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ABSTRACT OF DISSERTATION

Properties of Skew-Polynomial Rings and Skew-Cyclic Codes

A skew-polynomial ring is a polynomial ring over a field, with one indeterminate
x, where one must apply an automorphism to commute coefficients with x. It was
first introduced by Ore in 1933 and since the 1980s has been used to study skew-
cyclic codes. In this thesis, we present some properties of skew-polynomial rings and
some new constructions of skew-cyclic codes. The dimension of a skew-cyclic code
depends on the degree of its generating skew polynomial. However, due to the skew-
multiplication rule, the degree of a skew polynomial can be smaller than its number of
roots and hence tricky to predict. In Chapter 2, we introduce tools offered by Leroy
in 2012 which connect the degree of a skew polynomial to linear independence of field
elements which are related to the roots. In Chapter 3, we study a particular type
of skew polynomial called a W-Polynomial. These are skew polynomials of smallest
degree which vanish on some set of field elements. More specifically, we classify when
skew polynomials of the form xn − a are W-polynomials. In Chapter 4 we will make
use of this work to study more general skew-cyclic codes than in the current literature
and establish the skew-Roos bound for their distance. Finally, in Chapter 5, we study
subfield subcodes of skew-cyclic codes, and compare skew-BCH codes of the first and
second kind.
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Chapter 1 Introduction

In algebraic coding theory, we use vectors to represent shared information; any collec-
tion of such vectors is called a code. Often times, errors occur when these messages
are sent along a noisy channel (e.g. satellite). In order to correct these errors, it can
be very useful to know the distance between any two vectors in a message. Our work
strives to guarantee a high minimum distance for a code. However, we would also
prefer to have a code with a high dimension, so we can represent a larger amount of
information. Naturally, in a higher dimensional code the vectors are closer together,
so attaining a high dimensional code with a high minimum distance is nontrivial.
Another task we focus on is constructing a code whose minimum distance reaches the
upper bound placed by the dimension.

One class of codes that is known to have particularly nice error-correcting properties
is cyclic codes. They were introduced by Prange in 1957 (see [19]) and they are given
by ideals of the quotient ring Fqs [x]/(xn − 1). Here Fqs denotes the field of order qs

where q is a prime power (it will become clear later why we represent the finite field
in this form). In the last decade, much work has been done to generalize classical
cyclic codes to skew-cyclic codes (see [3]). The ambient space for skew-cyclic codes
is given by the quotient module Fqs [x;σ]/•(f) where Fqs [x;σ] is the skew-polynomial
ring induced by an automorphism σ on Fqs (typically the q-Frobenius map), and •(f)
is the left ideal generated by a skew polynomial f of degree n. The quotient struc-
ture Fqs [x;σ]/•(f) is isomorphic to the vector space Fnqs . Hence, we are able to define
skew-cyclic codes as follows. A linear code in Fnqs is (σ, f)-skew-cyclic if it is a left
submodule of the quotient structure Fqs [x;σ]/•(f).

One can easily show that each skew-cyclic code is generated by a right divisor,
g, of the modulus f . Then, the dimension of the code is given by n− deg(g). In our
work, we place conditions on the (right) roots of g to guarantee a minimum distance
for the skew-cyclic code generated by g. Due to the skew-multiplication rule, a skew
polynomial in Fqs [x;σ] may have more roots than suggested by its degree. Hence,
the degree of the smallest skew polynomial g having a prescribed set of roots can
be difficult to predict. However, this fact also tells us that the family of skew-cyclic
codes is much larger than the family of classical cyclic codes.

This dissertation studies different properties of skew-polynomial rings and its im-
pact on skew-cyclic codes. In Chapters 2, 3, and 4 we adapt and expand on skew-
polynomial ring theory presented in [9], [14], [15], and [16]. In Chapters 5 and 6,
we broaden some results from [1] and [20] which construct skew-cyclic codes of a
prescribed distance (and in some cases, a prescribed dimension). Each chapter is
described in more detail below.
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In Chapter 2, we present background material on skew-polynomial rings and
linear codes. Skew-polynomial rings were first introduced by Ore in his seminal paper
from 1933 (see [18]). When the context is clear, we drop the prefix skew and refer
to elements of Fqs [x;σ] as simply polynomials. Evaluation of these polynomials was
presented by Lam in [12]. He makes use of the i-th norm function Ni : Fqs → Fqs
defined by Ni(a) =

∏i−1
j=0 σ

j(a). In this chapter, we expand on some properties of
this function. Most notably, for any β ∈ F∗

qs we classify the smallest value i where
Ni(β) = 1. This property plays an important role in the distance theorems presented
in Chapter 6.

For linear codes, we use two ways of measuring distance: the Hamming metric,
and the rank metric. The Hamming distance, dH , is measured by the number of non-
zero components of a vector. The upper bound on the Hamming distance is known as
the Singleton bound: for a code C ⊂ Fnqs of dimension k, we have dH(C) ≤ n− k+1.
Codes that reach this upper bound are of particular significance and are called max-
imum distance separable (MDS). The rank distance, dR, of a vector (v1, ..., vn) ∈ Fnqs
is the dimension of the space ⟨v1, ..., vn⟩Fq . There is also a Singleton-like bound for
the rank metric (see Proposition 2.3.3). Codes that reach the Singleton-like bound
for the rank metric are know as maximum rank distance (MRD) codes.

In Chapter 3, we present material from [16] in a slightly more streamlined way.
This paper uses σ-semi-linear maps to develop the theory of Fqs [x;σ]-modules, such
as the quotient structure we work with for skew-cyclic codes. One of the results of
this paper connects the degree of a skew polynomial to linear independence of field
elements related to its roots. Indeed, if we let α0, . . . , αn−1, γ ∈ F∗

qs and set pi = γαq−1
i

for i = 0, . . . , n− 1, then α0, . . . , αn−1 are linearly independent over Fq if and only if
the smallest degree skew polynomial that vanishes on p0, . . . , pn−1 has degree n. This
tool helps us develop some of the theory for Chapter 4.

In Chapter 4, we work with a particular type of skew polynomial, namely a
Wedderburn polynomial, or W-polynomial for short. First initiated by [14], a poly-
nomial is a W-polynomial if it is the minimal polynomial for its set of roots. In
particular, we determine the values of n ∈ N and a ∈ F∗

qs for which polynomials of
the form xn − a are W-polynomials. For a (σ, f)-skew-cyclic code where f = xn − a,
the code is called a (σ, a)-skew-constacyclic code and has been studied extensively
in [7]. This is also the modulus used for the codes described in Chapter 5. One
nice fact about W-polynomials is that any monic factor (left, right or middle) of a
W-polynomial is also a W-polynomial. This led us to investigate if any right W-
polynomial (meaning it vanishes on right roots) is also a left W-polynomial (with
respect to left roots). Lastly, we show that any W-polynomial will remain a W-
polynomial when considered over a field extension.

There is a well-studied class of cyclic codes called BCH codes which were in-
troduced independently by [10] and [2]. The theory states that the number of roots
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forming an arithmetic progression for a generating polynomial g corresponds to a
lower bound for the minimum Hamming distance of the code generated by g. In this
context an arithmetic progression refers to the exponents of the roots with respect
to a fixed primitive element of the field. In Chapter 5, we report on the skew Roos
bound for both the Hamming distance and the rank distance presented in [1] which
is a generalization of the BCH bound. In this paper, the authors provide criteria for
constructing a code utilizing q-powers of a field element that are more general than in
the form of an arithmetic progression. The minimal polynomial with these roots will
generate a code with a known lower bound on both the minimum Hamming distance
and the minimum rank distance. The authors use the modulus f = xn − 1, where
s divides n. We are able to generalize the modulus to xn − a with a ∈ Nn(Fqs) for
the Hamming metric, and a ∈ Nn(Fq) for the rank metric. In addition, we provide a
counterexample illustrating that the skew Roos bound for the rank metric may not
hold if a ∈ Nn(Fqs \ Fq).

Furthermore in [1], the authors provide conditions on the size of the set of
roots of a generating polynomial which forces the resulting code to be MRD. After
some work, we are able to show that any root set of this size must be in the form
of an arithmetic progression. Any MRD code that satisfies the skew Roos bound is
called a skew-BCH code of the second kind. The phrase the second kind refers to
the fact that we are using q-powers of the field element. Skew-BCH codes of the first
kind with regular exponents are studied in Chapter 6.

Even though we build skew-cyclic codes over the field Fqs , we will often allow
the roots of the generating polynomial to come from an extension field Fqst . We can
force any polynomial with roots in Fqst to be over Fqs by ensuring the set of roots is
closed under Aut(Fqst/Fqs). This is something we will do often to guarantee our gen-
erating polynomial g is in Fqs [x;σ], so that it generates a code over Fqs . Alternatively
to get a code over Fqs , we could allow g and the skew-cyclic code it generates to be
over Fqst , and then take its intersection with Fnqs . In Chapter 6, we show that either
method results in the same code. This smaller code over Fqs is called a skew-cyclic
subfield subcode of some larger skew-cyclic code over Fqst .

In Chapter 6, our focus shifts to the examination of skew-cyclic codes, where
the roots of the generating polynomial are not restricted to being q-powers of some
field element. Instead, we employ roots whose regular exponents form an arithmetic
progression. These codes are called skew-BCH codes of the first kind. As before, a
root set with this regularity has implications for the lower bound of the minimum
Hamming distance of the skew-cyclic code. This concept was initially introduced in
[20]. Notably, our approach involves presenting the theorems using the minimal poly-
nomial of the root set as the generating polynomial. By doing so, we ensure the code
is constructed with the maximum achievable dimension for the chosen parameters.
Additionally, we present proofs that are intended to be more intuitive compared to
the computation-heavy proofs provided in [20]. Lastly, we compare the dimensions

3



of skew-BCH codes of the first and second kind with the same starting parameters.
We are able to show that skew-BCH codes of the first kind have dimension at least
as big as skew-BCH codes of the second kind.

Copyright© Kathryn M. Hechtel, 2024.
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Chapter 2 Skew-Polynomial Rings

In a skew-polynomial ring, a skew polynomial may have more roots than its degree
suggests. This lead to the use of skew polynomials in algebraic coding theory. These
notes explain how we may construct skew-cyclic codes with a designed Hamming
distance, and in some cases a designed rank distance.

2.1 Properties of Skew-polynomial Rings

In this section, we will introduce skew-polynomial rings and skew-cyclic codes. Many
of the results of this section are presented in detail in [9]. Throughout, let q be
a prime power and assume we have field extensions Fqst/Fqs/Fq. Let θ be the q-
Frobenius automorphism of Fqst and let σ = θ|Fqs

. Note that θ will be different for
different choices of q. For example, when we consider F212/F2, then θ is given by
a 7→ a2 for a ∈ F212 . However, for F46/F4, the q-Frobenius is given by a 7→ a4 for
a ∈ F46 .

Definition 2.1.1. The skew-polynomial ring, denoted Fqs [x;σ], is defined as the set{
N∑
i=0

fix
i | N ∈ N0, fi ∈ Fqs

}
with usual addition and multiplication given by the rule

xa = σ(a)x ∀a ∈ Fqs .

Remark 2.1.2.

1. Fqs [x;σ] is a subring of Fqst [x; θ].

2. The center of the skew-polynomial ring Fqs [x;σ] is Fq[xs]. This is easily seen by
using the fact that the fixed field of σ is Fq and |σ| = s. Indeed, any f ∈ Fq[xs]
satisfies xf = fx since the coefficients of f are invariant under σ. Moreover,
af = fa for any a ∈ Fqs since σs(a) = a.

Definition 2.1.3. We say g right divides f , denoted g|rf , if there exists h ∈ Fqs [x;σ]
so that f = hg.

Skew-polynomial rings have many useful properties as seen here.

Theorem 2.1.4. [18, p. 483-486] The skew-polynomial ring Fqs [x;σ] is a right Eu-
clidean domain.
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1. Right division with remainder: For all f, g ∈ Fqs [x;σ] with g ̸= 0 there exists
unique t, r ∈ Fqs [x;σ] such that f = tg + r and deg(r) < deg(g).

2. For f1, f2 ∈ Fqs [x;σ] not both zero, there exists a unique monic polynomial
d ∈ Fqs [x;σ] such that d|rf1 and d|rf2 and whenever h ∈ Fqs [x;σ] satisfies h|rf1
and h|rf2, then h|rd. The polynomial d is called the greatest common right
divisor of f1 and f2, denoted by gcrd(f1, f2). It also satisfies

d = uf1 + vf2 for some u, v ∈ Fqs [x;σ].

3. For f1, f2 ∈ Fqs [x;σ] not both zero, there exists a unique monic polynomial l ∈
Fqs [x;σ] such that f1|rl and f2|rl and whenever h ∈ Fqs [x;σ] satisfies f1|rh and
f2|rh, then l|rh. The polynomial l is called the least common left multiple
of f1 and f2, denoted by lclm(f1, f2). It also satisfies

l = uf1 = vf2 for some u, v ∈ Fqs [x;σ].

4. For all nonzero f1, f2 ∈ Fqs [x;σ]

deg(gcrd(f1, f2)) + deg(lclm(f1, f2)) = deg(f1) + deg(f2).

5. Fqs [x;σ] is a left principal ideal ring. That is, for a left ideal I ⊂ Fqs [x;σ], there
exists f ∈ I where

I = {gf : g ∈ Fqs [x;σ]} := •(f).

With the facts presented above, we easily get the following corollary.

Corollary 2.1.5. For any f, g ∈ Fqs [x;σ], we have

•(f) + •(g) = •(gcrd(f, g)),

•(f) ∩ •(g) = •(lclm(f, g)).

Evaluating skew polynomials via the usual substitution of a field element in
place of x will not respect the multiplication rule defined for a skew-polynomial ring.
Hence, we define polynomial evaluation in the following way.

Definition 2.1.6. Let f ∈ Fqs [x;σ], and let a ∈ Fqs .

1. We define f(a) = r where r is the remainder upon right division of f by x− a.

2. We say a is a right root of f if r = 0, that is, (x− a)|rf .

6



3. For r, n ∈ N, define the (r, n)-th norm function N r
n : Fqs → Fqs by N r

0 (a) = 1
and

N r
n(a) =

n−1∏
j=0

σjr(a) = a
qnr−1
qr−1 .

If r = 1, then we use the notation Nn in place of N1
n. More properties of the

norm function are given in Section 2.2.

One may easily check the (r, n)-th norm function is multiplicative, and hence
a group homomorphism on F∗

qs . Hence, for any a, b ∈ F∗
qs , we have

N r
n(ab) = N r

n(a)N
r
n(b). (2.1)

Using right division with remainder to evaluate polynomials in a skew-polynomial
ring can be quite computational and tedious. Luckily, the (r, n)-th norm function de-
fined above allows us to evaluate polynomials in a more natural way.

Proposition 2.1.7. [13, Lem. 2.4] Let f =
∑N

i=0 fix
i ∈ Fqs [x;σ] and a ∈ Fqs. Then

f(a) =
N∑
i=0

fiNi(a).

While the number of roots of a polynomial may exceed the degree, σ-conjugacy
classes can be useful for classification.

Definition 2.1.8. Let a, b ∈ Fqs .

1. For c ∈ F∗
qs , we define a

c := σ(c)ac−1. We say a and b are σ-conjugates if b = ac

for some c ∈ F∗
qs . When σ is the q-Frobenius, this is simply ac = cq−1a. We call

c the σ-conjugate exponent of b.

2. The σ-conjugacy class of a is

∆(a) = {ac | c ∈ F∗
qs}.

Remark 2.1.9.

1. The nonzero conjugacy classes of Fqs are given by the cosets of ∆(1) = {cq−1 :
c ∈ F∗

qs}.

2. Furthermore, since |∆(1)| = qs−1
q−1

, there are q − 1 nonzero conjugacy classes in
Fqs .

7



Theorem 2.1.10. [12, Thm. 2] Let f, g ∈ Fqs [x;σ] and let a ∈ Fqs. Then

(fg)(a) =

{
0, if g(a) = 0

f(ag(a))g(a) if g(a) ̸= 0.

The above theorem tell us that any root of g will be a root of any left multiple
of g. Moreover, if a is a root of the product fg, but not g, then some conjugate of a
is a root of f .

Remark 2.1.11. There is an analogous result for left roots. Indeed, if a is a left root
of fg but not f , then some conjugate of a is a left root of g.

Theorem 2.1.12. [12, Thm. 4] Let f ∈ Fqs [x;σ] have degree n. Then the roots of f
lie in at most n distinct σ-conjugacy classes. Furthermore, if f = (x−a1) . . . (x−an)
for some ai ∈ Fqs and f(a) = 0, then a is σ-conjugate to some ai.

Proposition 2.1.13. Let f ∈ Fqs [x;σ], a ∈ Fqs and assume f(a) ̸= 0. Then,

lclm{f, x− a} = (x− af(a))f.

Proof. By the division algorithm, for some g ∈ Fqs [x;σ] we have f = g(x− a)+ f(a).
Hence,

(x− af(a))f = (x− af(a))g(x− a) + (x− af(a))f(a)

= (x− af(a))g(x− a) + σ(f(a))(x− a).

Definition 2.1.14. Let A ⊂ Fqs and let d ∈ Fqs .

1. For any polynomial h ∈ Fqs [x;σ], define the vanishing set of h, denoted V (h),
as the set of right roots of h, i.e.

V (h) = {a ∈ Fqs : h(a) = 0}.

2. The σ-minimal polynomial of A, denotedmA, is the monic polynomial of small-
est degree in Fqs [x;σ] such that A ⊂ V (mA). Clearly, if A = {a1, . . . , al}, then

mA = lclm{x− ai : i = 1, . . . , l}.

3. The σ-rank of A, denoted rkσ(A), is the degree of mA. Note that rkσ(A) ≤ |A|.

4. We say d is P-dependent on A if mA = mA∪{d}.

5. We say A is P-independent if no element of a ∈ A is P-dependent on A \ {a}.
Note that this is equivalent to rkσ(A) = |A|.
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6. We say B = {p1, . . . , pr} ⊂ A is a P-basis of A if B is a P-independent set, and
for any d ∈ A \B the set B ∪ {d} is P-dependent.

The following is a direct result of Theorem 2.1.10.

Corollary 2.1.15. Let A ⊂ Fqs, and let h ∈ Fqs [x;σ], then A ⊂ V (h) if and only if
mA|rh.

With the following proposition, we are able to determine the minimal polyno-
mial of some finite set using the least common left multiple of linear factors. We use
this fact often to construct the minimal polynomial of some set.

Proposition 2.1.16. [12, Prop. 6] Let A = {a1, . . . , an} ⊂ Fqs and let r = rkσ(A).
Then there exist a P-basis b1, . . . , br ∈ A where mA = lclm(x− b1, . . . , x− br).

Another tool we often use is given by the following proposition. It allows us
to force a polynomial over some smaller field with roots coming from a larger field by
ensuring the root set is Galois closed. We will use this fact often in Section 6.

Proposition 2.1.17. [5, Prop. 4] Fix A ⊂ Fqst and set

A = {αqsj : α ∈ A, 0 ≤ j ≤ t− 1}.

Then mA is a polynomial over Fqs rather than Fqst. It is the smallest degree monic
polynomial over Fqs with vanishing set containing A. Conversely, let f ∈ Fqs [x;σ]
and assume A = {a ∈ Fqst : (x− a)|rf}. Then, A = A.

Proof. Assume mA =
∑r

i=0 hix
i with hi ∈ Fqst and define h =

∑r
i=0 h

qs

i x
i. Let β ∈ A

and note βq
sj ∈ V (mA) for all j. Then,

h(β) =
r∑
i=0

hq
s

i Ni(β) =

(
r∑
i=0

hiNi

(
βq

−s
))qs

=
(
mA

(
βq

−s
))qs

= 0.

Hence, A ⊂ V (h). This forces h = zmA for some z ∈ Fqst [x; θ]. However, since
mA and h are both monic of degree r, we have mA = h. Therefore, mA ∈ Fqs [x;σ].
Now, suppose g =

∑l
i=0 gix

i is the smallest degree monic polynomial over Fqs with

a vanishing set containing A. Let βq
sj ∈ A where β ∈ A and j ∈ {0, . . . , t− 1}, and

consider

g(βq
sj

) =
l∑

i=0

giNi(β
qsj) =

(
l∑

i=0

giNi(β)

)qsj

= (g(β))q
sj

= 0.

This shows g also vanishes on A. Since g is chosen to be monic and of smallest degree,
we must have g = mA.
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Conversely, assume f ∈ Fqs [x;σ] where f =
∑r

i=0 fix
i and let A = {a ∈ Fqst :

(x− a)|rf}. Note f q
sj

i = fi for any j = 0, ..., t− 1 since fi ∈ Fqs . Now let a ∈ A and
let j ∈ {0, . . . , t− 1} be arbitrary. Then

f(aq
sj

) =
r∑
i=0

fiNi(a
qsj) =

(
r∑
i=0

fiNi(a)

)qsj

= f(a)q
sj

= 0.

Hence, aq
sj ∈ A for all a ∈ A and all j ∈ {0, . . . , t− 1}. Therefore, A = A.

Not much is known about calculating the rank of an arbitrary subset of a
finite field. However, the next few results give us an upper bound for the rank of any
non-zero subset.

Theorem 2.1.18. [12, Thm. 22] Let A,A′ ⊂ Fqs, such that no element of A is
σ-conjugate to any element of A′. Then, rkσ(A ∪ A′) = rkσ(A) + rkσ(A

′).

In the following theorem, the author assumes q is prime. After careful review
of the proof, it is clear this assumption is not necessary. This theorem is also stated
in Section 3.2 to give the proof in that context (see Theorem 3.2.9).

Theorem 2.1.19. [16, Thm. 2.3] Let σ be the q-Frobenius of Fqs/Fq, then rkσ(F∗
qs) =

s(q − 1). As a result, for any A ⊂ F∗
qs, rkσ(A) ≤ s(q − 1).

The latter part of the above theorem also follows from work discussed in
Section 2.2. The following is a direct result of the previous two theorems.

Corollary 2.1.20. Let σ be the q-Frobenius of Fqs/Fq, then rkσ(Fqs) = s(q − 1) + 1.

Lemma 2.1.21. For A ⊂ Fqs and γ ∈ F∗
qs, define γA = {γa | a ∈ A}. Then,

rkσ(A) = rkσ(γA).

Proof. Let r = rkσ(A) and let mA =
∑r

i=0 hix
i, with hi ∈ Fqs . Define h(x) =∑r

i=0 hi(Ni(γ))
−1xi. Then for a ∈ A,

h(γa) =
r∑
i=0

hi(Ni(γ))
−1Ni(γa) =

r∑
i=0

hiNi(a) = 0.

Hence, γA ⊂ V (h). By Corollary 2.1.15, this is equivalent to mγA|rh. Therefore,
rkσ(γA) ≤ rkσ(A). Since A = γ−1(γA), the same argument shows rkσ(A) ≤ rkσ(γA).
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Luckily we are able to understand the rank of a set through the use of skew-
Vandermonde matrices.

Definition 2.1.22. Let a1, . . . , ar ∈ Fqs and n ∈ N. The n× r skew-Vandermonde matrix
in Matn×r(Fqs) is defined as

Vn(a1, . . . , ar) =


1 . . . 1

N1(a1) . . . N1(ar)
...

...
Nn−1(a1) . . . Nn−1(ar)

 .

If A = {a1, . . . , ar}, we use the notation Vn(A) for Vn(a1, . . . , ar). With this
notation, the skew Vandermonde is only unique up to column ordering but that won’t
matter for our purposes.

Remark 2.1.23. For g(x) =
∑n−1

i=0 gix
i ∈ Fqs [x;σ] and a1, . . . , ar ∈ Fqs , we have

(g(a1), . . . , g(ar)) = (g0, . . . , gn−1)Vn(a1, . . . , ar).

Theorem 2.1.24. [12, Thm. 8] Let A = {a1, . . . , an} ⊂ Fqs. Then rkσ(A) =
rk(Vn(A)) where rk(Vn(A)) is the ordinary matrix rank of Vn(A). Moreover, if rkσ(A) =
n, then rkσ(B) = |B| for every B ⊂ A.

The following result is now obvious.

Proposition 2.1.25. [12, Prop. 17] Let A be a subset of Fqs and let d ∈ Fqs. Then d
is P-dependent on A if and only if (1, N1(d), . . . , Nn−1(d))

T is linearly dependent on
{(1, N1(a), . . . , Nn−1(a))

T : a ∈ A}.

The skew-Vandermonde does not need to be a square matrix to relate it to
the rank of a set, as given by the next result.

Theorem 2.1.26. [12, Thm. 10] For a non-square Vandermonde matrix Vn(a1, . . . , ar),

rk(Vn(a1, . . . , ar)) = min{n, rk(Vr(a1, . . . , ar))}.

Remark 2.1.27. It is well-known that a classical Vandermonde matrix has full rank
if and only if the field elements are distinct in the first row. The same cannot be
said for a skew-Vandermonde matrix. For the 3 × 3 case, Lam showed in [12] that
for distinct elements a, b, c ∈ Fqs , we have rk(V3(a, b, c)) = 2 if and only if a, b, and c
satisfy (c− a)q−1a = (b− a)q−1b.
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As we will see next, the skew-Vandermonde matrix is closely related to a
Moore matrix [9, Ex. 5.10]. Hence, one can use information about a Moore matrix
to draw conclusions about the elements in the skew-Vandermonde matrix. Indeed,
let α0, . . . , αs−1, γ ∈ F∗

qs , and let pi = γαq−1
i for all i = 0, . . . , s − 1. One may easily

check that

Vs(p0, . . . , ps−1) = diag(1, N1(γ), . . . , Ns−1(γ))Vs(α
q−1
0 , . . . , αq−1

s−1).

Let M =
(
αq

i

j

)
0≤i,j≤s−1

be a Moore matrix, and note that

Vs(α
q−1
0 , . . . , αq−1

s−1)diag(α0, . . . , αs−1) =M.

Therefore, we have

Vs(p0, . . . , ps−1)diag(α0, . . . , αs−1) = diag(1, N1(γ), . . . , Ns−1(γ))M. (2.2)

It is well-known that a Moore matrix is invertible if and only if the elements
of the first row are linearly independent over Fq (see [17, Cor. 2.38]). This leads us
to the next result.

Corollary 2.1.28. Let α0, . . . , αn−1, γ ∈ F∗
qs and set pi = γαq−1

i for i = 0, . . . , n− 1.
Then {α0, . . . , αn−1} is linearly independent over Fq if and only if {p0, . . . , pn−1} is
P-independent.

Proof. By Equation (2.2) and Theorem 2.1.24, we have rk(M) = rk(Vn(p0, . . . , pn−1)) =
rkσ({p0, . . . , pn−1}). Therefore, p0, . . . , pn−1 are P-independent if and only if rk(M) =
n which happens if and only if α0, . . . , αn−1 are linearly independent over Fq.

The above Corollary also appears in Proposition 3.2.5 and a proof in the
context of Chapter 3 is given.

2.2 Properties of the (r, n)-th norm function

Recall the definition for the (r, n)-th norm function given in 2.1.6. In this section, we
will give different properties of the norm function. We will also classify for a given
β ∈ F∗

qs and m ∈ N the smallest n ∈ N where Nn(β
m) = 1. This work is relevant to

the codes described in Theorem 6.2.1. Namely, it gives the maximum length of the
codes described in the theorem. We begin with a recursive property which is used in
Proposition 4.1.7.

Lemma 2.2.1. Let n = kr. Then for all β ∈ F∗
qs,

Nn(β) = N r
k (Nr(β)).

12



Proof. Consider the following.

N r
k (Nr(β)) = N r

k

(
β

qr−1
q−1

)
=
(
β

qr−1
q−1

) qkr−1
qr−1

= β
qkr−1
q−1 = Nn(β).

The following well-known result classifies when the s-th norm of β ∈ Fqs is 1.

Theorem 2.2.2. (Hilbert’s Theorem 90) For β ∈ F∗
qs, Ns(β) = 1 if and only if

β = αq−1 for some α ∈ Fqs. As a consequence, V (xs − 1) = {αq−1 : α ∈ F∗
qs}.

Proof. First, assume β = αq−1 for some α ∈ Fqs . Then

Ns(β) = Ns(α
q−1) = (αq−1)

qs−1
q−1 = αq

s−1 = 1.

Now assume Ns(β) = 1. Consider the map φ : Fqs → Fqs where

φ = σ0 + βσ +N2(β)σ
2 + · · ·+Ns−1(β)σ

s−1.

Recall σ is defined to be the q-Frobenius. This map is non-zero due to Dedekind’s
Independence Theorem. Let γ ∈ F∗

qs and define α := φ(γ). Note that βσ(Ni(β)) =
Ni+1(β). Then

α = γ + βσ(γ) +N2(β)σ
2(γ) + · · ·+Ns−1(β)σ

s−1(γ).

Hence,

βσ(α) =βσ(γ) + βσ(β)σ2(γ) + βσ(N2(β))σ
3(γ) + · · ·+ βσ(Ns−1(β))σ

s(γ)

=βσ(γ) +N2(β)σ
2(γ) +N3(β)σ

3(γ) + · · ·+Ns(β)σ
s(γ)

=βσ(γ) +N2(β)σ
2(γ) +N3(β)σ

3(γ) + · · ·+ γ

=φ(γ)

=α.

This gives βσ(α) = α. Thus, β = α1−q as needed.

Theorem 2.2.4 is a special case of Proposition 2.1.16 and is relevant for the
background structure of the Roos Bound Theorems 5.1.3 and 5.1.4. We will see some
more general results on the vanishing set of polynomials of the form xn−a in Section
4.1. Before the theorem, we need a definition.

Definition 2.2.3. We call α ∈ F∗
qs a normal element of Fqs if {α, αq, . . . , αqs−1} is a

basis of Fqs/Fq. A basis of this form is called normal.

Theorem 2.2.4. Let α ∈ Fqs be a normal element of Fqs and set β = αq−1. Also let
γ ∈ F∗

qs. Then

13



1. ∆(γ) = V (xs −Ns(γ)),

2. B = {γβ, γβq, . . . , γβqs−1} is a P-basis of V (xs −Ns(γ)).

As a consequence, xs −Ns(γ) = m∆(γ).

Proof.

1. Let b ∈ F∗
qs . By definition, b ∈ ∆(γ) if b = cq−1γ for some c ∈ F∗

qs . By Theorem
2.2.2, this happens if and only if Ns(bγ

−1) = 1. Since the n-th norm function is
multiplicative, this is equivalent to Ns(b) = Ns(γ), which happens if and only
if b ∈ V (xs −Ns(γ)).

2. Clearly mV (xs−Ns(γ))|r(xs − Ns(γ)), so rkσ(V (xs − Ns(γ))) ≤ s. We also know

γβq
i ∈ ∆(γ) since γβq

i
= γ(αq

i
)q−1 for i = 0, . . . , s − 1. By part 1, this forces

B ⊂ V (xs − Ns(γ)). By Corollary 2.1.28, we know rkσ(B) = s which forces
rkσ(V (xs − Ns(γ))) ≥ s. Therefore, B is a P-basis for V (xs − Ns(γ)). As a
consequence, we have xs −Ns(γ) = mV (xs−Ns(γ)).

From above, we have m∆(γ) = mV (xs−Ns(γ)) = xs −Ns(γ).

Corollary 2.2.5. For any nonzero σ-conjugacy class ∆ ⊂ Fqs, we have rkσ(∆) = s.

Now we will consider what we get when the i-th norm is not 1 for i = 1, . . . , n−
1, n ∈ N.

Proposition 2.2.6. Let n ∈ N and let β ∈ Fqs. If Ni(β) ̸= 1 for i = 1, . . . , n − 1,
then 1, N1(β), . . . , Nn−1(β) are distinct.

Proof. Suppose Ni(β) = Nj(β) for some j ≤ i ≤ n− 1. Then

1 = Ni(β) (Nj(β))
−1 =

i−1∏
k=0

σk(β)

j−1∏
l=0

σl(β−1)

=
i−1∏
k=j

σk(β) = σj(β) . . . σi−1(β).

Thus,

1 = σ−j(1) = σ−j(σj(β) . . . σi−1(β)) = βσ(β) . . . σi−j−1(β) = Ni−j(β).

By the assumption, this forces i− j = 0, so we must have i = j.
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Having distinct N1(β), . . . , Nn−1(β) for some β ∈ Fqs plays an important role
in Theorem 6.2.1. For the rest of this section, we are working to establish the largest
n for a given β in which this property is preserved.

Lemma 2.2.7. Let d = gcd(q − 1,m). Then,

(qs − 1)

∣∣∣∣ m
(
q

(q−1)s
d − 1

q − 1

)
.

Proof. First note q
(q−1)s

d − 1 = (qs − 1)
(∑ q−1

d
−1

j=0 qsj
)
. Therefore,

m

(
q

(q−1)s
d − 1

q − 1

)
= (qs−1)

m
(∑ q−1

d
−1

j=0 (qsj − 1) + q−1
d

)
q − 1

= (qs−1)

 q−1
d

−1∑
j=0

m(qsj − 1)

q − 1
+
m

d

 .

Since q−1 | qsj−1 for all j, and d|m, the right most term is an integer as needed.

As a result, we have the following useful fact. Note that the inequality in
Theorem 2.1.19 follows immediately from this proposition.

Proposition 2.2.8. For all β ∈ F∗
qs, we have Ns(q−1)(β) = 1.

Proof. By Lemma 2.2.7 with m = 1, we know qs(q−1)−1
q−1

= (qs − 1)t for some t ∈ N.
Hence, for any β ∈ F∗

qs ,

Ns(q−1)(β) = β
q(q−1)s−1

q−1 = β(qs−1)t = 1t = 1.

Throughout the rest of this section let ω be a primitive element of Fqs .

Definition 2.2.9. For β ∈ F∗
qs , define n(β) = min{n ∈ N : Nn(β) = 1}.

Now, we will put an upper bound on n(β) for β ∈ F∗
qs .

Theorem 2.2.10. Let m ∈ N and let β ∈ Fqs. Then, n(βm) ≤ (q−1)s
gcd(q−1,m)

. In

particular, n(β) ≤ (q − 1)s for all β ∈ F∗
qs.

Proof. Let d = gcd(q − 1,m). By Lemma 2.2.7, (qs − 1)t = m

(
q
(q−1)s

d −1
q−1

)
for some

t ∈ N. Hence,

N (q−1)s
d

(βm) = (βm)
q
(q−1)s

d −1
q−1 = β(qs−1)t = 1.

This forces n(βm) ≤ (q−1)s
d

.
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Now, we will work to classify when we have equality in Theorem 2.2.10. Note
that for r|s, the unique subfield Fqr of Fqs is given by

Fqr =
{
ω

(
qs−1
qr−1

j
)
: 1 ≤ j ≤ qr − 1

}
∪ {0}.

Definition 2.2.11. Let β ∈ Fqs , we say β is generic if β is not in a proper subfield
of Fqs .

Luckily it does not matter what primitive element we start with, as discussed
in the next remark.

Remark 2.2.12. Let m ∈ N. Then, ωm is generic if and only if m ̸= qs−1
qr−1

j for all

j ∈ N and all r|s with r ̸= s. As a consequence, if ω̂ is another primitive element of
Fqs , then ω̂m is generic if and only if ωm is generic.

We may now state the result which gives equality in Theorem 2.2.10.

Theorem 2.2.13. Let m ∈ N such that ωm is a generic element of Fqs, and assume

β = ωl where gcd(qs − 1, l) = 1. Then n(βm) = (q−1)s
gcd(q−1,m)

. In particular, n(ω) =

(q − 1)s for any primitive element ω ∈ Fqs.

Before the proof, we need some lemmas. For the rest of this section, assume
m ∈ N such that ωm is a generic element. Without loss of generality we may also
assume m < qs − 1.

Lemma 2.2.14. For all q, s, r ∈ N, gcd(qs − 1, qr − 1) = qgcd(s,r) − 1.

Proof. Let d = gcd(s, r) and let D = gcd(qs − 1, qr − 1). We will show D = qd − 1.
Since d|s and d|r, we have

qd − 1

∣∣∣∣ qs − 1 and qd − 1

∣∣∣∣ qr − 1.

Hence, (qd − 1) | D. Conversely, note that

qs ≡ 1 (modD) and qr ≡ 1 (modD).

So, qsx+ry ≡ 1 (modD) for all x, y ∈ N0. In particular, qd ≡ 1 (modD). Hence,
D | qd − 1. Therefore, D = qd − 1.

Lemma 2.2.15. For all 1 ≤ r ≤ s− 1, (qs − 1) ̸ | m(qr − 1) .
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Proof. Assume for contradiction there exists γ ∈ N0 such that (qs − 1)γ = m(qr − 1)
for some r < s and let d = gcd(r, s). By Lemma 2.2.14, gcd(qs − 1, qr − 1) = qd − 1.
Hence,

m =
(qs − 1)γ

qr − 1
=

(qs−1)
qd−1

γ
qr−1
qd−1

.

Note that m < qs − 1 implies γ < qr − 1. Since m must be an integer, and

gcd
(
qs−1
qd−1

, q
r−1
qd−1

)
= 1, the term qr−1

qd−1
must divide γ. So, there exists ν such that

qr−1
qd−1

ν = γ. Note that ν < qd − 1 since γ < qr − 1. So,

m =
(qs − 1)γ

qr − 1
=

qs−1
qd−1

γ
qr−1
qd−1

=
qs − 1

qd − 1
ν.

Hence, ωm ∈ Fqd , contradicting that ωm is a generic field element.

Lemma 2.2.16. Let d = gcd(m, q − 1). Then

(qs − 1) ̸
∣∣∣∣ mqi − 1

q − 1
for all i = 1, . . . ,

(q − 1)s

d
− 1.

Proof. By the division algorithm, i = sk+ r for 0 ≤ k ≤ q−1
d

−1, 0 ≤ r ≤ s−1. Note
since i ≥ 1, (k, r) ̸= (0, 0). Now, we compute

m
qi − 1

q − 1
=
m(qsk+r − 1)

q − 1
=
mqr(qsk − 1) +m(qr − 1)

q − 1
= mqr

(
qsk − 1

q − 1

)
+
m(qr − 1)

q − 1
.

For k = 0, the result follows from Lemma 2.2.15. So, assume k ≥ 1 and note that

qsk − 1

q − 1
=

(qs − 1)
(∑k−1

j=0 q
sj
)

q − 1
=

(qs − 1)
(∑k−1

j=0(q
sj − 1) + k

)
q − 1

= (qs−1)M+
k(qs − 1)

q − 1

for some M ∈ N. Now we have

m
qi − 1

q − 1
= mqr

(
(qs − 1)M +

k(qs − 1)

q − 1

)
+
m(qr − 1)

q − 1
= (qs−1)mqrM+

mkqr(qs − 1) +m(qr − 1)

q − 1
.

We need to show

(qs − 1) ̸
∣∣∣∣ mkqr(qs − 1) +m(qr − 1)

q − 1
.

If r = 0, the line above becomes

(qs − 1) ∤
mk(qs − 1)

q − 1
.
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For this case, it suffices to show mk
q−1

̸∈ N. Suppose for contradiction (q − 1) | mk.
Note that

mk

q − 1
=

m
d
k

q−1
d

.

Since gcd(m
d
, q−1

d
) = 1, this forces q−1

d
| k. Hence, k = q−1

d
η for some η ∈ N, contra-

dicting that 1 ≤ k ≤ q−1
d

− 1. Thus, mk
q−1

̸∈ N.

Now assume 1 ≤ r ≤ s− 1. By Lemma 2.2.15, qs − 1 ̸ |m(qr − 1). Hence,

(qs − 1) ̸ | mkqr(qs − 1) +m(qr − 1) .

By extension, qs − 1 cannot divide the fraction mkqr(qs−1)+m(qr−1)
q−1

. Therefore,

(qs − 1) ̸
∣∣∣∣ mqi − 1

q − 1
for all i = 1, . . . ,

(q − 1)s

d
− 1.

Now, we may go back to prove Theorem 2.2.13.

Proof. If gcd(qs − 1, l) = 1, then |wl| = qs − 1. Then, by Lemma 2.2.16, |ωl| ∤ m qi−1
q−1

for i = 1, . . . , (q−1)s
d

− 1, so Ni(ω
lm) ̸= 1 for each i in this range. Therefore, n(ωlm) =

(q−1)s
d

.

2.3 Distance of Codes

Definition 2.3.1. Let C ⊂ Fnqs be a subspace and let x ∈ Fnqs .

1. The Hamming weight of a vector x is the number of non-zero components of x,
denoted wH(x).

2. The minimum Hamming distance of a code C, denoted dH(C), is defined as

dH(C) = min{wH(x) : x ∈ C, x ̸= 0}.

3. The rank weight over Fq of a vector x = (x1, . . . , xn), denoted wR(x), is defined
as

wR(x) = dimFq⟨x1, . . . , xn⟩Fq .

4. The minimum rank distance of a code C, denoted dR(C), is defined as

dR(C) = min{wR(x) : x ∈ C, x ̸= 0}.

5. We call this subspace C a code with respect to the Hamming (or rank) distance.
For brevity, we will simply use code from now on.
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Proposition 2.3.2 (The Singleton Bound). [11, Thm. 2.4.1] For a k-dimensional
code C ⊂ Fnqs, we have the bound

dH(C) ≤ n− k + 1.

When equality is obtained, we call this code Maximum Distance Separable (MDS).

There is a similar bound for the rank metric.

Proposition 2.3.3 (The Singleton-like Bound). [8, Lemma 1] For a code C ⊂ Fnqs,
let d = dR(C) where the rank is over Fq. Then

dimFq(C) ≤ max{n, s} (min{n, s} − d+ 1) .

When equality occurs, we call this code maximum rank distance (MRD).

Recall that Fnqs ∼= Fs×nq as vector spaces over Fq. For any Fqs-subspace C ⊂ Fnqs ,
we know dimFq(C) = s dimFqs

(C). So, the proposition above becomes

dimFqs
(C) ≤

⌊n
s
(s− d+ 1)

⌋
, if s ≤ n,

dimFqs
(C) ≤ n− d+ 1, if n ≤ s.

(2.3)

This bound will be used later on in Proposition 5.2.4. The Hamming metric
and the rank metric are very closely related as seen here.

Lemma 2.3.4. Let C ⊂ Fnqs be a code. Then,

dR(C) = min{dH(C ·M) :M ∈ GLn(Fq)}.

Proof. Let dr = dR(C) and let dh = min{dH(C ·M) :M ∈ GLn(Fq)}.

(≤) For any c ∈ C, M ∈ GLn(Fq), clearly wR(c) = wR(cM) ≤ wH(cM), so dr ≤ dh.

(≥) Let c ∈ C of min rank weight dr. There exists M0 ∈ GLn(Fq) where

cM0 = (c1, . . . , cdr , 0, . . . , 0).

Hence, dr = wH(cM0) ≥ minM(wH(cM)) ≥ dh.

The following topic will be discussed in detain in Section 6.

Theorem 2.3.5. [11, Thm. 3.8.4] Let C ⊂ Fnqst be a code and let k = dimFqst
(C).

Then C ∩ Fnqs is a code over Fqs where

dimFqs
(C ∩ Fnqs) ≤ k.

We call C ∩ Fnqs a subfield-subcode.
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2.4 Properties of Skew-cyclic Codes

Throughout this section, let f ∈ Fqs [x;σ] where deg(f) = n. This defines a left
Fqs [x;σ]-module

Rf = Fqs [x;σ] / •(f).

For g ∈ Fqs [x;σ], we use the notation g := g + •(f) ∈ Rf . Then, for z ∈ Fqs [x;σ], we
have zg = zg.

Consider the Fqs-isomorphism of left vector spaces

pf : Fnqs → Rf , (c0, . . . , cn−1) 7→
n−1∑
i=0

cixi.

Think of pf as polynomialization, and vf = p−1
f as vectorization.

Proposition 2.4.1. [4] If M is a left submodule of Rf , then there exists a unique
monic polynomial g ∈M of smallest degree such thatM = •(g). Alternatively, g is the
unique monic right divisor of f such that •(g) =M . We call g the generating polynomial
of M .

Definition 2.4.2.

1. A subspace C ⊂ Fnqs is called a (σ, f)-skew-cyclic code if pf (C) is a submodule
of Rf .

2. For g ∈ Rf , we define the skew circulant matrix as

Γσf (g) :=


vf (g)
vf (xg)

...
vf (x

n−2g)
vf (x

n−1g)

 .

For the rest of this document, assume rs(·) denotes the row space and kerl(·)
denotes the left kernel.

Proposition 2.4.3. [7, Cor. 2.4] Let M = •(g) ⊆ Rf , where g ∈ Fqs [x;σ] has degree
r. Then:

1. For any u ∈ Fnqs, we have pf (uΓ
σ
f (g)) = pf (u)g.

2. vf (M) = rs(Γσf (g)).
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3. Suppose in addition g|rf . Then M is a left Fqs-vector space of dimension

k := n − r with basis {g, xg, . . . , xk−1g}. As a consequence, rk(Γσf (g)) = k
and vf (M) = rs(G) where G consists of the first k rows of the skew-circulant
Γσf (g), i.e.

G =


vf (g)
vf (xg)

...
vf (x

k−1g)

 =


g0 g1 . . . gr

σ(g0) σ(g1) . . . σ(gr)
. . . . . . . . .

σk−1(g0) σk−1(g1) . . . σk−1(gr)

 .

Remark 2.4.4. Due to part 3 of the proposition above, the modulus f plays a very
small role in the construction of skew-cyclic codes. We often choose f to be any
monic left multiple of degree n of the generating function g.

Proposition 2.4.5. [6, Prop. 4] Let f ∈ Fqs [x;σ] be any monic modulus of degree n
and let g ∈ Fqs [x;σ] be a monic right divisor of f of degree r where g = lclm{x− ai |
i = 1, . . . , r} for distinct a1, . . . , ar ∈ Fqs. Let V = Vn(a1, . . . , ar) be the skew-
Vandermonde from Definition 2.1.22. Then C = •(g) is given by

vf (C) = kerl(V ) = {c ∈ Fnqs : cV = 0}.

We call V = Vn(a1, . . . , ar) a parity check matrix for C.

Copyright© Kathryn M. Hechtel, 2024.
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Chapter 3 Noncommutative Polynomial Maps

This chapter reports on the results derived in [16]. We present the material in a
slightly more streamlined way, fill in various details, and simplify some of the argu-
ments.

3.1 Semi Linear Maps

Throughout, let Fqs be a finite field, and let σ ∈ Aut(Fqs/Fq). Also let R = Fqs [x;σ].

Definition 3.1.1. Let V be an Fqs-vector space. An additive map T : V → V such
that for any α ∈ Fqs and v ∈ V ,

T (αv) = σ(α)T (v)

is called a σ-semi linear map (σ-SLM).

Note that any σ-SLM is Fq-linear. For n, l ∈ N, we will allow σ to be extended
component-wise to Fn×lqs . It is well-known that extending σ to Fn×lqs entry-wise gives

an Fq-endomorphism, still denoted σ, on Fn×lqs . Moreover, this extended σ is a σ-SLM.
This is used later on in Remark 3.1.11.

Proposition 3.1.2. For an additive abelian group (V,+), the following are equiva-
lent:

1. V is a left R-module.

2. V is an Fqs-vector space and there exists a σ-SLM T : V → V .

3. There exists a ring homomorphism Λ : R → End(V,+).

Proof.

(1) ⇒ (2) Assume V is a left R-module. Then, since Fqs ⊂ R, clearly V is also
an Fqs-vector space. Now consider the additive map T : V → V where v 7→ xv. This
map is σ-semi linear since for α ∈ Fqs , we have T (αv) = xαv = σ(α)xv = σ(α)T (v).

(2) ⇒ (3) Assume V is an Fqs-vector space and T : V → V is a σ-SLM.
Consider the map

Λ : R → End(V,+) where
∑
i

fix
i 7→

∑
i

fiT
i.

Then, one easily checks for f, g ∈ R, we have Λ(f + g) = Λ(f) + Λ(g) and Λ(fg) =
Λ(f) ◦ Λ(g).
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(3) ⇒ (1) Assume there exists a ring homomorphism Λ : R → End(V,+). For
f ∈ R and v ∈ V , define f · v := Λ(f)(v). Then for g ∈ R and u ∈ V , we have

f · (u+ v) = Λ(f)(u+ v) = Λ(f)(u) + Λ(f)(v) = f · u+ f · v
(f + g) · (v) = Λ(f + g)(v) = (Λ(f) + Λ(g))(v) = Λ(f)(v) + Λ(g)(v) = f · v + g · v

(fg) · v = Λ(fg)(v) = (Λ(f) ◦ Λ(g))(v) = Λ(f)(Λ(g)(v)) = f · (g · v).

Hence, V is an R-module.

Using the homomorphism in Proposition 3.1.2 Λ : R → End(V,+), for f =∑n
i=0 aix

i ∈ R, and for a σ-SLM T : V → V , we define the notation

f(T ) := Λ(f) =
n∑
i=0

aiT
i ∈ End(V,+).

With this notation, for any f, g ∈ R and any σ-SLM T , we have

(fg)(T ) = f(T ) ◦ g(T ).

The following is a result that appears in the proof of Proposition 3.1.2. In
particular, part 3 below tells us for an R-module V , the R-module structure induced
by T on V agrees with the existing structure.

Corollary 3.1.3.

1. Given a left R-module V , define T : V → V where v 7→ xv. Then T is a
σ-SLM.

2. Conversely, let V be an Fqs-vector space and let T : V → V be a σ-SLM. Then
the R-module structure on V induced by T is given by f · v = f(T )(v) for all v
and all f ∈ R.

3. If V is an R-module and T is as in part 1, then fv = f(T )(v) for all v ∈ V
and all f ∈ R.

For the next few results up to Example 3.1.10, assume V is an Fqs-vector space
with basis β = {v1, . . . , vn}. Also, let ψβ : V → Fnqs be the coordinate map for the
basis β which maps vi to ei where ei is the standard basis vector of Fnqs .

Definition 3.1.4. For a map τ ∈ End(V,+), we define the representative matrix of
τ for the basis β, denoted [τ ]β, as the matrix

[τ ]β :=


ψβ(τ(v1))
ψβ(τ(v2))

...
ψβ(τ(vn))

 ∈ Fn×nqs .
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Note that if τ is a linear map, this is the standard definition for the matrix
representation of a map. Hence, for a linear map τ , it is a well-known from linear
algebra that ψβ(τ(v)) = ψβ(v)[τ ]β. The analogue for σ-semi linear maps is given in
the next proposition. Both facts will be used to prove Proposition 3.1.13 below.

Proposition 3.1.5. Let T : V → V be a σ-SLM. Then for any v ∈ V , the matrix
C := [T ]β satisfies

ψβ(T (v)) = σ(ψβ(v))C.

Proof. Let v ∈ V where v =
∑n

i=1 aivi with ai ∈ Fqs . Then note that T (v) =∑n
i=1 σ(ai)T (vi). Hence,

ψβ(T (v)) = ψβ

(
n∑
i=1

σ(ai)T (vi)

)
=

n∑
i=1

σ(ai)ψβ(T (vi))

= (σ(a1), . . . , σ(an))C = σ(ψβ(v))C.

Definition 3.1.6. Let T : V → V be σ-SLM, and let C := [T ]β. This gives rise to a
new σ-SLM denoted TC : Fnqs → Fnqs where v 7→ σ(v)C. We refer to this map TC as
the σ-SLM on Fnqs corresponding to T .

Note that by Corollary 3.1.3(2), we now have a left R-module structure on Fnqs
(see also Proposition 3.1.18). By construction, the following diagram commutes,

V V

Fnqs Fnqs

T

ψβ ψβ

TC

.

In fact, by extension the following also commutes for any f ∈ R,

V V

Fnqs Fnqs

f(T )

ψβ ψβ

f(TC)

.

We will now extend the definition of the norm function given in Definition
2.1.6 to matrices. This will allow us to evaluate polynomials on a matrices as follows.

Definition 3.1.7. Let C ∈ Fn×nqs .

1. Define N0(C) = In and for i ≥ 1,

Ni(C) := σi−1(C)σi−2(C) . . . σ(C)C.
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2. For g ∈ R where g =
∑r

i=0 gix
i, define

g(C) :=
r∑
i=0

giNi(C).

Proposition 3.1.8. Let T : V → V be a σ-SLM. Define C := [T ]β and let TC :
Fnqs → Fnqs be given by u 7→ σ(u)C as in Definition 3.1.6. Then, for u ∈ Fnqs, and
g ∈ R where g =

∑r
i=0 gix

i, we have

1. g(TC)(u) =
∑r

i=0 giσ
i(u)Ni(C),

2. g(C) = [g(T )]β.

Proof.

1. It suffices to show this for g = xi, i ≥ 0. We will proceed by induction on i. For
the base case, T 0

C(u) = u = uIn as expected. Now, for the inductive hypothesis
assume T iC(u) = σi(u)Ni(C). Then,

T i+1
C (u) = TC(T

i
C(u)) = TC(σ

i(u)Ni(C)) = σi+1(u)σ(Ni(C))C = σi+1(u)Ni+1(C).

2. Recall by definition, row j of [g(T )]β is given by ψβ(g(T )(vj)). By the commu-
tative diagram following Definition 3.1.6 and by part (1) we have

ψβ(g(T )(vj)) = g(TC)(ψβ(vj)) =
r∑
i=0

giσ
i(ψβ(vj))Ni(C) =

r∑
i=0

giσ
i(ej)Ni(C)

=
r∑
i=0

giejNi(C) = ej

r∑
i=0

giNi(C) = ejg(C).

The following is an example of the second part of Proposition 3.1.8.

Example 3.1.9. Let α ∈ Fqs and let f = x3 − α ∈ R. Note that the R-module
V = R/•(f) is an Fqs-vector space with basis β = {1, x, x2} (see Section 2.4). Let
T : V → V be the σ-SLM given by left multiplication by x. Then,

T (1) = x,

T (x) = x2,

T (x2) = α.

Hence, the matrix representation of T is

C =

0 1 0
0 0 1
α 0 0

 .
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Now let g = x2 + x ∈ R and consider

g(T )(1) = x+ x2,

g(T )(x) = α + x2,

g(T )(x2) = σ(α)x+ α.

So, we have

[g(T )]β =

0 1 1
α 0 1
α σ(α) 0

 .
Now, using matrix evaluation we have

g(C) = N2(C) +N1(C) = σ(C)C + C =

0 1 1
α 0 1
α σ(α) 0

 .
Thus, one can see [g(T )]β = g(C) as expected.

Example 3.1.10. As a special case of Definition 3.1.6, let a ∈ Fqs and consider
V = R/•(x− a). Note V is a 1-dimensional Fqs-vector space, so let its basis be
β = {1}.

Let T : V → V be the σ-SLM given by left multiplication by x. By Corollary
3.1.3, T induces an R-module structure on V that agrees with the natural structure
on V . Hence, for an arbitrary f ∈ R we have the identity

f(T )(1) = f(1 + •(x− a)) = f + •(x− a) = f(a).

Note that T (1) = x = a. So, the representative matrix of T is the 1×1 matrix
[a]. Hence, the corresponding σ-SLM Ta : Fqs → Fqs is given by α 7→ σ(α)a. This
map Ta is called the σ-SLM induced by a. By Proposition 3.1.2, the map Ta places
an R-module structure on Fqs . Moreover, this R-module structure encompasses poly-
nomial evaluation at x = a as we will see next.

If we consider both f(T ) and f(Ta) on the basis element 1, we get

ψβ(f(T )(1)) = ψβ(f(a)) = f(a)

and
f(Ta)(ψβ(1)) = f(Ta)(1).

Therefore, since we know the diagram below Definition 3.1.6 is commutative, we know
f(a) = f(Ta)(1). Hence, polynomial evaluation on an element a can be done in Fqs
using Ta.
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This also exemplifies the connection between the above polynomial evaluation

f(a) = f(Ta)(1) =
n∑
i=0

fiT
i
a(1)

and the evaluation given in Proposition 2.1.7:

f(a) =
n∑
i=0

fiNi(a)

where Ni is the i-th norm function defined on field elements such as the original
definition given in 2.1.6. This is in fact a special case of Proposition 3.1.8, since
T ia(1) = σi(1)Ni(a) = Ni(a).

Remark 3.1.11.

1. The composition of two σ-SLMs is usually not a σ-SLM.

2. Let AVB be an (A,B)-bimodule where A and B are rings with unity and let σ
be an endomorphism on A. Suppose S and T are σ-SLMs defined on AV (which
we define similar to σ-SLMs on vector spaces). Then for any b ∈ B, we may
define a σ-SLM Tb as follows

Tb : AVB → AVB where v 7→ S(v)b+ T (v).

3. Let A = Fn×nqs and B = Fl×lqs . Then V = Fn×lqs is an (A,B)-bimodule. Let
σ ∈ Aut(Fqs/Fq) be extended entry-wise to A. Then as a special case of (2)
with S = σ, T = 0 and any b ∈ Fl×lqs , we obtain the σ-SLM

Tb : Fn×lqs → Fn×lqs where v 7→ σ(v)b.

4. Let A be a ring with unity and let σ be an endomorphism on A. Then, for a left
A-module V , we have an (A,EndA(V ))-bimodule structure on V . To see V is in
fact a right EndA(V )-module, we define vφ := φ(v) for v ∈ V and φ ∈ EndA(V ).
Then for ψ ∈ EndA(V ), we define composition of φ and ψ as φψ := ψ ◦ φ, i.e.
first apply φ and then apply ψ. As we will see next, these definitions respect
the associativity rule for V as a right EndA(V )-module. Indeed,

(vφ)ψ = (φ(v))ψ = ψ(φ(v)) = v(φψ).

Now, we will see the associativity rule for V as an (A,EndA(V ))-bimodule is
also respected by this definition of vφ. For α ∈ A and φ ∈ EndA(V ) we have

(αv)φ = φ(αv) = α(φ(v)) = α(vφ).
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We will now return to the notion that R = Fqs [x;σ] and that V is any left
R-module. For the rest of this section, we will use the notation given in Remark
3.1.11(4) where vφ := φ(v) for v ∈ V and φ ∈ EndR(V ). Again, for φ, ψ ∈ EndR(V ),
the composition φψ is given by first applying φ and then applying ψ. This gives rise
to the following proposition.

Proposition 3.1.12. Let T : V → V be the σ-SLM given by left multiplication by
x. Then, for any f ∈ R, the map f(T ) ∈ End(V,+) is left Fq-linear and right
EndR(V )-linear.

Proof. Recall any σ-SLM is left Fq-linear. So clearly f(T ) is left Fq-linear. Now, let
v ∈ V and let φ ∈ EndR(V ). Then,

f(T )(vφ) = f(T )(φ(v)) =
n∑
i=0

fiT
i(φ(v)) =

n∑
i=0

fix
iφ(v) =

n∑
i=0

φ(fix
iv)

= φ

(
n∑
i=0

fiT
i(v)

)
= φ(f(T )(v)) = f(T )(v)φ.

Note the equality at the end of the first line is given by φ being an R-
endomorphism of V .

As a result of Proposition 3.1.12, ker(f(T )) is a right EndR(V )-submodule of
V . Indeed, for v ∈ ker(f(T )) and φ ∈ EndR(V ),

f(T )(vφ) = f(T )(v)φ = φ(0) = 0.

For V = R/•(x− a) with a ∈ Fqs , this module structure on ker(f(Ta)) will play a
role later on in Corollary 3.1.21.

Recall a σ-SLM Ti defined on an Fqs-vector space Vi gives an (R,EndR(Vi))-
bimodule structure on Vi. We will use this fact in the proposition below with i = 1, 2.

Proposition 3.1.13. For i = 1, 2, let Vi be an Fqs-vector space with basis βi and
dimension ni. Let Ti be a σ-SLM on Vi with representative matrix Ci ∈ Fni×ni

qs in
the basis βi. Suppose φ : V1 → V2 is an Fqs-linear map with representative matrix
B ∈ Fn1×n2

qs in the corresponding bases β1 and β2. Then, the following are equivalent.

1. φ is an R-linear map.

2. (T1(v))φ = T2(vφ) for all v ∈ V1, i.e. the diagram
on the right commutes.

3. C1B = σ(B)C2.

V1 V2

V1 V2

φ

T1 T2

φ

4. B ∈ ker(TC2 − LC1) where

TC2 : Fn1×n2
qs → Fn1×n2

qs with Γ 7→ σ(Γ)C2,
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and
LC1 : Fn1×n2

qs → Fn1×n2
qs with Γ 7→ C1Γ.

Proof.

(1) ⇔ (2) For v ∈ V1 we have (T1(v))φ = (xv)φ and T2(vφ) = x(vφ). Hence,
(T1(v))φ = T2(vφ) for all v ∈ V1 if and only if φ is R-linear.

(2) ⇔ (3) Recall from Proposition 3.1.5 that for any u ∈ Vi, we have

ψβi(Ti(u)) = σ(ψβi(u))Ci.

Also, since φ is Fqs-linear, we know for any v ∈ V1,

ψβ2(vφ) = ψβ1(v)B.

Hence, for any v ∈ V1 we have the following identities

ψβ2(T2(vφ)) = σ(ψβ2(vφ))C2 = σ(ψβ1(v)B)C2 = σ(ψβ1(v))σ(B)C2,

ψβ2((T1(v))φ) = ψβ1(T1(v))B = σ(ψβ1(v))C1B.

Therefore, (T1(v))φ = T2(vφ) for all v ∈ V1 if and only if σ(B)C2 = C1B.

(3) ⇔ (4) For any B ∈ Fn1×n2
qs ,

(TC2 − LC1)(B) = TC2(B)− LC1(B) = σ(B)C2 − C1B.

Hence, B ∈ ker(TC2 − LC1) if and only if σ(B)C2 = C1B.

Now we will turn to a particular R-module structure. Let f ∈ R where
f =

∑n
i=0 fix

i is a monic polynomial of degree n and consider the left R-module
V = R/•(f). Recall from Section 2.4, V is also an Fqs-vector space with basis β =
{1, x, . . . , xn−1}. In Section 2.4, the isomorphism ψβ is denoted by vf : R/

•(f) → Fnqs
and is defined by

n−1∑
i=0

gixi 7→ (g0, . . . , gn−1)

where
∑n−1

i=0 gix
i is the unique coset representative of degree less than n. The inverse

of vf is denoted pf . We will use these notations in the next few results.

Definition 3.1.14. For V = R/•(f), let T : V → V be the σ-SLM corresponding to
left multiplication with x. The representative matrix of T in the basis β is called the
companion matrix of f and is given by

Cf :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−f0 −f1 −f2 . . . −fn−1

 .
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Note the last line follows from x(xn−1) = xn = −
∑n−1

i=0 fix
i.

The σ-SLM TCf
on Fnqs corresponding to T will be denoted as Tf . Now, the

commutative diagram following Definition 3.1.6 becomes

R/•(f) R/•(f)

Fnqs Fnqs

T

vf vf

Tf

.

We will make use of this diagram in Theorem 3.1.19 below.

Corollary 3.1.15. Let f1, f2 ∈ R be monic of degree n with companion matrices
C1, C2 ∈ Fn×nqs . Then R/•(f1) ∼= R/•(f2) as R-modules if and only if there exists an
invertible matrix B ∈ Fn×nqs such that C1B = σ(B)C2.

Proof. Given an invertible matrix B ∈ Fn×nqs , define φ : R/•(f1) → R/•(f2) as gφ :=
pf2(vf1(g)B) which is an Fqs-isomorphism. Then, by Proposition 3.1.13, we know
B ∈ Fn×nqs satisfies C1B = σ(B)C2 if and only if φ is also R-linear.

Definition 3.1.16.

1. The ideal •(f) is two-sided in the ring

Idl(•(f)) := {g ∈ R : fg ∈ •(f)}

called the idealizer ring of •(f).

2. The quotient ring Idl(•(f))/•(f) is called the eigenring of •(f).

We will see next that the eigenring of •(f) is isomorphic to EndR(R/
•(f)).

Again, note that we must use the notation vφ := φ(v) for v ∈ V and φ ∈ EndR(V ).

Proposition 3.1.17. Let V = R/•(f). Then we have

Idl(•(f))/•(f) ∼= EndR(V ).

Proof. Consider the map

η : Idl(•(f)) → EndR(V ) where a 7→ ψa

and ψa is given by gψa = ga. Throughout let g, h ∈ V . First, we will check ψa is
well defined. Assume g = h. Then g − h ∈ •(f), so g − h = tf for some t ∈ R. Now
let a ∈ Idl(•(f)) so fa = ãf for some ã ∈ R. Then consider (g − h)a = tfa = tãf .
Hence, ga = ha which gives gψa = hψa as needed.
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Next, we will check ψa ∈ EndR(V ). For r ∈ R, we have

(rg + h)ψa = rga+ ha = rga+ ha = rgψa + hψa.

Now, we must check η is a ring homomorphism. It is easy to check η is additive
and maps 1 to the identity map in EndR(V ). To check η is multiplicative, let a, b ∈
Idl(•(f)). Then note

gψab = gab = gaψb = gψaψb.

Hence, η(ab) = η(a)η(b) as needed. Next, we will show ker(η) = •(f). For the forward
containment, let a ∈ ker(η) so that ψa is the zero map in EndR(V ). Then ga = 0,
so ga ∈ •(f) for all g ∈ R. In particular, we get 1a = a ∈ •(f). Conversely, assume
a ∈ •(f) so a = hf for some h ∈ R. Then, for any g ∈ R, we get gψa = ga = ghf = 0.
This means ψa is the zero map in EndR(V ), so a ∈ ker(η). Therefore, ker(η) = •(f)
as needed.

Lastly, we will show η is surjective. Let ψ ∈ EndR(V ) and let b := 1ψ. Note
b ∈ Idl(•(f)) since

0 = 0ψ = fψ = (f1)ψ = f(1ψ) = fb = fb.

Hence, fb ∈ •(f) as needed. Therefore, ψb is well-defined. Then, for all g ∈ V ,

gψ = g1ψ = gb = gψb.

Hence, ψ = η(b).

Corollary 3.1.18. Let f ∈ R be a monic polynomial of degree n and let C = Cf .
Then we have

1. As rings, EndR(R/
•(f)) is isomorphic to Cσ

f := {B ∈ Fn×nqs : CB = σ(B)C},

2. Fnqs has an (R,Cσ
f )-bimodule structure.

3. For g ∈ R, the map g(Tf ) ∈ End(Fnqs ,+) is a right Cσ
f -linear map. In particular,

ker(g(Tf )) is a right Cσ
f -submodule of Fnqs.

Proof.

1. Let V = R/•(f). This part follows directly from Proposition 3.1.13 since for any
φ ∈ EndFqs

(V ) with matrix representation B ∈ Fn×nqs , we know φ ∈ EndR(V ) if
and only if CB = σ(B)C. Moreover, the ring structure is preserved since it is
a well-known fact that composition of linear maps is equivalent to multiplying
the representative matrices.
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2. By Proposition 3.1.2, the σ-SLM Tf : Fnqs → Fnqs induces a left R-module
structure on Fnqs . Recall for g ∈ R, and v ∈ Fnqs , we define g · v := g(Tf )(v).
Furthermore, we have a right Cσ

f -module structure on Fnqs where v·B = vB using
ordinary matrix-vector multiplication. Lastly, we need to check for B ∈ Cσ

f that
(g · v)B = g · (vB). Recall by Proposition 3.1.8 T if (v) = σi(v)Ni(C). Then,
the property CB = σ(B)C, leads to the fact T if (v)B = T if (vB). Hence, for
g =

∑r
i=0 gix

i, we get

(g · v)B =
r∑
i=0

giT
i
f (v)B =

r∑
i=0

giT
i
f (vB) = g · (vB).

3. For the third part, we need to show g(Tf ) ∈ End(Fnqs ,+) is right Cσ
f -linear. This

follows from the previous part since the property (g(Tf )(v))B = g(Tf )(vB) is
equivalent to (g ·v)B = g ·(vB) which is given by the bimodule structure defined
in part (2).

Assume for the rest of this section that the standard basis for Fnqs has indexing
that starts at 0, so then e0 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0), etc. This allows for
easier mapping from the basis {1, x, . . . , xn−1} to the standard basis {e0, . . . , en−1}.

Theorem 3.1.19. Let f ∈ R be monic of degree n and consider R/•(f). Then, for
g ∈ R we have

1. vf (g) = g(Tf )(e0),

2. vf (gh) = g(Tf )(vf (h)) for any h ∈ R,

3. there exists Fq-isomorphisms between the Fq-vector spaces

ker(g(Tf )), S := {h ∈ R : deg(h) < n, gh ∈ •(f)}, and HomR(R/
•(g), R/•(f)).

4. Idl(•(f)) = {g ∈ R : g(Tf )(e0) ∈ ker(f(Tf ))}.

Proof.

1. By the commutative diagram above, we know g(Tf ) = vf ◦ g(T ) ◦ pf . Hence,

g(Tf )(e0) = (vf ◦ g(T ) ◦ pf )(e0) = vf (g(T )(1)) = vf (g).

2. By part 1, for any h ∈ R we have

vf (gh) = (g(Tf ) ◦ h(Tf ))(e0) = g(Tf )(vf (h)).
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3. First, we will note that each of these sets are Fq-vector spaces. The map g(Tf )
is Fq-linear, so ker(g(Tf ) is an Fq-vector space. The set S is clearly additive,
0 ∈ S, and for any λ ∈ Fq and h ∈ S, we have g(λh) = λ(gh) ∈ S. Thus,
with the rest of the properties given by the ring structure on R, we know S
is an Fq-vector space. Lastly, since HomR(R/

•(g), R/•(f)) is an R-module and
Fq ⊂ R, we know that HomR(R/

•(g), R/•(f)) is an Fq-vector space.

Now, consider η : ker(g(Tf )) → R where (v0, . . . vn−1) 7→
∑n−1

i=0 vix
i. This

map is clearly additive and injective. For any λ ∈ Fq and u = (u0, . . . , un−1) ∈
ker(g(Tf )),

η(λu) =
n−1∑
i=0

λuix
i = λ

n−1∑
i=0

uix
i = λη(u).

Hence, η is Fq-linear. We also claim the image of η is S. Indeed, let (v0, . . . , vn−1) ∈
Fnqs and define h =

∑n−1
i=0 vix

i. Then

g(Tf )(v0, . . . vn−1) = g(Tf )(vf (h)) = vf (gh).

Thus,
v ∈ ker(g(Tf )) ⇔ vf (gh) = 0 ⇔ gh ∈ •(f).

Next, consider the map γ : S → HomR(R/
•(g), R/•(f)) where h 7→ ψh given by

(a+ •(g))ψh = ah+ •(f).

To check ψh is a well-defined, let a + •(g), b + •(g) ∈ R/•(g) where a + •(g) =
b + •(g). Then, a − b ∈ •(g), so (a − b) = tg for some t ∈ R. Now consider
(a − b)h = tgh = tdf for some d ∈ R since h ∈ S. Hence, (a − b)h ∈ •(f), so
(a+ •(g))ψh = (b+ •(g))ψh as needed.

One may easily check ψh is a R-linear, and that γ is additive and injective.
Then, for λ ∈ Fq and h ∈ S, we have γ(λh) = ψλh = λ(ψh) = λγ(h). Hence,
γ is Fq-linear. To see γ is also surjective, given φ ∈ HomR(R/

•(g), R/•(f)), let
h ∈ R of degree less than n such that h + •(f) = (1 + •(g))φ. Then, we claim
φ = ψh. Indeed, for any a+

•(g) ∈ R/•(g),

(a+ •(g))φ = a(1 + •(g))φ = a(h+ •(f)) = ah+ •(f) = (a+ •(g))ψh.

Note that h ∈ S since 0 + •(f) = (0 + •(g))ψh = gh + •(f) which implies
gh ∈ •(f).

4. By part 1 and 2, for g ∈ R we have

vf (fg) = f(Tf )(vf (g)) = f(Tf )(g(Tf )(e0)).

Hence, g ∈ Idl(•(f)) if and only if g(Tf )(e0) ∈ ker(f(Tf )).

33



The following corollary makes use of the second part of Proposition 3.1.8 and
Theorem 3.1.19.

Corollary 3.1.20. Let f ∈ R be monic of degree n. Then, the following are equiva-
lent.

1. x ∈ Idl(•(f))

2. for any g ∈ R, we have g ∈ •(f) if and only if g(Cf ) = 0

3. f(Cf ) = 0

Proof. Let β be the standard basis of Fnqs .

(1) ⇒ (2) First note by Theorem 3.1.19(1), for i = 0, . . . , n− 1, we have

ei = vf (xi) = T if (e0).

Assume x ∈ Idl(•(f)) so that fx = tf for some t ∈ R. Then, inductively, for
i = 0, . . . , n− 1, we have fxi = tif . Hence, xi ∈ Idl(•(f)). By Theorem 3.1.19(4), we
know

0 = f(Tf )((T
i
f )(e0)) = f(Tf )(ei).

Now, suppose g ∈ •(f) such that g = hf for some h ∈ R. Then, for i = 0, . . . , n− 1,

g(Tf )(ei) = (hf)(Tf )(ei) = h(Tf )(f(Tf )(ei)) = h(Tf )(0) = 0.

Hence, 0 = [g(Tf )]β = g(Cf ) as needed.

For the converse direction, assume g(Cf ) = 0. Then, g(Tf )(ei) = 0 for all i =
0, . . . , n − 1. In particular, by Theorem 3.1.19(1) we have 0 = g(Tf )(e0) = vf (g).
Hence, g ∈ •(f) as needed.

(2) ⇒ (3) Since f ∈ •(f), (3) follows directly from (2).

(3) ⇒ (1) Assume f(Cf ) = 0. Then, by Proposition 3.1.8 [f(Tf )]β = 0. In
particular, f(Tf )(e1) = 0. Hence,

(fx)(Tf )(e0) = f(Tf )(Tf (e0)) = f(Tf )(e1) = 0.

This shows Tf (e0) ∈ ker(f(Tf )). Thus, by Theorem 3.1.19(4), x ∈ Idl(•(f)).

Recall from Definition 2.1.8 that for a ∈ Fqs , a conjugate of a is an element
of the form ac := σ(c)ac−1 for some c ∈ F∗

qs . Moreover, the conjugacy class of a is
∆(a) := {ac : c ∈ F∗

qs}. Now we will focus on the special case when V = R/•(x− a)
for some a ∈ Fqs . Recall from Example 3.1.10, the σ-SLM Ta : Fqs → Fqs is given by
α 7→ σ(α)a. This map plays a large role in the following corollary.
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Corollary 3.1.21. Suppose a ∈ Fqs and g, h ∈ R.

1. The map Λa : R → End(Fqs ,+) defined by Λa(g) = g(Ta) is a ring homomor-
phism. Hence,

(gh)(a) = g(Ta)(h(a)).

2. Assume h(a) ̸= 0, then we have, (gh)(a) = g(ah(a))h(a) (This part is a restate-
ment of Theorem 2.1.10 but is included here to be proven in this context). In
particular, for b ∈ F∗

qs we have g(Ta)(b) = g(ab)b.

3. If a ̸= 0, then the field FixFqs
(σ) is ring isomorphic to EndR(Fqs).

4. Lastly, we have ker(g(Ta)) = {b ∈ F∗
qs : g(a

b) = 0} ∪ {0}.

Proof. Let f = x − a and recall the map vf : R/•(f) → Fqs is an Fqs-isomorphism.
Note that the companion matrix of f is the singleton matrix [a]. Hence, the σ-SLM
Tf is the map Ta described above. By definition for any g ∈ R, we know vf (g) = g(a).

1. By Proposition 3.1.2, Λa is a ring homomorphism. Moreover, by Theorem
3.1.19(2),

(gh)(a) = vf (gh) = g(Ta)(h(a)).

2. First we will show g(Ta)(b) = g(ab)b for any b ∈ F∗
qs . Note that

(x− ab)b = xb− σ(b)a = σ(b)(x− a).

Hence, •((x− ab)b) ⊂ •(x− a). Now, by definition, g − g(ab) ∈ •(x− ab), so
clearly

gb− g(ab)b = (g − g(ab))b ∈ •((x− ab)b) ⊂ •(x− a).

Then, we know vf (gb) = g(ab)b. Thus , by Theorem 3.1.19(2), we have

g(Ta)(b) = vf (gb) = g(ab)b.

For the other part, by Theorem 3.1.19(1) and setting b = h(a) in the above
work, we have

(gh)(a) = g(Ta)(h(a)) = g(ah(a))h(a).

3. From 3.1.18 with n = 1, we have

EndR(R/
•(x− a)) ∼= {b ∈ Fqs : ab = σ(b)a} = FixFqs

(σ).

4. This part follows directly from part (2).

Recall for f ∈ R, the set of right roots of f is denoted V (f). So, for any
a /∈ V (f), we set Φf (a) := af(a). With these notations, we have the following.
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Proposition 3.1.22. Let f, g ∈ R such that gcrd(f, g) = 1 and let l = lclm(f, g).
Also let f ′, g′ ∈ R be such that l = f ′g = g′f and let T be a σ-SLM of any R-module
V . Then,

1. R/•(f) ∼= R/•(f ′),

2. g(T )(ker(f(T ))) = ker(f ′(T )),

3. ker(l(T )) = ker(f(T ))
⊕

ker(g(T )),

4. V (f ′) = Φg(V (f)).

Proof.

1. Note by the degree formula (2.1.4) we have deg(f) + deg(g) = deg(1) + deg(l).
Hence, deg(f) = deg(f ′). Consider the map φ : R/•(f ′) → R/•(f) where
h+ •(f ′) 7→ hg + •(f). To see this map is well defined let h1 = h2 ∈ R/•(f ′) so
that h1 − h2 = tf ′ for some t ∈ R. Then we have

(h1 − h2)g = tf ′g = tg′f ∈ •(f).

So, φ(h1) = φ(h2) as needed. This map is clearly R-linear, so to see it is
injective consider h ∈ kerφ. Then we know hg = tf for some t, so in fact
hg ∈ •(l). Then, for some k ∈ R, we have hg = kl = kf ′g, which forces h = kf ′

as needed. Lastly, we know the map φ is surjective since R/•(f) and R/•(f ′)
have the same cardinality.

2. We will prove this part by showing a number of subset containments. First let
v ∈ ker f(T ), and consider

f ′(T )g(T )(v) = (f ′g)(T )(v) = (g′f)(T )(v) = g′(T )f(T )(v) = 0.

Hence,
g(T )(ker f(T )) ⊂ ker f ′(T ).

Next, assume h+ •(f ′) = φ−1(1 + •(f)). Then

0 = φ−1(f + •(f)) = fφ−1(1 + •(f)) = fh+ •(f ′)

which gives fh ∈ •(f ′). Similar to the reasoning above, let v ∈ ker(f ′(T )) Then,
for some k ∈ R, we have

(fh)(T )(v) = (kf ′)(T )(v) = 0.

Hence,
h(T )(ker f ′(T )) ⊂ ker f(T ).

Moreover, note that

gh+ •(f ′) = gφ−1(1 + •(f)) = φ−1(g + •(f)) = 1 + •(f ′).
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So gh− 1 ∈ •(f ′). This implies

(gh)(T )(ker f ′(T )) = id(ker f ′(T )) = ker f ′(T ).

Therefore, in total we have

ker f ′(T ) = (gh)(T )(ker f ′(T )) ⊆ g(T )(ker f(T )) ⊆ ker f ′(T ).

3. Clearly ker g(T ) + ker f(T ) ⊆ ker l(T ). So, let v ∈ ker l(T ) and note

(f ′g)(T )(v) = 0 = (g′f)(T )(v).

Hence, g(T )(v) ∈ ker(f ′(T )) = g(T )(ker f(T )) by part 2. So, there must be
some w ∈ ker f(T ) where g(T )(v) = g(T )(w). This implies v − w ∈ ker g(T ).
Therefore, we have v = v − w + w with v − w ∈ ker g(T ) and w ∈ ker f(T ) as
needed. Lastly, we need to show ker g(T )∩ker f(T ) = {0}. Since gcrd(f, g) = 1,
there exists h, k ∈ R such that 1 = hf + kg. Let v ∈ ker f(T )∩ ker g(T ). Then,

v = id(v) = (1)(T )(v) = (hf + kg)(T )(v) = (hf)(T )(v) + (kg)(T )(v) = 0.

4. Note that since gcrd(f, g) = 1, we know g(a) ̸= 0 for any a ∈ V (f). Hence, we
have a well-defined set

Φg(V (f)) = {ag(a) : a ∈ V (f)}.

Now let a ∈ V (f) be arbitrary. By Corollary 3.1.21, we have

f ′(ag(a))g(a) = (f ′g)(a) = (g′f)(a) = 0.

This shows Φg(V (f)) ⊂ V (f ′). To show the reverse containment, we need to
show that for any a ∈ V (f ′) there is some b ∈ V (f) such that a = bg(b). By
Example 3.1.10, we know 0 = f ′(a) = f ′(Ta)(1). So by part 2, we have 1 ∈
ker f ′(Ta) = g(Ta) ker f(Ta). Therefore, there exists some nonzero c ∈ ker f(Ta)
such that g(Ta)(c) = 1. By Corollary 3.1.21, 1 = g(Ta)(c) = g(ac)c. Let b = ac

and note

bg(b) = σ(g(b))b(g(b))−1 = σ(g(ac)c) a (g(ac)c)−1 = a.

Moreover,
f(b)c = f(ac)c = f(Ta)(c) = 0.

Therefore, b ∈ V (f) as needed.

3.2 Applications to W-Polynomials

Throughout this section, assume σ is the q-Frobenius. Recall the definition for the
σ-minimal polynomial mA for a set A ⊂ Fqs given in Definition 2.1.14. The following
definition for W-polynomials is based on right roots. W-polynomials with left roots
will be discussed in Section 4.2.
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Definition 3.2.1. We say f is a W-polynomial if f is the minimal polynomial for
its vanishing set, i.e. f = mV (f).

In the following equivalence for W-polynomials, we say g ∈ R is a factor of
f ∈ R if f = f1gf2 for some f1, f2 ∈ R.

Theorem 3.2.2. [14, Prop. 3.4,Thm. 5.1] Let f ∈ R. The following are equivalent.

1. f is a W-polynomial.

2. f = m∆ for some ∆ ⊂ Fqs.

3. f splits completely and every monic factor of f is a W-polynomial.

4. f splits completely and every monic quadratic factor of f is a W-polynomial.

5. rkσ(V (f)) = deg(f).

Now, let a ∈ F∗
qs and let Ta : Fqs → Fqs be the σ-SLM given by α 7→ σ(α)a

as seen in Section 3.1. Then, by Proposition 3.1.2, the map Ta induces an R-module
structure on Fqs where f · b = f(Ta)(b) for any f ∈ R and b ∈ Fqs . Note also that
f(Ta) ∈ End(Fqs ,+) is an Fq-linear map. We will assume Fqs has this R-module
structure throughout the rest of this section.

Proposition 3.2.3. If f is a W-polynomial, then

dimFq ker f(Ta) ≤ deg(f).

Note that this is true for all a ∈ F∗
qs.

Proof. Since f is a W-polynomial, we may assume f = (x − d1) . . . (x − dn) where
di ∈ Fqs and n = deg(f). First we will show dimFq ker(x − di)(Ta) ≤ 1 for all
1 ≤ i ≤ n. Assume b ∈ ker(x− di)(Ta), so

0 = (x− di)(Ta)(b) = Ta(b)− dib = σ(b)a− dib.

Hence, di = ab. So, for c ∈ ker(x − di)(Ta), we have ac = di = ab, which forces
bq−1 = cq−1. This means b = λc for some λ ∈ Fq. Therefore, dimFq ker(x−di)(Ta) ≤ 1.
Now since

f(Ta) = (Ta − d1id) ◦ · · · ◦ (Ta − dnid)

we have

dimFq ker f(Ta) ≤
n∑
i=1

dimFq ker(x− di)(Ta) ≤ n = deg(f).

The R-module structure placed on Fqs by the map Ta also implies the next
result about R-linear maps involving Fqs .
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Lemma 3.2.4. Let p ∈ F∗
qs.

1. Assume there exists a nonzero R-linear map Φ : R/•(x− p) → Fqs. Then, we
have p = ab where b = Φ(1+ •(x− p)) and therefore Φ(g+ •(x− p)) = g(Ta)(b)
for all g ∈ R. Moreover, Φ is an R-isomorphism.

2. Conversely, assume p = ab for some b ∈ F∗
qs. Then, the map Φ : R/•(x− p) →

Fqs given by g + •(x− p) 7→ g(Ta)(b) is a well-defined R-linear isomorphism.

Proof.

1. Note that p + •(x− p) = x + •(x− p). Let b = Φ(1 + •(x− p)) and note b is
nonzero. Then

Φ(p+ •(x− p)) = pΦ(1 + •(x− p)) = pb

Φ(x+ •(x− p)) = xΦ(1 + •(x− p)) = x · b = Ta(b) = σ(b)a.

Since Φ is well-defined, we must have pb = σ(b)a. Therefore, p = ab. From the
R-module structure on Fqs , for any g ∈ R we have

Φ(g + •(x− p)) = gΦ(1 + •(x− p)) = g · b = g(Ta)(b).

Lastly, we will show Φ is injective. Assume Φ(f+ •(x− p)) = 0 for some f ∈ R.
Then, by Corollary 3.1.21,

0 = fΦ(1 + •(x− p)) = f · b = f(Ta)(b) = f(ab)b = f(p)b.

Since b ̸= 0, we know f ∈ •(x− p) as needed. Surjectivity follows immediately.

2. Now assume p = ab for some b ∈ Fqs . Suppose for g, h ∈ R that g + •(x− p) =
h+ •(x− p), so g − h = k(x− p) for some k ∈ R. Then consider

g(Ta)(b)− h(Ta)(b) = (g − h)(Ta)(b) = k(x− p)(Ta)(b)

= k(Ta)(Ta(b)− pb) = k(Ta)(σ(b)a− pb) = 0

since p = σ(b)ab−1. Therefore, Φ(g + •(x− p)) = Φ(h + •(x− p)) as needed.
Clearly, Φ is a additive since Ta is additive. Now assume g, h ∈ R are arbitrary.
Then,

Φ(gh+ •(x− p)) = (gh)(Ta)(b) = g(Ta)(h(Ta)(b))

= g(Ta)(Φ(h+ •(x− p))) = g · Φ(h+ •(x− p)).

Hence, Φ is an R-linear map. The fact that Φ is an R-isomorphism follows from
the first part.

Recall the definition for P-dependence which is given in Definition 2.1.14. The
following result is stated in Chapter 1 as Corollary 2.1.28, but it is included here to
be proven in this context.
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Proposition 3.2.5. For a ∈ F∗
qs and i = 1, . . . , n, assume pi = abi with pi, bi ∈ F∗

qs.
Then, {p1, . . . , pn} is a P-dependent set if and only if {b1, . . . , bn} is linearly dependent
over Fq.

Proof. For i = 1, . . . , n, let

Φi : R/
•(x− pi) → Fqs

be the isomorphism Φi(g +
•(x− p) = g(Ta)(bi) as in Lemma 3.2.4. By the lemma,

we have bi = Φi(1 +
•(x− pi)).

(⇐) Assume bn =
∑n−1

i=1 λibi for λi ∈ Fq, and let

l′ = lclm{x− pi : 1 ≤ i ≤ n− 1}.

Now consider

Φn(l
′ + •(x− pn)) = l′ · Φn(1 +

•(x− pn)) = l′ · bn = l′ ·
n−1∑
i=1

λibi

= l′(Ta)

(
n−1∑
i=1

λibi

)
=

n−1∑
i=1

λil
′(Ta)(bi) =

n−1∑
i=1

λil
′ · Φi(1 +

•(x− pi))

=
n−1∑
i=1

λiΦi(l
′ + •(x− pi)) = 0.

Therefore, l′(pn) = 0 by injectivity. Now, since deg(l′) ≤ n− 1, we know {p1, . . . , pn}
is a P-dependent set.

(⇒) Conversely, assume {p1, . . . , pn} is a P-dependent set and let

l = lclm{x− pi : 1 ≤ i ≤ n}.

Note, by definition of a P-dependent set we know deg(l) ≤ n− 1. Now consider

l(Ta)(bi) = l · bi = l · Φi(1 +
•(x− pi)) = Φi(l +

•(x− pi)) = 0.

Hence, {b1, . . . , bn} ⊂ ker l(Ta). By Proposition 3.2.3, since l is a W-polynomial,
dimFq ker l(Ta) ≤ deg(l) ≤ n − 1. Therefore, {b1, . . . , bn} is linearly dependent over
Fq.

Assume 0 = a0, a1, . . . , aq−1 are representatives of the σ-conjugacy classes of
Fqs . Let

Cj = {b ∈ F∗
qs : σ(b)aj = ajb}.

Then, clearly C0 = Fqs and Cj = Fq for j ≥ 1. Also note that Ta0 is the zero map, so
ker(Ta0) = Fqs .
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Proposition 3.2.6. Let f ∈ R and let ∆j = V (f) ∩ ∆(aj), for j ∈ {0, . . . , q − 1}.
Then, if ∆j ̸= ∅, we have

dimCj
ker f(Taj) = rkσ(∆j).

Proof. First note if ∆0 ̸= ∅, then 0 ∈ V (f), so f must have no constant term. Hence,

rkσ(∆0) = 1 = dimFqs
(Fqs) = dimFqs

ker f(Ta0)

as needed. Now fix j ≥ 1 and assume ∆j ̸= ∅.

(≥) Let {p1, . . . , pn} be a P-basis for ∆j. Note that for i = 1, . . . , n we have f(pi) = 0
and pi = abij for some bi ∈ F∗

qs . By Proposition 3.2.5, we know {b1, . . . , bn} is linearly
independent over Fq. Moreover, by Corollary 3.1.21,

f(Taj)(bi) = f(abij )bi = f(pi)bi = 0.

Therefore, {b1, . . . , bn} ⊂ ker(f(Taj)), so dimFq ker f(Taj) ≥ n.

(≤) Conversely, assume {c1, . . . , cr} is a basis for ker f(Taj) over Fq. Then for
i = 1, . . . , r,

0 = f(Taj)(ci) = f(acij )ci.

Hence, acij ∈ ∆j since ci ̸= 0. Also, by Proposition 3.2.5, we know {ac1j , . . . , a
cr
j } are

P-independent. Thus, r ≤ rkσ(∆j).

Now for the main result.

Theorem 3.2.7. Let f ∈ R be of degree n. Then

1. f has roots in at most n σ-conjugacy classes say {∆(aj1), . . . ,∆(ajr)} with r ≤ n
(See Theorem 2.1.12).

2.
∑r

i=1 dimCji
ker(f(Taji )) ≤ n.

Proof.

1. We will show this part by induction on n. For the base case, assume n = 1, so
then f = x− a for some a ∈ Fqs . Then clearly f has one root in one conjugacy
class ∆(a).

Now, assume f ∈ R has degree n and let a ∈ Fqs be a root of f . Then
f = g(x − a) for some g ∈ R. By the inductive hypothesis, g has roots in at
most n − 1 σ-conjugacy classes, say {∆(d1), . . . ,∆(dr)} with r ≤ n − 1. By
Theorem 2.1.10, if d ̸= a is a root of f , then dd−a is a root of g. Hence, all roots
of f fall into at most n conjugacy classes

{∆(d1), . . . ,∆(dr),∆(a)}.
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2. Assume the roots of f fall into the σ-conjugacy classes ∆(aj1), . . . ,∆(ajr). Then,
we can write V (f) = ∪ri=1∆i where ∆i = V (f) ∩ ∆(aji). Hence, by Theorem
2.1.18 and Proposition 3.2.6 we have

rkσ(V (f)) =
r∑
i=1

rkσ(∆i) =
r∑
i=1

dimCji
ker f(Taji ).

SincemV (f) right divides f we have rkσ(V (f)) ≤ n and so the statement follows.

Remark 3.2.8. Equality in the theorem above holds if and only if f = mA for some
A ⊂ Fqs i.e. if f is a W-polynomial.

Note that in [16], the author assumes q is prime in the following theorem. This
assumption is not necessary as we will see in the subsequent proof.

Theorem 3.2.9. Consider R = Fqs [x;σ] where σ is the q-Frobenius.

1. We have l′ := lclm(x− a : a ∈ F∗
qs) = x(q−1)s − 1.

2. We also have l := lclm(x− a : a ∈ Fqs) = x(q−1)s+1 − x.

3. The ideal generated by l is two-sided.

Proof.

1. Let H = x(q−1)s − 1. Recall from 2.2.8, we know N(q−1)s(b) = 1 for all b ∈ F∗
qs .

Hence, for any b ∈ F∗
qs , we have H(b) = 0. Now, it suffices to show deg(l′) ≥

(q− 1)s. Let a1, . . . , aq−1 be representatives of the nonzero σ-conjugacy classes
of Fqs . By Corollary 3.1.21,

l′(Tai)(b) = l′(abi)b = 0

for all b ∈ F∗
qs . This shows ker(l

′(Tai)) = Fqs for all i = 1, . . . , q − 1. Therefore,
by Theorem 3.2.7 we have

deg(l′) ≥
q−1∑
i=1

dimCi
ker(l′(Tai)) =

q−1∑
i=1

dimFq(Fqs) = (q − 1)s.

Thus, we know l′ = H.

2. Let G = x(q−1)s+1−x and note that xl′ = l′x. Hence, G annihilates any b ∈ Fqs
since l′ is a right divisor of G and clearly G(0) = 0. Since l′(0) ̸= 0, we know
deg(l) > deg(l′). Therefore, deg(l) ≥ (q − 1)s+ 1, so in fact l = G.

3. Since σs =id we know la = σ(a)l for all a ∈ Fqs , and clearly xl = lx. Therefore,
•(l) = (l)•.

Copyright© Kathryn M. Hechtel, 2024.
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Chapter 4 W-Polynomials

In a skew-polynomial ring, the skew-multiplication rule allows polynomials to pick up
more roots than suggested by its degree. Hence, it has become of interest to classify
when a polynomial is a W-polynomial, i.e. the minimal polynomial of its set of roots
(see Definition 3.2.1). In this chapter, we will discuss when polynomials of the form
xn − a ∈ Fqs [x;σ] are W-polynomials. We will show that any right W-polynomial
is also a left W-polynomial. Lastly, we will show any W-polynomial will remain a
W-polynomial when considered over a field extension.

4.1 Vanishing set of xn − a

There is a special kind of (σ, f)-skew-cyclic code called a (σ, a)-skew-constacyclic code
where the modulus f is taken to be xn − a ∈ Fqs [x;σ]. This type of skew-cyclic code
was first introduced by [3] and later studied in detail by [4], [5], and [7]. In this
section, we will identify the minimal polynomial for V (xn−a), thereby classifying for
what n ∈ N and a ∈ F∗

qs , the polynomial xn − a is a W-polynomial.

Throughout, let ω be a primitive element of Fqs , let σ be the q-Frobenius and let
n ∈ N where n ≤ (q − 1)s. Note that we have this upper bound on n since all mini-
mal polynomials of subsets of F∗

qs have degree at most (q − 1)s by Theorem 2.1.19.

Recall the definition for the (r, n)-th norm function given in 2.1.6. Note that N r
n

induces a group homomorphism on F∗
qs . Since F∗

qs is a cyclic group, we know im(Nn)
and ker(Nn) are cyclic. This is made precise in the following proposition. For the
rest of this section assume

d = gcd(qs−1,
qn − 1

q − 1
), d′ = gcd(s(q−1), n), and δ = gcd(qs−1,

qd
′ − 1

q − 1
). (4.1)

Proposition 4.1.1. The image and kernel of the n-th norm function are given by

im(Nn) = ⟨ωd⟩ and ker(Nn) = ⟨ω
qs−1

d ⟩.

Proof. Since F∗
qs = ⟨ω⟩, clearly im(Nn) = ⟨ω

qn−1
q−1 ⟩. We also know that ⟨ω

qn−1
q−1 ⟩ ⊆ ⟨ωd⟩

since d divides qn−1
q−1

. Conversely, let u, v ∈ Z where d = u(qs − 1) + v( q
n−1
q−1

). Then,

ωd = ωu(q
s−1)+v( q

n−1
q−1

) = ωv(
qn−1
q−1

).

Hence, ⟨ωd⟩ ⊆ ⟨ω
qn−1
q−1 ⟩. Therefore, im(Nn) = ⟨ωd⟩.

The first isomorphism theorem for groups tells us, ker(Nn) = ⟨ω|im(Nn)|⟩. Hence,

we have ker(Nn) = ⟨ω qs−1
d ⟩ as needed.
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Before we work more with the kernel and image of Nn, it is useful to have the
following results on gcds. The first of which follows from elementary number theory.

Lemma 4.1.2. Let α, β, γ ∈ Z. If γ| gcd(α, β), then

gcd

(
α

γ
,
β

γ

)
=

gcd(α, β)

γ
.

Lemma 4.1.3. For d, δ given in Equation 4.1, we have δ = d.

Proof. By Lemmas 2.2.14 and 4.1.2,

qd
′ − 1

q − 1
= gcd

(
q(q−1)s − 1

q − 1
,
qn − 1

q − 1

)
.

Hence, for some u, v ∈ Z,

qd
′ − 1

q − 1
= u

(
q(q−1)s − 1

q − 1

)
+ v

(
qn − 1

q − 1

)
= u

(∑q−2
i=0 (q

is − 1)

q − 1
+
q − 1

q − 1

)
(qs − 1) + v

(
qn − 1

q − 1

)
= dt

for some t ∈ Z. Thus, since d also divides qs − 1, we know d divides δ.

For some ν, ζ ∈ Z, we have

d = ν(qs − 1) + ζ

(
qn − 1

q − 1

)

= ν(qs − 1) + ζ

 n
d′−1∑
i=0

qd
′i

(qd′ − 1

q − 1

)
= kδ

for some k ∈ Z. Therefore, δ = d.

The subsequent corollary follows immediately from Proposition 4.1.1 and Lemma
4.1.3.

Corollary 4.1.4. For d′ given in Equation (4.1),

ker(Nn) = ker(Nd′).
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Lemma 4.1.5. The vanishing set of xn − a is nonempty if and only if a ∈ im(Nn).

Proof. Let f = xn − a. Recall from Proposition 2.1.7 that f(c) = Nn(c)− a for any
c ∈ Fqs .

Remark 4.1.6. Assume a = Nn(c) for some c ∈ F∗
qs . Then, the vanishing set of x

n−a
is the coset of ker(Nn) containing c. Indeed, for any b ∈ Fqs , we have b ∈ V (xn−a) if
and only if Nn(b) = Nn(c). This is equivalent to bc

−1 ∈ ker(Nn). Hence, b ∈ V (xn−a)
if and only if b and c are in the same coset of ker(Nn). Therefore, V (xn−a) is precisely
the coset of ker(Nn) containing c.

In the following proposition, we will see that xn − a factors in a nice way.

Proposition 4.1.7. Assume n = αβ, and a = Nn(c) for some c ∈ F∗
qs. Define

â = Nβ(c). Then

xn − a =

(
α−1∑
j=0

(
α−1∏
i=j+1

(â)q
iβ

)
xjβ

)
(xβ − â).

Proof. If we carry out the multiplication on the right-hand side of the above identity,
with the aid of Lemma 2.2.1 we get the following.

RHS =
α−1∑
j=0

(
α−1∏
i=j+1

(â)q
iβ

)
x(j+1)β −

α−1∑
j=0

(
α−1∏
i=j

(â)q
iβ

)
xjβ

=
α∑
j=1

(
α−1∏
i=j

(â)q
iβ

)
xjβ −

α−1∑
j=0

(
α−1∏
i=j

(â)q
iβ

)
xjβ

= xαβ +
α−1∑
j=1

(
α−1∏
i=j

(â)q
iβ

)
xjβ −

(
α−1∑
j=1

(
α−1∏
i=j

(â)q
iβ

)
xjβ +

α−1∏
i=0

(â)q
iβ

)

= xαβ −
α−1∏
i=0

(â)q
iβ

= xαβ −Nβ
α (â)

= xαβ −Nβ
α (Nβ(c))

= xαβ −Nn(c)

= xn − a.

Corollary 4.1.8. Assume a = Nn(c) and let â = Nd′(c). Then

1. (xd
′ − â)|r (xn − a),
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2. (xd
′ − â)|r (x(q−1)s − 1).

Proof. Part 1 follows immediately from Proposition 4.1.7. For part 2, recall from
Proposition 2.2.8 that N(q−1)s(c) = 1 for any c ∈ F∗

qs . Hence, part 2 also follows
immediately from Proposition 4.1.7 if we take a = 1.

Now we have the main result of the section.

Theorem 4.1.9. Let f = xn − a ∈ Fqs [x;σ]. Assume a ∈ im(Nn) so a = Nn(c) for
some c ∈ F∗

qs. Let â = Nd′(c). Then

xd
′ − â = mV (f),

where as before mV (f) is the minimal polynomial of V (f).

Proof. Let g = xd
′ − â. By Corollary 4.1.8(2), Theorem 3.2.2, and Theorem 3.2.9

we know g is a W-polynomial. By Corollary 4.1.8(1) and Corollary 2.1.15, we have
V (g) ⊆ V (f). Lastly, we need to show V (f) ⊆ V (g). Let b ∈ V (f). Then, Nn(b) =
a = Nn(c). Hence, bc

−1 ∈ ker(Nn). By Corollary 4.1.4, we also have bc−1 ∈ ker(Nd′).
Therefore, Nd′(b) = Nd′(c) = â. So, b ∈ V (g) as needed.

As a corollary, we know the σ-rank of V (xn − a) and we are able to classify
exactly when xn − a is a W-polynomial.

Corollary 4.1.10.

1. If V (xn − a) ̸= ∅, then rkσ(V (xn − a)) = gcd(s(q − 1), n).

2. The polynomial xn − a is a W-polynomial if and only if n divides (q − 1)s and
a ∈ im(Nn).

In [12], the author states that xs − a is a W-polynomial if and only if a ∈ F∗
q.

This is a special case of Corollary 4.1.10(1) since by Proposition 4.1.1,

im(Ns) = ⟨ω
qs−1
q−1 ⟩ = F∗

q.

This implies for any γ ∈ F∗
qs , we have Ns(γ) ∈ F∗

q. Recall from Theorem 2.2.4 that
xs − Ns(γ) is the minimal polynomial of ∆(γ). Hence, we in fact have a one-to-one
correspondence between the q − 1 non-zero elements of Fq, and the q − 1 non-zero
σ-conjugacy classes of Fqs .

Remark 4.1.11. Let ∆ be a nonzero σ-conjugacy class of Fqs with minimal polyno-
mial m∆ = xs − a. Recall from Remark 4.1.6 that V (m∆) is a coset of ker(Ns) and
by Proposition 4.1.1 that ker(Ns) = ⟨ωq−1⟩. Hence, | ker(Ns)| = qs−1

q−1
= |∆|. This

means V (m∆) = ∆. Any subset with this property is called full.
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4.2 Left and Right W-Polynomials

By default, when we use the term W-polynomial, we assume we have a right W-
polynomial, i.e. the right minimal polynomial of its set of right roots. A left W-
polynomial is the left minimal polynomial for its set of left roots. In Theorem 3.2.2,
we are given equivalent definitions for a W-polynomial involving its factors. In the
theorem, we say g ∈ Fqs [x;σ] is a factor of f if f = f1gf2 for some f1, f2 ∈ Fqs [x;σ].
So, the term factor encompasses left, right, or middle factors. Hence, it is natural to
ask if a right W-polynomial is also a left W-polynomial. In this section, we will use
subscripts l and r to denote left or right vanishing sets, minimal polynomials, etc.

Throughout, assume σ is the q-Frobenius. From [14] we have the following useful
fact about quadratic right or left W-polynomials.

Proposition 4.2.1. [14, Ex. 3.5] A monic quadratic polynomial f ∈ Fqs [x;σ] is a
right (left) W-polynomial if and only if f has at least two distinct right (left) roots.

Now we will state what form any quadratic W-polynomial must have.

Lemma 4.2.2.

1. If f ∈ Fqs [x;σ] is a quadratic right W-polynomial, then f = (x − bb−a)(x − a)
for some a, b ∈ Vr(f) where a ̸= b.

2. If f ∈ Fqs [x;σ] is a quadratic left W-polynomial, then f = (x− a)(x− σ−1(b−
a)b(b− a)−1) for some a, b ∈ Vl(f) where a ̸= b.

The lengthy expression in part 2 is a conjugate of b with respect to the auto-
morphism σ−1.

Proof.

1. Assume f is a quadratic right W-polynomial and let a, b ∈ Vr(f) where a ̸= b.
Note that a and b exist by Proposition 4.2.1. One can easily check the identity

(x− bb−a)(x− a) = (x− aa−b)(x− b). (4.2)

Note that this result also follows directly from Theorem 2.1.10. Therefore,
(x − bb−a)(x − a) must be the minimal polynomial of {a, b}. So, since f is a
right W-polynomial, we have f = (x− bb−a)(x− a).

2. This direction is analogous to part (1), since one can easily check the identity

(x− a)(x− σ−1(b− a)b(b− a)−1) = (x− b)(x− σ−1(a− b)a(a− b)−1). (4.3)

Therefore, since f is a left W-polynomial, we have f = (x − a)(x − σ−1(b −
a)b(b− a)−1).
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Before the main theorem, we need a lemma.

Lemma 4.2.3. Let a, b ∈ Fqs. If a ̸= b, then aa−b ̸= bb−a. This is true for conjugation
based on any σ ∈ Aut(Fqs/Fq).

Proof. Let a, b ∈ Fqs where a ̸= b. Then, we have

σ(a− b)a(a− b)−1 ̸= σ(a− b)b(a− b)−1 = σ(b− a)b(b− a)−1.

Now we are able to state the main result of this section.

Theorem 4.2.4. Let f ∈ Fqs [x;σ] be a monic of degree 2. Then f is a right W-
polynomial if and only if it is a left W-polynomial.

Proof. Assume f is a right W-Polynomial and let a, b ∈ Vr(f) be distinct. Then, by
Lemma 4.2.2, f is of the form (x−aa−b)(x− b). By Equation (4.2) and Lemma 4.2.3,
f has aa−b and bb−a as distinct left roots. So, by Proposition 4.2.1, f must be a left
W-polynomial. The converse direction can be shown via a symmetric argument that
uses Equation (4.3) and applies Lemma 4.2.2 to σ−1.

As a result of the above theorem, we have the following.

Corollary 4.2.5. Let f ∈ Fqs [x;σ]. Then f is a right W-polynomial if and only if it
is a left W-polynomial.

Proof. Recall from Theorem 3.2.2 that a polynomial f is a right (left) W-polynomial
if and only if it splits completely, and every monic quadratic factor of f is a right
(left) W-polynomial. By Theorem 4.2.4, a quadratic polynomial is left W-polynomial
if and only if it is right W-polynomial. Hence, the result follows immediately.

4.3 W-polynomials in a Field Extension

Consider fields Fqst/Fqs/Fq, let θ be the q-Frobenius of Fqst and let σ = θ|Fqs
. In

this section, we will see that a W-polynomial in Fqs [x;σ] will remain a W-polynomial
when considered over a larger field Fqst , however the converse is not true.

Recall the vanishing set for a polynomial f is the set of roots of f (see Definition
2.1.14). For this section, we will use a subscript to indicate which field the roots are
coming from, i.e. for f ∈ Fqs [x;σ],

VFqs
(f) = {b ∈ Fqs : f(b) = 0}

VFqst
(f) = {b ∈ Fqst : f(b) = 0}
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Theorem 4.3.1. If f ∈ Fqs [x;σ] is a W-polynomial, then f is also a W-polynomial
in Fqst [x; θ].

Proof. Let f ∈ Fqs [x;σ] be a W-polynomial and let U = VFqs
(f), and V = VFqst

(f).
Since f is a W-polynomial, we certainly have f = mU . By Corollary 2.1.15, since
U ⊂ V , we have f |rmV . By Theorem 2.1.10, since f vanishes on V we also have
mV |rf . Therefore, we must have f = mV , so f is a W-polynomial in Fqst [x; θ].

Remark 4.3.2. Conversely, we may have a W-polynomial in Fqst [x; θ] which is not
a W-polynomial in Fqs [x;σ]. Recall from Corollary 4.1.10 that xn − a ∈ Fqs [x;σ]
is a W-polynomial if and only if n|(q − 1)s and a ∈ im(Nn). So, clearly if we let
a ∈ Nn(Fqs) and pick some n that divides (q− 1)st but does not divide (q− 1)s, then
xn − a is a W-polynomial in Fqst [x; θ] but not Fqs [x;σ].

For a polynomial f ∈ Fqs [x;σ], we clearly have VFqs
(f) ⊆ VFqst

(f). We will
see next for certain W-polynomials we can have equality.

Proposition 4.3.3. Let a = Ns(γ), γ ∈ F∗
qs and let f = xs − a. Then we have

VFqs
(f) = VFqst

(f).

Proof. Clearly we have VFqs
(f) ⊂ VFqst

(f). To show the other direction, let ω be

a primitive element of Fqst and assume γ = ω
qst−1
qs−1

k for some k ∈ N. Now let b ∈
VFqst

(f) so that bγ−1 ∈ ker(Ns). Then by Proposition 4.1.1 applied to the group
homomorphism Ns : F∗

qst → F∗
qst , we have

bγ−1 = ω
qst−1
qs−1

(q−1)j

for some j ∈ N. Therefore,

b =

(
ω

qst−1
qs−1

k

)(
ω

qst−1
qs−1

(q−1)j

)
= ω

(
qst−1
qs−1

)
(k+(q−1)j) ∈ Fqs .

So in fact b ∈ VFqs
(f). Thus, VFqst

(f) = VFqs
(f).

In general, W-polynomials in Fqs [x;σ] pick up roots when considered over Fqst
as seen in the next example.

Example 4.3.4. Consider fields F34/F32/F3 and assume ω is a primitive element of
F34 which satisfies ω4 + 2ω3 + 2 = 0. Let f = x2 − x + ω30 ∈ F32 [x;σ] and note
that f is a W-polynomial over F32 , and hence a W-polynomial over F34 . When one
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compares the vanishing set of f in F32 with the vanishing set of f in F34 , we see that
f indeed has more roots in the larger field.

VF32
(f) = {ω50, ω60}

VF34
(f) = {ω8, ω50, ω60, ω72}

Copyright© Kathryn M. Hechtel, 2024.
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Chapter 5 Skew Roos Bound and the Arithmetic Progression
Construction

In [1], the authors showed a Roos-like bound for the minimum Hamming distance
and rank distance of certain skew-cyclic codes. In their work, they take the modulus
f = xn−1. We are able to show that the Roos-like bound on the minimum Hamming
distance also holds for a more general modulus f = xn−a with a ∈ Nn(F∗

qs). If in fact
a ∈ Nn(Fq), then it even holds for the minimum rank distance. In addition, we provide
a counterexample illustrating that the last statement is not true if a ∈ Nn(Fqs \ Fq).
Furthermore in [1], the authors provide conditions on the size of the set of roots of a
generating polynomial which force the resulting code to be MRD. After some work,
we are able to show that any root set of this size must be in the form of an arithmetic
progression.

5.1 Skew Roos Bound

Throughout this section, let n = st and consider Zn := ({0, . . . , n − 1},+) as an
abelian group. For f = xn− a with a ∈ Nn(Fqs), the skew-cyclic codes of interest for
this section are submodules of the module

Fqs [x;σ]
/•(xn − a) ∼= Fnqs .

Definition 5.1.1. Let β ∈ F∗
qst and γ ∈ F∗

qs . For g ∈ Fqs [x;σ], the (γ, β)-defining set
of g is

Tγ,β(g) := {i ∈ Zn : (x− γβq
i

)|r g}.
Note that in particular lclm{x− γβq

i
: i ∈ Tγ,β(g)} |r g.

Considering (γ, β)-defining sets as a subsets of Zn is well-defined because
βq

l+jn
= βq

l
for any l ∈ N and j ∈ Z.

Remark 5.1.2. Let γ ∈ F∗
qs and β ∈ Fqst where β = αq−1 for some normal element

α of Fqst (see Definition 2.2.3). Also let g ∈ Fqs [x;σ].

1. The set Tγ,β(g) greatly depends on the choices of γ and β.

2. Let a = Nn(γ). By Theorem 2.2.4, we know γβq
i
is a root of xn − a for

i = 0, . . . , n− 1. Hence, for any subset T ⊂ Zn, we have

lclm{x− γβq
i

: i ∈ T} |r (xn − a).

Now, we will state the Roos-like bound for the Hamming distance. The proof
of the theorem presented here is the same as in [1] with small adjustments made to
handle the more general modulus f . For the case where a = 1, see Theorem 13 in [1].
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Theorem 5.1.3 (Skew Roos Bound for the Hamming distance). Let a ∈ Nn(F∗
qs)

and f = xn − a ∈ Fqs [x;σ]. Also let g ∈ Fqs [x;σ] be a right divisor of f and set
C = vf (

•(g)) ⊂ Fnqs. Suppose there exists parameters b,m, δ, r, k0, . . . , kr ∈ N0 such
that

1. m ̸= 0 and gcd(m,n) = 1,

2. k0 < k1 < · · · < kr with kr − k0 ≤ δ + r − 2,

3. {b +mi + kj : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ r} ⊂ Tγ,β(g) for some γ ∈ N−1
n (a), and

β = αq−1 for some normal element α of Fqst, and where all elements are taken
modulo n.

Then, dH(C) ≥ δ + r.

Proof. Let w = δ+ r− 1 and pick c ∈ C where wH(c) ≤ w. It suffices to show c = 0.
Note that pf (c) =

∑w
h=1 clhx

lh for suitable {l1, . . . , lw} ⊂ {0, . . . , n− 1}. So, for each
0 ≤ i ≤ δ − 2, 0 ≤ j ≤ r we know x− γβq

b+im+kj |rpf (c). Hence, for all i, j,

0 =
w∑
h=1

clhNlh(γβ
qb+im+kj

) = α−qb+im+kj

w∑
h=1

clhNlh(γ)α
qb+im+kj+lh

.

This means c = (cl1Nl1(γ), . . . , clwNlw(γ)) ∈ ker(B) where

B =
(
A Aq

m
. . . Aq

(δ−2)m
)

and
A =

(
αq

b+lh+kj

)
1≤h≤w
0≤j≤r

.

By [1, Lemma 12], if we set t = δ − 1, then we know rk(B) = w which forces
c = 0. Then, since Nlh(γ) ̸= 0 for all 1 ≤ h ≤ w, we must have c = 0.

As we will see next, the Roos-like bound for the rank distance also holds with
a general modulus f = xn − a when a ∈ Nn(Fq). For the case where a = 1, see
Theorem 22 in [1].

Theorem 5.1.4 (Skew Roos Bound for the rank distance). Let a ∈ Nn(Fq) and
f = xn − a ∈ Fq[x;σ]. Also let g ∈ Fqs [x;σ] be a right divisor of f and set
C = vf (

•(g)) ⊂ Fnqs. Suppose there exists parameters b,m, δ, r, k0, . . . , kr ∈ N0 such
that

1. m ̸= 0 and gcd(m,n) = 1,

2. k0 < k1 < · · · < kr with kr − k0 ≤ δ + r − 2,
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3. {b +mi + kj : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ r} ⊂ Tγ,β(g) for some γ ∈ N−1
n (a) ∩ Fq,

and β = αq−1 for some normal element α of Fqst, and where elements are taken
modulo n.

Then, dR(C) ≥ δ + r.

Proof. By Lemma 2.3.4, it suffices to show dH(CM) ≥ δ + r for all M ∈ GLn(Fq).
Let M ∈ GLn(Fq) be arbitrary, w = δ + r − 1, and c ∈ CM−1 such that wH(c) ≤ w.
It suffices to show c = 0. Assume pf (cM) =

∑n−1
h=0 phx

h. Then, for each 0 ≤ i ≤ δ−2,

0 ≤ j ≤ r we know x− γβq
b+im+kj |r pf (cM). Hence, for all i, j

0 =
n−1∑
h=0

phNh(γβ
qb+im+kj

) = α−qb+im+kj

n−1∑
h=0

phNh(γ)α
qb+im+kj+h

.

Let D = diag(1, N1(γ), . . . , Nn−1(γ)). Then, we have cMD ∈ ker(B) where

B =
(
A Aq

m
. . . Aq

(δ−2)m
)

and
A =

(
αq

b+h+kj

)
0≤h≤n−1
0≤j≤r

.

Let L := {l1, . . . , lw} ⊂ {0, . . . , n − 1} denote the non-zero components of c
and set c = (cl1 , . . . , clw). Denote by ML the rows of M indexed by L. Then clearly
cM = cML, so we have c ∈ ker(MLDB). Since MLD ∈ Fw×nq and hence invariant
under powers of q, we have

MLDB =
(
MLDA (MLDA)

qm . . . (MLDA)
q(δ−2)m

)
Now we will show that

MLDA =
(
βq

kj

h

)
1≤h≤w
0≤j≤r

,

for linearly independent β1, . . . , βw where

βh =M{lh}D[αq
b

, αq
b+1

, . . . , αq
b+n−1

]T .

Let M = (mij). Then for all 1 ≤ h ≤ w, 0 ≤ j ≤ r, we have

(MLDA)hj =
n−1∑
i=0

mlh,iNi(γ)α
qb+kj+i

=

(
n−1∑
i=0

mlh,iNi(γ)α
qb+i

)qkj

=
(
M{lh}D[αq

b

, αq
b+1

, . . . , αq
b+n−1

]T
)qkj

= (βh)
qkj .
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To show linear independence, assume that for x1, . . . , xw ∈ Fq we have

0 = x1β1 + · · ·+ xwβw

=
w∑
h=1

xh

(
n−1∑
i=0

mlh,iNi(γ)α
qb+i

)

=
w∑
h=1

n−1∑
i=0

xhmlh,iNi(γ)α
qb+i

=
n−1∑
i=0

(
w∑
h=1

xhmlh,iNi(γ)

)
αq

b+i

=

(
n−1∑
i=0

(
w∑
h=1

xhmlh,iNi(γ)

)
αq

i

)qb

.

Since α, αq, . . . , αq
n−1

are linearly independent over Fq, we must have
∑w

h=1 xhmlh,iNi(γ) =
0 for all i = 0, . . . , n− 1. Then,

0 =
w∑
h=1

xhmlh,iNi(γ) = Ni(γ)
w∑
h=1

xhmlh,i.

So, in fact
∑w

h=1 xhmlh,i = 0 for all i = 0, . . . , n− 1. This forces (x1, . . . , xw)ML = 0.
Now, since M is invertible, we know rk(ML) = w, so xh = 0 for all 1 ≤ h ≤ w. Thus,
β1, . . . , βw are linearly independent over Fq. Therefore, by [1, Lemma 12], we have
rk(MLDB) = w. This forces c = 0 and hence c = 0 as needed.

Unfortunately, the Roos-like bound for the rank distance does not hold for
γ ∈ Fqs \ Fq. Indeed, the following is a counter-example to the Roos-like bound for
the rank metric when γ /∈ Fq.

Example 5.1.5. Let n = s = 6, t = 1, and consider fields F36/F3. Let ω be a
primitive element of F36 which satisfies ω6+2ω4+ω2+2ω+2 = 0. Note that α = ω2

generates a normal basis of F36 , so set β = ω4. Pick γ = ω11 ∈ F36 \ F3. Then
we have a = N6(γ) = 2 ∈ F3, and note that a /∈ N6(F∗

3). Now choose parameters
b = 1,m = 5, δ = 3, r = 1, k0 = 1, k1 = 3, and let

g = lclm{γβq
b+im+kj

: 0 ≤ i ≤ 1, 0 ≤ j ≤ 1}.

For f = x6 − 2, define C = vf (
•(g)). Using SageMath software, one may easily see

v := (ω203, ω, ω31, ω397, ω667, ω321) ∈ C

but rk(v) = 3 < δ + r.
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5.2 Representative Defining Sets and Implications to MRD Codes

In the previous section, we often have a generating polynomial g in Fqs [x;σ] even
though the roots γβq

i
come from a field extension Fqst . As we will see, this puts a nice

structure on sets of the form Tγ,β(g) which has implications as to when C = vf (
•(g))

is an MRD code.

Throughout this section, let n = st and recall Zn := ({0, . . . , n − 1},+). Then
note sZn = {0, s, . . . , s(t− 1)} is a subgroup of Zn. Hence, we can write

Zn =
s−1⊔
j=0

(j + sZn).

Definition 5.2.1. A subset T ⊂ Zn is called s-closed if for any i ∈ T , we also have
i+ s ∈ T .

With the same arguments as in the proof of Proposition 2.1.17, we have the
following useful facts.

Proposition 5.2.2. Let γ ∈ F∗
q and β ∈ Fqst.

1. If g ∈ Fqs [x;σ], then Tγ,β(g) is s-closed.

2. Conversely, if T ⊂ Zn is an s-closed set, then lclm{x − γβq
i
: i ∈ T} is a

polynomial over Fqs rather than Fqst.

If g ∈ Fqs [x;σ], then the above proposition allows us to work with a subset of
the (γ, β)-defining set.

Definition 5.2.3. Let T ⊂ Zn be an s-closed set. Define T (s) := {i1, . . . , il} ⊂
{0, . . . , s− 1} such that

T =
l⊔

j=1

(ij + sZn).

Note that T (s) is well-defined. We call T (s) the s-representative set of T .

As we will show next, when g ∈ Fqs [x;σ] is in fact the minimal polynomial
for its (γ, β)-defining set T , then the size of the s-representative set of T will have
implications on when C = vf (

•(g)) is an MRD code. It comes from the Singleton-like
bound for these particular skew-cyclic codes and is stated precisely in the following
proposition. For the case where a = 1, see Proposition 26 in [1].
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Proposition 5.2.4. Let n = st. Choose a = Nn(γ), γ ∈ F∗
q and let f = xn −

a. Also let α be a normal element of Fqst, and set β = αq−1. Choose parameters
b,m, δ, r, k0, . . . , kr ∈ N0 such that

1. m ̸= 0 and gcd(m,n) = 1,

2. k0 < · · · < kr with kr − k0 ≤ δ + r − 2.

3. Set T = {b+ im+kj : 0 ≤ i ≤ δ−2, 0 ≤ j ≤ r} ⊂ Zn and let T be the s-closure
of T in Zn, where all elements are taken modulo n.

Now, set
g := lclm{x− γβq

λ

: λ ∈ T} ∈ Fqs [x;σ].

Then C := vf (
•(g)) satisfies

δ + r ≤ dR(C) ≤ |T (s)|+ 1.

In particular, when |T (s)| = δ + r − 1, then C is an MRD code with rank distance
δ + r.

Proof. The lower bound is given by Theorem 5.1.4. For the upper bound, recall that
the Singleton-like bound for the rank metric (see Equation (2.3) following Proposition
2.3.3) is given by

dR(C) ≤ s−
dimFqs

(C)

t
+ 1.

Also recall from Proposition 2.4.3 that dimFqs
(C) = n − deg(g). We will now show

deg(g) = |T |. Clearly we have deg(g) ≤ |T |. To show equality, first note that T ⊆ Zn,
so all elements are taken modulo n. Therefore, all αq

λ
, λ ∈ T are linearly independent

over Fq since α is a normal element. Then, since γβq
λ
= γ(αq

λ
)q−1, we know all γβq

λ
,

λ ∈ T are P-independent by Corollary 2.1.28. Hence, deg(g) = |T |. Lastly, since

|T | = t|T (s)| we have

dR(C) ≤ s− n− t|T (s)|
t

+ 1 = |T (s)|+ 1.

If in fact |T (s)| = δ + r − 1, then dR(C) is forced to be δ + r.

We will now look at a special case of Proposition 5.2.4. For the case where
a = 1, see Corollary 28 in [1].

Corollary 5.2.5. Let n = st. Choose a = Nn(γ), γ ∈ F∗
q and let f = xn − a. Also

let α be a normal element of Fqst, and set β = αq−1. Choose parameters b,m, δ′ ∈ N0

such that m ̸= 0, gcd(m,n) = 1, and 2 ≤ δ′ ≤ s. Set

1. T = {b, b+m, . . . , b+ (δ′ − 2)m} ⊂ Zn, where all elements are taken modulo n,
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2. T be the s-closure of T in Zn,

3. g := lclm{x− γβq
λ
: λ ∈ T} ∈ Fqs [x;σ].

Then C := vf (
•(g)) is an MRD code with rank distance δ′. We call C a skew-BCH

Code of the second kind.

Proof. First note that g is a right divisor of f by Remark 5.1.2. Therefore, C satisfies
the parameters in Proposition 5.2.4 with r = k0 = 0. Next we will show all the
elements of T are distinct modulo s. Suppose there are 0 ≤ j ≤ i ≤ δ′ − 2 such that
b + im ≡ b + jm (mod s). Then, s|m(i− j), and since gcd(m, s) = 1, we must have

s|(i−j). However, since i, j ≤ δ′−2 < s, this forces i = j. Thus, |T (s)| = |T | = δ′−1.
Hence, also by Proposition 5.2.4 C is an MRD code with rank distance δ′.

We will see skew-BCH Codes of the first kind in Section 6.2. The set T in
Corollary 5.2.5 above is in an important form which we will define next.

Definition 5.2.6. A set T = {a1, . . . , al} ⊂ Zn is an arithmetic progression with
common difference m if there is an ordering of elements of T , say ai1 , . . . , ail , where
aij ≡ aij−1

+m(mod n) for all j = 2, . . . , l.

At the end of [1], the authors pose the question whether it is possible to
construct skew-cyclic MRD codes where the s-representative set of the (γ, β)-defining
set is not in the form of an arithmetic progression such as in Corollary 5.2.5. When
m is prime, the authors used the Cauchy-Davenport Theorem to show the answer is
no (see Proposition 30 in [1]). We were able to show for any m, the answer is no.
The following is the statement of this result.

Theorem 5.2.7. Let n = st. Choose a = Nn(γ), γ ∈ F∗
q and let f = xn − a. Also

let α be a normal element of Fqst, and set β = αq−1. Choose parameters b,m, δ ≥
3, r, k0, . . . , kr ∈ N0 such that

1. m ̸= 0 and gcd(m,n) = 1,

2. k0 < · · · < kr with kr − k0 ≤ δ + r − 2.

3. Set T = {b+ im+kj : 0 ≤ i ≤ δ−2, 0 ≤ j ≤ r} ⊂ Zn and let T be the s-closure
of T in Zn, where all elements are taken modulo n.

If |T (s)| = δ + r − 1, then T
(s)

is an arithmetic progression with common difference

m. As a consequence, we are in the situation of Corollary 5.2.5 with T
(s)

in place of
T .

The proof will be given in Section 5.4. We first need some set theoretic results.

57



5.3 Preliminary Results on Arithmetic Progressions

Throughout this section, consider the abelian group Zs = ({0, . . . , s − 1},+) with
addition taken modulo s. Let r, d ∈ Z be positive integers such that d + r + 1 < s.
Also let A := {k0, . . . , kr} with elements ki that are distinct modulo s. Let B :=
{0,m, . . . , dm} where gcd(m, s) = 1. Note that the elements of B are also distinct
modulo s. Define A + B ⊂ Zs by element wise addition where all the elements are
taken modulo s. In this section, we will show |A+B| ≥ d+ r+ 1, and in the case of
equality A+B can be written as an arithmetic progression.

Proposition 5.3.1. Define the map φ : Zs → Zs where a 7→ a +m. Then, φ is a
cycle of length s. As a consequence, if K ⊆ Zs and φ(K) ⊂ K, then K = Zs.

Proof. There are no fixed points of φ since m ̸= 0. Consider a cycle (a, a+m, . . . , a+
(l − 1)m) contained in Zs where a + lm = a, with l ≤ s. Then, s|lm, so s|l since
gcd(m, s) = 1. Hence, l = s. As a consequence, if φ(K) ⊂ K, then K can be written
as a cycle of length s. Hence, K = Zs.

Lemma 5.3.2. For A+B defined above, we have |A+B| ≥ d+ r + 1.

Proof. We will prove this by induction on d. For the base case, if d = 1, then
B = {0,m}. By Proposition 5.3.1, we have

|A+B| = |A+ φ(A)| ≥ |A|+ 1 = r + 2.

Now, assume B = {0,m, . . . , dm} and let B1 = {0,m, . . . , (d−1)m}. By the inductive
hypothesis, |A + B1| ≥ r + d. Let Â = A + B1, and note A + B = Â + {0,m}. If
|Â| ≥ r + d+ 1, then clearly |A+B| ≥ r + d+ 1. If |Â| = r + d, then

|A+B| = |Â+ {0,m}| ≥ |Â|+ 1 = r + d+ 1.

For the rest of this section, assume |A+B| = d+ r+1. Recall that d ≥ 1 and
therefore A+B ̸= A.

Definition 5.3.3. Consider L =
{
{(i1, j1), . . . , (id, jd)} : 0 ≤ il ≤ r, 1 ≤ jl ≤ d

}
.

1. We say L = {(i1, j1), . . . , (id, jd)} ∈ L is a representation of A+B if

A+B = {k0, . . . , kr, ki1 + j1m, . . . , kid + jdm}.

2. We say (il, jl) is equivalent to (i′l, j
′
l), denoted (il, jl) ∼ (i′l, j

′
l), if kil + jlm =

ki′l + j′lm.

3. For a representation L = {(i1, j1), . . . , (id, jd)} of A+B, define σ(L) :=
∑d

l=1 jl.
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Lemma 5.3.4. Let L be a representation of A+B where σ(L) is minimal among all
representations of A+B. Then,

L = {(0, 1), (0, 2), . . . , (0, d)}.

Proof. By Proposition 5.3.1, we know φ(A+B) ̸⊂ A+B since |A+B| < s. We will
show that in every representation of A + B there is some jl equal to d. First note
that φ(ki + jm) ∈ A + B for all i and j < d. Assume for contradiction that jl ̸= d
for all (il, jl) ∈ L. Then for all 0 ≤ i ≤ r,

ki + dm = kiv + jvm

for some (iv, jv) ∈ L. However, then we have

φ(ki + dm) = φ(kiv + jvm) ∈ A+B

This forces φ(A + B) ⊂ A + B, a contradiction, so we may assume jd = d. By
re-indexing k0, ..., kr we may also assume that id = 0. Thus, (0, d) ∈ L. Now suppose
there is some 1 ≤ l < d where (0, l) /∈ L. Then, since k0 + lm ∈ A+B, we must have
one of the following cases

1. k0 + lm = ki for some 1 ≤ i ≤ r,

2. k0 + lm = kiv + jvm for some (iv, jv) ∈ L.

Case 1: If k0 + lm = ki, then (0, d) ∼ (i, d− l). Hence, replacing (0, d) by (i, d− l) in
L would lead to another representation L′ of A+B with a smaller sum σ(L′).

Case 2: Suppose k0 + lm = kiv + jvm. We are assuming (0, l) /∈ L, so clearly l ̸= jv.
If jv < l, then (0, d) ∼ (iv, d− l + jv). Hence, replacing (0, d) by (iv, d− l + jv) in L
would be another representation of A + B that contradicts the minimality of σ(L).
If jv > l, then (iv, jv) ∼ (0, l) also giving a representation of A + B that contradicts
the minimality of σ(L).

Therefore, {(0, l) ∈ L : 1 ≤ l < d} ⊂ L. Since |L| = d, we have L = {(0, l) ∈
L : 1 ≤ l ≤ d}.

Theorem 5.3.5. If we assume |A+B| = d+ r+1, then A+B can be written as an
arithmetic progression with common difference m.

Proof. By Lemma 5.3.4, we may assume that A+B is of the form

A+B = {k0, k1, . . . , kr, k0 +m, . . . , k0 + dm}

where all elements listed are distinct. Let φ : Zs → Zs be the map where a 7→ a+m.
Then, by Proposition 5.3.1, φ({k1, . . . , kr}) ̸⊂ {k1, . . . , kr}. Since φ({k1, . . . , kr}) ⊂
A+ B, there must be some ki ∈ {k1, . . . , kr} such that φ(ki) ∈ {k0, k0 +m, . . . , k0 +
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dm}. If φ(ki) = k0 + lm where l ≥ 1, then ki = k0 + (l − 1)m contradictory
to these elements being distinct. So φ(ki) = k0. WLOG assume φ(kr) = k0.
Similarly, φ({k1, . . . , kr−1}) ̸⊂ {k1, . . . , kr−1}, so there is some ki ∈ {k1, . . . , kr−1},
where φ(ki) ∈ {kr, k0 + m, . . . , k0 + dm}. If φ(ki) = k0 + lm where l ≥ 1, then
ki = k0 + (l − 1)m, a contradiction. Hence, φ(ki) = kr, wlog assume φ(kr−1) = kr.

Continuing in this fashion we obtain a chain of images under φ

k1 7→ k2 7→ · · · 7→ kr 7→ k0.

We can now include the other elements of A+B in the natural way

k1 7→ · · · 7→ kr 7→ k0 7→ k0 +m 7→ · · · 7→ k0 + dm.

Thus, A+B can be written as an arithmetic progression {k1+jm : 0 ≤ j ≤ r+d}.

5.4 Proof of Theorem 5.2.7

Now we are ready to prove Theorem 5.2.7 which is restated here for convenience.

Theorem 5.2.7. Let n = st. Choose a = Nn(γ), γ ∈ F∗
q and let f = xn − a. Also

let α be a normal element of Fqst, and set β = αq−1. Choose parameters b,m, δ ≥
3, r, k0, . . . , kr ∈ N0 such that

1. m ̸= 0 and gcd(m,n) = 1,

2. k0 < · · · < kr with kr − k0 ≤ δ + r − 2.

3. Set T = {b+ im+kj : 0 ≤ i ≤ δ−2, 0 ≤ j ≤ r} ⊂ Zn and let T be the s-closure
of T in Zn, where all elements are taken modulo n.

If |T (s)| = δ + r − 1, then T
(s)

is an arithmetic progression with common difference

m. As a consequence, we are in the situation of Corollary 5.2.5 with T
(s)

in place of
T .

Proof. First, recall that we have a natural bound |T | ≤ n. With this we have

t(δ + r − 1) = t|T (s)| = |T | ≤ n = st.

Hence, we must have δ+ r− 1 ≤ s. If we have equality, then T
(s)

= Zs. SO, with the

help of Proposition 5.3.1, T
(s)

is an arithmetic progression with common difference
m. Thus, we will assume δ + r − 1 < s.

Next, consider the case when r = 0. In this case, we have T = {b + k0 + im : 0 ≤
i ≤ δ − 2}. We will show T

(s)
is also in the form of an arithmetic progression. Let

T
(s)

= {a1, . . . , aδ−1}. Then, by definition ai ≡ b+k0+jm (mod s) for some j. Hence,
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there is a re-ordering of T
(s)
, say ai1 , ..., aiδ−1

such that aij ≡ b + k0 + jm (mod s).
Then, we have

aij+1
≡ b+ k0 + (j + 1)m (mod s) ≡ aij +m (mod s).

So, T
(s)

is in fact an arithmetic progression with common difference m. For the rest
of this proof, we may assume r ≥ 1.

Let A := {b + k0, . . . , b + kr} and let B := {0,m, . . . , (δ − 2)m}. We will show the
elements of A and B are distinct when taken modulo s. Let b+ki, b+kj ∈ A such that
b+ki ≡ b+kj (mod s). Then s|(kj−ki) which forces i = j since kj−ki < δ+r−1 < s
by assumption 2 above. We also know the elements of B are distinct modulo s since
gcd(m, s) = 1. Now define A + B by element wise addition where all elements are

taken modulo s. By construction b+mi+kj (mod s) ∈ T
(s)

for 0 ≤ i ≤ δ−2, ≤ j ≤ r.

Hence A+B ⊂ T
(s)
. By Lemma 5.3.2 (with d = δ−2 ≥ 1), |A+B| ≥ r+δ−1 = |T (s)|.

Thus, A+ B = T
(s)
. Therefore, by Theorem 5.3.5, the set T

(s)
can be written as an

arithmetic progression with common difference m. Lastly, note that T = T
(s)
. Thus,

we are in the situation of Corollary 5.2.5 with δ′ = δ + r and T = T
(s)
.

Copyright© Kathryn M. Hechtel, 2024.
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Chapter 6 Skew-Cyclic Subfield Subcodes

In [20], the authors relate the number of roots of a polynomial with the minimum
Hamming distance of the skew-cyclic code generated by that polynomial. We will
discuss constructing these skew-cyclic codes over Fqs while allowing the roots to come
from some field extension Fqst . Hence, the smaller code over Fqs is a skew-cyclic
subfield subcode of some larger skew-cyclic code over Fqst . There are two ways to get
a subfield subcode over Fqs . As we will see, both methods produce the same code.
We will also compare the dimension of BCH codes of the first and second kind.

6.1 Constructing Skew-Cyclic Codes over Fqs

Throughout, assume we have field extensions Fqst/Fqs/Fq. Let θ be the q-Frobenius
automorphism of Fqst and let σ = θ|Fqs

. Also let A ⊂ Fqst and let A be the Galois
closure of A under Aut(Fqst/Fqs). Consider the polynomials

mA = lclm{x− γ : γ ∈ A} ∈ Fqst [x; θ]

mA = lclm{x− α : α ∈ A} ∈ Fqs [x;σ].

Indeed, mA has coefficients in Fqs since the set of roots, A, is Galois closed (see Prop
2.1.17). Now, let n ∈ N with n ≥ deg(mA). The largest option for n is described in

detail in Section 2.2. Also, let f̂ ∈ Fqst [x; θ] and f ∈ Fqs [x;σ] be left multiples of mA

and mA respectively, both monic of degree n. Then, we may define the modules

R =
Fqs [x;σ]

•(f)
and S =

Fqst [x; θ]
•(f̂)

.

Recall, these modules are (left) isomorphic to the vector spaces Fnqs and Fnqst respec-
tively. The Fqs-isomorphism is given by

pf : Fnqs → R where (u0, . . . , un−1) 7→
n−1∑
i=0

uixi.

Let vf = p−1
f . Similarly, we define the Fqst-isomorphism pf̂ : Fnqst → S. Hence, we

may identify skew-cyclic codes in R (or S) as subspaces of Fnqs (or Fnqst).

We will now discuss two constructions of skew-cyclic codes over Fqs . Define
the codes

C1 :=vf̂ (
•(mA)) ∩ Fnqs ,

C2 :=vf (
•(mA)).
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Then, by definition of mA and mA, we have

C1 = kerl(Vn(A)) ∩ Fnqs ,

C2 = kerl(Vn(A)) ∩ Fnqs .

Proposition 6.1.1. Given the constructions above, C1 = C2.

Proof. Since A ⊂ A, we clearly have C2 ⊆ C1. Now we will show C1 ⊆ C2. Let
h = (h0, . . . , hn−1) ∈ C1, and let α ∈ A so that αq

sj ∈ A for any j ∈ N. Then consider

n−1∑
i=0

hiNi(α
qsj) =

(
n−1∑
i=0

hiNi(α)

)qsj

= 0.

Hence, h ∈ kerl(Vn(A)). Since we also have h ∈ Fnqs , we know h ∈ C2 as needed.

We close the section with showing how to actually compute the intersection
C ∩ Fnqs for any C ⊂ Fnqst .

Let {1, γ, . . . , γt−1} be a basis for the extension Fqst/Fqs . Since the field ex-
tension is degree t, there exists unique aj ∈ Fqs where γt =

∑t−1
j=0 ajγ

j. Hence, we
may define the block companion matrix

Γ =

[
0 In(t−1)

a0In a1In . . . at−1In

]
∈ Fnt×ntqs .

Any vector v ∈ Fnqst can be written v =
∑t−1

j=0 vjγ
j with vj ∈ Fnqs . Define the Fqs-

isomorphism
ψ : Fnqst → Fntqs where v 7→ (v0, . . . , vt−1).

Lemma 6.1.2. For any v ∈ Fnqst, we have ψ(γv) = ψ(v)Γ.

Proof. Let v =
∑t−1

j=0 γ
jvj with vj ∈ Fnqs . Then,

γv = γv0 + γ2v1 + · · ·+ γt−1vt−2 + γtvt−1

= γv0 + γ2v1 + · · ·+ γt−1vt−2 +

(
t−1∑
j=0

ajγ
j

)
vt−1

= a0vt−1 + (v0 + a1vt−1)γ + (v1 + a2vt−1)γ
2 + · · ·+ (vt−2 + at−1vt−1)γ

t−1.

Thus,

ψ(γv) =
[
a0vt−1 v0 + a1vt−1 v1 + a2vt−1 . . . vt−2 + at−1vt−1

]
= ψ(v)Γ.
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Theorem 6.1.3. Let C ⊂ Fnqst with basis {v1, . . . , vk} over Fqst. Define the matrices

M̃ ∈ Fkt×ntqs and Ĩ ∈ Fn×ntqs as follows:

M̃ =



ψ(v1)
ψ(v1)Γ

...
ψ(v1)Γ

t−1

ψ(v2)
...

ψ(vk)Γ
t−1


, and Ĩ =

[
In | 0 . . . 0

]
.

Then,
ψ(C ∩ Fnqs) = rs(M̃) ∩ rs(Ĩ).

Proof. Let u ∈ Fnqs . Then, u ∈ C if and only if u =
∑k

i=1

(∑t−1
j=0 αijγ

j
)
vi for

αij ∈ Fqs . This is equivalent to

ψ(u) =
k∑
i=1

t−1∑
j=0

αijψ
(
γjvi

)
= α



ψ(v1)
ψ(γv1)

...
ψ(γt−1v1)
ψ(v2)

...
ψ(γt−1vk)


where α = (α10, . . . , α1t−1, α20, . . . , αkt−1) ∈ Fktqs . By lemma 6.1.2, the matrix on

the RHS is equal to M̃ . Hence, u ∈ C if and only if ψ(u) ∈ rs(M̃). Therefore,
ψ(C) = rs(M̃). Similarly, ψ(Fnqs) = rs(Ĩ). Since ψ is an Fqs-isomorphism, we now
have

ψ(C ∩ Fnqs) = rs(M̃) ∩ rs(Ĩ).

The above theorem allows us to use the matrices M̃ and Ĩ as described above
when computing examples involving C ∩ Fnqs with C ∈ Fnqst .

6.2 Tapia-Tironi Theorems on Hamming Distance

Throughout this section, assume we have field extensions Fqst/Fqs/Fq. We will see
that the number of roots of a generating polynomial g has implications on the lower
bound of the minimum Hamming distance of the skew-cyclic code generated by g. The
following theorems are from [20]. The first one is presented here using the minimal
polynomial of the root set as the generating polynomial. This ensures we construct a
code with the largest possible dimension given the parameters in the theorems. We
give proofs below that we believe are more intuitive to the computation heavy ones
given in [20].
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Theorem 6.2.1. [20, Thm. 4.7] Let b,m, δ ∈ N0 with m ̸= 0, and let β ∈ Fqst.
Define

A = {βb+im : 0 ≤ i ≤ δ − 2}

and let A be the Galois closure of A under Aut(Fqst/Fqs). Thus, mA is in Fqs [x;σ].
Pick n such that n > max{deg(mA), δ} and Ni(β

m) ̸= 1 for i = 1, . . . , n− 1. Lastly,
let the modulus f ∈ Fqs [x;σ] be any monic left multiple of mA of degree n and set

R =
Fqs [x;σ]
•(f)

. Then C := vf (
•(mA)) ⊂ Fnqs satisfies dH(C) ≥ δ. We call C a

skew-BCH code of the first kind.

Note that the length n with the required conditions exists for suitable choices
of β, m, and δ. For instance, if m = 1 and β is a primitive element of Fqst , then
Theorem 2.2.13 tells us that Ni(β

m) ̸= 1 for i = 1, . . . , (q − 1)st − 1. Furthermore,
by Theorem 2.1.19 the largest value for deg(mA) is (q − 1)st− 1 (unless the code is
trivial) so we may choose n to be as large as (q − 1)st.

Proof. Let V be the skew Vandermonde matrix

V = Vn(β
b, βb+m, . . . , βb+(δ−2)m) =


1 1 . . . 1

N1(β
b) N1(β

b+m) . . . N1(β
b+(δ−2)m)

N2(β
b) N2(β

b+m) . . . N2(β
b+(δ−2)m)

...
...

...
Nn−1(β

b) Nn−1(β
b+m) . . . Nn−1(β

b+(δ−2)m)

 .

Since βb, βb+m, . . . , βb+(δ−2)m are roots of mA, we know C ⊂ kerl(V )∩ Fnqs . Note that

V =


1

N1(β
b)

. . .

Nn−1(β
b)



1 1 . . . 1
1 N1(β

m) . . . N1(β
m)δ−2

1 N2(β
m) . . . N2(β

m)δ−2

...
...

...
1 Nn−1(β

m) . . . Nn−1(β
m)δ−2

 .

The matrix on the right, Ṽ , is a classical Vandermonde matrix. By Proposition 2.2.6
the elements 1, N1(β

m), . . . , Nn−1(β
m) are distinct. Hence, any δ− 1× δ− 1 minor of

Ṽ is nonzero. Thus, the same must be true for V . Therefore, by Cor 1.4.14 in [11],
dH(C) ≥ δ.

The following is a corollary of the above proof together with Theorem 2.1.24.

Corollary 6.2.2. Let A ⊂ Fqst be as described in Theorem 6.2.1. Then rkσ(A) = δ−1
and rkσ(A) ≥ δ − 1.
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Remark 6.2.3. Let C := vf (
•(mA)) ⊂ Fnqs be a code that satisfies the conditions of

Theorem 6.2.1. Recall the Singleton bound is given by dH(C) ≤ n− dimFqs
(C) + 1,

and we say C is MDS if we have equality. Since dimFqs
(C) = n− rkσ(A), this upper

bound is equivalent to dH(C) ≤ rkσ(A) + 1. With the lower bound given in the
theorem above, we now have

δ ≤ dH(C) ≤ rkσ(A) + 1.

Thus, if rkσ(A) = δ − 1, we certainly have an MDS code with Hamming distance δ.

As shown in the next example, the rank of A depends on the choice of primitive
element ω. In the following example, we have one primitive element that generates an
MDS code, and one that does not generates an MDS code with all other parameters
identical.

Example 6.2.4. Consider F36/F32/F3 with n = 6, b = 180,m = 2, δ = 3, and β = ω
for a primitive element ω ∈ F36 ,

A = {ω164, ω20, ω180, ω182}.

If ω satisfies ω6+ω5+2ω4+ω3+2ω2+ω+2 = 0, then rkσ(A) = 4, and dH(
•(mA)) = 4.

Hence, the code is not MDS since the Singleton bound is 5. However, with the same
parameters if ω satisfies ω6 + ω5 + 2ω4 + 2ω3 + 2ω2 + 2 = 0, then rkσ(A) = 2 and
dH(

•(mA)) = 3 so the code is MDS.

With Corollary 2.1.28, we are able to consider the σ-rank of A through a new
lens if A is contained in a single σ-conjugacy class. In this case, we are able to relate
P-independence of A to linear independence over Fq of the σ-conjugate exponents
(see Definition 2.1.8). This is summed up in the following theorem.

Theorem 6.2.5. Let

A = {β(b+im)qsj : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ t− 1}.

for b, δ,m, n ∈ N0 and β ∈ Fqst satisfying the conditions in Theorem 6.2.1. Also,
define

Γ = ⟨βTij : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ t− 1⟩ where Tij =
b(qsj − 1) + imqsj

q − 1
.

If (q − 1)|m, then A ⊂ ∆(βb) and rkσ(A) = dimFq(Γ).

Proof. Assume (q − 1)|m, so that Tij is an integer for all i = 0, . . . , δ − 2 and j =
0, . . . , t− 1. Now consider

β(b+im)qsj = βbβb(q
sj−1)+imqsj = βbβTij(q−1) = (βb)β

Tij
.

Hence, β(b+im)qsj ∈ ∆(βb) for all i, j with βTij as the σ-conjugate exponent. The last
result follows immediately by Corollary 2.1.28.
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To reconcile the condition (q− 1)|m with the conditions of Theorem 6.2.1, we
need the following result.

Lemma 6.2.6. Let ω be a primitive element of Fqst. If st ≥ 2, then ωq−1 is a generic
element of Fqst (see Definition 2.2.11).

Proof. Assume r|st with r < st. Then, in fact r ≤ st
2
, so

(qr − 1)(q − 1) = qr+1 − q − (qr − 1) < qr+1 − 1 ≤ qst − 1.

Therefore, the order of ω does not divide (q − 1)(qr − 1), so (ωq−1)q
r−1 ̸= 1 for any

r|st, r < st. Thus, ωq−1 is a generic element of Fqst .

Remark 6.2.7. The conditions in Theorem 6.2.1 and Theorem 6.2.5 do not con-
tradict. There are choices of m and β where (q − 1)|m and Ni(β

m) ̸= 1 for i =
1, . . . , n−1. Indeed, we saw in Theorem 2.2.13 that if we choose m = m̂(q−1) where
gcd(m̂, qst − 1) = 1 and β = ω a primitive element of Fqst , then n can be as large
as st since ωq−1 is generic by Lemma 6.2.6. Hence, it is possible to have parameters
that satisfy both theorems.

Remark 6.2.8. Consider again the setting of Theorem 6.2.1. We will now make note
of the role of the additive constant b in the exponent of the roots. In the proof of the
Theorem, we see the matrix diag(1, N1(β

b), . . . , Nn−1(β
b)) is factored from the skew

Vandermonde matrix V = Vn(β
b, . . . , βb+(δ−2)m). Since this n × n diagonal matrix

has full rank, the parameter b does not impact the lower bound on the Hamming
distance of the code C. The parameter b plays a larger role on the dimension and the
actual distance of C. For instance, assume sets

A = {βb+im : 0 ≤ i ≤ δ − 2} and A0 = {βim : 0 ≤ i ≤ δ − 2}

satisfy the conditions of the theorem. Then, let C = vf (
•(mA)) and let C0 =

vf (
•(mA0)). The following is an example of very different codes C and C0.

Example 6.2.9. Consider F36/F33/F3 with n = 6, b = 1, m = 3, δ = 3, and β = ω,
where ω is a primitive element of F36 that satisfies ω

6+2ω4+ω2+2ω+2 = 0. Then,
C is an [6, 2, 5] MDS code and C0 is an [6, 3, 3] code. They are clearly not the same
code.

Theorem 6.2.1 above may be generalized to the following.

Theorem 6.2.10. [20, Thm. 4.10] Let b,m1,m2, δ, r ∈ N0 with (m1,m2) ̸= (0, 0) and
let β ∈ Fqst. Define

A = {βb+i1m1+i2m2 : i1 = 0, . . . , δ − 2, i2 = 0, . . . , r},
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and let A be the Galois closure of A under Aut(Fqst/Fqs). Thus, mA is in
Fqs [x;σ]. Pick n > max{deg(mA), δ + r} such that Ni(β

mj) ̸= 1 for i = 1, . . . , n− 1,
j = 1, 2. Lastly, let the modulus f ∈ Fqs [x;σ] be any left multiple of mA of degree n.
Then C := vf (

•(mA)) ⊂ Fnqs satisfies dH(C) ≥ δ+r. We call C a skew-Hartmann
Tzeng code of the first kind.

Proof. Without loss of generality, we may assume b = 0. Let yi = Ni(β) and let
G =

[
G0 | . . . | Gr

]
where

Gi =


1 1 . . . 1

yim2
1 yim2+m1

1 . . . y
im2+(δ−2)m1

1
...

...
...

yim2
n−1 yim2+m1

n−1 . . . y
im2+(δ−2)m1

n−1

 .
Note that Gi = DiM1 where

Di =


1

yim2
1

. . .

yim2
n−1

 and M1 =


1 1 . . . 1

1 ym1
1 . . . y

(δ−2)m1

1
...

...
...

1 ym1
n−1 . . . y

(δ−2)m1

n−1

 .
Let u = (u0, . . . , un−1) ∈ C be nonzero, and note that uG = 0 since C ⊂ kerl(G)∩Fnqs .
Now, let

Ui = uDi = (u0, u1y
im2
1 , . . . , un−1y

im2
n−1), for i = 0, . . . , r

and consider

U =


U0

U1
...

Ur−1

 =


1 1 . . . 1
1 ym2

1 . . . ym2
n−1

...
...

...
1 yrm2

1 . . . yrm2
n−1



u0

u1
. . .

un−1

 .
Label the matrices on the right hand side M2 and D respectively. Then, we have

uG = 0 ⇐⇒ UM1 = 0 ⇐⇒ M2DM1 = 0.

Let wt(u) = w, and let the non-zero components of u be ua1 , . . . , uaw . Also let
D̂ = diag(ua1 , . . . , uaw). We will use the notation M (i) to represent the i-th row
vector of a matrix M , and M(i) to represent the i-th column vector of M . Now,
define

M̂1 =


M

(a1)
1

...

M
(aw)
1

 , and M̂2 =
[
M2(a1) | . . . |M2(aw)

]
.
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Since u ∈ C, we still have M̂2D̂M̂1 = 0. By Theorem 6.2.1, if we set i2 = 0 we get
w ≥ δ, if i1 = 0 we have w ≥ r + 2 because C is contained in both the codes based
on the sets {βb+i1m1 : i1 = 0, . . . , δ − 2} and {βb+i2m2 : i2 = 0, . . . , r}. Hence, we can
extend M̂1 and M̂2 to square matrices in Fw×wqst

M̃1 =


1 ym1

a1
. . . y

(δ−2)m1
a1 y

(δ−1)m1
a1 . . . y

(w−1)m1
a1

1 ym1
a2

. . . y
(δ−2)m1
a2 y

(δ−1)m1
a2 . . . y

(w−1)m1
a2

...
...

...
...

...

1 ym1
aw . . . y

(δ−2)m1
aw y

(δ−1)m1
aw . . . y

(w−1)m1
aw



M̃2 =



1 1 . . . 1
ym2
a1

ym2
a2

. . . ym2
aw

...
...

...
yrm2
a1

yrm2
a2

. . . yrm2
aw

y
(r+1)m2
a1 y

(r+1)m2
a2 . . . y

(r+1)m2
aw

...
...

...

y
(w−1)m2
a1 y

(w−1)m2
a2 . . . y

(w−1)m2
aw


.

These matrices are classical Vandermonde matrices. Since y0, . . . , yn−1 are distinct,
M̃1 and M̃2 are invertible. Hence, the product M̃2D̂M̃1 is invertible. As block matri-
ces, this product is also

M̃2D̂M̃1 =

[
M̂2D̂M̂1 ∗

∗ ∗

]
=

[
0(r+1)×(δ−1) ∗

∗ ∗

]
.

The first δ − 1 columns must have full rank. This means w − (r + 1) ≥ δ − 1, so
w ≥ δ + r.

6.3 Comparison of skew-BCH Codes of the 1st and 2nd Kind

In Section 6.2, we presented results on the minimum Hamming distance of skew-BCH
codes of the first kind from [20, Thm. 4.7]. In Section 5.1 we see BCH-codes of the
second kind have a similar lower bound on the Hamming distance. Now, we will in-
vestigate the dimension of BCH codes of the first and second kind that have the same
parameters, and hence the same lower bound on the minimum Hamming distance.

Throughout, let n = st and assume {α, αq . . . , αqn−1} is a normal basis of Fqn/Fq.
Then, set β = αq−1. Assume b, δ,m ∈ N0 with δ ≤ s, m ̸= 0, gcd(m,n) = 1, and
Ni(β

m) ̸= 1 for i = 1, . . . , n− 1. Define the set

A1 = {β(b+im)qsj : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ t− 1}

and
A2 = {βqb+im+sj

: 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ t− 1}.
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For l = 1, 2 define gl = mAl
. Let the modulus f1 ∈ Fqs [x;σ] be any monic left

multiple of g1 of degree n, and take f2 = xn−a ∈ Fqs [x;σ] for a ∈ Nn(F∗
qs). Then, set

C1 = vf1(
•(g1)) and C2 = vf2(

•(g2)). As defined in Theorem 6.2.1 and Corollary 5.2.5,
we call C1 a skew-BCH code of the first kind and call C2 a skew-BCH code of the
second kind. Note since both sets are Galois closed under Aut(Fqn/Fqs), C1 and C2

are both contained in Fnqs . Recall by Theorem 6.2.1 and Theorem 5.1.3, both C1 and
C2 satisfy dH(Cl) ≥ δ. However, as we see next, C1 performs better on dimension.

Theorem 6.3.1. Given the constructions above, dim(C1) ≥ dim(C2).

Proof. Since dim(Cl) = n− deg(gl), it suffices to show deg(g1) ≤ deg(g2). Recall by
Proposition 2.1.16 the rank of a set is always bounded above by the size of the set.
Hence,

deg(g1) = rkσ(A1) ≤ |A1| ≤ (δ − 1)t.

By Theorem 2.2.4, the proof of Corollary 5.2.5, and since |A2| = |A2
(s)|t, we have

deg(g2) = rkσ(A2) = |A2| = (δ − 1)t.

Therefore, deg(g1) ≤ deg(g2).

Remark 6.3.2. If we take b = 0, then |A1| ≤ (δ− 2)t+ 1 < (δ− 1)t. Hence, we will
have a strict inequality in the Theorem above.

Copyright© Kathryn M. Hechtel, 2024.
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