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ABSTRACT OF DISSERTATION

Pairs of Quadratic Forms over p-Adic Fields

Given two quadratic forms )1, Q)2 over a p-adic field K in n variables, we consider
the pencil Pk (Q1, Q2), which contains all nontrivial K-linear combinations of @); and
Q2. We define D to be the maximal dimension of a subspace in K™ on which ) and
()2 both vanish. We define H to be the maximal number of hyperbolic planes that a
form in Py (Q1, Q2) splits off over K. We will determine which values for (D, H) are
possible for a nonsingular pair of quadratic forms over a p-adic field K.
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Chapter 1 Introduction

Let Q1,09 € K|[X;,...,X,] be quadratic forms defined over a field K. We begin by
stating a few of the main definitions. We define P (Q1, Q2) to be the set of nontrivial
K-linear combinations of )7 and Q3. We call Pk (Q1,Q2) the K-pencil of )1 and
Q2. We define D = Dg(Q1,Q2) to be the maximal dimension of a subspace in K™
on which 1 and @5 both vanish. We define H = Hg(Q1,@2) to be the maximal
number of hyperbolic planes that a form in Pk (Q1, Q)2) splits off over K. We say
that the pair {Qi, @2} is nonsingular if the projective variety V : Q1 = Q3 = 0 is
nonsingular. We will elaborate on the definition of nonsingularilty and the definitions
of D and H in chapter 2.

In chapter 2, we will show that if K is a p-adic field, and the pair {Q, Q2} is
nonsingular, then the following inequalities hold:

n—=8
<

and

<H<Z
2

In Theorem 2.2.11, we will show that D < . Thus an8 <D < "T’l These in-
equalities lead us to ask what pairs of (D, H) are possible for a nonsingular pair of
quadratic forms over a p-adic field? Answering this question is the purpose of this

paper. We will refer to this problem as the (D, H) problem over p-adic fields.

The motivation for the definitions of D and H came from a paper by Heath-
Brown. Heath-Brown [7, Thm 1] proved the Hasse principle for nonsingular pairs
of quadratic forms in 8 variables defined over number fields. A major part of his
proof was solving a local problem over p-adic fields [7, Thm 2]. Using our D and
H notation, Heath-Brown’s [7, Thm 2] implies that if Q1,Qs € K[X,..., Xg] is a
nonsingular pair of quadratic forms defined over a p-adic field K, Dg(Q1,Q2) = 1,
and the size of residue field is = 32, then Hy(Q1,Q2) = 3. Therefore, Heath-Brown’s
result implies that the pairs (D > 1, H = 2) are impossible provided the size of the
residue field is = 32. Our original goal was to generalize [7, Thm 2| to nonsingular
pairs in n variables. Studying how [7, Thm 2] would generalize to nonsingular pairs
in n variables is what led us to consider the (D, H) problem.

The tables on the next page show the pairs of (D, H) that are possible and not
possible. The tables include links to the theorems where we prove that the corre-
sponding (D, H) values are possible or not possible. There are four open cases in the
tables. For these open cases, we do not know if there exists a nonsingular pair of
quadratic forms with the corresponding D and H values. We are currently working
on solving these open cases.



n: the number of variables

k: the residue field of the p-adic field
|k|: the cardinality of the residue field
v there is an example with the corresponding (D, H) values

Table 1.1: (D, H) values for n even

n even
D\H n;4 n52 %
22 n=10 open v Thm 9.4.3 v Thm 9.4.1
22 n>8,n#10 v Thm 9.4.4 v Thm 9.4.2 v Thm 9.4.1
28 n =6, [k| >4 | No examples Thm 11.2.2 v'Thm 9.3.2 v'Thm 9.3.1
28 n=6k<4 open v Thm 9.3.2 v Thm 9.3.1
”T76, n =238, |k| >4 | No examples Thm 11.2.3 v'Thm 9.3.2 v'Thm 9.3.1
8 n=38 |kl <4 open v Thm 9.3.2 v Thm 9.3.1
28 n =12 v'Thm 9.3.4 v'Thm 9.3.2 v'Thm 9.3.1
200 >10, n # 12 v'Thm 9.3.3 v Thm 9.3.2 v Thm 9.3.1
2l n=4 No examples Thm 2.2.14 v'Thm 9.2.2 v'Thm 9.2.1
nT_AL, n==06 No examples Thm 2.2.14 v'Thm 9.2.3 v'Thm 9.2.1
anzL’ n==_§ No examples Thm 2.2.14 v'Thm 9.2.2 v'Thm 9.2.1
%_47 n =10 No examples Thm 2.3.15 v'Thm 9.2.4 v'Thm 9.2.1
22 n=14 v'Thm 9.2.10 v'Thm 9.2.2 v'Thm 9.2.1
2 n>12, n# 14 v Thm 9.2.5 v Thm 9.2.2 v Thm 9.2.1
"7_2, n =2 No examples No examples Thm 2.2.14 | v Thm 9.1.1
"T_Q, n=4 No examples No examples Thm 2.3.15 | v'Thm 9.1.1
=2 n>6 No examples v Thm 9.1.2 v Thm 9.1.1
Table 1.2: (D, H) values for n odd
n odd
D\H n;3 ngl

2l n=9 v'Thm 10.4.3 v'Thm 10.4.1

i ln=7n>11 v'Thm 10.4.2 v'Thm 10.4.1

%7 n =25, |k| =24 | No examples Thm 11.1.1 | v Thm 10.3.1

22 n=5, [k <4 open v Thm 10.3.1

nE =T v'Thm 10.3.2 v'Thm 10.3.1

"53, n=3,5 No examples Thm 2.2.14 | v'Thm 10.2.1

3 n =7 No examples Thm 2.3.15 | v Thm 10.2.1

3 n>9 v Thm 10.2.2 v'Thm 10.2.1

"T_l n=>1 No examples v Thm 10.1.1




We will now describe our plan of attack for solving the (D, H) problem over p-adic
fields. In chapter 2, we will prove some preliminary results about quadratic forms
and establish some results about the D and H values for pairs of quadratic forms. In
chapter 3, we will construct an important example that will be used in various places
throughout the paper. Every example in the above tables is required to be a non-
singular pair. In general, it can be difficult to determine whether a pair of quadratic
forms is nonsingular. To get around this difficulty, we will establish in chapter 4
a process by which we can make a pair of integral quadratic forms nonsingular by
adjusting their coefficients.

Most of the examples in the above tables will be constructed in the following way.
We will define two types of pairs of quadratic forms: type A and type B. Most of the
examples in the tables are built using these two types of pairs. Chapter 5 contains
the definitions of type A and type B pairs along with some fundamental results. Most
of our type A and type B pairs are constructed by first considering a suitable pair of
quadratic forms over the residue field of the p-adic field. The type A and B pairs are
then obtained by lifting the residue field pair up to the ring of integers in a particular
way. The residue field pairs are constructed in chapter 7; these constructions are
done over arbitrary finite fields.

In chapter 8, we will construct all the type A and type B pairs that we need;
as previously mentioned, most of these will be obtained by lifting residue field pairs
from chapter 7 to the ring of integers. Then, in chapters 9 and 10, we will use the
type A and type B pairs to construct most of the examples in the tables.

As shown in the tables, there are pairs of (D, H) for which no examples exist.
In particular, we see from the tables that there are no examples for the cases where
(n=5D=0H=1),(n=6,D=0,H=1),and (n=8,D =1, H = 2), provided
|k| = 3. Chapter 11 deals with proving that no examples exist for these three cases.
Our proof of Theorem 11.1.1 in chapter 11 follows the method that Heath-Brown
used in [7, Theorem 2.

Throughout this paper, we will make use of various results that are not directly
related to the (D, H) problem; for example, certain results from basic quadratic form
theory. In order for this to be a self-contained document, we provide proofs and
references of these various results in the appendices.

Copyright© John R. Hall 2024



Chapter 2 Definitions, Preliminary Results, and Notation

2.1 Quadratic Form Theory

In this section, we discuss basic definitions and results from quadratic form theory.
The reader who is familiar with quadratic form theory may wish to skip this section
and start with section 2.2.

Let V be a vector space over a field k with dim(V) = n < co. Let k¢ denote the
algebraic closure of k.

Definition 2.1.1. A map f :V — k is said to be quadratic map if
1. f(ew) =cAf(v) for allce k and v eV, and

2. the map By : V xV — k given by Bf(v,w) = f(v+w)— f(v) — f(w) is bilinear
over k.

Note that By is symmetric. We call By the symmetric bilinear form associated to f.
We may also refer to the pair (f,V') as a quadratic module.

Definition 2.1.2. A quadratic form is a polynomial q € klxy,...,z,] that can be
written as
q= Z @ijLily,
1<i<jsn

where each a;; € k.

We can regard a quadratic form ¢ € k[zy,...,2,] as a map from k™ to k. With
some work, one can show that ¢ : kK — k is quadratic map. On the other hand, given
a quadratic map f : V — k, we can associate to f a quadratic form in k[xy, ..., z,]
as follows. Let A = {aq,...,a,} be a k-basis of V. Given (x1,...,z,) € k™, we have

flrior + -+ zpa,) = Z flag)z? + Z By, aj)zz;. (2.1.1)
i=1 1<i<j<n

This formula can be proved by induction on n. Note that the right-hand side of
equation 2.1.1 is a quadratic form over k in the variables x4, ..., x,.

Definition 2.1.3. Given a quadratic map f:V — k, and a k-basis A = {aq, ..., a,}
of V., we define the quadratic form associated to f with respect to the basis A as

if(ai)l“?Jr >, Brlaway)a;.
i=1

1<i<j<n

Definition 2.1.4. A quadratic form q € k[x1, ..., x,] is said to be isotropic over k if
there exist a nonzero v € k™ such that q(v) = 0. We say q is anisotropic over k if q
does not have any nontrivial zeros in k™.



Let My = M}A) denote the n x n matrix given by (My);; = Bf(ay, o;); that is, the
(i,7) entry of My is By(a;, o). Since By is symmetric, we see that M is a symmetric
matrix. We call My the symmetric matrix of f with respect to the basis A. Note
that M} is the symmetric matrix of the bilinear form By with respect to the basis A.

Let S = {ej,...,e,} denote the standard basis for k™ and let ¢ € k[z1,...,x,] be
a quadratic form. We will compute the matrix Mq(s>. Write

q= Z @ijTilLy,

1<i<j<n
where a;; € k. Note that g(e;) = a;; and ¢(e; + €;) = a;; + a;; + a;;. Observe that
B (e, e;) = q(2e;) — 2q(e;) = 4q(e;) — 2q(e;) = 2q(e;) = 2a4;,
and for ¢ # 7, we have
By(ei,e5) = qlei + e5) — qled) —qley) = (ai; + ai + aj;) — @i — aj; = ag.

Therefore, the matrix M, = Més) is given by

Qi 1 <j
(Mg)ij = § 2ai; 1=
Qj; 1> j

Often, this will be our preferred matrix to use when dealing with quadratic forms.
We therefore establish the following definition.

Definition 2.1.5. For a quadratic form q € k|xy, ..., x,]| with

q= Z @ijLilLy,

1<i<j<n

we let M(q) = M, denote the matriz of q, where

Q5 1 <j
(Mg)ij = § 2ai; i=j
Qji 1> j

Thus M, is the matriz of g with respect to the standard basis of k™.

For example, suppose ¢(z,y) = 22 + 2y + y°. Then

2 1
M, - [1 2] |
Suppose A; and A, are bases of V' over k. For a quadratic map f: V — k, let

M, = M}Al) and M, = M}A”. Thus M; is the matrix of By with respect to the



basis A;. With some work, it can be shown that there exists an invertible matrix
U € GL,(k) such that M; = U'M,U, where U* denotes the transpose. It follows that
det(M;) = det(U)?det(M,). We therefore define the determinant of f as det(M),
hence the determinant of f is unique up to a square. We regard det(f) as an element
of k/k?, where k? denotes the set of squares in k.

Definition 2.1.6. Let f : V — k be a quadratic map. Let A be a k-basis of V', and
My = MJ(CA). We define the determinant of f as follows:

det(f) = det(Mjy).
We regard det(f) as an element of k/k*.

In the case where f = q € k[x1,...,x,] is a quadratic form, we can use the matrix
M, from definition 2.1.5 to compute det(q).

Definition 2.1.7. For a quadratic form q € k|xy, ..., x,]| with

q= Z @ij iy,

1<i<j<n
we define the determinant of q as

det(q) = det(My),
where M, is the matriz of q as defined in Definition 2.1.5.

Unless stated otherwise, will always use the matrix M, from Definition 2.1.5 when
computing the determinant of a quadratic form.

Lemma 2.1.8. Let k be any field and let n = 1 be odd. Suppose A is an n x n
symmetric matriz over k such that the (i,1) entry is 2a;;, and fori # j, the (i,7) entry
is a;;. There exists a polynomial h € Z|x;;] of degree n such that det(A) = 2h(a;;).

Proof. We go by induction on n. The case n = 1 is clear. For n > 3, assume by
induction that the result holds for n—2. Suppose the entries aq2, ai3, ..., ay, are each
divisible by 2. Then every entry in row 1 of A is divisible by 2. We can therefore fac-
tor out 2 from row 1, leaving us with a new matrix A’. Thus det(A) = 2det(A’), and
we can express det(A’) = h(a;;) for some polynomial h € Z[z;;] of degree n, as desired.

On the other hand, suppose at least one of the entries a9, a3, . .., ay, is not divis-
ible by 2. To keep A symmetric, every row operation will be followed by an analogous
column operation, and vice versa. By performing column and row operations, we can
assume that a;o = ag; is not divisible by 2. Then by performing column and row
operations, we can assume that a;; = a;; = 0 for ¢ = 3 and a; = ao; = 0 for i > 3.
Let B denote this new matrix. Thus B is a symmetric block diagonal matrix. We
have

det(A) = det(B) = (4a11a9 — a2y)det(C),
where C' is some (n — 2) x (n — 2) matrix. By induction, det(C) = 2h/(a;;) for
some h' € Z|x;;] of degree n — 2. Then det(A) = 2(4ajjasn — aiy)h'(a;j). Take
h = (4x11299 — 2%5)W (24;). Then h has degree n and det(A) = 2h(a;;), as desired. [



Let f : V — k be quadratic map. Assume char(k) = 2 and dim(V) = n is odd.
Then the matrix of f with respect to any k-basis {a1,...,a,} of V is a symmetric
n x n matrix. The diagonal entries are 2f(a;) = 0. Lemma 2.1.8 implies that det(f)
is divisible by 2. So for char(k) = 2, the determinant will be zero. In this scenario, we
can formally divide det(f) by 2; doing so gives us what we call the half-determinant.

Definition 2.1.9. Let k be a field with char(k) = 2. Let f : V — k be a quadratic
map with dim(V') = n odd. We define the half-determinant of f, denoted det%(f), as
follows:

dety (F) = 5 de( ).
Let f:V — k be a quadratic map.
Definition 2.1.10. We define
rad(By) = {veV | Bf(v,w) =0 for allwe V}.
We call rad(By) the radical of the bilinear form By.
Definition 2.1.11. We define

rad(f) = {ve V| f(v) = 0 and v € rad(B;)}.
We call rad(f) the radical of f.
Definition 2.1.12. We define the order and rank of f : V — k as follows.
ord(f) = order(f) = dim(V) — dim(rad(f).
rk(f) = rank(f) = dim(V') — dim(rad(By)).

Note that rad(q) < rad(B,). Thus rank(q) < order(q) < dim(V) = n. Observe
that if v € rad(By), then

0 = By¢(v,v) = 2f(v).
Therefore, if char(k) # 2, then f(v) = 0 and v € rad(f). It follows that for
char(k) # 2, rad(f) = rad(By) and order(f) = rank(f).

We also note that rank(f) equals the rank of the bilinear form B;. Therefore, the
rank of f equals the rank of the matrix of the bilinear form By:

rank(f) = rank(Mjy).
It follows that rank(f) = n if and only if det(M) # 0.

Definition 2.1.13. We say a quadratic map f : V — k is nondegenerate if rad(f) =
0. We say By is nondegenerate if rad(By) = 0.

From the definitions, order(f) = n if and only if f is nondegenerate, and rank(f) =
n if and only if By is nondegenerate.



Lemma 2.1.14. Let q: V — k be a quadratic map.

1. If char(k) # 2, then order(q) = n if and only if det(q) # 0.

)
2. If char(k) = 2, n is even, and k is perfect, then order(q) = n if and only if
det(q) # 0.

3. If char(k) = 2, n is odd, and k is perfect, then order(q) = n if and only if
det% (q) #0

Proof. For proof, see Lemma B.1.5 in the appendix. O]

Definition 2.1.15. Let f : V — k be a quadratic map. A vector v eV is said to be
a singular zero of f if f(v) =0 and v € rad(f). We say v is a nonsingular zero of f

if f(v) =0 and v ¢ rad(f).

Let V' be a vector space over k of dimension n. Let A = {ay,...,a,} = V be a k-
basis for V. Let v,w € V and let y, z € k™ denote the coordinates of v, w, respectively,
with respect to the basis A. Thus, if y = (y;) and z = (z;), then v = Y | y;o; and
w =Y, yiy;. With some work, we obtain

By(v,w) = y'M;z. (2.1.2)
Given a quadratic form q € k|zy, ..., z,], we define

Vq = (%:nqgcza s >an)a

where ¢,, is the partial derivative of ¢ with respect to x;. Thus q,, € k|xy,...,z,] is
a linear form. For u € k™, we define

Va(u) = (gay (1), Gus (1), -+ Ga, (W)

Lemma 2.1.16. Let f : V — k be a quadratic map. Let A be a k-basis of V. For
v,weV, let y,z € k™ denote the coordinates of v, w, respectively, with respect to the

basis A. Let q € k[ X1, ..., X,| denote the quadratic form associated to f with respect
to A. Then

By(v,w) =y - Vq(z),
where y+ Vq(z) denotes the dot product of y and Vq(z).

Proof. We will show that

flo+w) = f(v) + f(w) +y-Vq(z).

Write y = (y;) and z = (z;). Let

q= (zn: GZX12> + ( Z Clinin> s
i=1 1<i<j<n



where a;, a;; € k. Note f(v+w) = q(y + 2), f(v) = q(y), and f(w) = ¢(z). We have

y—l—z (Zn:al yz+zz ) ( aij(yi+zi)(yj +Zj)> .
= q(y) +a(2) + ( az2yzzz> ( > iz +yjzi)> :

1<i<j<n

M:

=1

To finish, observe that

(an ai2yizi> + ( Z ai;(Yiz; +yjzi))

1<i<j<n
=y-(2a121,...,2a,2,)
+ y1 (@222 + a1323 + -+ + A12n)

+ yg(algzl + 9323 + -+ agnZn)

+ yn(alnzl + aop2o + -+ + an—l,nzn—l)
=y-Vq(2).

O

Since By is symmetric, we have Bf(v,w) = By(w,v). Combining this fact with
equation 2.1.2 and Lemma 2.1.16 gives us the following identities.

By(v,w) =y'Msz =y-vq(z) = Vq(y) - z = 2' My = Bp(w,v).
The next lemma relates singular zeros to partial derivatives.

Lemma 2.1.17. Let f : V — k be a quadratic map. Let A be a k-basis of V. For
veV, lety e k™ denote the coordinates of v with respect to A. Let q € k[z1, ..., x,]
be the quadratic form associated to f with respect to A. Then v is a nonsingular zero

of f if and only if q(y) = 0 and Vq(y) # 0.

Proof. Suppose v is a nonsingular zero of f. Then f(v) = 0 and v ¢ rad(By). Then
there exists w € V' such that By(v,w) # 0. Let z € k™ denote the coordinates of w
with respect to A. We have Bf(v,w) = Vq(y) « z. Thus Vq(y) # 0.

Conversely, suppose ¢(y) = 0 and Vq(y) # 0. Write Vq(y) = (¢, ..., ¢,), where
each ¢; € k. Since Vq(y) # 0, there exists 1 < j < n such that ¢; # 0. Let e; € k"
denote the j™ standard basis vector of k". Note that e;+ Vq(y) = ¢;. Let u € V be
the vector whose coordinates respect to A are e;. We have

By (u,v) =e;+Vq(y) = ¢; #0.

Thus v ¢ rad(B,) and so v is a nonsingular zero of f. ]



Lemma 2.1.18. Let f : V — k be a quadratic map. If f is nondegenerate, then
every nontrivial zero of f is nonsingular.

Proof. Suppose v is a singular zero of f. Let ¢ be the quadratic form associated to f
with respect to a basis A. Let y € k™ denote the coordinates of v with respect to A.
Lemma 2.1.17 implies that Vg(y) = 0. Let w € V and z € k" denote the coordinates
of w with respect to A. We have

Bi(v,w) = vq(y) -z = 0.

Therefore, v € rad(By). Since f(v) = 0, v € rad(f) as well. Because f is nondegen-
erate, rad(f) = 0, hence v = 0. ]

Definition 2.1.19. Let f : V — k be a quadratic map. Suppose Vi,...,V; SV are
subspaces such that V =V, @---@®V; and Bs(V;,V;) = 0 for i #t. Then we say V
is the orthogonal direct sum of Vi,...,V; with respect to f, and we write

V=Vi&; &V
If f is clear from context, we may also write
V=1 &V,

Definition 2.1.20. Let f : V — k be a quadratic map. A subspace H €V is said to
be hyperbolic if the following conditions are satisfied.

1. dim(H) = 2.
2. H = span(v,w), where v,w € V with f(v) = f(w) = 0.
3. By(v,w) # 0.
The quadratic form associated to g = f|g with respect to the basis {v, w} is
f()X?+ By(v,w)XY + f(w)Y? = By(v,w)XY.
Moreover, B, is nondegenerate.

Definition 2.1.21. We say a quadratic map f :'V — k splits off j hyperbolic planes
over k if there exist subspaces H, ... H;, Vo €V such that

V=H& - GH,®V,,
where the H; are hyperbolic.

Definition 2.1.22. Let f,g € R|X1,...,X,]| be quadratic forms over a ring R. We
say that f and g are equivalent over R if there exists an invertible matriz T' € GL,(R)
such that f(TX) = g(X), where X = (X1,...,X,). If f and g are equivalent over

R, then we write f ~r g or f ~ g when the underlying ring is clear.
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In terms of quadratic forms, Definition 2.1.21 translates to the following.

Definition 2.1.23. We say a quadratic form q € k[ Xy, ..., X,] splits off j hyperbolic
planes over k if there exists T € GLy(k) such that

q(TX) = X1X2 + X3X4 + -+ X2j,1X2j + qO(ngH, c. 7Xn)
where X = (X1,...,X,) and qo is some quadratic form over k.

Definition 2.1.24. Let Q1,Q2 € k[Xy,...,X,] be quadratic forms. An element
x € (k)" is said to be singular common zero of {Q1,Q2} if Q1(x) = Qa2(x) =0 and
the 2 x n matriz

[v@(x)]:[%(x) Ln(a) - L)

VQ2(x) ) T2 - ()

has rank < 2.

Definition 2.1.25. Let Q1,Qs € k[ X1, ..., X,] be quadratic forms. We say that the
pair {Q1, Q2} is nonsingular over k if Q1 and Q do not have any nontrivial singular
common zeros defined over k9.

From Definitions 2.1.24 and 2.1.25, we see that a pair Q1,Qs € k[ X1, ..., X,] is
nonsingular if and only if for each nonzero z € (k#)" such that Q,(x) = Qo(x) = 0,

the matrix
[vcgl(a»]: (o) (o) - @)
VQo(r)| T | %2 () () - fE(2)
has rank 2.

Lemma 2.1.26. Let k be a field with char(k) # 2 and |k| = n. Let Q1,Q2 €
klz1,...,x,] be quadratic forms. Suppose that no form in Pr(Q1,Q2) has order n.
Then @1, Qo has a singular nontrivial common zero defined over k.

Proof. Suppose order(Q1) = m < n. If m = 0, then @; = 0. Since order(Qs) < n,
rad(Q2) # 0 in which case ()2 has a nontrivial zero. This nontrivial zero is a nontrivial
singular zero of the pair @1, Q)s.

Suppose m # 0. Then we can write Q(x1,...,2,) = Q\(x1,...,Ty), where Q)
has order m. Since char(k) # 2, rank(Q’) = m, hence det(Q}) # 0. Let g(\, u) =
det(AQ1 +pQ2). Then g(A, ) = 0 for all A\, i € k. Either g = 0 or g is a homogeneous
form of degree n. Since |k| = n, then g = 0. Then the coefficient of A™ in g is 0. The
coefficient of \™ in g is

det(Q7)det(uQ2(0, ..., 0, Tmi1, .., Tn)).

Since this equals zero, with det(Q}) # 0, we deduce that

det(uQ@2(0,...,0, 21, ..., 2p)) = 0.

11



Then Q2(0,...,0,Zpy1,- .., x,) has order < n —m. It follows that
rad(Q2(0,...,0,Zyms1, ..., 2,)) # 0, in which case Q2(0,...,0,211,...,2,) has a
nontrivial zero (0,...,0,¢ny1,...,¢n) over k. Then (0,...,0,¢ny1,--.,¢n) i a non-

trivial singular zero over k of @1, Qs.
O

Let f,g € K|x1,...,x,] be quadratic forms. Let h = det(Af + pg). Then h €
K[\, ] and either h = 0 or h is a homogeneous form of degree n. If h is nonzero,
then h factors over K9 into a product of linear factors.

Theorem 2.1.27. Let K be a field with char(K) # 2. Let f,g € K[X1,...,X,] be
quadratic forms. Let h = det(\f + ug).

1. If {f, g} is a nonsingular pair, then every form in Praq(f,g) has rank either n
orn— 1. (The converse does not hold.)

2. If h has distinct linear factors over K9, then {f, g} is a nonsingular pair. (The
converse holds.)

3. If {f,g9} has a nontrivial singular zero defined over K, then some form in
Pr(f,g) has rank <n — 1.

Proof. See [8, Proposition 2.1, p.13] or [14, Propositions 7.2 and 7.3]. ]

Lemma 2.1.28. Let K be a field with characteristic of K not equal to 2. Let f,g :
K" — K be quadratic maps with associated symmetric bilinear forms By, B, : K x
K — K. Assume that f,g is a nonsingular pair. Suppose that Px(f,g) contains a
form having order n — 1. Then there is a basis of K™ such that when f and g are
written with respect to this basis then

f=fz,... 20 1) +az?

g=qi(x1,..., 0, 1) +b2?
where fi,q1 : K" 1 — K are quadratic maps and a,be K.

Proof. Without loss of generality, f has order n — 1. There is a basis {vy,...,v,} of
K™ such that rad(f) = spang(v,).

Suppose that g(v,) = 0. Then v,, would be a nontrivial singular zero of f, g, which
is excluded. Thus g(v,) # 0, and since char(K) # 2, we have B (vy,, v,) # 0.

Let V be the orthogonal complement of v, with respect to B,. Thus K" =
V@ (K -v,) and By(V,v,) = 0. For example, a basis of V' is given by {w1, ..., w,_1}
where w; = v; — ¢;v, With ¢; = B,(v;, v,,)/Bg(vn, vp).

If f, g are written with respect to the basis wy, ..., w, 1, v,, then since v, € rad(f),
and By(V,v,) = 0, we have

f = fl(l'l, e ,xn—l)

and

g=qi(x1,..., 0y 1) +ca?
for some c € K*. Note that ¢ # 0 because otherwise v,, would be a singular zero of
fr9 O
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2.2 Dg(f,g) and Hk(f,qg)

Let K be a field. Let @, f,g € K[X3,...,X,] be quadratic forms. For 1 < i < n, let
e; denote the standard basis vectors of K™.

Definition 2.2.1. Let Dk (Q) denote the largest integer such that QQ vanishes on a
subspace in K™ of dimension Dk (Q).

For example, if Q = X; X», then @ vanishes on spany(e;) € K?, where e; = (1

,0).
Note that @ does not vanish on a 2-dimensional space in K2. Therefore, Dy (Q) = 1.

Definition 2.2.2. Let D = Dg(f,g) denote the largest integer such that f and g

both vanish on a subspace in K™ of dimension D.

Thus, if we let S be the set of subspaces in K", then
Dk(f,g9) = max{dim(U) | U € S and f(U) = g(U) = 0}.

For example, if f = X7 and g = X, X5, then f and g both vanish on span(e;) <
K2, where e; = (0,1). Thus Dg(f,g) = 1. On the other hand, if f = X? and g = X3,
then Dg(f,g) = 0.

Definition 2.2.3. Let Hx(Q) denote the largest integer such that Q splits off Hrk(Q)
hyperbolic planes over K.

For example, if Q = X7 + X1 X, + X2, then after an invertible linear change of
variables, we see that Q@ ~ X; X, + X2. Thus Hg(Q) = 1.

Definition 2.2.4. We define Hi(f, g) = max{Hgk(Q) | Q € Px(f,9)}.

Lemma 2.2.5. For any field K, and for any quadratic forms Q, f,g € K[X1,...,X,],
we have

1. Di(f,q) < max{Dg(f), Dx(g)}.

8. Hig(Q) < Dk (Q).

Proof. Statements (1) and (2) are clear from the definitions. As for (3), by definition,
@ splits off h = H(Q) hyperbolic planes over K. So after an invertible linear change
of variables, we can assume @ = X1 X5 + -+ + Xop 1 Xop + Qo(Xopi1, ..., Xp) for
some quadratic form @y over K. Observe that () vanishes on spang(es, ey, ..., €a),
a subspace of dimension h. Thus h = Hg(Q) < Dg(Q). O

Lemma 2.2.6. Let Q € K[Xy,...,X,] be a quadratic form over a field K. Let
j = order(Q). Then Dg(Q) = Hx(Q) +n — j. In particular, if Q has order n, then
Dk(Q) = Hr(Q) < 3.
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Proof. If @ has order n, then Theorem B.1.1 implies that @ splits off Dy (Q) hy-
perbolic planes. Thus Dg(Q) < Hg(Q). On the other hand, since @ splits off
Hk(Q) hyperbolic planes, () vanishes on a subspace of dimension Hg(Q), hence
Hi(Q) < Dk (Q). This proves the case where ) has order n.

Suppose order(Q)) = j < n. Then there is an invertible linear change of variables
over K so that @ = Q'(X1,...,X;), where Q' has order j. It follows that Dg(Q) =
Dg(Q'") +n — j. By our special case above, Dg(Q') = Hg(Q'). Since Hg(Q')
Hi(Q), we obtain Dg(Q) = Hg(Q) +n — j.

Lemma 2.2.7. Let K be a field with char(K) # 2 and let f,ge K[X1,...,X,] be a
nonsingular pair of quadratic forms. Assume |K| = n. Then Dk (f,g) < Hgx(f,g).

Ll

Proof. Lemma 2.1.26 implies that there exists Q € Pk(f, g) such that order(Q) = n.
Note Dk (Q) = Dk(f,g). Theorem B.1.1 implies that @ splits off at least Dg(f, g)
hyperbolic planes over K. Thus Dk (f,g9) < Hx(Q) < Hk(f,9). O

Theorem 2.2.8 (Amer’s Theorem). Let K be an arbitrary field. Let Q1,Q2 €
K[X1,...,X,] be quadratic forms. Then Q1 and Qy both vanish on an i-dimensional
space over K if and only if Q1 + tQ2 vanishes on an i-dimensional space over K(t).

Proof. Amer proved the case where char(K) # 2 [1]. Leep gave a proof that was
independent of the characteristic of the field [11]. O

Lemma 2.2.9. Let K be a field and n = 1. If char(K) = 2, then assume n is even.
Suppose f,ge€ K[Xy,...,X,] are quadratic forms with rank(f) = n or rank(g) = n.

1. {f, g} vanishes on a j-dimensional space over K if and only if f + tg splits off
at least j hyperbolic planes over K(t).

2. Dg(f,9) = Hgw(f + tg).
Proof.

1. Note det(f + tg) is a polynomial in ¢; the constant term is det(f), and the
coefficient of t" is det(g). Since rank(f) = n or rank(g) = n, then either
det(f) # 0 or det(g) # 0, respectively. In either case, det(f 4 tg) is a nonzero
polynomial in ¢; that is, det(f + tg) # 0 in K(t). Thus f + tg has rank n over
K(t). By Amer’s theorem (Theorem 2.2.8), {f, g} vanishes on a j-dimensional
space over K if and only if f + tg vanishes on a j-dimensional space over K (t).
Since f +tg has rank n over K (t), we conclude from Theorem B.1.1 that f +tg
vanishes on a j-dimensional space if and only if f + tg splits off at least j
hyperbolic planes over K (t).

2. Since {f, g} vanishes on a subspace over K of dimension Dg(f,g), statement
(1) implies that f + tg splits off at least Dg(f, g) hyperbolic planes over K (t),
hence Hgy(f + tg) = Dk(f,g). On the other hand, since f + tg splits off at
least Hy () (f+tg) hyperbolic planes over K(t), statement (1) implies that {f, g}
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vanishes on a subspace over K of dimension H ) (f +tg). Thus Hygu(f+tg) <
Dk (f,9) and so D (f,g9) = Hxw(f + tg).

]

Theorem 2.2.10. Let K be an infinite field with char(K) # 2. Let Q1,02 €
K[Xy,...,X,] be linearly independent quadratic forms in n = 2 wvariables. Sup-
pose rad(Q1) N rad(Q2) = 0. Then there are infinitely forms in Pk (Q1,Q2) that split
off at least 1 hyperbolic plane. In particular, Hx(Q1,Q2) = 1.

Proof. First, we will show that there is a form in P (Q1, Q2) that splits off at least one
1 hyperbolic plane. We begin by considering the case where every form in Pg(Q1, Q2)
has order < n. Then Lemma 2.1.26 implies that ¢); and ()» have a nontrivial singular
common zero over K, say x € K™. By a change of variable, we can assume x = ey,
the first standard basis vector in K. Then

Q1= X1L1(Xz, ..., Xp) + Q3(Xa, ..., X))

and

Q2 = X1Ly(Xo, ..., X)) + Qu(Xs, ..., X,)

for some linear forms Lq, Ly and some quadratic forms Q)3,Q)4, all defined over K.
Since rad(Q1) nrad(Q2) = 0, we know that not both L; and Ly can be zero. Without
loss of generality, assume L; # 0. Then e; is a nonsingular zero of ();. Therefore,
Theorem B.1.1 implies that () splits off at least one hyperbolic plane over K, as
desired.

Now, assume that Pk (@1, Q2) contains at least one form of order n (i.e. rank n
since char(K) # 2). Let F'(A, u) = det(AQ1 + pQ2). Then F(A, p) is a homogeneous
form of degree n in A, over K. Since there is a form in Pg(Q1, Q) of rank n,
we know F'(A, p) is a nonzero homogeneous form. Therefore, there are only finitely
many forms in Pk (Q1,Q2) that have rank < n. If a form in Px(Q1,Q2) has rank
n, then its radical is zero. On the other hand, if a form in Pg(Q1,Q2) has rank
< n, then its radical is a proper, nonempty subset of K™. Therefore, there are only
finitely many nontrivial radicals (i.e. radicals that are proper, nonempty subsets of
K™). Let Ry,...,R; denote the nontrivial radicals. Because K is an infinite field,
the union of finitely many proper subspaces of K" is also a proper subset. Thus,
R = Ry U --- U Rj is a proper subset of K. Choose an element p € K™\R. Then
p#0. By taking an appropriate linear combination of @)1 and ()5, we can find a form
@ in the pencil Py (Q1, Q2) that vanishes at p. Note that since @1 and Q)5 are linearly
independent, we know ) # 0. Then p will be a nontrivial zero of ) that is not in the
radical of (), in which case ) will split off at least one hyperbolic plane. This shows
that there is a form in the pencil Pk (Q1, Q2) that splits off at least 1 hyperbolic plane.

Next, we will show that there are infinitely forms in Px(Q1, Q=) that split off at

least 1 hyperbolic plane. Suppose there are m forms in Px(Q1,Q2) that split off at
least 1 hyperbolic plane, let’s say G, ..., G,,. Each of the radicals Ry, ..., R; lies in
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a subspace of dimension n — 1, and this subspace is given by the zeros of a nonzero
linear form. That is, there exist nonzero linear forms L, ..., L; such that

R ={ze K" | Li(z) = 0}.

Let S=Ly---L;G;y---G,y,. Thus, S is a nonzero homogeneous form of degree j +2m
over K. Because K is an infinite field, we can find a vector p’ € K™ such that
S(p") # 0. Consequently, none of the linear forms L, ..., L; vanish at p’, and none
of the quadratic forms G,...,G,, vanish at p’. By taking an approprate linear
combination of @ and @y, we can a find a form @’ in the pencil Pg(Q1,Q)2) that
vanishes at p’. Because p’ is not a zero of any of the linear forms L4, ..., L;, we know
that p’ is not in the radical of ()’. Therefore @)’ splits off at least one hyperbolic plane.
Because p’ is not a zero of any of the quadratic forms Gy, ..., G,,, it follows that @’
is not a multiple of any of Gy, ..., G,,. Therefore, Gy, G, ..., G,,, Q" are all distinct
forms in Pr(Q1,Q2). This proves that there are infinitely forms in Pk (@4, Q2) that
split off at least 1 hyperbolic plane. n

Theorem 2.2.11. Let K be a field. Suppose f,g € K[X1,...,X,] are quadratic
forms such that {f, g} is nonsingular. Then Dk (f,g) < 5.

Proof. For sake of contradiction, assume Dg(f,g) = 5. Let W < K" be a subspace
of dimension Dg(f,g) where f and g both vanish. There exist A, o € K2, not
both zero, such that det(Aof + pog) = 0. Let h = \gf + pog. From Lemma 2.1.14,
we know order(h) < n.

Suppose v € W is a nonzero singular zero of h. By Lemma 2.1.17, we have
Vh(v) = 0. Therefore,

0= Vh(v) =XV f(v) + pVg(v).

This proves that the matrix [ZJ;E;J; ] has rank < 2, hence v is a singular zero of { f, g}.

According to Definition 2.1.25, this is contrary to the pair {f, g} being nonsingular.

Therefore, every nonzero element of W is a nonsingular zero of h. Then Lemma
B.1.1 implies that h splits off dim(W/) > % hyperbolic planes. Then order(h) >
2dim(W) = n. This is contrary to order(h) < n.

O

Remark: For char(K) # 2 and |K| = n, we can give another proof of Theorem
2.2.11 as follows. Since {f, ¢} is nonsingular, Lemma 2.1.26 implies that Px(f,g)
contains a form of order n. Without loss of generality, assume g has order n. By
Amer’s Theorem, if f, g both vanish on a subspace of dimension n/2, then f + tg
vanishes on a subspace of dimension n/2 over K (t). Since g has order n over K, the
form f + tg has order n over K(t). Lemma B.1.1 then implies that f + tg splits off
n/2 hyperbolic planes over K (t). This implies that det(f + tg) has a repeated linear
factor. According to Theorem 2.1.27, this is contrary to {f, g} being a nonsingular
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pair.

Theorem 2.2.12 is due to David Leep.

Theorem 2.2.12. Let K be a field. Let {f, g} be a pair of linearly independent
quadratic forms defined over K in n variables. Suppose that {f, g} vanishes on a
subspace W of K™ with dim(W') = m. Assume that every form in Pk (f,g) has rank
n.

If n = 3m + 1, then there exist A\, u € K, not both zero, such that \f + pg splits
off m + 1 hyperbolic planes.

Proof. Let {ey,...,e,} be the standard basis of K. We can assume that W =
Span(ey, ..., ey). Then

f = inLi(xm+l7 Ce ,.’L’n) + Q(:Cerl, e ,l’n)
i=1

m
g = Z xiL;(merla s 71;%) + Ql(merl’ cee wxn)a
i=1
where L;, L are linear forms and @, Q)" are quadratic forms.

Note that there are 2m linear forms L;, L}, and each linear form is in terms of
n — m variables. Since n —m > 2m, we can perform an invertible linear change of
variables so that L;, L} € K[xy11, ..., Z3y]. Therefore

m
f= Z%Li(xmﬂ, oy T3m) + Q(Ts, o Th),
i=1

and

m
g = Z%‘L;(xmﬂ, o Tym) + Q (Tt - Th).
i=1

There exist A, 4 € K, not both zero, such that the coefficient of z2 in \f — pug is
zero. Since n — 1 > 3m, we can set X1 =+ =Ty = -+ =Ty = 0in Af — ug
and let h = (\f — pug)(x1,...,2m,0,...,0,2,). Since the coefficient of z2 in \f — ug
is zero, it follows that h = (Af — ug)(x1,...,2m,0,...,0,2,) = 0. Thus Af — ug
vanishes on a subspace of dimension m + 1. Since Af — ug has rank n, it follows that
Af — pg splits oft m + 1 hyperbolic planes. O

Remark: In Theorem 2.2.12, if there are forms in Pg(f, g) that have rank < n,
then it is possible for the result to fail. For example, let N(X,Y) € K[X,Y] be
anisotropic of rank 2, and let f,g € K[Xq,..., X4] be given by

f=X1Xo+ X2+ N(X3, Xy),
and

g = XlXQ.
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Then g has rank 2, and (1,0,0,0) is a common zero of {f, g}. Thus {f, g} vanish on
a subspace of dimension 1, and the inequality n > 3m + 1 is satisfied for n = 4 and
m = 1. Let A\, u € K, not both zero. Observe

If A\ 4+ p =0, then Af + g does not split off 2 hyperbolic planes over K. If A+ p # 0,
then we can perform the change of variable

X1 =+ p)X +AX,.

Doing so yields
)\f + ng = X]I_XQ + )\N(X37X4),

and this form does not split off 2 hyperbolic planes. Thus, there are no forms in
Pr(f,g) that split off 2 hyperbolic planes.

Theorem 2.2.13. Let K be a field. If char(K) = 2, then assume K is perfect.
Assume that K is an infinite field (or a field with at least 2n elements). Let f,g €
K|z, ..., x,] be quadratic forms that satisfy the following three properties.

1. Px(f,q) contains a form of order n.
2. Every form in Px(f,g) has order = n — 1.
3. {f, g} vanishes on a subspace W of K™ with dim(W) = m.

If n = 3m + 2, then there exist A\, u € K, not both zero, such that \f + pug splits
off m + 1 hyperbolic planes.

Proof. Let {e1,...,e,} be the standard basis of K. By an invertible linear change
of variables, we can assume that {f, g} vanish on W = Span(ey,...,e,). Then

f= inLi(me, v @) + Q(Timg1s -, Th)
i-1

m
g = Z xl'L/Ii(merl? s 7‘7:%) + Ql(merh cee an)a
i=1
where L;, L are linear forms and @, Q)" are quadratic forms.
Note that there are 2m linear forms L;, L}, and each linear form is in terms of

n — m variables. Since n —m > 2m, we can perform an invertible linear change of
variables so that L;, L} € K|%y41, ..., Z3y]. Therefore

f = Z:EiLi(:Eerl? s >x3m) + Q(merla s 7xn)-
=l (2.2.1)
g= inLg(me, oy Zam) + Q' (X, -, T
i—1
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If n is even, then let P = det(\f +ug), and if n is odd, then let P = det%(/\f—i-ug).
In either case, P is a homogeneous form of degree n in the variables A, . For Ag, po €
K, Lemma 2.1.14 implies that Aof + pog has order n if and only if P(\g, po) # 0.
Therefore, since Pk(f, g) contains a form of order n, we deduce that P is nonzero.
As a nonzero homogeneous form of degree n, P has at most n distinct linear factors.
Therefore, there are at most n forms in Pg(f, g) that have order < n.

Let hy,...,h; be the forms in the K-pencil of f and g such that order(h;) < n.
Thus 7 < n. Let hy = N\ f + g, for 1 <@ < 7. Let

fl(x3m+17"‘7xn) = f(07"'707x3m+17"‘7xn)7

and

gl(x3m+l> cee 7xn) = g(O, cee 707$3m+17 s 7xn)-

Then f;, and g, are quadratic forms in n—3m > 2 variables. Let S = [._;(\if1 +
[1:G1)-

Suppose first that S is a nonzero polynomial. Since S is a homogeneous form with
deg(S) = 27, and |K| = 2n > 2j, there exists v € K"3™ = Span(es;, 11, - - -, €,) such
that S(v) # 0. There exist A\, u € K, not both zero, such that (Af; + ug1)(v) = 0.
Since (Af1 + pg1)(v) = 0 and S(v) # 0, we deduce that (A, ) # (A, ;) for 1 < i < 5.
It follows that h := Af + pg has order n. Note h vanishes on Span(ey,...,en,v).
Lemma B.1.1 implies that h splits off m + 1 hyperbolic planes.

Now suppose that S'is the zero polynomial. Then some \; fi + ;g1 is the zero poly-
nomial. Let h = A;f + ;9. Then h(0,...,0, 3541, T3mi2, - - -, Tn) = 0. This, together
with equation 2.2.1, implies that h vanishes whenever z,,11 = T;40 = -+ = 23, = 0.
Thus, h vanishes on a subspace in K™ of dimension n —3m > m + 2.

If A has order n, then Theorem B.1.1 implies that A splits off at least m + 2
hyperbolic planes, which is sufficient.

Suppose h has order n — 1. We can perform a change of variables so that h =

R (xq,...,2, 1), where b’ is a quadratic form of order n—1 over K. Let W, < K" be a

subspace of dimension m+2 on which h vanishes. Let Wy = {(ay,a2,...,a, 1,0) | a; €

K}. Thus Ws is a subspace in K™ of dimension n— 1. It follows that dim(W; nWs) >

m + 1. Thus A’ vanishes on W7 n W,. Theorem B.1.1 implies that A’ splits off at
least m + 1 hyperbolic planes over K.

L]

Theorem 2.2.14. Suppose {f, g} is a nonsingular pair of quadratic forms in n vari-
ables over a field K.

1. If n =2 and Dg(f,g9) =0, then Hx(f,g) = 1.
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2. Ifn=3 and Dk(f,g) =0, then Hx(f,g) = 1.
=4 and Dk(f,g) =0, then Hg(f,g) = 1.

Ifn
4. If n =5 and Dk(f,g) = 1, then Hg(f,g) = 2. Therefore, the case D = H =
”T_g is 1mpossible for n = 5.

5. Ifn =06 and Dk(f,g9) = 1, then Hy(f,g) = 2. Therefore, the case D = H =
n4 s impossible for n = 6.

6. If n =8 and Dk(f,g) = 2, then Hi(f,g) = 3. Therefore, the case D = H =
4

is impossible for n = 8.

Proof. Suppose {f, g} is a nonsingular pair over K in n > 2 variables. Theorem 2.2.10
implies that there is always a form in Pk(f, g) that splits off at least one hyperbolic
plane. This proves (1), (2), and (3). Alternately, Theorem 2.2.13 implies (1), (2),
and (3) as well. Further, Theorem 2.2.13 also implies (4), (5), and (6). O

Lemma 2.2.15. Let F be any field and let Q € F[Xy,...,X,] be a quadratic form.
If Q is anisotropic over F, then Q) is anisotropic over F(t).

Proof. For sake of contradiction, suppose Q(z1,...,x,) = 0, where z; € F(t), not all
zero. By multiplying (z1,...,x,) by a suitable polynomial in ¢, we can assume that
each x; € F[t]. Then, by multiplying (z1,...,x,) by a suitable power of ¢, we can
assume that not all x; are divisible by t.

Note that Q(z1,...,x,) is a polynomial in ¢. Let ¢y,..., ¢, € F denote the con-
stant terms of x1,...,x,, respectively. Then the constant term of Q(z1,...,x,) is
Q(c1, ..., ¢,). Thus Q(ey,...,¢,) = 0. Since @ is anisotropic over F', we see that
each ¢; = 0. It follows that each x; is divisible by ¢, a contradiction. O

2.3 Quadratic Forms over p-Adic Fields

For this section, let K denote a p-adic field with ring of integers O and residue field
k. Thus k is a finite field. Let K8 denote the algebraic closure of K. For 1 <i < n,
let e; € K™ denote the i*" standard basis vector of K™.

Let m be the unique maximal ideal of Ok and suppose that m = (7). Thus
k = Ok/(m). Let v: K — Z v {00} denote the p-adic valuation. Assume v(7) = 1.

If A€ Ok, let A denote the image of A in k. If Q € Ok[Xy, ..., X,] is a quadratic
form, then let @ € k[ X1, ..., X,,] denote the quadratic form obtained by reducing the
coefficients modulo 7. Thus, if Q) = ZKKK” a;; X;X;, then Q) = Zlgigjgn a;; X; X

Given two quadratic forms Q1 € K[X1,...,X,,] and Q2 € K[X1,..., X,], we let

Q1 L @y denote the orthogonal direct sum of )1 and Q3. The form @, L @5 is
obtained by adding together ); and () but making their variables disjoint. Thus
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Q1 L Q, is a form in n + m variables. For example, if Q; = X; X, and Q, = X3,
then one may regard Q; L Q9 as X; X, + X3.

By Chevalley’s Theorem, any quadratic form over a finite field in at least 3 vari-
ables is isotropic. Since the residue field k is a finite field, Lemma B.2.5 implies
that there exists a unique (up to equivalence) anisotropic quadratic form n(X,Y) €
E[X,Y]. Therefore, if we let N € Og[X,Y] be any lift of n, then N is anisotropic
over k.

Lemma 2.3.1. Let Ny € Og|Xy,...,X,,| and Ny € Ok[Yi,...,Y,,]| be quadratic
forms such that N, and Ny are anisotropic over k (thus ni,ny < 2). Suppose Q is
a quadratic form over Ok in the variables X;, Y; such that Q = Ny + 7Ny mod 7.
Then @ is anisotropic over K.

Proof. Suppose v = (X1, ..., Zp,, Y1, -+, Yny) € K™ is a nontrivial zero of ). By
multipling v by a sufficient power of m, we can assume that each z;,y; € Ok, not all
divisible by 7. We have Q = N; + 7N, +72Q0, where Q) is some quadratic form over
Ok in the variables X;, Y;. Note that

Nl(Il, . ,fL‘n1> + ﬂNg(yl, . ,?an) + 7T2Q0('U) = 0

We must have 7 | Ny(z1,...,2,,). Thus 7 | zy,...,2,, since N, is anisotropic.
Then 72 | Ni(z1,...,2,,). It follows that m | No(yi, ..., ¥Yn,). As before, this implies
T | Y1,. .., Yny, Which is a contradiction. Therefore () is anisotropic over K. n

Lemma 2.3.2. Suppose Q € Ok[Xy,...,X,] is a quadratic form such that Q) =
N(Xy, oo, Xi) + 7G(Xonsa, -, Xn), where G and N are quadratic forms over Ok
with N anisotropic over k. Then Dk (Q) < Di(G). In particular, Q splits off at most

Dy(G) hyperbolic planes.

Proof. Suppose that () vanishes on a subspace U < K™ of dimension d. We will show
that d < Dy(G). By Theorem C.0.1, we arrange for U = spang(vy,...,v4), where
v; € (Og)™ are linearly independent modulo 7. Write v; = (a;1, @40, - - -, @in), Where

a;j € O. Since Q(v;) = 0, we have
0= N(ai,. - m)+ 7G(Qmst,- -, ).

Thus © | N(as,...,amn), hence m divides the first m coordinates of each v;. Let
w; denote the projection of v; onto the first m coordinates. Thus 7 | w} and so
72 | N(w!}). Let v} denote the projection of v; onto the last n —m coordinates. Since
U1, ..., 0g are linearly independent modulo 7, we deduce that v},...,v] are linearly
independent modulo 7. Let

U = {bl’Ull + - +bdvé | bz € OK}
Then U’ is a subspace over k of dimension d. Since 72 | N(w}), and Q(U) = 0, we

deduce that 7 | G(U’"). Thus d < Dy(G). O
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Lemma 2.3.3. Suppose Q € Ok[Xi,...,X,] is a quadratic form such that Q@ =
G(XlL ey X)) + N (X1, - -, Xi), where G and N are quadratic forms over Ok

with N anisotropic over k. Then Dk (Q) < Di(G). In particular, Q splits off at most

Dy(G) hyperbolic planes.
Proof. Let T be the n x n diagonal matrix given by
T = diag(m,7,...,m,1,1,...,1),

where the first m entries are 7’s and the last n — m entries are ones. Let Q' =
7 1Q(TX), where X = (Xy,...,X,). Then

QI = WG(Xl,...,Xm) +N(Xm+1,...7Xn).

Thus, Lemma 2.3.2 implies that Dg(Q') < Dg(G). The same is true for Q. ]

Lemma 2.3.4. Let N1, Ny € Og[X,Y] be quadratic forms such that Ny and Ny are
anisotropic of order 2 over k. Suppose Q) € Ok| Xy, ..., X4] is a quadratic form such
that Q = N1(X1, Xs) + N(X3, X4) mod m. Then Q splits off 2 hyperbolic planes over
Ok.

Proof. By Lemma B.2.6, Q = N,(X, Xo) + Ny (X3, Xy) splits off 2 hyperbolic planes
over k. By Lemma A.1.2, it follows that @) splits off 2 hyperbolic planes over O. [

Lemma 2.3.5. Let Q(X1,...,X,) be a quadratic form over K in n = 2m variables
of rank n. If det(Q)) = (—1)™a, where a € K is a nonsquare, then Q splits off exactly
”T_Q hyperbolic planes.

Proof. Since @) has rank n, @) splits off at least ”T"l = m — 2 hyperbolic planes:
Q = X1X2 +-+ an5an4 + Q,(ani%a Xn727 anla Xn)
This implies that
(=1)™2det(Q") = det(Q) = (=1)"a.
So det(Q’) = a, hence @’ has a nonsquare determinant. As a form in four variables
over a p-adic field whose determinant is not a square, we know @’ splits off a hyperbolic

plane, hence @ splits off at least m — 1 hyperbolic planes. To show that @) splits off
exactly m — 1 hyperbolic planes, note that

Q=X1Xo+ 4+ Xom3Xomo + Q"(Xom_1, Xom),

where
det(Q") = (=1)""det(Q) = (=1)"H(=1)"a = —a.

Since a is a nonsquare, this shows that Q" is not hyperbolic. O

Proof. We can write Q1 = X1 Xo+ -+ Xop, 1Xon, + Q) (Xop, 41, -+, Xy, ), where @)
is either zero or is anisotropic modulo 7. Likewise, we can write ()9 = Y1Yy + - -+ +

Yon,—1Yon, + Q5(Yony 41, - - -, Yn,), where @) is either zero or is anisotropic modulo 7.
By Lemma 2.3.1, the form @} L 7@ is anisotropic over K. Thus @1 L 7@y splits
off exactly hy + ho hyperbolic planes over K. O
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Lemma 2.3.6 (Hensel’s Lemma). Let Q1,Qs € Ok[Xy, ..., X,] be quadratic forms.
If {Q1,Q2} have a common nonsingular zero over k, then {Q1,Q2} have a common
nonsingular zero over K.

Proof. See [4, Lemma 6, p.113]. ]

The symbol u(K') denotes the u-invariant of K, which is defined as the largest in-
teger n such that there exists a quadratic form @ € K|, ..., z,] having no nontrivial
zero defined over K.

We let uy(K') denote the largest integer n such that there exists a pair of quadratic
forms f,g € K|x,...,x,] having no nontrivial common zero defined over K.

Lemma 2.3.7. Let K be a p-adic field. The following statements hold.

1. u(K) =4.
2. u(K(t)) = 8.

Proof. For a proof of u(K) = 4, see [9, Theorem 2.12, p.158]. Parimala and Suresh
[16] proved u(K (t)) = 8 for the case where the characteristic of the residue field of
K is not 2. Then Leep [12] gave a proof of u(K(t)) = 8 that was independent of the
characteristic of the residue field. Demyanov was the first to prove uy(K) = 8; Birch,
Lewis, and Murphy gave a simpler proof [4, Theorem 1, p.113]. O

Corollary 2.3.8. Let K be a p-adic field and let Q) be a quadratic form over K(t)
in n = 8 variables. Then Q) vanishes on a subspace over K(t) of dimension at least
n—=8

T2

Proof. We go by induction on n. If n = 8, then there is nothing to prove. If
n = 9, then Lemma 2.3.7 implies that u(K(t)) = 8, hence @) has a common non-
trivial zero and the result follows. Now suppose n = 10, and assume by induction
that the result holds for quadratic forms over K (t) that have < n variables. Given
Q € (K(t))[Xy,...,X,], we consider the cases where ) has rank n and rank < n
separately.

First, suppose @ has rank n. Since u(K(t)) = 8, we see that ) has a common
nontrivial zero. Thus Theorem B.1.1 implies that @) splits off a hyperbolic plane over
K (t). This means there is an invertible linear change of variable over K (t) so that

Q = QO(Xb cee 7Xn72) + anIXn

where @)y is some quadratic form over K (t). By induction, @)y vanishes on a subspace
over K (t) of dimension at least 252, It follows that () vanishes on a subspace over
K (t) of dimension at least “5%.

Next, suppose ) has rank 5 < n. Then there is an invertible linear change
of variable over K (t) so that Q = Q'(X;,...,X;). By induction, " vanishes on a

23



subspace over K (t) of dimension at least j%g. It follows that () vanishes on a subspace
over K (t) of dimension at least

j—8 2 —j—8 n-8
= > .
5 tn—J 2 2

[]

Corollary 2.3.9. Let K be a p-adic field and let f,g € K[X,...,X,] be quadratic
forms in n > 8 variables. Then Dg(f,g) = "5°.

Proof. By Theorem 2.2.8, it is sufficient to show that )1 +t()s vanishes on a subspace
over K (t) of dimension > ”T’B. This follows from Corollary 2.3.8. ]

Corollary 2.3.10. Let K be a p-adic field. Let Q € K[Xy,...,X,] be a quadratic
form of rank n. Then H(Q) = Dg(Q) = “52.

Proof. We know from Lemma 2.3.7 that u(K) = 4. This, together with Theorem
B.1.1, implies that Hy(Q) > "T"l. Lemma 2.2.6 implies that Hx(Q) = Dg(Q). O

Lemma 2.3.11. Let K be a p-adic field and {f, g} be a nonsingular pair of quadratic

forms over K in n variables. Then

n—2_8
2

< Di(f,9) < Hik(f.g) <

?

|3

and 4
n— n
< Hg(f,9) < =
5 x(f,9) 9
Proof. Since K is a p-adic field, we know char(K') # 2 and K is infinite. Since {f, g}
is nonsingular, Lemma 2.2.7 implies that Dg(f,g) < Hg(f,g). Corollary 2.3.9 im-

plies that Dy (f,g) = “5°. Lemma 2.2.5 implies that Hx(f,g) < 2.

Since {f, g} is nonsingular, Lemma 2.1.26 implies that Pg(f, g) contains a form
Q@ of rank n. Corollary 2.3.10 then implies that @ splits off at least "T"l hyperbolic
planes over K, hence Hy(f,g) = "7_4. ]

Thus, for a p-adic field K and a nonsingular pair of quadratic forms f,¢g in n
variables defined over K, we ask what values (Dk(f,qg), Hx(f,g)) can occur? We
already showed in Lemma 2.2.14 that certain pairs of (Dg(f,g), Hx(f,g)) are im-
possible; note that the results in Lemma 2.2.14 were over arbitrary fields. Also, in
Theorem 2.2.11, we showed that Dg(f,g) < § for a nonsingular pair of quadratic
forms over any field. In Lemma 2.3.15, we will prove that there are no examples of
nonsingular pairs of quadratic forms over p-adic fields with (n = 4,D =1, H = 1),
(n=7,D=2H=2),and (n =10,D = 3, H = 3). First, we will need to prove the
following lemmas. The proof of Lemma 2.3.12 is due to David Leep.

Lemma 2.3.12. Let K be a p-adic field. Let f,g € K[X,...,X,] be a nonsingular
pair of quadratic forms with n = 2. Suppose Pk (f,g) contains a form of rank n — 1
that splits off m hyperbolic planes over K, with0 < m < ”T’Q Then Hk(f,g9) = m+1.
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Proof. Without loss of generality, assume f has order n—1 and splits off m hyperbolic
planes over K. By an invertible linear change of variable, we can assume

f=Qi(Xq,..., Xn1)

2.3.1
g:QZ(Xlu---aanl)+XnL(X17-~~7Xn71)+bXTQL ( )

for suitable quadratic forms @1, @2, a linear form L, and some b € K. Since f has
order n—1, the form @); has order n—1. Since {f, g} is nonsingular, b # 0; otherwise,
e, would be a nonsingular common zero of f and g.

Claim: By a change of variable, we can assume that L = 0.

Proof of Claim. To prove the claim, let F,G : K™ — K be quadratic maps such that
for (zq,...,2,) € K", we have F(zie; + -+ + zpe,) = f(21,...,2,) and G(z1e1 +
<o+ xpe,) = g(xy,...,x,). Thus, f and g are the quadratic forms associated to F’
and G with respect to the standard basis of K. Note that By(e,,e,) = 2g(e,) # 0.

Foreach 1 <i<n—1,let ¢; = %. Consider the basis
glén,En
S = {61 Tt Ciln,y ... En—1 t Cp—1€p, en}‘

Let f', ¢’ be the quadratic forms associated to F,G with respect to this new basis.
Notice that f' = f. By our choice of ¢;, the form ¢’ has the shape

g=0Q%X1,..., X 1) +0X?2

for some quadratic form ), and some b € K. This allows us, in effect, to assume

that L = 0 in equation 2.3.1. This proves the claim. ]

Since f = Q1(X1,..., X, 1) splits off m hyperbolic planes, we can perform an
invertible linear change of variables over K involving only the variables X, ..., X,
so that

[=X1Xo+ X5 Xy + 4+ Xopmo1 Xom + Q1 ( Xomats -+, Xno1)
g= QIQ(Xl, . ,anl) + bX?L

for some quadratic forms )} and @, over K. Since f has order n — 1, the form
is nondegenerate (i.e. has order n — 1 — 2m). By multiplying f and g by a sufficient
power of 7, we can assume )} and @ have coefficients in Ok and b € Ok. Let

fo=X1Xo+ X5 Xy + -+ Xomo1 Xom + Q1(Xomsts -+, Xno1)-

Since fp has order n — 1, Theorem F.0.2 implies that there exists a positive integer
N depending on fy such that if a quadratic form ¢ € Ok[X7, ..., X,,_1] is congruent
to fo modulo 7V, then f, and ¢ will be equivalent over O. Consequently, for any
d € Ok, the form fy + 7¥dQ) is equivalent to fy over Ok. Let

_Q’l(ﬂ'Nb,...,ﬂ'Nb)

d—=
7Nb
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Then d € Og. Consider f + 7¥dg. After an invertible linear change of variable
involving only the variables X1, ..., X,,_1, we can write

f4+di¥g=X1Xo + Xs Xy + - + Xop1 Xom~+
+ Q) (Xomats .o, Xno1) +dr¥bX2,

Notice that (7Vb, 7V, ..., 7V, 1) € K"~?™ is an isotropic vector of Q) (Xomi1, -+ Xn 1)+
dr¥bX2. Since Q) + dnVbX?2 is isotropic of order n — 2m, Theorem B.1.1 implies
that it splits off at least one hyperbolic plane, in which case f + dn™g splits off at
least m + 1 hyperbolic planes. This completes the proof. O

The proof of Lemma 2.3.13 is due to David Leep.

Lemma 2.3.13. Let K be a p-adic field. Let f,g € K|X,...,X,] be a nonsingular
pair of quadratic forms in n = 2 wvariables. Suppose P (f,q) contains a form of
order < n. If {f,g} vanish on a subspace over K of dimension m < "772, then
Pr(f,g) contains a form that splits off at least m + 1 hyperbolic planes. Therefore,

if Dx(f,q9) =m, then Hi(f,g) = m+ 1.

Proof. Note that since {f, g} is a nonsingular pair, Theorem 2.1.27 implies that every
form in Pk(f,g) has order = n — 1. By hypothesis, there is a form in Px(f, g) of
order < n. Therefore, Px(f,g) contains a form of order n — 1, and we may apply
Lemma 2.1.28, which implies that there is an invertible linear change of variables over
K so that

f=0Qi1(X1,..., X0 ) + aX]
g = QQ(Xh cee 7Xn—1) + bX,,QL

for some quadratic forms @, Q2 over K and some a,b € K. Since {f, g} is nonsingular,
not both a and b can be zero. Without loss of generality, assume b # 0. By adding a
multiple of g to f, we can assume a = 0. We therefore have

f - Ql(Xla---aanl)
g = QQ(Xla <. 7Xn71) + sz

Next, we will show that (), vanishes on a subspace in K" ! of dimension m. By
hypothesis, {f, g} vanish on a subspace U < K" of dimension m. Suppose U =
span(vy, ..., V), where v; € K™ are linearly independent, 1 < i < m. For each

1 <i<m,let v e K"! denote the projection of v; onto the first n — 1 coordi-

nates. Note that (); vanishes on span(v],..., v/ ). For sake of contradiction, assume

rm

that vj,..., v/ are linearly dependent over K. Then there exists a nonzero vector

rm

v € span(vy, ..., v,) such that v = (0,...,0,¢), where ¢ € K is nonzero. But notice
that v is a singular common zero of {f, g}, a contradiction. Therefore, v,... v/,
are linearly inedpendent, and we deduce that @, vanishes on subspace in K"~ ! of

dimension m, namely the space span(v},...,v.,).

rm

Since Q1 has order n — 1 and vanishes on a subspace in K" ! of dimension m,
Theorem B.1.1 implies that @) splits off m hyperbolic planes over K. Then Lemma
2.3.12 implies that Hx(f,g) = m + 1, as desired. O
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We can now prove a version of Lemma 2.2.12 that holds for nonsingular pairs of
quadratic forms over p-adic fields.

Lemma 2.3.14. Let K be a p-adic field. Let f,g € K|[X,...,X,] be a nonsingular
pair of quadratic forms in n = 2 variables. If {f, g} vanish on a subspace over K of
dimension m and n = 3m + 1, then Pk (f,g) contains a form that splits off at least
m+ 1 hyperbolic planes. Therefore, if Dy (f,g) = m, then Hx(f,g9) = m+1 provided
n=3m+ 1.

Proof. 1f Pk(f,g) contains a form of order < n, then Lemma 2.3.13 proves the result.
If every form in Pk (f,g) order n, then Lemma 2.2.12 proves the result. O]

Lemma 2.3.14 tells us that there no examples exist for the following pairs of

Theorem 2.3.15. Suppose {f, g} is a nonsingular pair of quadratic forms in n vari-
ables over a p-adic field K.

1. If n =4 and Dk (f,g) = 1, then Hy(f,g) = 2. Therefore, the case D = H =

n—2 . - _
5= is impossible for n = 4.

2. ]fn =T and Dk(f,g) = 2, then Hi(f,g) = 3. Therefore, the case D = H =
1s impossible for n = 7.

|0.7

2

3. If n =10 and Dk(f,g) = 3, then Hi(f,g) = 4. Therefore, the case D = H =

74 18 impossible for n = 10.

Proof. Apply Lemma 2.3.14 with (n =4,m = 1), (n =7,m = 2), and (n = 10, m =
3).

U

Lemma 2.3.16. Let f,g € Ok[Xy,...,X,]| be quadratic forms. Then Dk (f,g) <

Proof. Let U ¢ K™ be a subspace where f(U) = g(U) = 0 and dim(U) = Dk(f,g).
By Theorem C.0.1, there exists a basis for U, say wy, ..., w;, t = Dg(f, g), such that
each w; has coordinates in Ok and wy, ..., w; are linearly independent over k. For
each i, we have f(w;) = g(w;) = 0, hence f(w;) = g(w;) = 0. Thus {f, 7} vanish on a
subspace over k of dimension Dg(f, g). This implies that D (f,g) < Di(f,g). O

Lemma 2.3.17. Let fi,91 € Ok|Xi,...,X¢] be quadratic forms and let fo, g2 €
Ok[Xes1,- -, Xn] be quadratic forms. Let f = fi L nfs and g = g1 L wgs. Then

Dk (f1,91) + Dk (f2, 92) < D (f.9) < Di(f1,71) + Di(f2. 2)-

Proof. 1t's clear that Dk (f1,91) + Dk (f2,92) < Dg(f,g). For the other inequality,
let m = Dg(f,g), m1 = Di(f1,91), and my = Dy (f2, 32). We will show m < my +ms.
Let W < K™ be a subspace with dim(W) = m such that f(W) = g(W) = 0. Theorem
C.0.1 implies that there exists a basis {yi,...,yn} of W such that each y; € (Og)"
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and {y1,...,ym} are linearly independent modulo 7.

Let y1,...,y,, be the projection of the vectors v, ..., y, onto the first ¢ coordi-

nates, respectively. Thus each 3/ € K*. Let ¢/, ..., y" be the projection of the vectors
Y1, ..., Ym onto the last n — £ coordinates. Thus each y” € K",

Let Wy = spany (v}, .. .,y.,) and let Wy = spang(y/,...,y"). Thus W; € K* and
Wy € K", Since f(W) = g(W) = 0, it follows that after reducing modulo 7, we
get fi(W,) = g1(W1) = 0. Thus dlm(Wl)

Let j = dim(W;). Thus us j < my. By relabeling appropriately, we can assume that

{y,,... ,yj} is a basis of W;. We can assume that Yiog = Yjyp ="+ = =y = 0; that
is, ™ | Yi1,-- 5 Yy In other words, the first £ coordinates of y;i1,...,yn are each
divisible by 7. This, combined with the fact that v,...,,, are linearly indepen-
dent modulo 7, implies that {y}’ 1y, Y} are linearly independent modulo 7, hence

dim(Wy) = n — j.

Since 7 | 4}yq,. .-, Y, and f(W) = g(W) = 0, we get that fo(W3) = g2(W>) = 0.
Thus
n—j = dim(Ws) < Dx(fo. 32) =

The inequalities 7 < my and m — j < my imply that m < my + ms.

O
_ Remark: why were we able to assume 7 | y; for j +1 < i < m? Because
{y1,...,y;} are linearly independent over k, for each j + 1 < i < m, there exist
Cil, - - ., Cij € k such that

cﬂy_’1+--- +cijy_;+E= 0.
This translates to scalars d;1, ..., d;; € Ok such that
dllyi + - +dmy; +y§ = 0 mod 7.

Therefore, for each 7 + 1 < ¢ < m, we can replace y; with z; = dyy, + -+ +
d;;y; + y;. Because y1, ..., Yn are linearly independent modulo 7, the same is true for
Y1, Yjs Zj41s - - - » Zm. This allows us in effect to assume that y; = 0 mod 7 for each
j+1<i<m.

Corollary 2.3.18. Let fi,q1 € Ok|[Xy,..., X be quadratic forms and let fo,gs €
Ok[Xes1, ..., Xn] be quadratic forms. Let f = fi L 7fy and g = g1 L 7ga. If
DK(f'ugZ) = Dk(f’w@) fOTi = 172; then DK(fag) = DK(flagl) + DK(f2792)'

Proof. This follows from Lemma 2.3.17. ]

Copyright© John R. Hall 2024
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Chapter 3 Pairs of Forms in n = 2m + 1 Variables: An Important Example

In this chapter, we begin by proving Theorem 3.0.1, which is a result that holds over
arbitrary communitive rings with identity 1.

Theorem 3.0.1. Let R be a communitive ring with identity 1. Let m = 0 and
n=2m+1. For each m+1 <11 < 2m+ 1, let a; and b; be elements of R. Let
f,g€ R[Xq,...,X,] be the quadratic forms

2m+1
f=XiXpmn + XX+ + X Xom + D a: X7
1=m+1
2m+1
g=X1 X2+ Xo X+ -+ Xy Xopyr + Z b X7
1=m+1

Then
det(\f + pg) = 2(=1)" (aremAp*™ + by o pi®™ )
+ 2(_1)m(a2+m)\3,u2m72 + b2+m)\2/12m71)

+ 2(—1)m(a2m+1)\2m+1 + bzm+1/\2m,u).

Proof. We go by induction on m. For m = 0, we have f = a; X? and g = b; X2. Thus
det(Af + pg) = 2(ar1 A + byp).

For m > 1, assume by induction that the result holds for m — 1. Let A = (a;;)
denote the (2m + 1) x (2m + 1) matrix of Af + ug. Notice that column 2m + 1 of A
contains only two nonzero terms, namely @, om+1 = f and aomi12m+1 = 2(a2mi1 A +
bom+1pt). Given 1 <i < j <2m+ 1, let A;; denote the (2m) x (2m) matrix obtain
by deleting row ¢ and column j of A. Performing cofactor expansion along column
2m + 1 yields

det(A) = (=1)"* udet(An2ms1)
+ 2(agm41 A + bamy11t)det(Aomit1 2m+1)-

Claim: det(AQerl’ngrl) = (_1)m)\2m

(3.0.1)

Proof of Claim. We know Agy,11.9m+1 is obtain by deleting row 2m + 1 and column
2m + 1 from A. This corresponds to deleting the monomials X, Xo,,+1 and X3 +1
from Af + pg. Therefore, by letting

2m
fo=X1 X1 + Xo X0+ + X1 Xopo1 + X0 Xop, + Z az'Xf,
1=m+1
2m
go = XiXppo + Xo Xz + - + X1 Xy + Z bi X7,
i=m+1
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we see that det(AQm_i_l’Qm_;'_l) = det()\fo + ﬂgo) Write A2m+172m+1 = (Q}j)léi,jé?m-
Then

2m
det(Afo + pgo) = Z sgn(o) n Cio(i)-

o€Som i=1
Let 7 € S5, be a permutation such that H?fl iy # 0. Suppose (y, z) is a 2-cycle
in 7, where y € {2,...,m} and z = y + m. Thus 7(y) =y + m and 7(y + m) = y.
Consider the monomials

Xy—lxy—l-i-m (in f0)7
and
Xy 1 Xyem  (in go).

These are the only monomials in fy and gy that contain the variable X, ;. Therefore,
T(y—1)e{y—1+m,y+m} and either 7(y —1+m)=y—1lor7(y+m) =y — 1.
Since 7(y) = y + m and 7(y + m) = y, we deduce that 7(y — 1) = y — 1 + m and
T(y—1+m)=y—1 Thus (y—1l,y—1+m)=(y—1,z2—1) is a 2-cycle.

With that in mind, notice that if 7 € S5, satisfies Hfinl Cir(i) # 0, then 7(m) = 2m
and 7(2m) = m since X,, X, is the only monomial in Afy + pgo that contains the
variable X,,. Therefore (m,2m) is a 2-cycle. Iterating our previous calculation, we
obtain the following 2-cycles in 7:

(m,2m)(m—1,2m —1)--- (2,2 4+ m)(1,1 + m).

This is the disjoint cycle decomposition of 7, hence 7 is the only permutation in Ss,,
that satisfies Hffl Cir(y # 0. Since the sign of 2-cycle is —1, and sgn : So,, — {—1,1}
is a group homomorphism, we see that sgn(r) = (—1)™. We conclude that

2m
det(\Mfo + pgo) = . sen(0) [ | cioto-
=1

o€Som

2m
(=)™ n Ci,r(i)-
i=1

(_1)m(cl,mﬂ)2(c2,m+2)2 i (Cm,2m)2'
(—1)m)\2m.

This completes of the proof of the claim. n

Combining our claim with equation 3.0.1 yield

det(A) = (—=1)"" ' udet (A oms1)

3.0.2
+ 2(—1)m(a2m+1)\2m+1 + b2m+1)\2m,u). ( )

It remains to determine det( A, 2m+1). Let A" = A, 05,11, hence A’ is a (2m) x (2m)
matrix. Write A" = (aj;)1<ij<om- Row 2m + 1 of matrix A has only two nonzero
entries, namely aomi1m = 0 and agmi12m+1 = 2(@2mi1A + bamy1t). Therefore, row
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2m of A" = (a; ;) has only one nonzero entry, namely a5, ,, = p. We perform cofactor
expansion on A’ along row 2m; doing so yields

det(Apomi1) = det(A') = (—=1)*" udet (A’

2m,m
where A5, ., is obtain by deleting rows 2m and m of matrix A’. Thus Ay, is a
(2m — 1) x (2m — 1) matrix. Since ay,, ,, = ¢ was originally the entry agm 1,m = 4 in
A, we observe that deleting row 2m and column m in A’ corresponds to deleting row
2m + 1 and column m in A. In total, we see that Ay, is obtained by deleting rows
m, 2m + 1 and columns m, 2m + 1 in matrix A. This in turn corresponds to deleting
the monomials X, Xopi1, XimnXom, Xim—1Xom, and X3, in Af + pg. Therefore, by

letting

) = (=1)"pdet(As,, ), (3.0.3)

2m

f/ =X X, + XQXm+1 +o A+ X1 Xomo + Z a’in?flv
i=m+1
2m
g, = Xle+1 + XQXm+3 + -+ X1 Xopo1 + Z bin?flu
i=m+1

we see that det(AY,, ,,) = det(Af'+png’). To see why the subscript for X7 | is correct,

note that for ¢ = m + 1, the (i,4) entry in our original matrix A is a;\A + b;u. When
we delete column m, the entry a;A + byt is now in column 7 — 1 of the matrix Ay, .,
hence it corresponds to the variable X; ;.

By induction, we have
det(A},, ) = 2(=1)" " (@1mA™™ % + bypnp®™ ")
+2(=1)" M agrm N 2™ + by A2 7?)
(3.0.4)
+ 2(=1)" N agmA™ ! 4 bo NP2 ).
Combining equations 3.0.3 and 3.0.4 yield

det(Apomi1) = =2(a14m A" + brmp®™)
_ 2(a2+m/\3,u2m_3 + 52+m)\2ﬁb2m_2)
(3.0.5)
— 2(agm A"+ by AT 2).
Combining equations 3.0.2 and 3.0.5 yield
det(A) = 2(=1)"(a14mA*™ + bromp®™ ™)
+ 2(=1)"™(agym AN 2™ + by iy NP
: (3.0.6)
+2(=1)™(agm A" 2+ by N2 0%)
+ 2(=1)™(azm s 1 A7+ bon 1 A ).
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For any field F', we let eq,..., e, denote the standard basis vectors in F™.

Corollary 3.0.2. Let R be a commutative ring with identity 1. Let F be a field
containing R. Let m =2 0 and n = 2m + 1. Let P(\,pn) € R[\ p]| denote a ho-
mogeneous form of degree n in the variables X\, . Then there exist quadratic forms
f,9€ R[Xy,...,X,] such that {f, g} vanish on spang (e, ..., ey) and det(\f + ug) =
2(=1)™P(\, p).

Proof. We can write P(A, ) in the following way:

P()\, /~L) = al-&-m)‘lﬁm + bl-&-m:u2m+1
+ a2+m)\31u2m72 + b2+m)\2u2mfl

+ a2m)\2m—llu2 + me/\Qm—Qluii

+ Ao N+ b2m+1>\2m,u7

where a;,b; € R. Let f and g be as in Theorem 3.0.1. Then {f, g} vanish on
spang(eq, ..., ey) and det(Af + pug) = 2(=1)"P(A, u). O

Copyright© John R. Hall 2024
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Chapter 4 A Method for Producing Nonsingular Pairs over p-Adic Fields

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We will use the same notation given at the beginning of section 2.3.

Our goal in this chapter is to show how we can adjust the coefficients of a pair
of quadratic forms in Ok[Xy, ..., X,] modulo a power of 7 so that the pair becomes
nonsingular. We begin with Lemmas 4.0.1 and 4.0.2. Lemma 4.0.1 is essentially
Gauss’s lemma, and Lemma 4.0.2 is a simple generalization of [5, Lemma 2.1, p.2].

Lemma 4.0.1. Let g(x) € k[z] be a monic polynomial that is irreducible over k.
Let G(x) € Og[z] be a monic polynomial such that the reduction of G modulo T is
g, deg(G) = deg(g), and with the convention that 0 lifts to 0. Then the nonzero
coefficients of G are units in O, and G is irreducible over K.

Proof. Since 0 lifts to 0, the nonzero coefficient of G are units in Og. To prove that
G is irreducible over K, we go by contrapositive. Assume G is reducible over K. We
will show ¢ is reducible over k. Write G(z) = A(x)B(z), where A(z), B(z) € K|z],
deg(A) = 1, and deg(B) = 1. By multiplying both sides of this equation by a sufficient
positive power of 7, we can assume A(z), B(x) € Ok[z]. Upon doing this, we obtain
a new equation: VG (z) = Ai(z)Bi(z), where N > 0, and A;(z), Bi(z) € Og|7]
with deg(A;) = deg(A) = 1 and deg(B;) = deg(B) = 1. If N = 0, then reducing
modulo 7 gives a nontrivial factorization of g(z).

Assume N > 1. Then reducing modulo 7 gives 0 = a1 (x)b;(z), where A;(z) =
ay(x) and By (z) = by(x). Since k[z] is an integral domain, at least one of either a;(x)
or by(x) is zero. Without loss of generality, suppose a;(z) = 0. Then 7 | A;(x).
We can then cancel a factor of m from 7V G(z) = A;(x)B;(z) to obtain 7V 'G(x) =
Al (x)By(x), where A} (z) € Ok[z] with 7A;(xz) = A|(x), hence deg(A]) = deg(A4;) =
1. If N —1 =0, then as before, reducing modulo 7 gives a nontrivial factorization of
g(x). If N —1> 0, then we may repeat this process again. The process terminates
once all the factors of 7 are canceled, which in turn gives us a nontrivial factorization

of g(z). ]

Lemma 4.0.2 (Chakri, Leep). Let S be a ring such that O < S. Suppose h €
S[X1,...,X,] is a nonzero polynomial, and let by, ..., b, € Ok. Let j be a positive
integer. Then there exist ai,...,a, € Ok such that h(ay,...,a,) # 0 and a; =
b; mod 7/, 1 <i < n.

Proof. The proof is essentially identical to [5, Lemma 2.1, p.2]. Note that in [5,
Lemma 2.1, p.2], they use R to denote the ring of integers, and they use k to denote
the p-adic field. O]

Lemma 4.0.3. Let Ly, ..., L, € K|\, pu] be a finite collection (possibly empty) of
linear forms such that for i # j, L; and L; and not multiplies of each other. Let
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n = 1 be a positive integer and d be an integer such that 0 < d < "T_l There exist
quadratic forms f,g€ K[X,...,X,] with the following properties.

1. {f, g} is nonsingular.
2. For each 1 <i<t, L; f det(\f + pg).

3. {f, g} vanish on spang(e1,...,eq) (if d = 0 then we simply assert that {f, g}
vanish on the zero space.)

Proof. First, consider the case where n > 1 is odd. Write n = 2m+1 for some m = 0.
Since K is a infinite field, we can choose P(\, u) € K|\, ] to be a homogeneous form
of degree n in the variables A, such that P(\, p) has distinct linear factors and
L; t Pforeach1l<i<t.

By Corollary 3.0.1, there exist quadratic forms f,¢g € K[Xj,...,X,] such that
{f, g} vanish on spang(ey,...,e,) and

det(Af + pg) = 2(=1)"P(X, ).

Since P(A, p) has distinct linear factors, Theorem 2.1.27 implies that {f, ¢} is non-
singular. Statement (2) follows from our choice of P. Statement (3) follows from the
fact that d < ”T_l and m = "T_l

Suppose n = 2 is even. Write n — 1 = 2m’ + 1 for some m’ = 0. Since n is
even, d < "2, Since K is an infinite field, we can choose P'(X, i) € K[\, u] to be a
homogeneous form of degree n —1 in the variables A, i such that P’(\, 1) has distinct
linear factors and L; f P’ for each 1 < i < ¢.

By Corollary 3.0.1, there exist quadratic forms f', ¢’ € K[ X3, ..., X, 1] such that
{f',¢'} vanish on spang (e, ..., e, ) and

det(Af' + pg') = 2(=1)"™ P'(A, ).

Since K is infinite, we can choose a,b € K, not both zero, so that L' = a\ + bu does
not divide P'(\, 1) and L’ is not a multiple of L;, 1 < i < t. Take f = f' + aX?
and g = ¢’ + bX2. Theorem 2.1.27 implies that {f, g} is nonsingular. Statement (2)
follows from our choice of P’, a, and b. Statement (3) follows from the fact that

d<”772andm’="772. O

Let n = 1 be a positive integer and d be an integer such that 0 < d < "T’l Let
U={(,j)]1<i<j<nandj>d+1}. (4.0.1)
For each (i,7) € U, let t;; and t; be indeterminants (i.e. variables). Let F, G be the
quadratic forms defined by
F=F, = ) t;XX;
(i.j)eU
G == thz‘j == Z t/ZJX,X]
(i.5)eU

(4.0.2)
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In general, for a subring R < K, a pair of quadratic forms f,g € R[Xl, oo X
Vanish on the subspace spang ey, ..., e4) if and only if there exist s;;, s ¢ R so that
f=Fs andg=Gy .

Lemma 4.0.4. Let U, F, and G be as above. Let Ly, ..., Ly € K[\, u] be a finite
collection (possibley empty) of linear forms such that for i # j, L; and L; are not
multiples of each other.

There exzsts a nonzero polynomial h = h(t;;,t;;) € K“[{t;;, t};}] with the property
that if sij, si; € K and h(si,sj;) # 0, then the pair {F,;, Gy } is nonsingular, and
L ¥ det(AFy,, + pGy ) for each 1 <m <t.

Proof. Note that det(AF + uG) € (Z[{ty,ti;}])[\ 1] is a homogeneous form. Let
P\ p) = det(A\F + pG)LyLy--- L;. Then P(A, u) is a homogeneous form in A\, p.
Let

h = disc(P(A, 1))

4.0.3

= disc(det(AF + pG) L1 Ly - -+ Ly). ( )
By Theorem D.1.3, h is a polynomial over Z in the coefficients of P(\, ). In particu-
lar, since det(AF' + puG) has coefficients in Z[{t;;, t;;}], and the L; have coefficients in
K alg we deduce that h is a polynomial over K2 in the variables {t;,t,,}. To express
this, we write h = h(t;;, t};).

’L]? ’Lj

Next, we will show that h is a nonzero polynomial. By Lemma 4.0.3, there exist
quadratic forms fy, go € K[X7, ..., X,] such that {fo, go} vanish on spang(ey, ..., eq),
{fo, g0} is nonsingular, and L,, } det(Afy + 1go), 1 < m < t. Since {fo, go} vanish on
spang/(ey,...,eq), we can write fy and go in the following way:

>, XX,
(i.5)eU
D, diXiX;
(i.)eU
for suitable c;;, d;; € K. Notice that Fi.,; = fo and G4, = go. Observe that
h(cij, di;) = disc(det(Nfo + pgo)LiLa - - - Ly).

Since {fo, go} is nonsingular, Theorem 2.1.27 implies that det(Afy + p1go) has no re-
peated linear factors. It follows that the homogeneous form det(\fo + pgo)L1Lo - -+ Ly
has no repeated linear factors. Lemma D.1.2 then implies that h(c;;, d;;) # 0. Thus
h is a nonzero polynomial.

Likewise, for s;;, si; € K, if h(sqj, si;) # 0, then the pair {F},, Gy } is a nonsingular
pair of quadratic over K such that L,, t det(AF,,, + pGy i],) for each 1<m<t.
O
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Lemma 4.0.5. Let Ly,..., L, € K[\ u] be a finite collection (possibly empty) of
linear forms such that for i # j, L; and L; and not multiplies of each other.

Let n = 1 be a positive integer and d be an integer such that 0 < d < "T’l Let
fg€ Okl Xy,. .., X,] be quadratic forms. Suppose {f, g} vanish on spany(e1, ..., eq)
(if d = 0 then we simply assert that {f, g} vanish on the zero space.)

Let j = 1 be a positive integer. We can adjust the coefficients of f and g modulo

7/ so that
1. {f, g} is nonsingular,
2. L; | det(\f + pg) for each 1 <i <t, and
3. the pair {f, g} still vanishes on spang(eq, ..., eq).

Proof. We will show that there exist quadratic forms f’, ¢ € Og[Xy,...,X,] such
that f/ = f mod 7/, ¢’ = g mod 77, and f’, ¢’ satisfy properties (1), (2), and (3).

Since {f, g} vanish on spang/(ey,...,eq), we can write f and ¢ in the shape of
equation 4.0.2:

f: Z CLZ‘]'XZ‘XJ'
(¢,5)eU

g = Z ijXsz
(i,9)eU

for appropriate a;;,b;; € Ok. Let h = h(ty,t;) be as Lemma 4.0.4. Since h is a
nonzero polynomial over K8 Lemma 4.0.2 implies that for each (i,j) € U, there
exist aj;,bj; € O such that aj; = a;; mod 77, bj; = b; mod 77, and h(aj;,b};) # 0.

50 Yig 57 Yig
Let
(i,5)eU
g = Z b;'inXj-
(i,5)eU

Then f" = f mod 7/ and g' = g mod n/. Since h(aj;, ;) # 0, we know that {f’, '}

is nonsingular and L; } det(\f" + pg’) for each 1 < i < ¢. By our definition of U in

equation 4.0.1, we know {f’, ¢’} vanish on spang(es, ..., €q).
[

Using Lemma 4.0.5, we obtain the following result.

Lemma 4.0.6. Let Ly, ..., L, € K®|\, ] be a finite collection (possibly empty) of
linear forms such that for i # j, L; and L; and not multiplies of each other.

Let n =1 and let q1,q2 € k[ X1, ..., X,] be quadratic forms. Suppose that {qi1,q2}
vanish on a subspace over k of dimension d, where ) < d < "T_l There exist quadratic
forms Q1,Qq € Ok| X1, ..., X,] that satisfy the following properties.
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1. Q1 = q1 and Qs = ¢o.

2. {Q1,Q2} is nonsingular.

3. L; ¥ det(AQ1 + pQs) for each 1 <i <t

4. Dg(Q1,Q2) = d; in particular, {Q1,Q2} vanish on spang(eq,. .., eq).

Proof. By a change of variables, we can assume that ¢; and ¢o both vanish on
spang(eq, ..., eq). Therefore, we can express ¢; and ¢ in the following way:

d
0= > Xili(Xa1, -, X0) + 3(Xas, . Xy)

i=1

d
g2 = ZXiSi(XdJrl’ e JXn) + q4(Xd+17 see 7Xn)

i=1
for suitable linear forms /;, s; and quadratic forms g3, q4, all defined over k. Let
Q1,Q2 € Ok X1, ..., X,] be lifts of ¢1, g2, respectively, such that 0 lifts to 0. There-
fore, )1 and (> have the shape

d
Q1= Y XiSi(Xar1, -, Xn) + Qs(Xain, ., Xn)
i=1

Q2

d

D XT(Xaers - X)) + Qu(Xag, -, Xo)

i=1

for suitable linear forms S;,7; and quadratic forms Q3, ()4, all defined over Ok. In
particular, we see that {Q1,Q2} vanish on spang(e;,...,eq). Since 0 < d < ”T’l,
we can apply Lemma 4.0.5 to the pair {Q1,Q2} (in the lemma, we use j = 1).
According to Lemma 4.0.5, we can adjust the coefficients of ()1 and (2 modulo 7 so
that {Q1, @2} is nonsingular, and the pair {Q1, Q2} still vanishes on spany (e, ..., eq).

Thus DK(Ql,QQ) = d. O

Copyright© John R. Hall 2024

37



Chapter 5 Definition and Properties of Type A and B Pairs

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We will use the same notation given at the beginning of section 2.3.

Definition 5.0.1 (Type A). Let Q1,Q2 € Ox[Xy,. .., X,] be quadratic forms. The
pair {Q1, Qa} is said to be type A if there exist nonnegative integers d and h such that
the following properties hold.

1. {Q1,Q2} is nonsingular.
. DK(QI?QQ) = Dk(@a@) =d.

2
3. {Q1, Q2} vanish on spang(ey, ..., eq).
4

. For every A\, u € Ok, not both divisible by 7, there is an invertible linear change
of variable over Ok so that

AQ1 + 1@y = Xu Xo + -+ 4+ Xop_1 Xon + N(Xopg1, -, Xp)

where N € Og[Xons1,--.,Xn] is a quadratic form such that N is anisotropic
over k. Therefore, Hi(Q1,Q2) = h.

We will write Q; = Q;(n, A,d,h) to denote a type A pair.

Definition 5.0.2 (Type B). Let Q1,Q2 € Ok|[X, ..., X,] be quadratic forms. The
pair {Q1, Qa} is said to be type B if there exist nonnegative integers d and h such that
the following properties hold.

~

. {Q1, Q2} is nonsingular.
2. Dg(Q1,Q2) = Dp(Q1,Q2) = d.
3. {Q1, Q2} vanish on spang(ey, ..., eq).
4. Hy(Q1,Q2) = Hi(Q1) = h.
5. For every q € Pr(Q1,Q2), Di(q) < h.
We will write Q; = Q;(n,B,d, h) to denote a type B pair.
Lemma 5.0.3. Fvery type A pair is also a type B pair.

Proof. Property (4) of Definition 5.0.1 implies that every form in Pj(q1, g2) has order
n and splits off exactly h hyperbolic planes over k. This implies properties (4) and
(5) of Definition 5.0.2. O
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Lemma 5.0.4. Let Q; = Q;(n,T,d,h), 1 < i < 2, where T € {A,B}, be a type
A (or type B) pair. Let Ly,...,L; € K% be a finite collection (possibly empty) of
linear forms. We can adjust the coefficients of ()1 and Qo modulo © so that L; )
det(AQ1 + 1Q2) and so that the pair {Qq, Q2} remains a type A (or type B) pair with
the same values for d and h.

Proof. By Lemma 4.0.5 with 7 = 1, we can adjust the coefficients of (); and ) modulo
7 so that {Q1, @2} remains nonsingular, L; f det(AQ; + pQ2) for each 1 < i < ¢, and
the pair {Q1, @2} still vanishes on spang(es, ..., eq). Having {Q1, Q2} still vanish on
span (@1, Q) implies that Dg (@1, Q2) = d. On the other hand, since we adjusted
the coefficients of ()1 and Q2 modulo 7, we know that Dy (g1, o) is still equal to d.
By Lemma 2.3.16, Dk (Q1,Q2) < Di(q1,q2) = d. Thus Dy (Q1,Q2) = Di(q1,q2) = d.
Adjusting the coefficients modulo 7 does not affect property (4) of Definition 5.0.1
or properties (4) and (5) of Definition 5.0.2. O

Lemma 5.0.5. Let Q1,Q2 € Ok[Xy,...,X,] be a nonsingular pair of quadratic
forms (not necessarily type A or B). Let Q) = Qin,T,d,h), 1 < i < 2, where
T e {A,B}, be a type A (or type B) pair. Let f = Q1 L 7Q} and g = Q2 1 7Q%.
Then the coefficients of Q) and Q% can be adjusted modulo 7 so that the pair {f, g}
is nonsingular and so that the pair {Q}, Q4%} remains a type A (or type B) pair with
the same values for d and h.

Proof. Since {Q},Q5} is nonsingular, Theorem 2.2.11 implies that 0 < &' < 5.
Since {Q1, @2} is nonsingular, Theorem 2.1.27 implies that det(AQ; + u@2) has dis-
tinct linear factors. Suppose Ly, ..., L, € K& are the linear factors in det(\Q; +
pQ2). By Lemma 5.0.4, we can adjust the coefficients of @} and Q% modulo 7 so that
L; f det(AQ} + u@%), 1 < i < n, and so that the pair {Q},Q,} remains a type A
(or type B) pair. It follows that det(\f + pg) has no repeated linear factors, hence
Theorem 2.1.27 implies that {f, g} is nonsingular. O

Lemma 5.0.6. Let Q; = Q;(n, A,d,h), 1 <i <2, be a type A pair, and let Q) =
Qi(n',T,d,h'), 1 <i<2, where T € {A, B}, be a type A or B pair. Let f = Q1 L
Q| and g = Qo L wQY. Then the coefficients of Q) and QY can be adjusted modulo
m so that

1. {f, g} is nonsingular,
2. Dg(f,g) =d+d, and

Proof. By Lemma 5.0.3, every type A pair is also a type B pair. So without loss of
generality, we can assume T = B.

(1) By Lemma 5.0.5, we can adjust the coefficients of @}, Q5 modulo 7 so that
{f, g} is nonsingular and so that properties (1) - (5) in Definition 5.0.2 are preserved.
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(2) Corollary 2.3.18 implies that Dk (f,g) =d + d'.

(3) By Definition 5.0.2, Hy(q},q5) = Hx(q;) = h'. By Lemma A.1.2, @} splits off
h' hyperbolic planes over Q. By Definition 5.0.1, the form ) splits off A hyper-
bolic planes over Q. Therefore, f splits off h + A’ hyperbolic planes over Ok, hence
Hi(f.g) = h+ 1.

To prove that Hi(f,g) < h+ R/, it is sufficient to show that for every A,y € Ok,
not both divisible by 7, the form A\f + pg splits off at most h + b’ hyperbolic planes.
By Definition 5.0.1, we can perform an invertible linear change of variable over O
so that

)\f + ug = X1X2 + -+ Xgh_lXQh + N(Xgh_H, PN ,Xn) L W(/\Qll + MQIQ)
Let Qo = N(Xops1, ..., Xn) L 7(AQ] + p@%). By Lemma 2.3.2,

Dk(Qo) < Di(AQt + p@3).

By Definition 5.0.2,
Dip(AQ + p@y) < I

Therefore, )y vanishes on a subspace over K of dimension at most A'. This proves
that \f + ug splits off at most h + A’ hyperbolic planes. n

Lemma 5.0.7. Let Q; = Q;(n,B,d,h), 1 <i < 2, be a type B pair, and let Q) =
QL(n',B,d' '), 1 <i<2, be atype B pair. Let f = Q1 L 7@} and g = Q2 L 7Q).
n+n’

. .
Suppose that h + h' = 2 X an +n z's even
M= dfn4n' s odd.

can be adjusted modulo m so that

Then the coefficients of Q) and @

1. {f, g} is nonsingular,
2. Dk(f,g) =d+d, and
3. Hx(f,9) =h+H.
Proof. (1) By Lemma 5.0.5, we can adjust the coefficients of @}, @), modulo 7 so that
{f, g} is nonsingular and so that properties (1) - (5) in Definition 5.0.2 are preserved.
(2) Corollary 2.3.18 implies that Dx(f,g) =d + d'.

(3) Since Hy(q1) = h and Hy(qy) = I/, Lemma A.1.2 implies that @ splits off h
hyperbolic planes and @), splits off A’ hyperbolic planes. Therefore, f splits off A+ A’
{"*”' if n+ n' is even

2

r_ . . )
mr=l if n+n' is odd,

we deduce that Hi(f,g) =h+ 1. O

hyperbolic planes, hence Hg (f, g) = h+h'. Since h+h' =

40



Chapter 6 The Transfer Map

Let F be a field and let K/F be an algebraic extension with [K : F| = m, m > 1.
Let V' be a finite dimensional vector space over K with dimg (V) = ¢. Then V is a
vector space over F' with dimp (V') = mt.

Let s : K — F be a nonzero F-linear map. That is, s : K — F'is a nonzero linear
transformation of F-vector spaces.

Let @ : V — K be a quadratic map. Thus
1. Q(av) = a®?Q(v) for alla € K and ve V.
2. By :VxV — K defined by Bg(v,w) = Q(v+w) —Q(v) —Q(w) for all v, w e V

is a symmetric bilinear form.

This gives Bg(v,v) = Q(2v) — Q(v) — Q(v) = 2Q(v) for all v e V.
Define s,(Q) : V — F by s.(Q)(v) = s(Q(v)) for all v € V. We now show that
5+(Q) is a quadratic map.

5:(Q)(av) = 5(Q(av)) = 5(a’Q(v)) = a’s(Q(v)) = a’s.(Q)(v).

$x(Q) (v + w) = 5.(Q)(v) — 5.(Q)(w)
Qv+ w)) = s(Qv)) — s(Q(w))
Qv+ w) = Qv) — Q(w)) = s(Bq(v,w)).

Bau@ (v, w) = 5.

= s

= 5

Since s is a linear transformation, it follows easily that By, (q) is a symmetric bilinear
form.

Note that s,(Q) is a quadratic map corresponding to a quadratic form of dimen-
sion mt, which is dimg (V).

Lemma 6.0.1. Suppose g € K[Xy,...,X,] is a quadratic form and s : K — F be a
nonzero F-linear map. Let h = s,(q). If b, is nondegenerate, then by, = s.(b,) is also
nondegenerate.

Proof. We are assuming that b, is nondegenerate. Therefore, there exists (v,w) €
K x K such that b,(v, w) # 0. Since we are assuming that s is nonzero, there exists
a € K such that s(a) # 0. Choose ¢ € K so that ¢b,(v,w) = b,(cv,w) = a. Then
br(cv, w) = s,(by(cv,w)) # 0. This proves that by, is nondegenerate. O

Lemma 6.0.2. Suppose q € K|X1,...,X,] is a quadratic form such that b, is non-
degenerate. Suppose K = F(0) with [K : F] =m > 1. Let s : K — F be a nonzero
F-linear map, [ = s.4(q), and g = s,(0q). Then for every A\, u € F, not both zero, the
form h = \f + ug is nondegenerate. In particular, by, is nondegenerate.
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Proof. Let h = Af + pg. Observe that

h=Af+ pg = As.(q) + ps.(0q).
= 5. (N + pb)q).

Since m > 1, we know that 6 ¢ F. Thus A\ 4+ pf # 0. Because b, is nondegen-
erate, we get that b(yi,.9), is nondegenerate. Thus, Lemma 6.0.1 implies that by, is
nondegenerate, hence h is nondegenerate. O]

Lemma 6.0.3. Let F' be an arbitrary field and let n > 2. Assume that F' has a finite
simple extension of degree n. There exist quadratic forms hy, he € F[X1,..., Xo,]
such that

1. every form in the pencil Pr(hy, he) splits off n hyperbolic planes, and
2. Dp(hy, hy) = n.
Proof. Let L = F(0) be a finite simple extension of degree n. Thus
L = spang(1,6,...,0™").

Let ¢(X,Y) € L|X,Y] be the quadratic form ¢ = XY. Let s : L — F be a nonzero
F-linear map. Take hy = s,(q) and hy = s,(0q). Then hy and hy are quadratic maps
from L? — F of dimension 2n. Observe that h; and hy both vanish on the subspace

U = span ((1,0), 9,0),..., (9”1,0)) c L2
Note that dimp(U) = n. Thus Dg(hy, he) = n.

Next, we will show that every form in Pg(hq, hy) splits off n hyperbolic planes.
Since n = 2, we deduce that 6 ¢ F'. It follows that A+ uf # 0 for all A, 4 € F', not both
zero. Note Ahy + pho = s, (A + pb)q). Since A+ # 0, and ¢ has rank 2, we deduce
that (A + pf)q also has rank 2. Then Lemma 6.0.1 implies that Ah; + phy has rank
2n. Since h; and hs both vanish on U, the form A\h; + pho also vanishes on U. Then
Theorem B.1.1 implies that Ah; + pho splits off n hyperbolic planes. This proves
(1). In particular, every formPr(hy, ho) has rank n. Thus, if Dg(hy, he) > n, then
Theorem B.1.1 would imply that every form in Pr(hq, ho) splits off > n hyperbolic
planes, which is note true. Thus Dg(hy, hy) = n, which proves (1). O

Let F be a field and let K /F be an algebraic extension with [K : F| = m, m > 2.

Recall that if ai, ..., a, € K*, then {ay,...,a,) denotes the quadratic form a;z? +
-+ 4+ a,z?. From definitions 2.1.5 and 2.1.7, we get that

det({ay,...,any) =2"ay - ay,.
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In terms of quadratic maps, let V' = K™ and let ey, ..., e, denote the standard basis
of K. Define ) : V' — K by setting Q(e;) = a;, 1 <1 < n, and bg(e;, e;) = 0 for all
i # 7.

Suppose that K = F(#) for some 0 € K. (If K/F is a separable extension, then
this is always possible.) Let j € F[x] be the minimal polynomial satisfied by €. Thus

J is monic, irreducible, and j(6) = 0. Let J(A, 1) denote the homogenization of j. It
follows that

]VK/F(Qj - 6) = j(l‘), NK/F()‘ - /1(9) = ‘]()‘7“)
Let s : K — F be a nonzero F-linear map. Let f € K> and let

f=35:(8)). g=15.86)).
Then

Af = g = Asu((B)) = 1 ((B0)) = 5. ((AB — pfB0)) = s.(BN — b)),

We note that A—pf # 0 for every A, u € F', not both zero, because [F(0) : F] =m = 2
and thus 1,0 are linearly independent over F.
[17, Theorem 5.12, p. 51] implies that

det(Af — pg) = det(s. (BN — ub)))

= det(s:((1))) Ni/r(det (B — pb))

= det(s.((1))) Nk/r(28(A — pb))

= det(s.((1))) Nk/r(28) Ni/r(A — pd)
(5: (K1) Nicyr(B) (A, ).

Since [K : F| = [F(0) : F] = m, it follows that {1,60,...,6™ 1} is an F-basis of
K. Define the F-linear map s : K — F' by

= 2" det

s(1) =---=5(0"2) =0, s(@ ') =1.
Then [2, Lemma 2.3] implies that

om(~1)! if m = 20
m(—1)¢ if m =20+ 1.

det(s.((1)) = {

We summarize the above results with the following theorem.

Theorem 6.0.4. For any field F', let K = F(0) be an extension of F' of degree m > 2.
Let j(z) € F|z] be the minimal polynomial of 6.

Let J(\, 1) denote the homogenization of j(x).

Define the linear map s : K — F by s(1) = s() = --- = s(0™2) = 0 and
s(@m1) = 1.
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For the quadratic maps [ = s,({8)) and g = 5,({86)), we have
det(\f — pg) = 2" det(s.(C1))) Ni/r(B)J (A, 1),

where

In the next theorem, we find subspaces where the quadratic maps f and g vanish.

Theorem 6.0.5. Assume that K = F(0), [K : F| = m > 2, and define the F-linear
map s: K — F by s(1) =---=s(0"2) =0, s(™ ') = 1.
Let f = s5,((1)), g = 5,({0)), and h = 5,({6%)). The following statements hold.

Span(1,0,...,60
Span(1,0,...,0"2 ) if m is odd.

"2 ) if m is even

1. f wvanishes on {

Span(1,0,...,072 ) if m is even, m = 4,
e

"2 ) if m is odd.

2. g vanishes on
Span(1,0, . . .,

Span(1,0,...,072 ) if m is even, m = 4,
072 ) if mis odd, m = 5.

3. h vanishes on
Span(1,0, .. .,

Proof. Let B € K, and let ¢ = 5,((3)). Observe that

0" + 67) — q(0") — q(¢”).

By(60",67) = q(
= s(B(0" +0)) — s(B0™) — s(B6™).
= 5(280").
— 25(50)

For (1), take 8 = 1, and note that s(6"™7) = 0 whenever i + j < m — 2.
For (2), take 8 = 6, and note that s(6°*7') = 0 whenever i + j < m — 3.

For (3), take 8 = 62, and note that s(§"7*2) = 0 whenever i + j < m — 4. O

Copyright© John R. Hall 2024
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Chapter 7 Pairs of Quadratic Forms over Finite Fields

Our goal for this chapter to build examples of pairs of quadratic forms over finite
fields.

Lemma 7.0.1. Let k be a finite field and n = 2 be even. There exist quadratic forms
fyg€k[Xq,...,X,] that satisfy the following properties.

1. There are no forms in Pi(f,g) that vanish on a subspace over k of dimension
n+2
-

)0 ifn=2
2 Dk(ﬁg)—{g ifn =4

3. Hi(f,9) = Hi(f) = 3.

4. If n = 4, then every form in Py(f, g) splits off § hyperbolic planes, hence every
form in Py(f,g) has rank n.

Proof. For n = 2, let f = X;X5 and let g € k[X;, X5] be anisotropic. Then
Di(f,9) = 0, and Hi(f,g) = Hi(f) = 1. Also, note that f,g are linearly inde-
pendent.

If there exist A\, u € k, not both zero, such that Af + ug vanishes on a subspace
over k of dimension 2, then \f + g would vanish on k2, hence Af + pug = 0. This,
however, is contrary to f, g being linearly independent. This completes the proof for
n=2.

For n > 4, note that as a finite field, & has a simple extension of degree 4. Thus,
Lemma 6.0.3 implies that there exist quadratic forms f, g € k[X3,..., X,] such that
Di(f,9) = 5 and every form in Py (f, g) splits off § hyperbolic planes. This implies
that every form in Py(f,g) has rank n. Theorem B.1.1 implies that there are no

forms in Py(f, g) that vanish on a subspace over k of dimension “$2. O

Recall from Definition 2.2.1 that Dj(q) denotes the maximal dimension of a sub-
space in k™ on which ¢ vanishes.

Lemma 7.0.2. Let k be a finite field and n = 2 be even. There exist quadratic forms
fg€k[Xy,... ,Xn] that satisfy the following properties.

2. Hy(f,9) = Hk( ) =3
3. Di(q) < 2 for all g € Py(f, 9).
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Proof. Let n(X,Y) € k[X,Y] be an anisotropic quadratic form. Lemma 7.0.1 pro-
vides an example for n = 2. We will do n = 4 last. For n > 6, let ¢,¢, €
E[Xi,..., X, 2] be as in Lemma 7.0.1. Take f = ¢ + X,, 1X, and ¢ = ¢ +
n(Xn-1,Xn). Then Hy(f,g9) = Hy(f) = 5. Lemma 7.0.1 implies that Dy(q1,q2) =
22 Thus Dy(f,g) = “52. Note that g has order n and splits off exactly “>2 hyper-
bolic planes. Thus, Theorem B.1.1 implies that g can not vanish on a subspace over
k of dimension %, in which case Dy(f,g) = "T_Z As for (1), Lemma 7.0.1 implies that
every form in Pj(q1,q2) has order n — 2. It follows that every form in Pi(f, g) has
order = n — 1. Then Lemma 2.2.6 implies that every form in Py(f,g) vanishes on a

subspace of dimension at most 7, as desired.
For n = 4, consider
f=X1Xo+ X3X,.
g = Xng + n(Xg, X4)

Then Hi(f,g9) = Hi(f) = 2. Note that {f,g} both vanish on span(e;), hence
Di(f,g) = 1. Since g has order 4 and splits off exactly 1 hyperbolic plane, we
know from Theorem B.1.1 that g can not vanish on a two-dimensional subspace over
k. Thus Dy(f,g) = 1. As for (1), we will show that every form in Py(f, g) has order
> 3. Then Lemma 2.2.6 implies (1).

Consider Af + ug, where A\, € k, not both zero. If A = 0, then 1 # 0 and this
form has order 4. Assume X\ # 0. We can multiply by A7, so we consider the form
f+ g, where u' = A1, Observe that

f+ug=X1(Xo+ 1/ X3) + X3Xy + p'n(Xs, Xy).
Apply the change of variables given by
Yy = Xo+ ' X
Yi=X;, i#2
to obtain
[+pg="Y1Yo+ Y3Yy + p'n(Ys — p'Y3,Y)).

We can write p/'n(Ys —p'Ys, Yy) = Yol(Ys, Y3, Yy) 4+ p/n(—p'Ys, Yy) for some linear form
¢ over k. Apply the change of variable where Y] is replaced with Y; — ¢(Y3, Y3, Y)) to
obtain

[+ g =Y+ Y3Yy + p'n(—1/'Ys,Yy).

If 4/ = 0, then this form has order 4. If i’ # 0, then observe that the coefficient of Y2
in p'n(u'Ys, Yy) is nonzero because n is anisotropic. It follows that Y3Y,+ p/'n(u'Ys, ;)
has order > 1, hence f + p'g has order > 3. O
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Theorem 7.0.3. Let n = 6 be even with n # 8. Let k be a finite field. There exist
quadratic forms f,g € k[X1,...,X,] that satisfy the following properties.

2. Every form in P(f,g) has rank n.

3. Hg(f,9) = "52; moreover, if g € Pr(f,g), then q splits off exactly "5 hyper-

bolic planes; that is,
q= X1X2 + e+ anBXn72 + QO(anlaXn%
where qq 18 anisotropic of rank 2 over k.

First, we will show that if Theorem 7.0.3 holds when n > 6 with n = 2 mod 4,
then the theorem holds when n > 12 with n = 0 mod 4.

Lemma 7.0.4. Assume Theorem 7.0.3 holds when n = 6 with n = 2 mod 4. Then
Theorem 7.0.3 holds when n = 12 with n = 0 mod 4.

Proof. Since n = 12 with n = 0 mod 4, we get that n—6 > 6 and n—6 = 2 mod 4. Let
fo,90 € k[ X1, ..., Xn_¢] be quadratic forms satisfying Theorem 7.0.3. Thus, {fo, g0}
satisfy the following properties.

(ii) For every A, u € k, not both zero, there is an invertible change of variable over
k so that

Mo+ pgo = X Xo + -+ X9 Xpg + qo(Xn—7, Xns),
where ¢q is anisotropic of rank 2 over k.

Let q1,92 € k[Xn 5,...,X,] be as in Lemma 6.0.3; note that this Lemma can
be applied since as a finite field, & has a finite simple extension of degree 3. From
Lemma 6.0.3, we see that

(i) Dg(q1,q2) = 3, and
(iv) every form in Pk (g1, g2) splits off 3 hyperbolic planes over k.
Let f,g € k[Xq,...,X,] be defined by

f = fO +q1,
and

g =90+ q-
Properties (i) and (iii) imply that Dy(f,g) = %5° 4+ 3 = “32. Further, notice that
properties (ii) and (iv) imply that every form in Px(f, g) has rank n over k and splits
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hyperbolic planes over k, hence Hy(f, g) = “52.

n—2

off exactly *5=

Notice that if Dy(f, g) = %, then every form in P(f, g) would vanish on a subspace
of dimension . Since every form in P.(f, g) has rank n, Theorem B.1.1 implies that
every form in Pr(f, g) would split off & hyperbolic planes, a contradiction. Therefore,

0

To prove Theorem 7.0.3 when n > 6 with n = 2 mod 4, we consider the cases
char(k) # 2 and char(k) = 2 separately.

Lemma 7.0.5. Let k be a finite field of characteristic not 2. Let n = 6 with n =
2 mod 4. There exist quadratic forms f,g € k[X1, ..., X,] that satisfy the following
properties.

2. Every form in Py(f,g) has rank n.

3. Hi(f,g) = "7_2; moreover, if ¢ € Px(f,g), then q splits off exactly ”7_2 hyper-
bolic planes; that is,

q=X1Xo+ -+ X5 3X0 2+ q(Xn-1, Xn),
where qq s anisotropic of rank 2 over k.

Proof. We can write n = 2m, where m = 3 is odd. Since k is a finite field, there
exists a simple extension ¢/k of degree m. Write ¢ = k(f), where § € ¢. Since
m > 1, we know 0 ¢ k. Let j(z) € k[x] denote the minimal polynomial of 6 over
k. Let J(A, ) denote the homogenization of j(x). Note that as a k-vector space,
¢ = span,(1,0,...,0™ ). Define the linear map s : ¢ — k by

s(1)=s5(0)=---=s("2)=0 s =1

Let d € k* be a nonsquare, which is possible since |k| = 3 and char(k) # 2. Let
8=—d.

Consider the following quadratic forms.

fi =) f2=5.((8))
g1 =5.0)) g2 = 5.((B0)).

Let f=f1 L fo and g =g L go. By Theorem 6.0.4, f and g are quadratic forms in
2m variables over k such that

det(Mf — pg) = 2"det(s.({1)))* Noj (1) Nope (8)J (A, 1)
= 2"(=1)"d™J(\, p)*.
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Since j(z) is irreducible over k, we know j(x) has no roots in k. Thus, if A\, u € k,
not both zero, then J(A,u) # 0. It follows that for A\, € k, not both zero,
det(Af — pg) # 0. This proves (2). To prove (3), note that since m > 3 is odd,
we can write d™ = d(d?)™. It follows that det(Af — pug) € d(k*)?. Lemma B.2.1
implies (3).

To prove (1), let U = span(1,6,...,0""). By Theorem 6.0.5, {f1,¢1} vanishes
on U. Note that since § € k and s is k-linear, we have s,(5) = (s.((1)) and
5:((80)) = Bs+({0)). Then Theorem 6.0.5 implies that {f2, g»} also vanishes on U. It
follows that {f, g} vanishes on a subspace of k™ of dimension 25+ + 24 = m — 1 =
2 Thus Di(f,g) = %52, By Lemma 2.2.7, Di(f,9) < Hg(f,g9) = “2. Thus

2 9 2 2

Our goal now is to prove Lemma 7.0.5 for finite fields of characteristic 2.

Let k& be a finite field of characteristic 2, and let ¢/k be a finite extension. Let
tr : £ — k be the trace map. Note that tr is a k-linear map. Since £ is finite field, the
extension ¢/k is a separable extension. Then tr is a nonzero k-linear map. Recall that
the Arf invariant is defined for quadratic forms over a finite field in an even number
of variables when the associated symmetric bilinear form is nondegenerate. For a
binary form ¢X? +dXY +eY? with d # 0, we have Arf(cX? +dXY +eY?) = &. We
have the following theorem.

Theorem 7.0.6. Arf(s.(q)) = tr(Arf(q)).
Proof. See [3, Lemma 2.3 (ii) and Corollary 2.6] and [19, Proposition 2.4]. O

Now assume that m, the degree of the extension ¢/k, is odd and > 3. Since (/k is
separable, there exists 6 € ¢ such that ¢ = k() (every finite exension of a perfect field
is separable.) Note that as k-vector space, £ = span,(1,6,...,0™ ). Let s : £ — k
be the k-linear map defined by

s(1)=s(0)=---=s(0™?)=0and s(0™ ") = 1.

Lemma 7.0.7. Letbe l and ¢ = X2+ XY +bY?2. Letq, = 0qy = 0X?+0XY +0bY2.

Let f = s.(q1) and g = s.(q2), hence [ and g are quadratic forms with coefficients in

k inn = 2m variables. The quadratic forms f and g both vanish on a subspace of k™
n—2

of dimension *5=.

Proof. Consider the subspace
W = span, (1,4, ... 70%73) @ span, (1,0, . .. 76%4) c

Thus dimg (W) = m — 1. We will show that f and g both vanish on W. Suppose
{wy, ..., wy, 1} is a k-basis for W. Let z1,...,2, 1 € k and w = xqw; + -+ +
Ty—1Wm—1. Then

=1 Isi<y<m—1

fw) =Y faw)?+ Y bylwnwy)wa;.

49



and
m—1

gw) = > glw)ai + > bylwi, wy)wix;.

i=1 I<i<j<m—1

Therefore, to show that f and g both vanish on W, it is enough to show that
f(w;)) = g(w;) = 0 for each 1 < i < m — 1, and by(w;, w;) = by(w;,w;) = 0 for
eachl<i<j<m-—1.

To that end, we first choose a basis for W. We will use the basis
{(1,0),(6,0),...,(6"2",0),(0,1),(0,0),...,(0,072°)}.

Recall ¢ = X2+ XY +0Y? f = 5.(q1), and g = s,(0q). For 0 < i < msza’ observe
that

f(énvo) = s(ql(ﬁi,())) = S(Qgi)v
£0,6") = s(q1(0,6")) = bs(6*),
g(0",0) = s(0q:(6",0)) = s(6*),
and
g(0,0") = 5(0q1(0,0%) = bs(9*1).

Since 2i < 20+ 1 < m — 2, we have s(6%) = s(6**!) = 0. We have shown that f and
g both vanish on the basis vectors of W.

Now we consider by and b,. Let 0 < 4,5 < mT’:g, we already showed that f(0,6") =
£(67,0) = g(6°,0) = g(0,6") = 0. Tt follows that

b;((0,6"),(0,67)) = f((0,6" +67)).
= 5(q1(0,0" + 67)).
= bs(0" + 67)°.
= bs(6*) + bs(6¥).
= 0.

Likewise, b,((0,6"),(0,67)) = bs(6**1) + bs(6%*1) = 0. Similarly, we have
b;((0,6"), (67,0)) = f(¢”.0").
= s(0% + 0" + b9*).
s(6%7) + s(0"7) + bs(6¥).
=0.

Likewise, b,((0,6%), (67,0)) = s(62 1) + s(6"H7 1) + bs(6¥+1) = 0.
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We have

bf((9i7 0)7 (ej’ O)) = f( + 6] )
= S0+ PP
— (6% + 6¥).
= 3(02’) + s(6%).

o

Likewise, b,((6,0), (67,0)) = s(6**) + s(6% + 1) = 0.
Finally, we have

bs((6",0), (0,6"))

f0',67).
s(0% + 0" + bo¥).
(0*) + s(6"7) + bs(6%).

|
S »

Likewise, b,((6,0), (0,67)) = s(6*+1) + s(0"*1) + bs(6%*1) = 0. This completes the
proof of (1).

]

We are ready to prove a version of Lemma 7.0.5 for finite fields of characteristic
2.

Lemma 7.0.8. Let k be a finite field of characteristic 2. Let n = 6 be even with
n =2 mod 4. There exist quadratic forms f,g € k[ X1, ..., X,] that have the following
properties.

1. f and g both vanish on a subspace of k"™ of dimension "T’2

2. For every \,u € k, not both zero, let h = \f + pg. Then by is nondegenerate;
in particular, h is nondegenerate.

3. Every form in the pencil Py(f,g) splits off exactly m — 1 hyperbolic planes with
a two-dimensional anisotropic binary form left over. Thus Hy(f,g) =m —1 =

?2, where n = 2m.

4. Di(f,g) =m—1= "T_Q, where n = 2m.

Proof. Let f = s.(q1) and g = s,(0q;) be as in Lemma 7.0.7, hence q; = X? +
XY + bY? where b € . Then Lemma 7.0.7 implies property (1). Lemma 6.0.2 im-
plies property (2). To prove properties (3) and (4), we will choose a specific value for b.

We let o(k) denote the Artin-Schreier subgroup of k. Thus p(k) = {a+a* | a € k}
and [k : p(k)] = 2. Having [k : p(k)] = 2 implies that p(k) is a proper subgroup of

51



k. Then there exists b € k such that b ¢ p(k). Thus 2? + x + b is irreducible over
k. Since m is odd, z? 4+ x + b is also irreducible over ¢ (proof: suppose r is a root of
2?2 + 2 +b. Then [k(r) : k] = 2, and since m is odd, this implies that k(r) & ¢, hence
2% + z + b has no roots in £.)

Let h = Af + pg. Since by, is nondegenerate, we can take the Arf invariant of h.
We will show that Arf(h) = b ¢ o(k), which will prove (3). Observe

Arf(Af + png) = Arf(s. (A + ud)qr)).
= tr(Arf((A + p0)qr)).
= tr(Arf(\ 4+ p0) X2 + (A + pd) XY + (A + ud)bY'?)).

A+ 160)%b
~u (G )
= tr(b).
= mb.
= b.

In the last equality, we used the fact that since ch(k) = 2, and m is odd, m = 1 in
the field k. Because b ¢ p(k), we get that for every A, u € k, not both zero, Af + ug
is an orthogonal sum of m — 1 hyperbolic planes and an anisotropic binary form of
dimension 2. This proves (3).

Finally, to prove (4), note that if Dy(f,g) = %5, then every form in the pencil
Pr(f, g) would vanish on a subspace of dimension 5. From (2), we know that there is a
form in the pencil Pk (f, g) that is nondegenerate (in fact every form is nondegenerate.)
Theorem B.1.1 would then imply that there is a form in the pencil that splits off

hyperbolic planes, which would be contrary to property (3).
O

Lemma 7.0.9. Let k be a finite field of characteristic not 2. There exist quadratic
forms f, g € k|x1, xa, x3, 4] such that the following conditions hold.

1. M\f + pg has rank 4 for every A\, u € k, not both zero.

2. If g€ Pr(f,g), then there is an invertible change of variable over k so that
q = 1129 + n(x3,14),

where n(xs, x4) is anisotropic of rank 2 over k. Thus Hy(f,g) = 1.

Proof. Let k = F, be the finite field with ¢ elements, where ¢ is odd since char(k) # 2.
Let d € F be a nonsquare. Then Fy = (F))* u d(FY)*. We can write d = s* + t?,
where s,t € F,. Since d is a nonsquare, it follows that s, are both nonzero.
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Let

f= 2rx0+ sx§ + 2twsxy — s:vi
g=a}+drs+ daj+ da].
Then

A di+ s\ tA
det(\f + pg) = det(/\ d)det( " du—sv\)

(d,u2 )\2)(d2 2 )\2 _ t2/\2)

= (=D)(N = dp*)(d*p® — )
= (1) (N = dp*)(=d)(\* — dp®)
—d(\2—dp )2

This calculation shows that for every A, u € F,, not both zero, \f + p1g has rank
4 and nonsquare determinant d because A\? — du? # 0 if A\, p1 are not both zero.

To prove (3), let ¢ € Pr,(f,g). Then g has rank 4, and by Chevalley-Warning, ¢
is isotropic. Thus ¢ splits off at least 1 hyperbolic plane:

q = 122 + n(x3,14),

where n = n(xs, z4) has rank 2. Note det(n) = —det(q) € —d(F,)*. This implies that
n is anisotropic. This proves (3).

By Theorem B.1.1, there are no forms in Px(f, g) that vanish on a 2-dimensional
space over k, hence Di(f,g) # 2. Theorem 2.2.12 implies that Dy(f,g) # 1. Thus

[

Lemma 7.0.10. Let k be a finite field of characteristic 2. There exist quadratic forms
f,g € kl[xy, 29, 3, 24] such that the following conditions hold.

1. M\f + pg has rank 4 for every A\, u € k, not both zero.

2. If g€ Pr(f,g), then there is an invertible change of variable over k so that
q = 1129 + n(x3,14),

where n(xs, x4) is anisotropic of rank 2 over k. Thus Hy(f,g) = 1.

3. Dk(f, g) = O

Proof. Let ¢ = k(f) be an extension of k of degree 2. Thus [¢: k] =2. Let s : { - k
be a nonzero k-linear map. Let € £ such that 5 ¢ (). Consider the quadratic form
q(x,y) = 22 + 2y + By? € {|x,y]. Note that det(q) = —1 # 0, hence the associated
symmetric bilinear form b, is nondegenerate. Take f = s,(q) and g = s.(fq). Then
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Lemma 6.0.2 implies that for every A, u € k, not both zero, the form h = Af + ug is
nondegenerate; in particular, by, is nondegenerate. This proves (1). We can take the
Arf invariant of h. Observe that

Arf(Nf + pg) = Arf(s. (A + pub)q))
= tr(Arf((A + pb)q))
= tr(Arf((\ + pf)z* + (A + p)zy + (X + pb) By?)).

i ((A + MQ)QB)
(A+u0)* )
= tr(p).
Lemma F.2.1 implies that since § ¢ p(f), we get tr(5) ¢ (k). This, combined with

the fact that Af + pg has rank 4, implies that every form in the pencil Pk (f, g) splits
off exactly 1 hyperbolic plane. This implies (2).

According to Theorem 2.2.12, if Dy (f, g) = 1, there would be a form in the pencil
Pr(f, g) that splits off 2 hyperbolic planes, a contradiction. Likewise, Theorem B.1.1
implies that if Dy(f,g) = 2, then there would be a form in the pencil Pi(f, g) that
splits off 2 hyperbolic planes, a contradiction. Thus Dy(f,g) = 0, which proves

(3). O
For convienience, we combine Lemmas 7.0.9 and 7.0.10 to get the following.

Lemma 7.0.11. Let k be a finite field. There exist quadratic forms f, g € k|x1, x2, T3, 4]
such that the following conditions hold.

1. MAf + pg has rank 4 for every A\, u € k, not both zero.
2. If g€ Pr(f,g), then there is an invertible change of variable over k so that
q = 1122 + n(T3,14),

where n(xs, x4) is anisotropic of rank 2 over k. Thus Hy(f,g) = 1.

Proof. Lemma 7.0.9 proves the case where char(k) # 2, and Lemma 7.0.10 proves the
case where char(k) = 2. O

Lemma 7.0.12. Let k be a finite field. Let n = 4 be even with n # 6. There exist
quadratic forms f,g € k[xq, ..., x,] such that the following conditions hold.

2. Every form in Py(f, g) has order n and splits off exactly "T’Q hyperbolic planes
over k. Thus Hy(f,g) = "52.
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Proof. Let qs,q4 € k[ X1, ..., X4] be as in Lemma 7.0.11. Since n — 4 # 2, we can let
05,96 € k[ X5, ..., X,] be as in Lemma 7.0.1. Let ¢1,q2 € k[ X1, ..., X,] be given by

q1 = qB(Xla cee 7X4) + q5(X5a cee 7Xn)

q2 = C]4(X1, R 7X4) + q6(X57 v 7Xn)

By Lemma 7.0.11, every form in P (gs, 1) has order 4 and splits off exactly 1 hyper-
bolic plane. By Lemma 7.0.1, every form in Py(gs, ¢s) has order n — 4 and splits off
exactly %= "’4 hyperbolic planes. Thus, every form in Px(qi, ¢2) has order n and splits
off eactly 2 hyperbolic planes.

We will show that Dy(q1,¢2) = “5*. Note that rank(q;) = n. By Lemma 2.2.9,

Di(q1,q2) = Hyw(q1 +tqz). To determine Hyy(q1 +tg2), note that since Dy (g3, q4) =

0, Amer’s Theorem (Theorem 2.2.8) implies that g3 + tq, is anisotropic over k(t). On

the other hand, we have Dy(gs, qs) = ”7_4, and g5 has rank n —4 over k. Thus g5+ tqe

has rank n—4 over k(t) and vanishes on a subspace over k(t) of dimension 2==. Thus,

Theorem B.1.1 implies that g5 + tge splits off 5% hyperbolic planes over k( ). Hence
4

q1 + tgs splits off exactly 2= 4 hyperbolic planes over k(t) and so Di(q1,q2) = "5~ O

Lemma 7.0.13. Let k be a finite field. Let n = 6 be even with n # 8. There exist
quadratic forms f,g € k[xq,...,x,] such that the following conditions hold.

2. Hy(f,g9) = H(f) = 5.
3. For every q € Pi(f, g), we have Dy(q) < 5.

Proof. Note that n —2 > 4 and n — 2 # 6. Thus, by Lemma 7.0.12, there exist
quadratic forms q1, g2 € k[x1,. .., 2, o] such that Di(q1, ¢2) = %52, and every form in
Pr(q1, ¢2) has order n—2 and sphts off exactly 5= 4 hyperbolic planes Let N(xy, 1, ,)
be an anisotropic quadratic form over k. Let

f=qr,...,xn—2) + N(zp_1, zn).
g = QQ(xla'--awan)-

By a change of variables, we can assume ¢; = x129+ -+ + Ty 52T, 4+ N' (23, Tn 2),
where N’ is anisotropic over k. By Lemma B.2.6, N'(z, 3,2, 2) + N(x, 1, x,) splits
off 2 hyperbolic planes. It follows that Hy(f,g) = Hi(f) = %, which proves (2).

Observe that every form in Py(f, g) either has order n and splits off § hyperbolic
planes or has order n — 2 and splits off exactly 2= 4 hyperbolic planes. It follows that
every form in Py(f, g) vanishes on a subspace 111 k™ of dimension at most %, which
proves (3).

It remains to prove that Di(f,g9) = %5*. By Lemma B.2.13, Dy(f,g) = —4.
9) =

2
For sake of contradiction, assume that Dg(f, 22 Then { f,g} vanish on
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subspace U in k" of dimension "7_2 Suppose U = span,(vy, ..., vq), where d = ”’T_Q
and vy, ...,vg € k™ are linearly independent. For each 1 < i < n, let w; denote the

projection of v; onto the first n — 2 coordinates, hence w; € k"2,

Suppose wy, . .., wy are linearly dependent. Then there exist ¢y, ..., cq € k, not all
zero, such that ijl ciw; = 0. Let v = Zj’:l c;iv;. Then v = (0,...,0,a,b) for some
a,b e k. Since f(v) =0, and N is anisotropic, we deduce that a = b = 0. Thus v = 0,

which is contrary to vy, ...,v4 being linearly independent.
Therefore, wy, ..., wy are linearly independent. Note that g vanishes on the sub-
space span,,(wy, . .., wy). Thus g vanishes on a subspace in k"2 of dimension d = ”T_2

Then Theorem B.1.1 implies that g splits off ”T_Q hyperbolic planes, a contradiction.
We conclude that Dg(f,g) = ”7_4, as desired.
O

Results in this chapter shed some light on the relationship between Dy(f, g) and
Hyi(f, g) for pairs of quadratic forms {f, g} defined over a finite field k. It could be of
interest to investigate this relationship further. It is not exactly clear what additional
properties one should require of the pair {f, g}. Should one require the pair to be
nonsingular, as we have done for the p-adic field case? This could be addressed in a
future project.

Copyright© John R. Hall 2024
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Chapter 8 Existence of Type A and B Pairs

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We will use the same notation given at the beginning of section 2.3.

In this chapter, we will prove the existence of various type A and type B pairs.
Refer to Definitions 5.0.1 and 5.0.2 for the definitions of type A and type B pairs.
The strategy is to start with a pair of forms over the residue field and then lift the
pair up to the ring of integers.

8.1 0Odd Number of Variables

Lemma 8.1.1. Let m = 0 and n = 2m + 1. There exist quadratic forms F,G €
Ok| X1, ..., X,] that satisfy the following properties.

1. The pair {F,G} is nonsingular; moreover, det(\F + uG) is an irreducible form
over K of degree n in X, .

2. Di(F,G) = Dy(F,G) = %52
3. {F,G} vanish on spang(ey, ..., enT—l).

4. Hg(F,G) = Hi(F,G) = %,‘ moreover, for every A\, u € Ok, not both divisible
by m, there is an invertible linear change of variable over Ok so that

A4+ pG =X Xo+ -+ X0 X1 +aX?,
where a € Ok is a unit.

5. Bvery form in Py(F,G) has order n.

Proof. Since k is a finite field, there exists a finite simple extension of k of degree
n,. Suppose ¢ = k(f) is a finite simple extension of k and let p(x) € k[x] denote the
minimal polynomial of #. Thus p(x) is monic and irreducible over k of degree n. Let
P(z) € Ok[x] be a lift of p(x) such that 0 lifts to 0 and 1 lifts to 1. Lemma 4.0.1
implies that P(z) is irreducible over K. Let P(\, u) denote the homogenization of
P(x); for instance, say P(\, 1) = \"P(A~*u). Then P(\, 1) € O\, u] is irreducible
over K, and P(\, ) is homogeneous of degree n in A, p. It follows that P(\, u) has
the following shape:

P()\, /JJ) = a1+m)‘/~52m + b1+mM2m+1
t a2 AP o+ by AT

+ azm)\szllf + b2m>\2m72u3

+ a2m+1)\2m+1 + 52m+1>\2mﬂ,

o7



where each a;,b; € Ok for 1 + m < i <2m+ 1. Let F,G € Og[Xy,...,X,] be
the quadratic forms given by

2m+1
F=XXpa+XoXpo+ -+ XpXom+ Y aX].
i=m-+1
. (8.1.1)
G = X1 Xz + XoXpis + -+ X Xomar + Y, b X7
t=m+1

Theorem 3.0.1 implies that det(AF' + pG) = 2(—1)"P(A, p). Since P(\, p) is
irreducible over K, and char(K) # 2, we deduce that det(AF' 4+ uG) has no repeated
linear factors. Thus Theorem 2.1.27 implies that {F, G} is a nonsingular pair, which
proves (1).

Equation 8.1.1 implies that F' and G both vanish on spang(es,...,e,) < K",

where m = 1. Hence D (F,G) = “5*. Since {F, G} is a nonsingular pair, Lemma

2.3.11 implies Dk (F,G) < ”T_l Thus Di(F,G) = "T_l, which proves (2).
To prove (3), let A, u € Ok, not both divisible by 7.
Claim: M\F' + pG is nondegenerate; i.e., has order n.

First, we explain why (3) follows from the claim. Observe that if \F'+ uG is
nondegenerate, then there is an invertible linear change of variable over k so that

A+ uG = X1 Xo+ -+ X0 X, +d' X2,

where @’ € k is nonzero. Lemma A.1.2 then implies (3).

To prove the claim, note that since p(z) is irreducible over k, we see that p(x)
has no roots over k. It follows that = f P(\, u). For char(k) # 2, we deduce that
det(AF + uG) # 0, hence \F' + pG is nondegenerate. For char(k) = 2, we see that
det p(AF + pG) # 0, hence AF + pG is nondegenerate by [15, Prop 3.1, p.397].

Since Py (F, G) is nondegenerate, we deduce that every form in Py (F, G) has order
n, which proves (4). O

Lemma 8.1.2. Let n > 1 be odd. There exists a type A pair of quadratic forms in n

variables with d = h = ”T_l

Proof. The pair {F,G} from Lemma 8.1.1 satisfies Definition 5.0.1 with d = h =

n—1
= O

Lemma 8.1.3. There exist quadratic forms Jy,Jo € Ok|X,Y, Z] that satisfy the
following properties.

1. Dg(Jh, J2) = Di(Jh, J2) = 0.
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2. For A\, ue Ok, if X is a unit, then there is an invertible linear change of variables
over Ok so that
ANy + pdy = XY +eZ?,

where e is some unit in Ok.
3. Joe Ok[X,Y] and Jy is anisotropic of rank 2 over k.
4. For each q € Py(J1, J2), we have Dy(q) = 1.

Proof. Note that properties (2) and (3) imply (4).

Note that by Lemma 2.3.16, Dy (Jy, Jo) < Dy(J1, J2). So to prove (1), it is suffi-
cient to show that Dy(Jy, J2) = 0.

First, consider the case where char(k) # 2. Let d € k so that d # 0 and d is a
nonsquare in k. Let ¢;(X,Y) = XY and ¢2(X,Y) = X? + dY? Let \,u € k, not
both zero. Observe that Aq; + puge = pX? + AXY + duY?; therefore, the matrix of

G+ pgo is
20 A
A 2dp|”

It follows that det(\q; + pqe) = 4du® — X%, Since d is a nonsquare in k, we see that
det(q1 + pgo) is an anisotropic quadratic form in the variables A, i over k. It follows
that every form in the pencil Px(q1, ¢2) has rank 2. Since ¢; and ¢, do not share any
common factors, Lemma B.2.10 implies that there is a form ¢4(X,Y) € Pr(q1, )
such that ¢5(X,Y") is anisotropic of rank 2 over k. There exists ¢} € P(q1, ) such

that Py(q1, ¢2) = Pe(d}, ¢b).

Let J1(X,Y,Z) = Q|(X,Y) + Z% and JL(X,Y,Z) = Q4 X,Y), where Q} and
@, are lifts of ¢} and ¢} to Ok[X,Y], respectively. Since Q) is anisotropic of rank
2, we see that Dy(Jy,.J;) = 0. Since every form in P,(Q}, @}) has rank 2 over k,
we conclude that every form in Py (71, 72) has rank 2 or 3 over k and that .J, is the
only form in Py(Ji,J;) that has rank 2. Thus, if A\, u € Ok, with A a unit, then
rank(AJ; + pJy) = 3. By Chevalley-Warning, this form is isotropic. Then Theorem
B.1.1 implies that A\J; + pJy = XY + ¢/Z2, where € € k is nonzero. Lemma A.1.2

gives us \J; + pJy = XY + eZ?, where e is a unit.

Now, suppose char(k) = 2. Let ¢ € k be chosen so that ¢ ¢ p(k). Let ji,j2 €
k[X,Y, Z] be the quadratic forms

1 =XY + X?+ 272,

and
Go=YZ +Y?* +cZ%

Let ¢ € Ok be so that ¢ = ¢. Take

J= XY + X? + ()72,
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and

Jo=YZ+Y?>+2°
Thus J; = J1 and Jy = jo. Notice that YZ 4+ Y? + ¢Z? is anisotropic of rank 2
since its Arf invariant is ¢. Thus, if ja(x,y,2) = 0, then y = z = 0. It follows that

Dy (j1, j2) = 0.

Let A\, € k, not both zero. Let j = A\j; + pja. According to [15, Prop 3.1, p.
397], if the half-determinant of j is nonzero, then j is nondegenerate (that is, j has
no singular zeros). We proceed by showing that if A # 0, then the half-determinant
of j is nonzero. Let X', u' € Ok be lifts of A, i, respectively. We have

detp(Mj1 + 11j2) = %det()\’Jl ).
Notice
NI AT = NXY +NX2+ )Y Z+ Y2+ N()? + )22

Then the matrix of N'.J; + ¢/ Jy is
2NN 0
A2l W
0 2((¢)°N +cu)

It follows that

det(N'Jy + p'Jp) = 2N <4,u'((c’)3)\' +cdu') — (,u')z) —2(\N)? <(c’)3)\' + c’p/).
%det()\’Jl + ' Jy) = N (4;/((0')3)\' + ) — (,u')2> — (\)? ((c’)3)\’ + c',u').

Therefore,

1
§det()\’J1 + W o) = M2+ N (PN + cp).
= )\<,u2 + 3N+ c)\u).

The Arf invariant of p? + 3\? + ey is g—; = c ¢ p(k); therefore, u? + >\ + cAp is
an anisotropic quadratic form in the variables A\, u over k. It follows that the half-
determinant of j is zero if and only if A = 0. Thus, if A, u € Ok, with A a unit, then
AJ1 + pJy is nondegenerate. By Chevalley-Warning, A\J; + pJs is isotropic, hence
this form vanishes on a one-dimensional subspace U over k. Every nonzero element
of U is a nonsingular zero, hence Theorem B.1.1 implies that A\J; + uJy splits off 1
hyperbolic plane, hence \J; + puJy = XY + €' Z2, where ¢ € k. Since this form is
nondegenerate, ¢’ # 0. Lemma A.1.2 then gives us \J; + pJo = XY + eZ?, where e
is a unit. This completes the proof.

m
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Lemma 8.1.4. There exists a type B pair of quadratic forms in n = 3 variables with
d=0andh =1.

Proof. The pair {J;, Jo} from Lemma 8.1.3 satifies Definition 5.0.2 with n = 3, d = 0,
and h = 1. O

8.2 Even Number of Variables

Lemma 8.2.1. Let n = 2 be even. There exists a type B pair of quadratic forms in

n variables with d = "T’z and h = %

That is, for n = 2 even, there exist quadratic forms Q1, Q2 € Ok[X1,. .., X,] that
satisfy the following properties.

1. {Q1,Q2} is nonsingular.
2. Dk (Q1,Q2) = Di(Q1,Q2) = %52,

3. {Q1,Q2} vanish on spang (e, ... ,eang).

4. Hi(q1, ¢2) = He(qu) = 5.
5. For every q € Pr(q1,q2), Di(q) < 5.

Proof. Let q1,q2 € k|X1,...,X,] be as in Lemma 7.0.2. By Lemma 4.0.6, there
exist quadratic forms @1, Q2 € Ok[X1, ..., X,] such that Q; = ¢;, {Q1, @2} is non-
singular, and {Q1, @2} vanish on spanK(el,...,enT—z). Hence Dk (Q1,Q2) = ”T’Q

Since {Q1,Q2} is nonsingular, Theorem 2.2.11 implies that Dg(Q1,Q2) < 5. Thus

D (Q1,Q2) = Di(q1,q2) = "52. Properties (4) and (5) follow from Lemma 7.0.2. O

Lemma 8.2.2. The pair Q; = Q;(n, A, "T’z, ”772) exist forn = 6 even, n # 8. That
is, for n = 6 even with n # 8, there exist quadratic forms Q1,Qs € Ok[X1, ..., X,]
that satisfy the following properties.

1. {Q1,Q2} is a nonsingular pair over K.
2. Dk (Q1,@2) = Dip(Q1,Q2) = %52,
3. {Q1,Q2} vanish on spang (e, ... ,e%z).

4. For every \, i € Ok, not both divisible by m, there is an invertible linear change
of variable over Ok so that

AQ1 + 1@y = X0 Xo+ -+ 4+ X3 X0 + N(X,—1, X5),

where N s anisotropic of over k.
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Proof. Let q1,q2 € k[X1,...,X,] be as Lemma 7.0.3. Thus Di(q:1,¢2) = %52 and
every form in Py (qi, ¢2) has rank n and splits off exactly "_2 hyperbolic planes. By
Lemma 4.0.6 with d = “%= 2 there exist quadratic forms Q, Q2 € Ok|Xy,...,X,] such

that Q; = ¢, {Ql,Qg} is nonsmgular, and {Q1, 2} vanish on spang(eq, ... 7€nT—2).
Thus D (Q, Q2) = 52

Since {Q1, Q2} is nonsingular, Theorem 2.2.11 implies that Dg (Q1,Q2) < 5. Thus
Dg(Q1,Q2) = = Dk(q1,2)-

Since every form in Pj(q1,q2) has rank n and splits off exactly %52 hyperbolic
planes, Lemma A.1.2 implies that for every A, u € Ok, not both d1V1Slb1e by m, there
is an invertible linear change of variables over O so that

AQt + pQe = XiXo+ - + X3 X 0 + N(X21, X,),

where N € Ok[X,_1,X,] is a quadratic form such that N is anisotropic over k.

Therefore, the pair {Q1, Q2} is type A with d = h = an ]
Lemma 8.2.3. Letn >4 be even with n # 6. There exists a type A pair of quadratic
forms in n variables with d = T and h = ?2

That is, forn = 4 even, n # 6, there exist quadratic forms Q1, Q2 € Ok | X, ..., X,]
that satisfy the following properties.

1. {Q1,Q2} is nonsingular.
2. DK(QDQQ) = Dk(@;@) = nT_4
3. {Q1, Q2} vanish on spang ey, ... ,enT—él).

4. For every A\, u € Ok, not both divisible by m, there exists an invertible linear
change of variables over O so that

AQr + pQr = X1 Xo + Xs Xy + - + X 53X, 2 + N( X1, Xin),
where N is anisotropic over k.

Proof. Since n = 4 and n # 6, Lemma 7.0.12 implies that there exist quadratic forms

q1,q2 € k[X1,..., X,] such that Dy(qi,q2) = 25%, and every form in Py(q1,¢2) has

order n and splits off exactly 2 2 hyperbolic planes. By Lemma 4.0.6, there exist
quadratic forms Q1, Q2 € Ok [Xl, ..., X,] that satisfy the following properties.

L. @2(11 and@th-
2. {Q1,Q2} is nonsingular.

3. Dk(Q1,Q2) = “5*; in particular, {Q1, @2} vanish on spang (e, ... ,eanéx).
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By Lemma 2.3.16, Dg(Q1,Q2) < Dp(Q1,Q2) = "7_4. Thus Dg(Q1,Q2) =

Dk (Q1,Qs) = ”7’4. Since every form in Pi(qi,g2) has order n and splits off ex-

actly 52 hyperbolic planes over k, statement (2) of Lemma A.1.2 implies that for
every A\, u € Ok, not both divisible by 7, there exists an invertible linear change of
variables over Ok so that

AQ1 + 1@y = Xn Xo + X Xy + -+ X3 X0 + N( X1, Xp),

where N is anisotropic over k.

[]

Lemma 8.2.4. Let n = 6 be even with n # 8. There exists a type B pair of quadratic
forms in n variables with d = an4 and h = 3.

That s, for n = 6 even with n # 8, there exist quadratic forms QQ1,Qs €
Ok[X1, ..., X,] that satisfy the following properties.

1. {Q1,Q2} is nonsingular.
2. DK(QI?QQ) = Dk(@a@) = nT_4

3. {Q1,Q2} vanish on spang(eq, ... ,enT—Al).

4. Hi(Qr,Q2) = Hi(Q1) = 5
5. For every q € Pr(Q1,Q2), Di(q) < 5

Proof. Since n = 6 and n # 8, Lemma 7.0.13 implies that there exist quadratic forms
G, € k[ X1, ..., X,] with the following properties.

(i) Dr(q1,q2) = "7*4.
(i) Hi(q1,q2) = Hila) = 3.
(iii) For every q € Pi(q1, ¢2), Di(q) < 5.

By Lemma 4.0.6, there exist quadratic forms Q,Qs € Ok|X1,...,X,] such that
Qi = qi, 1 <i <2, {Q1,Q2} is nonsingular, and {Q;, @2} vanish on the subspace

spang (e1,...,enza). Thus Dg(Q1,Q2) = “52. By Lemma 2.3.16, Dg(Q1,Qs) <

Dk(@;@) = an24‘ Thus Dr(Q1,Q2) = %‘ u

Lemma 8.2.5. There exists a type B pair of quadratic forms in n = 4 variables with
d=0 and h = 2.

That is, there ezist quadratic forms Q1,Qs € Ok|Xi,..., X4] that satisfy the
following properties.

1. {Q1,Q2} is nonsingular.
2. Dg(Q1,Q2) = Dp(Q1,Q2) = 0.
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3. Hp(Q1,Q2) = Hi(Q1) = 2.
4. For every q € Pp(Q1,Q2), Di(q) < 2.

Proof. Let n(X,Y) € k[X,Y] be an anisotropic quadratic form over k. Let ¢ =
n(Xy, X2) + n(X3, Xy) and ¢ = n(Xq, Xs). If (21, 29,23, 74) is a common zero of
¢ and g2 over k, then g¢o(x) = n(xy,72) = 0 implies that x; = x5 = 0. Then
q1(x) = n(zs, x4) = 0 implies that x5 = x4 = 0. Thus Di(q1,¢2) = 0.

By Lemma B.2.6, ¢; splits off 2 hyperbolic planes. Thus Hy(q1, q2) = H(q1) = 2.
To prove (4), let a,b € k, not both zero, and let ¢ = aq; + bgz. If a = —b, then
q = an(X3, Xy). Since n is ansotropic, the form ¢ = an(X3, X4) can not vanish on
a 3-dimensional subapce in k*. If a # —b, then ¢ = (a + b)n(X1, X2) + an(X3, Xy).
If @ # 0, then ¢ has order 4, in which case ¢ can not vanish on a subspace in k* of
dimension 3. If a = 0, then b # 0 and ¢ = bn(X;, X3). As before, ¢ can not vanish
on a subsapce in k* of dimension 3. Thus, Dy(q) < 2 for all g € Pr(q1, ).

Lemma 4.0.6 implies that there exist quadratic forms Q1, Qs € Ox[X1,. .., X4]
such that @Q); = ¢; and {Q1, @2} is nonsingular. By Lemma 2.3.16, Dg(Q1,Q2) <
Di(q1,q2) = 0, hence Dk (Q1,Q2) = Di(q1,q2) = 0. O

Copyright© John R. Hall 2024
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Chapter 9 n even

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We will use the same notation given at the beginning of section 2.3.

n—2
9.1 D - T

Theorem 9.1.1. Let n = 2 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.
2. Di(f.g) = "52.
3. Hi(f,9) = 5.
Proof. Lemma 8.2.1 provides an example. O

Theorem 9.1.2. Let n > 6 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

3. HK(.fag) = nT72

Theorem 2.2.14 implies that there are no examples of quadratic forms satisfying these
conditions for n = 2. Theorem 2.3.15 implies that there are no examples of quadratic
forms satisfying these conditions for n = 4.

Proof. Lemma 8.2.2 provides an example when n > 6 with n # 8.

Suppose n = 8. By Lemma 8.1.2; there exists a type A pair Q; = @Q;(5, A
1 <4 < 2. Likewise, by Lemma 8.1.2, there exists a type A pair Q) = Q}(3,4,1,1),
1< <2

Let f =@y L 7Q] and g = Q2 L 7@, Then Lemma 5.0.6 implies that we
can adjust the coefficients of @} and @) modulo 7 so that {f, g} is nonsingular,
Di(f,g) =2+1=3,and Hg(f,g) =2+1=3.

O
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9.2 D=5~

Theorem 9.2.1. Let n > 4 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.1, there exist type B pairs Q; = Q;(n — 2, B, ”7_4, ”7_2), 1<i<
2,and Q) = Q4(2,B,0,1), 1 <i<2. Let f=0Q; L 7Q) and g = Q2 L 7Q%. Lemma
5.0.7 implies that the coefficients of Q)] and Q’ can be adjusted modulo 7 so that

{f, g} is nonsingular, D (f,g) = "5* +1 =232, and Hg(f,9) =52 +1=7%. O

Theorem 9.2.2. Let n = 4 be even with n # 6,10. There exists a pair of quadratic
forms {f, g} over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. If n = 4, then Lemma 8.2.3 provides an example.

Assume n > 8 and n # 10. Thus n— 2 > 6 and n—2 # 8. By Lemma 8.2.2, there
exists a type A pair Q; = Q;(n — 4, 2=2) 1 < i < 2. By Lemma 8.2.1, there
exists a type B pair Q} = Q(2, B, O, 1)7 <i<2 Let f=0Q; L7Q)and g =0Qy L
7Q,. By Lemma 5.0.6, we can adjust the co fﬁ ients of )} and QY modulo 7 so that
{f, 9} is nonsingular, Dx(f,g) = %5* + 0= 2%, and Hk(f,g) =5 +1 =22 O

A

M|

Theorem 9.2.3. Let n = 6. There ezists a pair of quadratic forms {f, g} over K in
n variables with the following properties:

1. {f, g} is nonsingular.

9. H(f.g) = "2 =2.

Proof. By Lemma 8.1.2, there exists a type A pair Q; = Q;(3,4,1,1), 1 < i < 2.
By Lemma 8.1.4, there exists a type B pair Q) = @Qi(3,5,0,1), 1 < i < 2. Let
f=0Q L Q) and g = Q2 L 7Q). By Lemma 5.0.6, we can adjust the coefficients
of @} and @) modulo 7 so that {f, g} is nonsingular, Dk (f,g) = 1+ 0 = 1, and
Hi(fg)=1+1=2. 0

Theorem 9.2.4. Let n = 10. There exists a pair of quadratic forms {f, g} over K
in n variables with the following properties:
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1. {f, g} is nonsingular.

2. Di(f,g) =" =3.

n—2
8. Hi(f,9) =" =4
Proof. By Lemma 8.2.2, there exists a type A pair Q; = Q;(6,.4,2,2), 1 < i < 2.
By Lemma 8.2.1, there exists a type B pair Q) = @Qi(4,8,1,2), 1 < i < 2. Let
f=0Q L 7Q) and g = Q2 L 7Q). By Lemma 5.0.6, we can adjust the coefficients

of @} and @) modulo 7 so that {f, g} is nonsingular, Dg(f,g) = 2+ 1 = 3, and
Hg(f,9)=2+2=4. O

Theorem 9.2.5. Let n = 12 be even with n # 14. There exists a pair of quadratic
forms {f, g} over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. Note that n—6 > 6 and n —6 # 8. Thus, by Lemma 8.2.2, there exists a type
A pair Q; = Q;(n — 6, A, "T’B, ”;8), 1 <i < 2. Also, by Lemma 8.2.2, there exists a
type A pair Q) = Q4(6,4,2,2), 1 <i <2 Let f=0Q; L 7Q) and g = Q2 L 7Q%.
By Lemma 5.0.6, we can adjust the coefficients of Q] and @5 modulo 7 so that {f, g}
is nonsingular, D (f,g) = 252 +2 = %54, and Hg(f,g) = %52 + 2 = 254, O

9.2.1 The Case n =14

In this section, we will prove Theorem 9.2.5 for n = 14. We will do this by construct-
ing a family of examples that satisfy Theorem 9.2.5 for n > 14, n # 16 (see Theorem
9.2.10).

Take t = 1. Suppose fi,q1 € k[ X1, ..., X;] are quadratic forms such that every
form in Py(f1, g1) has order ¢ and splits off Hy(f1, g1) hyperbolic planes over k. Let
Fi,Gy € Og[Xi,...,X;] be quadratic forms such that I} = f; and G; = g;. Let
Ni, Ny € Og[X,Y] be quadratic forms such that N; and N, are anisotropic over k.
Thus each N; has rank 2 over k, hence each N; has rank 2 over K.

With the above notation, we will prove the following lemma.
Lemma 9.2.6. Let 1, Qs be quadratic forms over Ok in t + 8 variables such that

Q1= Fi(Xy,..., X)) + oY + YsYy + ViV + 7 Ny (Y3, Ys) mod 7,

9.2.1
QQEGl(Xl,...,Xt)+}/2}/3+Y5Y6+Y7}/8+7TN2(}/1,}/;1) mod7r4. ( )

Then Hy(Q1,Q2) = Hi(f1,91) +3. Further, every form in Pk (Q1,Q2) has rank t +8
and splits off exactly Hy(f1,q1) + 3 hyperbolic planes.
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Proof. Let h = Hy(f1,91). Let A\, u € K, not both zero. We want to show that
AQ1 + Q2 has rank t 4+ 8 and splits off exactly h + 3 hyperbolic planes. By multiply-
ing A\Qy + p@s by a sufficient power of 7w, we can assume that A\, u € Ok, not both
divisible by 7.

Case 1. Assume p is a unit. By multiplying AQ; + pQ2 by !, it is sufficient to
consider @ = N'Q; + Q2, where X' = Au~!. Observe that

Q=NFi + G+ Yo(NY1 +Y3) + Y5(N'Yy + Y5) + Yo (\'Ys + Ys)
+ NP Ny (Ys, Y3) + 7No(Y7, Yy) mod 7.

Since X' F} + Gy has order t and splits off exactly h hyperbolic planes, Lemma A.1.2
implies that there is an invertible linear change of variables over Ok involving the
variables Xi,..., X, so that

NF+ Gy = X1 Xo + -+ Xop 1 Xop + G(Xopy, -, Xy)
where G is anisotropic. Thus

Q=X1Xo+ -+ Xop1 Xop + G(Xopy, ..., Xy)
+ Yo (NY1 + Y3) + Y5(N'Yy + Y5) + Y7 (Y + Y3)
+ NP Ny (Ya, Ys) + TNo(Y7, Yy) mod 7.

Applying the change of variables given by

Zs =\NY +Y;
ZGZ)\/}/;;‘F}/G
Zg = NYs + Yz

Zi =Y, 1 #3,6,8
gives us

Q=X1Xo+ -+ Xop 1 Xop + G(Xopgr, -, Xy)
+ Lol + ZsZs + ZrZg
+ )\IWSNl(Zg - /\'Zl, Zg — )\/Z(; + ()\1)224) + WNQ(Zl, Z4) mod 7T4.

Thus

Q=X1Xo+ -+ Xop 1 Xop + G(Xongr, .., Xy)
+ Zy T+ ZsZs + Z7Zs + nNo (21, Z,4) mod 7.

Lemma A.1.2 implies that there is an invertible linear change of variables over O
so that

Q=X Xo+ -+ Xop1Xop
+ ZyZs + ZsZs + ZrZs + Qo(Xonsa, - -, Xu, Z1, Zy),
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where
Qo(Xonst, -y X4, 21, Z4) = G(Xops1, - -, Xi) + mNo(Z1, Z4) mod 72,

Since G and N, are anisotropic over k, Lemma 2.3.1 implies that Q, is anisotropic
over K, in which case () has rank ¢ + 8 and splits off exactly h + 3 hyperbolic planes.

Case 2. Assume 7 | p. Then X is a unit. Write u = wd for some d € O. By
multiplying AQ; + uQ by A71, it is sufficient to consider Q' = Q, + m1'Q2, where
i’ = A"td. Observe that

Q' =F+mp'Gy+ Yo (Vi + mp'Ys) + Ys(Yy + mp'Ys) + Yo (Y + mp'Ys)
+ 7PNy (Ys, Yg) + w21/ No(Y7, Yy) mod 74

Since F + wp/G4 has order t and splits off exactly h hyperbolic planes over k, Lemma
A.1.2 implies that there is an invertible linear change of variables over Ok involving
X1,...,X; so that

F1 + 7T,U,/G1 = X1X2 + -+ X2h_1X2h + G/(X2h+1, e ,Xh)
where G’ is anisotropic. Thus

Q' =X1 Xy + -+ Xop 1 Xon + G'(Xongr, - Xan)
+ Yo (Y1 + mp'Ys) + Ya(Ya + mp'Ye) + Yo (Ys + mp'Vy)
+ 1N (Ys, Yz) + w2 No(Y7, Yy) mod 7.

Applying the change of variables given by

Zi =Y, +7u'Ys
Zy =Y+ 'Yy
Zs = Y5+ mp'Ys

Z;i =Y, 1 #1,4,6
gives us

Q' =X1Xo+ 4+ Xop 1 Xop + GI(X2h+17 o Xn)
+ ZoZh + ZsZy + Z7Zg
+ TN 23, Z) + ! No(Zy — 7pl Zy, Zy — wpd Z + w2 (1')? Zg)) mod 7.

Next, we apply the change of variables where we multiply Z3 by 7! and multiply Zg
by 7~ !. This gives us

Q' =X1Xo+ -+ Xop1 Xop + G'(Xops1, ..., Xt)
+ ZoZh + ZsZy + ZnZg
+ 7TN1(Z;3, Zg) + 7T2IUIN2(Zl — ,uIZ?,, Z4 — 7TMIZ(5 + ’/T(,u/)228)) mod 7'('2.
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Note that No(Zy — ' Z3, Zy — i/ Zg + w(1')* Zs)) has coefficients in O. We have

Q' =X1 X0+ + Xop1 Xon + G'(Xong1, .-, Xi)
4+ Lol 4+ L5y + LrZg
+ 71']\[1(Z37 Zg) mod 7T2.

By Lemma A.1.2, there is an invertible linear change of variables over Ok so that

Q =X\ Xo+ -+ Xop 1 Xop + ZoZy + ZsZy+ Z7Zg
QB(X2h+17 e 7Xt7 Z37 ZS)

where
Q6 = G/(X2h+1, ce 7Xt) + 7TN1(Z?,, Zg) mod 72.

Since G’ and Nj are anisotropic over k, Lemma 2.3.1 implies that @} is anisotropic
over K, in which case )’ has rank t + 8 and splits off exactly h + 3 hyperbolic
planes. O

Next, we want to show that the coefficients of N; and Ny can be adjusted modulo
7 so that the pair {Ji, Jo} is nonsingular, where

J1 =YY +Y5Y, + Yo + 773N1(Y33,Yé)-
Jo = YoY5 + Y5Ys 4+ Y7 Y5 + wNo (Y1, Ya).

The following lemma will help us accomplish this.

Lemma 9.2.7. Let Q}, Q% be the quadratic forms given below.

Q) =YY, + Y5Y, + V7Y + 7, Ya Yy,
Qy = YoY3 + Y5Ys + VoY + manY? + Y7,

where By, az, 72 are indeterminants. Then det(AQ'y + uQ%) = 7832\ — dn? gy u®.

Proof. According to Definition 2.1.5, the 8 x 8 symmetric matrix associated to AQ} +
p@y is given by

[ 27 A 0 0 0 00 0
A 0 pu 0 000 0
0 w0 0 0 0 0 w6\
M= 0 0 0 2ryo A 0 0 0
0 0 0 A 0 pn O 0
0 0 0 0 w0 A 0
0 0 0 0 0 X0 u
0 0 6 0 0 0 p 0 |

If we expand along the first row of M, we get

det(M) = 2mraouMy; — AMo,
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where Mj; is the 7 x 7 matrix obtained by deleting row 1 and column 1 of M, and
M5 is the 7 x 7 matrix obtained by deleting row 1 and column 2 of M.

Claim 1: det(My;) = —2myu”.

To prove claim 1, expand along the first row of M;; to get
det(My1) = —pdet(Ag),

where Ag is the resulting 6 x 6 matrix. We will describe the row/column to expand
along at each step. Expand Ag along its first column to get

det(My) = (—p)(p)det(As).
Expand Aj along its last row to get
det(Mn1) = (=) (1) (—p)det(As).
Expand A, along its third row to get
det(M11) = (=) (1) (=) (—p)det(As).
Expand Ajs along its last row to obtain

det(Mir) = (=p) (1) (—p) (—p) (p)det(As).

The determinant of 2 x 2 matrix Ay is 27yepu?. Thus det(My;) = —2myou”.
Claim 2: det(Myp) = —7wOBEN".

To prove claim 2, expand along the first column of M, to get
det(Mlz) = )\det(Bﬁ)

where Bg is the resulting 6 x 6 matrix. We will describe the row/column to expand
along at each step. Expand Bg along its first row to obtain

det(M) = (\)(—7*B1A\)det(Bs).
Expand Bj along its fourth row to get
det(Mi) = () (=7 BN (= N)det(By).
Expand B, along its second row to obtain
det(Mz) = (A)(—=7°B1A) (=) (=A)det(Bs).
Expand Bj along its first row to obtain
det(Miz) = (A) (=7 BiA) (= A)(=A) (=A)det(By).

The determinant of the 2 x 2 matrix By is —m36; A%, Thus det(Mis) = —7w0 32N,
]
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Lemma 9.2.8. Let Jy, Jo be the quadratic forms given below.

Ji = VoY + YsYy + YiYe 4 7N, (Y, Ys).
Ja = YaYy + YaYg + YyYe + 7N (Y1, Yy).

We can adjust the coefficients of Ny and Ny modulo 7 so that {Jy, Jo} is nonsingular.

Proof. Suppose Ni(X,Y) = a1 X% + ;XY + Y2 and No(X,Y) = auX? + b XY +
Y2, where a;,b;,¢; € O, 1 <i < 2. Let oy, 8i,7, 1 <4 < 2, be indeterminants.
Let

F =Y,Y1 + Y5V + VoY + m(an Y3 + 51 YaYs + YY),

9.2.2
G =YoYs + Y55 + YoYg + m(aaly + BaY1Ya + 1Y), 922

Let P(A\, p) = det(AF + uG). Thus P(A, ) is a homogeneous form in the variables
A, pof degree 8. Let h = discr(P(\, p)). Lemma D.2.5 implies that A is a polynomial
over Ok in the coefficients of F' and G. Thus, h is a polynomial over Ok in the
variables «;, 5;, v, 1 <@ < 2; that is,

h e Oklay, az, B1, B2, 715 72]-

We want to show that A is a nonzero polynomial. Let F’, G’ be the quadratic forms
obtained by setting a; = ;3 = 2 = 0 in equation 9.2.2, hence

F' = Y)Yy + Y5Yy + VY + 7° 31 Y3 Y5,
G' = YoYs + VY + YoYs 4+ manY? + my, Y2

To show that h is a nonzero polynomial, it is sufficient to find values for S, as, o
so that discr(det(AF" + uG’)) # 0. By Lemma D.1.2, this amounts to finding values
for B, aa, 7o € K8 so that det(\F’ + uG') has distinct linear factors. Lemma 9.2.7
implies that

det(AF' + puG') = m0B7N° — dn?anyopu®.

Choose B1, g, 7o € K8 50 that det(AF' + uG') = \* — 18, Since A\* — 18 has distinct
linear factors over K&, we deduce that h is a nonzero polynomial, as desired.

Since h is nonzero, Lemma 4.0.2 implies that there exist a}, b}, ¢, € Og, 1 <i <2

17 )

such that h evaluated at o/, V., ¢, 1 <7 < 2 is nonzero and so that

a; = a; mod T,

b, = b; mod ,

¢; = ¢; mod 7.
Let Nj(V3,Y3) = a) Y+ 0\ Y3Ys + Y and Ni(Y1,Y)) = ab Y2 + 0oV Yy + 4Y2. Thus
N{ = Ny mod 7 and Nj = Ny mod 7. Let

Jp = YaV1 + YsYa + Y7Ye + 17 Ni (Y3, Yy).
Jy = VaYs + Y5V + Y7V + wN (Y1, Ya).
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Since h evaluated at aj,bl,c}, 1 < i < 2, is nonzero, we deduce that {J], Ji} is a

19 Yo Z

nonsingular pair; this pair is obtained by adjusting the coefficients of N; and Ns
modulo 7.

]

Lemma 9.2.9. Let t > 1. Suppose fi1,q1 € k[X1,...,X;] are quadratic forms such
that every form in Pr(f1, 1) has order t and splits off exactly Hy(f1,91) hyperbolic

planes over k. Assume Dy(f1,g1) < % There exist quadratic forms F,G over Ok

in t 4+ 8 variables that satisfy the following properties.
1. {F,G} is nonsingular.
2. Dk(F,G) = Di(f1,q1) + 3.
3. Hx(F,G) = Hi(f1,01) + 3.

Proof. Let Ji, J; be as in Lemma 9.2.8; that is,

Ji = YaY) + YY) + YiYs + 0Ny (Y3, Ys).
Jy = YaYs + YsYe + YsVs + 7Ny (Y1, Y3).

By Lemma 9.2.8, we can adjust the coefficients of N; and Ny modulo 7 so that
{J1, Jo} is nonsingular. By Theorem 2.1.27, det(A.J; + p.J2) has distinct linear factors.
Suppose Ly, ..., Lg € K[\ u] are the distinct linear factors of det(\J; + ).

Let d = Dy(f1,¢1). Since d < %, Lemma 4.0.6 implies that there exist quadratic
forms Fy,G1 € Ok X, ..., X;] with the following properties.

1. Iy = f; and G, = g.

2. {F1, G4} is nonsingular.

w

. L; } det(AFy + pGh) for each 1 < i < 8.
4. Dg(F,Gy) = d.

Let
F=F(Xy,.. ., X)+ 21, Y).
G == Gl(Xl,...,Xt) + JQ(}G,,}%)

Then {F,G} is nonsingular. Notice that {J;, Jo} vanish whenever YV} = Y5 =Y, =
Ys = Ys = 0. Thus, {Ji,Jo} vanish on a three-dimensional space over K, hence

DK<J1, Jg) = 3. We have

Dy(F,G) = Dg(F1,Gy) + Dk(Jy, J2)

Dy (f1,91) + 3.

Lemma 9.2.6 implies that Hx(F,G) = Hy(f1,01) + 3. O

A%
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Theorem 9.2.10. Let n > 14 be even with n # 16. There exists a pair of quadratic
forms {F, G} over K in n variables with the following properties:

1. {F,G} is nonsingular.
2. D(F,G) = 24,
3. Hy(F,G) = "1,

Proof. Let t = 6 with t # 8. Let f1,91 € k[ X1, ..., X;] be quadratic forms satisfying
Theorem 7.0.3. Therefore, Di(f1,91) = %, every form in Py(f1, g1) has rank (hence
order) t, and every form in Py(f1, 1) splits off exactly Hy(f1,91) = 52 hyperbolic
planes.

By Lemma 9.2.9, there exist quadratic form F,G defined over O inn =t + 8
variables such that {F, G} is nonsingular, D (F, G) = 5243, and Hg (F,G) = 52 +3.
Since {F,G} is nonsingular, Lemma 2.3.11 implies that Dg(F,G) < Hg(F,G) =
22 + 3. Thus Dk (F, g) = 52 + 3. Observe that

t—2 t+4 n-—-4

2 43=
2+ 2 2

]

In particular, taking ¢ = 6 in Theorem 9.2.10 implies that Theorem 9.2.5 holds
for n = 14, as desired.

We end this section by giving an alternate proof of Theorem 10.2.2.

Theorem 9.2.11. Let n = 9 be odd. There exists a pair of quadratic forms {F,G}
over K in n variables with the following properties:

1. {F,G} is nonsingular.
2. Dg(F,GQ) = 3.
3. Hi(F,G) =23,

Proof. Let t = 1 be odd. Let F1,G, E_OK[Xl, ..., Xi] be quadratic forms satisfying
Lemma 8.1.1. Let f; = F; and ¢; = . Lemma 8.1.1 implies that Dy(f1, 1) = %
and every form in Py (f1, g1) has order ¢. It follows that every form in Py(f1, g1) splits

off exactly Hy(f1, 1) = 55+ hyperbolic planes.

By Lemma 9.2.9, there exist quadratic form F,G defined over O inn =t + 8
variables such that {F, G} is nonsingular, D (F, G) = 5143, and Hx (F,G) = 5++3.
Since {F,G} is nonsingular, Lemma 2.3.11 implies that Dg(F,G) < Hg(F,G) =
=1 + 3. Thus Dk (F, g) = 5* + 3. Observe that

t—1 _t+5 n-3

. T 43=_"_"
2+ 2 2
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93 D=5%>

Theorem 9.3.1. Let n = 6 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.1, there exists a type B pair Q; = Q;(n — 4, B, %5° %4), 1<
i < 2. By Lemma 8.2.5, there exists a type B pair Q) = Q%(4, 5,0 2) <1 <2 Let
f=0Q L 7Q) and g = Q2 L 7Q),. By Lemma 5.0.7, we can adjust the coefﬁ(:lents
of @} and @) modulo 7 so that {f, ¢} is nonsingular, DK(f, 9)=5%+0="22% and

Hie(f,0) = 54 +2 = 2 0

Theorem 9.3.2. Let n > 6 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.3, there exists a type A pair Q; = Q;(4,.4,0,1), 1 <i < 2. By
Lemma 8.2.1, there exists a type B pair Q; = Q\(n — 4,5, "T’ﬁ, %4)7 1<i<2 Let
f=Q1 L Q) and g = Q2 L 7Q),. By Lemma 5.0.6, we can adjust the coefficients
of @} and Q) modulo 7 so that {f, g} is nonsingular, Dk (f, g) = 04 25% = 258 and

2

Theorem 9.3.3. Let n = 10 be even with n # 12. There exists a pair of quadratic
forms {f, g} over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. Note that n—4 > 6 and n—4 # 8. Thus, by Lemma 8.2.2, there exists a type
A pair Q; = Q;(n — 4, A, 5> —) 1 <7< 2. By Lemma 8.2.3, there exists a type

ApaingzQ(élAOl) <i<2 Let f=0Q L7Q) and g = Qo L 7Q%.
Lemma 5.0.6, we can adJust the coefﬁments of Q) and @, modulo 7 so that {f, g} is

nonsingular, Dk (f,g) = 25° + 0 = 2% and Hk(f,g) = %5° + 1 = 252, O
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9.3.1 The Case n = 12

In this section, our goal is to prove the case where n = 12 in Theorem 9.3.3. Therefore,
we will prove the following theorem.

Theorem 9.3.4. There exists a pair of quadratic forms {Q1, Q2} over K in 12 vari-
ables with the following properties:

1. {Q1,Q2} is nonsingular.
2. Dk(Q1,Q2) = 3.

3. Hg(Q1,Q2) = 4.

We begin the proof now. Throughout this section, let N;(X,Y) € Ox|X,Y ] and
No(X,Y) € Og[X,Y] denote quadratic forms such that N; and N, are anisotropic
over k. Let G1,Gy € Ok[ X1, ..., X4] be a type A pair of quadratic forms satisfying
Lemma 8.2.3; therefore, G|, G5 satisfy the following properties.

(P0) {G1, G5} is nonsingular.
(Pl) DK(Gh GQ) = Dk(glaQZ) = 0, where g; = @

(P2) For every A, u € Ok, not both divisible by =, there is an invertible linear change
of variables over Qg so that

)\G1 + [LGQ = X1X2 + N(Xg, X4),
where N is anisotropic of rank 2 over k. Consequently, Hx (G4, Gy) = 1.
We start with Q1 and ) given below.

Q1 =G(X1,. .., Xy) + X6 X5 + XoXs + X11X10
+ N (X7, X12).

Q2 = Go( X1, ..., Xy) + X6 X7+ XoXi0 + X711 X2
+ TNy (X5, X3).

9.3.1)

Let Ji, Jo be as in Lemma 9.2.8; that is,
Ty = YaYi + Y5Yi + YiYe + 7Ny (Y3, V).
Jr = YoV3 + Y5Y5 + Y7Ys + mNo(Y1, Ya).

By Lemma 9.2.8, we can adjust the coefficients of N7 and Ny modulo 7 so that {Jy, J>}
is nonsingular. Observe that

Ql == Gl(Xl, oo ,X4) + Jl(X5, [P ,X12).

QQ - GQ(Xl, PN ,X4) + JQ(X5, e 7X12)-
By Lemma 5.0.5, we can adjust the coefficients of G; and G5 modulo 7 so that the

pair {Q1,Q2} is nonsingular and so that {G;, G5} remain a type A pair satisfying
properties (P0), (P1), and (P2) above.
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Lemma 9.3.5. Let Qq, Q2 € Ok [ Xy, ..., X12] be as in equation 9.3.1. Then Hx(Q1,Q2) =
4. In particular, every form in Pr(Q1,Q2) has rank 12 and splits off exactly 4 hy-
perbolic planes over K.

Proof. This follows from Lemma 9.2.6 with ¢ = 4 and Hy(f1,91) = 1. O
All that is left is to show that Dg(Q1,@Q2) = 3.

Lemma 9.3.6. Let Qq, Q2 € Ok | Xy, ..., Xi2] be as in equation 9.3.1. Then D (Q1,Q2) =
3.

Proof. For convenience, we restate equation 9.3.1 below:

Q1 =G(X1, ..., Xy) + X6 X5 + XoXs + X11X10
+ N (X7, X12)

Q2 = Go( X1, ..., Xy) + X6 X7 + XoXi0 + X711 X0
+ TNy (X5, X5).

Note that N; has rank 2 over K. Property (P2) implies that G has rank 4 over K.
Thus @; has rank 12 over K. It follows that @ + tQ has rank 12 over K (). By
Lemma 2.2.9, we have Dg(Q1,Q2) = Hr)(Q1 + tQ2). Therefore, it is sufficient to
show that Q1 + tQ2 splits off exactly 3 hyperbolic planes over K (t). Observe that

Q1 +1Qs = (G1 +1G2)(X1, ..., Xu) + Xo(X5 + tX7) + Xo(Xs + tX10)
+ X1 (X0 + tX10) + TN (X7, X12) + TNy (X5, X3).

Consider the following invertible linear change of variables:

Ys = X5 + £ X7

Yy = X+t Xy

Yio = X0 + tX12
Y.= X, i+5,8,10.

Applying this change of variables gives us

Q1 +1tQa ~ (G +tGo) (Y1, ..., Yy) + Y5Y5 + YoYs + Y11 Y3

9.3.2
+ 7N (Yz, Yia) 4 tnNy (Vs — tY7, Vs — tY10 + t°Y12), ( )

where ~ denotes equivalence over K (t). We can write tm Ny (Y5 —tY7, Ys—tYg +t2Y12)
in the following way:

tmNo(Ys — tY7,Ys — tY10 + t°Y12) = t*7No(=Y7,1Y12)
+ Y5 Ly (Y5, Y7, Yz, Yio, Yi2)
+ YeLo(Ys, Y7, Yz, Y10, Y12)
+ YioL3(Ys, Y7, Yg, Yo, Y12).
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for suitable linear forms L; € (Ok|[t])[Ys, Y7, Yz, Yio, Yi2], 1 < ¢ < 3. Substituting this
into equation 9.3.2 yields

Q1+ 1tQ2 ~ (G1 +tGo) (Y1, ..., Yy) + Y5Y5 + YoYs + Y11 Yio
+ TN (Y7, Yio) + 37 Ny (Y7, tY10)
+ Y5 L1(Y5, Y7, Yz, Yio, Yi2) (9.3.3)
+ YsLo(Y5, Y7, Ys, Yio, Yia)
+ YioLs(Ys, Y7, Y3, Yo, Y12).

Consider the following change of variables:
Z6 = 1/6 + L1(5/57 Y77 }/87 Y107 }/12)
Zy =Yy + La(Y5, Yz, Y3, Yig, Y12).

le = }/11 + L3(3/5,YV7,Y'87}/10,Y12).
Zi=Y; i#6,911.

(9.3.4)

Note that this change of variables is invertible. Applying this change of variables to
equation 9.3.3 gives us

Ql + tQQ ~ (G1 + tGg)(Zl, ey Z4) + ZGZ5 + Zng + lezlo

9.3.5
+ 7T3N1(Z7, Zlg) + t37TN2(—Z7, tZlg). ( )

Suppose No(X,Y) = aX? + bXY + c¢Y? for some a,b,c € O. Since N, is
anisotropic over k, we know 7 / a and 7 f ¢. Substituting this into equation 9.3.5
yields

Q1 +1tQa ~ (G +tGo) (21, ..., Zy) + ZsZs + ZgZs + Z11 710

9.3.6
+ N1 (Z7, Zho) + Pw(aZi — bt 27 Z1s + et Z3,). (9.3.6)
Let
Q(Z1, ..., 24,27, Z15) = (G + tG2)(Zn, . .., Zs) + T° N1 (Z7, Z12)
+ 01 (aZ7 — bt 2z Z1s + ct* Z3,).
To finish, we will show that () is anisotropic over K (t).

For sake of contradiction, suppose Q(z1, ..., 24, 27, 212) = 0, where z; € K(t), not
all zero. By multiplying (z1, ..., 24, 27, 212) by a suitable polynomial in K[t], we can
assume that each z; € K[t]| (i.e. clearing the denominators). Then we can multiply
(z1,..., 24,27, 212) by a sufficient power of 7 so that each z; € Ok[t]. Thus, each z

is a polynomial in ¢ with coefficients in Q. Let ¢; be the minimum valuation of
the coefficients of z;. Let M = min(ey, ..., €y, €7, €10). Multiply (z1, ..., 24, 27, 212) by
7M. These maneuvers allow us to assume that at least one of the z;’s is not divisible
by .
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We have
(G1 +tGy) (21, ..., 24) + T Ni(z7, 212) + 37 (az? — btzrzyg + ctQZfQ) =0.

Thus, 7 | (Gy + tG2)(21,...,24). Since Dg(g1,92) = 0, Lemma 2.2.8 implies that
g1 + tgo is anisotropic over k(t). It follows that 7 | z;, 1 < i < 4. Write z; = 7z} for
some z, € Ok|t], 1 <i < 4. We have

(G +1Ga)(21, ..., 2y) + T N1 (27, 212) + P71 (azf — btzrz1o + ct®2y) = 0.

It follows that
T | azi — btzrzin + etz

Let F(X,Y) = aX?—btXY +ct?Y?2 Thus 7 | F(z7,212). To finish we will show that
F(X,Y) =aX?* - btXY +ct’Y?

is anisotropic over k(t). This will complete the proof since having F' anisotropic over
k(t) implies that m | z7, 212, in which case all the z; are divisible by 7, a contradiction.

Suppose that F(x,y) = 0 for some z,y € k(t). We have
ax? — btey + ct*y? = 0.

Recall that 7 } a and 7 f ¢, hence @ # 0 and ¢ # 0. Thus, ¢t | x. Write z = t2’ for
some 2’ € k(t). Then
t*(a(z')? — ba'y + ey*) = 0.

Thus @(2')? — ba'y +cy? = 0. Recall that No(X,Y) = aX?+bXY +¢Y? is anisotropic
over k. Let N5y(X,Y) = aX? — bXY +¢Y2 Then N, is equivalent over k to No,
which can be seen by performing a change of variable where Y is replaced with —Y".
Thus N is also anisotropic over k. Further, Lemma 2.2.15 implies that N} is also
anisotropic over k(t). We have Nj(2',y) = 0, hence 2’ = y = 0. This proves that F

is anisotropic over k(t), as desired.
[

n—_8
9.4 D=1t

Theorem 9.4.1. Let n > 8 be even. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties.

1. {f, g} is nonsingular.
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Proof. Let n(X,Y) € k[X,Y] be an anisotropic quadratic form over the residue field
k. Let q1,q2 € k[ X1, ..., X,—4] be the quadratic forms given below.

q1 = n(Xl, XQ) + n(Xg,X4) + X5X6 + X7X8 + -+ Xn—5Xn—4~

q2 = n(X17X2)'
We will show that Dy(qq,q2) = ”T_S. Suppose ¢1(X) = ¢2(X) = 0 for some X =
(v1,...,05_4) € k™% Then having ¢2(X) = 0 implies that 2; = 2, = 0. Note
that ¢1(0,0, X3,..., X, 4) is a quadratic form in n — 6 variables of rank n — 6 that

splits off exactly ”T’S hyperbolic planes. Therefore, ¢(0,0, X3, ..., X, 4) vanishes

on a subspace over k of dimension "T’S. Theorem B.1.1 implies that "7’8 is the
largest dimension of a subspace over k on which ¢;(0,0, X3, ..., X,,_4) vanishes. Thus
Dk(q1aq2) = nT_S

By Lemma 4.0.6, there exist quadratic forms Q1,Q2 € Ok[Xi,..., X, 4] such
that Q; = ¢;, 1 <1 <2, and {@Q, Q2} is nonsingular. By Lemma 8.2.5, there exists a
type B pair Q) = Q5(4,8,0,2),1 <i<2. Let f =Q; L 7Q} and g = Q» L 7Q%.

By Lemma 5.0.5, we can adjust the coefficients of @)} and @), modulo 7 so that
the pair {f, g} is nonsingular and so that {Q}, @5} remains a type B pair with d = 0
and h = 2.

By Lemma 2.3.17, we have

Dr(f,9) < Dr(Q1, Qs) + Di(Q', Q).
n—=_8
= 5 + 0.

n—2_8
2

By Lemma 2.3.11, Dg(f,g) = ”T_S. Thus Dg(f,g) = ”T_S,

To show that Hg(f,g) = %5, note that Lemma B.2.6 implies that n(X, X») +
n(Xs, X4) splits off 2 hyperbolic planes over k, hence ¢, = Q splits off ”T"l hyperbolic
planes over k. By Definition 5.0.2, Q_’l splits off 2 hyperbolic planes over k. By Lemma
A.1.2, @ splits off ”7_4 hyperbolic planes over Ok and @] splits off 2 hyperbolic planes
over Og. Therefore, f splits off ”7_4 +2 = § hyperbolic planes over O, which proves
that HK(f, g) = %

m

Theorem 9.4.2. Let n = 8 be even with n # 10. There exists a pair of quadratic
forms {f, g} over K in n variables with the following properties.

1. {f, g} is nonsingular.
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Proof. Note that n —4 > 4 and n
type A pair Q; = Q;(n — e,

4 # 6. Thus, by Lemma 8.2.3, there exists a
), 1 <i < 2. By Lemma 8.2.5, there exists a

3

e
type B pair Q'IL Qz(47 B7 07 2)7 < < Let f = Ql J— WQll and g = QQ J— WQIZ By
Lemma 5.0.6, we can adjust the coefficients of @} and Q% modulo 7 so that {f, g} is
nonsingular, Dk (f,g) = 252 + 0 = %52, and Hk(f,g) = %5° + 2 = 52 O

Theorem 9.4.3. Let n = 10. There exists a pair of quadratic forms {f, g} over K
in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.3, there exists a type A pair Q; = Q;(4,.4,0,1), 1 < i < 2.
By Lemma 8.2.4, there exists a type B pair Q; = @Q5(6,8,1,3), 1 < i < 2. Let
f=Q1 L Q) and g = Q2 L 7Q),. By Lemma 5.0.6, we can adjust the coefficients
of @} and @) modulo 7 so that {f, g} is nonsingular, Dg(f,g) = 0+ 1 = 1, and
Hi(f.g)=1+3=4. O

Theorem 9.4.4. Let n = 8 be even with n # 10. There exists a pair of quadratic
forms {f, g} over K in n variables with the following properties.

1. {f, g} is nonsingular.

2. D(f.9) ="5".

3. H(f,9) = "3
Proof. Note that n—4 > 4 and n—4 # 6. Thus, by Lemma 8.2.3, there exists a type
A pair Q; = Q;(n—4, A, %52 —) 1 < i < 2. Likewise, by Lemma 8.2.3, there exists

a type A pair Q) = Q’(4 A 0,1), 1 <i<2 Let f=0Q; L7Q] and g = Q2 L 7Q}.
By Lemma 5.0.6, we can adjust the coefficients of Q] and @), modulo 7 so that {f, g}
is nonsingular, D (f,g) = 252 + 0 =22, and Hg(f,g) = %5° +1 = 254, O

Copyright© John R. Hall 2024
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Chapter 10 n odd

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We will use the same notation given at the beginning of section 2.3.

n—1

Theorem 10.1.1. Let n = 1 be odd. There ezists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.
3. Hi(f,9) = "5+

Proof. Lemma 8.1.1 provides an example. O

10.2 D=1

Theorem 10.2.1. Let n = 3 be odd. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.1, there exists a type B pair Q; = Q;(n—1, B, ”T_S, "T_l), 1<i<
2. Let Q] = Q) = X?. By checking Definition 5.0.2, it is easy to see that {Q}, Q},} is a
type B pair in one variable with d = h = 0; that is, Q) = Q%(1,8,0,0), 1 <1i < 2. Let
f=0Q L nQ) and g = Q2 L 7Q). By Lemma 5.0.7, we can adjust the coefficients
of @} and Q) modulo 7 so that {f, g} is nonsingular, Dk (f, g) = %52 + 0 = %52, and

Hg(f.g) = "3+ +0="3 0

Theorem 10.2.2. Let n = 9 be odd. There ezists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.
Theorems 2.2.14 and 2.3.15 imply that there are no examples of quadratic forms with
these properties for n = 3,5, 7.
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Proof. First, assume n = 11. By Lemma 8.2.2, there exists a type A pair Q; =
Qi(6,A4,2,2), 1 < i < 2. By Lemma 8.1.2, there exists a type A pair Q) =
Qi(5,A4,2,2), 1 <i <2 Let f=0Q L 7Q) and g = Q2 L 7Q,. By Lemma
5.0.6, we can adjust the coefficients of @)} and @) modulo 7 so that {f, g} is nonsin-
gular, Di(f,9) =2+2=4,and Hg(f,g) =2+2=14.

Now assume n = 9 is odd with n # 11. Then n—3 > 6 is even and n—3 # 8. Thus,

by Lemma 8.2.2, there exists a type A pair Q; = Q;(n — 3, 4, 5> —) 1<i<2
By Lemma 8.1.2, there exists a type A pair Q) = Q5(3, 4,1, 1) < 2. Let
f=0Q L Q) and g = Q2 L 7Q). By Lemma 5.0.6, we can adjust the coeﬂicients
of @} and Q) modulo 7 so that {f, g} is nonsingular, Dk (f, g) = %52 + 1 = 252, and
Hg(f,9) = "2 +1 =152 O
10.3 D =12>=

Theorem 10.3.1. Let n = 5 be odd. There exists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.

Proof. By Lemma 8.2.1, there exists a type B pair @; = Q;(n — 3,8, %> ”T’?’), 1<
i < 2. By Lemma 8.1.4, there exists a type B pair @} = Q5(3, 5,0, 1) <i<2 Let
f=Q L Q) and g = Q2 L 7Q),. By Lemma 5.0.7, we can adjust the coeﬂiments
of @} and Q) modulo 7 so that {f, g} is nonsingular, Dk (f, g) = %52 + 0 = 252, and

]

Theorem 10.3.2. Let n = 7 be odd. There ezists a pair of quadratic forms {f, g}
over K in n variables with the following properties:

1. {f, g} is nonsingular.
2. DK(fa g) = nTif)

Proof. By Lemma 8.1.2, there exists a type A pair Q; = Q;(n —4, 4, %52252), 1 <
i < 2. By Lemma 8.2.3, there exists a type A pair Q) = (4, A, 0, 1) 1 < 1 < 2. Let
f=0Q L 7Q) and g = Q3 L 7Q). By Lemma 5.0.6, we can adjust the Coefﬁments
of @} and Q) modulo 7 so that {f, g} is nonsingular, Dg(f,g) = %52 +0 = %2 and
Hg(f,9) = "> +1="152 O
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104 D =127

Theorem 10.4.1. Suppose n = 7 is odd. There exists a pair of quadratic forms
{f, g} over Ok in n variables satisfying the following properties.

1. {f, g} is nonsingular.

Proof. Let n(X,Y) € k| X, Y] be an anisotropic quadratic form over the residue field
k. Let q1,q2 € k[ X1, ..., X,,_4] be the quadratic forms given below.

q1 = n(X1,X2

) + TL(X3,X4) + X5X6 + X7X8 + -+ Xn_4Xn_3.
g2 = n(X1, Xz).

We will show that Dy(q1,¢2) = “5°. Suppose ¢1(X) = ¢2(X) = 0 for some X =

(x1,...,7, 3) € k"3, Then having ¢»(X) = 0 implies that x; = x5 = 0. Note that

¢1(0,0, X3,..., X, 3) is a quadratic form in n — 5 variables of rank n — 5 that splits

off exactly "777 hyperbolic planes. Therefore, ¢;(0,0, X3, ..., X,_3) vanishes on a sub-
n—"7

space over k of dimension “5+, and Theorem B.1.1 implies that this is the largest

dimension of a subspace over k on which it vanishes. Thus Dy(q1,q) = "7_7

By Lemma 4.0.6, there exist quadratic forms @1,Q2 € Ok|X1,..., X, 3] such
that Q; = ¢;, 1 <1< 2, and {@Q1, @2} is nonsingular. By Lemma 8.1.4, there exists a
type B pair Q) = Q5(3,8,0,1), 1 <i<2. Let f =Q; L 7Q} and g = Q» 1 7Q%.

By Lemma 5.0.5, we can adjust the coefficients of @)} and @), modulo 7 so that
the pair {f, g} is nonsingular and so that {Q}, @5} remains a type B pair with d = 0
and h = 1.

By Lemma 2.3.17, we have

n—"17
=5 +0

n—7
5

By Lemma 2.3.11, Dg(f,g) = ”7_7 Thus Dg(f,g) = "7_7

To show that Hg(f,g) = %5, note that Lemma B.2.6 implies that n(X, Xs) +
n(Xs, X4) splits off 2 hyperbolic planes over k, hence ¢, = Q splits off ”7_3 hyperbolic
planes over k. By Definition 5.0.2, Q_’l splits off 1 hyperbolic plane over k. By Lemma
A.1.2, @ splits off ”7_3 hyperbolic planes over Ok, and @] splits off 1 hyperbolic
plane over Og. Therefore, f splits off "7_3 +1 = ”T_l hyperbolic planes over Ok,

which proves that Hy(f,g) = %5 . ]
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Theorem 10.4.2. Suppose n is odd with n = 7 or n = 11. There exists a pair of
quadratic forms {f, g} over K in n variables satisfying the following properties.

1. {f, g} is nonsingular.
2. Di(f.9) = "5".

Proof. Note that n—3 > 4 is even with n—3 # 6. Thus, by Lemma 8.2.3, there exists

a type A pair Q; = Q;(n— 3, A, ”777, "T’E’), 1 <i < 2. By Lemma 8.1.4, there exists a

type B pair Q) = Q(3,8,0,1), 1 <i<2. Let f =Q; L 7@} and g = Q2 1L 7Q}. By

Lemma 5.0.6, we can adjust the coefficients of @} and Q% modulo 7 so that {f, g} is
n—3

nonsingular, Dk (f,g) = 25 + 0 = %7, and Hk(f,g) = 25> + 1 = 253,

]

Theorem 10.4.3. There exists a pair of quadratic forms {f, g} over O inn =9
variables satisfying the following properties.

1. {f, g} is nonsingular.
2 Dielf,g) =257 = 1.

Proof. By Lemma 8.2.3, there exists a type A pair Q; = Q;(4,4,0,1), 1 < i <
2. Since {Q1, @2} is nonsingular, Theorem 2.1.27 implies that det(AQ; + p@2) has
distinct linear factors. Since Ok has infinitely many units, we can choose units
a,b € Ok so that a\ + by is not a linear factor in det(AQ; + u@2). Let fi,g1 €
Ok[X1, ..., X5] be the quadratic forms given below.

fi=0Q1(Xy,..., Xy) +aXz.
g1 = Qa(X1s. ., X4) + bXZ.

By our choice of a and b, the pair {f;, ¢;} is nonsingular.

We will show that Dy(f1,g1) = 1. Since {fi, 91} have 5 variables, Lemma B.2.9
implies that Dy(f1,g1) = 1. For sake of contradiction, suppose {fi,g1} vanish on a
two-dimensional subspace over k, say span, (v, w), where v,w € k° are linearly inde-
pendent. Since Dy(Q1,Q2) = 0, we know that the fifth coordinate of v and the fifth
coordinate of w can not both be zero. Without loss of generality, assume the fifth co-
ordinate of v is nonzero. We can choose ¢ € k so that the fifth coordinate of x = cv+w
is zero. Since {v,w} are linearly independent, z # 0. Since fi(z) = gi(x) = 0, it
follows that Q;(x) = Q2(z) = 0. This is contrary to Dy(Q1, Q) = 0.

Thus, Dy(f1,91) = 1. Next, we will show that for each ¢ € P(f1,71), we have

Di(q) < 2. To see this, note that by Lemma 8.2.3, every form in P(Qy, Q2) has
order 4 and splits off exactly 1 hyperbolic plane over k. It follows that every form in
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Pr(f1, f2) either has order 4 and splits off exactly 1 hyperbolic plane, or has order 5
and splits off exactly 2 hyperbolic planes. Thus, Lemma 2.2.6 implies that Dy (q) < 2
for each q € Pi(f1, 7).

Now, let Q) = Q%(4,.A4,0,1), 1 <i < 2, be a type A pair in four variables as in
Lemma 8.2.3. Let

f = fl(le <o 7X5) +7TQ,1(X67' .- 7X9)'
g = gl(X17 <o 7X5) + WQIZ(X@ oo 7X9)'

By Lemma 5.0.5, we can adjust the coefficients of Q)] and Q% modulo 7 so that {f, g}
is nonsingular and so that {Q}, @5} remains a type A pair with d = 0 and h = 1. By
Lemma 2.3.11, we have Dk (f,g) = 1. On other hand, Lemma 2.3.17 implies that

— 140
= 1.

Thus, Dk(f,g) = 1. To show that Hx(f,g) = 3, let A\, u € O, not both divisible
by 7. Note that by Lemma 8.2.3, there is an invertible linear change of variable over
O so that AQ| + pQy = X X7 + N(Xs, Xo), where N is anisotropic over k. Thus

)\f + ng = G(Xl, A ,X5) + WN(XQ, XlO) + 7TX6X7,

where G = Afi + pugi. We proved above that Di(G) < 2. Lemma 2.3.3 implies
that G + 7N splits off at most Dy(G) < 2 hyperbolic planes. Thus A\f + pg splits
off at most 3 hyperbolic planes, hence Hy(f,g) < 3. Lemma 2.3.11 implies that

Hi(f,g) = 3. We conclude that Hx(f,g) = 3. O]

Copyright© John R. Hall 2024
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Chapter 11 Pairs of Forms in 5, 6, and 8 Variables

For this chapter, let K denote a p-adic field with ring of integers Ok and residue field
k. We use the same notation given at the beginning of section 2.3.

11.1 n=>5

Our goal for this section is to prove the following theorem.

Theorem 11.1.1. Let Q1,Q2 € K[Xy,...,X;5]| be a nonsingular pair of quadratic
forms. If Dk (Q1,Q2) = 0 and |k| = 4, then Hr(Q1,Q2) = 2.

We begin the proof of theorem 11.1.1 now. Our proof will utilize results from
appendix A. By multiplying )1 and ()5 by a sufficient power of 7, we can assume
that ()1 and ()5 have coefficients in O.

For i = 1,2, let ¢; = Q;. We define R = R(q1, ¢2) to be the least integer m such
that there is a linear transformation T' € GL5(k) for which ¢;(TX) and ¢o(TX) are
both functions of X1, ..., X,, alone. Therefore, there is an invertible linear change of
variables over k so that ¢; = ¢/(Xy,...,Xg) for ¢ = 1,2, where ¢} denote quadratic

forms over k. Consequently, every form in Px(qi, ¢2) can be expressed using only the
variables X1, ..., Xg.

We define r = r(qi, ¢2) to be the maximum order a form in P = Py(q1, ¢2); that
is,
r =r(q,q2) = max{order(q) | ¢ € P}.
It follows that r < R < 5.

By Lemma A.2.4, we can assume 1, ()2 is a minimized pair. By Lemma A.3.4
with d =0 and n = 5, we get

By Lemma A.3.3, we know every form in Py(q, ¢2) has order > %, hence r > 2.
Further, by Lemma A.3.2, any form in Py(q1, ¢2) that has order 2 must be anisotropic.
Then Lemma B.2.21 implies that » > 3. We have shown that

3<r<R<S.
Our proof is divided into cases depending on the possible values for » and R.
Suppose r = 5. Then there is a form in Pg(q, ¢2) that splits off 2 hyperbolic
planes over k. Lemma A.1.2 implies that there is a form in Pg(Q1,@Q2) that splits
off 2 hyperbolic planes over K, as desired.

From here on, we assume 3 < r < 4. Next, we consider the case R = 3.
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11.1.1 R=3

Since R = 3, we get r = 3 as well. We can put (); and (), into the following shape

5
Q1 = Gi(X1, Xa, Xy) + Z(X L(X1, X5, X)) + wH (Xi, X5),
: (11.1.1)
Q2 = Ga(X1, X, X) + Z(X LO(X1, X, X)) + wH (X, X5),

where the G; and H; are quadratic forms over O and the Lg-i) are linear forms over
Ok. By minimization, Lemma A.2.7 implies that Dy (hq, he) = 0. We will show that

hy and hsy are linearly independent.

Assume for contradiction that h; and hy are linearly dependent. Then there exist
a1, s € Ok, not both divisible by 7, such that a3y H; + asHs = 0 mod w. Without
061 012]. Since det(U’) = «; is a
unit, the pair (Qy, @)Y is still minimized, but now the form playing the role of H; is
divisible by 7. From these maneuvers, we can assume that = | H; in equation 11.1.1.
Let T = diag(m, 7,7, 1,1) and U = diag(m 2,7 1). Then (Q1, Q2)¥ is integral, but

loss of generality, assume oy is a unit. Let U’ = [

4o(det(T)) + 5u(det(U)) = 4(3) + 5(~3) < 0.

By Lemma A.2.5, this is contrary to ()1, Q)2 being minimized. Therefore, h; and hs
are linearly independent.

Next, we will show that Dy (g1,92) = 0. Suppose Di(g1, g2) = 1. By an invertible
linear change of variables over k, we can assume (0,0, 1) is a common zero of g; and
go. Then ¢ and g9 both vanish whenever X; = X, = 0. It follows that ¢; and ¢ both
vanish on a subspace in k® of dimension 3. Then the inequality n < 2d is satisfied for
n =5 and d = 3, in which case Lemma A.3.1 contradicts minimization. Therefore,

Dk(gla 92) = 0.

Also, by minimization, Lemmas A.3.3 and A.3.2 imply that every form in Py (g1, g2)
is either anisotropic of order 2 or has order 3. Thus Lemma B.2.22 implies that there
are exactly |k| — 1 pairs (a,b) € k%, not both zero, for which ag; + bg, is anisotropic
of order 2.

On the other hand, since Dg(hi,hy) = 0 and hy, hy are linearly independent,
Lemma B.2.23 implies that there are at least |k| pairs (a,b) € k%, not both zero, for
which ahy + bhs is isotropic.

Since |k| > |k| — 1, we deduce that there exist (a, b) € k%, not both zero, for which
agy +bgs has order 3 (and hence splits off 1 hyperbolic plane), and ah; +bh, is isotropic.
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Without loss of generality, b # 0. Let ' € Ok be a unit so that ¥ = b. By
replacing Q1 with Q1 + V/Q2, we may assume that g; has order 3 and that h; is
isotropic. We can perform an invertible linear change of variable over k involving
X1, X5, X3 so that

g1 = X1 Xy +dX3

for some d € k. Through a change of variable involving X4, X5, we can assume
hi1(0,1) = 0. Since Dy(hy,hy) = 0, we get hy(0,1) # 0. Thus 72 | Qi(es) and
72 Qa(es). We therefore have the following:

1. Q1(X1, X,0,0, X5) = X1 X, mod .

2. Q2(X1, X5,0,0, X5) = Go(X1, X5,0) mod 7.
3. | Q(es).

4. 7 | Qa(es)

Thus Lemma A.1.6 implies that there is a form in Pg(Q1,Q2) that splits off 2
hyperbolic planes.

11.1.2 R=4

We can write )1 and ()5 in the following way.

Ql = Gl(Xl, P ,X4) + 7TX5L1(X1, . ,X4) + 7'('611)(527

’ (11.1.2)

QQ = GQ(X17 e ,X4) + 7TX5L2(X1, e ,X4) + 7TCL2X5,
where R = R(g1,92) = 4 and r = r(g1, 92) € {3,4}. If g1 and go have a nonsingular
common zero over k, then by Lemma 2.3.6, the forms G; and G5 would have a com-
mon nontrivial zero over K, contrary to Dy (Q1,Q2) = 0.

Therefore, either g; and go have a singular common zero over k, or Dy(g1,92) = 0.
We will address each of these cases separately.

Case 1. Suppose g; and g, have a singular common zero over k. Through a change
of variable, we can assume (1,0,0,0) is a singular common zero of g; and g,. Then
g1 and g, have the shape

g1 = XlZ(XQ, Ce ,X4) + wll(Xg, e ,X4),
go = lel(XQ, e ,X4) + ’LU;(XQ, ce ,X4),

where ¢, ¢ are linear forms over k and wj,w) are quadratic forms over k. Since
R(g1,92) = 4, we know at least one of either ¢ or ¢’ is nonzero. Since (1,0,0,0) is
a singular common zero, we know ¢ and ¢ are linearly dependent. Without loss of
generality, assume the coefficient of X, in £ is nonzero, and ¢/ = ¢/ for some c € k.
Through a change of variables involving X5, X3, X4, we obtain
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g1 = XlXQ + wl(Xg, e ,X4),
g = CIX1X2 + UJQ(XQ, e ,X4),

where for i = 1,2, w; is the image of w] under the change of variables. We can write
wy and ws in the following way.

wy = Xo51(Xo, X3, Xy) + 11(X3, Xu),
Wy = X282(X27X37X4) + tQ(Xg,X4),

where s1, sy are linear forms over k, and tq, ¢ty are quadratic forms over k. Thus

g1 = X1 Xo + Xos1(Xo, X3, Xa) + 1(X3, Xy).

11.1.3
g2 = ' X1 X + Xoso(Xo, X3, Xy) + t2( X3, X4). ( )

Suppose t; and ty have a common nontrivial zero over k. Through a change of
variables involving X3 and X4, we can assume (1,0) is a common zero of ¢; and ts.
Then g; and g both vanish whenever Xy = X, = 0. It follows that ¢; and ¢ both
vanish on a 5 — 2 = 3 dimensional subspace in £°. Then n < 2d is satisfied for n = 5
and d = 3, in which case Lemma A.3.1 contradicts minimization.

Therefore, Dy(t;,t2) = 0. Suppose t; and t, are linearly dependent over k. Then
there exist aq, as € k, not both zero, such that a t; + asts = 0. Let g = a191 + aago.
Thus

g = (a1 + ) X1 X5 + Xo(a1s1 + az8s).

g = XQK(XD X27 X37 X4)

where ( = (ag + dag) X1 + (151 + @ass). By Lemma A.3.3, g has order > g, hence
g must have order 2. But then ¢ is isotropic of order 2, contrary to Lemma A.3.2.

We have shown that Dy(t1,%2) = 0 and that ¢; and ¢, are linearly independent
over k. Next, consider the following claim.

Claim: There exist (a,b) € k%, not both zero, for which a + b # 0 and aty + bty is
isotropic.

To prove this claim, notice that there are exactly |k| —1 pairs (a, b) € k2, not both
zero, for which a + b’ = 0. On the other hand, since ¢,y are linearly independent
with Dy, (t1,15) = 0, Lemma B.2.23 implies that there are at least |k| pairs (a,b) € k?,
not both zero, for which at; + bt is isotropic. Since |k| > |k|—1, we deduce that there
is a pair (a,b) € k%, not both zero, for which a + bc’ # 0 and at; + bt is isotropic, as
desired.
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Without loss of generality, assume a # 0. Let ¢g] = ag; + bgo. From equation
11.1.3, we have

gll = aleXQ + XQS,(XQ, Xg, X4) + tl(Xg, X4),
g2 = ¢ X1 X + Xoso(Xo, X3, Xy) + to( X3, Xa),

where ' = a + bc, s = as; + bsy, and t' = at; + bty. Thus @’ # 0 and t’ is isotropic.
We rewrite g] as

gll = XQ(CLIXl + S,(XQ,X3,X4)) + t/(X37X4).
g2 = ' X1 X + Xoso(Xo, X3, Xy) + t2( X3, X4).

Since @' # 0, we can perform the invertible linear change of variable given by
X =dX; + ¢ (Xq, X3, X4). Doing so yields

g1 = X1 Xo + (X35, X4).
g2 = (/") (X] — ' (Xa, X3, X4)) X5 + Xos52( Xz, X3, Xy) + 12(X3, Xy).

Thus we have

gll = X{XQ + tl(X37X4)
go = Xos(X1, Xo, X3, Xy) + t2( X3, Xy)

for some linear form s(X7, X, X3, Xy) defined over k. Since t' is isotropic, we can
perform an invertible linear change of variables involving only X3 and X, so that
'(1,0) = 0. Then ¢(X{, X2, X3,0) = X{Xs. Since Di(t',t2) = Di(t1,t2) = 0, we
know t5(1,0) # 0, hence 7 f Q2(e3). If we let Q) = AQ1 + BQo, where A, B € Ok
satisfy A = a and B = b, then we have shown that

Q1 (X1, X5, X3,0,0) = X1 X, mod 7

and
T} Qa(e3).

Thus, Lemma A.1.5 implies that there is a form in Pg(Q’, Q2) that splits off 2 hy-
perbolic planes over K. The same is true for Px(Q1, Q2).

Case 2. Suppose Di(g1, g2) = 0. Note that by Lemma A.3.3, every form in P (g1, go)
has order > 2. We consider two possibilities.

First, suppose every form in Py (g1, g2) has order = 3. Then Lemma B.2.20 implies
that every form in Pg(g1,g2) has order 4 and splits off exactly 1 hyperbolic plane.
We work from equation 11.1.2, which we restate below for convenience.

Ql = Gl(Xl, - ,X4) + 7TX5L1(X1, - ,X4) + 7TCL1X§.
Qg = Gg(Xl, N ,X4) + 7TX5L2(X1, e ,X4) + 7T(12X52.
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By minimization, Lemma A.2.7 implies that at least one of a; or as is a unit. Without
loss of generality, assume as is a unit. There exists ¢ € Ok so that 7 | a; + cas. Let
Q) = Q1 + cQy and G| = G + ¢Gs. Since every form in Pk(g1,g2) has order 4 and
splits off exactly 1 hyperbolic plane, we can perform an invertible linear change of
variables over k so that G} = X1 X, + go(X3, Xy) for some quadratic form g, defined
over k. It follows that

1. Q1(X1,X2,0,0,X5) = X; X5 mod 7.
2. Q2(X1, X5,0,0, X5) = Go(X1, X5,0,0) mod .
3. m | Q(es).
4. m f Qa(es).
Therefore, Lemma A.1.6 implies that there is a form in Px(Q}, Q2) that splits off 2

hyperbolic planes over K. The same is true for the pencil Px(Q1, Q2).

It remains to consider the case where there is a form of order 2 in Pi(g1, g2). In
this case, since |k| = 4 and Dy(g1,¢92) = 0, Lemma B.2.14 implies that there is a form
in P(g1, go) that splits off 2 hyperbolic planes. Then Lemma A.1.2 implies that the
same is true for Pg(Q1,Q2), as desired.

11.1.3 R=5

Without loss of generality, we may assume that order(¢;) = r = r(q1,¢2). Since
3 < r < 4, we may perform an invertible linear change of variables over k£ so that
¢ = q3(X1,...,X4), where g3 is a quadratic form over k of order r € {3,4}. We can
write ¢y in the following way:

¢ = qa(X1,. .., Xy) + Xsl(Xy, ..., X5),
where ¢4 is a quadratic form and / is a linear form, each defined over k.

Suppose ¢a(e5) # 0. Since g3 has order > 3, g3 splits off at least 1 hyperbolic plane
over k. We may perform an invertible linear change of variables over k£ involving the
variables X7, ..., X4 so that ¢; = X1 X5 + qo(X3, X4) for some quadratic form gy over
k. Then Q1(Xi, X5,0,0,X5) = X;Xo mod 7 and 7 f Q2(e5). Thus Lemma A.1.5
implies that Hx(Q1,Q2) = 2, as desired.

So, consider the case where ga(e5) = 0. Since R = 5, we know ¢ # 0. Without
loss of generality, assume the coefficient of X, in ¢ is nonzero. By an invertible linear
change of variables involving X, ..., X4, we may assume ¢ = X,. We have

@ = q3(X1, ..., Xy).
g2 = Q4(X1, . ,X4) + X4X5.
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We can rewrite g3 and ¢4 so that

¢ = q5( X1, Xo, X3) + Xulq (X1, Xo, X3, Xy)
¢ = q6(X1, Xo, X3) + Xylo(X1, Xo, X3, X4) + X4 X5

for some quadratic forms g5, ¢gs and some linear forms /1, {5, all defined over k. Since
q1 has order > 3, we know ¢5 # 0. Thus ¢5 has order > 1. By an invertible linear
change of variables involving X7, X5, X3, we may assume that ¢s(1,0,0) # 0, hence
7 f Q1(e1). There exists ¢ € k such that the coefficient of X? in ¢, = cq; + g2 is zero.
We can write ¢} in the following way:

qy = X1l3(Xo, X3) + q6(Xa, X3) + Xals( X1, ..., Xy) + Xu X5

for some linear forms ¢3, /4 and some quadratic form ¢, all defined over k. Apply the
invertible linear change of variable where Xj is replaced with X5 — 04( X4, ..., X4) to
obtain

q; = Xlgg(X%Xg) + qé(Xg, Xg) + X4X5.

Let Q) = Q1 + Q2, where ¢’ € Ok satisfies ¢ = ¢. Then
QI2(X17 07 07 X47 X5) = X4X5 mod T

and
T f Q1(€1)'

Thus Lemma A.1.5 implies that Hg(Q1,Q2) = 2, as desired. This completes the
proof of Theorem 11.1.1.

11.2 n=6,8

Let Q1,Q2 € K|, ..., z,] be quadratic forms over a p-adic field K. We consider the
following conditions.

Condition A: If {Q1, @2} is a nonsingular pair, n = 5, and Dg(Q1,Q2) = 0, then
Hg(Q1,Q2) = 2.

Condition B: If {Q1, @2} is a nonsingular pair, n = 6, and Dk (@1, Q2) = 0, then
Hp (Q1,Q2) = 2.

Condition C: If {Q1, @2} is a nonsingular pair, n = 8, and D (Q1,Q2) = 1, then
Hp(Q1,Q2) = 3.

Theorem 11.2.1. Let Q1,Q2 € K|xzy,...,2,] be a nonsingular pair of quadratic
forms over a p-adic field K.

1. If Condition A holds, then Condition B holds.
2. If Condition A holds, then Condition C' holds.
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Proof. This theorem is due to David Leep. O]

Theorem 11.1.1 implies that condition A is true provided |k| = 4. Therefore,
Theorem 11.2.1 implies that conditions B and C are also true provided |k| = 4. This
gives us the following two theorems.

Theorem 11.2.2. Let QQ1,Q2 € K[Xy,...,X¢] be a nonsingular pair of forms. If
Dg(Q1,Q2) =0 and |k| = 4, then Hi(Q1,Q2) = 2.

Theorem 11.2.3. Let Q1,Q2 € K[X,...,Xs] be a nonsingular pair of forms. If
Dg(Q1,Q2) =1 and |k| = 4, then Hi(Q1,Q2) = 3.

Copyright© John R. Hall 2024
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Appendix A: Splitting off Hyperbolic Planes, Minimized Pairs, R and r

A.1 Splitting off Hyperbolic Planes

For this section, let K denote a p-adic field with ring of integers Ok and residue field
k. Thus k is a finite field. Let K*# denote the algebraic closure of K. We may also
use K to denote the algebraic closure of K. For 1 <i < n, let e; € K denote the i*"
standard basis vector of K™.

Lemma A.1.1. Let M be a matriz over Ok and I, be the n x n identity matriz. If
M = I, mod «, then det(M) is a unit. In particular, M is invertible.

Proof. We can write M = I,, + A for some n x n matrix A over Og. If we compute
det(M) using co-factor expansion, expanding along the first row implies that det (M)
has the form det(M) = 1 + ma for some a € O. Then

v(det(M)) = min(v(1),v(ma)) = v(1) =0

An element of Ok is a unit if and only if its valuation is zero, hence we have shown
that det(M) is a unit and it follows that M is invertible. O

Lemma A.1.2 is from [7, Lemma 2.2, p. 45], but we have slightly modified the
statement of the Lemma from that of Heath-Brown.

Lemma A.1.2. Let w be a uniformizing element for K and let Q(Xq,...,X,) €
Ok|X] be a quadratic form.

1. 1f
Q(X) = X1X2 + -+ X25_1X25 + Q(X25+1, . ,Xn)
2s
+7 > XiLi(Xy,..., X,) (modn?)

i=1

for some quadratic form CNQ over Ok, then there exists T € GL,(Ok) such that
QITX) = X1 Xy + - + Xoo 1 Xos + Qo(Xasq1, .-, X)

with Qo € Ok | X] satisfying Qo = Q mod 2.
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2. Likewise, if
QX)=X1Xo+ - + Xog 1 Xos + Q' (Xos41, ..., Xp) mod 7,
then there ezists T € GL,(Ok) such that
QIIX) = X1 Xo + -+ + Xog 1 Xos + Qo(Xosi1, -, Xy)

with Qo € Ox[X] satisfying Qo = Q' mod . Thus, if Q splits off at least s
hyperbolic planes over k, then @) splits off at least s hyperbolic planes over O.

Proof. First, we will show that (1) implies (2). Assume
Q = X1X2 + -+ X2571X2s + Q/(X25+1, P ,Xn) HlOd T

for some form @' € Ok[X]. This implies that there is some quadratic form R =
R(X1,...,X,) € Ok|X] such that

Q = X1X2 +e+ X25—1X25 + Q/(XQS-‘,-la s 7Xn) + WR(XD s aXn)

We can write

R=>(XiLi(X1,.... X0)) + Q" (Xags1, -, Xin).

It follows that

Q = X1X2 + -+ X28—1X25 + Q/(XZS-‘rl) .. aXn) + WQ”(XQS-‘rl? oo 7Xn)

2s
+1 ) XiLi(Xy, .., Xo).

=1

Take CNQ = @'+ 7Q". Now @ satisfies the hypothesis (1), in which case there exists
T € GL,(Ok) such that

Q(TX) = X1X2 + -+ X25—1X28 + QO(X25+17 s 7Xn)

with Qy € Ok[X] satisfying Qo = Q mod 72. In particular, Qo = Q mod 7, hence
Qo = @' mod 7. This proves (2).

Next we prove (1). We closely follow Heath-Brown’s proof, but with added steps
and more details. We begin by proving the existence of T" in the lemma. To accom-
plish this, we will show inductively that for every positive integer h there is a linear
transformation 7}, € GL,(Ok) and linear forms Egh) (Xi,...,X,) over Ok such that

QX)) = X1 Xo + -+ + Xos 1 Xog + Qn(Xosi1, -, Xn)

2s
+rh Z Xiﬁgh) (X1,...,X,) mod 7!

=1
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with Q;, = @ mod 72. From this we let T' = limy, T}, and Q, = lim;, Q, in which case
QITX) = X1 Xy + -+ + Xosm1 Xos + Qo(Xasq1, ..., Xn)

as desired.

The hypothesis implies the case h = 1 with 77 = id, Q; = CNQ, and Egl) = L.
Assume there exists T}, € GL,(Ok) such that the above congruence holds. We may
reinterpret the above conguence as an equation:

QUTHX) = XaXo + -+ - + Xos 1 Xos + On(Xosi1, ..., Xo)

2s
+a" Y X LM (X X))+ Y
i=1
where Y is a quadratic form in Xi,...,X,. We can write YV in the form Y =
32 (XiM;) + N, where M; are linear forms in X;,..., X, and N is a quadratic
form in Xo,,1,...,X,. We have

Q(THX) = X1 Xo+ -+ + Xog 1 Xog + Qp + "IN

2s

2s
+7Th2 (Xiﬁl(h)) 4 phtl Z (X, M)
i=1

i=1

Q(ThX) = X1X2 + -+ X2871X23 + Qh + 7Th+1N

2s
R ,
+7Th; (XZ (Cl + 7TM1>> )

Now let Q, = Qp + "' N and Lgh) = £§h) + 7M. Notice that Qp, = O, = Q mod 72
since 2 < h + 1. Now we obtain

s 2s
QT X) = 2 (Xoi 1 X9i) +Qpn + WhZ (XiL,Eh)> . (%)

i=1

Let Uy, be the linear transformation defined by the following change of variable.
Xoiog = )N(%—l = Xoi_1 — Wth?)(Xh LX) (i<,
XQi = )N(Qi = XQi — Wth}iL)_l(Xl, Ce ,Xn) (1 < 1 < 8).

N~0t6 that Lemma A.1.1 implies that U, is an invertible linear transformation.
Let Lz(»h) denote the image of Lgh) under the above change of variables. That is,

Zgh) = Ll(-h)()N(h oo, Xog, Xogits. .. , X,,). Observe that for 1 <i < s,

Loy = L)y + Ly and Ly = Ly + "Ly, (+)
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where L, , and L), are linear forms in the variables Xi,..., X,,. Let Tj,+1 = UpT).
To determine Q(7},,+1X) we apply the change of variables to the right-hand side of

(%):

s 2s
Q(Th+1X) = Z X2¢_1X2i +Qh + 7Th Z XZLEh) . (**)
i=1 =1

(1) (2)
We will deal with the expressions (1) and (2) separately.

(1) We have
Xoi 1 Xy = (XZifl - Wthg))(X thzL) 1)
Therefore
Z Xoi 1 X0 = Z (Xaio1 X)) — 7" (Xzifngf)q + X2z'Lgf)) + A,
i-1 i=1 i=1
where A = 377 | ng) 1L(h). Note that A is a quadratic form in the variables
X1y, X,
(2) We have
2s - . s - N - o~
" ZXiLz(h) - hz (XQLngz‘l)ﬂ + XQiLg?) '
i=1

( KXo =7 LENIE) s + (X = L) EEY)

( X I0 4 X L(f;)) _ 2k 2 ( LWEm L(h)) _
=1

(Xgl 1L(h) 1 + szgf)) — 7T2hB,

where B = Y77 1L21)ng) L+ Lgl) 1ng) Note that B is a quadratic form in the
variables X7, ..., X,.
Now the right-hand side of (x+) becomes

ZXQZ 1X22 — T Z <X27, 1ng) 1 + XQZLgZ)) + 7T2hA + Qh

=1

+rh Z (x%,lzg;zl + X%zgy) ;)
i=1

= ) (Xai1 Xa) + T(A = B) + Qy

=1
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S

#rt  (Xa (B8, — 182) + Xai( 1) - L))
i=1
Using the equations in (*) yields

= Z (XQi,]_XZZ') + 7T2h(A — B) + Qh

=1

+7rh2 (Xoi1 (7" L) + Xos(7" L)) -

i=1

= > (Xpi1 Xo) + (A = B) + Qu + 7C,
i=1
where C' =37 | Xo; 1 Lh; + X9 Lb,;. Note that C' is a quadratic form in the variables
Xi,..., X, We have shown that the right-hand side of (##) is

S

D (X1 Xy) + 7 (A= B+ C) + Qu. (% #)

=1

Note that (A — B + C) is a quadratic form in the variables X, ..., X,. Therefore,
we can write

2s
(A= B+C) = > (XiR) + S(Xage1,- -, Xn),
i=1
where the R; are linear forms in X1, ..., X,, and S is a quadratic form in Xo,.1,..., X,.

Now (x # *) becomes

s 2s
D (X1 Xoi) + 7 (Z (X:R;) + S> + Q.
=1 =1

Let £+ = 7"'R; and Qpyy = 725 + Qu. Then Qpuyy = Qn = @ mod 7% In

conclusion we have shown that

Q(Th1X) = XaXo + -+ Xoo 1 Xog + Qi1 (Xose1, -, Xp)

2s
AN X LMY (X X).
i=1
It follows that Q(T}41X) is congruent to the right-hand of the above equation modulo

7"*2 which completes the induction argument.
O

Lemma A.1.3 is a generalization of an argument from the proof of Lemma 7.2 on
page 58 of [7].
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Lemma A.1.3. Given quadratic forms Sy and Sy in k variables over O, assume k
1s odd and
Sl = X1X2 + o+ Xk;,QXk,1 mod 7w

and

T/ 52(€k)-
Then there exist A € O and a transformation T € GL(Ok) such that

T(ek) = €L

and

(S1 = AS)(TX)=X1Xo+ -+ Xp o X 1.
Moreover, A = Si(ex)(Sa(er)) ™! mod 7.

Proof. We will show that for all positive integers f there exist suitable Ay and T}
such that
(Sl - )\fSQ)(TfX) = X1X2 + -+ XQ{;_IXQt mod 7Tf, (All)

where ¢t = % and Ty(ey) = ex. We prove this by induction on f, but before we do, we
will explain why this condition is enough to prove the lemma. Let Ay and T be cho-
sen for each f > 1 so that A.1.1 holds. Because Ok is compact, the sequence {As} =1
converges to some A\ € O. Because GL;(Ok) is compact, the sequence {T}s>1
converges to some T € GLg(Ok). For this A and T, we see that A.1.1 holds for all
f=1. Since 7/ — 0 as f — o, we get (51 —AS)(TX) = X1 Xp + - -+ X1 Xy, a3
desired.

Now, to prove A.1.1 by induction, first note that the hypothesis of the lemma
gives us the case f = 1, where 77 = id and A\; = 0. Assume now by induction that
A and T are chosen so that A.1.1 holds for f > 1. We will show the corresponding
statement holds for f + 1.

Let

By induction,
S(X)=X1Xo+ -+ + X1 Xop + 7/ Q

for some quadratic form @ = Q(X;,..., X)) over Ok. Note that ) depends on s
and T, and 2t = k — 1. We can write () in the following way
Q=5"(X1,..., Xo) + Xp L(X1, ..., Xo) + cX}.

We know () depends on Ay and 7%, so in particular, ¢ depends on f. Substituting the
above formula for @ into the equation for S(X) gives us

S(X) =XiXo+ -+ + Xop 1 Xoy + 7/ 5"(Xq, ..., Xoy)

A.1.3
+7erkL(X1,...,X2t) +mleX?. ( )
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Define U(X) = S2(T7X). We can express So(T¢X) in the following way:
U(X) = So(TrX) = Up(X1, ..., Xop) + M(Xy, ..., Xoy) X + dXT, (A.1.4)

where Uy is a quadratic form over Ok, M is a linear form over Ok, and d € Og. By
induction T(ey) = €. It follows that

U(ek) = Sg(ek) =d. (A15)

By hypothesis, 7 / d. We now examine S — 7/cd U, which has coefficients in Ok-.
By construction, this form has no term in X?; indeed, observe

S(ex) —mled U (er) = nfe —nfe = 0.

Define V(X7, ..., Xo) = (S —nled *U) (X, ..., X2,0). Looking at A.1.3 and A.1.4,
togehter with V| we can write
(S —7wled P UNX) = V(X1,..., Xo)

_1 (A.1.6)
+ X (L(X1, .., Xoy) —ed™ M (X1, ..., Xo)).

Again, looking at A.1.3 and A.1.4, we can write V as
VX1, Xo) = S(X1,..., Xo, 0) — 7led 'U(Xy, . . ., Xoy, 0)
= X1 Xo + -+ Xg 1 Xy
+ 7l S(Xy, .., X)) — wled Ug(X, ..., Xoy).

Notice V = X1X5 + -+ + X9;_1 X9 mod 7. Thus Lemma A.1.2 implies there is a
transformation Ty € GLo;(Of) such that

V(T(](Xl, e aXQt)) - X1X2 + t + X2t71X2t. (Al?)

We will extend Ty to a transformation 77 € GLi(Ok). Define T" € GL(Ok) so
that
T/(Qfl, ...y Tot, O) = To(iCl, e ,ZEQt)

and
T'(ek) = €.

Looking at equation A.1.6, we can write (S — 7/cd™*U)(T"X) as

(S —led ' UNT'X) = V(Ty(X1, . .., Xop))

+ X (L(Ty( Xy, - ., Xop)) — ed " M(Ty(Xy, ..., Xop)). (A.1.8)

Let
LN(X1,. .., Xo) = L(Ty(X1, ..., X)) — cd ' M(Tp (X1, ..., Xop)).

Substituting this, together our expression for V' in A.1.7, into equation A.1.8 yields

(S —mled ' UNT'X) = Xy Xo 4+ - + Xoy 1 Xop + X/ L' (X1, ..., Xo). (AL19)
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Suppose L' = 212; a; X;. Let v9; = —agi—1 and y91 = —ag; for 1 < 7 < .
Consider the change in variables given by

X, - X, +1/vX,  1<i<2t
Notice what happens when we apply this change in variables to the monomial X5; 1 X5;:

Xoim1 X9 — (Xoio1 + 7Tf’Y2i—1Xk)(X2i + 7Tf72iXk)
= Xo; 11Xy + 7Tf’72iX2i71Xk + 7Tf”Y2z>1X2¢Xk + 7T2f'722'7172iX]§-
= Xoj_1 X9 — 7Tfa2i—1X2i—1Xk - 7TfCL2iX2iXk + 7T2f72z‘—172iX13.

Observe that mfag;_1X9_1X) and 77ay; X2 X, are terms in X7/ L'. Therefore, ap-
plying this change in variables to A.1.9 will make X7/ L(X1, ..., Xy) vanish, leaving
us with a form of the shape

(S —mled™ (T'X) = X1 Xo + - + Xoy_1 Xop + 7 X7 (A.1.10)

for some ¢ € Ok. Using equations A.1.2 and A.1.4, we can write the left-hand side
of equation A.1.10 as

(S —wled ' UNT'X) = S(T'X) — nled 'U(T'X).
= (Sl — )\fSQ)(TfT/X) — chdilsg(TleX).
= (81 — (\f + 7 cd™H)S) (T4 T'X).

Since Ty(ex) = T'(ex) = ek, we see (TFT")(ex) = ey Let
Tro1 =T¢T" and A = Ap + mled™.

Since f = 1, we have 2f > f. Substituting the above into the left-hand side of
equation A.1.10 yields

(Sl - )\f+1S2)(Tf+1X) = X1X2 + -+ XQt_lXQt + WQfC/Xlz.
= X1X2 + -+ X2t71X2t mod 7Tf+1.

This completes the induction argument. To finish, we will show that
A= Si(er)(Sa(er)) ! mod 72
Since Apy1 = A+ wled™, we get Ay 1 = A\ mod 7/, Therefore,
A =A; 1 mod /L

Aj 1=\ omod /2

)\3 = )\2 mod 7T2.
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Thus, for all f = 2, A\ = Ay mod 7. Since A is the limit of the Cauchy sequence
{\s}r=1, we obtain A = Ay mod 72. We will show that Ay = S;(ex)(S2(ex)) .

We know Ay = \; + med™t, where ¢ is as in equation A.1.3 with f = 1, and from
equation A.1.5, we know d = Sy(ex). From equation A.1.3, we see that mc is the
coefficient of X? in S(X); that is, S(ex) = wc. From equation A.1.2, we see that
S(X) = (S1 — M S2)(T1X). From the beginning of the proof, we established that
A1 = 0 and 77 = id. Therefore, S(X) = S1(X), and so ¢ = S(e;) = Si(er). We
conclude that

>\2 = /\1 + 7TCd71 = Sl(ek)(Sg(ek))fl.

]

Lemma A.1.4. Let n = 5 be odd and Q1,Qs € Ok Xy, ..., X,] be quadratic forms.
Suppose that

1. Q1(X1,..., X0 2,0,0) = X5 Xo + -+ - + X, 4X,, 3 mod 7, and
2. )( Q2(en72)'

Then there exists A € Ok such that (Q1 — AQ2)(X) vanishes on a subspace over
K of dimension "5*. Moreover, A = Q1(ey-2)(Q2(€n—2)) ™" mod 7.

Proof. Let Si(X1,...,Xn2) = Q:(X1,...,X,,2,0,0). Then S; and S, satisfy the
hypothesis of Lemma A.1.3 with & = n — 2. According to the lemma, there exist
A€ Ok and T" € GL,, 2(Of) such that

(Sl - )\SQ)(T/(Xl, N ,Xn_g)) = X1X2 + st + Xn—4Xn—3;
with T'(e,_2) = €,_2, and A = Si(e,_2)(S2(e,—2)) ' mod w2, Thus
A= Q1(en—2)(Qa(en—2))! mod 7°.

Extend 7" to an invertible matrix matrix 7' € GL,,(Of) in the following way: for
1<i<n—2let T(e;) =T"(e;), and for n — 1 < j < n, let T(e;) = e;. We have

(Q1 — AQ2)(X) = (51 — AS9)(Xq, ..., Xy 2) + Xy 1 L1(X) + X, La(X),
where Ly, Ly are linear forms over Ok with X = (X7,...,X,,). It follows that
(Q1 —AQ)(TX) = X1 Xo+ -+ X,y 4 X, 3+ X, 1 LI(X) + X, L5(X),

where L (X) = L1 (TX) and L4(X) = Lo(TX). Notice that (Q1 —AQ2)(T'X) vanishes
whenever the following "T“ variables all equal zero:
Xl :Xg = "'Xn74 :anl‘i‘Xn :O

Therefore, (Q1—AQ2)(TX) vanishes on a subspace over K of dimension n—2#! = 21,
Since T is invertible, the same is true for (Q; — AQ2)(X). O
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Lemma A.1.5. Let n = 5 be odd and Q1,Q € Ok|[X1,...,X,] be a nonsingular
pair of quadratic forms. Suppose that

1. Q1(X1,..., X, 2,0,0) = X5 Xo + -+ - + X;, 4 X, 3 mod 7, and
2. * Q2(€n—2)'
Then there ezists a form in Pr(Q1,Q2) that splits off "T_l hyperbolic planes over K.

Proof. By Lemma A.1.4, there exists a form @ € Pg(Q1,Q2) that vanishes on a

subspace over K of dimension ”T’l Since {Q1, @2} is nonsingular, Theorem 2.1.27
implies that every form in Pk (Q1, Q2) either has rank n — 1 or n over K. If @) has
rank n, then Theorem B.1.1 implies that ) splits off ”T_l hyperbolic planes over K.
If @ has rank n — 1, then after an invertible linear change of variables, we can assume
Q=Q (X1,...,X, 1), where @' is a quadratic form over K of rank n — 1. Since @

vanishes on a subspace over K of dimension ”T’l, the form ()’ vanishes on a subspace

over K of dimension "T_?’ By applying Lemma 2.3.12 with m = "T_?’, we conclude
that there is a form in Pg(Q1, Q2) that splits off m + 1 = ”T_l hyperbolic planes over
K. [

For any matrices U € GLy(K) and T € GL,(K) we define actions on pairs of
quadratic forms @1, Q2 by setting

(QhQQ)U = (U11Q1 + U12Q2, U21 Q1 + UQo)

and

(Q1(X), Qa(X))r = (Q1(TX), Q2(TX)).

This notation is also introduced in section A.2. In particular, Lemma A.2.1 implies
that the K-pencil generated by (@1, @Q2) contains a form which splits off j hyperbolic
planes if and only if the same is true for the K-pencil generated by (Q1,Q2)%. We
will use this fact in the next few lemmas. The reader can verify that there is no
circular logic being used.

Lemma A.1.6. Let n = 5 be odd and Q1,Qs € Ok[X1,...,X,] be a nonsingular
pair of quadratic forms. Suppose that

1. Q1(X1,. .., X, 2,0,0) = X5 Xy + - + X, 4X,, 3 mod ,

2. Qa(X1, ..., X 2,0,0) = Q4(X4,..., X_3) mod 7 for some quadratic form @,
3. 7| Qi(en_2), and

4. 7} Qafen 2)-

Then there exists a form in P (Q1,Qs) that splits off ”T_l hyperbolic planes.
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Proof. We can write )7 and ()5 in the following way:
Ql = Ql(Xla cee >Xn727 07 0) + anlsl(X) + ani(X)a

Q2 = Q2(X1,..., X 2,0,0) + X, 15:(X) + X,,55(X),
where X = (X1,...,X,), and S;, S are linear forms over Of. Conditions (1) and (2)
imply that
Ql(Xla oo ,anz, O, 0) == X1X2 + te + Xn74Xn73
+ 7TH1(X1, Ce ,Xn_g),

Qa(X1,. .., X0 2,0,0) = Q5(X1, ..., X,_3)
+ WHQ(Xl, e ,ang),

(A.1.11)

for some quadratic forms Hy, Hy over Og. Note Qi(e,_2) = mHi(e,_2). Condition
(3) then implies that 7 | Hi(e, 2), so we write Hy(e, 2) = mc for some ¢ € Ok.
Likewise, we have Qa(e, o) = mHs(e, 2), so condition (4) implies that Hy(e, o) = d
for some unit d. We can write H; and H, in the following way:

Hy = H{(X1,..., Xn_3) + Xp oL(X1,..., Xp_3) + mcX2 ,,

A.1.12
Hy = H) (X, ..., X 3) + X, oL/ (Xy,..., X, 3) +dX2 ,, ( )

where Hi, H), are quadratic forms over Ok and L, L’ are linear forms over Ox. We
now have the following formulas for )1 and @s.

Q1=X1Xo+ + X, 4 X, s+ 7H(X1,..., X, 3)
+ 71X o L(X1, .., X 3) + X2,
+ X,_151(X) + X,.80(X).
Q2 = QY(X1,. .., Xn_s) + THNX1, ..., X0 s)
+ 71X, oL (X1,..., Xy 3) + mdX2
+ X,155(X) + X,,55(X).

(A.1.13)

Set
T = diag(w, 7, ..., 7, 1,7 7°),

and
U = diag(rm 2,7 ).

Let (‘/1, ‘/2) = (Ql,Qg)%. Then

Vi=XiXo+ -+ X4 X3
+ X, oL(X1,..., X, 3) +cX2 , mod 7. (A.1.14)
Vo =dX?_, mod .

For each 1 <7 < n — 3, there exist ¢; € Ok so that a change of variable of the type
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gives us
V=X X+ -+ X, X, s +dX2 ,mod T

for some ¢ € Ok. This change of variable leaves Vo = dX? , mod 7. Let t = —d~¢
and V] = Vj +tV,. Then

V1' = X{Xé 4+ -+ X;L74X,'L73 mod 7.

Now V/, V5 satisfy the hypothesis of Lemma A.1.5, in which case Lemma A.1.5 implies

that there exists a form in Pg(V],Vs) that splits off "T’l hyperbolic planes over

K. Lemma A.2.1 implies that since Pg(V{, V) contains a form which splits off 25+
hyperbolic planes, the same is true for Px(Q1, Q2).
O]

A.2 Minimized Pairs

We will describe the v-adic minimization process due to Birch, Lewis, and Murphy [4].

Let K be a p-adic field, Ok the ring of integers, and k the residue field. Let w
be a uniformizing element for K. Let v : K — Z u {oo0} be the valuation map, with
v(m) = 1.

We define
F(z,y;Q1,Q2) = F(z,y) = det(2Q1 + yQ2).

We assume the variety ()1 = Q2 = 0 is nonsingular, so that Lemma 2.1.27 implies that
F(z,y) does not vanish identically and has no repeated factors. Consider disc(F(x,y))
where disc(F(x,y)) is the discriminant of F'(z,y), as defined in definition D.1.1. From
definition D.2.2, we have

disc(F) = A(Q1, Q2),

where A(Q1, @Q2) is as in definition D.2.1.

If the forms )1 and ()5 are defined over O, then Proposition D.2.4 implies that
A(Q1,Q9) € Ok. For any matrices U € GLy(K) and T' € GL,(K') we define actions
on pairs of quadratic forms @1, Q2 by setting

(QhQQ)U = (U11Q1 + U12Q2, U1 Q1 + UsQo)
and
(Q1(X), Q2(X))r = (Q1(TX), Q2T X)).
Given a quadratic form @ € K[Xq,..., X,], we define
VQ = (Qx,,Qx,, -, Qx,),

where Q;, is the partial derivative of @) with respect to X;. Thus Qx, € K[X1,..., X,]
is a linear form. For u € K", we define

VQ(u) = (Qx, (1), Qx,(u), . .., Qx, (u)).
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Thus, by Definition 2.1.25, a pair Q1, Qs € K[Xj, ..., X, ] is nonsingular if and only
if for each nonzero x € (K®#)" such that Q(z) = Q2(z) = 0, the matrix

VQs(7) ) @ - @

0X1 0Xo

[vcm)]:[%(x) D7) oo 2(r)

has rank 2.

Lemma A.2.1. Given two quadratic forms Qq,Q2 € F[Xy,...,X,] defined over a
field F', we have the following:

(1) The variety Q1 = Q2 = 0 is nonsingular if and only if the same is true for the

forms (Q1, @2)7.

(2) Q1, Q2 both vanish on a subspace over F' of dimension i if and only if the same

is true for (Q1, Q2)%.

(3) The pencil defined over F by Q1, Qo contains a form which splits off t hyperbolic

planes if and only if the same is true for the forms (Q1, Q2)%.

Proof. (1) We prove (1) first. We handle the actions of U and T' separately. We

begin with (Q1,@2)Y. Let Q|(X) = UpQ1(X) + UnQ2(X) and Q4H(X) =
Ungl(X) + UQQQQ(X). Observe that

[QQ(X)] _ lUan(X) + U12Q2(X)] _ [Un Ulz] [Ql(X)].

QX)) [U21Q1(X) + UnQa(X) Un Ul |Q2X)

Since U is invertible, we see that Q}(z) = 0 if and only if @;(x) = 0 for i = 1,2.
Given such a point x, observe that

[VQS(Z‘)] | UnvQi(z) + U2V Qa(x)

vQL(x)| [Ugval(x) + UQQVQQ(x)]

[ v e

!
Since U is invertible, we see that [Zgég;] has rank 2 if and only if [gg; Eg]

has rank 2. We conclude that )y = @2 = 0 is nonsingular if and only if the
same is true for (Qq,Q2)Y.

As for (Q1,Q2)7 we note that if x is a singular common zero of @;(X) and
Q2(X), then T~'z is a singular common zero of Q(TX) and Q»(TX). We
deduce that (@1, Q2) is nonsingular if and only if the same is true for (Q1, Q2)7.

Now we prove (2). Let S € F™ be an i-dimensional space for which @), Q2 van-
ish on. Then (Q1,Q2)V also vanishes on S. Conversely, assume that (Q1, Q2)Y
vanishes on an i-dimensional space S’ € k™. Let x € S’. Since x is a common
zero of (Q1,Q2)Y, we have that



Since U is invertible, this implies Q(z) = Qa(z) = 0, hence the pair (Q1, Q2)
vanishes on S” too. We have shown that (@1, Q)2) vanishes on an i-dimensional
space if and only if the same is true for (Q, Q2)Y.

On the other hand, since T is invertible, T" maps the space S isomorphically
onto another space of of the same dimension. Therefore, (Q1, Q)2) vanish on an
i-dimensional space if and only if the same is true for (Q1, Q2)r.

(3) Finally, we prove (3). Since T is invertible, every form in (Q1, Q)2) is equivalent
to some form in (@1, Q2)r, and vice versa. Thus the pencil (Q1,Qs) contains
a form which splits off ¢ hyperbolic planes if and only if the same is true for
(Q1,Q2)r. To prove the analogous statement for (Q;,Q2)Y, it suffices to show
that the pencil (Q1,Q2) and (Q1,Q2)Y are the same.
To that end, let Q] = Up1Q1 + UnQ2 and Q) = Uy Q1 + Up@2. We will
show (Q1,Q2) = (Q7,Q%). Note (@), Q%)) € (Q1,Q2). On the other hand, if

a®y + bQs € (Q1,Q2), then we want values for x and y such that
a@ + bQs = Q' + yQs.
= 2(U1Q1 + U12Q2) + y(Un Q1 + Us2Qs). (% )
= (zUn1 + yUa1)Q1 + (zU12 + yUsa) Q2.

Since U is invertible, the matrix equation

)=l ][
) Us Ux| |y b
is solvable, in which case we find values for x and y satisfying (x = *).
O

Definition A.2.2. Two quadratic forms Q1,Q2 € Ok|X1,...,X,]| are said to be
minimized if there are no matrices U € GLy(K) and T € GL,(K) such that (Q1,Q2)Y
15 integral and

|A(Q, Q2)¥|v > [A(Q1, Q2)lv (1)

where | - |, is the v-adic absolute value: |a|, = c@ where 0 < ¢ < 1. Thus the above

inequality states that
CU(A(Q17Q2)¥) ~ CU(A(Q17Q2))

which in turn is true if and only if

v(A(Q1,Q2)7) < v(A(Q1, Q2)). (2)

Our next lemma shows that there always exist matrices U and T for which
(Q1,Q5)¥ is minimized.

Lemma A.2.3. Given a nonsingular pair of quadratic forms Q1, Qs € Ok [ X1, ..., X,],
there exist matrices U and T for which (Q1,Q2)¥ is minimized.
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Proof. 1f Q1, Q) is already minimized, then take U = idyyo and T' = id,,«,,. Otherwise,
if Q1,Q, is not minimized, then there exist matrices U’ and T" such that (Q1, Q)%
is integral and U’ and 1" satisty (2):

v(A(Q, Q2)%/) < v(A(Q1,Q2)).

If (Q1,Q2)Ys is minimized, then we are done. Otherwise, there exists U” and T” such
that the action of U” and T" on (Q1, Q2)% yields a pair of integral forms and

V(A(Q1, Q2)TPr) < v(A(Q1, Q2)) < v(A(Q1, Q2)). (A.2.1)

Again, if (Ql,Qg)%'%',' is minimized, then we’re done. Otherwise, we may continue
this process. Ultimately, as we continue to repeat this process, we obtain pairs (U;, T;)
such that A(Qq, Qg)% is integral and

< U(A(Q17Q2)%) < U(A(QhQQ)[T]:ll) < <v(A(Q1,Q2)).
By Proposition D.2.4, each of the terms A(Q, QQ)%" belong in O, in which case

U(A(Qb Q2)%) € Z;o.

Further, we are assuming that ()1,Q> is a nonsingular pair, and this implies that
A(Q1,Q2) # 0. Thus v(A(Q,Q2)) is a positive integer. By Lemma A.2.1, the
pairs (Q1, Qz)% are also nonsginular, hence v(A(Q1, Qz)% are also positive integers.
In conclusion, we have shown that A.2.1 above represents a decreasing sequence of
positive integers. Thus, the sequence

{0(A(Q1, Q)7 i1

eventually terminates, leaving us with a pair of matrices U and T for which (Q1, Q2)%
is minimized. 0

Lemma A.2.4. Suppose Q1,Qs € Ok|Xy,...,X,] are quadratic forms. There exist
matrices U and T for which (Q1, Q2)% is minimized, and so that

1. (Q1, Qo) is nonsingular if and only if (Q1,Q2)Y is nonsingular.

2. (Q1,Q2) vanishes on an i-dimensional space over K if and only the same is

true for (Q1, Q2)g~

3. Pr(Q1,Q2) contains a form which splits off t hyperbolic planes if and only if
the same is true for the pencil generated by (Q1, Q)Y

Proof. By Lemma A.2.3, there exist matrices U and T for which (Q1, Q9)¥ is mini-
mized. By Lemma A.2.1, the pair (Q1, Q)2) is nonsingular, vanishes on an i-dimensional
space, and Pk (@1, Q2) contains a form which splits off ¢ hyperbolic planes if and only
if the same is true for (Q1, Q2)%. O
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Lemma A.2.5. If the pair Q1, Qs € Ok[X1, ..., X,] is minimized, then there are no
matrices U € GLy(K) and T € GL,(K) for which (Q1,Q9)Y are integral and such
that

dv(det(T)) + nv(det(U)) < 0. (A.2.2)

Proof. Corollary D.2.3 gives
A((Q1, Q2)7) = (det(U))" ™ V(det(T))" " VA(Q1, Q2)-

Using this formula, we see from inequality (2) of definition A.2.2 that an equivalent
condition for a pair of integral forms ()1, Qs to be minimized is that there are no
matrices U € GLy(K) and T € GL,(K) for which (Q1, Q)Y are integral and such
that

v(A(Q1, Q2)7) < v(A(Q1, @2)).

(det(U)" D) + o(det(T)* ™) + v(A(Q1, Q1)) < v(A(Q1, Q2))-
v(det (U)"™ V) + v(det(T)*™ V) < 0.
n(n — Dv(det(U)) + 4(n — 1)v(det(T')) < 0.
nv(det(U)) + 4v(det(T) < 0.

Lemma A.2.6. If
|det(U) 3| det(T)],, = 1

or equivalently
nv(det U) + 4v(det T) = 0

and Q1, Q2 is a pair of minimized forms, then (Q, Qg)% will also be minimized pro-
vided (Q1, Q)Y is integral.

Proof. Suppose (Q1,Q2)Y is not minimized. Then there exists U’,T" such that
(Q1,Q2)%Y is integral and

Idet(U")[7|det(T")[* > 1.

This gives
|det(U'U)["|det(T"T)|: = |det(U")|?|det(T")|} > 1

since |det(U)["|det(T)|> = 1. This is contrary to our assumption that (Q1,Qs) is
minimized. [l

Lemma A.2.7 is a simple generalization of [7, Lemma 4.3, p.54].

Lemma A.2.7. Suppose that Q1,Q2, are quadratic forms over O in n variables and
that R(q1,q2) = R <n—1. Assume Q1, Qo take the shape

R
QX1 X)) = Gi(X1, ., Xp) + 7 Y XL (X, ., X,)

j=1

(A.2.3)
+7THZ'(XR+1, . ,Xn)
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for i = 1,2 with appropriate quadratic forms G;, H; and linear forms LY all defined

Vi 7
over Og. If Hy and Hy have a common nontrivial zero over k, then the pair QQq, Q2
s not minimized.

Proof. We can make a change of variables among Xg.1,..., X, so that
Hy(0,...,0,1) = H5(0,...,0,1) = 0.

One then sets T = diag(m,...,m, 1), where the multiplicity of 7 is n — 1, and U =
diag(7=2,772). Then (Q1, Q)Y are integral and we have

nv(det(U)) + 4v(det(T)) = —4n +4(n —1) = -4 <0

so that inequality A.2.2 is satisfied, hence )1, Q)2 is not a minimized pair. n

A.3 Bounds on R and r

The definitions of R and r that we give here are the same as what was given in section
11.1. Given quadratic forms Q;, Qs € Ok[X1,...,X,], fori = 1,2, let ¢; = Q;. We
define R = R(qi,q2) to be the least integer m such that there is a linear transfor-
mation 7" € GL, (k) for which ¢;(TX) and ¢2(TX) are both functions of Xi,..., X,,
alone, where X = (Xj,...,X,). Therefore, there is an invertible linear change of
variables over k so that ¢; = ¢/(Xy,...,Xg) for ¢ = 1,2, where ¢} denote quadratic
forms over k. Consequently, every form in Pg(qi, ¢2) can be expressed using only the
variables X1,..., Xg.

We define r = r(qi, ¢2) to be the maximum order a form in P = Pi(q1, ¢2); that
is,
r = 7(q1, q2) = max{order(q) | ¢ € P}.

It follows that r < R < n.

This is a simple generalization of [7, Lemma 4.2, p. 54].

Lemma A.3.1. Suppose Q1, Q> are quadratic forms over O in n variables. Assume
that ¢, and qs both vanish on a subspace in k™ of dimension d. Assume further that
n < 2d. Then @1, Qs is not minimized.

Proof. By an invertible linear change of variables over k, we can assume ¢; and ¢
both vanish on span,(es, ..., eq). Therefore

d
@ =D Xili(Xar, -, Xn) + s(Xarn, -, Xan)

i=1

d
q2 = ZXi@(XdHa s 7Xn) + q4(Xd+l7 S 7Xn)

i=1
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for some linear forms ¢;, ¢}, 1 < i < d, and some quadratic forms gs, ¢4, all defined
over k. It follows that

d
Q1= ZXiLi(XdH, o X))+ Qs( Xy, ..., Xy) mod

i=1

d
QQ = Z X’iL;(XdJrh s 7Xn) + Q4(Xd+17 s 7Xn) mod 7
i=1
for some linear forms L;, L}, 1 < i < d, and some quadratic forms @3, Q4, all defined
over Q. Let
T = diag(1,...,1,7,...,m)

where the first d entries are 1’s and the last n — d entries are w’s. Let U =
diag(7=!, 7=1). Then (Qy,Q2)¥ is an integral pair. Observe that

nv(det(U)) + 4v(det(T))
= nu(n?) + 4o (7" 7).

= —2n+4(n —d).
=2n —4d
We see that 2n — 4d < 0 since n < 2d. We conclude from Lemma A.2.5 that ()1, Q>
is not a minimized pair. O

Lemma A.3.2. Let Q1,Qs € Ok[ X1, ..., X,] be a minimized pair of quadratic forms
with n = 5. If there is a form in Pr(q1,q2) of order 2, then it must be anisotropic of
order 2.

Proof. Suppose there is a form in Py(q1, ¢2) that is isotropic of order 2. By changing
the generators of the pencil Pi(q1,q2), we can assume ¢; is isotropic of order 2.
Through a change of variable, we can assume ¢; = X;X5. Let T = diag(w,1,...,1)
and U = diag(7~*,1). Then (Q1, Q2)¥ is an integral pair, but

4v(det(T)) + nv(det(U)) =4 —n < 0.
According to Lemma A.2.5, this contradicts the minimization of )1 and @s. n

Lemma A.3.3. Let Q1 and Q2 be a minimized pair of quadratic forms in n variables
defined over Ok. Then every form in Pr(qi,q2) has order = %, hence r(qi,q2) = §.

Proof. Suppose there is a form in Py(q1, q2) of order j. By changing the generators
of Pr(q1,q2), we can assume order(q;) = j. Through a change of variable, we get
(X1, X)) = ¢1(Xq,. .., X;) for some quadratic form ¢’. Let

T = diag(m,...,m 1,...,1),
where the first j diagonal entries are 7’s, and the last n — j diagonal entries are ones.
Let U = diag(7 !, 1). Then (Q1, Q)Y is an integral pair. By minimization, Lemma
A.2.5 implies that

4v(det(T)) + nv(det(U)) = 0.
That is, 4j —n = 0, hence j = 7. O]
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The next lemma shows the role that Dy (Q1,@2) plays in finding a lower bound
on R.

Lemma A.3.4. Suppose Q1 and Qs are a minimized pair over O in n variables
and @1, Q2 both vanish on a subspace of dimension d over K. Then

5+d if nis even
”TH—Fd if n is odd.

R(qi,q2) = {

Proof. For v = 1,2, we can write (); in the following way:

Qi = Gi(le---aXR)
R
: A3.1
+13 (GLO K, X)) + T (X, X, A3
j=1

where G;, H; are integral quadratic forms and the ng‘) are integral linear forms. For

i=1,2,let g; = G;. Note ¢;(Xy,...,X,) = g:(X1,...,Xg). By hypothesis, @); and
()2 vanish on a subspace S © K" of dimension d. Let vy,...,v; be a K-basis for S.
By Lemma C.0.1, we can assume vq,...,vg have coordinates in Ok and are linearly
independent modulo 7.

For each 1 < i < d, let v} € (Ok)® denote the projection of v; onto the first R
coordinates. Assume that v{,..., v, are linearly dependent modulo 7. Then there
exist ay,...,aq € Ok, not all divisible by 7, such that the first R coordinates of w =
a1v1+ - - - +aqug are divisible by 7. Since v, ..., vg4 are linearly independent modulo 7,
it follows that the remaining n — R coordinates of w can not all be divisible by 7; that
is, if w = (wy,...,w,), then (wgy1,...,w,) # 0mod 7. Since Q;(wy,...,w,) = 0,
we get that 7 divides H;(wgy1, ..., wy,). Since (wgy1,...,w,) # 0 mod 7, we deduce
that h; and hy have a common nontrivial zero over k. According to Lemma A.2.7,
this is contrary to @); and ()2 being minimized.

Therefore, v1, ..., v} are linearly independent modulo 7.
Let S" = spany, (v],...,v}). Since Q1(5) = Q2(S) = 0, we see that 7 | G1(S’) and
7w | Go(S'). Let ?_: spany (v],...,v,). Then S’ is a subspace of k7 of dimension

d, and ¢ (?)_: g2(S") = 0. Through an invertible change of variable over k, we can
assume that S’ = span,(ey,...,eq). Thus g; and go have the shape

d
g; = Z (ijgZ)(XdJrl’ . ,XR)) + wi(XdJrlv s 7XR)7
=1

()

where the m;” are linear forms over k and the w; are quadratic forms over k. This
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implies that )1 and ()2 have the following shape

d
Qi = Z <Xij(Z)(Xd+1,. .. ,XR)) + Wi(XdJrh ce 7XR)

j=1
+7TUZ'(X1,...,XR) (A32)

R
#73 (GLPY (X, X)) + TH (X, X,
j=1

where the M§i) are linear forms over Ok and the U;, W; are quadratic forms over Ok.
Let T be the n x n diagonal matrix defined by

T = diag(1,1,..., 1, m,m,...,m1,...,1),
where the first d entries are ones, and there are (R —d) 7’s. Thus v(det(T)) = R—d.

Let U = diag(7~!,771). Then the pair (Q,Q2)¥ is integral. Since (Q1,Q-) is a
minimized pair, Lemma A.2.5 implies that

4v(det(T)) + nv(det(U)) = 0.
AR—d)—2n>0.
n
—d=—.
h 2
n
> — +d.
R 5 +

It follows that

. 5+d if niseven
2 d if nis odd.
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Appendix B: Quadratic Form Theory

Let k be any field and let V' be a finite dimensional vector space over k. For a
quadratic map f : V — k and a subspace W < V', we define

Wt ={weV|Bs(w,V) =0}
That is, W+ consists of the all the vectors w € V such that Bf(w,v) =0 for allv e V.

Lemma B.0.1. Let q : V — k be a quadratic map, and let W < V' be any subspace.
If B, is nondegenerate, then dim(W+) = dim(V') — dim(W).

Proof. Let V* = Homy(V, k), and W* = Homg(W, k). Thus V* is the dual space of
V and W* is the dual space of W. Consider the map ¢ : V' — V* defined by

() (V') = By(v,v)  v,v' e V.

Since B, is bilinear over k, the map ¢ is k-linear. We will show ¢ is injective. Sup-
pose v € ker(p). Let v' € V. Then B,(v',v) = 0, hence v € rad(B,). Since B, is
nondegenerate, rad(B,) = 0, hence v = 0 and so ¢ is injective.

By rank-nullity,
dim(V) = dim(im(y)) + dim(ker(¢)).

Since ¢ is injective, dim(im(y)) = dim(V). Since dim(V) = dim(V*), we obtain
dim(im(p)) = dim(V*). Thus im(¢) = V*, hence ¢ is surjective. Therefore ¢ is an
isomorphism.

For any linear map f € V*, let f|ly denote the restriction of f to W, hence
flw € W*. The map from V* to W* given by m : f — f|w is surjective, which we
prove now. Let g € W*. For any basis 5, of W, extend to a basis § for V: § = ;U fs.

Let f € V* be defined by letting f(v) = g(v) for all v € §; and f(v) = 0 for all v € (5.
Then f|w = g , hence V* 5 W* is surjective.

Our results give us the following exact sequence
0-V5S5V*SLW* 0.
Applying rank-nullity to m o ¢ gives

dim(V) = dim(im(7 o ¢)) + dim(ker(w o ¢)).
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n = dim(W*) + dim(ker(m o ¢)).
n — dim(W) = dim(ker(m o ¢)).

We will be done once we show that dim(ker(w o ¢)) = dim(W+). The map 7o ¢ is
given by
(o @)(v) = 7(p(v)) = (v)|w-
If o(v)|w is the zero map, then Bg(v,w) = 0 for all w € W. Thus v € W+, We
conclude that ker(r o ¢) = W+, in which case dim(ker(r o ¢)) = dim(W).
[l

Lemma B.0.2. Let q : V — k be a quadratic map. If W < V is a subspace where
every nonzero element of W is a nonsingular zero of q, then dim(W+) = n— dim(W).

Proof. Since every nonzero element of W is a nonsingular zero of ¢, we have W n
rad(B,) = 0. Since V is a finite dimensional vector space, there exists a sub-
space Vo < V such that Vj is maximal with respect to containing W and such
that Vo nrad(B,) = 0. We will show that V = Vj @ rad(B,). We already know
Vo nrad(B,) = 0, so it remains show that V = V{ + rad(B,). Let v € V. If
v e Vp + rad(B,), we are done. Otherwise, v ¢ Vj + rad(B,). Then consider Vj @ kv.
We will show that (Vo @ kv) nrad(B,) = 0.

To that end, let w € (Vo @ kv) nrad(B,). Then w € rad(B,), and w = vy + Av for
some vy € Vp and some A € k. Thus

v = —vy +w € Vp + rad(B,).

Since v ¢ Vp + rad(B,), we must have A = 0. Then w = vy, and w € rad(B,), so
v € rad(B,). But V5 nrad(B,) = 0, hence vy = 0. This proves that w = 0 and so
(Vo ® kv) nrad(B,) = 0.

However, having (Vo @ kv) nrad(B,) = 0 is contrary to the maximality of V4. We
therefore conclude that V' = V; @ rad(B,). This implies that By, is nondegenerate,
which we prove now. Suppose y € rad(Bq‘VO). Then y € Vp, and By(y,Vp) = 0.
For any z € V, we can write z = zy + 21, where 25 € V; and z; € rad(B,). Thus
By(y, 2) = By(y, 20) + By(y,z1) = 04+ 0 = 0, which implies y € rad(B,). Thus y = 0
since Vp nrad(B,) = 0. This proves that By, is nondegenerate.

Because B
that

alv, 18 nondegenerate, and W < V) is a subspace, Lemma B.0.1 implies

dim(Wy;) = dim(Vp) — dim(W), (B.0.1)

where Wy = {x € Vj | By(x, W) = 0}. Since V = V @ rad(B,), every element of V
can be written as vy + vy, where vy € Vj and v, € rad(B,). Consider the projection
map 7 : W+ — V}, given by

(v + v1) = v vy + v € WH.
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We will compute the kernal and image of 7. It is clear that ker(w) = rad(B,) (note
that rad(B,) € W+). As for the image of 7, observe that if y = yo + y; € W+, with
Yo € Vp and y; € rad(B,), then m(y) = yo. We claim y, € W‘}O Let z € W and observe
that

Bq(yo,Z) = Bq(y - yhz) = Bq(yvz) - Bq(ylaz) =0

because y € W+ and y; € rad(B,). Thus yo € Wy, which shows that im(r) = Wyr.
For the reverse inclusion, observe that W&O c Vp and W‘}O < W+. These two inclu-
sions imply that m(Wy;) = Wy, hence Wyt < im(m). Thus im(7) = Wy .

We have shown that the kernal of 7 is rad(B,), and the image of 7 is Wy;. By
rank-nullity,
dim(W) = dim(Wy;) + dim(rad(B,)).

dim(Wy,)* = dim(W+) — dim(rad(B,)).
Substituting this formula into equation B.0.1 gives
dim(W+) — dim(rad(B,)) = dim(Vp) — dim(W).

dim(W+) = dim(Vp) + dim(rad(B,)) — dim(W).
dim(W+) = n — dim(W).

B.1 Orthogonal Decomposition and Hyperbolic Planes

Theorem B.1.1. Let g : V — k be a quadratic map with dim(V') = n. The following
statements are true.

1. If q vanishes on an m-dimensional subspace U of V', where every nonzero ele-
ment of U is a nonsingular zero of q, then q splits off at least dim(U) hyperbolic
planes.

2. If order(q) = n and W is any subspace of V' where q(W) = 0, then q splits off
at least dim(W') hyperbolic planes.

Proof. Assume that ¢ has order n and ¢(W) = 0 for some subspace W of V. Defi-
nition 2.1.13 implies that ¢ is nondegenerate. Therefore, Lemma 2.1.18 implies that

every nonzero element of W is a nonsingular zero of ¢q. For this reason, we see that
(1) implies (2).

To prove (1), we induct on m. The result is trivial for m = 0. Let m > 1, and
assume by induction that the result is true when dim(U) < m.

Let U be an m-dimensional subspace of V' where every nonzero element of U is a

nonsingular zero of ¢. Write U = U’ @ kv, where U’ is an (m — 1)-dimensional space.
Thus U’ ¢ U. We will show that Ut < (U’)*. By inclusion-reversing, since U’ < U,
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we get U+ < (U')L. Since every nontrivial zero of ¢ is nonsingular, Lemma B.0.2
implies that

dim(U*) = n — dim(U) < n — dim(U’) = dim((U")™h).
This proves that U+ < (U')*.

Therefore, there exists w € (U')* with w ¢ UL, Since w ¢ U™, there exists
nonzero v € U such that B,(v,w) # 0. By scaling v, we can assume B,(v,w) = 1.
Let w' = w — cv, where ¢ = q(w). Note that

g(w') = g(w — ev) = By(w, —ev) + q(w) + g(—cv) = —c + q(w) = 0.

Thus g(w') = 0, ¢(v) = 0, and By(v,w') = B,(v,w —cv) = 1 # 0. We deduce that
the subspace Y = span(v,w’) is hyperbolic. Therefore, ¢ restricted to Y splits off 1
hyperbolic plane.

In particular, By, is nondegenerate, so by Lemma B.0.1, dim(Y*) = n—dim(Y").
Moreover, Y nY+ = rad(By, ), and since By, is nondegenerate, we have Y nY =+ = 0.
Therefore,

dim(Y @ Y*) = dim(Y) + dim(Y™") = dim(Y) + (n — dim(Y)) = n.
This proves that V = Y®Y L.

Since v € U, q(v) = 0; likewise, since U’ < U, we get q(U’) = 0. Thus B,(v,U’) =

0. Further, B,(w,U’) = 0 because w € (U’)*. Because w' = w — cv, it follows that

B,(w',U") = 0 also. Having B,(v,U’) = B,(w',U’) = 0 implies that v,w’ € (U’)*.

Since Y = span(v,w'), we get Y < (U')*, hence U’ < Y+ by inclusion reversing. By

induction, ¢ restricted to Y1 splits off at least dim(U’) = m — 1 hyperbolic planes
and so ¢ splits off at least m hyperbolic planes.

]

Theorem B.1.2. Let V' be a vector space over a field F with dim(V) =n < co. Let
q:V — F be a quadratic map. There exist subspaces Vi,...,V; €V such that

V=Wd - &V;®rad(B,),
where each V; = span(v;, w;) with By(v;, w;) # 0.

Proof. We go by induction on n. If n = 0, then V = rad(B,) = 0. Assume by
induction that the result holds for quadratic modules (V, ¢) such that dim(V) < n,
where n > 1.

For dim(V) = n, if rad(B,;) = V, then we are done. Otherwise, we choose a

subspace V' < V such that V = V' @rad(B,) and dim(V’) = 1. Thus dim(V) =
dim(V’) + dim(B,) and V' nrad(B,) = 0. Since V' nrad(B;) = 0, we see that
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q|y+ is nondegenerate. Let v; € V' be nonzero. Then v, ¢ rad(B,). There exists
wy € V' such that B,(vi,w;) # 0. Let Vi = span(vy,w;). Let S = Vi* A V', hence
S ={xeV"| By(z,V1) = 0}. Since g|y is nondegenerate, Lemma B.0.1 implies that
dim(S) = dim(V’) — dim(V}).

We will show that V}, nS = 0. Suppose x € V| n S. For any v € V', we can write
v = 21 + 22, where z; € V' and 2, € rad(B,). Observe that

By(z,v) = By(z, z1) + By(z, 22).

Since z € S, By(z,z) = 0. Because z; € rad(B,), By(x,23) = 0. Thus z € rad(B,).
Since x € V; < V', we deduce that z € V' nrad(B,) = 0, hence x = 0. We have
shown that V1 1S = 0.

Since dim(V’) = dim(V}) + dim(S) and V; n S = 0, it follows that V' =V, @ S.
Then
V =V,®S®rad(B,).

Let W = S@®rad(B,). Note that By(V;,W) =0and V =V, @W, with dim(W) < n.
Applying induction to W yields

V=VoV®  oV;®rad(By,).

We will be done once we show that rad(B,,, ) = rad(B,).

alw
To that end, suppose w € rad(By,,, ). Then
By(w,V) = By(w, Vi @ W) = By(w, V1) + By(w, W).

Since By(Vi, W) = 0, we get By(w, V1) = 0. Since w € rad(By,, ), we get By(w, W) =
0. Thus B,(w,V) = 0 and so w € rad(B,). On the other hand, suppose y € rad(B,).
Then B,(y,W) = 0, and since W = S @rad(B,), we get that rad(B,) < W, hence
y € W. Then y € rad(By, ). We have shown that rad(By, ) = rad(B,). This
completes the proof. O

Lemma B.1.3. Let g : V — k be a quadratic map with char(k) = 2 and dim(V') = n.
There exists a k-basis of V' for which the quadratic form associated to q with respect
to this basis has the shape

Q1(X1, Xo) + -+ + Q;(Xgj 1, Xyj) + Q(d2j+1)X22j+1 + 4 gdn) X7,

where rank(Q;) = 2, n —2j = dim(rad(By)), and {dsji1,...,d,} is a k-basis for
rad(By).

Proof. By Lemma B.1.2, there exist subspaces Vi,...,V; € V such that

V =W®- - &V;&rad(B,),
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where each V; = span(v;, w;) with B,(v;, w;) # 0. Having B,(v;,w;) # 0 implies that
for char(k) = 2, v;, w; are linearly independent, for if v; = Aw; for some A € k, then
B, (vi,w;) = ABy(w;, w;) = A2q(w;) = 0.

Let Q;(X2;_1, Xs;) be the quadratic form associated to ¢|y;, with respect to the
basis {v;, w;}. Then

(i) X35y + By(vi, wi) Xoim1 Xo; + q(w;) X3,

Thus, det(Q;) = 4q(v;)q(w;) — By(vi, w;) = By(vi, w;) # 0. It follows that rank(Q;) =
2.

From Lemma B.1.2, dim(rad(B,)) = n — (3)_, dim(V;)) = n — 2j. Let

{dajir, - du}

be a k-basis for rad(B,). The quadratic form associated to ¢ with respect to the basis
{Ul, wy, ..., V5, Wj, d2j+17 e ,dn} is giVGH by

Qu(X1, Xo) + -+ 4+ Qj(Xoj1, Xoj) + q(dajur) X3j41 + -+ q(dn) X7
]

Lemma B.1.4. Let ¢ : V — k be a quadratic map with k perfect. If dim(rad(By,)) =
2, then dim(rad(q)) = 1.

Proof. Let v, w € rad(By) be linearly independent. Let a,b € k, not both zero. Note
that g(av + bw) = a®q(v) + b*q(w). Since k is a perfect field, every element of k is a
square. We may therefore choose a,b € k, not both zero, such that ¢(av + bw) = 0.
Then av + bw € rad(q). Since v,w are linearly independent, and not both a,b are
zero, we get that av 4+ bw # 0. Thus dim(rad(q)) > 1. O

Lemma B.1.5. Let ¢ : V — k be a quadratic map.

1. If char(k) # 2, then order(q) = n if and only if det(q) # 0.

)
2. If char(k) = 2, n is even, and k is perfect, then order(q) = n if and only if
det(q) # 0.

3. If char(k) = 2, n is odd, and k is perfect, then order(q) = n if and only if
deti(q) # 0

Proof. We begin the observation that for both char(k) # 2 and char(k) = 2, if
det(q) = n, then rank(q) = n, hence order(q) = n.

For char(k) # 2, order(q) = rank(q), and rank(q) = n if and only if det(q) # 0.
This proves (1).
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Assume char(k) = 2. By Lemma B.1.3, there exists a k-basis of V' such that the
quadratic form associated to ¢ with respect to this basis is

Qu(X1, Xo) + -+ + Q(Xojo1, Xoj) + q(doj1) X5, 1 + -+ + q(dn) X2,

where rank(Q;) = 2, n — 25 = dim(rad(B,)), and {dsj1,...,d,} is a k-basis for
rad(B,). Observe that

det(q) = det(Q1) - - - det(Q;)2" ¥ q(dgj1) - - - q(dn). (B.1.1)

Since rank(Q);) = 2, we have det(Q;) # 0.

For (2), we suppose n is even and k is perfect. On the one hand, our observa-
tion at the beginning of the of proof implies that if det(q) # 0, then order(q) = n.
For an alternate argument, equation B.1.1 implies that if det(q) # 0, then 0 =
n —2j = dim(rad(B,)). Since rad(q) < rad(B,), we obtain dim(rad(q)) = 0, hence
order(q) = n.

Conversely, suppose order(q) = n. Then rad(q) = 0 and so Lemma B.1.4 implies
that n — 25 = dim(rad(B,)) < 1. Since n is even, n — 2j = dim(rad(B,)) = 0, hence
equation B.1.1 implies that det(q) = det(Q)) - - - det(Q;) # 0. This proves (2).

For (3), we suppose n is odd and k is perfect. If det%(q) #0,then 1 =n—2j =
dim(rad(B,)). Thus rad(B,) = span(dy.1). Also, since deti(q) # 0, we have
q(dzj41) # 0. Thus, rad(q) = rad(¢q) nrad(B,) = 0, hence order(q) = n.

Conversely, suppose order(q) = n. Then rad(q) = 0 and so Lemma B.1.4 implies
that n — 25 = dim(rad(B,) < 1. Since n is odd, we get n — 2j = dim(rad(B,)) = 1.
Then equation B.1.1 implies that det%(q) = det(Qq) - - - det(Q);) # 0.

O

Lemma B.1.6. Let g : V — k be a quadratic map with char(k) # 2 and dim(V') = n.
There exists a k-basis of V' for which the quadratic form associated to q with respect
to this basis 1s given by

a X7+ Fa, X,

where each a; € k.
Proof. By Lemma B.1.2, there exist subspaces Vi,...,V; € V such that
V =Vi®- - &V;Brad(B,),

where each V; = span(v;, w;) with B,(v;,w;) # 0. Suppose {z1,...,2} is a k-basis
for rad(B,), hence ¢t = dim(rad(5,)). Then the quadratic form associated to q|aq(s,)
with respect to this basis is a diagonal form.
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As for q|v;, note that if dim(V;) = 1, then the quadratic associated to gly; is a
1-dimensional form, as desired. Suppose dim(V;) = 2. We consider two cases.

Case 1. Suppose ¢(v;) = q(w;) = 0. Then the quadratic form associated to
qly; is the hyperbolic plane a XY, a = B,(v;,w;) # 0. Then aXY is equivalent to
XY. For char(k) # 2, XY is equivalent to the diagonal form X? — Y?; to see this,
start with X? — Y2, and write X? — Y2 = (X —Y)(X +Y). The change of variable

given by X/ = X —Y and Y/ = X + Y is invertible because the matrix [1 -1

1 1
has determinant —2. This change of variable transforms X? — Y2 into the hyperbolic
plane X'Y".

Case 2. Without loss of generality, suppose q(v;) # 0. Let a € k, yet to be
chosen. Observe that

B, (vi, v; + aw;) = By(v;, v;) + aBy(vi, w;).
= 2q(v;) + aBy(vi, w;).

Let b = By(v;,w;) and let a = —2b 'q(v;). Then a # 0, B,(v;,v; + aw;) = 0, and
{vi,v; + aw;} is a k-basis for V;. It follows that the quadratic form associated to qly,
with respect to the basis {v;, v; + aw;} is a diagonal form.

]

Lemma B.1.7. Let g : V — k be a quadratic map over an arbitrary field k. Assume
dim(V) =n =2, and let A = {ay,...,a,} be a k-basis of V.. Let M, = (m;;) be the
matriz of B, with respect to A; thus m;; = By(a;,a;). Fix 1 <t <n—1, and for
each 1 <i<n, let Ry = (mg,...,my).

Let U = span(ay,...,a;). For each je {t+1,...,n}, suppose there exist elements
Clj,---,Ctj € k such that

Clle + CQjRQ + -+ Ctht = —Rj. (B12)

I t . ’ ! / €
Let a; = aj + Y, csja;. Then span(ay,,,ai ... a,) S U~-. Thus

V = span(ay, .. .,a)®span(a,, ,, ..., a.).

Proof. To show span(a,, |, a} ,...,a,) S U+, it is sufficient to prove that for each

N

t+1<j<n, Byaja}) =0foral 1 <i<t Equation B.1.2 implies that for each
1 <9<t
C1;M1; + CoMg; + - -+ + CyiMyy = —1Mj;.

Since M, = (m;;) is a symmetric matrix, we get

C1My1 + CoMyyg + - -+ + CyiMy = —My5.

122



t
Z CsjMis = —Myj5.

Z cs;Byla;, as) = —Bgy(ai, a;).

It follows that
¢
Bq(ai,a;) = By(a;,a;) + Z Csjls)-

az,aj —i—ZcSJ az,as
= 0.

To prove V = span(ay, ..., a;)®span(a,.,,...,a,), let W = span(ay,...,a;) +
span(aj.q,...,a,). Note that al, ..,a € W. Fort+ 1< j < n, we have

t
_ . !
a; = chjaz —i—aj.
s=1

Thus each a; € W. Then Ac W andso V = W.
O

Lemma B.1.8. Let k be any field and q € k[ X1,...,X,] be a quadratic form with
n > 2. Let e; € k™ denote the i" standard basis vector of k™. Let f : k™ — k be
the quadratic map associated to q with respect to the standard basis {ei, ..., e,}. Fix
1<t<n—1, andlet g(Xq,...,Xy) = q¢(Xq,...,X;,0,...,0).

Suppose g has rank t over k. Then there exist e}, ..., e, € k™ with the following
properties.
1. k" = span(ey, . .., e )®span(el, |, ... el).

. t
2. Fort+1<j<n, e =e+ ,cges for some cgj € k.

3. The quadratic form ¢' associated to f with respect to the basis

{er,....en € q,....€}

has the shape
q/ — g(){l7 e ,Xt) + h(Xt+17 e 7Xn)7

where h € k[ X1, ..., X,] is some quadratic form.

4. det(q) = det(q').
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Proof. Let M, = (m;;) denote the matrix of ¢ with respect to the standard basis of
k™. Let M, denote the matrix of g with respect to the standard basis of k*. Since
g has rank ¢, the rows of M, are linearly independent. Note that the upper ¢ x ¢
block of M, is the matrix M,. For each 1 < i < n, let R, = (m;,...,m;). Note
that for 1 <i < t, R; is the i*" row of M,; thus Ry,..., R, are linearly independent.
Then span(Ry,..., R;) = k'. Tt follows that for each j € {t + 1,...,n}, there exist
Cij,-- -, Ctj € k such that
Clle + CQjRQ R Ctht = —Rj.
Let U = span(ey, ..., ¢e;), and for each t +1 < j < n, let ¢} = ¢; + 22:1 csjes- Then
Lemma B.1.7 implies that span(e},,...,e,) < UL, and
k" = span(ey, . .., e;)@span(e),q, . . ., €,).
With respect to the basis
{er,...,en €, . €0},

q has the shape
q = g(Xla s 7Xt) + h(XtJrla s 7Xn)7

where h € k[Xy41,...,X,] is some quadratic form. Note that the change of basis
matrix between the two bases is a triangular matrix with ones along the diagonal,
hence the determinant of the change of basis matrix is 1. Thus det(q) = det(q’). O

Lemma B.1.9. Let n = 2 and let q1,q2 € k[ X1, ..., X,] be quadratic forms over a
field k. Fix 1 <t <n—1. Suppose that g1 and qs satisfy the following shape:

t
= g(X1, . X))+ D Xili(Xpp, - X))+ (X, Xo).

i=1
g2 = hQ(Xt—i-la s aXn)a

where g, hy, ho are quadratic forms over k and the {; are linear forms over k.

If rank(g) = t, then there is an invertible linear change of variable over k so that
g1 = 9(X1, . 7Xt) + hll(Xt_H, . ,Xn)
o = hQ(XtJrl, Ce 7Xn)7

where b is some quadratic form. Thus, g remains the same under the change of
variable.

Proof. For 1 < i < n, let e; denote the i*" standard basis vector for . For j = 1,2,
let f; : k™ — k denote quadratic maps such that for each (xy,...,z,) € k™, we have

filzrer + -+ xpen) = g1, ..., Tn).

Thus, g; is the quadratic form associated to f; with respect to the standard basis
{e1,...,en}.

Since g has rank ¢, Lemma B.1.8 implies that there exist e ,,... e, € k" with
the following properties.
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1. k" = span(ey, . .. 76t)®flspan(€:f+1’ ).

. . t
2. Fort+j5 <5 <n, e; =e; + D, Csjes for some cg; € k.

3. The quadratic form ¢ associated to f; with respect to the basis

{er,....en €, ...€}

has the shape
q, = g(le e ,Xt) + hll(Xt+1, e 7Xn)
where h is some quadratic form.
Lemma B.1.8 also implies that det(q;) = det(q}), but we will not need that fact for
this proof. Let ¢} denote the quadratic form associated to f, with respect to the basis
{er,....e, € q,...,en}. We will show that ¢) = ¢o. Let 1 <i<tandt+1<j<n.
Since go( X1, ..., Xy) = M (Xyy1,..., Xy), and €} = e; + S cgjes, we deduce that

where the one occurs in the j*® entry. Likewise,

sz (ei> 6;) = Bf2 (eia ej)‘

It follows that ¢} = go = ho(Xii1,. .., Xn).
O

Lemma B.1.10. Let K be a p-adic field, Ok be the ring of integers, and let w be an
uniformizing element for K. Let Q € K[X,...,X,] be a quadratic form with n = 2.
Let e; € K™ denote the i standard basis vector of K™. Let F : K™ — K denote the

quadratic map associated to QQ with respect to the standard basis {ey, ..., e,}. Suppose
Q(X) has the following shape:

t
Q(X) = G(X17 st aXt) + WZXiLi(Xt+17 PP ,Xn)
i=1 (B.1.3)
+7TH(Xt+17"'aXn)7

where G, H are quadratic forms over Ok and the L; are linear forms over O.

Suppose det(G) is a unit in Ok. Then there exist €;,..., e, € (Og)" with the
following properties.

1. K" = Span(ela <. 7€t)®$pan(€;+1, c .,6, )
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. / t
2. Fort+1<j<n, e =¢+ Doy Csj€s, where cgj € Ok and 7 | cg;.

3. The quadratic form Q' associated to F with respect to the basis

{er,....en € q,....e}
has the shape
Q/ = G(Xb s 7Xt) + HI(XtJrla s 7Xn)7
where H' € Og[Xi11, ..., X,] is a quadratic form with H' = H mod 7.

4. det(Q) = det(Q").

Proof. Let Mg = (my;) denote the matrix of ) with respect to the standard basis
of K™. Let Mg denote the matrix of G with respect to the standard basis of K°.
Note that the upper ¢ x t block of Mg is the matrix Mg. For each 1 < ¢ < n, let
R; = (my1,...,my). Note that for 1 < i < t, R;is the i*" row of Mg. Since det(G) is a
unit, we see that spany (Ry,. .., R;) = (Ok)". Therefore, for each j € {t +1,...,n},
there exist ¢yj,. .., c;; € Ok such that

Clle + CQjRQ + -+ Ctht = —Rj.

Equation B.1.3 implies that 7 | R;. Since det(G) is a unit, the rows Ry,..., R, are
linearly independent modulo 7. Therefore, 7 | ¢1j,...,¢;. Let U = span(ey, ..., e),
and for each t +1 < j < n, let € = ¢; + Z';Zl csjes. Then Lemma B.1.7 implies that
span(e,, ,...,e,) < U+, and

r n
K™ = span(ey, . .., e;)®span(e}, , ..., €,).
The quadratic form @) with respect to the basis {e1, ..., et €}, 4,..., e} has the shape
Q == G(Xl, e 7Xt) + H,(Xt+1, e 7Xn),

where H' € Ok [X;41, ..., X,] is some quadratic form. Note that the change of basis
matrix between the two bases is a triangular matrix with ones along the diagonal,
hence the determinant of the change of basis matrix is 1. Thus det(Q) = det(Q’). To
determine H’, observe that

H = < zn] Q(e;)X§> + < > BQ(e;,eg)XjXé> :

j=t+1 t+1<j<b<n

We will show that Q(€}) = Q(e;) mod 7*, and Bg(€}, €)) = Bg(ej, ¢;) mod 7. This
will imply that H' = H mod 72, as desired.
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Observe that for t + 1 < 5 < n, we have
t
Qe)) =Q <6j + Z csjes) .
s=1
t t
= Q(ej) +Q (Z csjes> + By <ej, Z csjes> :

s=1

= Q(ej) +Q (Z csjes> Z olej, es).

s=1

Since 7 | ¢g;, we get 7 | Q(ZS | Csi€s). Equation B.1.3 implies that = | Bg(e;j, e5)
for 1 < s <t Then 72 | 3'_, c,jBo(ej, e;). Thus Q(e ") = Q(e;) mod 7.

Similarly, we have

¢ ¢
Bg(€}, ey) = Bg <e]~ + Z Csj€s, €0 + Z ng65> )

s=1 s=1

= Bg(ej, er) + (Z cseBo(e;, es)> + (Z csi Bo(es, @))

s=1 s=1
t t
+ Bg Z CsjCss Z CorCs | -
s=1 s=1

We have 7 | ¢ and 7 | ¢g. Equation B.1.3 implies that 7w | Bg(ej, e5) fort+1 < j <
n,and 7 | Bg(es, ef) for t+1 < € < n. It follows that Bg(e}, ¢}) = Bg(e;, e,) mod 7°.

0.

B.2 Forms over Finite Fields

Lemma B.2.1. Let k be a finite field of characteristic not 2. Let q € k[Xq, ..., X,]
be a quadratic form with n = 2 even. If ¢ has rank n and det(q) = (—1)2d, where
d € k* is a nonsquare, then q splits off exactly 5= 2 hyperbolic planes over k.

Proof. Since k is a finite field and ¢ has rank n, we know ¢ splits off at least ”T’2
hyperbolic planes, hence

q=X1Xo+ -+ X 3Xn 9 + q(Xn—1, X),
where ¢g has rank 2. We have
det(qo) = (—1)"52

Since det(qy) = —d with d € k* a nonsquare, we deduce that ¢q is anisotropic. Thus
q splits off exactly 2 2 hyperbolic planes. O

()= (-D)T (-1)Fd = —d.
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Lemma B.2.2. Let n(ry,x2) and n(xs3,x4) be anisotropic binary quadratic forms
over a finite field k. Then n(x1,xs) + n(xs, x4) vanishes on a 2-dimensional space
over k.

We prove Lemma B.2.2 by proving three general statements (Lemmas B.2.3,
B.2.4, and B.2.5 below).

Lemma B.2.3. Let k be an arbitrary field. Let q(x1,...,x,) be a quadratic form
over k and assume that rad(b,) = 0. Let g(x1,...,Tn, Y1, Yn) = q(x1,...,2,) —
q(1, -, yn). Then rad(by) =0 and g vanishes on an n-dimensional subspace of k*".

Proof. Tt is straightforward to check that rad(b,) = 0. Let W be the subspace of k"
consisting of vectors (ay,...,a,,a1,...,a,) where each a; € k. Then dim(W) = n

and (q(x1,...,2n) —q(y1, ..., yn)) (W) = 0. O

Lemma B.2.4. Let k be an arbitrary field. Suppose for some n = 1 that there exists
a unique (up to isometry) quadratic form q(xq,...,x,) with q anisotropic over k and
rad(b,) = 0. Then q(z1,...,x,) ~ cq(z1,...,x,) for every nonzero c € k.

Proof. Since ¢ € k is nonzero, it follows that rad(b.,) = 0 and cq is anisotropic over
k. Thus g ~ cq by the hypothesis. O

Lemma B.2.5. Let k be a finite field. Then there exists a unique (up to isometry)
2-dimensional quadratic form n(x,,x2) that is anisotropic with rad(by(z, 4,)) = 0

Proof. Lemma F.1.4 proves the result for char(k) = 2. Assume char(k) # 2. Let
d € k* be a nonsquare. Note that X? — dY? is anisotropic of rank 2. Let q(X,Y) €
E[X,Y] be an anisotropic rank 2 quadratic form. We will show that ¢ is equivalent
to X2 —dY*>.

Consider ¢(X,Y) — Z%. By Chevalley-Warning, this form is isotropic over k. Let
(71,91, 21) be a nontrivial zero. Since ¢ is anisotropic, z; # 0. Thus q(z1,y1) = 2%,
with (z1,31) # (0,0). Then ¢(3+,%) = 1. Through an invertible linear change of

variable, we can assume ¢(1,0) = 1. Write ¢ = X? + bXY + ¢Y?2 Let f(X,Y) =
q(X — gY, Y). Then f is equivalent to ¢, and

FX,Y) = (X — gY)2 +b(X — gY)Y +cY?.

Notice that the coefficient of X? in f is 1, and the coefficient of XY is 0. Thus
f(X,Y) = X? —Y? for some ¢ € k. Since f is anisotropic, ¢ is a nonsquare, hence
c = de? for some e € k*. It follows that f is equivalent to X? — dY?2.

]

Proof of Lemma B.2.2. Lemmas B.2.4 and B.2.5 imply that n(zs, x4) ~ —n(z3, z4).
Then n(zy,z2) + n(xs, x4) ~ n(xy, x2) — n(xs, x4) vanishes on a 2-dimensional space
by Lemma B.2.3. O
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Lemma B.2.6. Suppose n(Xi, X3) and n(X3, X4) are anisotropic quadratic form
over a finite field k. Then n(X1, Xo) + n(Xs, Xy) splits off 2 hyperbolic planes over
k.

Proof. Lemma B.2.2 implies that n(X;, Xs) +n(Xj3, X,) vanishes on a 2-dimensional
space over k. Thus Lemma B.1.1 implies that n(X;, Xs) + n(X3, Xy) splits off 2
hyperbolic planes. O

Lemma B.2.7. (Ireland and Rosen, page 150, problem 17.) Let F, denote a finite
field with q elements. For each m > 0 there is a homogeneous form of degree m in m
variables over Fym with no nontrivial zero.

Proof. Let wy,...,wn be a basis for Fi;m over F,. Consider the homogeneous form of
degree m:
m—1 ] _
flre,. . zm) = n(w‘lz T+ Fwlzy,).
i=0
Suppose (a1, ..., an) € A™(F,) is a zero of f. Then w‘fjal + -+ wa, = 0 for some

j. Suppose p is the characteristic of F, and write ¢ = p* for some k > 1. Then

Jk jk
Wi ar + o+ wh ay, = 0.

In F,, every element is a p™ power. It follows that every element is a p? power, and

. . ik .
a p® power, and so on. So for each i we can write a; = ! for some b; € F,. This
gives us
jk

0 = B oo b B by + -+ wb)”

m

Therefore wiby + - - - + wyb,, = 0. Since the w;’s are linearly independent, we get that
each b; = 0, hence each a; = 0 so that (aq,...,a,) is the trivial solution. O

Lemma B.2.8. (Ireland and Rosen, page 150, problem 18.) Let F, denote a finite
field with q elements. Let g1, g, ..., gm € Fy[z1,22,...,,] be homogeneous polyno-
maials of degree d and assume that n > md. Then there is a nontrivial common zero
over Fym.

Proof. Let f be the homogeneous polynomial of degree m as in the previous exercise:

—

m—

flre, .. zm) = n(w‘fl:cl Fotwla,).
i=0

Since each g; is homogeneous of degree d, it follows that the polynomial f* defined
by

[ wn) = floi(@n, o zn), o g0, @)
is homogeneous of degree md. Note that since each g¢; is homogeneous, f* has the
trivial zero. Since n > md, Chevalley’s Theorem implies that f* has a nontrivial

zero, say a = (ay,...,a,). By Exercise 17, f has only the trivial zero, so it must be
that a is a common zero of the g;’s. O]

129



Lemma B.2.9. Let gi(x1,...,2,) and ga(x1,. .., 2,) be quadratic forms defined over
a finite field F'. If n = 5, then g1 and g have a common nontrivial zero over F.

Proof. Recall that over any finite field, up to equivalence, there is a unique anisotropic

quadratic form of rank 2. Let f(x,z2) be an anisotropic quadratic form of rank 2
over F. Define f*(z1,...,z,) by

(e, mn) = flor(zr, . xn), g2, ..oy x)).

Then f* is homogeneous of degree 4, and f*(0,...,0) = 0. Since n > 4, Chevalley’s

Theorem implies that f* has a nontrivial zero, say a = (ay,...,a,) € F". Then
f(gi(ay, ..., a,),92(a1,...,a,)) =0.

Therefore (g1(ay, ..., a,), g2(a,...,a,))is azero of f. Since f is anisotropic, we must

have

gi(ay,...,a,) = go(ay,...,a,) =0.
Therefore, (aq,...,a,) is a common nontrivial zero of ¢; and gs. O
Lemma B.2.10. Let s1(X,Y) and so(X,Y) be quadratic forms over a finite field F'.
Suppose that s; and se have no common factor and that r(sy, s2) = 2. Then there are

at least (|F|—1)? pairs (a,b) € F2, not both zero, for which as + bsy is a hyperbolic
plane, and at least 3(|F| —1)? such pairs for which as, + bss is anisotropic of rank 2.

Proof. See [7, Lemma 8.3, p.62] O

Lemma B.2.11. Let k be a finite field and q € k[Xy,...,X,] be a quadratic form
with n = 1. Then q vanishes on a subspace over k of dimension

n—2 ; ;
5= if mois even
n—1 ; ;
5= if nis odd.
Moreover, if q has order < n, then q vanishes on a subspace of dimension
" L
5 if n is even
n—1 : :
== if n is odd.

Proof. We begin by proving the first statement, where we make no assumption on
the order of g. We induct on n. For n = 1,2, there is nothing to prove. Let n > 3
and assume by induction that the result holds for quadratic forms in m < n variables

n2 if n is even
over k. Given ¢ € k[X1,..., X,], if order(¢q) = n, then ¢ splits off { 2, 1 1 v

== if nis odd
hyperbolic planes, and the result follows. Assume order(q) = m < n. Through a
change of variable, we can assume ¢ = ¢/(Xy,...,X,,) for some quadratic form ¢

By induction, ¢’ vanishes on a subspace over k of dimension

m=2 if m is even
m=1 " if m is odd.
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Therefore, if m is even, then ¢ vanishes on a subspace over k of dimension

-2 2n—-m-—2 2n—n-—2 -2
= tn—m="2 ;n > 2n :n2 , (B.2.1)

which is sufficient. If m is odd, then ¢ vanishes on a subspace over k of dimension

-1 2n—m—1 2n—n—1 -1
= tn—m="1"" i _ , (B.2.2)
2 2 2 2
which is sufficient. The second statement follows equations B.2.1 and B.2.2. O

Lemma B.2.12. Suppose ¢ and qo are quadratic forms over a finite field F in
M = 2m + 1 variables, m > 1. Then {qi, ¢} vanish on a subspace of dimension
(M —3)/2=m—1 over F.

Proof. This follows from Amer’s Theorem. m

Lemma B.2.13. Suppose ¢ and qo are quadratic forms over a finite field F in
M = 2m wvariables, m = 1. Then {q1,q2} vanish on a subspace of dimension (M —
4)/2 =m — 2 over F.

Proof. This follows from Amer’s Theorem. m

Recall that given a quadratic form ¢ € F[Xi,...,X,] over a field F, we define
Dr(q) to be the maximal dimension of a subspace in F™ on which ¢ vanishes.

Lemma B.2.14. Let k be a finite field. Let q1,qs € k| X1, ..., X,] be quadratic forms
with n = 4 even and Dy(q1,q2) = ”T"l. If Pr(q1,q2) contains a form of order 2, then
there are at least

S = 1) = (k] = 1)

nonzero pairs (a,b) € k? for which aq, + bqy splits off 5 hyperbolic planes over k. In
particular, if |k| > 3, then there is at least one form in Pr(qi,q2) that splits off &
hyperbolic planes over k.

Proof. Without loss of generality, assume ¢; has order 2. Through a change of vari-
able, we can write ¢; = ¢{(X1, X2), where ¢; is a quadratic form over k of order 2.
We can write ¢y in the following way:

g2 = q;(Xl’XQ) + Xlgl(Xg, c. 7Xn) + ngg(Xg, e ,Xn) + Q(X3, Ce ,Xn)

for quadratic forms ¢4, ¢ and linear forms ¢y, {5, all over k. We will show that ¢ is
anisotropic.

Assume ¢} is isotropic. Through a change of variable involving X; and X5, we can
assume ¢} (0,1) = 0. Thus ¢ = X14(X1, X3) for some linear form £ over k. By Lemma
B.2.11, the form (0, X3, ..., X,) vanishes on a subspace U’ < k™! of dimension
"7_2. Let

U={0,z9,...,2,) | (x2,...,2,) € U'}.
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n—2

5, a contradiction.

Then ¢; and ¢» both vanish on U, which has dimension

Therefore, ¢ is anisotropic. Next, we will show that Dy(q) = "T"l.

Suppose ¢ vanishes on a subspace W’ < k"2, Let
W ={(0,0,z3,...,2,) | (x3,...,2,) € W'}
Then q1(W) = g(W) = 0. Thus dim(W) < Dy(q1,¢2) = “5*. On the other hand,

since ¢ has n — 2 variables, Lemma B.2.11 implies that ¢ vanishes on a subspace over

k of dimension “5*. We deduce that Dy(q) = 5.

Since Dy(q) = ”774, Lemma B.2.11 implies that ¢ has order n — 2. Then Lemma
2.1.14 implies that ¢ has rank n — 2. We therefore have

qQ1 = q/1(X1,X2)
qo = q;(Xl,XQ) + Xlgl(Xg, e ,Xn) + X2€2(X37 . 7Xn) + Q(Xg, C 7Xn)7

where ¢} is anisotropic and ¢ has rank n — 2. Since ¢ has rank n — 2, Lemma B.1.9
implies that we can perform an invertible linear change of variable over k£ so that

¢ = q1(X1, Xo)
g = h/(XlaXQ) + Q(X37 .. 7X’n,)

n—

for some quadratic form h. Since ¢ has order n —2 and Dy(q) = %52, we deduce that

2
q splits off exactly ”T"l hyperbolic planes. Through a change of variable involving

X3, ..., X, we can assume ¢ = X3Xy + -+ + X, 3X,, 2 + ¢(X,,_1, X,), where g is
anisotropic. Thus

Q1 = qll(XlaXQ)
g = h(X1, Xo) + Xo Xy + -+ X3 X0 + 9(Xpm1, Xin).

To finish, we consider the following two cases.

Case 1. Suppose ¢; and h are linearly independent. This, together with the fact
that ¢} is anisotropic, implies that ¢; and h do not share a common factor over k.
Thus Lemma B.2.10 implies that there are at least $(|k| — 1)? pairs (a,b) € k%, not
both zero, for which ag] + bh is anisotropic. At most |k| —1 of these pairs have b = 0.
Therefore, there are at least

1
Ukl =17 = (k] = 1)
nonzero pairs (a,b) € k* for which ag} + bh is anisotropic and b # 0.

Case 2. Suppose ¢; and h are linearly dependent. By adding a multiple of ¢; to
g2, we can assume h = 0. Let A\, u € k*. Then

Aq + pge = Aq’l (X1, Xo) + uXs Xy + -+ pXo 3 X0 0 + ng( X1, X,).
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By Lemma B.2.6, Aq] + pg splits off 2 hyperbolic planes. Thus, Aq; + ugs splits off
hyperbolic planes. There are |k|—1 choices for A and |k|—1 choices for u, which gives
us (Jk| — 1)? pairs in Py(q1, ¢2) that split off & hyperbolic planes, which is sufficient.

]

Remark: The first statement of Lemma B.2.14 is vacuously true for |k| € {2, 3}.
The following examples show how the second statement of Lemma B.2.14 can fail
when |k| € {2,3}. Let N(X,Y) € kX, Y] be anisotropic. Let

@ = N(X1, Xy)
o = X1X2 + X3X4 + -+ ananfz + N(anl,Xn).

Note that Dy(g1,¢2) = “5*. To show that no forms in Py (g1, g2) split off 2 hyperbolic
planes, since ¢ = N(Xi, Xy), it is sufficient to only consider forms of the shape
Aq1 + @2, where A € k

Assume |k| = 2, then neither g, nor ¢, + ¢ split off § hyperbolic planes.

Assume |k| = 3. Take N(X1, X3) = X2+ X2. Then neither ¢z, ¢, + go, nor 2¢; +¢o
split off & hyperbolic planes.

B.2.1 Systems of Quadratic Forms over Finite Fields

The content in this section is due to David Leep.

Let F, be the finite field with ¢ elements and let F be the multiplicative group
of nonzero elements of ;. The order of a quadratic form is the minimum number of
variables needed to write the quadratic form after an invertible linear transformation.

Let f e F,|zy,...,2,] be a nonzero quadratic form and assume that f has order
m, 1 < m < n. There are three cases, which are called Type I, Type II, and Type IIL.
Let h(x,y) denote the unique, up to isometry, anisotropic quadratic forms in F,[z, y].
If m is even, then

o T1%o + - + Tpe3Tm—2 + Tyn1Tm, if fis Type I,
T1To + - 4 Ty 3Tm—2 + (T 1, ) if fis Type IL

If m is odd, then f is Type III and
f=xixo+ -+ 2y 0rm 1+ axfn,

for some a € F.
The following theorem can be found in many places including [13] and [18, Chapter
IV]. We include a proof here for completeness.

Theorem B.2.15. Assume the notation and hypotheses above. Then

(g g —qr ) if fis Type I,
N(f,Fy) =3¢ ™(q" " —q% +q2 ) if fis Type II,
L L if f is Type III.
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Proof. We can assume that f = f(z1,...,2,) € [Fy". The proof is by induction on
m. If m = 1, then f is Type IIl and f = ax? for some a € Fy. Then f = 0 implies
that 2y = 0, so N(f,F}) = ¢" ' = ¢ -1 =¢"™.

Suppose that m = 2. If f is Type I, then f = zy25 and N(f,F}) = ¢"*(2¢—1) =
¢ %(q+q—1). If fis Type II, then N(f, Fy) = 2 1=q¢"%qg—q+1).

Assume that m > 3 and that the result has been proved for smaller values of m.
Then f =~ xy29 + fi(zs3,...,2,) and f, fi are the same Type. We first consider the
case r9 # 0, then the case x5 = 0. This gives

N(fJFZn) = ( 1)qm 2 + qN(fb]Fm 2)
— "2 4 q(q" P + " — ¢ 1Y) if fis Type I,
L, 3

q" ( q
=g =" q(q" T — " 4 q"T ) if f s Type I,
q" =g+ q(g"?) if f is Type I,
rqm_1 +q% —qgz ' if f is Type I,
=< ¢t —q> +q=71 if fis TypeIl,
gt if fis Type III.
The result follows from this because N(f,Fy) = ¢"""N(f,F"). O

Let Q1,...,Qr € Fylz1,...,x,] be a system of quadratic forms defined over F,,.
Let @ = (a1,...,a,) € Fy and ¢ = (c1,...,¢,) € F}. For a quadratic form @ €
Fo[z1,... 2], let

N(Q) = l{ae Fy | Q(a) = 0}].

Thus N(Q) counts the zero vector. Let
No=[{aelFy|Qi(a)=0,1<i<r}

The Fg-pencil of {Q1,...,Q,}, denoted Pr, (Q1, ..., Q,), is the set of all F,-linear
combinations of {Q1,...,Q.,}.

Proposition B.2.16.

"+ > N (Z CiQi) ="+ g - 1N

i=1

oy
Proof. It (Q1(a),...,Q.(d@) # (0,...,0), then Q(@) = 0 for exactly ¢"~! forms in
Pr,(Q1, ..., Q). If (Q1(a),...,Q.(a@)) = (0,...,0), then Q(a) = 0 for all ¢" forms in
Pr,(Q1,...,Qr). Thus

Z N ( Cin‘) = ¢ (¢" = No) + ¢"No.
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Therefore

q" + Z N
celry
20

Suppose that @ € F [z, .
To compute N(Q), there are

N@) =q""

(Z q@) =¢"" ¢ (g~ D No.
=1

]

.., &,] and that the order of @ is m where 0 < m < n.
four cases to consider.

gt + qufQ(q —1) if Qis Typel
"l —q"T (¢q—1) if Qis Type II
gt if @) is Type III
q" if Q =0.

For details of this calculation, see Theorem B.2.15.

Theorem B.2.17. Assume the notation from above. Then

¢"TE df Y Qi s Type I
No=¢""+ Z —q" " if Y aQ; is Type IT
a0 if Y Qi is Type I1I
c#
Proof.
qn + Z N (Z C’LQZ) _ q’l’lJr’l"*l + qrfl(q . 1)N0
G i=1
c£0
g (g — 1) f > 6@ is Type I
YT T (g - 1) i Y aQis Type IT = ¢ 4" (g—1) Ny
Tl if 37 ¢;Q; is Type IIL

if Y7, ciQ;is Type I
if i, ¢;Q; is Type 11

qn-‘r'f—l 4 qr—l(q o 1)N0

EEF(% 0 if i, ¢;Q; is Type III
o
qnfermTiQ if 22:1 ciQi is Type I
qnfl + Z _qn_m-i-mT_Q lf 22:1 CiQi is Type II — qTleO
iffé; 0 if > _, ¢iQ; is Type IIL
qnfm+m772*(rfl) if 22:1 CiQi is Type I
¢+ Z —g ) ST Qyis Type IT = Ny
Eng 0 if Y7_, ¢;Q; is Type IIL
&
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TAf Y ¢ is Type 1
qn—T + Z _qn—%—r if 22;1 CiQZ‘ s Type I = NO
“Go it 37, ¢Q; is Type IIL

Proposition B.2.18. Assume that r =2 and n = 5. Then Ny = 2.

Proof. This result follows immediately from Chevalley’s theorem. However, we will
give a proof using Theorem B.2.17.

Let Q1,Q2 € F,|x1,...,x,] be quadratic forms with n > 5. First suppose that
a form in the F,-pencil of ¢); and )2 has order < 2. We can assume that @) =
Q1(x1,3). Then set 1 = x5 = 0. Then Q2(0,0, z3, x4, ..., 2,) is isotropic over F,
because n — 2 = 3, and thus ()1, ()2 have a nontrivial common zero over F,,.

Now assume that each form in the F -pencil of ()1 and @2 has order > 3. Then
in Theorem B.2.17, whenever m occurs in the formula we have m is even (because Q)
has Type I or IT) and thus m > 4. Theorem B.2.17 now gives

o n—o—4% n— n— n—
Nozq" 2= (=12 =¢"? = (- " =¢""=q¢=2
]

Lemma B.2.19. Assume that r = 2, n = 3, and m = 3 for all Q € Pr, (Q1,Q2).
Then Ny = 1 if and only if n = 4, m = 4 for all Q € Pr,(Q1,Q2), and each
Q € Pr,(Q1,Q2) is Type I1.

Proof. First assume that n = 4, m = 4 for all Q € Py, (Q1,Q2), and each Q €
Pr,(Q1,Q2) is Type II. Then Theorem B.2.17 gives Ny = 1.

Now assume that Ny = 1. Proposition B.2.18 implies that n < 4. If n = 3, then
m = 3 for each Q € Pp,(Q1,Q2). Then Theorem B.2.17 would give Ny = ¢ > 2,
a contradiction. Thus n = 4. Now we have 1 = Ny = ¢* + (¢* — 1)(—¢°) = 1.
Therefore equality occurs and so we must have m = 4 for all @ € Py, (Q1,Q2) and

each Q € Pr, (Q1,Q2) is Type IL ]

Lemma B.2.20. Let q1,q2 € F [ X1, ..., X4] be quadratic forms. Suppose every form
in Pr,(q1,q2) has order = 3. Then Dg (q1,q2) = 0 if and only if every form in
Pr,(q1,92) has order 4 and splits off exactly 1 hyperbolic plane.

Proof. This is a rephrasing of Lemma B.2.19. O

Lemma B.2.21. Let g1, 92 € F [ Xy, ..., X5] be quadratic forms. Suppose every form
in P = Pg,(g1,92) has order = 2. Further, assume that any form in P of order 2 is
anisotropic. Then there is at least one form in P of order = 3.

Proof. For sake of contradiction, assume that every form in P is anisotropic of order
2. Applying Theorem B.2.17 for n = 5 and r = 2 gives us

No=¢— (-1 =¢(qg— ¢ +1).

Since ¢ = 2, ¢ — ¢*> + 1 < 0. This is contradiction because Ny > 1. O]
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Lemma B.2.22. Suppose g1, g» € Fo[ X1, X3, X3] are quadratic forms with Dy (g1, g2) =
0 (i.e. No=1). Suppose every form in Pg, (g1, g2) is either anisotropic of order 2 or
has order 3. Then there are exactly g — 1 pairs (a,b) € Fg, not both zero, for which
agy + bgs is anisotropic of order 2.

Proof. Let § be the number of pairs (a,b) € Fg, not both zero, for which ag; + bgs
is anisotropic of order 2 (i.e. type II with m = 2). Applying Theorem B.2.17 with
No=1,n=3and r =2 gives 1 = q— 9, hence 6 = q— 1. ]

Lemma B.2.23. Suppose hi,hy € F,[X1,X2] are linearly independent quadratic
forms with Dy, (h1, hy) = 0 (i.e. No =1). Then there are at least q pairs (a,b) € F2,
not both zero, for which ahy + bhs is isotropic.

Proof. Since hy and hy are linearly independent, every form in P = Pg, (h1, ho) has
order = 1. For each i = 1,2,3, let §; denote the the number of pairs (a,b) € Fg, not
both zero, for which ah; +bhs is type i. It follows that the number of pairs (a,b) € IFE,
not both zero, for which ahy + bhs is isotropic is d; + d3. We will show that §; +d3 = g.

Applying Theorem B.2.17 with Ny =1, n = 2, and r = 2 gives us
1=1+ (51q’1 — 52(]71.
It follows that 6; = ds.

Suppose ¢ = 2. Then the number of forms in the pencil Pg, (hi, ho) is ¢* — 1 = 3.
Thus, either §; = d5 = 93 = 1 or §; = d5 = 0 and d3 = 3. In either case, the inequality
01 + 03 = q = 2 is satisfied, as desired.

Suppose ¢ = 3. Let 6 = 0; = d3. We have
20 + (53 = |Pﬁ7q(h1,h2)| = q2 — 1.
Observe § < '122—_1 and that

2_1 2_1
S+0=g—-1-0=¢—-1-1 > - —.

Since ¢ = 3, we get fT*l > ¢. This completes the proof. O
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Appendix C: Modules over PID’s

Let R be a PID and let K be the fraction field of R. Let p be an irreducible element
in R and let (p) be the prime ideal generated by p. Let n > 1 and let V = K™. Let
vy : K — Z U {00} denote the p-adic valuation of K.

Theorem C.0.1. Let vy,...,v, € R" and assume that vy, ..., v, are linearly inde-
pendent over K. Then there exist wy, ..., w,, € R" satisfying the following conditions.

1. vi,...,vy and wy, ..., w, span the same subspace of K™.
2. wy, ..., Wy are linearly independent over R/(p).

We shall give two proofs of this theorem.
Proof # 1: We have m < n because vy, ..., v, are linearly independent over K. Let
v; = (@1 ai) € R*, 1 <1 < m, and let A = (a;;) be the corresponding m x n
matrix.

Denote the (::L) m X m submatrices of A by A, where 1 < a < (:1) Since each
entry of A lies in R, we have v,(det(A,)) = 0 for every a. Let

m

¢(A) = min {vp(det(Aa)) l1<a< (”) } .

Thus ¢(A) = 0. Since vy...,v,, are linearly independent over K, at least one
det(A,) # 0, and thus ¢(A) # 0.

Suppose that vy,...,v,, are linearly dependent over R/(p). Then there exist
bi,...,by, € R, where at least one b; ¢ (p), such that bjv; + -+ + by,v, = pv for
some v € R". We can assume that b, ¢ (p). In particular, b, # 0. Let

{U,;, 1<i<m-—1
w; =

v,  1=m.
Then vy,...,v,, and wy, ..., w,, span the same subspace of K. Note that wy,...,w,, €

R™.

Let B, C' denote the m x n matrices associated to

Wiy .oy Wm—1, PWi,

and
Wiy vy, Wn—1, W,
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respectively. The first m — 1 rows of A, B,C are the same. We have det(B,) =
b det(A,) and det(C,) = p~1b,, det(A,) for each a. Since b, ¢ (p), we have ¢(B) =
c¢(A) and ¢(C) = ¢(A) — 1. We have ¢(A) = ¢(B) = 1 because pw,, € pR", and thus
c(C) = 0.

If wy,...,w, are linearly independent over R/(p), then we are done. If not, then
we repeat this construction. The process must end because ¢(A) = 0 at each step.
Thus eventually we come to a matrix A with ¢(A4) = 0. For such a matrix, we have
det(A,) ¢ (p) for some «, which means that the vectors are linearly independent over

R/(p).

Proof # 2: Let M = R™. Then M is a finitely generated module over the PID R. Let
N be the R-submodule of M generated by vy, ..., v,. Thatis, N = R-vi+---+ R-v,,.
[6, Chapter 12, Theorem 4, p.460] implies that there is an R-basis 4, ...,y, of M
and nonzero elements dy,...,d,, € R such that dyyi,...,d,y, is an R-basis of N.
That is, N =R-dyy1 + - -+ R - dnym-

The subspace of K™ spanned by vy, ...,v,, is the same as the subspace spanned
by diy1, - .., dnym- Since each d; # 0, it follows that the subspace of K" spanned by
vy, ..., Un is the same as the subspace spanned by vy, ..., Ym.

We now show that y1,...,y, are linearly independent over R/(p). Suppose that
there exist ay, ..., a, € R, where at least one a; ¢ (p), such that a;y; + - - -+ a,y, = pv
for some v € M. Since y1,...,y, is an R-basis of M, we can write v = byy; +-- -+ by,
where each b; € R. Then ayvq + -+ + anyn = p(b1ys + - - - + byyn), which implies that
a; = pb; for 1 < i < n, a contradiction.

Thus y1, . . ., Y, are linearly independent over R/(p), and so the same holds for the
subset Y1, ..., Ym-
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Appendix D: The Discriminant of a Binary Homogeneous Form

D.1 General Definition

We begin by defining the discriminant of an arbitrary homogeneous form P = P(X,Y)
over an infinite field K and show that our definition is well-defined.

Definition D.1.1. Ouver the algebraic closure K, P splits into linear factors:

P(X, Y) = ﬁ(OCZX — B@Y) aiaﬁi S ?

i=1
The discriminant of P, denoted disc(P), is defined as
dZSC(P) = n(ajﬁi — Oéiﬁj)2.
i<j
For this definition to be well-defined, we need to show that it is independent of

the factorization of P into linear factors. To this end, suppose

n

P(z,y) = | [(afX = 5}Y)

i=1
is another factorization of P, where o, ! € K. We consider two cases.

(i) Suppose |[ ,a; # 0. Observe that P(1,0) = [[' ;o = ][, ,ai Thus
11, o # 0. We have

n

[TeX — 5Y) = ] Jalx — av).

i=1 =1

(H %) [10X ~ (3 /ay) = (H a;> [Tex - aalyy).

i-1
Since [[i—, a; = [ [\, o}, we obtain

n n

[ (X = (Bi/a)Y) = [ [(X = (Bi/a})Y).

i=1 i=1
Take Y =1 to get

n

TT00— 8o = [ [ — 8/,

i=1 i=1
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There is some reordering of the indices so that

6 g
o ol

Let ~; = Z—/ Then «o;7v; = o and
B _B_ B

= _I .
a; % ary;

ﬁt}lis implies that 8/ = ~;0;. Also, since [[_,; = [[i_; @}, we get that
i1 = 1. We have

n n

P(z,y) = H(a;X — BY) = H(%’OQX —%B:Y)

i=1 =1

so that the discriminant of P with respect to this factorization is

disc(P) = H (Vv Bi — vvicuBi)? -

1<j
= H (vj7:)* (B — iB;)?) -
1<j
= <ﬁ %2(711)> n(%ﬂi — i)’
i=1 1<J
= H(%‘ﬁi — a;3)%.

This is the discriminant of P with respect to our original factorization. We
conclude that our definition of disc(P) is well-defined in this case.

(ii) If [ [, oz = 0, then factor out the highest power of Y from P:
P(X,Y)=Y*P'(X,Y).

Now if P/(X,Y) = [ [/ (af/X — BI'Y), then | [, o # 0. Apply case (i) to P’
to finish the proof.

Lemma D.1.2. Let P(X,Y) € K[X,Y] be a homogeneous form over an infinite field
K. Then P(X,Y) has repeated linear factors if and only if disc(P) = 0.

Proof. Notice that

disc(P) =0 < det [%j g:] =0

— (o, ;) and (o, ;) are linearly dependent.

It follows that disc(P) = 0 if and only if two of the factors in P = | [\, (a;z — Biy)
differ by a scalar multiple. O]
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Theorem D.1.3. Let R be an integral domain and F be its fraction field. Assume
char(F) # 2. Let P(X,Y) € F[X,Y] be a homogeneous form. Then the following
statements hold.

1. If P(X.Y) € R[X.,Y], then disc(P(X,Y)) € R.
2. disc(P(X,Y)) is a polynomial over Z in the coefficients of P.

Proof. (1) If P(X,Y) =0, then disc(P(X,Y)) = 0 € R. Now assume that P(X,Y) #
0. Then

P(X,Y) =] [(\X — wY) € R[X,Y],
i=1
where P(X,Y) is a homogeneous polynomial of degree n with \;,p; € F% and
If A\; (or ;) is zero for more than one 4, then (D.1.2) implies that disc(P(X,Y)) =
0. Thus without loss of generality, we may assume that at least n — 1 \;’s and at
least n — 1 p;’s are nonzero.

Case 1. Suppose that \; is nonzero for each i, 1 <i < n. Then we can rewrite

P(X,Y)=Y" ﬁ(Aé = 1)

=1

X 7 n
Let Z = ?,ti = M—, and let o, = [[\_; A\s € R. Then «,, # 0. Let

Ai

n n

p(Z2) =[[NZ =) = nZ" + -+ ag = oy | [(Z ).

i=1 i=1

Then p(Z) € R[Z] is polynomial of degree n and P(X,Y") is the homogenization of
p(Z). Let p'(Z) = Y7} BiZ" denote the derivative of p with respect Z. By [10,
Proposition 8.5, page 204], the resultant of p, p’ is

Res(p,p) = (=1)""""2a, D(p(2)),

where

By the definition of resultant in [10, page 200], Res(p,p’) is the determinant of
the matrix Ay,_1 below whose entries are determined by the coefficients of p and p'.
This implies that Res(p,p’) € R.
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Qp Oy N Qp

Oy Oy q Ce (%))
671—1 Bn—2 <o BO
/Bn—l 571—2 s BO

ﬂnfi ) 67172 cee BO

The matrix As,—1 is a (n + (n—1)) x (n + (n — 1)) matrix with entries in R and
where the blank spaces are filled with zeros. Note that the first column of A,,_; is
divisible by «, in R because f3,_1 = na,,. Therefore, Res(p, p) is also divisible by «,.
This implies that

@ [T (=) = Dp(2)) = (-1 20, Res(p,pf) € R

1<i<j<n

Next, since oy, = [ [}, \; we note that

o - (i) (e 2)

1<i<j<n 1<i<j<n ¢

2 2
H 1—[ Hi  Hy
<1<z‘<j<n > 1<i<j<n Ai A

= ] Qg = Ai)* = dise(P(X, ).

1<i<j<n

Putting these equations together give disc(P(X,Y)) € R.
Case 2. Suppose that A\, = 0. Then we can assume that p,, = —1. Then

P(X,Y) = Yﬁ(/\iX — 1Y),

i=1

Let P (X,Y) = H?:_ll(/\iX — 11;Y'). Then P(X,Y) e R[X,Y]. Since \; #0, 1 <i <
n — 1, the proof of Case 1 shows that

[T Qu—Nw)e R

I<i<j<n—1

Since H;:ll Xi€ R, and A\, =0, u,, = —1, we have

disc(P(X,Y)) =[] iy — Ajpa)”

1<i<g<n
n—1

=T]=2) J] wy—Nm)’ e R
i=1

1<i<j<n—1
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(2) Suppose P(X,Y) has degree n. We can write P(X,Y) = >, . a; X'V,
where a;; € F. Let t;; be variables over Z (algebraically independent over Q). Let
P(X,Y) = Yy, tyXY7. Let R = Z[{t;}]. Then P'(X,Y) € R[X,Y]. By (2),
we have disc(P'(X,Y)) € R = Z[{t;;}]. By substituting ¢;; with a;;, we get that
disc(P(X,Y)) is a polynomial over Z in the coefficients of P. O

D.2 The Discriminant of det(\Q; + uQ-)

Let @1 = Q1(Xy,...,X,) and Q2 = @Q2(X4,...,X,) be quadratic forms over an
infinite field K. We define

F(x,y;Q1,Q2) = F(x,y) = det(xQq + yQ-)

so that [ is a homogeneous form in the variables z and y. We assume that F(z,y)
does not vanish identically over K and F(z,y) splits into distinct linear factors over
K, where K denotes the algebraic closure of K. Therefore

ﬁ z 051‘761' EE.

=1

Since K is an infinite field, the zero polynomial is the only polynomial that vanishes
identically over K. We are assuming that F(x,y) does not vanish identically over K;
therefore, we deduce that there is some form @ in the pencil (Q1, Q)2) that has rank
n. Then (Q1,Q2) = (Q, Q") for some form @' in the pencil. This shows that we can
assume rk(Q;) = n from the start.

Since F'(1,0) = det(Q;), we deduce that det()) is the coefficient of 2™ in F(x,y),
hence det(Q1) = [ [i—, a;. Factoring out det(Q1) from F(z,y) yields

F( det Ql ﬁx_ ﬁz/al
=1

Let \; = B;/a; Now, unlike Heath-Brown, we will define A(Q1,Q2) in the following
way:

Definition D.2.1.

A(Q1, Q) = det(Q)*™ V] [(Ai — A)?

i<j

It may not be obvious that this definition is independent of the factorization of

F. We will show that A(Q1,Q2) = disc(F). This will imply that our definition
of A(Q1,Q2) is well-defined since we already showed that the discriminant of F' is
independent of the factorization of F'.

Proposition D.2.2. We have A(Q1, Q2) = disc(F).
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Proof. Observe that

A(Q1, Q2) = det(Q)* I T T(Ai — Ay)*

_ oy 77 (B B\

— det(Q) 13 (ai aj) :

B 2(n—1) ;i — aiB\’
— det(Q) E (—ai% ) .

For each i, there are n — 1 j’s such that ¢ < j. Thus, as the product runs through
pairs (i, j) with ¢ < j, each «; will appear n — 1 times. This implies that

2n—1) aifi— iy \
A(Qla QQ) = det(Q) 1_[ n—1_n—1 ’

.oon—1
iy \a1 an

2
N 2n-1) (a;B8; — cif;)
= det(Q) n 2(n-1)_2(n-1) 21"
a; an,

i<j Y1

2(n—1)
— det(Q)*V (;Oén) n(ajﬁz’ — a; ).

Q1 - - i<

Since [ ]I, a; = det(Q), we see that det(Q)?" V) cancels above, and so we conclude
that
A(Q1,Q2) = H(Oéjﬁi - Oéiﬁj)2- (+#)

1<J
From this formula, we see that A(Q;,Q2) = disc(F(z,y)), which is what Heath-

Brown uses as the definition of A(Q1, Q2).
O

Let T e GL(K™) and U € GLy(K). If
a b
v=[e )

(Q1,Q2)" = (aQ1 + bQ2, cQy + dQs).
We define (Ql, QQ)T by

then

(@1, Q2)r = (Q1(TX), QT X)).
Corollary D.2.3. Given T € GL(K") and U € GLy(K), we have

A((Q1,Q2)7) = (det(U))" "~V (det(T))" "D A(Q1, Qo).
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Proof. Tt suffices to show that A(Qy, Q2)Y = (det(U))" ™ YA(Q1,Q2) and A(Q1, Q2)r =

(det(T))* " VA(Q1, Q).

(1) A(Q1,Q2)Y: Let Q) = aQy + bQy and Q) = cQ; + dQ>. Observe that
det(zQ + y@Q5) = det(z(aQq + bQ2) + y(cQ1 + dQ-)).
= det((az + cy)Q1 + (xb + dy)Q2).
= F(azx + cy,zb + dy).

—

(avi(azx + cy) — Bi(xb + dy)) .

((aci; — bBs)x — (df; — cay)y) .
1

1=
n

1=

Let o = aa; — bf; and B = df; — ca;. Then
A@, @) = | ()8 = i),

i<j

Let A = [_ac _db], B = [%j Z] and C = [5: Bj] Then

o3 — ;B = det(C) = det(A)det(B) = det(U)det(B).
It follows that
AQ, @Q4) = [ (det(U)*(ayB; — cif3y)?) -
1<<J
n(n—1)
= (det(U) ) > A(Q1 Q).
= det(U)" A(Q1, Q2).

(2) A(Q1,Q2)r : Let A be the matrix of T': K™ — K™ with respect to the standard
basis for K™ so that T(X) = AX for X € K™. Let M(Q1) = By and M(Q2) =
Bs so that

Q1(X)=X"B1X and Qy(X)=X"B,X.

Then
Q(TX)=XTATBIAX and Qo(TX) = XTATB,AX.

Observe
det (zQ1(TX) + yQs(TX)) = det(zAT BiA + yAT By A).
= det(AT)det(xB; + yBy)det(A).
= det(A)*F(z,y).
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Therefore
A(QUTX), Qo(TX)) = [ ] (det(A)"(a;8: — asy))”.

— (det(A >8/”) T AQ, Q).
— det(A)* ™ DA(Q1, Qo).

— det(T)* " DA(Q1, Q2).

]

Proposition D.2.4. Let K be the completion of a number field k with respect to a
valuation v and Ok the valuation ring. Suppose Q1 = Q1(X1,...,X,) and Qy =
Q2(X71, ..., X,) are quadratic forms with coefficients in O and that T(Q1) = n. If
F(z,y) = det(zQy + yQ2) has coefficients in Ok, then A(Q1,Q2) = disc(F) € Ok.

Proof. First note that the valuation v : K — Z U {00} extends to v : K — Z U {oo}.

Over K, we have
n

F(z,y) = n(aix —Biy) i, Bie K.

i=1

Since rk(Q1) = n, we have that [, a; # 0. Let

_ Jai it v(a) < (B)
r; = < v

If v(o;) = v(B;), then arbitrarily pick r; to be one of «; or ;. If B; = 0, then
v(ozi) < v(B;) = oo, in which case r; = «;. It follows that none of the r;’s are zero.

a;/r; and 5' = B;/r;. Then v(a}),v(5!) = 0 and

Fa,y) = [ [(raje — riBly).

i=1

=Tir2---Tnp H(a;x — Bly).
i=1
Let G(z,y) = | |, (abx — Bly) so that F(z,y) = rire---1,G(x,y). Note that G(z,y)
has coefficients in Ok. By how we defined r;, we see that for each ¢, either o =1
or B = 1. It follows that if F is the residue field, then each monomial o}z — fly is
nonzero in F[x,y], hence G is nonzero in F[z,y]. Then G has a coefficient that is
a unit, say u. Since the coefficients of F' are in Ok, we see that riry---r,u € Og.
Because u is a unit, we get ry7ry-- -7, € Og. Since

A(Q1,Q2) = disc(F) = (ry -1, V| [ (e8] — o))

i<j

we conclude that A(Q1,Q2) € Ok.
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D.2.1 Over an Integral Domain

Let R be an integral domain and let I’ be its fraction field. Assume that char F' #
2. We define an invariant .#(f, g) associated to a pair of quadratic forms f,g €
F[Xy,..., X,

Let f,g € F[Xi,...,X,] be quadratic forms. Let M, M, be the symmetric
matrices associated with the forms f, g, respectively, and let

P(X,Y) = det(XM, — Y M;).

If P(X,Y) is not identically zero, then

n

P(X,Y) = [ OuX = i)

i=1

where \;, p; € F and (\;, i1;) # (0,0), 1 <@ < n.

By unique factorization in F[X,Y], the linear factors \;X — ;Y are uniquely
determined up to multiplication by nonzero elements in F.

If P(X,Y) is identically zero, then we define .Z(f,g) = 0. If P(X,Y) is not
identically zero, then we define

I = [T oy = M) (D2.1)

1<i<j<n

We now show that this expression is well-defined. Suppose that (\;, i;) is replaced
by (¢; i, cijt;) where ¢; € F' is nonzero, 1 <4 <n, and [[;_; ¢; = 1. Then

H ((cidi)(cjpg) — (¢A) (cipa))?
= n (cic)? H (Nitty — Njpi)®

1<i<j<n 1<i<j<n
= n 2nh) n (Nitty = Nji)®
=1 I<i<j<sn
— 2
= 1_[ ity — Ajfti)”
<

Remark: Note that by definition D.1.1, we have

F(f,g) = disc(det(X f — Yg)).

Theorem D.2.5. Let f,g € F|X1,...,X,]| be quadratic forms. Then the following
statements about S (f,g) hold.

1. Ifa,b,c,de F and T : F™ — F™ is an an invertible linear transformation, then

S (afr + bgr, cfr + dgr) = (ad — bc)"(” 1 det(T) F(f,9).
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2. If f,g € R[Xy,...,X,], then Z(f,g) € R.
3. I(f,q) is a polynomial over Z in the coefficients of f and g.
Proof. (1) First we show that .#(fr, gr) = det(T)* ™Y 7(f, g).

det(X Mg, — Y Mg,) = det(XT'M,T — YT'M;T)
= det(T"(XM, — Y M;)T) = det(T)* det(X M, — Y M)
= det(T)’P(X,Y) = det(T)* | [(\X — Y).

i=1

To compute & (fr,gr), we replace A; with \| = det(T)?\; and py with uf =
det(T)?*uy.  Since Njp; — Ny = det(T)*(A\p; — \jpa), this gives I (fr,gr) =
det(T)"=.7(f, g).

Let a,b,c,d € F. We now show that

F(af +bg,cf +dg) = (ad — bc)"("*l)f(f, g)-

det(X (cM; + dM,) — Y (aM; + bM,))
det((cX —aY )My — (—dX + bY ) M,)

(\(eX — aY) — py(—dX + bY))

Il

-
I
—_

((eAi + dpy) X — (aX; + buy)Y).

Il

-
Il
—

This gives

F(af +bg,cf + dg)
= | ((ehi+dp)(ad; +bpy) — (cj + dpy)(ad; + b.))?

1<i<j<n

= |1 (=lad=be)(hipy = M)’
1<i<j<n

= ] (ad—=be)*(Nip; — Ajpui)?
1<i<j<n

= (ad — be)"™ .7 (. ).

(2) Since f,g € R[Xy,...,X,], we have P(X,Y) € R[X,Y]. By Theorem D.1.3,
F(f,g) = disc(det(P(X,Y)) € R.

(3) Suppose that f = Zlgigjgn ti;X;X; and g = leisjsn tngin where {t;;} and

{t;;} are variables over Z (algebraically independent over Q). Let R = Z[{t,t},}].
By (2), #(f,9) € R = Z[{ti;, t};}], which proves (3). O
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Appendix E: Complete Discretely Valued Fields

Lemma E.0.1. Let R be a commutative ring and let M = R™ be the free R-module
of rank n. Let f : M — R be a quadratic map with associated symmetric R-bilinear
form By : M x M — R given by Bf(v,w) = f(v+w) — f(v) — f(w). Let {eq, ..., en}
be a free R-basis of M. Let A = (a;;) € Muxn(R) be the matriz given by

f(ei) ifi=]
Q5 = Bf(ei,ej) ZfZ <]
0 1> 7.

The following statements hold.
1. f(v) =v'Av for all v e R".
2. By(v,w) = w'(A+ A)v for all v,w e R".
Proof. Let v = Z?zl c;e; € M where each ¢; € R. Then

vt Av = Zn: an a;jcicj = Zn: fle)cd + Z By(e;, e)cic;
i=1

i=17j=1 1<i<j<n

= flcreg + -+ + cpen) = f(v).

Let v,w € R™. Then

By(v,w) = f(v+w) = f(v) = f(w)
= (v +w)"A(v + w) — v Av — w' Aw
= w'Av + v' Aw = w' Av + (v Aw)" = w' Av + w' Aty
= w'(A+ A").

]

The rank of a quadratic map f is defined to be the rank of B;. Thus the rank of
f is the rank of the symmetric n x n matrix A + A’

Let v : K — Z u {0} be a nontrivial valuation. We shall assume that v is
surjective. Let R be the ring of integers of (K,v). Thus R = {a € K | v(a) > 0}. Let
m be the unique maximal ideal of R. Thus m = {a € R | v(a) > 0}. Let k be the
residue field of (K, v). Thus k = R/m. Note that K is the fraction field of R.
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We shall assume that K is complete with respect to this discrete valuation. We
abbreviate this information by saying that (K, v, R,m, k) is a complete discretely
valued field.

For f,g € R[zy,...,z,], we write f = g mod m" to mean

f=gmodm"R[x,...,2,]

Proposition E.0.2. Let (K,v, R,m k) be a complete discretely valued field. Let
f € Rl[xy,...,z,] be a quadratic form of rank n over K.

There exists N € Z~q that depends on f so that if g € R[x1, ..., 2,] is a quadratic
form satisfying f = g mod m”Y, then g has rank n over K and f is equivalent to
g over R; that is, there exists C' € Myxn(R) such that C is invertible over R and

f(Cx) = g(x).

Proof. Lemma FE.0.1 implies that there exists A € M,,«,(R) such that f(z) = z'Az.
Since f has rank n, it follows that A + A? has rank n and thus A + A? is an invertible
matrix over K.

Let (A + A"~ = (b), bjj € K. Let v(det(A + A")) = M. Then M € Z=. Since
Adj(A + A (A + A" = det(A + AN,

it follows that
(A+ A7 = det(A + AY)7TAd (A + AY).

Therefore v(b;;) = —M for each entry b;;.

Let N = 2M +1. We assume that g = f mod m". Let Cy = I,,. Then f(Co(z)) =
f(x) = g(x) mod m™.

Suppose i = 1 and we have found by induction C;_; € M, «,(R) such that C;_;
is invertible over R and g(z) = f(C;_;z) mod mN*+i-1,

Lemma £.0.1 implies that g(x)—f(C;_1x) = ' Dx for some D € M,,»,(mV T 1R).
Let

T = (A+A)HCL ) 'D e Myyn(m™ MY RY = M, (mM T R).

Since f(T;z) € m*M 2 R[xy, ..., z,] and 2M + 2i = N + 4, the definition of T} implies
that

f(Ciciz + Tix)
f(Ciyz) + f(Tix) + 2'CL (A + AT
= f(C;12) + 2'Cl | (A+ ATz
f(Ci_12) + 2'Dx = g(x) mod m" .

Let C; = C; 1 + T;. Then g(z) = f(Csz) mod m™¥*¥ and we have C; = C;_; mod
mMHR.

The matrix C; is invertible over R because C; = Cy = I,, mod m and thus det C;
is a unit in R.

Since C; = C;_; mod mM ™ R each entry in {C;}2, is a Cauchy sequence. Thus
C = lim; ,,, C; exists because R is complete. It follows that C' € M, (R). Since
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C = Cy = I, mod m, we have det(C') = 1 mod m, and so det(C) is a unit in R. It
follows that C' is invertible over R.
Since g(x) = f(Cijz) mod mN*? for every i > 0, it follows that

g(x) = lim f(Cia) = f(lim Cir) = F((lim Co)) = (C)
Therefore f and g are equivalent over R.
To show that g has rank n over K, note that since g(x) = f(Cxz), we have
g(v) = f(Cv) = (Cv)'A(Cv) = v'(CTAC)v
for all v e K. Therefore, the rank of g is the rank of the matrix
(C'AC) + (C*'AC)! = C'AC + CTA'C = C*H(A + AYC.

Since A + A" has rank n and C' is invertible, we conclude that C*(A + A")C has rank
n. [l
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Appendix F: Artin-Schreier Subgroup

F.1 Arf Invariant

We begin with a general concept that holds over fields k with char(k) = p > 0.

Let k be a field with char k = p > 0. Let p(k) = {a” —a | a € k}. Then p(k)
is an additive subgroup of k because (a —a) + (b’ —b) = (a + b)? — (a + b) and
—(a? —a) = (—a)? — (—a).p(k) is called the Artin-Schreier subgroup of k.

Lemma F.1.1. If k is a finite field with char(k) = p, then |k : p(k)] = p.

Proof. Let 0 : (k,+) — (k,+) be defined by 6(a) = a”» — a. Then 6 is an additive
homomorphism because the calculation above shows that 0(a + b) = 6(a) + 6(b).
It follows that im(#) = @(k). We have ker(d) = F, because a? —a = 0 if and
only if a? = a, which holds if and only if @« € F, < k. Thus |ker(d)| = p, and so

p = | ker(9)| = %. This gives [k : p(k)]| = p. O

Lemma F.1.2. Let k be a field with char k = 2.

1. If t € k, the quadratic form z* + zy + ty* is isotropic over k if and only if
te p(k).

2. If r + p(k) = s + p(k), where r,s € k, then the quadratic forms x* + zy + ry*
and x% 4+ xy + sy? are equivalent over k.

3. If k is a finite field with char k = 2, then the quadratic forms x° + zy +ry? and
22 + xy + sy? are equivalent over k if and only if v + p(k) = s + p(k), where
r,s€k.

Proof. We first prove (1). Suppose that 2% + xy + ty? is isotropic over k. Then there
exists a, b € k, not both zero, such that a® + ab+ tb*> = 0. If b = 0, then a = 0, which
is excluded. Thus b # 0. Then (%)2 + ¢ +1t = 0, which implies that ¢ € p(k) because
char k¥ = 2. Now suppose that ¢t € p(k). Then t = ¢* — ¢ for some ¢ € k. Then

24+ c-1+1t-12 =0, which implies that 2 + zy + ty? is isotropic over k.

Next, we prove (2). Let s = r+c?—c where ¢ € k. Then (z+cy)*+ (x+cy)y+ry? =
2+ xy+ (r+c+c)y? =2+ zy + sy’

To prove (3), suppose that k is finite and 22 + xy + ry? and 22 + zy + sy? are
equivalent over k. Then either both are isotropic over k or both are anisotropic over
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k. By Lemma F.1.1, we have k = p(k) u (t + p(k) for some ¢ € k,t ¢ p(k). Then by
(1), either r, s € p(k) or r,s € t + p(k). In both cases, we have r + p(k) = s + p(k).
[

Proposition F.1.3. Let k be a field with char(k) = 2. Let f(z,y) = ax® + bxy + cy?,
where a,b,c € k,b # 0.
1. Then f is equivalent over k to a'z® + xy + c'y? for some a',c € k.

ac,,2

2. If k is perfect, then f is equivalent over k to x* + zy + =Y.

Proof. To prove (1), observe that az® + bry + cy* = az® + x(by) + 5 (by)?. Thus we

may take a’ = a and b' = 5

As for (2), since f # 0, an invertible linear change of variables lets us assume that
f(1,0) # 0. Thus we can assume that a # 0. If k is perfect, then k = k%, so \/a € k.
Then

az® + bzy + cy® = (Vaz)® + (Vax) (%y) + g (\%y)Q

]

Corollary F.1.4. Let k be a finite field with char(k) = 2. Then there is a unique, up
to equivalence, anisotropic binary quadratic form of rank 2 of the shape ax?*+bxy +cy?
with b # 0.

Proof. By Proposition F.1.3, any anisotropic binary quadratic form over k is equiv-
alent to one of the form 22 + zy + ry?. By Lemma F.1.2, any two such anisotropic
binary quadratic forms over k are equivalent. Note that det(z? + xy +ry?) = —1 # 0,
hence 22 + zy + ry* has rank 2. O

Definition F.1.5. Ifb # 0, the Arf invariant of ax®+bxy+cy? is defined by Arf(f) =
% + (k). The Arf invariant is not defined if b = 0.

It is not easy to show that the Arf invariant is an invariant. Lemma F.1.2 gives
an argument for the case of a finite field.

Proposition F.1.6. Let k be a field with char(k) = 2. Let

f(z,y) = ax® + by + cy?
where a,b,c € k,b# 0, and let

g(z,y) = f(mx + ny, pr + qy) = Az® + By + Cy?
where m,n,p,q € k and mq —np # 0. Then B # 0 and

AC  ac amn + bmqg + ¢ 2 amn + bmq + ¢ ac
_ ( q pq) N atepd e g

2 b(mg + np) b(mg + np) b?
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The proof is by a brute force calculation. We have
Proof.
A =am® + bmp + cp?,
B = b(mq + np),
C = an® + bng + cq*.
One shows directly that

(am2 + bmp+ sz) (an2 + bng + qu)
=ac(mq + np)* + (amn + bmq + cpq)?
+ b(mq + np)(amn + bmq + cpq)
L]

Corollary F.1.7. Let k be a field with char k = 2. The Arf invariant of a binary
quadratic form is an invariant. That is, if m,n,p,q € k and mqg — np # 0, then

Arf (ax2 +bxy + cyz)
= Arf (a(mz + ny)® + b(mz + ny)(pzx + qy) + c(pz + qy)?) -

F.2 Applications

Let K be a field with char(K) = 2 and let L be a finite extension of K. Let p(K)
and p(L) denote the Artin-Schreier subgroups. Thus p(K) = {a* + a | a € K} and
similarly for L. Then p(K) is an additive subgroup of K and similarly for L. Then
the (additive) quotient group K /p(K) is defined.

Let tr : L — K denote the trace map. From here on, assume that K is a finite
field with |K| = ¢. Let [L : K] =n. Then |L| = ¢". Note that a?" = a for all a € L.

Lemma F.2.1. Let be L. Then be (L) if and only if tr(b) € p(K).

Proof. 1t a € L, then tr(a) = a+a%+a? +---+a?" . Since (tr(a))? = tr(a), it follows
that tr(a) € K.

It is easy to check that tr : L — K is an additive homomorphism. We have
[ker(tr)] < ¢"~! because a polynomial of degree ¢"~! has at most ¢"~! roots. Further,
we have |im(tr)| < ¢ because |K| = ¢g. By the first isomorphism theorem, L/ker(tr) =
m(tr). It follows that

[ker(tr)] - [im(tr)| = [L] = ¢".

Therefore, |[ker(tr)| = ¢"' and |im(tr)| = ¢. This shows that tr is a surjective addi-
tive homomorphism.

Next, we will show that [p(L)| = ¢"/2 and |p(K)| = ¢/2. The map K — K given
by z — z? + x is an additive homomorphism because char(K) = 2. Note that the
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image of this map is p(K). The kernel has order 2 because z? + z = 0 if and only if
x =0 or x = 1. Thus, the image has order ¢/2. Likewise, the map L — L given by
x — x? + z is an additive homomorphism such that the kernal has order 2 and the
image, p(L), has order ¢"/2.

The next step is to prove that tr(p(L)) < p(K). We begin by showing that
tr(a?) = (tr(a))?. Note that since char(L) = 2, it follows that ¢ is a power of 2.
Observe that

(tr(a)? = (@ +a’ + -+ a7 )2
= a2 + a/zq + « o + a2(qn71)'
= a2 + (a2)q 4+ -4 (a2)q
= tr(a?).

n—1

The containment tr(p(L)) < p(K) follows from the equations
tr(a® + a) = tr(a®) + tr(a) = (tr(a))? + tr(a) € p(K).

Because tr : L — K is a surjective homomorphism, and the projection K —
K/p(K) is a surjective homomorphism, it follows that the composition L — K —
K /p(K) is a surjective homomorphism from L to K/p(K). This induces a surjective
homomorphism L/p(L) — K/p(K). Since this map is surjective, and |L/p(L)| =
|K/p(K)| = 2, it must also be injective. In particular, if b € L, then b € p(L) if and
only if tr(b) € p(K).

0
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