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ABSTRACT OF THESIS 

 

 

ASSESSING FREEWAY CRASH RISK USING CROWDSOURCED WAZE 

INCIDENT ALERTS 

 

Traffic data obtained through crowdsourcing are becoming more accessible to 

traffic agencies due to advancements in smartphone technology. Traffic managers aim to 

use this data to complement their conventional sources of data and provide additional 

context in their analysis. In this study, Waze incident alerts are integrated with GPS-Probe 

speed data and Kentucky State Police (KSP) crashes to assess their impact on traffic flow 

and safety on freeways in Kentucky. The analysis showed that the presence of a vehicle on 

the shoulder is associated with about 36.7% of freeway crashes in Kentucky. The presence 

of a vehicle on the shoulder coupled with congestion were 11.7% of the crashes. As such, 

the correlation between vehicle on shoulder, congestion and crashes was significant. Albeit 

present within the vicinity of 7.4% of crashes, the presence of a vehicle in the travel lane 

did not show as having a significant correlation with crashes. Linking Waze crash alerts 

with crashes and assessing their spatiotemporal patterns, it is found that Waze crashes are 

spatially accurate and hence could be used as an alternate source for identifying crashes, 

sometimes earlier, in Kentucky and hence cutting down incident response and clearance 

times. The data used in this study and the analytical methods employed offer much needed 

insight into the potential of crowdsourced traffic incident data for traffic monitoring to 

ensure safety. 

 

KEYWORDS: Crowdsourced Data, Vehicle on shoulder, Data integration, Association 

Rule Mining, Vehicle stopped in road, Waze data 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Around the world, road traffic crashes are a leading cause of injury and death. In the 

United States, an estimated 95% of transportation deaths and 99% of transportation 

injuries are attributable to highway crashes. The economic losses due to crash injuries and 

deaths, coupled with the delays to traffic resulting from crashes are undesirable. In 

particular, a crash on the road shoulder can reduce roadway capacity by up to 19% 

(Transportation Research Board, 2016) and for every 20 minutes the roadway remains 

uncleared, increases the likelihood of a secondary crash by up to 7% ( Goodall, 2017). As 

such, considerable research efforts have been geared towards finding effective 

countermeasures to reduce crash risk and crash severity on highways. While the road 

shoulder is an important cross-sectional element of highways specifically designed for 

purposes which include, but not limited to, serving as a recovery area for driver errors and 

emergency stop (AASHTO, 2011), the use of the road shoulder for the latter poses an 

additional crash risk (Stamatiadis et al., 2009). As noted by Hauer (2000) an estimated ten 

percent of fatal freeway crashes are related to vehicles stopped on the shoulder. A similar 

estimate was obtained by Agent & Pigman (1989) who reported eleven percent of all fatal 

freeway crashes to be related to vehicles on the shoulder. Hence, it becomes imperative to 

understand the relationship between vehicles parked on the shoulders of highways and 

crashes if an optimal crash mitigation level is to be achieved. 

In recent times, information technology advancements and rapid digital adoption 

have facilitated the collection of transportation related data and traffic monitoring. 

Conventional transportation systems management entails using ITS infrastructure such as 
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CCTV cameras and induction loops to monitor traffic conditions and collect data in 

locations where they are deployed. Consequently, traffic managers relied on emergency 

services dispatch to fill in data gaps outside of the ITS infrastructural network. Much 

recently, however, crowdsourced data generated actively and passively by road users has 

provided an inexpensive alternative to traffic monitoring. Thus, providing information 

such as traffic speed and traffic incidents including the near real-time location of vehicles 

on road shoulders, disabled vehicles in the road and objects in the road. Researchers have 

studied crowdsourced traffic incident data from Waze, one such application that affords 

road users the ability to actively report traffic incidents characterized by low false alarm 

rates (Amin-Naseri et al., 2018;  Goodall & Lee, 2019; Liu et al., 2019).  

Waze, through its Connected Citizens Program (CCP) provides the Kentucky 

Transportation Cabinet (KYTC) with real-time traffic incident alerts and traffic jam 

reports. KYTC uses this information to improve its traffic incident management operations 

and provide situational awareness to travelers. While traffic data from Waze has been used 

in literature for traffic crash estimation (Flynn et al., 2018), traffic crash monitoring 

(Young et al., 2019) and freeway traffic risk assessment (Turner et al., 2020), no previous 

researchers have attempted to use Waze “vehicle on shoulder”, “vehicle stopped in road” 

and “object in road” alerts to assess how traffic safety and flows are impacted, particularly 

of limited access highways. A better understanding of this relationship will aid the 

development of operational strategies and policies to reduce if not prevent future crashes 

and fatalities. 
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1.2 Research Objectives 

Given that more and more traffic agencies are adopting crowdsourced traffic data 

sources which provide the locations of stationary objects and vehicles in traffic lanes and 

on the road shoulders, their impact on traffic flow and crashes. As such, the primary goals 

of this study are: 

• To establish a spatial and temporal link between each crash, Waze "vehicle 

on shoulder" alert, and speed. 

• To determine the correlation between vehicles on the shoulder, traffic 

slowdowns, and crashes. 

• To evaluate the effect of vehicles stopped in traffic lanes and objects in 

traffic lanes on traffic safety and congestion. 

It is hoped that this will provide a better understanding of the events leading up to 

the crash. Additionally, Waze crash alerts are linked with crash data to assess the potential 

additional coverage they provide. 

1.3 Chapter Organization 

This document consists of five chapters organized as follows. Chapter one introduces 

and provides a brief background to the topic as well as defines the research goals of the 

study. Chapter two presents an overview of relevant literature related to this study. Chapter 

three presents the data sources and methods of analysis employed in this study. Chapter 

four presents the results obtained following the analysis of the data and a discussion of the 

implication of the results. Finally, Chapter five presents a summary of the study and future 

work in this regard. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Road shoulder and safety 

Numerous studies have assessed the effect of road shoulder characteristics and 

occupancy on traffic safety. Narrow shoulders increase off-road collision risk (Kraus et 

al., 1993). This can be attributed to the inadequacy in driver recovery area provided by 

narrow shoulders should lane deviation occur. As noted by Hauer (2000) and Stamatiadis 

et al. (2009), wider shoulders give drivers a sense of security and space for making 

correctional maneuvers. As such, wider shoulders were associated with a decrease in crash 

rates (Choueiri et al., 1994; Gross & Donnell, 2011; Zegeer et al., 1980). Using 540 rural 

two-lane segments in America, Labi (2006) developed a crash prediction model which 

showed that wider shoulder widths had a substantial negative effect on the incidence and 

severity of crashes. In contrast, wider shoulders are associated with higher travel speeds 

(Mecheri et al., 2017) contributing to reckless driving. Labi (2011) attributes this to a false 

sense of security provided by wider shoulders.  

2.2 Vehicles on Shoulder 

To determine the impact of vehicles on the shoulders of limited access highways on 

crash incidence and severity, Agent & Pigman (1989) conducted observational surveys 

and analyzed crash data over a three-year period, from 1985 to 1987. They manually 

searched crash records to identify related crashes and discovered that on average, 1.9 

crashes per 100 million vehicle miles were caused by a vehicle on an interstate or parkway 

shoulder. Agent & Pigman (1989) also found that eleven percent of all fatal freeway 

crashes were related to vehicles that had stopped on the shoulder. Similarly, Hauer (2000) 
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report that approximately ten percent of all fatal freeway crashes are related to vehicles 

stopped on the shoulder. 

 Crashes involving a vehicle stopped on the shoulder are more common at night 

when visibility is low and are more severe than all other types of crashes (Agent & Pigman, 

1989). Vehicles parked on the shoulders of limited access highways also pose a higher risk 

of secondary collision. In a study using seven years of incident and crash data on freeways 

in Tennessee, Chimba & Kutela (2014) sought to identify secondary crashes that resulted 

from disabled and abandoned vehicles on freeway shoulders. They found 76% of the 

incidents involved a disabled or abandoned vehicle on the shoulder.  

2.3  Effect of Congestion on Safety 

The influence of traffic slowdowns on safety has been studied in the past with 

mixed conclusions. However, it is widely accepted that it is an important variable affecting 

traffic safety. Veh (1937) in his study concluded that the number of accidents per million 

vehicle miles was directly proportional to average daily traffic (ADT) up to an ADT of 

7000 vehicles, after which there is a steady reduction in accident rates. This could be 

explained by increasing congestion resulting in decreases in speed (Raff, 1953). Similarly, 

Shankar et al. (1997) developed an accident frequency model for local arterials in 

Washington State, defining road sections by homogeneous characteristics including the 

annual average daily traffic (AADT). One of the study’s main findings was that the 

frequency of crash incidence increases as the AADT per lane increases. Persaud & Dzbik 

(1993) investigated the nonlinear relationship between crash frequency and traffic volume. 

They discovered that on roadways with comparable traffic volumes, the number of crashes 

on a congested roadway was higher than for an uncongested roadway. Additionally, to 
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model traffic crash incidence and involvement on a sample freeway, Abdel-Aty & Radwan 

(2000) employed both negative binomial and Poisson regressions. According to the 

findings of their study, using AADT per lane as a measure of congestion, an increase in 

AADT per lane resulted in increased probabilities for higher crash frequencies. While 

increasing congestion increases traffic crash risk and a positive linear relationship has been 

found in literature (Head, 1959; Raff, 1953; Schoppert, 1957; Woo, 1957), one may argue 

that it decreases fatal crash risk as was found by Shefer (1994). Shefer (1994) reports that 

traffic fatalities were greatest at median levels of congestion and lowest when congestion 

was high or low. As such a greater understanding of the complex effects of congestion or 

traffic slowdowns on crashes is desired. 

2.4 Characterizing Crowdsourced Waze Alerts 

Crowdsourced data has been investigated as an alternative data source in the 

transportation industry due to the limited nature of traditional intelligent transportation 

infrastructure's traffic network coverage, as well as their high installation and maintenance 

costs(Jia et al., 2013; Pack & Ivanov, 2017; Yoon et al., 2007). Integrating crowdsourced 

datasets into traditional data sets generated by public agencies has also been shown to have 

benefits. Generally, understanding the characteristics of crowdsourced reports aids in the 

assessment of its reliability and the potential additional traffic coverage it provides.  

2.4.1 False Waze Alerts 

An inherent challenge with using actively crowdsourced traffic data is the possible 

presence of false incident reports in the dataset. While Waze attempts to reduce the 

incidence of false reports by prompting its users within the vicinity of an alert to confirm 
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or deny the report, false reports are nonetheless present in the data. As such, researchers 

have attempted to quantify the false alarm rate in Waze. Amin-Naseri et al. (2018) and 

Goodall & Lee (2019) compared Waze reports to screenshots of traffic camera video feeds 

taken at time intervals of five minutes and one minute respectively. They discovered that 

false alarm rates were significantly low. Of 319 Waze reports in the month of October, 

Amin-Naseri et al. (2018) report only one, representing 0.3%, was a false alarm. Similarly, 

Goodall & Lee (2019) report 5% false alarm rates for crash reports and 23% for disabled 

vehicle reports. The variance in false alarm rates may be attributed to the differences in 

the frequency with which they collect their ground truth for Waze incident validation, as 

well as differences in study area. 

2.4.2 Data Redundancy in Waze Alerts 

Also inherent in crowdsourced data is the issue of redundancy. That is, multiple 

reports of the same incident. As such, various approaches leveraging spatiotemporal as 

well as semantic information including incident type, road name and direction (Amin-

Naseri et al., 2018; Eriksson, 2019; Lenkei, 2018) have been proposed in literature to 

minimize redundancy in Waze data by aggregating multiple reports that refer to the same 

incident. Amin-Naseri (2018) developed an R tool for the purposes of reducing 

redundancy, based on user specified constraints, using density-based clustering methods. 

As demonstrated by Amin-Naseri et al. (2018), Lenkei (2018) and Eriksson (2019), the 

intuition is to match crowdsourced alerts based on their semantic attributes and 

spatiotemporal proximity. In particular, specifying space-time proximity constraints is 

more effective at matching alerts (Eriksson, 2019). The result is a cluster of related alerts 

referring to the same incident and independent alerts not related to any alerts. 
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Consequently, a cluster of related alerts is represented as one alert thus reducing 

redundancy. 

2.5 Integration of Waze Data with other Datasets 

While crowdsourced data is a cost-effective alternative data source for traffic 

monitoring, it is frequently desired for traffic management purposes to integrate it with 

traffic incident data obtained from traditional data sources. To that end, the methods 

proposed in the literature match Waze incident alerts with traditional traffic data sources 

using spatiotemporal proximity constraints. For example, Goodall & Lee (2019) used 

space and time thresholds of 0.5 miles and 30 minutes to match Waze incident alerts to 

Virginia Department of Transportation official data. Aside from the spatiotemporal 

constraints, the two events had to occur on the same road and in the same direction of 

travel. The limitation of this approach is that it cannot distinguish between distinct 

incidents that are close in space and time. 

Since the output of the various integration tools and methodologies developed by 

researchers is dependent on spatiotemporal constraints, its efficiency is affected by the 

spatial and temporal accuracy of the of the crowdsourced Waze incident alerts. When 

compared to their corresponding incident reports in official datasets, Waze incident alerts 

were found to be reported 2.2 to 9.8 minutes earlier (Amin-Naseri et al., 2018; Lenkei, 

2018; Liu et al., 2019; Young et al., 2019). Liu et al. (2019) investigated the spatial 

accuracy of Waze incident alerts in Tennessee and discovered that the spatial difference 

between Waze crash and stopped vehicle alert locations and their corresponding official 

traffic data locations on Interstates was less than 0.001 mile and 0.0025 mile, respectively. 
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As a result, integrating Waze incident data into traffic management systems could be 

accomplished with reasonable accuracy. 

Researchers can assess the additional benefit Waze provides to traffic managers 

after integrating Waze data with official data sources. Amin-Naseri et al. (2018) 

investigated the additional coverage that Waze could provide to the Advanced Traffic 

Management Systems (ATMS) and concluded that Waze data could provide an additional 

34.1% coverage. Generally, the various studies report that Waze detects more than 40% 

of official records, with the exception of (dos Santos et al., 2017), who reported that Waze 

detected 7% of official records in his study in Belo Horizonte, Brazil. However, only a 

small percentage of Waze data is reported in official records (Amin-Naseri et al., 2018; 

Eriksson, 2019; Flynn et al., 2018). This indicates the potential additional data Waze could 

provide to traffic management systems, particularly on low severity crashes which are 

underrepresented in police crash reports and the location of disabled or abandoned vehicles 

on the shoulder. 

2.6 Safety studies using Waze Data 

Waze data has been employed in literature for safety related studies. Flynn et al. 

(2018) used six months of Waze incident data, as well as historical crash data, weather 

data, traffic volume data, and socio-economic data, to develop a crash prediction model to 

estimate the number and severity of crashes in Maryland. Based on these datasets, they 

employed random forest models and classification and regression trees for prediction. 

According to their findings, 57.05% of crashes were associated with at least one Waze 

event, while 5.98% of Waze events could be associated with crashes. On model 
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performance, the model could estimate the number of crash incidents with sufficient 

accuracy with spatiotemporal patterns close to ground truth official crash data.  

Also, Turner et al. (2020) used Waze incident reports in their crash risk prediction 

studies. Employing spatiotemporal approaches to reduce redundancy in the Waze dataset 

and merge the Waze incident data with police crash reports, they suggest that Waze 

incident reports and predicted crashes are significant predictors for estimating police crash 

reports. They also report that more high-risk road segments can be obtained by combining 

Waze incident reports and police crash reports than using Waze incident reports alone, 

police crash reports alone and predicted crashes alone. As such, integrating Waze data with 

crash data was better at estimating traffic crash risk.  

From the preceding discussions, the road shoulder is an important cross-sectional 

element with respect to traffic safety. Its use as an emergency stop location for vehicles on 

freeways increases the likelihood of fatal crashes on average. Congestion is also regarded 

as an important factor influencing road safety. While there have been a few studies that 

have analyzed and characterized crashes involving vehicles on the shoulder, no studies 

have been found that investigate the effect of a vehicle on the shoulder on traffic flow. 

Furthermore, as more transportation agencies use crowdsourced Waze data, the near real-

time location of vehicles on the shoulders can be obtained from this data. Based on the 

preceding discussions, this data has been shown to be spatially and temporally accurate, 

with low false alarm rates, and when combined with other data sources, can provide 

additional insights into the circumstances leading up to crashes. The limitation of 

searching crash records to identify vehicle on shoulder related crashes is that it only 

captures crashes directly involving vehicle on shoulder crashes. However, using 
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crowdsourced reports of vehicles on the shoulder, crashes indirectly involving vehicles on 

the shoulder may be captured. The discovery of the relationship will assist traffic managers 

who have access to the location of vehicles on the shoulder in developing operational 

strategies to improve safety. The methodology used, as well as a brief description and 

exploration of data, are shown in the following chapter to assess the impact of vehicles on 

the shoulder on congestion and safety. 
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CHAPTER 3. DATA AND METHODOLOGY 

This chapter provides an overview of the data sources used and the methods used in 

achieving the objective of this research. 

3.1 Data Sources 

The study is based on three data sources, all of which cover the period from July to 

December 2018 for all mainline Interstates in Kentucky. The data sources used are official 

Kentucky State Police (KSP) crash data, GPS-based speed data obtained from HERE 

Technologies, and Waze incident data obtained through the Waze Connected Citizens 

Program (CCP) by the Kentucky Transportation Cabinet (KYTC). The HERE 

Technologies data and Waze data used for this study had been pre-conflated with KYTC’s 

road network. As such, each data point had a distinct route identifier attribute that defined 

the county, road name and direction of travel. For each travel direction, the archived GPS-

based speed data were available at two-minute epochs.   

 

3.2 Data Exploration 

3.2.1 Spatial Distribution  

Figure 3.1, Figure 3.2 and Figure 3.3 show the statewide spatial distribution of 

Waze “vehicle on shoulder” alerts, Waze “vehicle stopped in road” alerts and crashes 

respectively.  
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Figure 3.1 Statewide distribution of Waze “vehicle on shoulder” alerts 

 

 

Figure 3.2 Statewide distribution of Waze “vehicle stopped in road” alerts 
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Figure 3.3 Statewide distribution of crashes 

 

It is seen from the spatial distributions presented in Figure 3.1, Figure 3.2 and Figure 3.3 

that there are more Waze “vehicle on shoulder” and “vehicle stopped in road” alerts in the 

urban areas than in rural areas. Particularly in Jefferson county and Northern Kentucky. 

The statewide distribution of traffic crashes on freeways in Kentucky shows a similar 

distribution. 

Similarly, Figure 3.4, Figure 3.5 and Figure 3.6 shows the spatial distribution of 

these datasets within the Louisville Metropolitan Area. This is to depict a more detailed 

overview of the distribution of Waze “vehicle on shoulder” and “vehicle stopped in road” 

alerts as well as crashes. 
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Figure 3.4 Distribution of Waze “vehicle on shoulder” alerts within Louisville 

Metropolitan area 

 

 

Figure 3.5 Distribution of Waze “vehicle stopped in road” alerts within Louisville 

Metropolitan area 
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Figure 3.6 Distribution of crashes within Louisville Metropolitan area 

 

It is seen from Figure 3.4, Figure 3.5 and Figure 3.6 that the “vehicle on shoulder” and 

“vehicle stopped in road” hotspots coincide with crash hotspots and these hotspots are 

highly concentrated near freeway intersections within the urban area. 

3.2.2 Spatial and Temporal Depiction of the Data 

To achieve the objectives of this research, the three data sources had to be integrated 

and consistent with previous research using crowdsourced data with other data sets, a 

spatiotemporal approach will be adopted. However, in order to set reasonable spatial and 

temporal integration thresholds, it is necessary to understand the interrelationships 

between the datasets. Here, heatmaps of the three datasets combined were used as a tool 

for this purpose. A heatmap was generated using the data sources for each day a crash 

occurred in the second half of 2018. This provided a visual representation of the interaction 
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between the datasets. First, speed data were queried and plotted and then the crashes, Waze 

crash alerts, Waze “vehicle on shoulder” alerts, Waze “vehicle stopped in road” alerts and 

Waze “object in road” alerts were subsequently overlayed to assess their interrelationship. 

All Waze alerts were charted based on their start times, with elongated symbology to depict 

their duration within the Waze data stream. Figures 3.7, 3.8, and 3.9 show examples of 

heatmaps generated. Each of these Figures represents only one travel direction — either 

cardinal or non-cardinal. Mile points increase in the cardinal direction (Northbound or 

Eastbound) and decrease in the non-cardinal direction (Southbound or Westbound). Lower 

mile points represent upstream in the cardinal direction and downstream in the non-

cardinal direction of flow. A descriptive legend of the symbology is provided below for 

the figures: 

        –  Crash 

        –  Waze “vehicle on shoulder” alert 

        – Waze crash alert 

        – Waze “object in road” alert  

        – Waze “vehicle stopped in road” alert 

 

Figure 3.7 illustrates a sequence of events in which reports of parked, disabled, or 

abandoned vehicles on the shoulder were followed by congestion and crashes.  
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Figure 3.7 Waze “vehicle on shoulder” alerts preceding congestion and crashes 

 

Figure 3.7 depicts congestion on I-64 westbound on a weekday in December 2018 between 

9 a.m. and 12 p.m. and during the evening peak hours (between 4pm to 7pm). On this 

weekday, several reports of Waze "vehicle on shoulder" alerts had been received around 

mile point 13, prior to the evening peak. Following traffic congestion during the evening 

peak hours, a crash occurs, which is also reported in Waze. Five hours earlier, around the 

same mile point, a Waze “object in road” alert was received. Albeit not as frequent, the 

data shows this chain of events in which reports of parked, disabled, or abandoned vehicles 

on the shoulder were followed by congestion and crashes. 

Similarly, Figure 3.8 shows instances where Waze “vehicle on shoulder” alerts 

were received following a crash report.  
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Figure 3.8 Waze “vehicle on shoulder” alerts succeeding crash report 

 

In Figure 3.8, a Waze “vehicle stopped in road” alert is received during the morning peak 

on I-64 westbound, followed by Waze crash alerts, and then a crash report. The crash was 

reported earlier in Waze. This is followed by reports of Waze “vehicle on shoulder” 

incidents, which may refer to the vehicle involved in the crash being moved to the 

shoulder. To ensure the measured effects of this study were of vehicles on the shoulder or 

stationary vehicles and objects in the travel lanes leading to crashes, only Waze alerts 

received prior to a crash were considered for analysis. 

Figure 3.9 also shows a scenario where there was congestion succeeding reports of a crash 

on a weekday on I-75 southbound. 
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Figure 3.9 Congestion succeeding a crash 

3.3 Data Integration 

Having a visual representation of the interaction between the datasets, different 

space-time thresholds were tested to assess the impact presence of a vehicle on the road 

shoulder of a limited access highway prior to crash occurrence. This step is illustrated in 

Table 3.1, showing the percentage of crashes that had a Waze “vehicle on shoulder” alert 

within their spatiotemporal vicinity defined by the distance and time thresholds.  
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Table 3.1 Percentage crashes with a vehicle on shoulder within their vicinity 

    Statewide Jefferson Fayette Kenton Boone Campbell 

Total Crashes (Jul-Dec 2018) 5768 1608 240 598 315 272 

% Crashes with vehicle on shoulder alerts within the spatiotemporal vicinity  

30 min before 

0.25 mi 36 48 28 32 35 48 

0.50 mi 54 66 46 48 52 64 

1.0 mi 72 83 65 66 70 82 

                

30 min before 

and after 

0.25 mi 47 59 41 44 45 59 

0.50 mi 64 76 60 59 62 76 

1.0 mi 80 89 77 75 79 89 

 

In Table 3.1, statewide statistics for the spatiotemporal integration between Waze 

“vehicles on shoulder” alerts and crashes are presented. Also presented in Table 3.1 are 

statistics for some urban counties in Kentucky. For example, 1,608 crashes occurred in 

Jefferson County between July and December 2018, with 66 percent of these crashes 

having active “vehicle on shoulder” alert(s) 30 minutes prior to the crash and within 0.5 

miles upstream and downstream of the crash site. As shown in Table 3.1, increasing the 

thresholds significantly increases the number of matches between Waze “vehicle on 

shoulder” alerts and crashes. However, for this study, a spatiotemporal threshold of 0.25 

miles upstream and downstream of a crash site and 30 minutes before crash occurrence 

was used. This was deemed a reasonable threshold for identifying crashes caused by the 

presence of a parked, disabled, or abandoned vehicle on a limited access highway's 

shoulder. Additionally, to obtain a match, the two events had to be on the same road and 
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in the same direction of travel. Based on the data shown in Table 3.1, about 36% freeway 

crashes statewide had “vehicle on shoulder” alert(s) in their vicinities. The percentages 

were 48% for Jefferson and Campbell Counties, much higher than the statewide rate.  

Having established a reasonable threshold for integrating Waze “vehicle on 

shoulder” alerts with crash data and speed data, the same spatiotemporal thresholds were 

similarly used to integrate Waze “object in road” and Waze “vehicle stopped in road” alerts 

with crash and speed data. Comparing these two types of the alerts to the Waze “vehicle 

on shoulder” alerts, over ten times more “vehicle on shoulder” alerts were received than 

these two alerts combined. The numbers of “vehicle stopped in road” alerts received 

however were only a third of the number of “object in road” alerts received. Based on the 

spatiotemporal threshold of 0.25 miles upstream and downstream of a crash site and 30 

minutes prior to crash occurrence, only 7.4% and 4.2% of “vehicle stopped in road” and 

object in road alerts respectively had a crash within their vicinity. 

Additionally, to ascertain the presence of congestion prior to crash occurrence, 

GPS-based speed data at the location of the crash were queried two minutes prior to crash 

time. Congestion was considered present if the query returned a speed value less than 45 

miles per hour.  

Crowdsourced incident data has the potential to capture traffic crash events that 

otherwise would not have been captured through conventional traffic data sources. To 

assess this potential additional coverage, Waze crash alerts need to be linked to crash data. 

However, the crowdsourced Waze crash incident alerts contained redundant records. 

To mitigate redundancy, duplicate records of the same incident within the Waze 

dataset reported by the same Waze user were removed using their unique IDs (UUID). 
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However, at this stage the Waze crash data still contained multiple reports of the same 

incident reported by multiple Waze users and hence having different UUIDs. As such, to 

cluster together Waze crash incident alerts of the same incident from different users, a 

spatiotemporal clustering approach was used as proposed in literature. Here, similarly a 

spatial and temporal threshold of 0.25 miles upstream and downstream and 30 minutes 

respectively is used. The result of this is a dataset containing Waze crash incident clusters 

that are likely to be reports of the same incident. As such each cluster may be considered 

as a single incident. Then using the same spatial and temporal thresholds to integrate this 

data with crash data, crashes that were also reported in Waze were identified and Waze 

crash alerts that were found in crash data were identified.  

Using the six months of Waze data there were 313,953 Waze crash alerts prior to 

filtering out Waze crash reports with duplicate reports of the same UUID. That is, it 

includes duplicate Waze crash reports of the same incident made by the same Waze user 

that appear in the data set more than once due to KYTCs data pulling frequency. Filtering 

out duplicate UUIDs, the resultant dataset contained 15,859 unique Waze crash reports 

made by different users that may still contain reports of the same incident made by 

different users. After clustering to filter out Waze reports made by different users referring 

to the same incident, there were 13,279 unique Waze crash report clusters in the data set 

as compared to 5,768 crashes. 

3.4 Assessing Correlation between Factors 

Crashes happen for a variety of reasons, including human factors, environmental 

factors, and vehicle factors. Crash occurrences are sometimes caused by the interaction of 

multiple of these factors. As a result, in order to assess the relationship between vehicles 
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on the shoulder and stationary vehicles and objects in the travel lanes on congestion and 

crashes on limited access highways, their interaction with a variety of human and 

environmental factors must be considered as well as the various factors may not act in 

isolation. The relationships were assessed using data mining techniques as described in this 

section.  

3.4.1 Contributory Factors Considered  

Human factors extracted for this study include driver impairment, distraction, 

inattention, driving too fast for conditions, improper vehicle maneuvers, failure to yield 

right of way, and following too closely. Environmental factors included roadway character 

— presence of curves and grades, inclement weather, poor visibility based on the lighting 

condition field in crash reports, animal/debris, water pooling, slippery road surface, and 

construction work zone. Table 3.2 provides a summary of the human and environmental 

factors considered in this study. 

Table 3.2 Human and environmental factors considered 

Human factors Environmental factors 

Driver impairment Curves and Grades 

Distraction Inclement weather 

Inattention Poor visibility 

Driving too fast for conditions Waterpooling 

Improper maneuvers Slippery road surface 

Following too close Construction work zone 

Failure to yield right of way Presence of animals/Debris 
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Additionally, GPS speed data and Waze data were used to determine the presence of traffic 

congestion, vehicles on the shoulder, and stationary objects or vehicles in travel lanes prior 

to a crash. 

3.4.2 Association Rule Mining 

Much recently, data mining techniques have been adopted extensively in 

transportation research. In the past, statistical models, which have their inherent 

assumptions, were used to analyze road crashes and their causative factors (Lee et al., 

2002). However, due to the limitation of statistical models for large dimensional datasets 

and the need to specify the functional form of statistical models prior to application, data 

mining algorithms such as Association rule mining have gained attention among  the 

transportation safety research community in recent times. The basic idea is to identify 

frequent item sets within a large relational database using frequent item search algorithms 

such as Apriori (Agrawal et al., 1993) or  FP-Tree ((Han et al., 2000) and identify 

relationships between these item sets based on measures such as the support-confidence 

framework (Agrawal et al., 1993). 

In relation to transportation safety studies, Geurts et al. (2003) used association 

rules to analyze high-frequency crash locations in Belgium in order to identify frequently 

occurring crash patterns and the extent to which crash characteristics at these high-

frequency crash locations differed from those at low-frequency crash locations. They 

concluded that, while human and behavioral factors played a significant role in the 

occurrence of crashes, the main difference in accident patterns between high-frequency 

and low-frequency accident locations could be found in infrastructure- or location-related 

circumstances. Similarly, Kumar & Toshniwal (2016) used association rules to identify 
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and characterize high-accident locations in India. They demonstrated that association rules 

were effective at uncovering relationships between crash factors, and that having more 

attributes in the data allows association rules to uncover more relationships. 

In a case study using work zone crash data between 2004 and 2008, Weng et al. (2016) 

used association rules to assess the characteristics of work zone fatalities and to obtain an 

in-depth understanding of the contributory factors to such fatalities. They further 

emphasize that the use of association rule mining in other areas of traffic safety research 

will be beneficial and provide guidance in the selection of effective countermeasures. 

 Much recently, Das et al. (2020) used association rules to assess the contributory 

factors to flood related crashes in Louisiana. Originally developed for market basket 

analysis, association rule mining has become a good algorithm for analyzing traffic crashes 

to identify key contributory factors. The aforementioned studies were able to identify key 

contributory factors and recommend countermeasures to reduce, if not mitigate, crashes 

using association rules. 

3.4.3 Applying Association Rule Mining 

According to (Agrawal et al., 1993), association rule mining is defined as follows: 

Let I = {i1, i2, …, im} be a universal set of crash-related factors, including human, 

environmental, and vehicle factors.  Let D = {ci, ci+1, …, cn} be a set of the crashes from 

the crash data, where each crash has a unique crash ID (Cid) and an item set (C-itemset) 

consisting of the factors related to this specific crash. Let X ⊆ I, Y ⊆ I each be a subset of 

the universal crash contributory factors. An association rule is the implication 𝑋 → 𝑌 such 

that X ∩ Y = ∅, p(X) ≠ 0 and p(Y) ≠ 0 where X is the antecedent and Y the consequent.  
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Indicators such as support, confidence, conviction, lift, leverage, and other 

measures can be used to assess the significance or effectiveness of a rule. However, for 

the purposes of this study, the three measures used are support, confidence, and lift. The 

frequency with which the antecedent and consequent of a rule occur together in crash data 

is referred to as rule support. It is computed using Equation 1. 

            Support (X → Y) =  
P(X∩Y)

N
                                                               (1) 

Confidence (see Equation 2) refers to the strength of a rule’s implication and is the 

proportion of crashes involving contributing factor X that also contain Y. 

   Confidence (X → Y) =  
P(X∩Y)

N
                                                                  (2) 

Although the support-confidence framework is a common model for mining 

association rules, it does not provide a test for identifying the correlation between two item 

sets (Zhang & Zhang, 2002). As such, the lift measure, which measures the 

interdependence of factors, was used as a third measure. With values ranging from 0 to 

, a lift value of 1 indicates factors are independent, values greater than 1 denote positive 

correlation, and values less than 1 indicate negative correlation between factors. 

Mathematically, lift is computed as: 

             Lift (X → Y) =  
P(X∩Y)

P(X)×P(Y)
                                                               (3) 

Using the ‘MLxtend’ python package (Raschka, 2018), the Apriori algorithm was applied 

with a minimum support of 5% and a minimum lift of 1 so that only positive correlations 

between factors were reported.  
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CHAPTER 4. RESULTS AND DISCUSSION 

This chapter presents the results obtained from the analysis performed to assess the 

correlation between the presence of vehicles on the shoulder, stationary vehicles or objects 

in travel lanes, congestion, and crashes. It also presents the spatiotemporal distribution of 

crashes involving vehicles on shoulder and congestion as well as the additional crash 

coverage Waze can provide. 

4.1 Spatiotemporal Pattern 

Following the integration of Waze “vehicle on shoulder” alerts with crashes and 

speed data as described in the previous chapter, the subsequent exploratory analysis to 

assess the temporal pattern of the crashes – including crashes with Waze “vehicle on 

shoulder” alerts present in their vicinity – indicates that more crashes occurred during the 

peak hours of the day on limited access highways. Crashes with “vehicle on shoulder” 

alerts within their spatial and temporal vicinity also followed this trend as shown in Figure 

4.1. 

 

Figure 4.1 Temporal analysis of crashes by hour 
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Assessing the spatial distribution of crashes that had a “vehicle on shoulder” alert 

in their spatiotemporal vicinity based on the thresholds set as described in the previous 

chapter, more of such crashes were observed to have occurred in the urban areas, 

particularly in northern Kentucky and the Louisville Metropolitan area. The same is true 

for crashes which’s occurrence were preceded by congestion. The spatial distributions of 

the “vehicle on shoulder” related crashes statewide and within the Louisville Metropolitan 

area are presented in Figure 4.2 and 4.5 respectively. Similarly, the distribution of 

congestion related crashes statewide and within the Louisville Metropolitan area are 

presented in Figure 4.3 and Figure 4.6 respectively. Also, the spatial distribution of crashes 

that had both congestion prior to their occurrence and vehicles on shoulder present within 

their vicinity is presented in Figure 4.4, for statewide, and Figure 4.7 for the Louisville 

Metropolitan area. 

 

Figure 4.2 Statewide spatial distribution of "vehicle on shoulder" related crashes  
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Figure 4.3 Statewide spatial distribution of congestion related crashes 

 

 
Figure 4.4 Statewide spatial distribution of “vehicle on shoulder” and congestion related 

crashes 
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Figure 4.5 Spatial distribution of  “vehicle on shoulder” related crashes in Louisville 

Metropolitan Area  

 

Figure 4.6 Spatial distribution of congestion related crashes in Louisville Metropolitan 

Area 
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Figure 4.7 Spatial distribution of  “vehicle on shoulder” and congestion related crashes in 

Louisville Metropolitan Area 

4.2 Frequent Crash Contributory Factors 

Based on the association rule mining procedure discussed in the previous chapter, 

among the set of crash contributory factors, the most frequently occurring crash 

contributory factors are presented in Table 4.1 in order of decreasing support (frequency 

of occurrence). 
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Table 4.1 Frequently occurring crash contributory factors 

Factor Support 

Bad Visibility 37.49 

Presence of vehicle on the shoulder 36.72 

Bad Weather 32.29 

Improper Maneuver 27.31 

Driver Inattention 26.80 

Congestion 25.67 

Slippery Surface / Water Pooling 23.10 

Grade Present 22.27 

Curve Present 16.19 

Driver Following Too Close 9.76 

Presence of Animal/Debris 8.51 

Driving too fast for conditions 7.91 

Presence of vehicle stopped in road 7.38 

Driver Impairment 5.94 

 

From Table 4.1, The top five crash contributory factors in terms of support indicate that if 

a vehicle is present on the shoulder of the limited access highway at night or during 

inclement weather conditions, a crash is likely if the driver is inattentive or makes an 

inappropriate steering maneuver. The risk is compounded if a curve or grade is present. 

While the presence of a vehicle stopped in the travel lane showed up as a frequent item 

within the spatiotemporal vicinity of approximately 7.4% of crashes, the presence of an 

object in the roadway did not appear to be a major contributory factor to freeway crashes. 

It is however seen here that the presence of a vehicle on the shoulder prior to crash 

occurrence is a highly frequent. Since approximately 11% of freeway crashes involving a 

vehicle on the shoulder in Kentucky were fatal (Agent & Pigman, 1989) much attention 
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should be given to the removal of such hazards, particularly disabled vehicles on the road 

shoulders. 

4.3 Association Rules 

Association rules show the interdependence or correlation between the crash 

contributory factors. They may be classified based on the number of items in the rules. In 

this study, the association rules are classified into two-item rules and three-item rules 

showing the correlations between the crash factors and crashes.  

4.3.1 Correlation Between Individual Crash Factors and Crashes 

The top two-item association rules, which show the correlation between individual 

crash factors, are presented in Table 4.2 sorted by lift in decreasing order.  
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Table 4.2 Two-item association rules indicati1ng correlation between single factors 

Antecedents Consequents 
Antecedent 

Support 

Consequent 

Support 
Support Confidence Lift 

{'DrivingTooFast'} {'SlipperySurf/WaterPool'} 0.079 0.231 0.051 0.646 2.796 

{'BadWeather'} {'DrivingTooFast'} 0.323 0.079 0.060 0.185 2.338 

{'Congestion'} {'FollowTooClose'} 0.257 0.098 0.052 0.203 2.081 

{'Animal/Debris'} {'BadVisibility'} 0.085 0.375 0.058 0.679 1.811 

{'Congestion'} {'Inattention'} 0.257 0.268 0.112 0.435 1.624 

{'SlipperySurf/WaterPool'} {'ImproperManeuver'} 0.231 0.273 0.086 0.373 1.366 

{'ImproperManeuver'} {'BadWeather'} 0.273 0.323 0.114 0.418 1.295 

{'Vehicle on Shouder'} {'Congestion'} 0.367 0.257 0.117 0.318 1.237 

{''Vehicle on Shouder '} {'Inattention'} 0.367 0.268 0.111 0.303 1.130 
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Antecedent support and consequent support in Table 4.2 refer to the proportion of crashes 

involving the antecedent and consequent, respectively. The lift measure, as explained in 

the previous chapter, is a measure of factor dependence or correlation whereas confidence 

measures the proportion of crashes involving the antecedent that also involve the 

consequent. The higher lift association rules from Table 4.2 indicate that human and 

environmental factors are highly correlated with crashes. The first rule in Table 4.2, for 

example, states that when a driver drives too fast on slippery road surfaces or in areas 

where water has pooled on the road, a crash is very likely.  

4.3.1.1 Correlation Between Vehicles on Shoulder, Congestion and Crashes 

As noted in the previous section, the two-item set of rules assists us in 

comprehending the relationships between individual contributing factors. While human 

and environmental factors both play a role in the occurrence of a crash, their interaction 

with the presence of either congestion or vehicles on the shoulder raises the risk of a crash. 

This is demonstrated in Table 4.2, where the interaction between congestion and 

inattentive driving and inadequate following distance accounts for slightly more than 11% 

and 5% of freeway crashes, respectively showing a high chance of crashes occurring 

involving driver inattention during congested periods. Additionally, Waze “vehicle on 

shoulder” alerts are correlated with congestion in crash occurrence. Inferring from the 

correlation, the presence of a vehicle on the freeway shoulder could negatively impact 

traffic flow leading to congestion and subsequently crashes. However, as noted by Chen 

et al. (2020), most crash narratives associated with congestion do not specify the reason 

for congestion. As such, while there may be crashes that fit this chain of events, it is 

difficult to tell how many there are.  
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4.3.1.2 Correlation Between Vehicles Stopped in the Road and Crashes 

Though about 7.4% of crashes showed up as having a vehicle stopped in road alert 

within their spatiotemporal vicinity from the frequent crash factor set shown in Table 4.1, 

their interaction with other predominant factors were insignificant and as such none of the 

association rules generated had this factor. A possible explanation is that situations 

involving a vehicle stopped in road, particularly on limited access highways are rare and 

as such do not occur with as much frequency as other crash factors. In situations where 

they do occur, they may be moved over to the shoulder or towed away from the road. 

4.3.2 Correlation Between Multiple Crash Factors and Crashes 

The three-item item rules clarify the interaction between more than two factors, 

especially if they have a higher lift value, indicating a stronger correlation between the 

interaction of those factors and crashes. These three-item rules are presented in Table 4.3. 
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Table 4.3 Three-item association rules 

Antecedents Consequents 
Antecedent 

Support 

Consequent 

Support 
Support 

Confidenc

e 
Lift 

{'BadWeather', 'CurvePresent'} {'SlipperySurf/WaterPool'} 0.071 0.231 0.051 0.726 
3.14

2 

{'BadWeather'} 
{''Vehicle on Shoulder ', 

'SlipperySurf/WaterPool'} 
0.323 0.070 0.064 0.200 

2.83

3 

{'BadWeather'} 
{'ImproperManeuver', 

'SlipperySurf/WaterPool'} 
0.323 0.086 0.078 0.242 

2.81

2 

{'Congestion'} 
{''Vehicle on Shoulder ', 

'Inattention'} 
0.257 0.111 0.052 0.201 

1.80

9 

{''Vehicle on Shoulder ', 

'Congestion'} 
{'Inattention'} 0.117 0.268 0.052 0.443 

1.65

2 
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Though the presence of a vehicle on the shoulder and congestion increases crash risk and 

contributed to 11.7% of freeway crashes in Kentucky, from the three-item rules it is seen 

that when a driver is inattentive or losses concentration when there is the presence of these 

two factors, the risk of getting involved in a crash is compounded. In 44.3% of crashes 

where a vehicle on shoulder and congestion may have contributed to the crash, driver 

inattention was also a factor as depicted by the confidence measure which measures the 

percentage of crashes involving the antecedent that also involved the consequent. Also, 

while congestion was associated with 25.7% of crashes as depicted by its support measure, 

the confidence measure for the three-item rule with congestion as antecedent in Table 4.3 

shows about 20.1% of crashes involving congestion also had vehicles on the shoulder and 

driver inattention as contributory factors. As such, it is seen that the presence of vehicles 

on the shoulder is correlated with crashes and correlated with traffic slowdowns.  

 

4.4 Potential Additional Crash Coverage Provided by Waze 

4.4.1 Waze Crash Alerts Linked to Crashes 

Filtering out duplicate UUIDs, the resultant dataset contained 15,859 unique Waze 

crash reports made by different users that may still contain reports of the same incident 

made by different users. Down from 313,953 alerts. After clustering to filter out Waze 

reports made by different users referring to the same incident, there were 13,279 unique 

Waze crash report clusters in the data set. More Waze alerts are reported from urban areas 

than from rural areas and with more duplicate reports of the same incident by different 

users. After clustering, it is seen that slightly more unique Waze alerts are made from urban 
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areas. Table 4.4 shows the results of the data integration between crash data and Waze 

crash alert clusters.  

Table 4.4 Waze crash alerts and crash integration 

 Total Waze crash alert cluster 

related 

Not Waze crash alert cluster 

related 

Interstate 

Crashes 

5881 2304 3577 

    

    

 Total Crash related Not related to Crash 

Waze alert 

clusters 

13279 2608 10671 

 

Waze crash alerts captured 39.18% of all interstate crashes. The proportion of all 

unique Waze crash alert clusters that were related to a crash, based on the spatiotemporal 

thresholds set, was 19.64%. 376 crashes were earlier reported in Waze and 395 Waze crash 

alert clusters were earlier reports of crashes. 

4.4.2 Temporal Patterns in Waze Crash Clusters and Crashes 

A temporal analysis of Waze crash alert clusters and crashes was performed by 

time of day and weekday. Figure 4.8 depicts time of day analysis, whereas Figure 4.9 

depicts weekday analysis. In Figure 4.9, the number “0” represents Monday and the 

number “6” represents Sunday.  
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Figure 4.8 Time of day analysis 

 

Figure 4.9 Day of week analysis 

 

According to the analysis, the day of the week when the most crashes are recorded 

– Fridays – coincides with the day of the week when the most Waze crash reports are 
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received. The same is true for the hour of day analysis, as the hour of day with the highest 

crash numbers also has the highest Waze crash alerts. As such, Waze crashes have a similar 

temporal distribution as crashes. 

4.4.3 Spatial Accuracy of Waze Crash Reports 

Having linked Waze crash alerts to crashes, Figures 4.10 and 4.11 show the 

distribution of the distance between a crash and its corresponding Waze crash alert(s). 

Figure 4.10 represents the distribution of the distances between a crash report and their 

corresponding linked Waze crash alert(s) for crashes that were earlier reported in Waze. 

 

Figure 4.10 Distribution of distance of early reports in Waze from crash location 

 

From Figure 4.10 it is seen that majority of the early reports of crashes in Waze are within 

0.2 miles of their corresponding crash location.  

Similarly, Figure 4.11 shows the distribution of distances between Waze crash 

alerts and their corresponding crashes for all Waze crash alerts linked to crashes. 
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Figure 4.11 Distribution of distance of all Waze crash alerts from corresponding crash 

location 

 

Figure 4.11 illustrates that the majority of Waze alerts associated with crashes were within 

0.2 miles of the corresponding crash sites. The average distance from the crash site for 

early Waze reports of crashes was 0.26 miles. However, the average distance for all Waze 

crash alerts linked to crashes was 0.22 miles. As such consistent with Liu et al. (2019), the 

Waze crash alerts were reasonably spatially accurate and hence, Waze crash alerts could 

present an alternative for identifying crashes, particularly minor property damage only 

crashes that otherwise may go unreported.  

Figure 4.12 shows the temporal distribution of Waze crash alerts for those Waze 

crash alerts that were linked to crashes. 



44 

 

 

Figure 4.12 Temporal distribution of Waze crash alert report times for Waze crash alerts 

linked to crashes 

From Figure 4.12 it is seen that there were earlier reports of crashes in Waze, some 30 

minutes earlier before their corresponding crash record, which could be taken advantage 

of to reduce incident response and clearance times. Reducing incident response and 

clearance times would mean a reduction in the likelihood of secondary crashes thus 

improving safety on the road. 

Aggregating the Waze crash incident data by county, the data is as presented in 

Table 4.5. The data only covers 44 counties out of the 47 counties with interstate highways 

in Kentucky. 

Table 4.5 Waze crash alert clusters related and unrelated to crashes 

COUNTY Total Waze Waze: Crash Related Waze: Crash Unrelated 

Barren 86 12 74 

Bath 51 9 42 

Boone 848 164 684 

Boyd 25 8 17 

Bullitt 522 108 414 

Caldwell 16 2 14 

Campbell 454 172 282 

Carroll 218 39 179 

Carter 172 40 132 
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Table 4.5 (Continued) Waze alert clusters related and unrelated to crashes 

COUNTY Total Waze Waze: Crash Related Waze: Crash Unrelated 

Christian 222 37 185 

Clark 79 10 69 

Edmonson 27 1 26 

Fayette 568 116 452 

Franklin 138 31 107 

Gallatin 165 25 140 

Grant 222 38 184 

Graves 1 0 1 

Hardin 370 65 305 

Hart 176 19 157 

Henderson 10 0 10 

Henry 145 19 126 

Hopkins 68 1 67 

Jefferson 3835 819 3016 

Kenton 1501 358 1143 

Larue 26 2 24 

Laurel 355 50 305 

Livingston 36 2 34 

Lyon 84 7 77 

Madison 377 69 308 

Marshall 129 8 121 

McCracken 154 10 144 

Montgomery 47 10 37 

Oldham 343 64 279 

Rockcastle 399 64 335 

Rowan 56 15 41 

Scott 281 57 224 

Shelby 331 72 259 

Simpson 82 4 78 

Trigg 29 3 26 

Trimble 15 2 13 

Warren 242 17 225 

Webster 20 1 19 

Whitley 294 51 243 

Woodford 60 7 53 
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From Table 4.5, a similar spatial temporal pattern is observed as seen in the Waze “vehicle 

on shoulder” alerts. More Waze crash alerts are concentrated in the urban areas where they 

also match a significant proportion of crashes. However, within the urban areas, a majority 

of the alerts are not linked to any crash. While a few of these unmatched alerts may be 

false alarms consistent with literature, a significant proportion of them may be minor 

crashes that are not reported and hence the adoption of Waze as an alternate source of data, 

particularly in the urban areas where they are prevalent could help reduce underreporting 

of crashes. 
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CHAPTER 5. CONCLUSION 

5.1 Summary 

Using a spatiotemporal approach, this study aimed to quantitatively analyze the 

relationship between vehicles on the shoulder, traffic slowdowns, and crashes by 

integrating Waze alerts, GPS-based speed data, and crash data. Association rule mining 

was used to assess and quantify correlation. According to the analysis of limited access 

highways, 36% of crashes had a vehicle parked on the roadway shoulder within their 

spatiotemporal vicinity – 0.25 miles upstream and downstream of the crash site and 30 

minutes prior to the crash occurrence. Also, approximately 25% of limited access highway 

crashes were associated with congestion. As such, there exists a high correlation between 

vehicles on the shoulder, congestion and crashes. Moreover, in 11.7% of the crashes, both 

a vehicle on shoulder and congestion were present immediately prior to crash occurrence 

corroborating the correlative relationship between these factors and crashes. The 

subsequent association rule mining analysis confirmed the association between vehicles 

on shoulder, congestion, and crashes was statistically significant. The level of significance 

ranked this relationship behind combinations of several important human and 

environmental factors, such as bad weather, slippery surface, driving too fast, following 

too closely, and executing an improper maneuver. While these human and environmental 

factors are inherently hard to remedy, incident management and operational strategies may 

be employed to alleviate congestion and vehicles on the shoulders of limited access 

highways to improve traffic safety on highways. 

Also, this study sought to assess the correlation between Waze “vehicle stopped in 

road” alerts, Waze “object stopped in road” alerts and crashes. While “vehicle stopped in 
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road” alerts were present within the spatiotemporal vicinity of about 7.4% of crashes, it 

did not show up in the association rule mining process as significantly correlated with 

crashes or congestion. An analysis of the coverage of Waze shows only 39.18% crashes 

were reported in Waze whereas crashes found in Waze accounted for only 19.64% of all 

Waze crash alerts. Waze crash alerts were also found to be spatially accurate and as such 

could serve as an additional source of data for traffic safety related purposes.  

5.2 Applications 

The presence of vehicles on freeway shoulders for extended periods of time increase 

crash risk as has been shown in the study. Their interaction with other human and 

environmental factors compounds this risk. As such, Waze “vehicle on shoulder” alerts 

may be used as a tool to monitor freeway shoulders and consequently remove vehicles on 

freeway shoulders that remain there for extended periods of time. 

Also, corroborating similar studies in other states,  Waze crash incident alerts were 

found to be spatially accurate and hence can be used as a traffic monitoring source by 

traffic management centers to identify crashes thereby cutting down incidence response 

times and clearance times. Moreover, 376 out of the 5768 mainline interstate highway 

crashes, in the second half of 2018, were earlier reported in Waze. 

5.3 Future Work 

The data and analytical methods used in this indicate the potential of crowdsourced 

traffic data to offer much needed insights into the challenges posed by vehicles on the 

shoulder. While this study focused on Waze vehicle on shoulder alerts, vehicle in road 
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alerts, objects in road alerts and crash alerts, other hazard and jam alerts from Waze can 

provide additional context and therefore should be included in future analysis. 

.
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