has rank 4, and by Chevalley-Warning, q
is isotropic. Thus q splits off at least 1 hyperbolic plane:

q � x1x2 � npx3, x4q,

where n � npx3, x4q has rank 2. Note detpnq � �detpqq P �dpFqq�. This implies that
n is anisotropic. This proves (3).

By Theorem B.1.1, there are no forms in Pkpf, gq that vanish on a 2-dimensional
space over k, hence Dkpf, gq � 2. Theorem 2.2.12 implies that Dkpf, gq � 1. Thus
Dkpf, gq � 0.

Lemma 7.0.10. Let k be a finite field of characteristic 2. There exist quadratic forms
f, g P krx1, x2, x3, x4s such that the following conditions hold.

1. λf � µg has rank 4 for every λ, µ P k, not both zero.

2. If q P Pkpf, gq, then there is an invertible change of variable over k so that

q � x1x2 � npx3, x4q,

where npx3, x4q is anisotropic of rank 2 over k. Thus Hkpf, gq � 1.

3. Dkpf, gq � 0.

Proof. Let ℓ � kpθq be an extension of k of degree 2. Thus rℓ : ks � 2. Let s : ℓÑ k
be a nonzero k-linear map. Let β P ℓ such that β R ℘pℓq. Consider the quadratic form
qpx, yq � x2 � xy � βy2 P ℓrx, ys. Note that detpqq � �1 � 0, hence the associated
symmetric bilinear form bq is nondegenerate. Take f � s�pqq and g � s�pθqq. Then

53



Lemma 6.0.2 implies that for every λ, µ P k, not both zero, the form h � λf � µg is
nondegenerate; in particular, bh is nondegenerate. This proves (1). We can take the
Arf invariant of h. Observe that

Arfpλf � µgq � Arfps�ppλ� µθqqqq.
� trpArfppλ� µθqqqq.
� trpArfppλ� µθqx2 � pλ� µθqxy � pλ� µθqβy2qq.

� tr

�pλ� µθq2β
pλ� µθq2



.

� trpβq.

Lemma F.2.1 implies that since β R ℘pℓq, we get trpβq R ℘pkq. This, combined with
the fact that λf �µg has rank 4, implies that every form in the pencil PKpf, gq splits
off exactly 1 hyperbolic plane. This implies (2).

According to Theorem 2.2.12, if Dkpf, gq � 1, there would be a form in the pencil
Pkpf, gq that splits off 2 hyperbolic planes, a contradiction. Likewise, Theorem B.1.1
implies that if Dkpf, gq � 2, then there would be a form in the pencil Pkpf, gq that
splits off 2 hyperbolic planes, a contradiction. Thus Dkpf, gq � 0, which proves
(3).

For convienience, we combine Lemmas 7.0.9 and 7.0.10 to get the following.

Lemma 7.0.11. Let k be a finite field. There exist quadratic forms f, g P krx1, x2, x3, x4s
such that the following conditions hold.

1. λf � µg has rank 4 for every λ, µ P k, not both zero.

2. If q P Pkpf, gq, then there is an invertible change of variable over k so that

q � x1x2 � npx3, x4q,

where npx3, x4q is anisotropic of rank 2 over k. Thus Hkpf, gq � 1.

3. Dkpf, gq � 0.

Proof. Lemma 7.0.9 proves the case where charpkq � 2, and Lemma 7.0.10 proves the
case where charpkq � 2.

Lemma 7.0.12. Let k be a finite field. Let n ¥ 4 be even with n � 6. There exist
quadratic forms f, g P krx1, . . . , xns such that the following conditions hold.

1. Dkpf, gq � n�4
2
.

2. Every form in Pkpf, gq has order n and splits off exactly n�2
2

hyperbolic planes
over k. Thus Hkpf, gq � n�2

2
.
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Proof. Let q3, q4 P krX1, . . . , X4s be as in Lemma 7.0.11. Since n� 4 � 2, we can let
q5, q6 P krX5, . . . , Xns be as in Lemma 7.0.1. Let q1, q2 P krX1, . . . , Xns be given by

q1 � q3pX1, . . . , X4q � q5pX5, . . . , Xnq.
q2 � q4pX1, . . . , X4q � q6pX5, . . . , Xnq.

By Lemma 7.0.11, every form in Pkpq3, q4q has order 4 and splits off exactly 1 hyper-
bolic plane. By Lemma 7.0.1, every form in Pkpq5, q6q has order n � 4 and splits off
exactly n�4

2
hyperbolic planes. Thus, every form in Pkpq1, q2q has order n and splits

off eactly n�2
2

hyperbolic planes.

We will show that Dkpq1, q2q � n�4
2
. Note that rankpq1q � n. By Lemma 2.2.9,

Dkpq1, q2q � Hkptqpq1� tq2q. To determine Hkptqpq1� tq2q, note that since Dkpq3, q4q �
0, Amer’s Theorem (Theorem 2.2.8) implies that q3� tq4 is anisotropic over kptq. On
the other hand, we have Dkpq5, q6q � n�4

2
, and q5 has rank n�4 over k. Thus, q5� tq6

has rank n�4 over kptq and vanishes on a subspace over kptq of dimension n�4
2
. Thus,

Theorem B.1.1 implies that q5� tq6 splits off
n�4
2

hyperbolic planes over kptq. Hence
q1� tq2 splits off exactly n�4

2
hyperbolic planes over kptq and so Dkpq1, q2q � n�4

2
.

Lemma 7.0.13. Let k be a finite field. Let n ¥ 6 be even with n � 8. There exist
quadratic forms f, g P krx1, . . . , xns such that the following conditions hold.

1. Dkpf, gq � n�4
2
.

2. Hkpf, gq � Hkpfq � n
2
.

3. For every q P Pkpf, gq, we have Dkpqq ¤ n
2
.

Proof. Note that n � 2 ¥ 4 and n � 2 � 6. Thus, by Lemma 7.0.12, there exist
quadratic forms q1, q2 P krx1, . . . , xn�2s such that Dkpq1, q2q � n�6

2
, and every form in

Pkpq1, q2q has order n�2 and splits off exactly n�4
2

hyperbolic planes. Let Npxn�1, xnq
be an anisotropic quadratic form over k. Let

f � q1px1, . . . , xn�2q �Npxn�1, xnq.
g � q2px1, . . . , xn�2q.

By a change of variables, we can assume q1 � x1x2�� � ��xn�5xn�4�N 1pxn�3, xn�2q,
where N 1 is anisotropic over k. By Lemma B.2.6, N 1pxn�3, xn�2q�Npxn�1, xnq splits
off 2 hyperbolic planes. It follows that Hkpf, gq � Hkpfq � n

2
, which proves (2).

Observe that every form in Pkpf, gq either has order n and splits off n
2
hyperbolic

planes or has order n� 2 and splits off exactly n�4
2

hyperbolic planes. It follows that
every form in Pkpf, gq vanishes on a subspace in kn of dimension at most n

2
, which

proves (3).

It remains to prove that Dkpf, gq � n�4
2
. By Lemma B.2.13, Dkpf, gq ¥ n�4

2
.

For sake of contradiction, assume that Dkpf, gq ¥ n�2
2
. Then tf, gu vanish on a
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subspace U in kn of dimension n�2
2
. Suppose U � spankpv1, . . . , vdq, where d � n�2

2

and v1, . . . , vd P kn are linearly independent. For each 1 ¤ i ¤ n, let wi denote the
projection of vi onto the first n� 2 coordinates, hence wi P kn�2.

Suppose w1, . . . , wd are linearly dependent. Then there exist c1, . . . , cd P k, not all
zero, such that

°d
i�1 ciwi � 0. Let v � °d

i�1 civi. Then v � p0, . . . , 0, a, bq for some
a, b P k. Since fpvq � 0, and N is anisotropic, we deduce that a � b � 0. Thus v � 0,
which is contrary to v1, . . . , vd being linearly independent.

Therefore, w1, . . . , wd are linearly independent. Note that g vanishes on the sub-
space spankpw1, . . . , wdq. Thus g vanishes on a subspace in kn�2 of dimension d � n�2

2
.

Then Theorem B.1.1 implies that g splits off n�2
2

hyperbolic planes, a contradiction.
We conclude that Dkpf, gq � n�4

2
, as desired.

Results in this chapter shed some light on the relationship between Dkpf, gq and
Hkpf, gq for pairs of quadratic forms tf, gu defined over a finite field k. It could be of
interest to investigate this relationship further. It is not exactly clear what additional
properties one should require of the pair tf, gu. Should one require the pair to be
nonsingular, as we have done for the p-adic field case? This could be addressed in a
future project.

Copyright© John R. Hall 2024
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Chapter 8 Existence of Type A and B Pairs

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We will use the same notation given at the beginning of section 2.3.

In this chapter, we will prove the existence of various type A and type B pairs.
Refer to Definitions 5.0.1 and 5.0.2 for the definitions of type A and type B pairs.
The strategy is to start with a pair of forms over the residue field and then lift the
pair up to the ring of integers.

8.1 Odd Number of Variables

Lemma 8.1.1. Let m ¥ 0 and n � 2m � 1. There exist quadratic forms F,G P
OKrX1, . . . , Xns that satisfy the following properties.

1. The pair tF,Gu is nonsingular; moreover, detpλF � µGq is an irreducible form
over K of degree n in λ, µ.

2. DKpF,Gq � DkpF ,Gq � n�1
2
.

3. tF,Gu vanish on spanKpe1, . . . , en�1
2
q.

4. HKpF,Gq � HkpF ,Gq � n�1
2
; moreover, for every λ, µ P OK, not both divisible

by π, there is an invertible linear change of variable over OK so that

λF � µG � X1X2 � � � � �Xn�2Xn�1 � aX2
n,

where a P OK is a unit.

5. Every form in PkpF ,Gq has order n.

Proof. Since k is a finite field, there exists a finite simple extension of k of degree
n,. Suppose ℓ � kpθq is a finite simple extension of k and let ppxq P krxs denote the
minimal polynomial of θ. Thus ppxq is monic and irreducible over k of degree n. Let
P pxq P OKrxs be a lift of ppxq such that 0 lifts to 0 and 1 lifts to 1. Lemma 4.0.1
implies that P pxq is irreducible over K. Let P pλ, µq denote the homogenization of
P pxq; for instance, say P pλ, µq � λnP pλ�1µq. Then P pλ, µq P OKrλ, µs is irreducible
over K, and P pλ, µq is homogeneous of degree n in λ, µ. It follows that P pλ, µq has
the following shape:

P pλ, µq � a1�mλµ
2m � b1�mµ

2m�1

� a2�mλ
3µ2m�2 � b2�mλ

2µ2m�1

...

� a2mλ
2m�1µ2 � b2mλ

2m�2µ3

� a2m�1λ
2m�1 � b2m�1λ

2mµ,
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where each ai, bi P OK for 1 �m ¤ i ¤ 2m � 1. Let F,G P OKrX1, . . . , Xns be
the quadratic forms given by

F � X1Xm�1 �X2Xm�2 � � � � �XmX2m �
2m�1¸
i�m�1

aiX
2
i .

G � X1Xm�2 �X2Xm�3 � � � � �XmX2m�1 �
2m�1¸
i�m�1

biX
2
i .

(8.1.1)

Theorem 3.0.1 implies that detpλF � µGq � 2p�1qmP pλ, µq. Since P pλ, µq is
irreducible over K, and charpKq � 2, we deduce that detpλF � µGq has no repeated
linear factors. Thus Theorem 2.1.27 implies that tF,Gu is a nonsingular pair, which
proves (1).

Equation 8.1.1 implies that F and G both vanish on spanKpe1, . . . , emq � Kn,
where m � n�1

2
. Hence DKpF,Gq ¥ n�1

2
. Since tF,Gu is a nonsingular pair, Lemma

2.3.11 implies DKpF,Gq ¤ n�1
2
. Thus DKpF,Gq � n�1

2
, which proves (2).

To prove (3), let λ, µ P OK , not both divisible by π.

Claim: λF � µG is nondegenerate; i.e., has order n.

First, we explain why (3) follows from the claim. Observe that if λF � µG is
nondegenerate, then there is an invertible linear change of variable over k so that

λF � µG � X1X2 � � � � �Xn�2Xn�1 � a1X2
n,

where a1 P k is nonzero. Lemma A.1.2 then implies (3).

To prove the claim, note that since ppxq is irreducible over k, we see that ppxq
has no roots over k. It follows that π � P pλ, µq. For charpkq � 2, we deduce that
detpλF � µGq � 0, hence λF � µG is nondegenerate. For charpkq � 2, we see that
det{2pλF � µGq � 0, hence λF � µG is nondegenerate by [15, Prop 3.1, p.397].

Since PkpF ,Gq is nondegenerate, we deduce that every form in PkpF ,Gq has order
n, which proves (4).

Lemma 8.1.2. Let n ¥ 1 be odd. There exists a type A pair of quadratic forms in n
variables with d � h � n�1

2
.

Proof. The pair tF,Gu from Lemma 8.1.1 satisfies Definition 5.0.1 with d � h �
n�1
2
.

Lemma 8.1.3. There exist quadratic forms J1, J2 P OKrX, Y, Zs that satisfy the
following properties.

1. DKpJ1, J2q � DkpJ1, J2q � 0.
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2. For λ, µ P OK, if λ is a unit, then there is an invertible linear change of variables
over OK so that

λJ1 � µJ2 � XY � eZ2,

where e is some unit in OK.

3. J2 P OKrX, Y s and J2 is anisotropic of rank 2 over k.

4. For each q P PkpJ1, J2q, we have Dkpqq � 1.

Proof. Note that properties (2) and (3) imply (4).

Note that by Lemma 2.3.16, DKpJ1, J2q ¤ DkpJ1, J2q. So to prove (1), it is suffi-
cient to show that DkpJ1, J2q � 0.

First, consider the case where charpkq � 2. Let d P k so that d � 0 and d is a
nonsquare in k. Let q1pX, Y q � XY and q2pX, Y q � X2 � dY 2. Let λ, µ P k, not
both zero. Observe that λq1 � µq2 � µX2 � λXY � dµY 2; therefore, the matrix of
q1 � µq2 is �

2µ λ
λ 2dµ

�
.

It follows that detpλq1 � µq2q � 4dµ2 � λ2. Since d is a nonsquare in k, we see that
detpq1 � µq2q is an anisotropic quadratic form in the variables λ, µ over k. It follows
that every form in the pencil Pkpq1, q2q has rank 2. Since q1 and q2 do not share any
common factors, Lemma B.2.10 implies that there is a form q12pX, Y q P Pkpq1, q2q
such that q12pX, Y q is anisotropic of rank 2 over k. There exists q11 P Pkpq1, q2q such
that Pkpq1, q2q � Pkpq11, q12q.

Let J1pX, Y, Zq � Q1
1pX, Y q � Z2 and J2pX, Y, Zq � Q1

2pX, Y q, where Q1
1 and

Q1
2 are lifts of q11 and q12 to OKrX, Y s, respectively. Since Q1

2 is anisotropic of rank
2, we see that DkpJ1, J2q � 0. Since every form in PkpQ1

1, Q
1
2q has rank 2 over k,

we conclude that every form in PkpJ1, J2q has rank 2 or 3 over k and that J2 is the
only form in PkpJ1, J2q that has rank 2. Thus, if λ, µ P OK , with λ a unit, then
rankpλJ1 � µJ2q � 3. By Chevalley-Warning, this form is isotropic. Then Theorem
B.1.1 implies that λJ1 � µJ2 � XY � e1Z2, where e1 P k is nonzero. Lemma A.1.2
gives us λJ1 � µJ2 � XY � eZ2, where e is a unit.

Now, suppose charpkq � 2. Let c P k be chosen so that c R ℘pkq. Let j1, j2 P
krX, Y, Zs be the quadratic forms

j1 � XY �X2 � c3Z2,

and
j2 � Y Z � Y 2 � cZ2.

Let c1 P OK be so that c1 � c. Take

J1 � XY �X2 � pc1q3Z2,
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and
J2 � Y Z � Y 2 � c1Z2.

Thus J1 � j1 and J2 � j2. Notice that Y Z � Y 2 � cZ2 is anisotropic of rank 2
since its Arf invariant is c. Thus, if j2px, y, zq � 0, then y � z � 0. It follows that
Dkpj1, j2q � 0.

Let λ, µ P k, not both zero. Let j � λj1 � µj2. According to [15, Prop 3.1, p.
397], if the half-determinant of j is nonzero, then j is nondegenerate (that is, j has
no singular zeros). We proceed by showing that if λ � 0, then the half-determinant
of j is nonzero. Let λ1, µ1 P OK be lifts of λ, µ, respectively. We have

det{2pλj1 � µj2q � 1

2
detpλ1J1 � µ1J2q.

Notice

λ1J1 � µ1J2 � λ1XY � λ1X2 � µ1Y Z � µ1Y 2 � pλ1pc1q3 � c1µ1qZ2.

Then the matrix of λ1J1 � µ1J2 is��2λ1 λ1 0
λ1 2µ1 µ1

0 µ1 2ppc1q3λ1 � c1µ1q

�� .

It follows that

detpλ1J1 � µ1J2q � 2λ1
�
4µ1ppc1q3λ1 � c1µ1q � pµ1q2



� 2pλ1q2

�
pc1q3λ1 � c1µ1



.

1

2
detpλ1J1 � µ1J2q � λ1

�
4µ1ppc1q3λ1 � c1µ1q � pµ1q2



� pλ1q2

�
pc1q3λ1 � c1µ1



.

Therefore,

1

2
detpλ1J1 � µ1J2q � λµ2 � λ2pc3λ� cµq.

� λ

�
µ2 � c3λ2 � cλµ



.

The Arf invariant of µ2 � c3λ2 � cλµ is c3

c2
� c R ℘pkq; therefore, µ2 � c3λ2 � cλµ is

an anisotropic quadratic form in the variables λ, µ over k. It follows that the half-
determinant of j is zero if and only if λ � 0. Thus, if λ, µ P OK , with λ a unit, then
λJ1 � µJ2 is nondegenerate. By Chevalley-Warning, λJ1 � µJ2 is isotropic, hence
this form vanishes on a one-dimensional subspace U over k. Every nonzero element
of U is a nonsingular zero, hence Theorem B.1.1 implies that λJ1 � µJ2 splits off 1
hyperbolic plane, hence λJ1 � µJ2 � XY � e1Z2, where e1 P k. Since this form is
nondegenerate, e1 � 0. Lemma A.1.2 then gives us λJ1 � µJ2 � XY � eZ2, where e
is a unit. This completes the proof.
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Lemma 8.1.4. There exists a type B pair of quadratic forms in n � 3 variables with
d � 0 and h � 1.

Proof. The pair tJ1, J2u from Lemma 8.1.3 satifies Definition 5.0.2 with n � 3, d � 0,
and h � 1.

8.2 Even Number of Variables

Lemma 8.2.1. Let n ¥ 2 be even. There exists a type B pair of quadratic forms in
n variables with d � n�2

2
and h � n

2
.

That is, for n ¥ 2 even, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns that
satisfy the following properties.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � n�2
2
.

3. tQ1, Q2u vanish on spanKpe1, . . . , en�2
2
q.

4. Hkpq1, q2q � Hkpq1q � n
2
.

5. For every q P Pkpq1, q2q, Dkpqq ¤ n
2
.

Proof. Let q1, q2 P krX1, . . . , Xns be as in Lemma 7.0.2. By Lemma 4.0.6, there
exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns such that Qi � qi, tQ1, Q2u is non-
singular, and tQ1, Q2u vanish on spanKpe1, . . . , en�2

2
q. Hence DKpQ1, Q2q ¥ n�2

2
.

Since tQ1, Q2u is nonsingular, Theorem 2.2.11 implies that DKpQ1, Q2q   n
2
. Thus

DKpQ1, Q2q � Dkpq1, q2q � n�2
2
. Properties (4) and (5) follow from Lemma 7.0.2.

Lemma 8.2.2. The pair Qi � Qipn,A, n�2
2
, n�2

2
q exist for n ¥ 6 even, n � 8. That

is, for n ¥ 6 even with n � 8, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns
that satisfy the following properties.

1. tQ1, Q2u is a nonsingular pair over K.

2. DKpQ1, Q2q � DkpQ1, Q2q � n�2
2
.

3. tQ1, Q2u vanish on spanKpe1, . . . , en�2
2
q.

4. For every λ, µ P OK, not both divisible by π, there is an invertible linear change
of variable over OK so that

λQ1 � µQ2 � X1X2 � � � � �Xn�3Xn�2 �NpXn�1, Xnq,

where N is anisotropic of over k.
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Proof. Let q1, q2 P krX1, . . . , Xns be as Lemma 7.0.3. Thus Dkpq1, q2q � n�2
2

and
every form in Pkpq1, q2q has rank n and splits off exactly n�2

2
hyperbolic planes. By

Lemma 4.0.6 with d � n�2
2
, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns such

that Qi � qi, tQ1, Q2u is nonsingular, and tQ1, Q2u vanish on spanKpe1, . . . , en�2
2
q.

Thus DKpQ1, Q2q ¥ n�2
2
.

Since tQ1, Q2u is nonsingular, Theorem 2.2.11 implies thatDKpQ1, Q2q   n
2
. Thus

DKpQ1, Q2q � n�2
2
� DKpq1, q2q.

Since every form in Pkpq1, q2q has rank n and splits off exactly n�2
2

hyperbolic
planes, Lemma A.1.2 implies that for every λ, µ P OK , not both divisible by π, there
is an invertible linear change of variables over OK so that

λQ1 � µQ2 � X1X2 � � � � �Xn�3Xn�2 �NpXn�1, Xnq,

where N P OKrXn�1, Xns is a quadratic form such that N is anisotropic over k.
Therefore, the pair tQ1, Q2u is type A with d � h � n�2

2
.

Lemma 8.2.3. Let n ¥ 4 be even with n � 6. There exists a type A pair of quadratic
forms in n variables with d � n�4

2
and h � n�2

2
.

That is, for n ¥ 4 even, n � 6, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns
that satisfy the following properties.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � n�4
2
.

3. tQ1, Q2u vanish on spanKpe1, . . . , en�4
2
q.

4. For every λ, µ P OK, not both divisible by π, there exists an invertible linear
change of variables over OK so that

λQ1 � µQ2 � X1X2 �X3X4 � � � � �Xn�3Xn�2 �NpXn�1, Xnq,

where N is anisotropic over k.

Proof. Since n ¥ 4 and n � 6, Lemma 7.0.12 implies that there exist quadratic forms
q1, q2 P krX1, . . . , Xns such that Dkpq1, q2q � n�4

2
, and every form in Pkpq1, q2q has

order n and splits off exactly n�2
2

hyperbolic planes. By Lemma 4.0.6, there exist
quadratic forms Q1, Q2 P OKrX1, . . . , Xns that satisfy the following properties.

1. Q1 � q1 and Q2 � q2.

2. tQ1, Q2u is nonsingular.
3. DKpQ1, Q2q ¥ n�4

2
; in particular, tQ1, Q2u vanish on spanKpe1, . . . , en�4

2
q.
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By Lemma 2.3.16, DKpQ1, Q2q ¤ DkpQ1, Q2q � n�4
2
. Thus DKpQ1, Q2q �

DKpQ1, Q2q � n�4
2
. Since every form in Pkpq1, q2q has order n and splits off ex-

actly n�2
2

hyperbolic planes over k, statement (2) of Lemma A.1.2 implies that for
every λ, µ P OK , not both divisible by π, there exists an invertible linear change of
variables over OK so that

λQ1 � µQ2 � X1X2 �X3X4 � � � � �Xn�3Xn�2 �NpXn�1, Xnq,
where N is anisotropic over k.

Lemma 8.2.4. Let n ¥ 6 be even with n � 8. There exists a type B pair of quadratic
forms in n variables with d � n�4

2
and h � n

2
.

That is, for n ¥ 6 even with n � 8, there exist quadratic forms Q1, Q2 P
OKrX1, . . . , Xns that satisfy the following properties.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � n�4
2
.

3. tQ1, Q2u vanish on spanKpe1, . . . , en�4
2
q.

4. HkpQ1, Q2q � HkpQ1q � n
2
.

5. For every q P PkpQ1, Q2q, Dkpqq ¤ n
2
.

Proof. Since n ¥ 6 and n � 8, Lemma 7.0.13 implies that there exist quadratic forms
q1, q2 P krX1, . . . , Xns with the following properties.

(i) Dkpq1, q2q � n�4
2
.

(ii) Hkpq1, q2q � Hkpq1q � n
2
.

(iii) For every q P Pkpq1, q2q, Dkpqq ¤ n
2
.

By Lemma 4.0.6, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xns such that
Qi � qi, 1 ¤ i ¤ 2, tQ1, Q2u is nonsingular, and tQ1, Q2u vanish on the subspace
spanKpe1, . . . , en�4

2
q. Thus DKpQ1, Q2q ¥ n�4

2
. By Lemma 2.3.16, DKpQ1, Q2q ¤

DkpQ1, Q2q � n�4
2
. Thus DKpQ1, Q2q � n�4

2
.

Lemma 8.2.5. There exists a type B pair of quadratic forms in n � 4 variables with
d � 0 and h � 2.

That is, there exist quadratic forms Q1, Q2 P OKrX1, . . . , X4s that satisfy the
following properties.

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � DkpQ1, Q2q � 0.
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3. HkpQ1, Q2q � HkpQ1q � 2.

4. For every q P PkpQ1, Q2q, Dkpqq ¤ 2.

Proof. Let npX, Y q P krX, Y s be an anisotropic quadratic form over k. Let q1 �
npX1, X2q � npX3, X4q and q2 � npX1, X2q. If px1, x2, x3, x4q is a common zero of
q1 and q2 over k, then q2pxq � npx1, x2q � 0 implies that x1 � x2 � 0. Then
q1pxq � npx3, x4q � 0 implies that x3 � x4 � 0. Thus Dkpq1, q2q � 0.

By Lemma B.2.6, q1 splits off 2 hyperbolic planes. Thus Hkpq1, q2q � Hkpq1q � 2.
To prove (4), let a, b P k, not both zero, and let q � aq1 � bq2. If a � �b, then
q � anpX3, X4q. Since n is ansotropic, the form q � anpX3, X4q can not vanish on
a 3-dimensional subapce in k4. If a � �b, then q � pa � bqnpX1, X2q � anpX3, X4q.
If a � 0, then q has order 4, in which case q can not vanish on a subspace in k4 of
dimension 3. If a � 0, then b � 0 and q � bnpX1, X2q. As before, q can not vanish
on a subsapce in k4 of dimension 3. Thus, Dkpqq ¤ 2 for all q P Pkpq1, q2q.

Lemma 4.0.6 implies that there exist quadratic forms Q1, Q2 P OKrX1, . . . , X4s
such that Qi � qi and tQ1, Q2u is nonsingular. By Lemma 2.3.16, DKpQ1, Q2q ¤
Dkpq1, q2q � 0, hence DKpQ1, Q2q � Dkpq1, q2q � 0.

Copyright© John R. Hall 2024
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Chapter 9 n even

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We will use the same notation given at the beginning of section 2.3.

9.1 D � n�2
2

Theorem 9.1.1. Let n ¥ 2 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�2
2
.

3. HKpf, gq � n
2
.

Proof. Lemma 8.2.1 provides an example.

Theorem 9.1.2. Let n ¥ 6 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�2
2
.

3. HKpf, gq � n�2
2
.

Theorem 2.2.14 implies that there are no examples of quadratic forms satisfying these
conditions for n � 2. Theorem 2.3.15 implies that there are no examples of quadratic
forms satisfying these conditions for n � 4.

Proof. Lemma 8.2.2 provides an example when n ¥ 6 with n � 8.

Suppose n � 8. By Lemma 8.1.2, there exists a type A pair Qi � Qip5,A, 2, 2q,
1 ¤ i ¤ 2. Likewise, by Lemma 8.1.2, there exists a type A pair Q1

i � Q1
ip3,A, 1, 1q,

1 ¤ i ¤ 2.

Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. Then Lemma 5.0.6 implies that we
can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular,

DKpf, gq � 2� 1 � 3, and HKpf, gq � 2� 1 � 3.
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9.2 D � n�4
2

Theorem 9.2.1. Let n ¥ 4 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�4
2
.

3. HKpf, gq � n
2
.

Proof. By Lemma 8.2.1, there exist type B pairs Qi � Qipn� 2,B, n�4
2
, n�2

2
q, 1 ¤ i ¤

2, and Q1
i � Q1

ip2,B, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. Lemma
5.0.7 implies that the coefficients of Q1

1 and Q1
2 can be adjusted modulo π so that

tf, gu is nonsingular, DKpf, gq � n�4
2
� 1 � n�2

2
, and HKpf, gq � n�2

2
� 1 � n

2
.

Theorem 9.2.2. Let n ¥ 4 be even with n � 6, 10. There exists a pair of quadratic
forms tf, gu over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�4
2
.

3. HKpf, gq � n�2
2
.

Proof. If n � 4, then Lemma 8.2.3 provides an example.

Assume n ¥ 8 and n � 10. Thus n� 2 ¥ 6 and n� 2 � 8. By Lemma 8.2.2, there
exists a type A pair Qi � Qipn � 2,A, n�4

2
, n�4

2
q, 1 ¤ i ¤ 2. By Lemma 8.2.1, there

exists a type B pair Q1
i � Q1

ip2,B, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K

πQ1
2. By Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that

tf, gu is nonsingular, DKpf, gq � n�4
2
� 0 � n�4

2
, and HKpf, gq � n�4

2
� 1 � n�2

2
.

Theorem 9.2.3. Let n � 6. There exists a pair of quadratic forms tf, gu over K in
n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�4
2
� 1.

3. HKpf, gq � n�2
2
� 2.

Proof. By Lemma 8.1.2, there exists a type A pair Qi � Qip3,A, 1, 1q, 1 ¤ i ¤ 2.
By Lemma 8.1.4, there exists a type B pair Q1

i � Q1
ip3,B, 0, 1q, 1 ¤ i ¤ 2. Let

f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma 5.0.6, we can adjust the coefficients
of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular, DKpf, gq � 1 � 0 � 1, and

HKpf, gq � 1� 1 � 2.

Theorem 9.2.4. Let n � 10. There exists a pair of quadratic forms tf, gu over K
in n variables with the following properties:
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1. tf, gu is nonsingular.

2. DKpf, gq � n�4
2
� 3.

3. HKpf, gq � n�2
2
� 4.

Proof. By Lemma 8.2.2, there exists a type A pair Qi � Qip6,A, 2, 2q, 1 ¤ i ¤ 2.
By Lemma 8.2.1, there exists a type B pair Q1

i � Q1
ip4,B, 1, 2q, 1 ¤ i ¤ 2. Let

f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma 5.0.6, we can adjust the coefficients
of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular, DKpf, gq � 2 � 1 � 3, and

HKpf, gq � 2� 2 � 4.

Theorem 9.2.5. Let n ¥ 12 be even with n � 14. There exists a pair of quadratic
forms tf, gu over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�4
2
.

3. HKpf, gq � n�4
2
.

Proof. Note that n� 6 ¥ 6 and n� 6 � 8. Thus, by Lemma 8.2.2, there exists a type
A pair Qi � Qipn � 6,A, n�8

2
, n�8

2
q, 1 ¤ i ¤ 2. Also, by Lemma 8.2.2, there exists a

type A pair Q1
i � Q1

ip6,A, 2, 2q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2.
By Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu

is nonsingular, DKpf, gq � n�8
2
� 2 � n�4

2
, and HKpf, gq � n�8

2
� 2 � n�4

2
.

9.2.1 The Case n � 14

In this section, we will prove Theorem 9.2.5 for n � 14. We will do this by construct-
ing a family of examples that satisfy Theorem 9.2.5 for n ¥ 14, n � 16 (see Theorem
9.2.10).

Take t ¥ 1. Suppose f1, g1 P krX1, . . . , Xts are quadratic forms such that every
form in Pkpf1, g1q has order t and splits off Hkpf1, g1q hyperbolic planes over k. Let
F1, G1 P OKrX1, . . . , Xts be quadratic forms such that F1 � f1 and G1 � g1. Let
N1, N2 P OKrX, Y s be quadratic forms such that N1 and N2 are anisotropic over k.
Thus each Ni has rank 2 over k, hence each Ni has rank 2 over K.

With the above notation, we will prove the following lemma.

Lemma 9.2.6. Let Q1, Q2 be quadratic forms over OK in t� 8 variables such that

Q1 � F1pX1, . . . , Xtq � Y2Y1 � Y5Y4 � Y7Y6 � π3N1pY3, Y8q mod π4,

Q2 � G1pX1, . . . , Xtq � Y2Y3 � Y5Y6 � Y7Y8 � πN2pY1, Y4q mod π4.
(9.2.1)

Then HKpQ1, Q2q � Hkpf1, g1q�3. Further, every form in PKpQ1, Q2q has rank t�8
and splits off exactly Hkpf1, g1q � 3 hyperbolic planes.
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Proof. Let h � Hkpf1, g1q. Let λ, µ P K, not both zero. We want to show that
λQ1�µQ2 has rank t� 8 and splits off exactly h� 3 hyperbolic planes. By multiply-
ing λQ1 � µQ2 by a sufficient power of π, we can assume that λ, µ P OK , not both
divisible by π.

Case 1. Assume µ is a unit. By multiplying λQ1�µQ2 by µ�1, it is sufficient to
consider Q � λ1Q1 �Q2, where λ1 � λµ�1. Observe that

Q � λ1F1 �G1 � Y2pλ1Y1 � Y3q � Y5pλ1Y4 � Y6q � Y7pλ1Y6 � Y8q
� λ1π3N1pY3, Y8q � πN2pY1, Y4q mod π4.

Since λ1F1 �G1 has order t and splits off exactly h hyperbolic planes, Lemma A.1.2
implies that there is an invertible linear change of variables over OK involving the
variables X1, . . . , Xt so that

λ1F1 �G1 � X1X2 � � � � �X2h�1X2h �GpX2h�1, . . . , Xtq
where G is anisotropic. Thus

Q � X1X2 � � � � �X2h�1X2h �GpX2h�1, . . . , Xtq
� Y2pλ1Y1 � Y3q � Y5pλ1Y4 � Y6q � Y7pλ1Y6 � Y8q
� λ1π3N1pY3, Y8q � πN2pY1, Y4q mod π4.

Applying the change of variables given by

Z3 � λ1Y1 � Y3

Z6 � λ1Y4 � Y6

Z8 � λ1Y6 � Y8

Zi � Yi i � 3, 6, 8

gives us

Q � X1X2 � � � � �X2h�1X2h �GpX2h�1, . . . , Xtq
� Z2Z3 � Z5Z6 � Z7Z8

� λ1π3N1pZ3 � λ1Z1, Z8 � λ1Z6 � pλ1q2Z4q � πN2pZ1, Z4q mod π4.

Thus

Q � X1X2 � � � � �X2h�1X2h �GpX2h�1, . . . , Xtq
� Z2Z3 � Z5Z6 � Z7Z8 � πN2pZ1, Z4q mod π2.

Lemma A.1.2 implies that there is an invertible linear change of variables over OK

so that

Q � X1X2 � � � � �X2h�1X2h

� Z2Z3 � Z5Z6 � Z7Z8 �Q0pX2h�1, . . . , Xt, Z1, Z4q,
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where

Q0pX2h�1, . . . , Xt, Z1, Z4q � GpX2h�1, . . . , Xtq � πN2pZ1, Z4q mod π2.

Since G and N2 are anisotropic over k, Lemma 2.3.1 implies that Q0 is anisotropic
over K, in which case Q has rank t� 8 and splits off exactly h� 3 hyperbolic planes.

Case 2. Assume π � µ. Then λ is a unit. Write µ � πd for some d P OK . By
multiplying λQ1 � µQ2 by λ�1, it is sufficient to consider Q1 � Q1 � πµ1Q2, where
µ1 � λ�1d. Observe that

Q1 � F1 � πµ1G1 � Y2pY1 � πµ1Y3q � Y5pY4 � πµ1Y6q � Y7pY6 � πµ1Y8q
� π3N1pY3, Y8q � π2µ1N2pY1, Y4q mod π4.

Since F1 � πµ1G1 has order t and splits off exactly h hyperbolic planes over k, Lemma
A.1.2 implies that there is an invertible linear change of variables over OK involving
X1, . . . , Xt so that

F1 � πµ1G1 � X1X2 � � � � �X2h�1X2h �G1pX2h�1, . . . , Xhq

where G1 is anisotropic. Thus

Q1 � X1X2 � � � � �X2h�1X2h �G1pX2h�1, . . . , Xhq
� Y2pY1 � πµ1Y3q � Y5pY4 � πµ1Y6q � Y7pY6 � πµ1Y8q
� π3N1pY3, Y8q � π2µ1N2pY1, Y4q mod π4.

Applying the change of variables given by

Z1 � Y1 � πµ1Y3

Z4 � Y4 � πµ1Y6

Z6 � Y6 � πµ1Y8

Zi � Yi i � 1, 4, 6

gives us

Q1 � X1X2 � � � � �X2h�1X2h �G1pX2h�1, . . . , Xhq
� Z2Z1 � Z5Z4 � Z7Z6

� π3N1pZ3, Z8q � π2µ1N2pZ1 � πµ1Z3, Z4 � πµ1Z6 � π2pµ1q2Z8qq mod π4.

Next, we apply the change of variables where we multiply Z3 by π�1 and multiply Z8

by π�1. This gives us

Q1 � X1X2 � � � � �X2h�1X2h �G1pX2h�1, . . . , Xtq
� Z2Z1 � Z5Z4 � Z7Z6

� πN1pZ3, Z8q � π2µ1N2pZ1 � µ1Z3, Z4 � πµ1Z6 � πpµ1q2Z8qq mod π2.
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Note that N2pZ1 � µ1Z3, Z4 � πµ1Z6 � πpµ1q2Z8qq has coefficients in OK . We have

Q1 � X1X2 � � � � �X2h�1X2h �G1pX2h�1, . . . , Xtq
� Z2Z1 � Z5Z4 � Z7Z6

� πN1pZ3, Z8q mod π2.

By Lemma A.1.2, there is an invertible linear change of variables over OK so that

Q1 � X1X2 � � � � �X2h�1X2h � Z2Z1 � Z5Z4 � Z7Z6

Q1
0pX2h�1, . . . , Xt, Z3, Z8q

where
Q1

0 � G1pX2h�1, . . . , Xtq � πN1pZ3, Z8q mod π2.

Since G1 and N1 are anisotropic over k, Lemma 2.3.1 implies that Q1
0 is anisotropic

over K, in which case Q1 has rank t � 8 and splits off exactly h � 3 hyperbolic
planes.

Next, we want to show that the coefficients of N1 and N2 can be adjusted modulo
π so that the pair tJ1, J2u is nonsingular, where

J1 � Y2Y1 � Y5Y4 � Y7Y6 � π3N1pY3, Y8q.
J2 � Y2Y3 � Y5Y6 � Y7Y8 � πN2pY1, Y4q.

The following lemma will help us accomplish this.

Lemma 9.2.7. Let Q1
1, Q

1
2 be the quadratic forms given below.

Q1
1 � Y2Y1 � Y5Y4 � Y7Y6 � π3β1Y3Y8,

Q1
2 � Y2Y3 � Y5Y6 � Y7Y8 � πα2Y

2
1 � πγ2Y

2
4 ,

where β1, α2, γ2 are indeterminants. Then detpλQ1
1 � µQ1

2q � π6β2
1λ

8 � 4π2α2γ2µ
8.

Proof. According to Definition 2.1.5, the 8�8 symmetric matrix associated to λQ1
1�

µQ1
2 is given by

M �

������������

2πα2µ λ 0 0 0 0 0 0
λ 0 µ 0 0 0 0 0
0 µ 0 0 0 0 0 π3β1λ
0 0 0 2πγ2µ λ 0 0 0
0 0 0 λ 0 µ 0 0
0 0 0 0 µ 0 λ 0
0 0 0 0 0 λ 0 µ
0 0 π3β1λ 0 0 0 µ 0

������������
.

If we expand along the first row of M , we get

detpMq � 2πα2µM11 � λM12,
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where M11 is the 7 � 7 matrix obtained by deleting row 1 and column 1 of M , and
M12 is the 7� 7 matrix obtained by deleting row 1 and column 2 of M .

Claim 1: detpM11q � �2πγ2µ7.

To prove claim 1, expand along the first row of M11 to get

detpM11q � �µdetpA6q,
where A6 is the resulting 6 � 6 matrix. We will describe the row/column to expand
along at each step. Expand A6 along its first column to get

detpM11q � p�µqpµqdetpA5q.
Expand A5 along its last row to get

detpM11q � p�µqpµqp�µqdetpA4q.
Expand A4 along its third row to get

detpM11q � p�µqpµqp�µqp�µqdetpA3q.
Expand A3 along its last row to obtain

detpM11q � p�µqpµqp�µqp�µqpµqdetpA2q.
The determinant of 2� 2 matrix A2 is 2πγ2µ

2. Thus detpM11q � �2πγ2µ7.

Claim 2: detpM12q � �π6β2
1λ

7.

To prove claim 2, expand along the first column of M12 to get

detpM12q � λdetpB6q
where B6 is the resulting 6 � 6 matrix. We will describe the row/column to expand
along at each step. Expand B6 along its first row to obtain

detpM12q � pλqp�π3β1λqdetpB5q.
Expand B5 along its fourth row to get

detpM12q � pλqp�π3β1λqp�λqdetpB4q.
Expand B4 along its second row to obtain

detpM12q � pλqp�π3β1λqp�λqp�λqdetpB3q.
Expand B3 along its first row to obtain

detpM12q � pλqp�π3β1λqp�λqp�λqp�λqdetpB2q.
The determinant of the 2� 2 matrix B2 is �π3β1λ

2. Thus detpM12q � �π6β2
1λ

7.
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Lemma 9.2.8. Let J1, J2 be the quadratic forms given below.

J1 � Y2Y1 � Y5Y4 � Y7Y6 � π3N1pY3, Y8q.
J2 � Y2Y3 � Y5Y6 � Y7Y8 � πN2pY1, Y4q.

We can adjust the coefficients of N1 and N2 modulo π so that tJ1, J2u is nonsingular.
Proof. Suppose N1pX, Y q � a1X

2 � b1XY � c1Y
2 and N2pX, Y q � a2X

2 � b2XY �
c2Y

2, where ai, bi, ci P OK , 1 ¤ i ¤ 2. Let αi, βi, γi, 1 ¤ i ¤ 2, be indeterminants.
Let

F � Y2Y1 � Y5Y4 � Y7Y6 � π3pα1Y
2
3 � β1Y3Y8 � γ1Y

2
8 q.

G � Y2Y3 � Y5Y6 � Y7Y8 � πpα2Y
2
1 � β2Y1Y4 � γ2Y

2
4 q.

(9.2.2)

Let P pλ, µq � detpλF � µGq. Thus P pλ, µq is a homogeneous form in the variables
λ, µ of degree 8. Let h � discrpP pλ, µqq. Lemma D.2.5 implies that h is a polynomial
over OK in the coefficients of F and G. Thus, h is a polynomial over OK in the
variables αi, βi, γi, 1 ¤ i ¤ 2; that is,

h P OKrα1, α2, β1, β2, γ1, γ2s.
We want to show that h is a nonzero polynomial. Let F 1, G1 be the quadratic forms
obtained by setting α1 � γ1 � β2 � 0 in equation 9.2.2, hence

F 1 � Y2Y1 � Y5Y4 � Y7Y6 � π3β1Y3Y8,

G1 � Y2Y3 � Y5Y6 � Y7Y8 � πα2Y
2
1 � πγ2Y

2
4 .

To show that h is a nonzero polynomial, it is sufficient to find values for β1, α2, γ2
so that discrpdetpλF 1 � µG1qq � 0. By Lemma D.1.2, this amounts to finding values
for β1, α2, γ2 P Kalg so that detpλF 1 � µG1q has distinct linear factors. Lemma 9.2.7
implies that

detpλF 1 � µG1q � π6β2
1λ

8 � 4π2α2γ2µ
8.

Choose β1, α2, γ2 P Kalg so that detpλF 1 � µG1q � λ8 � µ8. Since λ8 � µ8 has distinct
linear factors over Kalg, we deduce that h is a nonzero polynomial, as desired.

Since h is nonzero, Lemma 4.0.2 implies that there exist a1i, b
1
i, c

1
i P OK , 1 ¤ i ¤ 2

such that h evaluated at a1i, b
1
i, c

1
i, 1 ¤ i ¤ 2 is nonzero and so that

a1i � ai mod π,

b1i � bi mod π,

c1i � ci mod π.

Let N 1
1pY3, Y8q � a11Y

2
3 � b11Y3Y8� c11Y

2
8 and N 1

2pY1, Y4q � a12Y
2
1 � b12Y1Y4� c12Y

2
4 . Thus

N 1
1 � N1 mod π and N 1

2 � N2 mod π. Let

J 11 � Y2Y1 � Y5Y4 � Y7Y6 � π3N 1
1pY3, Y8q.

J 12 � Y2Y3 � Y5Y6 � Y7Y8 � πN 1
2pY1, Y4q.
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Since h evaluated at a1i, b
1
i, c

1
i, 1 ¤ i ¤ 2, is nonzero, we deduce that tJ 11, J 12u is a

nonsingular pair; this pair is obtained by adjusting the coefficients of N1 and N2

modulo π.

Lemma 9.2.9. Let t ¥ 1. Suppose f1, g1 P krX1, . . . , Xts are quadratic forms such
that every form in Pkpf1, g1q has order t and splits off exactly Hkpf1, g1q hyperbolic
planes over k. Assume Dkpf1, g1q ¤ t�1

2
. There exist quadratic forms F,G over OK

in t� 8 variables that satisfy the following properties.

1. tF,Gu is nonsingular.

2. DKpF,Gq ¥ Dkpf1, g1q � 3.

3. HKpF,Gq � Hkpf1, g1q � 3.

Proof. Let J1, J2 be as in Lemma 9.2.8; that is,

J1 � Y2Y1 � Y5Y4 � Y7Y6 � π3N1pY3, Y8q.
J2 � Y2Y3 � Y5Y6 � Y7Y8 � πN2pY1, Y4q.

By Lemma 9.2.8, we can adjust the coefficients of N1 and N2 modulo π so that
tJ1, J2u is nonsingular. By Theorem 2.1.27, detpλJ1�µJ2q has distinct linear factors.
Suppose L1, . . . , L8 P Kalgrλ, µs are the distinct linear factors of detpλJ1 � µJ2q.

Let d � Dkpf1, g1q. Since d ¤ t�1
2
, Lemma 4.0.6 implies that there exist quadratic

forms F1, G1 P OKrX1, . . . , Xts with the following properties.

1. F1 � f1 and G1 � g1.

2. tF1, G1u is nonsingular.
3. Li � detpλF1 � µG1q for each 1 ¤ i ¤ 8.

4. DKpF1, G1q ¥ d.

Let
F � F1pX1, . . . , Xtq � J1pY1, . . . , Y8q.
G � G1pX1, . . . , Xtq � J2pY1, . . . , Y8q.

Then tF,Gu is nonsingular. Notice that tJ1, J2u vanish whenever Y1 � Y3 � Y4 �
Y6 � Y8 � 0. Thus, tJ1, J2u vanish on a three-dimensional space over K, hence
DKpJ1, J2q ¥ 3. We have

DKpF,Gq ¥ DKpF1, G1q �DKpJ1, J2q
¥ Dkpf1, g1q � 3.

Lemma 9.2.6 implies that HKpF,Gq � Hkpf1, g1q � 3.
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Theorem 9.2.10. Let n ¥ 14 be even with n � 16. There exists a pair of quadratic
forms tF,Gu over K in n variables with the following properties:

1. tF,Gu is nonsingular.

2. DKpF,Gq � n�4
2
.

3. HKpF,Gq � n�4
2
.

Proof. Let t ¥ 6 with t � 8. Let f1, g1 P krX1, . . . , Xts be quadratic forms satisfying
Theorem 7.0.3. Therefore, Dkpf1, g1q � t�2

2
, every form in Pkpf1, g1q has rank (hence

order) t, and every form in Pkpf1, g1q splits off exactly Hkpf1, g1q � t�2
2

hyperbolic
planes.

By Lemma 9.2.9, there exist quadratic form F,G defined over OK in n � t � 8
variables such that tF,Gu is nonsingular,DKpF,Gq ¥ t�2

2
�3, andHKpF,Gq � t�2

2
�3.

Since tF,Gu is nonsingular, Lemma 2.3.11 implies that DKpF,Gq ¤ HKpF,Gq �
t�2
2
� 3. Thus DKpF, gq � t�2

2
� 3. Observe that

t� 2

2
� 3 � t� 4

2
� n� 4

2
.

In particular, taking t � 6 in Theorem 9.2.10 implies that Theorem 9.2.5 holds
for n � 14, as desired.

We end this section by giving an alternate proof of Theorem 10.2.2.

Theorem 9.2.11. Let n ¥ 9 be odd. There exists a pair of quadratic forms tF,Gu
over K in n variables with the following properties:

1. tF,Gu is nonsingular.

2. DKpF,Gq � n�3
2
.

3. HKpF,Gq � n�3
2
.

Proof. Let t ¥ 1 be odd. Let F1, G1 P OKrX1, . . . , Xts be quadratic forms satisfying
Lemma 8.1.1. Let f1 � F1 and g1 � G1. Lemma 8.1.1 implies that Dkpf1, g1q � t�1

2

and every form in Pkpf1, g1q has order t. It follows that every form in Pkpf1, g1q splits
off exactly Hkpf1, g1q � t�1

2
hyperbolic planes.

By Lemma 9.2.9, there exist quadratic form F,G defined over OK in n � t � 8
variables such that tF,Gu is nonsingular,DKpF,Gq ¥ t�1

2
�3, andHKpF,Gq � t�1

2
�3.

Since tF,Gu is nonsingular, Lemma 2.3.11 implies that DKpF,Gq ¤ HKpF,Gq �
t�1
2
� 3. Thus DKpF, gq � t�1

2
� 3. Observe that

t� 1

2
� 3 � t� 5

2
� n� 3

2
.
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9.3 D � n�6
2

Theorem 9.3.1. Let n ¥ 6 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�6
2
.

3. HKpf, gq � n
2
.

Proof. By Lemma 8.2.1, there exists a type B pair Qi � Qipn � 4,B, n�6
2
, n�4

2
q, 1 ¤

i ¤ 2. By Lemma 8.2.5, there exists a type B pair Q1
i � Q1

ip4,B, 0, 2q, 1 ¤ i ¤ 2. Let
f � Q1 K πQ1

1 and g � Q2 K πQ1
2. By Lemma 5.0.7, we can adjust the coefficients

of Q1
1 and Q1

2 modulo π so that tf, gu is nonsingular, DKpf, gq � n�6
2
� 0 � n�6

2
, and

HKpf, gq � n�4
2
� 2 � n

2
.

Theorem 9.3.2. Let n ¥ 6 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�6
2
.

3. HKpf, gq � n�2
2
.

Proof. By Lemma 8.2.3, there exists a type A pair Qi � Qip4,A, 0, 1q, 1 ¤ i ¤ 2. By
Lemma 8.2.1, there exists a type B pair Q1

i � Q1
ipn � 4,B, n�6

2
, n�4

2
q, 1 ¤ i ¤ 2. Let

f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma 5.0.6, we can adjust the coefficients
of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular, DKpf, gq � 0� n�6

2
� n�6

2
, and

HKpf, gq � 1� n�4
2
� n�2

2
.

Theorem 9.3.3. Let n ¥ 10 be even with n � 12. There exists a pair of quadratic
forms tf, gu over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�6
2
.

3. HKpf, gq � n�4
2
.

Proof. Note that n� 4 ¥ 6 and n� 4 � 8. Thus, by Lemma 8.2.2, there exists a type
A pair Qi � Qipn � 4,A, n�6

2
, n�6

2
q, 1 ¤ i ¤ 2. By Lemma 8.2.3, there exists a type

A pair Q1
i � Q1

ip4,A, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By
Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu is

nonsingular, DKpf, gq � n�6
2
� 0 � n�6

2
, and HKpf, gq � n�6

2
� 1 � n�4

2
.
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9.3.1 The Case n � 12

In this section, our goal is to prove the case where n � 12 in Theorem 9.3.3. Therefore,
we will prove the following theorem.

Theorem 9.3.4. There exists a pair of quadratic forms tQ1, Q2u over K in 12 vari-
ables with the following properties:

1. tQ1, Q2u is nonsingular.

2. DKpQ1, Q2q � 3.

3. HKpQ1, Q2q � 4.

We begin the proof now. Throughout this section, let N1pX, Y q P OKrX, Y s and
N2pX, Y q P OKrX, Y s denote quadratic forms such that N1 and N2 are anisotropic
over k. Let G1, G2 P OKrX1, . . . , X4s be a type A pair of quadratic forms satisfying
Lemma 8.2.3; therefore, G1, G2 satisfy the following properties.

(P0) tG1, G2u is nonsingular.
(P1) DKpG1, G2q � Dkpg1, g2q � 0, where gi � Gi.

(P2) For every λ, µ P OK , not both divisible by π, there is an invertible linear change
of variables over OK so that

λG1 � µG2 � X1X2 �NpX3, X4q,
where N is anisotropic of rank 2 over k. Consequently, HKpG1, G2q � 1.

We start with Q1 and Q2 given below.

Q1 � G1pX1, . . . , X4q �X6X5 �X9X8 �X11X10

� π3N1pX7, X12q.
Q2 � G2pX1, . . . , X4q �X6X7 �X9X10 �X11X12

� πN2pX5, X8q.

(9.3.1)

Let J1, J2 be as in Lemma 9.2.8; that is,

J1 � Y2Y1 � Y5Y4 � Y7Y6 � π3N1pY3, Y8q.
J2 � Y2Y3 � Y5Y6 � Y7Y8 � πN2pY1, Y4q.

By Lemma 9.2.8, we can adjust the coefficients of N1 and N2 modulo π so that tJ1, J2u
is nonsingular. Observe that

Q1 � G1pX1, . . . , X4q � J1pX5, . . . , X12q.
Q2 � G2pX1, . . . , X4q � J2pX5, . . . , X12q.

By Lemma 5.0.5, we can adjust the coefficients of G1 and G2 modulo π so that the
pair tQ1, Q2u is nonsingular and so that tG1, G2u remain a type A pair satisfying
properties (P0), (P1), and (P2) above.
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Lemma 9.3.5. Let Q1, Q2 P OKrX1, . . . , X12s be as in equation 9.3.1. Then HKpQ1, Q2q �
4. In particular, every form in PKpQ1, Q2q has rank 12 and splits off exactly 4 hy-
perbolic planes over K.

Proof. This follows from Lemma 9.2.6 with t � 4 and Hkpf1, g1q � 1.

All that is left is to show that DKpQ1, Q2q � 3.

Lemma 9.3.6. Let Q1, Q2 P OKrX1, . . . , X12s be as in equation 9.3.1. Then DKpQ1, Q2q �
3.

Proof. For convenience, we restate equation 9.3.1 below:

Q1 � G1pX1, . . . , X4q �X6X5 �X9X8 �X11X10

� π3N1pX7, X12q
Q2 � G2pX1, . . . , X4q �X6X7 �X9X10 �X11X12

� πN2pX5, X8q.
Note that N1 has rank 2 over K. Property (P2) implies that G1 has rank 4 over K.
Thus Q1 has rank 12 over K. It follows that Q1 � tQ2 has rank 12 over Kptq. By
Lemma 2.2.9, we have DKpQ1, Q2q � HKptqpQ1 � tQ2q. Therefore, it is sufficient to
show that Q1 � tQ2 splits off exactly 3 hyperbolic planes over Kptq. Observe that

Q1 � tQ2 � pG1 � tG2qpX1, . . . , X4q �X6pX5 � tX7q �X9pX8 � tX10q
�X11pX10 � tX12q � π3N1pX7, X12q � tπN2pX5, X8q.

Consider the following invertible linear change of variables:

Y5 � X5 � tX7

Y8 � X8 � tX10

Y10 � X10 � tX12

Yi � Xi i � 5, 8, 10.

Applying this change of variables gives us

Q1 � tQ2 � pG1 � tG2qpY1, . . . , Y4q � Y6Y5 � Y9Y8 � Y11Y10

� π3N1pY7, Y12q � tπN2

�
Y5 � tY7, Y8 � tY10 � t2Y12

�
,

(9.3.2)

where � denotes equivalence over Kptq. We can write tπN2

�
Y5�tY7, Y8�tY10�t2Y12

�
in the following way:

tπN2

�
Y5 � tY7, Y8 � tY10 � t2Y12

� � t3πN2p�Y7, tY12q
� Y5L1pY5, Y7, Y8, Y10, Y12q
� Y8L2pY5, Y7, Y8, Y10, Y12q
� Y10L3pY5, Y7, Y8, Y10, Y12q.
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for suitable linear forms Li P pOKrtsqrY5, Y7, Y8, Y10, Y12s, 1 ¤ i ¤ 3. Substituting this
into equation 9.3.2 yields

Q1 � tQ2 � pG1 � tG2qpY1, . . . , Y4q � Y6Y5 � Y9Y8 � Y11Y10

� π3N1pY7, Y12q � t3πN2p�Y7, tY12q
� Y5L1pY5, Y7, Y8, Y10, Y12q
� Y8L2pY5, Y7, Y8, Y10, Y12q
� Y10L3pY5, Y7, Y8, Y10, Y12q.

(9.3.3)

Consider the following change of variables:

Z6 � Y6 � L1pY5, Y7, Y8, Y10, Y12q.
Z9 � Y9 � L2pY5, Y7, Y8, Y10, Y12q.
Z11 � Y11 � L3pY5, Y7, Y8, Y10, Y12q.
Zi � Yi i � 6, 9, 11.

(9.3.4)

Note that this change of variables is invertible. Applying this change of variables to
equation 9.3.3 gives us

Q1 � tQ2 � pG1 � tG2qpZ1, . . . , Z4q � Z6Z5 � Z9Z8 � Z11Z10

� π3N1pZ7, Z12q � t3πN2p�Z7, tZ12q.
(9.3.5)

Suppose N2pX, Y q � aX2 � bXY � cY 2 for some a, b, c P OK . Since N2 is
anisotropic over k, we know π � a and π � c. Substituting this into equation 9.3.5
yields

Q1 � tQ2 � pG1 � tG2qpZ1, . . . , Z4q � Z6Z5 � Z9Z8 � Z11Z10

� π3N1pZ7, Z12q � t3π
�
aZ2

7 � btZ7Z12 � ct2Z2
12

�
.

(9.3.6)

Let

QpZ1, . . . , Z4, Z7, Z12q � pG1 � tG2qpZ1, . . . , Z4q � π3N1pZ7, Z12q
� t3π

�
aZ2

7 � btZ7Z12 � ct2Z2
12

�
.

To finish, we will show that Q is anisotropic over Kptq.

For sake of contradiction, suppose Qpz1, . . . , z4, z7, z12q � 0, where zi P Kptq, not
all zero. By multiplying pz1, . . . , z4, z7, z12q by a suitable polynomial in Krts, we can
assume that each zi P Krts (i.e. clearing the denominators). Then we can multiply
pz1, . . . , z4, z7, z12q by a sufficient power of π so that each zi P OKrts. Thus, each zi
is a polynomial in t with coefficients in OK . Let ϵi be the minimum valuation of
the coefficients of zi. Let M � minpϵ1, . . . , ϵ4, ϵ7, ϵ12q. Multiply pz1, . . . , z4, z7, z12q by
π�M . These maneuvers allow us to assume that at least one of the zi’s is not divisible
by π.

78



We have

pG1 � tG2qpz1, . . . , z4q � π3N1pz7, z12q � t3π
�
az27 � btz7z12 � ct2z212

� � 0.

Thus, π � pG1 � tG2qpz1, . . . , z4q. Since Dkpg1, g2q � 0, Lemma 2.2.8 implies that
g1 � tg2 is anisotropic over kptq. It follows that π � zi, 1 ¤ i ¤ 4. Write zi � πz1i for
some z1i P OKrts, 1 ¤ i ¤ 4. We have

π2pG1 � tG2qpz11, . . . , z14q � π3N1pz7, z12q � t3π
�
az27 � btz7z12 � ct2z212

� � 0.

It follows that
π � az27 � btz7z12 � ct2z212.

Let F pX, Y q � aX2� btXY � ct2Y 2. Thus π � F pz7, z12q. To finish we will show that

F pX, Y q � aX2 � btXY � ct2Y 2

is anisotropic over kptq. This will complete the proof since having F anisotropic over
kptq implies that π � z7, z12, in which case all the zi are divisible by π, a contradiction.

Suppose that F px, yq � 0 for some x, y P kptq. We have

ax2 � btxy � ct2y2 � 0.

Recall that π � a and π � c, hence a � 0 and c � 0. Thus, t � x. Write x � tx1 for
some x1 P kptq. Then

t2
�
apx1q2 � bx1y � cy2

� � 0.

Thus apx1q2�bx1y�cy2 � 0. Recall that N2pX, Y q � aX2�bXY �cY 2 is anisotropic
over k. Let N 1

2pX, Y q � aX2 � bXY � cY 2. Then N 1
2 is equivalent over k to N2,

which can be seen by performing a change of variable where Y is replaced with �Y .
Thus N 1

2 is also anisotropic over k. Further, Lemma 2.2.15 implies that N 1
2 is also

anisotropic over kptq. We have N 1
2px1, yq � 0, hence x1 � y � 0. This proves that F

is anisotropic over kptq, as desired.

9.4 D � n�8
2

Theorem 9.4.1. Let n ¥ 8 be even. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties.

1. tf, gu is nonsingular.

2. DKpf, gq � n�8
2
.

3. HKpf, gq � n
2
.
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Proof. Let npX, Y q P krX, Y s be an anisotropic quadratic form over the residue field
k. Let q1, q2 P krX1, . . . , Xn�4s be the quadratic forms given below.

q1 � npX1, X2q � npX3, X4q �X5X6 �X7X8 � � � � �Xn�5Xn�4.

q2 � npX1, X2q.

We will show that Dkpq1, q2q � n�8
2
. Suppose q1pXq � q2pXq � 0 for some X �

px1, . . . , xn�4q P kn�4. Then having q2pXq � 0 implies that x1 � x2 � 0. Note
that q1p0, 0, X3, . . . , Xn�4q is a quadratic form in n � 6 variables of rank n � 6 that
splits off exactly n�8

2
hyperbolic planes. Therefore, q1p0, 0, X3, . . . , Xn�4q vanishes

on a subspace over k of dimension n�8
2
. Theorem B.1.1 implies that n�8

2
is the

largest dimension of a subspace over k on which q1p0, 0, X3, . . . , Xn�4q vanishes. Thus
Dkpq1, q2q � n�8

2
.

By Lemma 4.0.6, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xn�4s such
that Qi � qi, 1 ¤ i ¤ 2, and tQ1, Q2u is nonsingular. By Lemma 8.2.5, there exists a
type B pair Q1

i � Q1
ip4,B, 0, 2q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1

1 and g � Q2 K πQ1
2.

By Lemma 5.0.5, we can adjust the coefficients of Q1
1 and Q1

2 modulo π so that
the pair tf, gu is nonsingular and so that tQ1

1, Q
1
2u remains a type B pair with d � 0

and h � 2.

By Lemma 2.3.17, we have

DKpf, gq ¤ DkpQ1, Q2q �DkpQ1
1, Q

1
2q.

� n� 8

2
� 0.

� n� 8

2
.

By Lemma 2.3.11, DKpf, gq ¥ n�8
2
. Thus DKpf, gq � n�8

2
.

To show that HKpf, gq � n
2
, note that Lemma B.2.6 implies that npX1, X2q �

npX3, X4q splits off 2 hyperbolic planes over k, hence q1 � Q1 splits off
n�4
2

hyperbolic

planes over k. By Definition 5.0.2, Q1
1 splits off 2 hyperbolic planes over k. By Lemma

A.1.2, Q1 splits off
n�4
2

hyperbolic planes overOK andQ1
1 splits off 2 hyperbolic planes

over OK . Therefore, f splits off n�4
2
�2 � n

2
hyperbolic planes over OK , which proves

that HKpf, gq � n
2
.

Theorem 9.4.2. Let n ¥ 8 be even with n � 10. There exists a pair of quadratic
forms tf, gu over K in n variables with the following properties.

1. tf, gu is nonsingular.

2. DKpf, gq � n�8
2
.
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3. HKpf, gq � n�2
2
.

Proof. Note that n � 4 ¥ 4 and n � 4 � 6. Thus, by Lemma 8.2.3, there exists a
type A pair Qi � Qipn � 4,A, n�8

2
, n�6

2
q, 1 ¤ i ¤ 2. By Lemma 8.2.5, there exists a

type B pair Q1
i � Q1

ip4,B, 0, 2q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By
Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu is

nonsingular, DKpf, gq � n�8
2
� 0 � n�8

2
, and HKpf, gq � n�6

2
� 2 � n�2

2
.

Theorem 9.4.3. Let n � 10. There exists a pair of quadratic forms tf, gu over K
in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�8
2
� 1.

3. HKpf, gq � n�2
2
� 4.

Proof. By Lemma 8.2.3, there exists a type A pair Qi � Qip4,A, 0, 1q, 1 ¤ i ¤ 2.
By Lemma 8.2.4, there exists a type B pair Q1

i � Q1
ip6,B, 1, 3q, 1 ¤ i ¤ 2. Let

f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma 5.0.6, we can adjust the coefficients
of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular, DKpf, gq � 0 � 1 � 1, and

HKpf, gq � 1� 3 � 4.

Theorem 9.4.4. Let n ¥ 8 be even with n � 10. There exists a pair of quadratic
forms tf, gu over K in n variables with the following properties.

1. tf, gu is nonsingular.

2. Dpf, gq � n�8
2
.

3. Hpf, gq � n�4
2
.

Proof. Note that n� 4 ¥ 4 and n� 4 � 6. Thus, by Lemma 8.2.3, there exists a type
A pair Qi � Qipn�4,A, n�8

2
, n�6

2
q, 1 ¤ i ¤ 2. Likewise, by Lemma 8.2.3, there exists

a type A pair Q1
i � Q1

ip4,A, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2.
By Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu

is nonsingular, DKpf, gq � n�8
2
� 0 � n�8

2
, and HKpf, gq � n�6

2
� 1 � n�4

2
.

Copyright© John R. Hall 2024
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Chapter 10 n odd

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We will use the same notation given at the beginning of section 2.3.

10.1 D � n�1
2

Theorem 10.1.1. Let n ¥ 1 be odd. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�1
2
.

3. HKpf, gq � n�1
2
.

Proof. Lemma 8.1.1 provides an example.

10.2 D � n�3
2

Theorem 10.2.1. Let n ¥ 3 be odd. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�3
2
.

3. HKpf, gq � n�1
2
.

Proof. By Lemma 8.2.1, there exists a type B pair Qi � Qipn�1,B, n�3
2
, n�1

2
q, 1 ¤ i ¤

2. Let Q1
1 � Q1

2 � X2. By checking Definition 5.0.2, it is easy to see that tQ1
1, Q

1
2u is a

type B pair in one variable with d � h � 0; that is, Q1
i � Q1

ip1,B, 0, 0q, 1 ¤ i ¤ 2. Let
f � Q1 K πQ1

1 and g � Q2 K πQ1
2. By Lemma 5.0.7, we can adjust the coefficients

of Q1
1 and Q1

2 modulo π so that tf, gu is nonsingular, DKpf, gq � n�3
2
� 0 � n�3

2
, and

HKpf, gq � n�1
2
� 0 � n�1

2
.

Theorem 10.2.2. Let n ¥ 9 be odd. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�3
2
.

3. HKpf, gq � n�3
2
.

Theorems 2.2.14 and 2.3.15 imply that there are no examples of quadratic forms with
these properties for n � 3, 5, 7.
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Proof. First, assume n � 11. By Lemma 8.2.2, there exists a type A pair Qi �
Qip6,A, 2, 2q, 1 ¤ i ¤ 2. By Lemma 8.1.2, there exists a type A pair Q1

i �
Q1

ip5,A, 2, 2q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma
5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu is nonsin-

gular, DKpf, gq � 2� 2 � 4, and HKpf, gq � 2� 2 � 4.

Now assume n ¥ 9 is odd with n � 11. Then n�3 ¥ 6 is even and n�3 � 8. Thus,
by Lemma 8.2.2, there exists a type A pair Qi � Qipn � 3,A, n�5

2
, n�5

2
q, 1 ¤ i ¤ 2.

By Lemma 8.1.2, there exists a type A pair Q1
i � Q1

ip3,A, 1, 1q, 1 ¤ i ¤ 2. Let
f � Q1 K πQ1

1 and g � Q2 K πQ1
2. By Lemma 5.0.6, we can adjust the coefficients

of Q1
1 and Q1

2 modulo π so that tf, gu is nonsingular, DKpf, gq � n�5
2
� 1 � n�3

2
, and

HKpf, gq � n�5
2
� 1 � n�3

2
.

10.3 D � n�5
2

Theorem 10.3.1. Let n ¥ 5 be odd. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�5
2
.

3. HKpf, gq � n�1
2
.

Proof. By Lemma 8.2.1, there exists a type B pair Qi � Qipn � 3,B, n�5
2
, n�3

2
q, 1 ¤

i ¤ 2. By Lemma 8.1.4, there exists a type B pair Q1
i � Q1

ip3,B, 0, 1q, 1 ¤ i ¤ 2. Let
f � Q1 K πQ1

1 and g � Q2 K πQ1
2. By Lemma 5.0.7, we can adjust the coefficients

of Q1
1 and Q1

2 modulo π so that tf, gu is nonsingular, DKpf, gq � n�5
2
� 0 � n�5

2
, and

HKpf, gq � n�3
2
� 1 � n�1

2
.

Theorem 10.3.2. Let n ¥ 7 be odd. There exists a pair of quadratic forms tf, gu
over K in n variables with the following properties:

1. tf, gu is nonsingular.

2. DKpf, gq � n�5
2
.

3. HKpf, gq � n�3
2
.

Proof. By Lemma 8.1.2, there exists a type A pair Qi � Qipn � 4,A, n�5
2

n�5
2
q, 1 ¤

i ¤ 2. By Lemma 8.2.3, there exists a type A pair Q1
i � p4,A, 0, 1q, 1 ¤ i ¤ 2. Let

f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By Lemma 5.0.6, we can adjust the coefficients
of Q1

1 and Q1
2 modulo π so that tf, gu is nonsingular, DKpf, gq � n�5

2
� 0 � n�5

2
, and

HKpf, gq � n�5
2
� 1 � n�3

2
.
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10.4 D � n�7
2

Theorem 10.4.1. Suppose n ¥ 7 is odd. There exists a pair of quadratic forms
tf, gu over OK in n variables satisfying the following properties.

1. tf, gu is nonsingular.

2. DKpf, gq � n�7
2
.

3. HKpf, gq � n�1
2
.

Proof. Let npX, Y q P krX, Y s be an anisotropic quadratic form over the residue field
k. Let q1, q2 P krX1, . . . , Xn�4s be the quadratic forms given below.

q1 � npX1, X2q � npX3, X4q �X5X6 �X7X8 � � � � �Xn�4Xn�3.

q2 � npX1, X2q.
We will show that Dkpq1, q2q � n�7

2
. Suppose q1pXq � q2pXq � 0 for some X �

px1, . . . , xn�3q P kn�3. Then having q2pXq � 0 implies that x1 � x2 � 0. Note that
q1p0, 0, X3, . . . , Xn�3q is a quadratic form in n� 5 variables of rank n� 5 that splits
off exactly n�7

2
hyperbolic planes. Therefore, q1p0, 0, X3, . . . , Xn�3q vanishes on a sub-

space over k of dimension n�7
2
, and Theorem B.1.1 implies that this is the largest

dimension of a subspace over k on which it vanishes. Thus Dkpq1, q2q � n�7
2
.

By Lemma 4.0.6, there exist quadratic forms Q1, Q2 P OKrX1, . . . , Xn�3s such
that Qi � qi, 1 ¤ i ¤ 2, and tQ1, Q2u is nonsingular. By Lemma 8.1.4, there exists a
type B pair Q1

i � Q1
ip3,B, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1

1 and g � Q2 K πQ1
2.

By Lemma 5.0.5, we can adjust the coefficients of Q1
1 and Q1

2 modulo π so that
the pair tf, gu is nonsingular and so that tQ1

1, Q
1
2u remains a type B pair with d � 0

and h � 1.

By Lemma 2.3.17, we have

DKpf, gq ¤ DkpQ1, Q2q �DkpQ1
1, Q

1
2q

� n� 7

2
� 0

� n� 7

2
.

By Lemma 2.3.11, DKpf, gq ¥ n�7
2
. Thus DKpf, gq � n�7

2
.

To show that HKpf, gq � n
2
, note that Lemma B.2.6 implies that npX1, X2q �

npX3, X4q splits off 2 hyperbolic planes over k, hence q1 � Q1 splits off
n�3
2

hyperbolic

planes over k. By Definition 5.0.2, Q1
1 splits off 1 hyperbolic plane over k. By Lemma

A.1.2, Q1 splits off n�3
2

hyperbolic planes over OK , and Q1
1 splits off 1 hyperbolic

plane over OK . Therefore, f splits off n�3
2
� 1 � n�1

2
hyperbolic planes over OK ,

which proves that HKpf, gq � n�1
2
.
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Theorem 10.4.2. Suppose n is odd with n � 7 or n ¥ 11. There exists a pair of
quadratic forms tf, gu over K in n variables satisfying the following properties.

1. tf, gu is nonsingular.

2. DKpf, gq � n�7
2
.

3. HKpf, gq � n�3
2
.

Proof. Note that n�3 ¥ 4 is even with n�3 � 6. Thus, by Lemma 8.2.3, there exists
a type A pair Qi � Qipn� 3,A, n�7

2
, n�5

2
q, 1 ¤ i ¤ 2. By Lemma 8.1.4, there exists a

type B pair Q1
i � Q1

ip3,B, 0, 1q, 1 ¤ i ¤ 2. Let f � Q1 K πQ1
1 and g � Q2 K πQ1

2. By
Lemma 5.0.6, we can adjust the coefficients of Q1

1 and Q1
2 modulo π so that tf, gu is

nonsingular, DKpf, gq � n�7
2
� 0 � n�7

2
, and HKpf, gq � n�5

2
� 1 � n�3

2
.

Theorem 10.4.3. There exists a pair of quadratic forms tf, gu over OK in n � 9
variables satisfying the following properties.

1. tf, gu is nonsingular.

2. DKpf, gq � n�7
2
� 1.

3. HKpf, gq � n�3
2
� 3.

Proof. By Lemma 8.2.3, there exists a type A pair Qi � Qip4,A, 0, 1q, 1 ¤ i ¤
2. Since tQ1, Q2u is nonsingular, Theorem 2.1.27 implies that detpλQ1 � µQ2q has
distinct linear factors. Since OK has infinitely many units, we can choose units
a, b P OK so that aλ � bµ is not a linear factor in detpλQ1 � µQ2q. Let f1, g1 P
OKrX1, . . . , X5s be the quadratic forms given below.

f1 � Q1pX1, . . . , X4q � aX2
5 .

g1 � Q2pX1, . . . , X4q � bX2
5 .

By our choice of a and b, the pair tf1, g1u is nonsingular.

We will show that Dkpf1, g1q � 1. Since tf1, g1u have 5 variables, Lemma B.2.9
implies that Dkpf1, g1q ¥ 1. For sake of contradiction, suppose tf1, g1u vanish on a
two-dimensional subspace over k, say spankpv, wq, where v, w P k5 are linearly inde-
pendent. Since DkpQ1, Q2q � 0, we know that the fifth coordinate of v and the fifth
coordinate of w can not both be zero. Without loss of generality, assume the fifth co-
ordinate of v is nonzero. We can choose c P k so that the fifth coordinate of x � cv�w
is zero. Since tv, wu are linearly independent, x � 0. Since f1pxq � g1pxq � 0, it
follows that Q1pxq � Q2pxq � 0. This is contrary to DkpQ1, Q2q � 0.

Thus, Dkpf1, g1q � 1. Next, we will show that for each q P Pkpf1, g1q, we have
Dkpqq ¤ 2. To see this, note that by Lemma 8.2.3, every form in PkpQ1, Q2q has
order 4 and splits off exactly 1 hyperbolic plane over k. It follows that every form in
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Pkpf1, f2q either has order 4 and splits off exactly 1 hyperbolic plane, or has order 5
and splits off exactly 2 hyperbolic planes. Thus, Lemma 2.2.6 implies that Dkpqq ¤ 2
for each q P Pkpf1, g1q.

Now, let Q1
i � Q1

ip4,A, 0, 1q, 1 ¤ i ¤ 2, be a type A pair in four variables as in
Lemma 8.2.3. Let

f � f1pX1, . . . , X5q � πQ1
1pX6, . . . , X9q.

g � g1pX1, . . . , X5q � πQ1
2pX6, . . . , X9q.

By Lemma 5.0.5, we can adjust the coefficients of Q1
1 and Q1

2 modulo π so that tf, gu
is nonsingular and so that tQ1

1, Q
1
2u remains a type A pair with d � 0 and h � 1. By

Lemma 2.3.11, we have DKpf, gq ¥ 1. On other hand, Lemma 2.3.17 implies that

DKpf, gq ¤ Dkpf1, g1q �DkpQ1
1, Q

1
2q

� 1� 0

� 1.

Thus, DKpf, gq � 1. To show that HKpf, gq � 3, let λ, µ P OK , not both divisible
by π. Note that by Lemma 8.2.3, there is an invertible linear change of variable over
OK so that λQ1

1 � µQ1
2 � X6X7 �NpX8, X9q, where N is anisotropic over k. Thus

λf � µg � GpX1, . . . , X5q � πNpX9, X10q � πX6X7,

where G � λf1 � µg1. We proved above that DkpGq ¤ 2. Lemma 2.3.3 implies
that G � πN splits off at most DkpGq ¤ 2 hyperbolic planes. Thus λf � µg splits
off at most 3 hyperbolic planes, hence HKpf, gq ¤ 3. Lemma 2.3.11 implies that
HKpf, gq ¥ 3. We conclude that HKpf, gq � 3.

Copyright© John R. Hall 2024
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Chapter 11 Pairs of Forms in 5, 6, and 8 Variables

For this chapter, let K denote a p-adic field with ring of integers OK and residue field
k. We use the same notation given at the beginning of section 2.3.

11.1 n � 5

Our goal for this section is to prove the following theorem.

Theorem 11.1.1. Let Q1, Q2 P KrX1, . . . , X5s be a nonsingular pair of quadratic
forms. If DKpQ1, Q2q � 0 and |k| ¥ 4, then HKpQ1, Q2q � 2.

We begin the proof of theorem 11.1.1 now. Our proof will utilize results from
appendix A. By multiplying Q1 and Q2 by a sufficient power of π, we can assume
that Q1 and Q2 have coefficients in OK .

For i � 1, 2, let qi � Qi. We define R � Rpq1, q2q to be the least integer m such
that there is a linear transformation T P GL5pkq for which q1pTXq and q2pTXq are
both functions of X1, . . . , Xm alone. Therefore, there is an invertible linear change of
variables over k so that qi � q1ipX1, . . . , XRq for i � 1, 2, where q1i denote quadratic
forms over k. Consequently, every form in Pkpq1, q2q can be expressed using only the
variables X1, . . . , XR.

We define r � rpq1, q2q to be the maximum order a form in P � Pkpq1, q2q; that
is,

r � rpq1, q2q � maxtorderpqq | q P Pu.
It follows that r ¤ R ¤ 5.

By Lemma A.2.4, we can assume Q1, Q2 is a minimized pair. By Lemma A.3.4
with d � 0 and n � 5, we get

R � Rpq1, q2q ¥ 5� 1

2
� 0 � 3.

By Lemma A.3.3, we know every form in Pkpq1, q2q has order ¥ 5
4
, hence r ¥ 2.

Further, by Lemma A.3.2, any form in Pkpq1, q2q that has order 2 must be anisotropic.
Then Lemma B.2.21 implies that r ¥ 3. We have shown that

3 ¤ r ¤ R ¤ 5.

Our proof is divided into cases depending on the possible values for r and R.

Suppose r � 5. Then there is a form in Pkpq1, q2q that splits off 2 hyperbolic
planes over k. Lemma A.1.2 implies that there is a form in PKpQ1, Q2q that splits
off 2 hyperbolic planes over K, as desired.

From here on, we assume 3 ¤ r ¤ 4. Next, we consider the case R � 3.
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11.1.1 R � 3

Since R � 3, we get r � 3 as well. We can put Q1 and Q2 into the following shape

Q1 � G1pX1, X2, X3q � π
5̧

j�4

�
XjL

p1q
j pX1, X2, X3q

	
� πH1pX4, X5q,

Q2 � G2pX1, X2, X3q � π
5̧

j�4

�
XjL

p2q
j pX1, X2, X3q

	
� πH2pX4, X5q,

(11.1.1)

where the Gi and Hi are quadratic forms over OK and the L
piq
j are linear forms over

OK . By minimization, Lemma A.2.7 implies that Dkph1, h2q � 0. We will show that
h1 and h2 are linearly independent.

Assume for contradiction that h1 and h2 are linearly dependent. Then there exist
α1, α2 P OK , not both divisible by π, such that α1H1 � α2H2 � 0 mod π. Without

loss of generality, assume α1 is a unit. Let U 1 �
�
α1 α2

0 1

�
. Since detpU 1q � α1 is a

unit, the pair pQ1, Q2qU 1
is still minimized, but now the form playing the role of H1 is

divisible by π. From these maneuvers, we can assume that π � H1 in equation 11.1.1.
Let T � diagpπ, π, π, 1, 1q and U � diagpπ�2, π�1q. Then pQ1, Q2qUT is integral, but

4vpdetpT qq � 5vpdetpUqq � 4p3q � 5p�3q   0.

By Lemma A.2.5, this is contrary to Q1, Q2 being minimized. Therefore, h1 and h2

are linearly independent.

Next, we will show that Dkpg1, g2q � 0. Suppose Dkpg1, g2q ¥ 1. By an invertible
linear change of variables over k, we can assume p0, 0, 1q is a common zero of g1 and
g2. Then g1 and g2 both vanish whenever X1 � X2 � 0. It follows that q1 and q2 both
vanish on a subspace in k5 of dimension 3. Then the inequality n   2d is satisfied for
n � 5 and d � 3, in which case Lemma A.3.1 contradicts minimization. Therefore,
Dkpg1, g2q � 0.

Also, by minimization, LemmasA.3.3 andA.3.2 imply that every form in Pkpg1, g2q
is either anisotropic of order 2 or has order 3. Thus Lemma B.2.22 implies that there
are exactly |k| � 1 pairs pa, bq P k2, not both zero, for which ag1 � bg2 is anisotropic
of order 2.

On the other hand, since Dkph1, h2q � 0 and h1, h2 are linearly independent,
Lemma B.2.23 implies that there are at least |k| pairs pa, bq P k2, not both zero, for
which ah1 � bh2 is isotropic.

Since |k| ¡ |k| � 1, we deduce that there exist pa, bq P k2, not both zero, for which
ag1�bg2 has order 3 (and hence splits off 1 hyperbolic plane), and ah1�bh2 is isotropic.
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Without loss of generality, b � 0. Let b1 P OK be a unit so that b1 � b. By
replacing Q1 with Q1 � b1Q2, we may assume that g1 has order 3 and that h1 is
isotropic. We can perform an invertible linear change of variable over k involving
X1, X2, X3 so that

g1 � X1X2 � dX2
3

for some d P k. Through a change of variable involving X4, X5, we can assume
h1p0, 1q � 0. Since Dkph1, h2q � 0, we get h2p0, 1q � 0. Thus π2 � Q1pe5q and
π2 � Q2pe5q. We therefore have the following:

1. Q1pX1, X2, 0, 0, X5q � X1X2 mod π.

2. Q2pX1, X2, 0, 0, X5q � G2pX1, X2, 0q mod π.

3. π2 � Q1pe5q.
4. π2 � Q2pe5q

Thus Lemma A.1.6 implies that there is a form in PKpQ1, Q2q that splits off 2
hyperbolic planes.

11.1.2 R � 4

We can write Q1 and Q2 in the following way.

Q1 � G1pX1, . . . , X4q � πX5L1pX1, . . . , X4q � πa1X
2
5 ,

Q2 � G2pX1, . . . , X4q � πX5L2pX1, . . . , X4q � πa2X
2
5 ,

(11.1.2)

where R � Rpg1, g2q � 4 and r � rpg1, g2q P t3, 4u. If g1 and g2 have a nonsingular
common zero over k, then by Lemma 2.3.6, the forms G1 and G2 would have a com-
mon nontrivial zero over K, contrary to DKpQ1, Q2q � 0.

Therefore, either g1 and g2 have a singular common zero over k, or Dkpg1, g2q � 0.
We will address each of these cases separately.

Case 1. Suppose g1 and g2 have a singular common zero over k. Through a change
of variable, we can assume p1, 0, 0, 0q is a singular common zero of g1 and g2. Then
g1 and g2 have the shape

g1 � X1ℓpX2, . . . , X4q � w1
1pX2, . . . , X4q,

g2 � X1ℓ
1pX2, . . . , X4q � w1

2pX2, . . . , X4q,

where ℓ, ℓ1 are linear forms over k and w1
1, w

1
2 are quadratic forms over k. Since

Rpg1, g2q � 4, we know at least one of either ℓ or ℓ1 is nonzero. Since p1, 0, 0, 0q is
a singular common zero, we know ℓ and ℓ1 are linearly dependent. Without loss of
generality, assume the coefficient of X2 in ℓ is nonzero, and ℓ1 � cℓ for some c P k.
Through a change of variables involving X2, X3, X4, we obtain
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g1 � X1X2 � w1pX2, . . . , X4q,
g2 � c1X1X2 � w2pX2, . . . , X4q,

where for i � 1, 2, wi is the image of w1
i under the change of variables. We can write

w1 and w2 in the following way.

w1 � X2s1pX2, X3, X4q � t1pX3, X4q,
w2 � X2s2pX2, X3, X4q � t2pX3, X4q,

where s1, s2 are linear forms over k, and t1, t2 are quadratic forms over k. Thus

g1 � X1X2 �X2s1pX2, X3, X4q � t1pX3, X4q.
g2 � c1X1X2 �X2s2pX2, X3, X4q � t2pX3, X4q.

(11.1.3)

Suppose t1 and t2 have a common nontrivial zero over k. Through a change of
variables involving X3 and X4, we can assume p1, 0q is a common zero of t1 and t2.
Then g1 and g2 both vanish whenever X2 � X4 � 0. It follows that q1 and q2 both
vanish on a 5� 2 � 3 dimensional subspace in k5. Then n   2d is satisfied for n � 5
and d � 3, in which case Lemma A.3.1 contradicts minimization.

Therefore, Dkpt1, t2q � 0. Suppose t1 and t2 are linearly dependent over k. Then
there exist α1, α2 P k, not both zero, such that α1t1 � α2t2 � 0. Let g � α1g1 � α2g2.
Thus

g � pα1 � c1α2qX1X2 �X2pα1s1 � α2s2q.
g � X2ℓpX1, X2, X3, X4q

where ℓ � pα1 � c1α2qX1 � pα1s1 � α2s2q. By Lemma A.3.3, g has order ¥ 5
4
, hence

g must have order 2. But then g is isotropic of order 2, contrary to Lemma A.3.2.

We have shown that Dkpt1, t2q � 0 and that t1 and t2 are linearly independent
over k. Next, consider the following claim.

Claim: There exist pa, bq P k2, not both zero, for which a � bc1 � 0 and at1 � bt2 is
isotropic.

To prove this claim, notice that there are exactly |k|�1 pairs pa, bq P k2, not both
zero, for which a � bc1 � 0. On the other hand, since t1, t2 are linearly independent
with Dkpt1, t2q � 0, Lemma B.2.23 implies that there are at least |k| pairs pa, bq P k2,
not both zero, for which at1�bt2 is isotropic. Since |k| ¡ |k|�1, we deduce that there
is a pair pa, bq P k2, not both zero, for which a� bc1 � 0 and at1 � bt2 is isotropic, as
desired.
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Without loss of generality, assume a � 0. Let g11 � ag1 � bg2. From equation
11.1.3, we have

g11 � a1X1X2 �X2s
1pX2, X3, X4q � t1pX3, X4q,

g2 � c1X1X2 �X2s2pX2, X3, X4q � t2pX3, X4q,

where a1 � a� bc1, s1 � as1 � bs2, and t1 � at1 � bt2. Thus a
1 � 0 and t1 is isotropic.

We rewrite g11 as

g11 � X2pa1X1 � s1pX2, X3, X4qq � t1pX3, X4q.
g2 � c1X1X2 �X2s2pX2, X3, X4q � t2pX3, X4q.

Since a1 � 0, we can perform the invertible linear change of variable given by
X 1

1 � a1X1 � s1pX2, X3, X4q. Doing so yields

g11 � X 1
1X2 � t1pX3, X4q.

g2 � pc1{a1qpX 1
1 � s1pX2, X3, X4qqX2 �X2s2pX2, X3, X4q � t2pX3, X4q.

Thus we have

g11 � X 1
1X2 � t1pX3, X4q

g2 � X2spX 1
1, X2, X3, X4q � t2pX3, X4q

for some linear form spX 1
1, X2, X3, X4q defined over k. Since t1 is isotropic, we can

perform an invertible linear change of variables involving only X3 and X4 so that
t1p1, 0q � 0. Then g11pX 1

1, X2, X3, 0q � X 1
1X2. Since Dkpt1, t2q � Dkpt1, t2q � 0, we

know t2p1, 0q � 0, hence π � Q2pe3q. If we let Q1
1 � AQ1 � BQ2, where A,B P OK

satisfy A � a and B � b, then we have shown that

Q1
1pX 1

1, X2, X3, 0, 0q � X 1
1X2 mod π

and
π � Q2pe3q.

Thus, Lemma A.1.5 implies that there is a form in PKpQ1
1, Q2q that splits off 2 hy-

perbolic planes over K. The same is true for PKpQ1, Q2q.

Case 2. Suppose Dkpg1, g2q � 0. Note that by Lemma A.3.3, every form in Pkpg1, g2q
has order ¥ 2. We consider two possibilities.

First, suppose every form in Pkpg1, g2q has order ¥ 3. Then Lemma B.2.20 implies
that every form in Pkpg1, g2q has order 4 and splits off exactly 1 hyperbolic plane.
We work from equation 11.1.2, which we restate below for convenience.

Q1 � G1pX1, . . . , X4q � πX5L1pX1, . . . , X4q � πa1X
2
5 .

Q2 � G2pX1, . . . , X4q � πX5L2pX1, . . . , X4q � πa2X
2
5 .
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By minimization, Lemma A.2.7 implies that at least one of a1 or a2 is a unit. Without
loss of generality, assume a2 is a unit. There exists c P OK so that π � a1 � ca2. Let
Q1

1 � Q1 � cQ2 and G1
1 � G1 � cG2. Since every form in Pkpg1, g2q has order 4 and

splits off exactly 1 hyperbolic plane, we can perform an invertible linear change of
variables over k so that G1

1 � X1X2 � g0pX3, X4q for some quadratic form g0 defined
over k. It follows that

1. Q1
1pX1, X2, 0, 0, X5q � X1X2 mod π.

2. Q2pX1, X2, 0, 0, X5q � G2pX1, X2, 0, 0q mod π.

3. π2 � Q1
1pe5q.

4. π2 � Q2pe5q.
Therefore, Lemma A.1.6 implies that there is a form in PKpQ1

1, Q2q that splits off 2
hyperbolic planes over K. The same is true for the pencil PKpQ1, Q2q.

It remains to consider the case where there is a form of order 2 in Pkpg1, g2q. In
this case, since |k| ¥ 4 and Dkpg1, g2q � 0, Lemma B.2.14 implies that there is a form
in Pkpg1, g2q that splits off 2 hyperbolic planes. Then Lemma A.1.2 implies that the
same is true for PKpQ1, Q2q, as desired.

11.1.3 R � 5

Without loss of generality, we may assume that orderpq1q � r � rpq1, q2q. Since
3 ¤ r ¤ 4, we may perform an invertible linear change of variables over k so that
q1 � q3pX1, . . . , X4q, where q3 is a quadratic form over k of order r P t3, 4u. We can
write q2 in the following way:

q2 � q4pX1, . . . , X4q �X5ℓpX1, . . . , X5q,

where q4 is a quadratic form and ℓ is a linear form, each defined over k.

Suppose q2pe5q � 0. Since q3 has order ¥ 3, q3 splits off at least 1 hyperbolic plane
over k. We may perform an invertible linear change of variables over k involving the
variables X1, . . . , X4 so that q1 � X1X2� q0pX3, X4q for some quadratic form q0 over
k. Then Q1pX1, X2, 0, 0, X5q � X1X2 mod π and π � Q2pe5q. Thus Lemma A.1.5
implies that HKpQ1, Q2q � 2, as desired.

So, consider the case where q2pe5q � 0. Since R � 5, we know ℓ � 0. Without
loss of generality, assume the coefficient of X4 in ℓ is nonzero. By an invertible linear
change of variables involving X1, . . . , X4, we may assume ℓ � X4. We have

q1 � q3pX1, . . . , X4q.
q2 � q4pX1, . . . , X4q �X4X5.

92



We can rewrite q3 and q4 so that

q1 � q5pX1, X2, X3q �X4ℓ1pX1, X2, X3, X4q
q2 � q6pX1, X2, X3q �X4ℓ2pX1, X2, X3, X4q �X4X5

for some quadratic forms q5, q6 and some linear forms ℓ1, ℓ2, all defined over k. Since
q1 has order ¥ 3, we know q5 � 0. Thus q5 has order ¥ 1. By an invertible linear
change of variables involving X1, X2, X3, we may assume that q5p1, 0, 0q � 0, hence
π � Q1pe1q. There exists c P k such that the coefficient of X2

1 in q12 � cq1 � q2 is zero.
We can write q12 in the following way:

q12 � X1ℓ3pX2, X3q � q16pX2, X3q �X4ℓ4pX1, . . . , X4q �X4X5

for some linear forms ℓ3, ℓ4 and some quadratic form q16, all defined over k. Apply the
invertible linear change of variable where X5 is replaced with X5 � ℓ4pX1, . . . , X4q to
obtain

q12 � X1ℓ3pX2, X3q � q16pX2, X3q �X4X5.

Let Q1
2 � c1Q1 �Q2, where c1 P OK satisfies c1 � c. Then

Q1
2pX1, 0, 0, X4, X5q � X4X5 mod π

and
π � Q1pe1q.

Thus Lemma A.1.5 implies that HKpQ1, Q2q � 2, as desired. This completes the
proof of Theorem 11.1.1.

11.2 n � 6, 8

Let Q1, Q2 P Krx1, . . . , xns be quadratic forms over a p-adic field K. We consider the
following conditions.

Condition A: If tQ1, Q2u is a nonsingular pair, n � 5, and DKpQ1, Q2q � 0, then
HKpQ1, Q2q � 2.

Condition B: If tQ1, Q2u is a nonsingular pair, n � 6, and DKpQ1, Q2q � 0, then
HKpQ1, Q2q ¥ 2.

Condition C: If tQ1, Q2u is a nonsingular pair, n � 8, and DKpQ1, Q2q � 1, then
HKpQ1, Q2q ¥ 3.

Theorem 11.2.1. Let Q1, Q2 P Krx1, . . . , xns be a nonsingular pair of quadratic
forms over a p-adic field K.

1. If Condition A holds, then Condition B holds.

2. If Condition A holds, then Condition C holds.
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Proof. This theorem is due to David Leep.

Theorem 11.1.1 implies that condition A is true provided |k| ¥ 4. Therefore,
Theorem 11.2.1 implies that conditions B and C are also true provided |k| ¥ 4. This
gives us the following two theorems.

Theorem 11.2.2. Let Q1, Q2 P KrX1, . . . , X6s be a nonsingular pair of forms. If
DKpQ1, Q2q � 0 and |k| ¥ 4, then HKpQ1, Q2q ¥ 2.

Theorem 11.2.3. Let Q1, Q2 P KrX1, . . . , X8s be a nonsingular pair of forms. If
DKpQ1, Q2q � 1 and |k| ¥ 4, then HKpQ1, Q2q ¥ 3.

Copyright© John R. Hall 2024
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Appendix A: Splitting off Hyperbolic Planes, Minimized Pairs, R and r

A.1 Splitting off Hyperbolic Planes

For this section, let K denote a p-adic field with ring of integers OK and residue field
k. Thus k is a finite field. Let Kalg denote the algebraic closure of K. We may also
use K to denote the algebraic closure of K. For 1 ¤ i ¤ n, let ei P Kn denote the ith

standard basis vector of Kn.

Lemma A.1.1. Let M be a matrix over OK and In be the n� n identity matrix. If
M � In mod π, then detpMq is a unit. In particular, M is invertible.

Proof. We can write M � In � πA for some n� n matrix A over OK . If we compute
detpMq using co-factor expansion, expanding along the first row implies that detpMq
has the form detpMq � 1� πa for some a P OK . Then

vpdetpMqq � minpvp1q, vpπaqq � vp1q � 0

An element of OK is a unit if and only if its valuation is zero, hence we have shown
that detpMq is a unit and it follows that M is invertible.

Lemma A.1.2 is from [7, Lemma 2.2, p. 45], but we have slightly modified the
statement of the Lemma from that of Heath-Brown.

Lemma A.1.2. Let π be a uniformizing element for K and let QpX1, . . . , Xnq P
OKrXs be a quadratic form.

1. If
QpXq � X1X2 � � � � �X2s�1X2s � rQpX2s�1, . . . , Xnq

�π
2ş

i�1

XiLipX1, . . . , Xnq pmodπ2q

for some quadratic form rQ over OK, then there exists T P GLnpOKq such that

QpTXq � X1X2 � � � � �X2s�1X2s �Q0pX2s�1, . . . , Xnq

with Q0 P OKrXs satisfying Q0 � rQ mod π2.

95



2. Likewise, if

QpXq � X1X2 � � � � �X2s�1X2s �Q1pX2s�1, . . . , Xnq mod π,

then there exists T P GLnpOKq such that

QpTXq � X1X2 � � � � �X2s�1X2s �Q0pX2s�1, . . . , Xnq
with Q0 P OKrXs satisfying Q0 � Q1 mod π. Thus, if Q splits off at least s
hyperbolic planes over k, then Q splits off at least s hyperbolic planes over OK.

Proof. First, we will show that (1) implies (2). Assume

Q � X1X2 � � � � �X2s�1X2s �Q1pX2s�1, . . . , Xnq mod π

for some form Q1 P OKrXs. This implies that there is some quadratic form R �
RpX1, . . . , Xnq P OKrXs such that

Q � X1X2 � � � � �X2s�1X2s �Q1pX2s�1, . . . , Xnq � πRpX1, . . . , Xnq.
We can write

R �
2ş

i�1

pXiLipX1, . . . , Xnqq �Q2pX2s�1, . . . , Xnq.

It follows that

Q � X1X2 � � � � �X2s�1X2s �Q1pX2s�1, . . . , Xnq � πQ2pX2s�1, . . . , Xnq

�π
2ş

i�1

XiLipX1, . . . , Xnq.

Take rQ � Q1 � πQ2. Now Q satisfies the hypothesis (1), in which case there exists
T P GLnpOKq such that

QpTXq � X1X2 � � � � �X2s�1X2s �Q0pX2s�1, . . . , Xnq

with Q0 P OKrXs satisfying Q0 � rQ mod π2. In particular, Q0 � rQ mod π, hence
Q0 � Q1 mod π. This proves (2).

Next we prove (1). We closely follow Heath-Brown’s proof, but with added steps
and more details. We begin by proving the existence of T in the lemma. To accom-
plish this, we will show inductively that for every positive integer h there is a linear
transformation Th P GLnpOKq and linear forms Lphqi pX1, . . . , Xnq over OK such that

QpThXq � X1X2 � � � � �X2s�1X2s �QhpX2s�1, . . . , Xnq

�πh
2ş

i�1

XiLphqi pX1, . . . , Xnq mod πh�1
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with Qh � rQ mod π2. From this we let T � limh Th and Q0 � limh Qh, in which case

QpTXq � X1X2 � � � � �X2s�1X2s �Q0pX2s�1, . . . , Xnq
as desired.

The hypothesis implies the case h � 1 with T1 � id, Q1 � rQ, and Lp1qi � Li.
Assume there exists Th P GLnpOKq such that the above congruence holds. We may
reinterpret the above conguence as an equation:

QpThXq � X1X2 � � � � �X2s�1X2s �QhpX2s�1, . . . , Xnq

�πh
2ş

i�1

XiLphqi pX1, . . . , Xnq � πh�1Y,

where Y is a quadratic form in X1, . . . , Xn. We can write Y in the form Y �°2s
i�1 pXiMiq � N , where Mi are linear forms in X1, . . . , Xn and N is a quadratic

form in X2s�1, . . . , Xn. We have

QpThXq � X1X2 � � � � �X2s�1X2s �Qh � πh�1N

�πh
2ş

i�1

�
XiLphqi

	
� πh�1

2ş

i�1

pXiMiq

QpThXq � X1X2 � � � � �X2s�1X2s �Qh � πh�1N

�πh
2ş

i�1

�
Xi

�
Lphqi � πMi

		
.

Now let Qh � Qh�πh�1N and L
phq
i � Lphqi �πMi. Notice that Qh � Qh � rQ mod π2

since 2 ¤ h� 1. Now we obtain

QpThXq �
ş

i�1

pX2i�1X2iq �Qh � πh
2ş

i�1

�
XiL

phq
i

	
. (�)

Let Uh be the linear transformation defined by the following change of variable.

X2i�1 ÞÑ rX2i�1 � X2i�1 � πhL
phq
2i pX1, . . . , Xnq p1 ¤ i ¤ sq.

X2i ÞÑ rX2i � X2i � πhL
phq
2i�1pX1, . . . , Xnq p1 ¤ i ¤ sq.

Xi ÞÑ Xi p2s   i ¤ nq.
Note that Lemma A.1.1 implies that Uh is an invertible linear transformation.

Let rLphqi denote the image of L
phq
i under the above change of variables. That is,rLphqi � L

phq
i p rX1, . . . , rX2s, X2s�1, . . . , Xnq. Observe that for 1 ¤ i ¤ s,

rLphq2i�1 � L
phq
2i�1 � πhL12i�1 and rLphq2i � L

phq
2i � πhL12i, (�)
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where L12i�1 and L12i are linear forms in the variables X1, . . . , Xn. Let Th�1 � UhTh.
To determine QpTh�1Xq we apply the change of variables to the right-hand side of
p�q:

QpTh�1Xq �
ş

i�1

rX2i�1
rX2i

(1)

�Qh � πh
2ş

i�1

rXi
rLphqi

(2)

. (��)

We will deal with the expressions (1) and (2) separately.

(1) We have rX2i�1
rX2i � pX2i�1 � πhL

phq
2i qpX2i � πhL

phq
2i�1q.

Therefore

ş

i�1

rX2i�1
rX2i �

ş

i�1

pX2i�1X2iq � πh
ş

i�1

�
X2i�1L

phq
2i�1 �X2iL

phq
2i

	
� π2hA,

where A � °s
i�1 L

phq
2i�1L

phq
2i . Note that A is a quadratic form in the variables

X1, . . . , Xn.

(2) We have

πh
2ş

i�1

rXi
rLphqi � πh

ş

i�1

� rX2i�1
rLphq2i�1 � rX2i

rLphq2i

	
.

� πh
ş

i�1

�
pX2i�1 � πhL

phq
2i qrLphq2i�1 � pX2i � πhL

phq
2i�1qrLphq2i

	
.

� πh
ş

i�1

�
X2i�1

rLphq2i�1 �X2i
rLphq2i

	
� π2h

ş

i�1

�
L
phq
2i
rLphq2i�1 � L

phq
2i�1

rLphq2i

	
.

� πh
ş

i�1

�
X2i�1

rLphq2i�1 �X2i
rLphq2i

	
� π2hB,

where B � °s
i�1 L

phq
2i
rLphq2i�1 � L

phq
2i�1

rLphq2i . Note that B is a quadratic form in the
variables X1, . . . , Xn.

Now the right-hand side of p��q becomes

ş

i�1

X2i�1X2i � πh
ş

i�1

�
X2i�1L

phq
2i�1 �X2iL

phq
2i

	
� π2hA�Qh

�πh
ş

i�1

�
X2i�1

rLphq2i�1 �X2i
rLphq2i

	
� π2hB.

�
ş

i�1

pX2i�1X2iq � π2hpA�Bq �Qh
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�πh
ş

i�1

�
X2i�1prLphq2i�1 � L

phq
2i�1q �X2iprLphq2i � L

phq
2i q
	
.

Using the equations in p�q yields

�
ş

i�1

pX2i�1X2iq � π2hpA�Bq �Qh

�πh
ş

i�1

�
X2i�1pπhL12iq �X2ipπhL12iq

�
.

�
ş

i�1

pX2i�1X2iq � π2hpA�Bq �Qh � π2hC,

where C � °s
i�1X2i�1L

1
2i �X2iL

1
2i. Note that C is a quadratic form in the variables

X1, . . . , Xn. We have shown that the right-hand side of p��q is
ş

i�1

pX2i�1X2iq � π2hpA�B � Cq �Qh. (� � �)

Note that pA � B � Cq is a quadratic form in the variables X1, . . . , Xn. Therefore,
we can write

pA�B � Cq �
2ş

i�1

pXiRiq � SpX2s�1, . . . , Xnq,

where theRi are linear forms inX1, . . . , Xn and S is a quadratic form inX2s�1, . . . , Xn.
Now p� � �q becomes

ş

i�1

pX2i�1X2iq � π2h

�
2ş

i�1

pXiRiq � S

�
�Qh.

Let Lh�1
i � πh�1Ri and Qh�1 � π2hS � Qh. Then Qh�1 � Qh � rQ mod π2. In

conclusion we have shown that

QpTh�1Xq � X1X2 � � � � �X2s�1X2s �Qh�1pX2s�1, . . . , Xnq

�πh�1
2ş

i�1

XiLph�1q
i pX1, . . . , Xnq.

It follows that QpTh�1Xq is congruent to the right-hand of the above equation modulo
πh�2, which completes the induction argument.

Lemma A.1.3 is a generalization of an argument from the proof of Lemma 7.2 on
page 58 of [7].
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Lemma A.1.3. Given quadratic forms S1 and S2 in k variables over OK, assume k
is odd and

S1 � X1X2 � � � � �Xk�2Xk�1 mod π

and
π � S2pekq.

Then there exist λ P OK and a transformation T P GLkpOKq such that

T pekq � ek

and
pS1 � λS2qpTXq � X1X2 � � � � �Xk�2Xk�1.

Moreover, λ � S1pekqpS2pekqq�1 mod π2.

Proof. We will show that for all positive integers f there exist suitable λf and Tf

such that
pS1 � λfS2qpTfXq � X1X2 � � � � �X2t�1X2t mod πf , (A.1.1)

where t � k�1
2

and Tf pekq � ek. We prove this by induction on f , but before we do, we
will explain why this condition is enough to prove the lemma. Let λf and Tf be cho-
sen for each f ¥ 1 so that A.1.1 holds. Because OK is compact, the sequence tλfuf¥1

converges to some λ P OK . Because GLkpOKq is compact, the sequence tTfuf¥1

converges to some T P GLkpOKq. For this λ and T , we see that A.1.1 holds for all
f ¥ 1. Since πf Ñ 0 as f Ñ 8, we get pS1 � λS2qpTXq � X1X2 � � � � �X2t�1X2t, as
desired.

Now, to prove A.1.1 by induction, first note that the hypothesis of the lemma
gives us the case f � 1, where T1 � id and λ1 � 0. Assume now by induction that
λf and Tf are chosen so that A.1.1 holds for f ¥ 1. We will show the corresponding
statement holds for f � 1.

Let
SpXq � pS1 � λfS2qpTfXq. (A.1.2)

By induction,
SpXq � X1X2 � � � � �X2t�1X2t � πfQ

for some quadratic form Q � QpX1, . . . , Xkq over OK . Note that Q depends on λf

and Tf , and 2t � k � 1. We can write Q in the following way

Q � S 1pX1, . . . , X2tq �XkLpX1, . . . , X2tq � cX2
k .

We know Q depends on λf and Tf , so in particular, c depends on f . Substituting the
above formula for Q into the equation for SpXq gives us

SpXq � X1X2 � � � � �X2t�1X2t � πfS 1pX1, . . . , X2tq
�πfXkLpX1, . . . , X2tq � πfcX2

k .
(A.1.3)
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Define UpXq � S2pTfXq. We can express S2pTfXq in the following way:

UpXq � S2pTfXq � U0pX1, . . . , X2tq �MpX1, . . . , X2tqXk � dX2
k , (A.1.4)

where U0 is a quadratic form over OK , M is a linear form over OK , and d P OK . By
induction Tf pekq � ek. It follows that

Upekq � S2pekq � d. (A.1.5)

By hypothesis, π � d. We now examine S � πfcd�1U , which has coefficients in OK .
By construction, this form has no term in X2

k ; indeed, observe

Spekq � πfcd�1Upekq � πfc� πfc � 0.

Define V pX1, . . . , X2tq � pS� πfcd�1UqpX1, . . . , X2t, 0q. Looking at A.1.3 and A.1.4,
togehter with V , we can write

pS � πfcd�1UqpXq � V pX1, . . . , X2tq
�Xkπ

f pLpX1, . . . , X2tq � cd�1MpX1, . . . , X2tqq.
(A.1.6)

Again, looking at A.1.3 and A.1.4, we can write V as

V pX1, . . . , X2tq � SpX1, . . . , X2t, 0q � πfcd�1UpX1, . . . , X2t, 0q
� X1X2 � � � � �X2t�1X2t

� πfS 1pX1, . . . , X2tq � πfcd�1U0pX1, . . . , X2tq.
Notice V � X1X2 � � � � �X2t�1X2t mod π. Thus Lemma A.1.2 implies there is a

transformation T0 P GL2tpOKq such that

V pT0pX1, . . . , X2tqq � X1X2 � � � � �X2t�1X2t. (A.1.7)

We will extend T0 to a transformation T 1 P GLkpOKq. Define T 1 P GLkpOKq so
that

T 1px1, . . . , x2t, 0q � T0px1, . . . , x2tq
and

T 1pekq � ek.

Looking at equation A.1.6, we can write pS � πfcd�1UqpT 1Xq as
pS � πfcd�1UqpT 1Xq � V pT0pX1, . . . , X2tqq

�Xkπ
f
�
LpT0pX1, . . . , X2tqq � cd�1MpT0pX1, . . . , X2tq

�
.

(A.1.8)

Let
L1pX1, . . . , X2tq � LpT0pX1, . . . , X2tqq � cd�1MpT0pX1, . . . , X2tqq.

Substituting this, together our expression for V in A.1.7, into equation A.1.8 yields

pS � πfcd�1UqpT 1Xq � X1X2 � � � � �X2t�1X2t �Xkπ
fL1pX1, . . . , X2tq. (A.1.9)
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Suppose L1 � °2t
i�1 aiXi. Let γ2i � �a2i�1 and γ2i�1 � �a2i for 1 ¤ i ¤ t.

Consider the change in variables given by

Xi Ñ Xi � πfγiXk 1 ¤ i ¤ 2t.

Notice what happens when we apply this change in variables to the monomialX2i�1X2i:

X2i�1X2i Ñ pX2i�1 � πfγ2i�1XkqpX2i � πfγ2iXkq
� X2i�1X2i � πfγ2iX2i�1Xk � πfγ2i�1X2iXk � π2fγ2i�1γ2iX

2
k .

� X2i�1X2i � πfa2i�1X2i�1Xk � πfa2iX2iXk � π2fγ2i�1γ2iX
2
k .

Observe that πfa2i�1X2i�1Xk and πfa2iX2iXk are terms in Xkπ
fL1. Therefore, ap-

plying this change in variables to A.1.9 will make Xkπ
fLpX1, . . . , X2tq vanish, leaving

us with a form of the shape

pS � πfcd�1qpT 1Xq � X1X2 � � � � �X2t�1X2t � π2fc1X2
k (A.1.10)

for some c1 P OK . Using equations A.1.2 and A.1.4, we can write the left-hand side
of equation A.1.10 as

pS � πfcd�1UqpT 1Xq � SpT 1Xq � πfcd�1UpT 1Xq.
� pS1 � λfS2qpTfT

1Xq � πfcd�1S2pTfT
1Xq.

� pS1 � pλf � πfcd�1qS2qpTfT
1Xq.

Since Tf pekq � T 1pekq � ek, we see pTfT
1qpekq � ek. Let

Tf�1 � TfT
1 and λf�1 � λf � πfcd�1.

Since f ¥ 1, we have 2f ¡ f . Substituting the above into the left-hand side of
equation A.1.10 yields

pS1 � λf�1S2qpTf�1Xq � X1X2 � � � � �X2t�1X2t � π2fc1X2
k .

� X1X2 � � � � �X2t�1X2t mod πf�1.

This completes the induction argument. To finish, we will show that

λ � S1pekqpS2pekqq�1 mod π2.

Since λf�1 � λf � πfcd�1, we get λf�1 � λf mod πf . Therefore,

λf � λf�1 mod πf�1.

λf�1 � λf�2 mod πf�2.

...

λ3 � λ2 mod π2.
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Thus, for all f ¥ 2, λf � λ2 mod π2. Since λ is the limit of the Cauchy sequence
tλfuf¥1, we obtain λ � λ2 mod π2. We will show that λ2 � S1pekqpS2pekqq�1.

We know λ2 � λ1 � πcd�1, where c is as in equation A.1.3 with f � 1, and from
equation A.1.5, we know d � S2pekq. From equation A.1.3, we see that πc is the
coefficient of X2

k in SpXq; that is, Spekq � πc. From equation A.1.2, we see that
SpXq � pS1 � λ1S2qpT1Xq. From the beginning of the proof, we established that
λ1 � 0 and T1 � id. Therefore, SpXq � S1pXq, and so πc � Spekq � S1pekq. We
conclude that

λ2 � λ1 � πcd�1 � S1pekqpS2pekqq�1.

Lemma A.1.4. Let n ¥ 5 be odd and Q1, Q2 P OKrX1, . . . , Xns be quadratic forms.
Suppose that

1. Q1pX1, . . . , Xn�2, 0, 0q � X1X2 � � � � �Xn�4Xn�3 mod π, and

2. π � Q2pen�2q.

Then there exists λ P OK such that pQ1 � λQ2qpXq vanishes on a subspace over
K of dimension n�1

2
. Moreover, λ � Q1pen�2qpQ2pen�2qq�1 mod π2.

Proof. Let SipX1, . . . , Xn�2q � QipX1, . . . , Xn�2, 0, 0q. Then S1 and S2 satisfy the
hypothesis of Lemma A.1.3 with k � n � 2. According to the lemma, there exist
λ P OK and T 1 P GLn�2pOKq such that

pS1 � λS2qpT 1pX1, . . . , Xn�2qq � X1X2 � � � � �Xn�4Xn�3,

with T 1pen�2q � en�2, and λ � S1pen�2qpS2pen�2qq�1 mod π2. Thus

λ � Q1pen�2qpQ2pen�2qq�1 mod π2.

Extend T 1 to an invertible matrix matrix T P GLnpOKq in the following way: for
1 ¤ i ¤ n� 2, let T peiq � T 1peiq, and for n� 1 ¤ j ¤ n, let T pejq � ej. We have

pQ1 � λQ2qpXq � pS1 � λS2qpX1, . . . , Xn�2q �Xn�1L1pXq �XnL2pXq,

where L1, L2 are linear forms over OK with X � pX1, . . . , Xnq. It follows that

pQ1 � λQ2qpTXq � X1X2 � � � � �Xn�4Xn�3 �Xn�1L
1
1pXq �XnL

1
2pXq,

where L11pXq � L1pTXq and L12pXq � L2pTXq. Notice that pQ1�λQ2qpTXq vanishes
whenever the following n�1

2
variables all equal zero:

X1 � X3 � � � �Xn�4 � Xn�1 �Xn � 0.

Therefore, pQ1�λQ2qpTXq vanishes on a subspace overK of dimension n�n�1
2
� n�1

2
.

Since T is invertible, the same is true for pQ1 � λQ2qpXq.
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Lemma A.1.5. Let n ¥ 5 be odd and Q1, Q2 P OKrX1, . . . , Xns be a nonsingular
pair of quadratic forms. Suppose that

1. Q1pX1, . . . , Xn�2, 0, 0q � X1X2 � � � � �Xn�4Xn�3 mod π, and

2. π � Q2pen�2q.

Then there exists a form in PKpQ1, Q2q that splits off n�1
2

hyperbolic planes over K.

Proof. By Lemma A.1.4, there exists a form Q P PKpQ1, Q2q that vanishes on a
subspace over K of dimension n�1

2
. Since tQ1, Q2u is nonsingular, Theorem 2.1.27

implies that every form in PKpQ1, Q2q either has rank n � 1 or n over K. If Q has
rank n, then Theorem B.1.1 implies that Q splits off n�1

2
hyperbolic planes over K.

If Q has rank n�1, then after an invertible linear change of variables, we can assume
Q � Q1pX1, . . . , Xn�1q, where Q1 is a quadratic form over K of rank n � 1. Since Q
vanishes on a subspace over K of dimension n�1

2
, the form Q1 vanishes on a subspace

over K of dimension n�3
2
. By applying Lemma 2.3.12 with m � n�3

2
, we conclude

that there is a form in PKpQ1, Q2q that splits off m� 1 � n�1
2

hyperbolic planes over
K.

For any matrices U P GL2pKq and T P GLnpKq we define actions on pairs of
quadratic forms Q1, Q2 by setting

pQ1, Q2qU � pU11Q1 � U12Q2, U21Q1 � U22Q2q

and
pQ1pXq, Q2pXqqT � pQ1pTXq, Q2pTXqq.

This notation is also introduced in section A.2. In particular, Lemma A.2.1 implies
that the K-pencil generated by pQ1, Q2q contains a form which splits off j hyperbolic
planes if and only if the same is true for the K-pencil generated by pQ1, Q2qUT . We
will use this fact in the next few lemmas. The reader can verify that there is no
circular logic being used.

Lemma A.1.6. Let n ¥ 5 be odd and Q1, Q2 P OKrX1, . . . , Xns be a nonsingular
pair of quadratic forms. Suppose that

1. Q1pX1, . . . , Xn�2, 0, 0q � X1X2 � � � � �Xn�4Xn�3 mod π,

2. Q2pX1, . . . , Xn�2, 0, 0q � Q1
2pX1, . . . , Xn�3q mod π for some quadratic form Q1

2,

3. π2 � Q1pen�2q, and
4. π2 � Q2pen�2q.

Then there exists a form in PKpQ1, Q2q that splits off n�1
2

hyperbolic planes.
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Proof. We can write Q1 and Q2 in the following way:

Q1 � Q1pX1, . . . , Xn�2, 0, 0q �Xn�1S1pXq �XnS
1
1pXq,

Q2 � Q2pX1, . . . , Xn�2, 0, 0q �Xn�1S2pXq �XnS
1
2pXq,

where X � pX1, . . . , Xnq, and Si, S
1
i are linear forms over OK . Conditions (1) and (2)

imply that

Q1pX1, . . . , Xn�2, 0, 0q � X1X2 � � � � �Xn�4Xn�3

� πH1pX1, . . . , Xn�2q,
Q2pX1, . . . , Xn�2, 0, 0q � Q1

2pX1, . . . , Xn�3q
� πH2pX1, . . . , Xn�2q,

(A.1.11)

for some quadratic forms H1, H2 over OK . Note Q1pen�2q � πH1pen�2q. Condition
(3) then implies that π � H1pen�2q, so we write H1pen�2q � πc for some c P OK .
Likewise, we have Q2pen�2q � πH2pen�2q, so condition (4) implies that H2pen�2q � d
for some unit d. We can write H1 and H2 in the following way:

H1 � H 1
1pX1, . . . , Xn�3q �Xn�2LpX1, . . . , Xn�3q � πcX2

n�2,

H2 � H 1
2pX1, . . . , Xn�3q �Xn�2L

1pX1, . . . , Xn�3q � dX2
n�2,

(A.1.12)

where H 1
1, H

1
2 are quadratic forms over OK and L,L1 are linear forms over OK . We

now have the following formulas for Q1 and Q2.

Q1 � X1X2 � � � � �Xn�4Xn�3 � πH 1
1pX1, . . . , Xn�3q

� πXn�2LpX1, . . . , Xn�3q � π2cX2
n�2

�Xn�1S1pXq �XnS
1
1pXq.

Q2 � Q1
2pX1, . . . , Xn�3q � πH 1

2pX1, . . . , Xn�3q
� πXn�2L

1pX1, . . . , Xn�3q � πdX2
n�2

�Xn�1S2pXq �XnS
1
2pXq.

(A.1.13)

Set
T � diagpπ, π, . . . , π, 1, π3, π3q,

and
U � diagpπ�2, π�1q.

Let pV1, V2q � pQ1, Q2qUT . Then
V1 � X1X2 � � � � �Xn�4Xn�3

�Xn�2LpX1, . . . , Xn�3q � cX2
n�2 mod π.

V2 � dX2
n�2 mod π.

(A.1.14)

For each 1 ¤ i ¤ n� 3, there exist ci P OK so that a change of variable of the type

X 1
i � Xi � ciXn�2 1 ¤ i ¤ n� 3
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gives us
V1 � X 1

1X
1
2 � � � � �X 1

n�4X
1
n�3 � c1X2

n�2 mod π

for some c1 P OK . This change of variable leaves V2 � dX2
n�2 mod π. Let t � �d�1c1

and V 1
1 � V1 � tV2. Then

V 1
1 � X 1

1X
1
2 � � � � �X 1

n�4X
1
n�3 mod π.

Now V 1
1 , V2 satisfy the hypothesis of Lemma A.1.5, in which case Lemma A.1.5 implies

that there exists a form in PKpV 1
1 , V2q that splits off n�1

2
hyperbolic planes over

K. Lemma A.2.1 implies that since PKpV 1
1 , V2q contains a form which splits off n�1

2

hyperbolic planes, the same is true for PKpQ1, Q2q.

A.2 Minimized Pairs

We will describe the v-adic minimization process due to Birch, Lewis, and Murphy [4].

Let K be a p-adic field, OK the ring of integers, and k the residue field. Let π
be a uniformizing element for K. Let v : K Ñ Z Y t8u be the valuation map, with
vpπq � 1.

We define
F px, y;Q1, Q2q � F px, yq � detpxQ1 � yQ2q.

We assume the variety Q1 � Q2 � 0 is nonsingular, so that Lemma 2.1.27 implies that
F px, yq does not vanish identically and has no repeated factors. Consider discpF px, yqq
where discpF px, yqq is the discriminant of F px, yq, as defined in definitionD.1.1. From
definition D.2.2, we have

discpF q � ∆pQ1, Q2q,
where ∆pQ1, Q2q is as in definition D.2.1.

If the forms Q1 and Q2 are defined over OK , then Proposition D.2.4 implies that
∆pQ1, Q2q P OK . For any matrices U P GL2pKq and T P GLnpKq we define actions
on pairs of quadratic forms Q1, Q2 by setting

pQ1, Q2qU � pU11Q1 � U12Q2, U21Q1 � U22Q2q
and

pQ1pXq, Q2pXqqT � pQ1pTXq, Q2pTXqq.
Given a quadratic form Q P KrX1, . . . , Xns, we define

▽Q � pQX1 , QX2 , . . . , QXnq,
whereQXi

is the partial derivative ofQ with respect toXi. ThusQXi
P KrX1, . . . , Xns

is a linear form. For u P Kn, we define

▽Qpuq � pQX1puq, QX2puq, . . . , QXnpuqq.
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Thus, by Definition 2.1.25, a pair Q1, Q2 P KrX1, . . . , Xns is nonsingular if and only
if for each nonzero x P pKalgqn such that Q1pxq � Q2pxq � 0, the matrix�

▽Q1pxq
▽Q2pxq

�
�
�
BQ1

BX1
pxq BQ1

BX2
pxq � � � BQ1

BXn
pxq

BQ2

BX1
pxq BQ2

BX2
pxq � � � BQ2

BXn
pxq

�

has rank 2.

Lemma A.2.1. Given two quadratic forms Q1, Q2 P F rX1, . . . , Xns defined over a
field F , we have the following:

(1) The variety Q1 � Q2 � 0 is nonsingular if and only if the same is true for the
forms pQ1, Q2qUT .

(2) Q1, Q2 both vanish on a subspace over F of dimension i if and only if the same
is true for pQ1, Q2qUT .

(3) The pencil defined over F by Q1, Q2 contains a form which splits off t hyperbolic
planes if and only if the same is true for the forms pQ1, Q2qUT .

Proof. (1) We prove (1) first. We handle the actions of U and T separately. We
begin with pQ1, Q2qU . Let Q1

1pXq � U11Q1pXq � U12Q2pXq and Q1
2pXq �

U21Q1pXq � U22Q2pXq. Observe that�
Q1

1pXq
Q1

2pXq
�
�
�
U11Q1pXq � U12Q2pXq
U21Q1pXq � U22Q2pXq

�
�
�
U11 U12

U21 U22

� �
Q1pXq
Q2pXq

�
.

Since U is invertible, we see that Q1
ipxq � 0 if and only if Qipxq � 0 for i � 1, 2.

Given such a point x, observe that�
▽Q1

1pxq
▽Q1

2pxq
�
�
�
U11▽Q1pxq � U12▽Q2pxq
U21▽Q1pxq � U22▽Q2pxq

�
�
�
U11 U12

U21 U22

� �
▽Q1pxq
▽Q2pxq

�
.

Since U is invertible, we see that

�
▽Q1

1pxq
▽Q1

2pxq
�
has rank 2 if and only if

�
▽Q1pxq
▽Q2pxq

�
has rank 2. We conclude that Q1 � Q2 � 0 is nonsingular if and only if the
same is true for pQ1, Q2qU .
As for pQ1, Q2qT we note that if x is a singular common zero of Q1pXq and
Q2pXq, then T�1x is a singular common zero of Q1pTXq and Q2pTXq. We
deduce that pQ1, Q2q is nonsingular if and only if the same is true for pQ1, Q2qT .

(2) Now we prove (2). Let S � F n be an i-dimensional space for which Q1, Q2 van-
ish on. Then pQ1, Q2qU also vanishes on S. Conversely, assume that pQ1, Q2qU
vanishes on an i-dimensional space S 1 � kn. Let x P S 1. Since x is a common
zero of pQ1, Q2qU , we have that

U

�
Q1pxq
Q2pxq

�
� 0⃗.
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Since U is invertible, this implies Q1pxq � Q2pxq � 0, hence the pair pQ1, Q2q
vanishes on S 1 too. We have shown that pQ1, Q2q vanishes on an i-dimensional
space if and only if the same is true for pQ1, Q2qU .

On the other hand, since T is invertible, T maps the space S isomorphically
onto another space of of the same dimension. Therefore, pQ1, Q2q vanish on an
i-dimensional space if and only if the same is true for pQ1, Q2qT .

(3) Finally, we prove (3). Since T is invertible, every form in pQ1, Q2q is equivalent
to some form in pQ1, Q2qT , and vice versa. Thus the pencil pQ1, Q2q contains
a form which splits off t hyperbolic planes if and only if the same is true for
pQ1, Q2qT . To prove the analogous statement for pQ1, Q2qU , it suffices to show
that the pencil pQ1, Q2q and pQ1, Q2qU are the same.

To that end, let Q1
1 � U11Q1 � U12Q2 and Q1

2 � U21Q1 � U22Q2. We will
show pQ1, Q2q � pQ1

1, Q
1
2q. Note pQ1

1, Q
1
2q � pQ1, Q2q. On the other hand, if

aQ1 � bQ2 P pQ1, Q2q, then we want values for x and y such that

aQ1 � bQ2 � xQ1
1 � yQ1

2.

� xpU11Q1 � U12Q2q � ypU21Q1 � U22Q2q.
� pxU11 � yU21qQ1 � pxU12 � yU22qQ2.

(� � �)

Since U is invertible, the matrix equation

U t

�
x
y

�
�
�
U11 U21

U12 U22

� �
x
y

�
�
�
a
b

�
is solvable, in which case we find values for x and y satisfying p� � �q.

Definition A.2.2. Two quadratic forms Q1, Q2 P OKrX1, . . . , Xns are said to be
minimized if there are no matrices U P GL2pKq and T P GLnpKq such that pQ1, Q2qUT
is integral and

|∆pQ1, Q2qUT |v ¡ |∆pQ1, Q2q|v (1)

where | � |v is the v-adic absolute value: |a|v � cvpaq where 0   c   1. Thus the above
inequality states that

cvp∆pQ1,Q2qUT q ¡ cvp∆pQ1,Q2qq

which in turn is true if and only if

vp∆pQ1, Q2qUT q   vp∆pQ1, Q2qq. (2)

Our next lemma shows that there always exist matrices U and T for which
pQ1, Q2qUT is minimized.

Lemma A.2.3. Given a nonsingular pair of quadratic forms Q1, Q2 P OKrX1, . . . , Xns,
there exist matrices U and T for which pQ1, Q2qUT is minimized.
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Proof. IfQ1, Q2 is already minimized, then take U � id2�2 and T � idn�n. Otherwise,
if Q1, Q2 is not minimized, then there exist matrices U 1 and T 1 such that pQ1, Q2qU 1

T 1

is integral and U 1 and T 1 satisfy (2):

vp∆pQ1, Q2qU 1

T 1 q   vp∆pQ1, Q2qq.

If pQ1, Q2qU 1

T 1 is minimized, then we are done. Otherwise, there exists U2 and T 2 such
that the action of U2 and T 2 on pQ1, Q2qU 1

T 1 yields a pair of integral forms and

vp∆pQ1, Q2qU 1U2

T 1T 2 q   vp∆pQ1, Q2qU 1

T 1 q   vp∆pQ1, Q2qq. (A.2.1)

Again, if pQ1, Q2qU 1U2

T 1T 2 is minimized, then we’re done. Otherwise, we may continue
this process. Ultimately, as we continue to repeat this process, we obtain pairs pUi, Tiq
such that ∆pQ1, Q2qUi

Ti
is integral and

� � �   vp∆pQ1, Q2qUi
Ti
q   vp∆pQ1, Q2qUi�1

Ti�1
q   � � �   vp∆pQ1, Q2qq.

By Proposition D.2.4, each of the terms ∆pQ1, Q2qUi
Ti

belong in OK , in which case

vp∆pQ1, Q2qUi
Ti
q P Z¥0.

Further, we are assuming that Q1, Q2 is a nonsingular pair, and this implies that
∆pQ1, Q2q � 0. Thus vp∆pQ1, Q2qq is a positive integer. By Lemma A.2.1, the
pairs pQ1, Q2qUi

Ti
are also nonsginular, hence vp∆pQ1, Q2qUi

Ti
are also positive integers.

In conclusion, we have shown that A.2.1 above represents a decreasing sequence of
positive integers. Thus, the sequence

tvp∆pQ1, Q2qUi
Ti
qui¥1

eventually terminates, leaving us with a pair of matrices U and T for which pQ1, Q2qUT
is minimized.

Lemma A.2.4. Suppose Q1, Q2 P OKrX1, . . . , Xns are quadratic forms. There exist
matrices U and T for which pQ1, Q2qUT is minimized, and so that

1. pQ1, Q2q is nonsingular if and only if pQ1, Q2qUT is nonsingular.

2. pQ1, Q2q vanishes on an i-dimensional space over K if and only the same is
true for pQ1, Q2qUT .

3. PKpQ1, Q2q contains a form which splits off t hyperbolic planes if and only if
the same is true for the pencil generated by pQ1, Q2qUT .

Proof. By Lemma A.2.3, there exist matrices U and T for which pQ1, Q2qUT is mini-
mized. By LemmaA.2.1, the pair pQ1, Q2q is nonsingular, vanishes on an i-dimensional
space, and PKpQ1, Q2q contains a form which splits off t hyperbolic planes if and only
if the same is true for pQ1, Q2qUT .
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Lemma A.2.5. If the pair Q1, Q2 P OKrX1, . . . , Xns is minimized, then there are no
matrices U P GL2pKq and T P GLnpKq for which pQ1, Q2qUT are integral and such
that

4vpdetpT qq � nvpdetpUqq   0. (A.2.2)

Proof. Corollary D.2.3 gives

∆ppQ1, Q2qUT q � pdetpUqqnpn�1qpdetpT qq4pn�1q∆pQ1, Q2q.
Using this formula, we see from inequality (2) of definition A.2.2 that an equivalent
condition for a pair of integral forms Q1, Q2 to be minimized is that there are no
matrices U P GL2pKq and T P GLnpKq for which pQ1, Q2qUT are integral and such
that

vp∆pQ1, Q2qUT q   vp∆pQ1, Q2qq.
vpdetpUqnpn�1qq � vpdetpT q4pn�1qq � vp∆pQ1, Q2qq   vp∆pQ1, Q2qq.

vpdetpUqnpn�1qq � vpdetpT q4pn�1qq   0.

npn� 1qvpdetpUqq � 4pn� 1qvpdetpT qq   0.

nvpdetpUqq � 4vpdetpT q   0.

Lemma A.2.6. If
|detpUq|nv |detpT q|4n � 1

or equivalently
nvpdet Uq � 4vpdet T q � 0

and Q1, Q2 is a pair of minimized forms, then pQ1, Q2qUT will also be minimized pro-
vided pQ1, Q2qUT is integral.

Proof. Suppose pQ1, Q2qUT is not minimized. Then there exists U 1, T 1 such that
pQ1, Q2qU 1U

T 1T is integral and

|detpU 1q|nv |detpT 1q|4v ¡ 1.

This gives
|detpU 1Uq|nv |detpT 1T q|4v � |detpU 1q|nv |detpT 1q|4v ¡ 1

since |detpUq|nv |detpT q|4n � 1. This is contrary to our assumption that pQ1, Q2q is
minimized.

Lemma A.2.7 is a simple generalization of [7, Lemma 4.3, p.54].

Lemma A.2.7. Suppose that Q1, Q2, are quadratic forms over OK in n variables and
that Rpq1, q2q � R ¤ n� 1. Assume Q1, Q2 take the shape

QipX1, . . . , Xnq � GipX1, . . . , XRq � π
Ŗ

j�1

XjL
piq
j pXR�1, . . . , Xnq

�πHipXR�1, . . . , Xnq
(A.2.3)
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for i � 1, 2 with appropriate quadratic forms Gi, Hi and linear forms L
piq
j , all defined

over OK. If H1 and H2 have a common nontrivial zero over k, then the pair Q1, Q2

is not minimized.

Proof. We can make a change of variables among XR�1, . . . , Xn so that

H1p0, . . . , 0, 1q � H2p0, . . . , 0, 1q � 0.

One then sets T � diagpπ, . . . , π, 1q, where the multiplicity of π is n � 1, and U �
diagpπ�2, π�2q. Then pQ1, Q2qUT are integral and we have

nvpdetpUqq � 4vpdetpT qq � �4n� 4pn� 1q � �4   0

so that inequality A.2.2 is satisfied, hence Q1, Q2 is not a minimized pair.

A.3 Bounds on R and r

The definitions of R and r that we give here are the same as what was given in section
11.1. Given quadratic forms Q1, Q2 P OKrX1, . . . , Xns, for i � 1, 2, let qi � Qi. We
define R � Rpq1, q2q to be the least integer m such that there is a linear transfor-
mation T P GLnpkq for which q1pTXq and q2pTXq are both functions of X1, . . . , Xm

alone, where X � pX1, . . . , Xnq. Therefore, there is an invertible linear change of
variables over k so that qi � q1ipX1, . . . , XRq for i � 1, 2, where q1i denote quadratic
forms over k. Consequently, every form in Pkpq1, q2q can be expressed using only the
variables X1, . . . , XR.

We define r � rpq1, q2q to be the maximum order a form in P � Pkpq1, q2q; that
is,

r � rpq1, q2q � maxtorderpqq | q P Pu.
It follows that r ¤ R ¤ n.

This is a simple generalization of [7, Lemma 4.2, p. 54].

Lemma A.3.1. Suppose Q1, Q2 are quadratic forms over OK in n variables. Assume
that q1 and q2 both vanish on a subspace in kn of dimension d. Assume further that
n   2d. Then Q1, Q2 is not minimized.

Proof. By an invertible linear change of variables over k, we can assume q1 and q2
both vanish on spankpe1, . . . , edq. Therefore

q1 �
ḑ

i�1

XiℓipXd�1, . . . , Xnq � q3pXd�1, . . . , Xnq

q2 �
ḑ

i�1

Xiℓ
1
ipXd�1, . . . , Xnq � q4pXd�1, . . . , Xnq
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for some linear forms ℓi, ℓ
1
i, 1 ¤ i ¤ d, and some quadratic forms q3, q4, all defined

over k. It follows that

Q1 �
ḑ

i�1

XiLipXd�1, . . . , Xnq �Q3pXd�1, . . . , Xnq mod π

Q2 �
ḑ

i�1

XiL
1
ipXd�1, . . . , Xnq �Q4pXd�1, . . . , Xnq mod π

for some linear forms Li, L
1
i, 1 ¤ i ¤ d, and some quadratic forms Q3, Q4, all defined

over OK . Let
T � diagp1, . . . , 1, π, . . . , πq

where the first d entries are 1’s and the last n � d entries are π’s. Let U �
diagpπ�1, π�1q. Then pQ1, Q2qUT is an integral pair. Observe that

nvpdetpUqq � 4vpdetpT qq
� nvpπ�2q � 4vpπn�dq.
� �2n� 4pn� dq.

� 2n� 4d

We see that 2n � 4d   0 since n   2d. We conclude from Lemma A.2.5 that Q1, Q2

is not a minimized pair.

Lemma A.3.2. Let Q1, Q2 P OKrX1, . . . , Xns be a minimized pair of quadratic forms
with n ¥ 5. If there is a form in Pkpq1, q2q of order 2, then it must be anisotropic of
order 2.

Proof. Suppose there is a form in Pkpq1, q2q that is isotropic of order 2. By changing
the generators of the pencil Pkpq1, q2q, we can assume q1 is isotropic of order 2.
Through a change of variable, we can assume q1 � X1X2. Let T � diagpπ, 1, . . . , 1q
and U � diagpπ�1, 1q. Then pQ1, Q2qUT is an integral pair, but

4vpdetpT qq � nvpdetpUqq � 4� n   0.

According to Lemma A.2.5, this contradicts the minimization of Q1 and Q2.

Lemma A.3.3. Let Q1 and Q2 be a minimized pair of quadratic forms in n variables
defined over OK. Then every form in Pkpq1, q2q has order ¥ n

4
, hence rpq1, q2q ¥ n

4
.

Proof. Suppose there is a form in Pkpq1, q2q of order j. By changing the generators
of Pkpq1, q2q, we can assume orderpq1q � j. Through a change of variable, we get
q1pX1, . . . , Xnq � q11pX1, . . . , Xjq for some quadratic form q1. Let

T � diagpπ, . . . , π, 1, . . . , 1q,
where the first j diagonal entries are π’s, and the last n� j diagonal entries are ones.
Let U � diagpπ�1, 1q. Then pQ1, Q2qUT is an integral pair. By minimization, Lemma
A.2.5 implies that

4vpdetpT qq � nvpdetpUqq ¥ 0.

That is, 4j � n ¥ 0, hence j ¥ n
4
.
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The next lemma shows the role that DKpQ1, Q2q plays in finding a lower bound
on R.

Lemma A.3.4. Suppose Q1 and Q2 are a minimized pair over OK in n variables
and Q1, Q2 both vanish on a subspace of dimension d over K. Then

Rpq1, q2q ¥
#

n
2
� d if n is even

n�1
2
� d if n is odd.

Proof. For i � 1, 2, we can write Qi in the following way:

Qi � GipX1, . . . , XRq

� π
Ŗ

j�1

�
XjL

piq
j pXR�1, . . . , Xnq

	
� πHipXR�1, . . . , Xnq,

(A.3.1)

where Gi, Hi are integral quadratic forms and the L
piq
j are integral linear forms. For

i � 1, 2, let gi � Gi. Note qipX1, . . . , Xnq � gipX1, . . . , XRq. By hypothesis, Q1 and
Q2 vanish on a subspace S � Kn of dimension d. Let v1, . . . , vd be a K-basis for S.
By Lemma C.0.1, we can assume v1, . . . , vd have coordinates in OK and are linearly
independent modulo π.

For each 1 ¤ i ¤ d, let v1i P pOKqR denote the projection of vi onto the first R
coordinates. Assume that v11, . . . , v

1
d are linearly dependent modulo π. Then there

exist a1, . . . , ad P Ok, not all divisible by π, such that the first R coordinates of w �
a1v1�� � ��advd are divisible by π. Since v1, . . . , vd are linearly independent modulo π,
it follows that the remaining n�R coordinates of w can not all be divisible by π; that
is, if w � pw1, . . . , wnq, then pwR�1, . . . , wnq � 0 mod π. Since Qipw1, . . . , wnq � 0,
we get that π divides HipwR�1, . . . , wnq. Since pwR�1, . . . , wnq � 0 mod π, we deduce
that h1 and h2 have a common nontrivial zero over k. According to Lemma A.2.7,
this is contrary to Q1 and Q2 being minimized.

Therefore, v11, . . . , v
1
d are linearly independent modulo π.

Let S 1 � spanOK
pv11, . . . , v1dq. Since Q1pSq � Q2pSq � 0, we see that π � G1pS 1q and

π � G2pS 1q. Let S 1 � spankpv11, . . . , v1dq. Then S 1 is a subspace of kR of dimension
d, and g1pS 1q � g2pS 1q � 0. Through an invertible change of variable over k, we can
assume that S 1 � spankpe1, . . . , edq. Thus g1 and g2 have the shape

gi �
ḑ

j�1

�
Xjm

piq
j pXd�1, . . . , XRq

	
� wipXd�1, . . . , XRq,

where the m
piq
j are linear forms over k and the wi are quadratic forms over k. This
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implies that Q1 and Q2 have the following shape

Qi �
ḑ

j�1

�
XjM

piq
j pXd�1, . . . , XRq

	
�WipXd�1, . . . , XRq

� πUipX1, . . . , XRq

� π
Ŗ

j�1

�
XjL

piq
j pXR�1, . . . , Xnq

	
� πHipXR�1, . . . , Xnq,

(A.3.2)

where the M
piq
J are linear forms over OK and the Ui,Wi are quadratic forms over OK .

Let T be the n� n diagonal matrix defined by

T � diagp1, 1, . . . , 1, π, π, . . . , π, 1, . . . , 1q,

where the first d entries are ones, and there are pR�dq π’s. Thus vpdetpT qq � R�d.
Let U � diagpπ�1, π�1q. Then the pair pQ1, Q2qUT is integral. Since pQ1, Q2q is a
minimized pair, Lemma A.2.5 implies that

4vpdetpT qq � nvpdetpUqq ¥ 0.

4pR � dq � 2n ¥ 0.

R � d ¥ n

2
.

R ¥ n

2
� d.

It follows that

R ¥
#

n
2
� d if n is even

n�1
2
� d if n is odd.
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Appendix B: Quadratic Form Theory

Let k be any field and let V be a finite dimensional vector space over k. For a
quadratic map f : V Ñ k and a subspace W � V , we define

WK � tw P V | Bf pw, V q � 0u.
That is, WK consists of the all the vectors w P V such that Bf pw, vq � 0 for all v P V .

Lemma B.0.1. Let q : V Ñ k be a quadratic map, and let W � V be any subspace.
If Bq is nondegenerate, then dimpWKq � dimpV q � dimpW q.
Proof. Let V � � HomkpV, kq, and W � � HomkpW,kq. Thus V � is the dual space of
V and W � is the dual space of W . Consider the map φ : V Ñ V � defined by

pφpvqqpv1q � Bqpv, v1q v, v1 P V.

Since Bq is bilinear over k, the map φ is k-linear. We will show φ is injective. Sup-
pose v P kerpφq. Let v1 P V . Then Bqpv1, vq � 0, hence v P radpBqq. Since Bq is
nondegenerate, radpBqq � 0, hence v � 0 and so φ is injective.

By rank-nullity,

dimpV q � dimpimpφqq � dimpkerpφqq.
Since φ is injective, dimpimpφqq � dimpV q. Since dimpV q � dimpV �q, we obtain
dimpimpφqq � dimpV �q. Thus impφq � V �, hence φ is surjective. Therefore φ is an
isomorphism.

For any linear map f P V �, let f |W denote the restriction of f to W , hence
f |W P W �. The map from V � to W � given by π : f ÞÑ f |W is surjective, which we
prove now. Let g P W �. For any basis β1 of W , extend to a basis β for V : β � β1Yβ2.
Let f P V � be defined by letting fpvq � gpvq for all v P β1 and fpvq � 0 for all v P β2.
Then f |W � g , hence V � πÝÑ W � is surjective.

Our results give us the following exact sequence

0Ñ V
φÝÑ V � πÝÑ W � Ñ 0.

Applying rank-nullity to π � φ gives

dimpV q � dimpimpπ � φqq � dimpkerpπ � φqq.
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n � dimpW �q � dimpkerpπ � φqq.
n� dimpW q � dimpkerpπ � φqq.

We will be done once we show that dimpkerpπ � φqq � dimpWKq. The map π � φ is
given by

pπ � φqpvq � πpφpvqq � φpvq|W .

If φpvq|W is the zero map, then BQpv, wq � 0 for all w P W . Thus v P WK. We
conclude that kerpπ � φq � WK, in which case dimpkerpπ � φqq � dimpWKq.

Lemma B.0.2. Let q : V Ñ k be a quadratic map. If W � V is a subspace where
every nonzero element of W is a nonsingular zero of q, then dimpWKq � n�dimpW q.
Proof. Since every nonzero element of W is a nonsingular zero of q, we have W X
radpBqq � 0. Since V is a finite dimensional vector space, there exists a sub-
space V0 � V such that V0 is maximal with respect to containing W and such
that V0 X radpBqq � 0. We will show that V � V0 ` radpBqq. We already know
V0 X radpBqq � 0, so it remains show that V � V0 � radpBqq. Let v P V . If
v P V0 � radpBqq, we are done. Otherwise, v R V0 � radpBqq. Then consider V0 ` kv.
We will show that pV0 ` kvq X radpBqq � 0.

To that end, let w P pV0 ` kvq X radpBqq. Then w P radpBqq, and w � v0 � λv for
some v0 P V0 and some λ P k. Thus

λv � �v0 � w P V0 � radpBqq.

Since v R V0 � radpBqq, we must have λ � 0. Then w � v0, and w P radpBqq, so
v0 P radpBqq. But V0 X radpBqq � 0, hence v0 � 0. This proves that w � 0 and so
pV0 ` kvq X radpBqq � 0.

However, having pV0` kvqX radpBqq � 0 is contrary to the maximality of V0. We
therefore conclude that V � V0 ` radpBqq. This implies that Bq|V0

is nondegenerate,
which we prove now. Suppose y P radpBq|V0

q. Then y P V0, and Bqpy, V0q � 0.
For any z P V , we can write z � z0 � z1, where z0 P V0 and z1 P radpBqq. Thus
Bqpy, zq � Bqpy, z0q � Bqpy, z1q � 0 � 0 � 0, which implies y P radpBqq. Thus y � 0
since V0 X radpBqq � 0. This proves that Bq|V0

is nondegenerate.

Because Bq|V0
is nondegenerate, and W � V0 is a subspace, Lemma B.0.1 implies

that
dimpWK

V0
q � dimpV0q � dimpW q, (B.0.1)

where WK
V0
� tx P V0 | Bqpx,W q � 0u. Since V � V0 ` radpBqq, every element of V

can be written as v0 � v1, where v0 P V0 and v1 P radpBqq. Consider the projection
map π : WK Ñ V0 given by

πpv0 � v1q � v0 v0 � v1 P WK.
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We will compute the kernal and image of π. It is clear that kerpπq � radpBqq (note
that radpBqq � WKq. As for the image of π, observe that if y � y0 � y1 P WK, with
y0 P V0 and y1 P radpBqq, then πpyq � y0. We claim y0 P WK

V0
. Let z P W and observe

that
Bqpy0, zq � Bqpy � y1, zq � Bqpy, zq �Bqpy1, zq � 0

because y P WK and y1 P radpBqq. Thus y0 P WK
V0
, which shows that impπq � WK

V0
.

For the reverse inclusion, observe that WK
V0
� V0 and WK

V0
� WK. These two inclu-

sions imply that πpWK
V0
q � WK

V0
, hence WK

V0
� impπq. Thus impπq � WK

V0
.

We have shown that the kernal of π is radpBqq, and the image of π is WK
V0
. By

rank-nullity,
dimpWKq � dimpWK

V0
q � dimpradpBqqq.

dimpWV0qK � dimpWKq � dimpradpBqqq.
Substituting this formula into equation B.0.1 gives

dimpWKq � dimpradpBqqq � dimpV0q � dimpW q.

dimpWKq � dimpV0q � dimpradpBqqq � dimpW q.
dimpWKq � n� dimpW q.

B.1 Orthogonal Decomposition and Hyperbolic Planes

Theorem B.1.1. Let q : V Ñ k be a quadratic map with dimpV q � n. The following
statements are true.

1. If q vanishes on an m-dimensional subspace U of V , where every nonzero ele-
ment of U is a nonsingular zero of q, then q splits off at least dimpUq hyperbolic
planes.

2. If orderpqq � n and W is any subspace of V where qpW q � 0, then q splits off
at least dimpW q hyperbolic planes.

Proof. Assume that q has order n and qpW q � 0 for some subspace W of V . Defi-
nition 2.1.13 implies that q is nondegenerate. Therefore, Lemma 2.1.18 implies that
every nonzero element of W is a nonsingular zero of q. For this reason, we see that
(1) implies (2).

To prove (1), we induct on m. The result is trivial for m � 0. Let m ¥ 1, and
assume by induction that the result is true when dimpUq   m.

Let U be an m-dimensional subspace of V where every nonzero element of U is a
nonsingular zero of q. Write U � U 1` kv, where U 1 is an pm� 1q-dimensional space.
Thus U 1 � U . We will show that UK � pU 1qK. By inclusion-reversing, since U 1 � U ,
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we get UK � pU 1qK. Since every nontrivial zero of q is nonsingular, Lemma B.0.2
implies that

dimpUKq � n� dimpUq   n� dimpU 1q � dimppU 1qKq.

This proves that UK � pU 1qK.

Therefore, there exists w P pU 1qK with w R UK. Since w R UK, there exists
nonzero v P U such that Bqpv, wq � 0. By scaling v, we can assume Bqpv, wq � 1.
Let w1 � w � cv, where c � qpwq. Note that

qpw1q � qpw � cvq � Bqpw,�cvq � qpwq � qp�cvq � �c� qpwq � 0.

Thus qpw1q � 0, qpvq � 0, and Bqpv, w1q � Bqpv, w � cvq � 1 � 0. We deduce that
the subspace Y � spanpv, w1q is hyperbolic. Therefore, q restricted to Y splits off 1
hyperbolic plane.

In particular, Bq|Y is nondegenerate, so by Lemma B.0.1, dimpY Kq � n�dimpY q.
Moreover, Y XY K � radpBq|Y q, and since Bq|Y is nondegenerate, we have Y XY K � 0.
Therefore,

dimpY ` Y Kq � dimpY q � dimpY Kq � dimpY q � pn� dimpY qq � n.

This proves that V � Y p̀Y K.

Since v P U , qpvq � 0; likewise, since U 1 � U , we get qpU 1q � 0. Thus Bqpv, U 1q �
0. Further, Bqpw,U 1q � 0 because w P pU 1qK. Because w1 � w � cv, it follows that
Bqpw1, U 1q � 0 also. Having Bqpv, U 1q � Bqpw1, U 1q � 0 implies that v, w1 P pU 1qK.
Since Y � spanpv, w1q, we get Y � pU 1qK, hence U 1 � Y K by inclusion reversing. By
induction, q restricted to Y K splits off at least dimpU 1q � m � 1 hyperbolic planes
and so q splits off at least m hyperbolic planes.

Theorem B.1.2. Let V be a vector space over a field F with dimpV q � n   8. Let
q : V Ñ F be a quadratic map. There exist subspaces V1, . . . , Vj � V such that

V � V1 p̀ � � � p̀Vj p̀radpBqq,

where each Vi � spanpvi, wiq with Bqpvi, wiq � 0.

Proof. We go by induction on n. If n � 0, then V � radpBqq � 0. Assume by
induction that the result holds for quadratic modules pV, qq such that dimpV q   n,
where n ¥ 1.

For dimpV q � n, if radpBqq � V , then we are done. Otherwise, we choose a
subspace V 1 � V such that V � V 1 ` radpBqq and dimpV 1q ¥ 1. Thus dimpV q �
dimpV 1q � dimpBqq and V 1 X radpBqq � 0. Since V 1 X radpBqq � 0, we see that
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q|V 1 is nondegenerate. Let v1 P V 1 be nonzero. Then v1 R radpBqq. There exists
w1 P V 1 such that Bqpv1, w1q � 0. Let V1 � spanpv1, w1q. Let S � V K

1 X V 1, hence
S � tx P V 1 | Bqpx, V1q � 0u. Since q|V 1 is nondegenerate, Lemma B.0.1 implies that
dimpSq � dimpV 1q � dimpV1q.

We will show that V1 X S � 0. Suppose x P V1 X S. For any v P V , we can write
v � z1 � z2, where z1 P V 1 and z2 P radpBqq. Observe that

Bqpx, vq � Bqpx, z1q �Bqpx, z2q.

Since x P S, Bqpx, z1q � 0. Because z2 P radpBqq, Bqpx, z2q � 0. Thus x P radpBqq.
Since x P V1 � V 1, we deduce that x P V 1 X radpBqq � 0, hence x � 0. We have
shown that V1 X S � 0.

Since dimpV 1q � dimpV1q � dimpSq and V1 X S � 0, it follows that V 1 � V1 ` S.
Then

V � V1 ` S ` radpBqq.
Let W � S` radpBqq. Note that BqpV1,W q � 0 and V � V1`W , with dimpW q   n.
Applying induction to W yields

V � V1 ` V2 ` � � � ` Vj ` radpBq|W q.

We will be done once we show that radpBq|W q � radpBqq.

To that end, suppose w P radpBq|W q. Then

Bqpw, V q � Bqpw, V1 `W q � Bqpw, V1q �Bqpw,W q.

Since BqpV1,W q � 0, we get Bqpw, V1q � 0. Since w P radpBq|W q, we get Bqpw,W q �
0. Thus Bqpw, V q � 0 and so w P radpBqq. On the other hand, suppose y P radpBqq.
Then Bqpy,W q � 0, and since W � S ` radpBqq, we get that radpBqq � W , hence
y P W . Then y P radpBq|W q. We have shown that radpBq|W q � radpBqq. This
completes the proof.

Lemma B.1.3. Let q : V Ñ k be a quadratic map with charpkq � 2 and dimpV q � n.
There exists a k-basis of V for which the quadratic form associated to q with respect
to this basis has the shape

Q1pX1, X2q � � � � �QjpX2j�1, X2jq � qpd2j�1qX2
2j�1 � � � � � qpdnqX2

n,

where rankpQiq � 2, n � 2j � dimpradpBqqq, and td2j�1, . . . , dnu is a k-basis for
radpBqq.
Proof. By Lemma B.1.2, there exist subspaces V1, . . . , Vj � V such that

V � V1 p̀ � � � p̀Vj p̀radpBqq,

119



where each Vi � spanpvi, wiq with Bqpvi, wiq � 0. Having Bqpvi, wiq � 0 implies that
for charpkq � 2, vi, wi are linearly independent, for if vi � λwi for some λ P k, then
Bqpvi, wiq � λBqpwi, wiq � λ2qpwiq � 0.

Let QipX2i�1, X2iq be the quadratic form associated to q|Vi
with respect to the

basis tvi, wiu. Then

qpviqX2
2i�1 �Bqpvi, wiqX2i�1X2i � qpwiqX2

2i.

Thus, detpQiq � 4qpviqqpwiq�Bqpvi, wiq � Bqpvi, wiq � 0. It follows that rankpQiq �
2.

From Lemma B.1.2, dimpradpBqqq � n� p°j
i�1 dimpViqq � n� 2j. Let

td2j�1, . . . , dnu

be a k-basis for radpBqq. The quadratic form associated to q with respect to the basis
tv1, w1, . . . , vj, wj, d2j�1, . . . , dnu is given by

Q1pX1, X2q � � � � �QjpX2j�1, X2jq � qpd2j�1qX2
2j�1 � � � � � qpdnqX2

n.

Lemma B.1.4. Let q : V Ñ k be a quadratic map with k perfect. If dimpradpBqqq ¥
2, then dimpradpqqq ¥ 1.

Proof. Let v, w P radpBhq be linearly independent. Let a, b P k, not both zero. Note
that qpav � bwq � a2qpvq � b2qpwq. Since k is a perfect field, every element of k is a
square. We may therefore choose a, b P k, not both zero, such that qpav � bwq � 0.
Then av � bw P radpqq. Since v, w are linearly independent, and not both a, b are
zero, we get that av � bw � 0. Thus dimpradpqqq ¥ 1.

Lemma B.1.5. Let q : V Ñ k be a quadratic map.

1. If charpkq � 2, then orderpqq � n if and only if detpqq � 0.

2. If charpkq � 2, n is even, and k is perfect, then orderpqq � n if and only if
detpqq � 0.

3. If charpkq � 2, n is odd, and k is perfect, then orderpqq � n if and only if
det 1

2
pqq � 0

Proof. We begin the observation that for both charpkq � 2 and charpkq � 2, if
detpqq � n, then rankpqq � n, hence orderpqq � n.

For charpkq � 2, orderpqq � rankpqq, and rankpqq � n if and only if detpqq � 0.
This proves (1).
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Assume charpkq � 2. By Lemma B.1.3, there exists a k-basis of V such that the
quadratic form associated to q with respect to this basis is

Q1pX1, X2q � � � � �QjpX2j�1, X2jq � qpd2j�1qX2
2j�1 � � � � � qpdnqX2

n,

where rankpQiq � 2, n � 2j � dimpradpBqqq, and td2j�1, . . . , dnu is a k-basis for
radpBqq. Observe that

detpqq � detpQ1q � � � detpQjq2n�2jqpd2j�1q � � � qpdnq. (B.1.1)

Since rankpQiq � 2, we have detpQiq � 0.

For (2), we suppose n is even and k is perfect. On the one hand, our observa-
tion at the beginning of the of proof implies that if detpqq � 0, then orderpqq � n.
For an alternate argument, equation B.1.1 implies that if detpqq � 0, then 0 �
n � 2j � dimpradpBqqq. Since radpqq � radpBqq, we obtain dimpradpqqq � 0, hence
orderpqq � n.

Conversely, suppose orderpqq � n. Then radpqq � 0 and so Lemma B.1.4 implies
that n� 2j � dimpradpBqqq ¤ 1. Since n is even, n� 2j � dimpradpBqqq � 0, hence
equation B.1.1 implies that detpqq � detpQ1q � � � detpQjq � 0. This proves (2).

For (3), we suppose n is odd and k is perfect. If det 1
2
pqq � 0, then 1 � n � 2j �

dimpradpBqqq. Thus radpBqq � spanpd2j�1q. Also, since det 1
2
pqq � 0, we have

qpd2j�1q � 0. Thus, radpqq � radpqq X radpBqq � 0, hence orderpqq � n.

Conversely, suppose orderpqq � n. Then radpqq � 0 and so Lemma B.1.4 implies
that n � 2j � dimpradpBqq ¤ 1. Since n is odd, we get n � 2j � dimpradpBqqq � 1.
Then equation B.1.1 implies that det 1

2
pqq � detpQ1q � � � detpQjq � 0.

Lemma B.1.6. Let q : V Ñ k be a quadratic map with charpkq � 2 and dimpV q � n.
There exists a k-basis of V for which the quadratic form associated to q with respect
to this basis is given by

a1X
2
1 � � � � � anX

2
n,

where each ai P k.

Proof. By Lemma B.1.2, there exist subspaces V1, . . . , Vj � V such that

V � V1 p̀ � � � p̀Vj p̀radpBqq,

where each Vi � spanpvi, wiq with Bqpvi, wiq � 0. Suppose tz1, . . . , ztu is a k-basis
for radpBqq, hence t � dimpradpBqqq. Then the quadratic form associated to q|radpBqq

with respect to this basis is a diagonal form.
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As for q|Vi
, note that if dimpViq � 1, then the quadratic associated to q|Vi

is a
1-dimensional form, as desired. Suppose dimpViq � 2. We consider two cases.

Case 1. Suppose qpviq � qpwiq � 0. Then the quadratic form associated to
q|Vi

is the hyperbolic plane aXY , a � Bqpvi, wiq � 0. Then aXY is equivalent to
XY . For charpkq � 2, XY is equivalent to the diagonal form X2 � Y 2; to see this,
start with X2 � Y 2, and write X2 � Y 2 � pX � Y qpX � Y q. The change of variable

given by X 1 � X � Y and Y 1 � X � Y is invertible because the matrix

�
1 �1
1 1

�
has determinant �2. This change of variable transforms X2�Y 2 into the hyperbolic
plane X 1Y 1.

Case 2. Without loss of generality, suppose qpviq � 0. Let a P k, yet to be
chosen. Observe that

Bqpvi, vi � awiq � Bqpvi, viq � aBqpvi, wiq.
� 2qpviq � aBqpvi, wiq.

Let b � Bqpvi, wiq and let a � �2b�1qpviq. Then a � 0, Bqpvi, vi � awiq � 0, and
tvi, vi � awiu is a k-basis for Vi. It follows that the quadratic form associated to q|Vi

with respect to the basis tvi, vi � awiu is a diagonal form.

Lemma B.1.7. Let q : V Ñ k be a quadratic map over an arbitrary field k. Assume
dimpV q � n ¥ 2, and let A � ta1, . . . , anu be a k-basis of V . Let Mq � pmijq be the
matrix of Bq with respect to A; thus mij � Bqpai, ajq. Fix 1 ¤ t ¤ n � 1, and for
each 1 ¤ i ¤ n, let Ri � pmi1, . . . ,mitq.

Let U � spanpa1, . . . , atq. For each j P tt� 1, . . . , nu, suppose there exist elements
c1j, . . . , ctj P k such that

c1jR1 � c2jR2 � � � � � ctjRt � �Rj. (B.1.2)

Let a1j � aj �
°t

s�1 csjai. Then spanpa1t�1, a
1
t�2, . . . , a

1
nq � UK. Thus

V � spanpa1, . . . , atq p̀spanpa1t�1, . . . , a
1
nq.

Proof. To show spanpa1t�1, a
1
t�2, . . . , a

1
nq � UK, it is sufficient to prove that for each

t � 1 ¤ j ¤ n, Bqpai, a1jq � 0 for all 1 ¤ i ¤ t. Equation B.1.2 implies that for each
1 ¤ i ¤ t,

c1jm1i � c2jm2i � � � � � ctjmti � �mji.

Since Mq � pmijq is a symmetric matrix, we get

c1jmi1 � c2jmi2 � � � � � ctjmit � �mij.
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ţ

s�1

csjmis � �mij.

ţ

s�1

csjBqpai, asq � �Bqpai, ajq.

It follows that

Bqpai, a1jq � Bqpai, ajq �Bqpai,
ţ

s�1

csjasq.

� Bqpai, ajq �
ţ

s�1

csjBqpai, asq.

� 0.

To prove V � spanpa1, . . . , atq p̀spanpa1t�1, . . . , a
1
nq, let W � spanpa1, . . . , atq �

spanpa1t�1, . . . , a
1
nq. Note that a1, . . . , at P W . For t� 1 ¤ j ¤ n, we have

aj � �
�

ţ

s�1

csjai

�
� a1j.

Thus each aj P W . Then A � W and so V � W .

Lemma B.1.8. Let k be any field and q P krX1, . . . , Xns be a quadratic form with
n ¥ 2. Let ei P kn denote the ith standard basis vector of kn. Let f : kn Ñ k be
the quadratic map associated to q with respect to the standard basis te1, . . . , enu. Fix
1 ¤ t ¤ n� 1, and let gpX1, . . . , Xtq � qpX1, . . . , Xt, 0, . . . , 0q.

Suppose g has rank t over k. Then there exist e1t�1, . . . , e
1
n P kn with the following

properties.

1. kn � spanpe1, . . . , etq p̀spanpe1t�1, . . . , e
1
nq.

2. For t� 1 ¤ j ¤ n, e1j � ej �
°t

s�1 csjes for some csj P k.

3. The quadratic form q1 associated to f with respect to the basis

te1, . . . , et, e1t�1, . . . , e
1
nu

has the shape
q1 � gpX1, . . . , Xtq � hpXt�1, . . . , Xnq,

where h P krXt�1, . . . , Xns is some quadratic form.

4. detpqq � detpq1q.
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Proof. Let Mq � pmijq denote the matrix of q with respect to the standard basis of
kn. Let Mg denote the matrix of g with respect to the standard basis of kt. Since
g has rank t, the rows of Mg are linearly independent. Note that the upper t � t
block of Mq is the matrix Mg. For each 1 ¤ i ¤ n, let Ri � pmi1, . . . ,mitq. Note
that for 1 ¤ i ¤ t, Ri is the ith row of Mg; thus R1, . . . , Rt are linearly independent.
Then spanpR1, . . . , Rtq � kt. It follows that for each j P tt � 1, . . . , nu, there exist
c1j, . . . , ctj P k such that

c1jR1 � c2jR2 � � � � � ctjRt � �Rj.

Let U � spanpe1, . . . , etq, and for each t � 1 ¤ j ¤ n, let e1j � ej �
°t

s�1 csjes. Then
Lemma B.1.7 implies that spanpe1t�1, . . . , e

1
nq � UK, and

kn � spanpe1, . . . , etq p̀spanpe1t�1, . . . , e
1
nq.

With respect to the basis
te1, . . . , et, e1t�1, . . . , e

1
nu,

q has the shape
q � gpX1, . . . , Xtq � hpXt�1, . . . , Xnq,

where h P krXt�1, . . . , Xns is some quadratic form. Note that the change of basis
matrix between the two bases is a triangular matrix with ones along the diagonal,
hence the determinant of the change of basis matrix is 1. Thus detpqq � detpq1q.
Lemma B.1.9. Let n ¥ 2 and let q1, q2 P krX1, . . . , Xns be quadratic forms over a
field k. Fix 1 ¤ t ¤ n� 1. Suppose that q1 and q2 satisfy the following shape:

q1 � gpX1, . . . , Xtq �
ţ

i�1

XiℓipXt�1, . . . , Xnq � h1pXt�1, . . . , Xnq.

q2 � h2pXt�1, . . . , Xnq,
where g, h1, h2 are quadratic forms over k and the ℓi are linear forms over k.

If rankpgq � t, then there is an invertible linear change of variable over k so that

q1 � gpX1, . . . , Xtq � h11pXt�1, . . . , Xnq.
q2 � h2pXt�1, . . . , Xnq,

where h11 is some quadratic form. Thus, q2 remains the same under the change of
variable.

Proof. For 1 ¤ i ¤ n, let ei denote the ith standard basis vector for kn. For j � 1, 2,
let fj : k

n Ñ k denote quadratic maps such that for each px1, . . . , xnq P kn, we have

fjpx1e1 � � � � � xnenq � qjpx1, . . . , xnq.
Thus, qj is the quadratic form associated to fj with respect to the standard basis
te1, . . . , enu.

Since g has rank t, Lemma B.1.8 implies that there exist e1t�1, . . . , e
1
n P kn with

the following properties.
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1. kn � spanpe1, . . . , etq p̀ f1spanpe1t�1, . . . , e
1
nq.

2. For t� j ¤ j ¤ n, e1j � ej �
°t

s�1 csjes for some csj P k.

3. The quadratic form q11 associated to f1 with respect to the basis

te1, . . . , et, e1t�1, . . . , e
1
nu

has the shape
q1 � gpX1, . . . , Xtq � h11pXt�1, . . . , Xnq

where h is some quadratic form.

Lemma B.1.8 also implies that detpq1q � detpq11q, but we will not need that fact for
this proof. Let q12 denote the quadratic form associated to f2 with respect to the basis
te1, . . . , et, e1t�1, . . . , e

1
nu. We will show that q12 � q2. Let 1 ¤ i ¤ t and t� 1 ¤ j ¤ n.

Since q2pX1, . . . , Xnq � h1pXt�1, . . . , Xnq, and e1j � ej �
°t

s�1 csjes, we deduce that

f2pe1jq � q2pe1jq
� q2pc1j, . . . , ctj, 0, . . . , 0, 1, 0, . . . , 0q
� h2pejq
� q2pejq
� f2pejq

where the one occurs in the jth entry. Likewise,

Bf2pei, e1jq � Bf2pei, ejq.

It follows that q12 � q2 � h2pXt�1, . . . , Xnq.

Lemma B.1.10. Let K be a p-adic field, OK be the ring of integers, and let π be an
uniformizing element for K. Let Q P KrX1, . . . , Xns be a quadratic form with n ¥ 2.
Let ei P Kn denote the ith standard basis vector of Kn. Let F : Kn Ñ K denote the
quadratic map associated to Q with respect to the standard basis te1, . . . , enu. Suppose
QpXq has the following shape:

QpXq � GpX1, . . . , Xtq � π
ţ

i�1

XiLipXt�1, . . . , Xnq

� πHpXt�1, . . . , Xnq,
(B.1.3)

where G,H are quadratic forms over OK and the Li are linear forms over OK.

Suppose detpGq is a unit in OK. Then there exist e1t�1, . . . , e
1
n P pOKqn with the

following properties.

1. Kn � spanpe1, . . . , etq p̀spanpe1t�1, . . . , e
1
nq.

125



2. For t� 1 ¤ j ¤ n, e1j � ej �
°t

s�1 csjes, where csj P OK and π � csj.
3. The quadratic form Q1 associated to F with respect to the basis

te1, . . . , et, e1t�1, . . . , e
1
nu

has the shape
Q1 � GpX1, . . . , Xtq �H 1pXt�1, . . . , Xnq,

where H 1 P OKrXt�1, . . . , Xns is a quadratic form with H 1 � H mod π2.

4. detpQq � detpQ1q.
Proof. Let MQ � pmijq denote the matrix of Q with respect to the standard basis
of Kn. Let MG denote the matrix of G with respect to the standard basis of Kt.
Note that the upper t � t block of MQ is the matrix MG. For each 1 ¤ i ¤ n, let
Ri � pmi1, . . . ,mitq. Note that for 1 ¤ i ¤ t, Ri is the i

th row ofMG. Since detpGq is a
unit, we see that spanOK

pR1, . . . , Rtq � pOKqt. Therefore, for each j P tt� 1, . . . , nu,
there exist c1j, . . . , ctj P OK such that

c1jR1 � c2jR2 � � � � � ctjRt � �Rj.

Equation B.1.3 implies that π � Rj. Since detpGq is a unit, the rows R1, . . . , Rt are
linearly independent modulo π. Therefore, π � c1j, . . . , ctj. Let U � spanpe1, . . . , etq,
and for each t� 1 ¤ j ¤ n, let e1j � ej �

°t
s�1 csjes. Then Lemma B.1.7 implies that

spanpe1t�1, . . . , e
1
nq � UK, and

Kn � spanpe1, . . . , etq p̀spanpe1t�1, . . . , e
1
nq.

The quadratic form Q with respect to the basis te1, . . . , et, e1t�1, . . . , e
1
nu has the shape

Q � GpX1, . . . , Xtq �H 1pXt�1, . . . , Xnq,

where H 1 P OKrXt�1, . . . , Xns is some quadratic form. Note that the change of basis
matrix between the two bases is a triangular matrix with ones along the diagonal,
hence the determinant of the change of basis matrix is 1. Thus detpQq � detpQ1q. To
determine H 1, observe that

H 1 �
�

ņ

j�t�1

Qpe1jqX2
j

�
�
� ¸

t�1¤j ℓ¤n

BQpe1j, e1ℓqXjXℓ

�
.

We will show that Qpe1jq � Qpejq mod π2, and BQpe1j, e1ℓq � BQpej, eℓq mod π2. This
will imply that H 1 � H mod π2, as desired.
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Observe that for t� 1 ¤ j ¤ n, we have

Qpe1jq � Q

�
ej �

ţ

s�1

csjes

�
.

� Qpejq �Q

�
ţ

s�1

csjes

�
�BQ

�
ej,

ţ

s�1

csjes

�
.

� Qpejq �Q

�
ţ

s�1

csjes

�
�

ţ

s�1

csjBQpej, esq.

Since π � csj, we get π2 � Qp°t
s�1 csjesq. Equation B.1.3 implies that π � BQpej, esq

for 1 ¤ s ¤ t. Then π2 � °t
s�1 csjBQpej, eiq. Thus Qpe1jq � Qpejq mod π2.

Similarly, we have

BQpe1j, e1ℓq � BQ

�
ej �

ţ

s�1

csjes, eℓ �
ţ

s�1

csℓes

�
.

� BQpej, eℓq �
�

ţ

s�1

csℓBQpej, esq
�
�
�

ţ

s�1

csjBQpes, eℓq
�

�BQ

�
ţ

s�1

csjes,
ţ

s�1

csℓes

�
.

We have π � csj and π � csℓ. Equation B.1.3 implies that π � BQpej, esq for t�1 ¤ j ¤
n, and π � BQpes, eℓq for t�1 ¤ ℓ ¤ n. It follows that BQpe1j, e1ℓq � BQpej, eℓq mod π2.

B.2 Forms over Finite Fields

Lemma B.2.1. Let k be a finite field of characteristic not 2. Let q P krX1, . . . , Xns
be a quadratic form with n ¥ 2 even. If q has rank n and detpqq � p�1qn

2 d, where
d P k� is a nonsquare, then q splits off exactly n�2

2
hyperbolic planes over k.

Proof. Since k is a finite field and q has rank n, we know q splits off at least n�2
2

hyperbolic planes, hence

q � X1X2 � � � � �Xn�3Xn�2 � q0pXn�1, Xnq,

where q0 has rank 2. We have

detpq0q � p�1qn�2
2 detpqq � p�1qn�2

2 p�1qn
2 d � �d.

Since detpq0q � �d with d P k� a nonsquare, we deduce that q0 is anisotropic. Thus
q splits off exactly n�2

2
hyperbolic planes.
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Lemma B.2.2. Let npx1, x2q and npx3, x4q be anisotropic binary quadratic forms
over a finite field k. Then npx1, x2q � npx3, x4) vanishes on a 2-dimensional space
over k.

We prove Lemma B.2.2 by proving three general statements (Lemmas B.2.3,
B.2.4, and B.2.5 below).

Lemma B.2.3. Let k be an arbitrary field. Let qpx1, . . . , xnq be a quadratic form
over k and assume that radpbqq � 0. Let gpx1, . . . , xn, y1, . . . , ynq � qpx1, . . . , xnq �
qpy1, . . . , ynq. Then radpbgq � 0 and g vanishes on an n-dimensional subspace of k2n.

Proof. It is straightforward to check that radpbgq � 0. Let W be the subspace of k2n

consisting of vectors pa1, . . . , an, a1, . . . , anq where each ai P k. Then dimpW q � n
and pqpx1, . . . , xnq � qpy1, . . . , ynqqpW q � 0.

Lemma B.2.4. Let k be an arbitrary field. Suppose for some n ¥ 1 that there exists
a unique (up to isometry) quadratic form qpx1, . . . , xnq with q anisotropic over k and
radpbqq � 0. Then qpx1, . . . , xnq � cqpx1, . . . , xnq for every nonzero c P k.

Proof. Since c P k is nonzero, it follows that radpbcqq � 0 and cq is anisotropic over
k. Thus q � cq by the hypothesis.

Lemma B.2.5. Let k be a finite field. Then there exists a unique (up to isometry)
2-dimensional quadratic form npx1, x2q that is anisotropic with radpbnpx1,x2qq � 0

Proof. Lemma F.1.4 proves the result for charpkq � 2. Assume charpkq � 2. Let
d P k� be a nonsquare. Note that X2 � dY 2 is anisotropic of rank 2. Let qpX, Y q P
krX, Y s be an anisotropic rank 2 quadratic form. We will show that q is equivalent
to X2 � dY 2.

Consider qpX, Y q � Z2. By Chevalley-Warning, this form is isotropic over k. Let
px1, y1, z1q be a nontrivial zero. Since q is anisotropic, z1 � 0. Thus qpx1, y1q � z21 ,
with px1, y1q � p0, 0q. Then qpx1

z1
, y1
z1
q � 1. Through an invertible linear change of

variable, we can assume qp1, 0q � 1. Write q � X2 � bXY � cY 2. Let fpX, Y q �
qpX � b

2
Y, Y q. Then f is equivalent to q, and

fpX, Y q � pX � b

2
Y q2 � bpX � b

2
Y qY � cY 2.

Notice that the coefficient of X2 in f is 1, and the coefficient of XY is 0. Thus
fpX, Y q � X2 � c1Y 2 for some c1 P k. Since f is anisotropic, c1 is a nonsquare, hence
c1 � de2 for some e P k�. It follows that f is equivalent to X2 � dY 2.

Proof of Lemma B.2.2. Lemmas B.2.4 and B.2.5 imply that npx3, x4q � �npx3, x4q.
Then npx1, x2q � npx3, x4q � npx1, x2q � npx3, x4q vanishes on a 2-dimensional space
by Lemma B.2.3.
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Lemma B.2.6. Suppose npX1, X2q and npX3, X4q are anisotropic quadratic form
over a finite field k. Then npX1, X2q � npX3, X4q splits off 2 hyperbolic planes over
k.

Proof. Lemma B.2.2 implies that npX1, X2q�npX3, X4q vanishes on a 2-dimensional
space over k. Thus Lemma B.1.1 implies that npX1, X2q � npX3, X4q splits off 2
hyperbolic planes.

Lemma B.2.7. (Ireland and Rosen, page 150, problem 17.) Let Fq denote a finite
field with q elements. For each m ¡ 0 there is a homogeneous form of degree m in m
variables over Fqm with no nontrivial zero.

Proof. Let ω1, . . . , ωm be a basis for Fqm over Fq. Consider the homogeneous form of
degree m:

fpx1, . . . , xmq �
m�1¹
i�0

pωqi

1 x1 � � � � � ωqi

mxmq.

Suppose pa1, . . . , amq P AmpFqq is a zero of f . Then ωqj

1 a1� � � � � ωqj

mam � 0 for some
j. Suppose p is the characteristic of Fq and write q � pk for some k ¥ 1. Then

ωpjk

1 a1 � � � � � ωpjk

m am � 0.

In Fq, every element is a pth power. It follows that every element is a p2 power, and

a p3 power, and so on. So for each i we can write ai � bp
jk

i for some bi P Fq. This
gives us

0 � ωpjk

1 bp
jk

1 � � � � � ωpjk

m bp
jk

m � pω1b1 � � � �ωmbmqpjk .
Therefore ω1b1� � � ��ωmbm � 0. Since the ωi’s are linearly independent, we get that
each bi � 0, hence each ai � 0 so that pa1, . . . , amq is the trivial solution.

Lemma B.2.8. (Ireland and Rosen, page 150, problem 18.) Let Fq denote a finite
field with q elements. Let g1, g2, . . . , gm P Fqrx1, x2, . . . , xns be homogeneous polyno-
mials of degree d and assume that n ¡ md. Then there is a nontrivial common zero
over Fqm.

Proof. Let f be the homogeneous polynomial of degree m as in the previous exercise:

fpx1, . . . , xmq �
m�1¹
i�0

pωqi

1 x1 � � � � � ωqi

mxmq.

Since each gi is homogeneous of degree d, it follows that the polynomial f� defined
by

f�px1, . . . , xnq � fpg1px1, . . . , xnq, . . . , gmpx1, . . . , xnqq
is homogeneous of degree md. Note that since each gi is homogeneous, f� has the
trivial zero. Since n ¡ md, Chevalley’s Theorem implies that f� has a nontrivial
zero, say a � pa1, . . . , anq. By Exercise 17, f has only the trivial zero, so it must be
that a is a common zero of the gi’s.
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Lemma B.2.9. Let g1px1, . . . , xnq and g2px1, . . . , xnq be quadratic forms defined over
a finite field F . If n ¥ 5, then g1 and g2 have a common nontrivial zero over F .

Proof. Recall that over any finite field, up to equivalence, there is a unique anisotropic
quadratic form of rank 2. Let fpx1, x2q be an anisotropic quadratic form of rank 2
over F . Define f�px1, . . . , xnq by

f�px1, . . . , xnq � fpg1px1, . . . , xnq, g2px1, . . . , xnqq.
Then f� is homogeneous of degree 4, and f�p0, . . . , 0q � 0. Since n ¡ 4, Chevalley’s
Theorem implies that f� has a nontrivial zero, say a � pa1, . . . , anq P F n. Then

f�pg1pa1, . . . , anq, g2pa1, . . . , anqq � 0.

Therefore pg1pa1, . . . , anq, g2pa1, . . . , anqq is a zero of f . Since f is anisotropic, we must
have

g1pa1, . . . , anq � g2pa1, . . . , anq � 0.

Therefore, pa1, . . . , anq is a common nontrivial zero of g1 and g2.

Lemma B.2.10. Let s1pX, Y q and s2pX, Y q be quadratic forms over a finite field F .
Suppose that s1 and s2 have no common factor and that rps1, s2q � 2. Then there are
at least 1

2
p|F | � 1q2 pairs pa, bq P F 2, not both zero, for which as1� bs2 is a hyperbolic

plane, and at least 1
2
p|F | � 1q2 such pairs for which as1� bs2 is anisotropic of rank 2.

Proof. See [7, Lemma 8.3, p.62]

Lemma B.2.11. Let k be a finite field and q P krX1, . . . , Xns be a quadratic form
with n ¥ 1. Then q vanishes on a subspace over k of dimension#

n�2
2

if n is even
n�1
2

if n is odd.

Moreover, if q has order   n, then q vanishes on a subspace of dimension#
n
2

if n is even
n�1
2

if n is odd.

Proof. We begin by proving the first statement, where we make no assumption on
the order of q. We induct on n. For n � 1, 2, there is nothing to prove. Let n ¥ 3
and assume by induction that the result holds for quadratic forms in m   n variables

over k. Given q P krX1, . . . , Xns, if orderpqq � n, then q splits off

#
n�2
2

if n is even
n�1
2

if n is odd

hyperbolic planes, and the result follows. Assume orderpqq � m   n. Through a
change of variable, we can assume q � q1pX1, . . . , Xmq for some quadratic form q1.
By induction, q1 vanishes on a subspace over k of dimension#

m�2
2

if m is even
m�1
2

if m is odd.
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Therefore, if m is even, then q vanishes on a subspace over k of dimension

m� 2

2
� n�m � 2n�m� 2

2
¡ 2n� n� 2

2
� n� 2

2
, (B.2.1)

which is sufficient. If m is odd, then q vanishes on a subspace over k of dimension

m� 1

2
� n�m � 2n�m� 1

2
¡ 2n� n� 1

2
� n� 1

2
, (B.2.2)

which is sufficient. The second statement follows equations B.2.1 and B.2.2.

Lemma B.2.12. Suppose q1 and q2 are quadratic forms over a finite field F in
M � 2m � 1 variables, m ¥ 1. Then tq1, q2u vanish on a subspace of dimension
pM � 3q{2 � m� 1 over F .

Proof. This follows from Amer’s Theorem.

Lemma B.2.13. Suppose q1 and q2 are quadratic forms over a finite field F in
M � 2m variables, m ¥ 1. Then tq1, q2u vanish on a subspace of dimension pM �
4q{2 � m� 2 over F .

Proof. This follows from Amer’s Theorem.

Recall that given a quadratic form q P F rX1, . . . , Xns over a field F , we define
DF pqq to be the maximal dimension of a subspace in F n on which q vanishes.

Lemma B.2.14. Let k be a finite field. Let q1, q2 P krX1, . . . , Xns be quadratic forms
with n ¥ 4 even and Dkpq1, q2q � n�4

2
. If Pkpq1, q2q contains a form of order 2, then

there are at least
1

2
p|k| � 1q2 � p|k| � 1q

nonzero pairs pa, bq P k2 for which aq1 � bq2 splits off n
2
hyperbolic planes over k. In

particular, if |k| ¡ 3, then there is at least one form in Pkpq1, q2q that splits off n
2

hyperbolic planes over k.

Proof. Without loss of generality, assume q1 has order 2. Through a change of vari-
able, we can write q1 � q11pX1, X2q, where q11 is a quadratic form over k of order 2.
We can write q2 in the following way:

q2 � q12pX1, X2q �X1ℓ1pX3, . . . , Xnq �X2ℓ2pX3, . . . , Xnq � qpX3, . . . , Xnq
for quadratic forms q12, q and linear forms ℓ1, ℓ2, all over k. We will show that q11 is
anisotropic.

Assume q11 is isotropic. Through a change of variable involving X1 and X2, we can
assume q11p0, 1q � 0. Thus q11 � X1ℓpX1, X2q for some linear form ℓ over k. By Lemma
B.2.11, the form q2p0, X2, . . . , Xnq vanishes on a subspace U 1 � kn�1 of dimension
n�2
2
. Let

U � tp0, x2, . . . , xnq | px2, . . . , xnq P U 1u.
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Then q1 and q2 both vanish on U , which has dimension n�2
2
, a contradiction.

Therefore, q11 is anisotropic. Next, we will show that Dkpqq � n�4
2
.

Suppose q vanishes on a subspace W 1 � kn�2. Let

W � tp0, 0, x3, . . . , xnq | px3, . . . , xnq P W 1u.
Then q1pW q � q2pW q � 0. Thus dimpW q ¤ Dkpq1, q2q � n�4

2
. On the other hand,

since q has n� 2 variables, Lemma B.2.11 implies that q vanishes on a subspace over
k of dimension n�4

2
. We deduce that Dkpqq � n�4

2
.

Since Dkpqq � n�4
2
, Lemma B.2.11 implies that q has order n � 2. Then Lemma

2.1.14 implies that q has rank n� 2. We therefore have

q1 � q11pX1, X2q
q2 � q12pX1, X2q �X1ℓ1pX3, . . . , Xnq �X2ℓ2pX3, . . . , Xnq � qpX3, . . . , Xnq,

where q11 is anisotropic and q has rank n � 2. Since q has rank n � 2, Lemma B.1.9
implies that we can perform an invertible linear change of variable over k so that

q1 � q11pX1, X2q
q2 � hpX1, X2q � qpX3, . . . , Xnq

for some quadratic form h. Since q has order n� 2 and Dkpqq � n�4
2
, we deduce that

q splits off exactly n�4
2

hyperbolic planes. Through a change of variable involving
X3, . . . , Xn, we can assume q � X3X4 � � � � � Xn�3Xn�2 � gpXn�1, Xnq, where g is
anisotropic. Thus

q1 � q11pX1, X2q
q2 � hpX1, X2q �X3X4 � � � � �Xn�3Xn�2 � gpXn�1, Xnq.

To finish, we consider the following two cases.

Case 1. Suppose q11 and h are linearly independent. This, together with the fact
that q11 is anisotropic, implies that q11 and h do not share a common factor over k.
Thus Lemma B.2.10 implies that there are at least 1

2
p|k| � 1q2 pairs pa, bq P k2, not

both zero, for which aq11� bh is anisotropic. At most |k|�1 of these pairs have b � 0.
Therefore, there are at least

1

2
p|k| � 1q2 � p|k| � 1q

nonzero pairs pa, bq P k2 for which aq11 � bh is anisotropic and b � 0.

Case 2. Suppose q11 and h are linearly dependent. By adding a multiple of q1 to
q2, we can assume h � 0. Let λ, µ P k�. Then

λq1 � µq2 � λq11pX1, X2q � µX3X4 � � � � � µXn�3Xn�2 � µgpXn�1, Xnq.
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By Lemma B.2.6, λq11�µg splits off 2 hyperbolic planes. Thus, λq1�µq2 splits off
n
2

hyperbolic planes. There are |k|�1 choices for λ and |k|�1 choices for µ, which gives
us p|k| � 1q2 pairs in Pkpq1, q2q that split off n

2
hyperbolic planes, which is sufficient.

Remark: The first statement of Lemma B.2.14 is vacuously true for |k| P t2, 3u.
The following examples show how the second statement of Lemma B.2.14 can fail
when |k| P t2, 3u. Let NpX, Y q P krX, Y s be anisotropic. Let

q1 � NpX1, X2q
q2 � X1X2 �X3X4 � � � � �Xn�3Xn�2 �NpXn�1, Xnq.

Note that Dkpq1, q2q � n�4
2
. To show that no forms in Pkpq1, q2q split off n

2
hyperbolic

planes, since q1 � NpX1, X2q, it is sufficient to only consider forms of the shape
λq1 � q2, where λ P k

Assume |k| � 2, then neither q2 nor q1 � q2 split off n
2
hyperbolic planes.

Assume |k| � 3. Take NpX1, X2q � X2
1�X2

2 . Then neither q2, q1�q2, nor 2q1�q2
split off n

2
hyperbolic planes.

B.2.1 Systems of Quadratic Forms over Finite Fields

The content in this section is due to David Leep.

Let Fq be the finite field with q elements and let F�q be the multiplicative group
of nonzero elements of Fq. The order of a quadratic form is the minimum number of
variables needed to write the quadratic form after an invertible linear transformation.

Let f P Fqrx1, . . . , xns be a nonzero quadratic form and assume that f has order
m, 1 ¤ m ¤ n. There are three cases, which are called Type I, Type II, and Type III.
Let hpx, yq denote the unique, up to isometry, anisotropic quadratic forms in Fqrx, ys.
If m is even, then

f �
#
x1x2 � � � � � xm�3xm�2 � xm�1xm if f is Type I,

x1x2 � � � � � xm�3xm�2 � hpxm�1, xmq if f is Type II.

If m is odd, then f is Type III and

f � x1x2 � � � � � xm�2xm�1 � ax2
m,

for some a P F�q .
The following theorem can be found in many places including [13] and [18, Chapter

IV]. We include a proof here for completeness.

Theorem B.2.15. Assume the notation and hypotheses above. Then

Npf,Fn
q q �

$'&'%
qn�mpqm�1 � q

m
2 � q

m
2
�1q if f is Type I,

qn�mpqm�1 � q
m
2 � q

m
2
�1q if f is Type II,

qn�m � qm�1 if f is Type III.
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Proof. We can assume that f � fpx1, . . . , xmq P Fm
q . The proof is by induction on

m. If m � 1, then f is Type III and f � ax2
1 for some a P F�q . Then f � 0 implies

that x1 � 0, so Npf,Fn
q q � qn�1 � qn�m � 1 � qn�m.

Suppose that m � 2. If f is Type I, then f � x1x2 and Npf,Fn
q q � qn�2p2q�1q �

qn�2pq � q � 1q. If f is Type II, then Npf,Fn
q q � qn�2 � 1 � qn�2pq � q � 1q.

Assume that m ¥ 3 and that the result has been proved for smaller values of m.
Then f � x1x2 � f1px3, . . . , xmq and f, f1 are the same Type. We first consider the
case x2 � 0, then the case x2 � 0. This gives

Npf,Fm
q q � pq � 1qqm�2 � qNpf1,Fm�2

q q

�

$'&'%
qm�1 � qm�2 � qpqm�3 � q

m�2
2 � q

m�2
2

�1q if f is Type I,

qm�1 � qm�2 � qpqm�3 � q
m�2

2 � q
m�2

2
�1q if f is Type II,

qm�1 � qm�2 � qpqm�3q if f is Type III,

�

$'&'%
qm�1 � q

m
2 � q

m
2
�1 if f is Type I,

qm�1 � q
m
2 � q

m
2
�1 if f is Type II,

qm�1 if f is Type III.

The result follows from this because Npf,Fn
q q � qn�mNpf,Fm

q q.
Let Q1, . . . , Qr P Fqrx1, . . . , xns be a system of quadratic forms defined over Fq.

Let a⃗ � pa1, . . . , anq P Fn
q and c⃗ � pc1, . . . , crq P Fr

q. For a quadratic form Q P
Fqrx1, . . . , xns, let

NpQq � |ta⃗ P Fn
q | Qp⃗aq � 0u|.

Thus NpQq counts the zero vector. Let

N0 � |ta⃗ P Fn
q | Qip⃗aq � 0, 1 ¤ i ¤ ru|.

The Fq-pencil of tQ1, . . . , Qru, denoted PFqpQ1, . . . , Qrq, is the set of all Fq-linear
combinations of tQ1, . . . , Qru.
Proposition B.2.16.

qn �
¸
c⃗PFr

q

c⃗�0⃗

N

�
ŗ

i�1

ciQi

�
� qn�r�1 � qr�1pq � 1qN0

Proof. If pQ1p⃗aq, . . . , Qr p⃗aqq � p0, . . . , 0q, then Qp⃗aq � 0 for exactly qr�1 forms in
PFqpQ1, . . . , Qrq. If pQ1p⃗aq, . . . , Qr p⃗aqq � p0, . . . , 0q, then Qp⃗aq � 0 for all qr forms in
PFqpQ1, . . . , Qrq. Thus

¸
c⃗PFr

q

N

�
ŗ

i�1

ciQi

�
� qr�1pqn �N0q � qrN0.
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Therefore

qn �
¸
c⃗PFr

q

c⃗�0⃗

N

�
ŗ

i�1

ciQi

�
� qn�r�1 � qr�1pq � 1qN0.

Suppose that Q P Fqrx1, . . . , xns and that the order of Q is m where 0 ¤ m ¤ n.
To compute NpQq, there are four cases to consider.

NpQq � qn�m

$'''&'''%
qm�1 � q

m�2
2 pq � 1q if Q is Type I

qm�1 � q
m�2

2 pq � 1q if Q is Type II

qm�1 if Q is Type III

qm if Q � 0.

For details of this calculation, see Theorem B.2.15.

Theorem B.2.17. Assume the notation from above. Then

N0 � qn�r �
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�r�m

2 if
°r

i�1 ciQi is Type I

�qn�r�m
2 if

°r
i�1 ciQi is Type II

0 if
°r

i�1 ciQi is Type III

Proof.

qn �
¸
c⃗PFr

q

c⃗�0⃗

N

�
ŗ

i�1

ciQi

�
� qn�r�1 � qr�1pq � 1qN0.

qn�
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�1 � qn�m�m�2

2 pq � 1q if
°r

i�1 ciQi is Type I

qn�1 � qn�m�m�2
2 pq � 1q if

°r
i�1 ciQi is Type II

qn�1 if
°r

i�1 ciQi is Type III.

� qn�r�1�qr�1pq�1qN0

qn � pqr � 1qqn�1

�
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�m�m�2

2 pq � 1q if
°r

i�1 ciQi is Type I

�qn�m�m�2
2 pq � 1q if

°r
i�1 ciQi is Type II

0 if
°r

i�1 ciQi is Type III

� qn�r�1 � qr�1pq � 1qN0

qn�1 �
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�m�m�2

2 if
°r

i�1 ciQi is Type I

�qn�m�m�2
2 if

°r
i�1 ciQi is Type II

0 if
°r

i�1 ciQi is Type III.

� qr�1N0

qn�r �
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�m�m�2

2
�pr�1q if

°r
i�1 ciQi is Type I

�qn�m�m�2
2

�pr�1q if
°r

i�1 ciQi is Type II

0 if
°r

i�1 ciQi is Type III.

� N0
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qn�r �
¸
c⃗PFr

q

c⃗�0⃗

$'&'%
qn�

m
2
�r if

°r
i�1 ciQi is Type I

�qn�m
2
�r if

°r
i�1 ciQi is Type II

0 if
°r

i�1 ciQi is Type III.

� N0

Proposition B.2.18. Assume that r � 2 and n ¥ 5. Then N0 ¥ 2.

Proof. This result follows immediately from Chevalley’s theorem. However, we will
give a proof using Theorem B.2.17.

Let Q1, Q2 P Fqrx1, . . . , xns be quadratic forms with n ¥ 5. First suppose that
a form in the Fq-pencil of Q1 and Q2 has order ¤ 2. We can assume that Q1 �
Q1px1, x2q. Then set x1 � x2 � 0. Then Q2p0, 0, x3, x4, . . . , xnq is isotropic over Fq

because n� 2 ¥ 3, and thus Q1, Q2 have a nontrivial common zero over Fq.
Now assume that each form in the Fq-pencil of Q1 and Q2 has order ¥ 3. Then

in Theorem B.2.17, whenever m occurs in the formula we have m is even (because Q
has Type I or II) and thus m ¥ 4. Theorem B.2.17 now gives

N0 ¥ qn�2 � pq2 � 1qqn�2� 4
2 � qn�2 � pq2 � 1qqn�4 � qn�4 ¥ q ¥ 2.

Lemma B.2.19. Assume that r � 2, n ¥ 3, and m ¥ 3 for all Q P PFqpQ1, Q2q.
Then N0 � 1 if and only if n � 4, m � 4 for all Q P PFqpQ1, Q2q, and each
Q P PFqpQ1, Q2q is Type II.

Proof. First assume that n � 4, m � 4 for all Q P PFqpQ1, Q2q, and each Q P
PFqpQ1, Q2q is Type II. Then Theorem B.2.17 gives N0 � 1.

Now assume that N0 � 1. Proposition B.2.18 implies that n ¤ 4. If n � 3, then
m � 3 for each Q P PFqpQ1, Q2q. Then Theorem B.2.17 would give N0 � q ¥ 2,
a contradiction. Thus n � 4. Now we have 1 � N0 ¥ q2 � pq2 � 1qp�q0q � 1.
Therefore equality occurs and so we must have m � 4 for all Q P PFqpQ1, Q2q and
each Q P PFqpQ1, Q2q is Type II.

Lemma B.2.20. Let q1, q2 P FqrX1, . . . , X4s be quadratic forms. Suppose every form
in PFqpq1, q2q has order ¥ 3. Then DFqpq1, q2q � 0 if and only if every form in
PFqpq1, q2q has order 4 and splits off exactly 1 hyperbolic plane.

Proof. This is a rephrasing of Lemma B.2.19.

Lemma B.2.21. Let g1, g2 P FqrX1, . . . , X5s be quadratic forms. Suppose every form
in P � PFqpg1, g2q has order ¥ 2. Further, assume that any form in P of order 2 is
anisotropic. Then there is at least one form in P of order ¥ 3.

Proof. For sake of contradiction, assume that every form in P is anisotropic of order
2. Applying Theorem B.2.17 for n � 5 and r � 2 gives us

N0 � q3 � pq2 � 1qq2 � q2pq � q2 � 1q.
Since q ¥ 2, q � q2 � 1   0. This is contradiction because N0 ¥ 1.
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Lemma B.2.22. Suppose g1, g2 P FqrX1, X3, X3s are quadratic forms with DFqpg1, g2q �
0 (i.e. N0 � 1). Suppose every form in PFqpg1, g2q is either anisotropic of order 2 or
has order 3. Then there are exactly q � 1 pairs pa, bq P F2

q, not both zero, for which
ag1 � bg2 is anisotropic of order 2.

Proof. Let δ be the number of pairs pa, bq P F2
q, not both zero, for which ag1 � bg2

is anisotropic of order 2 (i.e. type II with m � 2). Applying Theorem B.2.17 with
N0 � 1, n � 3 and r � 2 gives 1 � q � δ, hence δ � q � 1.

Lemma B.2.23. Suppose h1, h2 P FqrX1, X2s are linearly independent quadratic
forms with DFqph1, h2q � 0 (i.e. N0 � 1). Then there are at least q pairs pa, bq P F2

q,
not both zero, for which ah1 � bh2 is isotropic.

Proof. Since h1 and h2 are linearly independent, every form in P � PFqph1, h2q has
order ¥ 1. For each i � 1, 2, 3, let δi denote the the number of pairs pa, bq P F2

q, not
both zero, for which ah1�bh2 is type i. It follows that the number of pairs pa, bq P F2

q,
not both zero, for which ah1�bh2 is isotropic is δ1�δ3. We will show that δ1�δ3 ¥ q.

Applying Theorem B.2.17 with N0 � 1, n � 2, and r � 2 gives us

1 � 1� δ1q
�1 � δ2q

�1.

It follows that δ1 � δ2.

Suppose q � 2. Then the number of forms in the pencil PFqph1, h2q is q2 � 1 � 3.
Thus, either δ1 � δ2 � δ3 � 1 or δ1 � δ2 � 0 and δ3 � 3. In either case, the inequality
δ1 � δ3 ¥ q � 2 is satisfied, as desired.

Suppose q ¥ 3. Let δ � δ1 � δ2. We have

2δ � δ3 � |PFqph1, h2q| � q2 � 1.

Observe δ ¤ q2�1
2

and that

δ � δ3 � q2 � 1� δ ¥ q2 � 1� q2 � 1

2
� q2 � 1

2
.

Since q ¥ 3, we get q2�1
2

¥ q. This completes the proof.
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Appendix C: Modules over PID’s

Let R be a PID and let K be the fraction field of R. Let p be an irreducible element
in R and let ppq be the prime ideal generated by p. Let n ¥ 1 and let V � Kn. Let
vp : K Ñ ZY t8u denote the p-adic valuation of K.

Theorem C.0.1. Let v1, . . . , vm P Rn and assume that v1, . . . , vm are linearly inde-
pendent over K. Then there exist w1, . . . , wm P Rn satisfying the following conditions.

1. v1, . . . , vm and w1, . . . , wm span the same subspace of Kn.

2. w1, . . . , wm are linearly independent over R{ppq.
We shall give two proofs of this theorem.

Proof # 1: We have m ¤ n because v1, . . . , vm are linearly independent over K. Let
vi � pai1 � � � ainq P Rn, 1 ¤ i ¤ m, and let A � paijq be the corresponding m � n
matrix.

Denote the
�
n
m

�
m �m submatrices of A by Aα where 1 ¤ α ¤ �n

m

�
. Since each

entry of A lies in R, we have vppdetpAαqq ¥ 0 for every α. Let

cpAq � min

"
vppdetpAαqq | 1 ¤ α ¤

�
n

m


*
.

Thus cpAq ¥ 0. Since v1 . . . , vm are linearly independent over K, at least one
detpAαq � 0, and thus cpAq � 8.

Suppose that v1, . . . , vm are linearly dependent over R{ppq. Then there exist
b1, . . . , bm P R, where at least one bi R ppq, such that b1v1 � � � � � bmvm � pv for
some v P Rn. We can assume that bm R ppq. In particular, bm � 0. Let

wi �
#
vi, 1 ¤ i ¤ m� 1

v, i � m.

Then v1, . . . , vm and w1, . . . , wm span the same subspace ofKn. Note that w1, . . . , wm P
Rn.

Let B, C denote the m� n matrices associated to

w1, . . . , wm�1, pwm,

and
w1, . . . , wm�1, wm,
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respectively. The first m � 1 rows of A,B,C are the same. We have detpBαq �
bm detpAαq and detpCαq � p�1bm detpAαq for each α. Since bm R ppq, we have cpBq �
cpAq and cpCq � cpAq � 1. We have cpAq � cpBq ¥ 1 because pwm P pRn, and thus
cpCq ¥ 0.

If w1, . . . , wm are linearly independent over R{ppq, then we are done. If not, then
we repeat this construction. The process must end because cpAq ¥ 0 at each step.
Thus eventually we come to a matrix A with cpAq � 0. For such a matrix, we have
detpAαq R ppq for some α, which means that the vectors are linearly independent over
R{ppq.

Proof # 2: Let M � Rn. Then M is a finitely generated module over the PID R. Let
N be the R-submodule ofM generated by v1, . . . , vm. That is, N � R�v1�� � ��R�vm.
[6, Chapter 12, Theorem 4, p.460] implies that there is an R-basis y1, . . . , yn of M
and nonzero elements d1, . . . , dm P R such that d1y1, . . . , dmym is an R-basis of N .
That is, N � R � d1y1 � � � � �R � dmym.

The subspace of Kn spanned by v1, . . . , vm is the same as the subspace spanned
by d1y1, . . . , dmym. Since each di � 0, it follows that the subspace of Kn spanned by
v1, . . . , vm is the same as the subspace spanned by y1, . . . , ym.

We now show that y1, . . . , yn are linearly independent over R{ppq. Suppose that
there exist a1, . . . , an P R, where at least one ai R ppq, such that a1y1�� � ��anyn � pv
for some v PM . Since y1, . . . , yn is an R-basis of M , we can write v � b1y1�� � ��bnyn
where each bi P R. Then a1v1 � � � � � anyn � ppb1y1 � � � � � bnynq, which implies that
ai � pbi for 1 ¤ i ¤ n, a contradiction.

Thus y1, . . . , yn are linearly independent over R{ppq, and so the same holds for the
subset y1, . . . , ym.
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Appendix D: The Discriminant of a Binary Homogeneous Form

D.1 General Definition

We begin by defining the discriminant of an arbitrary homogeneous form P � P pX, Y q
over an infinite field K and show that our definition is well-defined.

Definition D.1.1. Over the algebraic closure K, P splits into linear factors:

P pX, Y q �
n¹

i�1

pαiX � βiY q αi, βi P K.

The discriminant of P , denoted discpP q, is defined as

discpP q �
¹
i j

pαjβi � αiβjq2.

For this definition to be well-defined, we need to show that it is independent of
the factorization of P into linear factors. To this end, suppose

P px, yq �
n¹

i�1

pα1iX � β1iY q

is another factorization of P , where α1i, β
1
i P K. We consider two cases.

(i) Suppose
±n

i�1 αi � 0. Observe that P p1, 0q � ±n
i�1 αi �

±n
i�1 α

1
i. Thus±n

i�1 α
1
i � 0. We have

n¹
i�1

pαiX � βiY q �
n¹

i�1

pα1iX � β1iY q.�
n¹

i�1

αi

�
n¹

i�1

pX � pβi{αiqY q �
�

n¹
i�1

α1i

�
n¹

i�1

pX � pβ1i{α1iqY q.

Since
±n

i�1 αi �
±n

i�1 α
1
i, we obtain

n¹
i�1

pX � pβi{αiqY q �
n¹

i�1

pX � pβ1i{α1iqY q.

Take Y � 1 to get

n¹
i�1

pX � βi{αiq �
n¹

i�1

pX � β1i{α1iq.
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There is some reordering of the indices so that

βi

αi

� β1i
α1i

.

Let γi � α1i
αi
. Then αiγi � α1i and

βi

αi

� β1i
α1i

� β1i
αγi

.

This implies that β1i � γiβi. Also, since
±n

i�1 αi �
±n

i�1 α
1
i, we get that±n

i�1 γi � 1. We have

P px, yq �
n¹

i�1

pα1iX � β1iY q �
n¹

i�1

pγiαiX � γiβiY q

so that the discriminant of P with respect to this factorization is

discpP q �
¹
i j

pγjγiαjβi � γjγiαiβjq2 .

�
¹
i j

�pγjγiq2pαjβi � αiβjq2
�
.

�
�

n¹
i�1

γ
2pn�1q
i

�¹
i j

pαjβi � αiβjq2.

�
¹
i j

pαjβi � αiβjq2.

This is the discriminant of P with respect to our original factorization. We
conclude that our definition of discpP q is well-defined in this case.

(ii) If
±n

i�1 αi � 0, then factor out the highest power of Y from P :

P pX, Y q � Y kP 1pX, Y q.
Now if P 1pX, Y q �±n

i�1pα2iX � β2i Y q, then
±n

i�1 α
2
i � 0. Apply case (i) to P 1

to finish the proof.

Lemma D.1.2. Let P pX, Y q P KrX, Y s be a homogeneous form over an infinite field
K. Then P pX, Y q has repeated linear factors if and only if discpP q � 0.

Proof. Notice that

discpP q � 0 ðñ det

�
αj αi

βj βi

�
� 0

ðñ pαj, βjq and pαi, βiq are linearly dependent.

It follows that discpP q � 0 if and only if two of the factors in P � ±n
i�1pαix � βiyq

differ by a scalar multiple.
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Theorem D.1.3. Let R be an integral domain and F be its fraction field. Assume
charpF q � 2. Let P pX, Y q P F rX, Y s be a homogeneous form. Then the following
statements hold.

1. If P pX, Y q P RrX, Y s, then discpP pX, Y qq P R.

2. discpP pX, Y qq is a polynomial over Z in the coefficients of P .

Proof. (1) If P pX, Y q � 0, then discpP pX, Y qq � 0 P R. Now assume that P pX, Y q �
0. Then

P pX, Y q �
n¹

i�1

pλiX � µiY q P RrX, Y s,

where P pX, Y q is a homogeneous polynomial of degree n with λi, µi P F alg and
pλi, µiq � p0, 0q, 1 ¤ i ¤ n.

If λi (or µi) is zero for more than one i, then (D.1.2) implies that discpP pX, Y qq �
0. Thus without loss of generality, we may assume that at least n � 1 λi’s and at
least n� 1 µi’s are nonzero.

Case 1. Suppose that λi is nonzero for each i, 1 ¤ i ¤ n. Then we can rewrite

P pX, Y q � Y n
n¹

i�1

pλi
X

Y
� µiq

Let Z � X

Y
, ti � µi

λi

, and let αn �
±n

i�1 λi P R. Then αn � 0. Let

ppZq �
n¹

i�1

pλiZ � µiq � αnZ
n � � � � � α0 � αn

n¹
i�1

pZ � tiq.

Then ppZq P RrZs is polynomial of degree n and P pX, Y q is the homogenization of
ppZq. Let p1pZq � °n�1

i�0 βiZ
i denote the derivative of p with respect Z. By [10,

Proposition 8.5, page 204], the resultant of p, p1 is

Respp, p1q � p�1qnpn�1q{2αnDpppZqq,

where

DpppZqq � α2n�2
n

¹
1¤i j¤n

pti � tjq2.

By the definition of resultant in [10, page 200], Respp, p1q is the determinant of
the matrix A2n�1 below whose entries are determined by the coefficients of p and p1.
This implies that Respp, p1q P R.
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A2n�1 �

������������

αn αn�1 . . . α0

αn αn�1 . . . α0

. . .
αn αn�1 . . . α0

βn�1 βn�2 . . . β0

βn�1 βn�2 . . . β0

. . .
βn�1 βn�2 . . . β0

�����������

The matrix A2n�1 is a pn� pn� 1qq � pn� pn� 1qq matrix with entries in R and

where the blank spaces are filled with zeros. Note that the first column of A2n�1 is
divisible by αn in R because βn�1 � nαn. Therefore, Respp, p1q is also divisible by αn.
This implies that

α2n�2
n

¹
1¤i j¤n

pti � tjq2 � DpppZqq � p�1qnpn�1q{2α�1
n Respp, p1q P R.

Next, since αn �
±n

i�1 λi we note that

α2n�2
n

¹
1¤i j¤n

pti � tjq2 �
�

n¹
i�1

λi

�2n�2 ¹
1¤i j¤n

�
µi

λi

� µj

λj


2

�
� ¹

1¤i j¤n

λiλj

�2 ¹
1¤i j¤n

�
µi

λi

� µj

λj


2

�
¹

1¤i j¤n

pλiµj � λjµiq2 � discpP pX, Y qq.

Putting these equations together give discpP pX, Y qq P R.

Case 2. Suppose that λn � 0. Then we can assume that µn � �1. Then

P pX, Y q � Y
n�1¹
i�1

pλiX � µiY q.

Let P1pX, Y q �±n�1
i�1 pλiX � µiY q. Then P1pX, Y q P RrX, Y s. Since λi � 0, 1 ¤ i ¤

n� 1, the proof of Case 1 shows that¹
1¤i j¤n�1

pλiµj � λjµiq2 P R.

Since
±n�1

i�1 λi P R, and λn � 0, µn � �1, we have

discpP pX, Y qq �
¹

1¤i j¤n

pλiµj � λjµiq2

�
n�1¹
i�1

p�λiq2
¹

1¤i j¤n�1

pλiµj � λjµiq2 P R.
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(2) Suppose P pX, Y q has degree n. We can write P pX, Y q � °
i�j�n aijX

iY j,
where aij P F . Let tij be variables over Z (algebraically independent over Q). Let
P 1pX, Y q � °

i�j�n tijX
iY j. Let R � Zrttijus. Then P 1pX, Y q P RrX, Y s. By (2),

we have discpP 1pX, Y qq P R � Zrttijus. By substituting tij with aij, we get that
discpP pX, Y qq is a polynomial over Z in the coefficients of P .

D.2 The Discriminant of detpλQ1 � µQ2q

Let Q1 � Q1pX1, . . . , Xnq and Q2 � Q2pX1, . . . , Xnq be quadratic forms over an
infinite field K. We define

F px, y;Q1, Q2q � F px, yq � detpxQ1 � yQ2q

so that F is a homogeneous form in the variables x and y. We assume that F px, yq
does not vanish identically over K and F px, yq splits into distinct linear factors over
K, where K denotes the algebraic closure of K. Therefore

F px, yq �
n¹

i�1

pαix� βiyq αi, βi P K.

Since K is an infinite field, the zero polynomial is the only polynomial that vanishes
identically over K. We are assuming that F px, yq does not vanish identically over K;
therefore, we deduce that there is some form Q in the pencil pQ1, Q2q that has rank
n. Then pQ1, Q2q � pQ,Q1q for some form Q1 in the pencil. This shows that we can
assume rkpQ1q � n from the start.

Since F p1, 0q � detpQ1q, we deduce that detpQ1q is the coefficient of xn in F px, yq,
hence detpQ1q �

±n
i�1 αi. Factoring out detpQ1q from F px, yq yields

F px, yq � detpQ1q
n¹

i�1

px� pβi{αiqyq.

Let λi � βi{αi Now, unlike Heath-Brown, we will define ∆pQ1, Q2q in the following
way:

Definition D.2.1.

∆pQ1, Q2q :� detpQq2pn�1q
¹
i j

pλi � λjq2.

It may not be obvious that this definition is independent of the factorization of
F . We will show that ∆pQ1, Q2q � discpF q. This will imply that our definition
of ∆pQ1, Q2q is well-defined since we already showed that the discriminant of F is
independent of the factorization of F .

Proposition D.2.2. We have ∆pQ1, Q2q � discpF q.
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Proof. Observe that

∆pQ1, Q2q � detpQq2pn�1q
¹
i j

pλi � λjq2.

� detpQq2pn�1q
¹
i j

�
βi

αi

� βj

αj


2

.

� detpQq2pn�1q
¹
i j

�
αjβi � αiβj

αiαj


2

.

For each i, there are n � 1 j’s such that i   j. Thus, as the product runs through
pairs pi, jq with i   j, each αi will appear n� 1 times. This implies that

∆pQ1, Q2q � detpQq2pn�1q
¹
i j

�
αjβi � αiβj

αn�1
1 αn�1

2 � � �αn�1
n


2

.

� detpQq2pn�1q
¹
i j

pαjβi � αiβjq2
α
2pn�1q
1 α

2pn�1q
2 � � �α2pn�1q

n

.

� detpQq2pn�1q

�
1

α1α2 � � �αn


2pn�1q¹
i j

pαjβi � αiβjq2.

Since
±n

i�1 αi � detpQq, we see that detpQq2pn�1q cancels above, and so we conclude
that

∆pQ1, Q2q �
¹
i j

pαjβi � αiβjq2. (��)

From this formula, we see that ∆pQ1, Q2q � discpF px, yqq, which is what Heath-
Brown uses as the definition of ∆pQ1, Q2q.

Let T P GLpKnq and U P GL2pKq. If

U �
�
a b
c d

�
,

then
pQ1, Q2qU � paQ1 � bQ2, cQ1 � dQ2q.

We define pQ1, Q2qT by

pQ1, Q2qT � pQ1pTXq, Q2pTXqq.

Corollary D.2.3. Given T P GLpKnq and U P GL2pKq, we have

∆ppQ1, Q2qUT q � pdetpUqqnpn�1qpdetpT qq4pn�1q∆pQ1, Q2q.
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Proof. It suffices to show that ∆pQ1, Q2qU � pdetpUqqnpn�1q∆pQ1, Q2q and ∆pQ1, Q2qT �
pdetpT qq4pn�1q∆pQ1, Q2q.

(1) ∆pQ1, Q2qU : Let Q1
1 � aQ1 � bQ2 and Q1

2 � cQ1 � dQ2. Observe that

detpxQ1
1 � yQ1

2q � detpxpaQ1 � bQ2q � ypcQ1 � dQ2qq.
� detppax� cyqQ1 � pxb� dyqQ2q.
� F pax� cy, xb� dyq.

�
n¹

i�1

pαipax� cyq � βipxb� dyqq .

�
n¹

i�1

ppaαi � bβiqx� pdβi � cαiqyq .

Let α1i � aαi � bβi and β1i � dβi � cαi. Then

∆pQ1
1, Q

1
2q �

¹
i j

pα1jβ1i � α1iβ
1
jq2.

Let A �
�
a �b
�c d

�
, B �

�
αj αi

βj βi

�
, and C �

�
α1j α1i
β1j β1i

�
. Then

α1jβ
1
i � α1iβ

1
j � detpCq � detpAqdetpBq � detpUqdetpBq.

It follows that

∆pQ1
1, Q

1
2q �

¹
i j

�
detpUq2pαjβi � αiβjq2

�
.

� �detpUq2�npn�1q
2 ∆pQ1, Q2q.

� detpUqnpn�1q∆pQ1, Q2q.
(2) ∆pQ1, Q2qT : Let A be the matrix of T : Kn Ñ Kn with respect to the standard

basis for Kn so that T pXq � AX for X P Kn. Let MpQ1q � B1 and MpQ2q �
B2 so that

Q1pXq � XTB1X and Q2pXq � XTB2X.

Then
Q1pTXq � XTATB1AX and Q2pTXq � XTATB2AX.

Observe

detpxQ1pTXq � yQ2pTXqq � detpxATB1A� yATB2Aq.
� detpAT qdetpxB1 � yB2qdetpAq.
� detpAq2F px, yq.

� detpAq2
n¹

i�1

pαix� βiyq.

�
n¹

i�1

pdetpAq2{npαix� βiyqq.
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Therefore

∆pQ1pTXq, Q2pTXqq �
¹
i j

�
detpAq4{npαjβi � αiβjq

�2
.

� �detpAq8{n�npn�1q
2 ∆pQ1, Q2q.

� detpAq4pn�1q∆pQ1, Q2q.
� detpT q4pn�1q∆pQ1, Q2q.

Proposition D.2.4. Let K be the completion of a number field k with respect to a
valuation v and OK the valuation ring. Suppose Q1 � Q1pX1, . . . , Xnq and Q2 �
Q2pX1, . . . , Xnq are quadratic forms with coefficients in OK and that rkpQ1q � n. If
F px, yq � detpxQ1 � yQ2q has coefficients in OK, then ∆pQ1, Q2q � discpF q P OK.

Proof. First note that the valuation v : K Ñ Z Y t8u extends to v : K Ñ Z Y t8u.
Over K, we have

F px, yq �
n¹

i�1

pαix� βiyq αi, βi P K.

Since rkpQ1q � n, we have that
±n

i�1 αi � 0. Let

ri �
#
αi if vpαiq ¤ vpβiq
βi if vpβiq ¤ vpαiq.

If vpαiq � vpβiq, then arbitrarily pick ri to be one of αi or βi. If βi � 0, then
vpαiq ¤ vpβiq � 8, in which case ri � αi. It follows that none of the ri’s are zero.
Let α1i � αi{ri and β1i � βi{ri. Then vpα1iq, vpβ1iq ¥ 0 and

F px, yq �
n¹

i�1

priα1ix� riβ
1
iyq.

� r1r2 � � � rn
n¹

i�1

pα1ix� β1iyq.

Let Gpx, yq �±n
i�1pα1ix�β1iyq so that F px, yq � r1r2 � � � rnGpx, yq. Note that Gpx, yq

has coefficients in OK . By how we defined ri, we see that for each i, either α1i � 1
or β1i � 1. It follows that if F is the residue field, then each monomial α1ix � β1iy is
nonzero in Frx, ys, hence G is nonzero in Frx, ys. Then G has a coefficient that is
a unit, say u. Since the coefficients of F are in OK , we see that r1r2 � � � rnu P OK .
Because u is a unit, we get r1r2 � � � rn P OK . Since

∆pQ1, Q2q � discpF q � pr1 � � � rnq2pn�1q
¹
i j

pα1jβ1i � α1iβ
1
jq2,

we conclude that ∆pQ1, Q2q P OK .
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D.2.1 Over an Integral Domain

Let R be an integral domain and let F be its fraction field. Assume that charF �
2. We define an invariant I pf, gq associated to a pair of quadratic forms f, g P
F rX1, . . . , Xns.

Let f, g P F rX1, . . . , Xns be quadratic forms. Let Mf , Mg be the symmetric
matrices associated with the forms f , g, respectively, and let

P pX, Y q � detpXMg � YMf q.

If P pX, Y q is not identically zero, then

P pX, Y q �
n¹

i�1

pλiX � µiY q

where λi, µi P F alg and pλi, µiq � p0, 0q, 1 ¤ i ¤ n.
By unique factorization in F rX, Y s, the linear factors λiX � µiY are uniquely

determined up to multiplication by nonzero elements in F .
If P pX, Y q is identically zero, then we define I pf, gq � 0. If P pX, Y q is not

identically zero, then we define

I pf, gq �
¹

1¤i j¤n

pλiµj � λjµiq2. (D.2.1)

We now show that this expression is well-defined. Suppose that pλi, µiq is replaced
by pciλi, ciµiq where ci P F is nonzero, 1 ¤ i ¤ n, and

±n
i�1 ci � 1. Then¹

1¤i j¤n

ppciλiqpcjµjq � pcjλjqpciµiqq2

�
¹

1¤i j¤n

pcicjq2
¹

1¤i j¤n

pλiµj � λjµiq2

�
n¹

i�1

c
2pn�1q
i

¹
1¤i j¤n

pλiµj � λjµiq2

�
¹

1¤i j¤n

pλiµj � λjµiq2.

Remark: Note that by definition D.1.1, we have

I pf, gq � discpdetpXf � Y gqq.

Theorem D.2.5. Let f, g P F rX1, . . . , Xns be quadratic forms. Then the following
statements about I pf, gq hold.

1. If a, b, c, d P F and T : F n Ñ F n is an an invertible linear transformation, then

I pafT � bgT , cfT � dgT q � pad� bcqnpn�1q detpT q4pn�1qI pf, gq.
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2. If f, g P RrX1, . . . , Xns, then I pf, gq P R.

3. I pf, gq is a polynomial over Z in the coefficients of f and g.

Proof. (1) First we show that I pfT , gT q � detpT q4pn�1qI pf, gq.

detpXMGT
� YMFT

q � detpXT tMgT � Y T tMfT q
� detpT tpXMg � YMf qT q � detpT q2 detpXMg � YMf q

� detpT q2P pX, Y q � detpT q2
n¹

i�1

pλiX � µiY q.

To compute I pfT , gT q, we replace λ1 with λ11 � detpT q2λ1 and µ1 with µ11 �
detpT q2µ1. Since λ11µj � λjµ

1
1 � detpT q2pλ1µj � λjµ1q, this gives I pfT , gT q �

detpT q4pn�1qI pf, gq.
Let a, b, c, d P F . We now show that

I paf � bg, cf � dgq � pad� bcqnpn�1qI pf, gq.

detpXpcMf � dMgq � Y paMf � bMgqq
� detppcX � aY qMf � p�dX � bY qMgq

�
n¹

i�1

pλipcX � aY q � µip�dX � bY qq

�
n¹

i�1

ppcλi � dµiqX � paλi � bµiqY q.

This gives

I paf � bg, cf � dgq
�

¹
1¤i j¤n

ppcλi � dµiqpaλj � bµjq � pcλj � dµjqpaλi � bµiqq2

�
¹

1¤i j¤n

p�pad� bcqpλiµj � λjµiqq2

�
¹

1¤i j¤n

pad� bcq2pλiµj � λjµiq2

� pad� bcqnpn�1qI pf, gq.

(2) Since f, g P RrX1, . . . , Xns, we have P pX, Y q P RrX, Y s. By Theorem D.1.3,
I pf, gq � discpdetpP pX, Y qq P R.

(3) Suppose that f � °1¤i¤j¤n tijXiXj and g � °1¤i¤j¤n t
1
ijXiXj where ttiju and

tt1iju are variables over Z (algebraically independent over Q). Let R � Zrttij, t1ijus.
By (2), I pf, gq P R � Zrttij, t1ijus, which proves (3).
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Appendix E: Complete Discretely Valued Fields

Lemma E.0.1. Let R be a commutative ring and let M � Rn be the free R-module
of rank n. Let f : M Ñ R be a quadratic map with associated symmetric R-bilinear
form Bf : M �M Ñ R given by Bf pv, wq � fpv�wq � fpvq � fpwq. Let te1, . . . , enu
be a free R-basis of M . Let A � paijq PMn�npRq be the matrix given by

aij �

$'&'%
fpeiq if i � j

Bf pei, ejq if i   j

0 i ¡ j.

The following statements hold.

1. fpvq � vtAv for all v P Rn.

2. Bf pv, wq � wtpA� Atqv for all v, w P Rn.

Proof. Let v � °n
i�1 ciei PM where each ci P R. Then

vtAv �
ņ

i�1

ņ

j�1

aijcicj �
ņ

i�1

fpeiqc2i �
¸

1¤i j¤n

Bf pei, ejqcicj

� fpc1e1 � � � � � cnenq � fpvq.

Let v, w P Rn. Then

Bf pv, wq � fpv � wq � fpvq � fpwq
� pv � wqtApv � wq � vtAv � wtAw

� wtAv � vtAw � wtAv � pvtAwqt � wtAv � wtAtv

� wtpA� Atqv.

The rank of a quadratic map f is defined to be the rank of Bf . Thus the rank of
f is the rank of the symmetric n� n matrix A� At.

Let v : K Ñ Z Y t8u be a nontrivial valuation. We shall assume that v is
surjective. Let R be the ring of integers of pK, vq. Thus R � ta P K | vpaq ¥ 0u. Let
m be the unique maximal ideal of R. Thus m � ta P R | vpaq ¡ 0u. Let k be the
residue field of pK, vq. Thus k � R{m. Note that K is the fraction field of R.
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We shall assume that K is complete with respect to this discrete valuation. We
abbreviate this information by saying that pK, v,R,m, kq is a complete discretely
valued field.

For f, g P Rrx1, . . . , xns, we write f � g mod mN to mean

f � g mod mNRrx1, . . . , xns.

Proposition E.0.2. Let pK, v,R,m, kq be a complete discretely valued field. Let
f P Rrx1, . . . , xns be a quadratic form of rank n over K.

There exists N P Z¡0 that depends on f so that if g P Rrx1, . . . , xns is a quadratic
form satisfying f � g mod mN , then g has rank n over K and f is equivalent to
g over R; that is, there exists C P Mn�npRq such that C is invertible over R and
fpCxq � gpxq.
Proof. Lemma E.0.1 implies that there exists A PMn�npRq such that fpxq � xtAx.
Since f has rank n, it follows that A�At has rank n and thus A�At is an invertible
matrix over K.

Let pA� Atq�1 � pbijq, bij P K. Let vpdetpA� Atqq �M . Then M P Z¥0. Since

AdjpA� AtqpA� Atq � detpA� AtqIn,

it follows that
pA� Atq�1 � detpA� Atq�1AdjpA� Atq.

Therefore vpbijq ¥ �M for each entry bij.
Let N � 2M�1. We assume that g � f mod mN . Let C0 � In. Then fpC0pxqq �

fpxq � gpxq mod mN .
Suppose i ¥ 1 and we have found by induction Ci�1 P Mn�npRq such that Ci�1

is invertible over R and gpxq � fpCi�1xq mod mN�i�1.
Lemma E.0.1 implies that gpxq�fpCi�1xq � xtDx for someD PMn�npmN�i�1Rq.

Let
Ti � pA� Atq�1pCt

i�1q�1D PMn�npmN�M�i�1Rq �Mn�npmM�iRq.
Since fpTixq P m2M�2iRrx1, . . . , xns and 2M � 2i ¥ N � i, the definition of Ti implies
that

fppCi�1 � Tiqxq � fpCi�1x� Tixq
� fpCi�1xq � fpTixq � xtCt

i�1pA� AtqTix

� fpCi�1xq � xtCt
i�1pA� AtqTix

� fpCi�1xq � xtDx � gpxq mod mN�i.

Let Ci � Ci�1 � Ti. Then gpxq � fpCixq mod mN�i and we have Ci � Ci�1 mod
mM�iR.

The matrix Ci is invertible over R because Ci � C0 � In mod m and thus detCi

is a unit in R.
Since Ci � Ci�1 mod mM�iR, each entry in tCiu8i�0 is a Cauchy sequence. Thus

C � limiÑ8Ci exists because R is complete. It follows that C P MnpRq. Since
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C � C0 � In mod m, we have detpCq � 1 mod m, and so detpCq is a unit in R. It
follows that C is invertible over R.

Since gpxq � fpCixq mod mN�i for every i ¥ 0, it follows that

gpxq � lim
iÑ8

fpCixq � fp lim
iÑ8

Cixq � fpp lim
iÑ8

Ciqxq � fpCxq.

Therefore f and g are equivalent over R.

To show that g has rank n over K, note that since gpxq � fpCxq, we have

gpvq � fpCvq � pCvqtApCvq � vtpCtACqv

for all v P Kn. Therefore, the rank of g is the rank of the matrix

pCtACq � pCtACqt � CtAC � CtAtC � CtpA� AtqC.

Since A�At has rank n and C is invertible, we conclude that CtpA�AtqC has rank
n.
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Appendix F: Artin-Schreier Subgroup

F.1 Arf Invariant

We begin with a general concept that holds over fields k with charpkq � p ¡ 0.

Let k be a field with char k � p ¡ 0. Let ℘pkq � tap � a | a P ku. Then ℘pkq
is an additive subgroup of k because pap � aq � pbp � bq � pa � bqp � pa � bq and
�pap � aq � p�aqp � p�aq.℘pkq is called the Artin-Schreier subgroup of k.

Lemma F.1.1. If k is a finite field with charpkq � p, then rk : ℘pkqs � p.

Proof. Let θ : pk,�q Ñ pk,�q be defined by θpaq � ap � a. Then θ is an additive
homomorphism because the calculation above shows that θpa � bq � θpaq � θpbq.
It follows that impθq � ℘pkq. We have kerpθq � Fp because ap � a � 0 if and
only if ap � a, which holds if and only if a P Fp � k. Thus | kerpθq| � p, and so

p � | kerpθq| � |k|
| impθq|

. This gives rk : ℘pkqs � p.

Lemma F.1.2. Let k be a field with char k � 2.

1. If t P k, the quadratic form x2 � xy � ty2 is isotropic over k if and only if
t P ℘pkq.

2. If r � ℘pkq � s � ℘pkq, where r, s P k, then the quadratic forms x2 � xy � ry2

and x2 � xy � sy2 are equivalent over k.

3. If k is a finite field with char k � 2, then the quadratic forms x2�xy� ry2 and
x2 � xy � sy2 are equivalent over k if and only if r � ℘pkq � s � ℘pkq, where
r, s P k.

Proof. We first prove (1). Suppose that x2 � xy� ty2 is isotropic over k. Then there
exists a, b P k, not both zero, such that a2 � ab� tb2 � 0. If b � 0, then a � 0, which

is excluded. Thus b � 0. Then
�
a
b

�2 � a
b
� t � 0, which implies that t P ℘pkq because

char k � 2. Now suppose that t P ℘pkq. Then t � c2 � c for some c P k. Then
c2 � c � 1� t � 12 � 0, which implies that x2 � xy � ty2 is isotropic over k.

Next, we prove (2). Let s � r�c2�c where c P k. Then px�cyq2�px�cyqy�ry2 �
x2 � xy � pr � c2 � cq y2 � x2 � xy � sy2.

To prove (3), suppose that k is finite and x2 � xy � ry2 and x2 � xy � sy2 are
equivalent over k. Then either both are isotropic over k or both are anisotropic over
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k. By Lemma F.1.1, we have k � ℘pkq Y pt� ℘pkq for some t P k, t R ℘pkq. Then by
(1), either r, s P ℘pkq or r, s P t� ℘pkq. In both cases, we have r � ℘pkq � s� ℘pkq.

Proposition F.1.3. Let k be a field with charpkq � 2. Let fpx, yq � ax2� bxy� cy2,
where a, b, c P k, b � 0.

1. Then f is equivalent over k to a1x2 � xy � c1y2 for some a1, c1 P k.

2. If k is perfect, then f is equivalent over k to x2 � xy � ac
b2
y2.

Proof. To prove (1), observe that ax2 � bxy � cy2 � ax2 � xpbyq � c
b2
pbyq2. Thus we

may take a1 � a and b1 � c
b2

As for (2), since f � 0, an invertible linear change of variables lets us assume that
fp1, 0q � 0. Thus we can assume that a � 0. If k is perfect, then k � k2, so

?
a P k.

Then

ax2 � bxy � cy2 � p?axq2 � p?axq
�

b?
a
y



� ac

b2

�
b?
a
y


2

.

Corollary F.1.4. Let k be a finite field with charpkq � 2. Then there is a unique, up
to equivalence, anisotropic binary quadratic form of rank 2 of the shape ax2�bxy�cy2

with b � 0.

Proof. By Proposition F.1.3, any anisotropic binary quadratic form over k is equiv-
alent to one of the form x2 � xy � ry2. By Lemma F.1.2, any two such anisotropic
binary quadratic forms over k are equivalent. Note that detpx2�xy�ry2q � �1 � 0,
hence x2 � xy � ry2 has rank 2.

Definition F.1.5. If b � 0, the Arf invariant of ax2�bxy�cy2 is defined by Arfpfq �
ac
b2
� ℘pkq. The Arf invariant is not defined if b � 0.

It is not easy to show that the Arf invariant is an invariant. Lemma F.1.2 gives
an argument for the case of a finite field.

Proposition F.1.6. Let k be a field with charpkq � 2. Let

fpx, yq � ax2 � bxy � cy2

where a, b, c P k, b � 0, and let

gpx, yq � fpmx� ny, px� qyq � Ax2 �Bxy � Cy2

where m,n, p, q P k and mq � np � 0. Then B � 0 and

AC

B2
� ac

b2
�
�
amn� bmq � cpq

bpmq � npq

2

� amn� bmq � cpq

bpmq � npq P ac

b2
� ℘pkq.
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The proof is by a brute force calculation. We have

Proof.
A � am2 � bmp� cp2,

B � bpmq � npq,
C � an2 � bnq � cq2.

One shows directly that�
am2 � bmp� cp2

� �
an2 � bnq � cq2

�
�acpmq � npq2 � pamn� bmq � cpqq2
� bpmq � npqpamn� bmq � cpqq

Corollary F.1.7. Let k be a field with char k � 2. The Arf invariant of a binary
quadratic form is an invariant. That is, if m,n, p, q P k and mq � np � 0, then

Arf
�
ax2 �bxy � cy2

�
� Arf

�
apmx� nyq2 � bpmx� nyqppx� qyq � cppx� qyq2� .

F.2 Applications

Let K be a field with charpKq � 2 and let L be a finite extension of K. Let ℘pKq
and ℘pLq denote the Artin-Schreier subgroups. Thus ℘pKq � ta2 � a | a P Ku and
similarly for L. Then ℘pKq is an additive subgroup of K and similarly for L. Then
the (additive) quotient group K{℘pKq is defined.

Let tr : L Ñ K denote the trace map. From here on, assume that K is a finite
field with |K| � q. Let rL : Ks � n. Then |L| � qn. Note that aq

n � a for all a P L.

Lemma F.2.1. Let b P L. Then b P ℘pLq if and only if trpbq P ℘pKq.
Proof. If a P L, then trpaq � a�aq�aq

2�� � ��aq
n�1

. Since ptrpaqqq � trpaq, it follows
that trpaq P K.

It is easy to check that tr : L Ñ K is an additive homomorphism. We have
|kerptrq| ¤ qn�1 because a polynomial of degree qn�1 has at most qn�1 roots. Further,
we have |imptrq| ¤ q because |K| � q. By the first isomorphism theorem, L{kerptrq �
imptrq. It follows that

|kerptrq| � |imptrq| � |L| � qn.

Therefore, |kerptrq| � qn�1 and |imptrq| � q. This shows that tr is a surjective addi-
tive homomorphism.

Next, we will show that |℘pLq| � qn{2 and |℘pKq| � q{2. The map K Ñ K given
by x ÞÑ x2 � x is an additive homomorphism because charpKq � 2. Note that the
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image of this map is ℘pKq. The kernel has order 2 because x2 � x � 0 if and only if
x � 0 or x � 1. Thus, the image has order q{2. Likewise, the map L Ñ L given by
x ÞÑ x2 � x is an additive homomorphism such that the kernal has order 2 and the
image, ℘pLq, has order qn{2.

The next step is to prove that trp℘pLqq � ℘pKq. We begin by showing that
trpa2q � ptrpaqq2. Note that since charpLq � 2, it follows that q is a power of 2.
Observe that

ptrpaqq2 � pa� aq � � � � � aq
n�1q2.

� a2 � a2q � � � � � a2pq
n�1q.

� a2 � pa2qq � � � � � pa2qqn�1

.

� trpa2q.

The containment trp℘pLqq � ℘pKq follows from the equations

trpa2 � aq � trpa2q � trpaq � ptrpaqq2 � trpaq P ℘pKq.

Because tr : L Ñ K is a surjective homomorphism, and the projection K Ñ
K{℘pKq is a surjective homomorphism, it follows that the composition L Ñ K Ñ
K{℘pKq is a surjective homomorphism from L to K{℘pKq. This induces a surjective
homomorphism L{℘pLq Ñ K{℘pKq. Since this map is surjective, and |L{℘pLq| �
|K{℘pKq| � 2, it must also be injective. In particular, if b P L, then b P ℘pLq if and
only if trpbq P ℘pKq.
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