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ABSTRACT OF DISSERTATION 

  

 
BEHAVIORAL AND PHYSIOLOGICAL ADAPTATIONS ASSOCIATED WITH 
FEED INTAKE DURING TRANSITIONING CATTLE TO HIGH-GRAIN DIETS 

 
 

Transitioning cattle from a high-forage to a high-concentrate diet increases the 
risk for ruminal acidosis and is often related to decreased feed intake, which 
compromises animal health and performance. Since control of feed intake and rumen 
motility are closely related, we hypothesized that a reduction in rumen motility may be 
associated with a reduction in feed intake during this transition. Computer programs were 
created to analyze feed disappearance and rumen pressure data for feeding behavior as 
well as identification and characterization of rumen contractions, respectively. This 
method enabled timely analysis of large datasets and removed subjectivity associated 
with manual analysis. In the second part of this series, cattle were moderately transitioned 
from a 70% to a 90% concentrate diet, and SARA was induced. Although, reductions in 
feed intake were modest, on day 2 of high-grain feeding, animals slowed feed 
consumption rate and displayed a reduction in rumen contraction frequency, amplitude, 
and duration. Next, an abrupt transition from 50% to 90% concentrate was used to induce 
ruminal acidosis and cause some animals to stop eating. The abrupt increase in dietary 
concentrate was also associated with reductions in rumen motility. Patterns of ruminal 
pH, viscosity, and motility changes were related to when cattle reduced feed intake. 
Endotoxin quantification in blood samples from the ruminal vein, portal vein, and 
mesenteric artery suggested the point of endotoxin translocation into blood was across the 
ruminal epithelium. Additionally, the greater the concentration of endotoxin in the 
plasma, the more likely animals were to go “off-feed.” By understanding the 
physiological and behavioral mechanisms by which cattle adapt to high-grain diets, we 
can improve animal health and performance through these diet transitions.  

 
 
KEYWORDS: acidosis, feeding behavior, motility, rumen environment 
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CHAPTER 1:  INTRODUCTION 
 

Beef cattle are commonly finished on high-grain or high-concentrate diets in 

order to maximize energy intake and growth performance. However, diets of receiving 

cattle prior to feedlot entry are typically forage-based. Therefore, the microbial 

population is not accustomed to using starches and other rapidly fermentable 

carbohydrates contained in these high-grain diets. The transition period when cattle are 

switched from these high-forage to high-grain diets is a critical time in beef cattle 

husbandry which can lead to several disorders that negatively impact gastrointestinal 

function and health, such as ruminal acidosis. 

Still a common concern in feedlots today despite many prevention strategies, 

ruminal acidosis, or a depression in ruminal pH, affects animal physiology, behavior, and 

health. Importantly, animals typically reduce feed intake or display erratic feeding 

behavior during adaptation to a high-grain diets when experiencing ruminal acidosis, yet 

the cause of this change in intake and timing of changes are still not fully understood. 

Additionally, ruminal pH depression alone may not be enough to reduce feed intake or 

make cattle go “off-feed.” A variety of factors have been suggested to be involved with 

regulation of feed intake during these dietary transitions such as chemical receptors, 

reticulorumen motility, energy status, and/or inflammatory responses.  

Reticulorumen motility could impact feed intake by altering passage rate. Feed 

intake regulation and the control of rumen motility appear to have many overlapping 

mechanisms as well. While reductions in forestomach contraction amplitude and 

frequency have been noted for animals experiencing severe ruminal acidosis, the effect of 

chronic ruminal acidosis on reticulorumen motility has yet to be determined.  
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Bacterial endotoxin, or lipopolysaccharide, in the blood activates an inflammatory 

response, which could reduce feed intake. The rumen is host for many species of bacteria 

that have endotoxin as part of their cell wall and concentrations of lipopolysaccharide 

increase in the rumen when cattle are fed high-grain diets or experience ruminal acidosis. 

Reduced epithelial barrier function during acidosis may allow endotoxin to translocate 

across the epithelium and enter the blood, but translocation of endotoxin across the 

ruminal epithelium, specifically, is contentious. 

 The goal of this dissertation was to examine the behavior and physiological 

adaptations that occur when cattle are transitioned to high-grain diets, with particular 

emphasis on association of these adaptations with changes in feed intake or feeding 

behavior. We sought to develop a systematic and automated way to evaluate feeding 

behavior and forestomach motility. Then, these methods were used to determine if 

reticulorumen motility of cattle was altered during typical dietary transitions and when 

cattle go “off-feed,” if endotoxin was detectable in ruminal vein blood during these 

challenges, and if changes were associated with feed intake modifications. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

Ruminants rely on a symbiotic relationship with rumen microbiota for the ability 

to survive on structural carbohydrate molecules found in forages. Mammalian enzymes 

cannot digest structural carbohydrates (e.g. cellulose), but mammals are able to use 

products from the microbial digestion or fermentation of these compounds. The balance 

of this rumen ecosystem and the microbiome is important for the nutrition and health of 

the animal. However, when animals experience a nutritional stress, such as a rapidly 

fermentable, nonstructural carbohydrate challenge leading to ruminal acidosis, there is a 

disruption of the rumen microbiome and whole animal homeostasis. Consequently, the 

cascade of events that occurs following feeding high-grain diets to cattle ultimately 

influences reticulorumen fermentation and motility, blood acid-base balance, epithelial 

structure and function, local and systemic inflammation, and feeding behavior. 

High-Grain Diets 

Beef cattle, dairy steers, sheep, and goats are commonly fattened, or finished, on 

diets composed mostly of starch or other rapidly fermentable carbohydrates from 

ingredients, such as cereal grains, to maximize energy intake and improve performance. 

Researchers, nutritionists, and producers refer to these types of diets as high-grain or 

high-concentrate diets. A survey of twenty-nine consulting nutritionists in major cattle 

feeding states of the U.S. found that typical feedlot diets contained between 87 and 100% 

concentrate on a DM basis, with the average amount of roughage fed for warm and cold 

seasons at 8.3% and 9%, respectively (Vasconcelos and Galyean, 2007). 
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Problems Associated with Feeding High-Grain Diets 

   When cattle or other ruminants consume diets rich in rapidly fermentable 

carbohydrates, they may experience several disorders including ruminal acidosis, liver 

abscesses, bloat, laminitis, fatty liver, and displaced abomasum (Nocek, 1997; Andersen, 

2003; Ametaj et al., 2005). These disorders negatively influence gastrointestinal function, 

growth performance, and animal health and welfare, as well as economic profitability 

(Plaizier et al., 2009). For the purpose of this review, our efforts will focus on problems 

related to feeding high-grain diets and resulting ruminal acidosis. 

Diet Adaptation Methods 

Several diet adaptation protocols have been used by the U.S. cattle feedlot 

industry as cattle are switched from a high-forage to a high-concentrate diet. The diet 

adaptation period, when transitioning feedlot cattle from a receiving to a finishing diet, is 

a crucial time where nutritional management can impair or enhance future animal health 

and performance (Brown et al., 2006). Switching cattle too abruptly to a high-concentrate 

diet can lead to metabolic disorders, such as bloat and ruminal acidosis, which could 

negatively influence performance or cause death. However, it is advantageous to get 

cattle consuming a high-concentrate diet as soon as possible to increase DM and energy 

intake, ADG, and gain efficiency (Bevans et al., 2005). Thus, it is important that extra 

care be taken to balance the benefits in gain and efficiency on high-concentrate diets with 

the increased risk of acidosis if cattle are switched to finishing diets too rapidly. 

The goal of the transition period during diet adaptation is for the ruminal 

microbial populations to adjust and become accustomed to using the rapidly fermentable 

carbohydrates available in cereal grains without causing health problems (Brown et al., 
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2006). Producers want  to enhance growth performance without causing ruminal acidosis 

(Bevans et al., 2005). Since diets of growing or receiving cattle are usually forage-based 

prior to arrival at the feedlot, the microbial population is not prepared for effective use of 

starches and other rapidly fermentable carbohydrates. Generally, diet transition models 

refer to rapid or gradual adaptation protocols. An example of a rapid adaptation protocol 

would be transitioning from 40 to 90% concentrate in 3 d with one 65% concentrate diet 

between these levels (Bevans et al., 2005). One method of gradual adaptation involves 

the use of 2 to 5 step-up diets with intermediate levels of grain, fed on average for 7 d 

before increasing to the next concentrate level (Vasconcelos and Galyean, 2007). This 

multiple step-up diet approach was used by about three-fourths of the nutritionists 

evaluated in 2007. Another method called two-ration blending entails feeding varying 

proportions of a high- and low-concentrate diet over a period of time. Additionally, a 

combination of these methods, restricted intake of the final diet, or other methods may be 

used. Restricted intake of the final finishing diet during diet adaptation of 6 to 9 days 

resulted in greater DMI variation and lower ADG compared to cattle adapted using a 

step-up protocol (Perdigao et al., 2017). Most consulting nutritionists from the U.S. 

recommended using a 21-d adaptation period, regardless of method (Vasconcelos and 

Galyean, 2007). 

Acidosis of the Rumen 

Ruminal acidosis remains a common production issue in the beef and dairy 

industries due to today’s energy-intensive feeding protocols (Penner et al., 2010). When 

fermentation acid is produced at a rate greater than the rate at which acid is buffered and 

removed from the rumen (via passage and absorption), ruminal acidosis can occur (Allen, 
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1997). Ruminal acidosis generally refers to a depression in ruminal pH. The level of 

ruminal acidosis can vary based on the conditions under which the scenario was created 

and the animal’s ability to handle the challenge.   

Classification by Severity of Acidosis 

The definition of clinical or acute ruminal acidosis varies by publication. The 

syndrome also used to be called grain engorgement. Generally, a ruminal pH ≤ 5.0 - 5.2 

and ruminal total lactate between 40 and 90 mM or lactic acid between 50 and 150 mM 

are used to diagnose acute ruminal acidosis (Hibbard et al., 1995; Nocek, 1997; Owens et 

al., 1998; Nagaraja and Titgemeyer, 2007). Animals experiencing acute ruminal acidosis 

display an obvious illness (Owens et al., 1998). Sheep experiencing acute ruminal 

acidosis showed decreased plasma or serum Ca, K, and Mg  after a carbohydrate 

challenge (Irwin et al., 1979; Patra et al., 1993). This may be due to increased excretion 

of minerals in the urine (Harmon and Britton, 1983).   

Similar to acute ruminal acidosis, the definition of subacute or subclinical ruminal 

acidosis (commonly abbreviated as SARA) also varies in the literature, but it generally 

refers to a condition where there is a reversible pH depression. A ruminal pH below 5.5 

(Hibbard et al., 1995), 5.6 (Cooper et al., 1997), 5.8 (Beauchemin et al., 2001), and 6.0 

(Krehbiel et al., 1995) have been used as the upper threshold to diagnose SARA. Ruminal 

pH changes throughout the feeding cycle in a cyclical pattern as VFA’s and other 

fermentation products are produced, absorbed, buffered, and passed. Thus, an animal may 

have several bouts of low ruminal pH that would be considered subacute. The longer the 

period of low pH, the more concern for negative effects. There has been research 

describing the minimum duration that ruminal pH must remain below a threshold to 
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induce SARA. One study used approximately three hours or more per day below 5.6 to 

diagnose SARA (Gozho et al., 2005). Conversely, a ruminal pH less than 5.8 for 111 min 

was considered a mild bout of SARA (Penner et al., 2010). Animals experiencing SARA 

may not appear to be sick, but may display reductions in feed intake and performance 

(Owens et al., 1998). 

Identification of Acidosis in Practice 

The occurrence of SARA is more common than acute acidosis in the feedlot and 

dairy cattle industries. Also, SARA is a greater issue than acute acidosis on an economic 

basis (Reid et al., 1957; Dirksen, 1970; Koers et al., 1976). Widespread use of ionophores 

and adequate adaptation practices have reduced the prevalence of acute acidosis. 

Detection of acute ruminal acidosis should be noticeable with regular animal checks, yet 

SARA may go undetected in the feedlot or on the farm because animals do not display 

obvious signs of illness. Monitoring of ruminal pH to detect animals experiencing or at 

risk of SARA would be labor intensive, if using rumenocentesis, or require expensive 

equipment (Danscher et al., 2015). Sampling one time point with rumenocentsis does not 

provide information about the time ruminal pH was reduced either. Furthermore, ruminal 

pH depression alone might not always lead to expression of clinical signs of SARA 

(Khafipour et al., 2009a). To help detect problem animals, researchers have attempted to 

find alternative variables that could serve as predictors of ruminal pH or serve as 

inexpensive indicators of SARA. 

Data modeling of responses to a carbohydrate challenge suggested serum amylase 

activity, cholesterol and potassium concentrations, and plasma non-esterified fatty acid 

concentrations could be useful in distinguishing between steers experiencing SARA or 
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those not affected (Brown et al., 2000). Likewise, canonical discriminant analysis showed 

plasma hemoglobin, mean platelet volume, β-hydroxybutyrate, glucose, and reduced 

hemoglobin were useful for identifying crossbred heifers that were normal, at risk of 

acidosis, experiencing SARA, or experiencing acute ruminal acidosis (Marchesini et al., 

2013). Note that these are not the typical variables (ruminal pH and DMI) used to classify 

acute or subacute ruminal acidosis. 

Methods for Experimentally Induced Acidosis 

Research conducted to investigate ruminal acidosis has typically used ruminally 

cannulated animals to enable strict surveillance of ruminal pH (Nagaraja and Titgemeyer, 

2007). Cattle were often fasted before the acidosis challenge in experimentally induced 

acute and subacute acidosis models to provoke the animals to consume the diet rapidly. 

Commonly, animals would either be intraruminally dosed with fermentable 

carbohydrates (examples include  various types of processed corn or wheat) or rapidly 

switched to a high-concentrate diet and allowed to consume ad libitum (Nagaraja and 

Titgemeyer, 2007). Diets that animals were previously adapted to before the carbohydrate 

challenge has varied from grass hay (Brown et al., 2000) or alfalfa (Harmon et al., 1985) 

to 90% concentrate (Montaño et al., 1999), depending on the goal of the experiment and 

severity of response desired. Similar to intraruminal dosing, an oral glucose drench at 

varying doses per kg of BW was used for induction of different severities of ruminal 

acidosis (Krehbiel et al., 1995; Penner et al., 2010). Furthermore, studies have employed 

various methods to induce acidosis by voluntary animal consumption. For example, 

changing the forage to concentrate ratio from a more forage-based to a more grain-based 

diet can induce acidosis (Penner et al., 2009b). A rapid grain adaptation (Steele et al., 
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2009), as opposed to gradual adaptation, may lead to some cattle developing acidosis. 

Also, acidosis can be created by short-term feed restriction followed by feeding a high-

grain diet (Dohme et al., 2008). However, these two methods of carbohydrate loading, 

intraruminal dosing (a form of forced animal consumption) and animal consumption, 

seem to differ in outcomes of development of acidosis. This result may relate to eating 

rate or buffering from saliva generated with mastication (Nagaraja and Titgemeyer, 

2007).   

Impact on the Ruminal Environment 

Rumen Microbiome 

Ruminal microbes ferment dietary carbohydrates to organic acids to generate 

adenosine triphosphate (ATP) for growth. Intake of energy-dense feed provides ample 

substrates for fermentation by ruminal microbes that supports rapid growth. For example, 

shelled corn is approximately 70% starch (DM basis). Microbes are able to quickly break 

the starch down into glucose units and ferment the glucose to acetate, propionate, 

butyrate, lactate, methane, and carbon dioxide. Energy, in the form of ATP, generated 

from the fermentation process facilitates microbial growth. Fiber or cellulose digestion is 

more complicated and takes the microbes longer to break down, resulting in energy 

produced at a slower rate and slower growth rates. 

During the development of acidosis or as animals are switched to a high-grain 

diet, the ruminal environment changes dramatically. Changes to microbiota due to excess 

grain or glucose in the rumen were first described by the father of rumen microbiology, 

Robert Hungate, and these observations still hold true today (Hungate et al., 1952). Major 

alterations reported were decreases in number of cellulolytic bacteria, death of protozoa, 
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and increases in number of gram-positive bacteria. Counts of gram-negative bacteria 

(GNB) have also been shown to increase with SARA (Zebeli and Metzler-Zebeli, 2012). 

In general, viable anaerobic bacteria replicate rapidly during high-grain feeding and the 

onset of ruminal acidosis, which leads to increased numbers (Goad et al., 1998; Nagaraja 

and Titgemeyer, 2007). While the number of gram-positive and GNB both increase with 

acidosis, the proportion of gram-negative bacteria decreases. This result is likely due to 

the differences in structure of the cell wall between these classes of bacteria. Gram-

positive bacteria possess a peptidoglycan cell wall as the outer barrier to the environment, 

which helps it adapt to osmotic and acid stress. Conversely, GNB have inner and outer 

cell membranes around the cell wall that make these bacteria more chemically resistant 

due to an additional selectivity barrier. Therefore, GNB are more sensitive to low ruminal 

pH conditions compared to gram-positive bacteria.   

 Not only does the number of bacteria increase during acidosis, but the 

populations and community dynamics are altered. Streptococcus bovis, a lactic acid 

producer, and Megasphaera elsdenii, Selenomonas ruminantium, and Prevotella bryantii, 

lactate-utilizers, significantly increased as beef steers were adapted from a 20% to 80% 

grain diet (Fernando et al., 2010). Conversely, two key celluloytic or fiber-digesting 

bacteria, Butyrivibrio fibrisolvens and Fibrobacter succinogenes, gradually decreased in 

the rumen of these animals during adaptation. Cellulolytic bacteria are typically sensitive 

to low pH, so they die off during acidosis and ruminal fiber-digestion decreases. 

Thresholds of ruminal pH that indicated SARA and reduced fiber degradation were 

similar for dairy cows. Using meta-analysis, researchers determined a ruminal pH below 

5.8 for more than 5.2 hours/day indicated SARA (Zebeli et al., 2008), while ruminal pH 
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below 5.8 for more than 5.0 h/d indicated a reduction in fiber degradation (Zebeli et al., 

2010b). Therefore, the ability of ruminal microorganisms to ferment and degrade fiber 

decreases and the amount of lactate produced increases.   

Rumen lactate-producers and virulent bacteria outnumber and overpower the 

lactate-utilizers as the level of acidosis moves from subacute to acute. During severe 

grain-induced SARA, the rumen was dominated by S. bovis and Escherichia coli 

(Khafipour et al., 2009c). The dominate species in mild grain-induced SARA was M. 

elsdenii.  Conversely, Prevotella albensis was the main species in SARA induced with 

alfalfa pellets. Dairy cows experiencing SARA had greater numbers of E. coli with 

virulence genes in rumen fluid than cows not experiencing SARA (Khafipour et al., 

2011). Additionally, the abundance of E. coli was highly correlated with severity of 

SARA and degree of inflammation in cattle (Khafipour et al., 2009c).   

Fermentation of Substrates 

In a healthy rumen, the amount of lactate production is balanced with lactate 

utilization. Therefore, lactate does not accumulate. Lactic acid has a lower pKa than the 

VFA, so it has a stronger negative effect on ruminal pH. As the ruminal pH decreases and 

acidosis develops, the ruminal conditions become more ideal for lactate-producers and 

lactic acid production increases (Kezar and Church, 1979). When there is a corresponding 

decrease in lactic acid utilization, lactate may accumulate in the rumen. Significant 

lactate accumulation is not typically observed during SARA, yet it does occur with acute 

acidosis. Ruminal acidosis used to be called lactic acidosis (Hungate et al., 1952; Dunlop 

and Hammond, 1965) as researchers believed lactic acid was the causative agent. 
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Although lactate and VFA are the main products generated during fermentation, 

other metabolites are also generated during acidosis. Several less common metabolites, 

such as methylated amines, ethanol, and N-nitrosodimethylamine, are produced during 

periods of stress like feeding high-concentrate diets (Ametaj et al., 2010). These 

metabolites will be produced in smaller quantities than the typical fermentation products. 

Pathogenic bacteria may be able to use these metabolites and trigger an inflammatory 

response (Zebeli and Metzler-Zebeli, 2012), which could result in part of the symptoms 

of ruminal acidosis. 

Ruminal pH 

   Ruminal pH fluctuates cyclically throughout the feeding cycle creating peak(s) 

and nadir(s) depending on frequency of feeding. The average ruminal pH of a forage-fed 

animal is around 6.8 with a range of 6.0 to 7.5. As the proportion of concentrate increases 

in the diet, the average ruminal pH tends to decrease. Grain-fed cattle typically exhibit a 

range of ruminal pH between 5.6 and 6.5. However, long periods of low pH can lead to 

problems for digestion and the animal. 

From the definitions, you can see that acidosis is classified by the level of ruminal 

pH decline. The buildup of lactic acid accounts for the extremely low ruminal pH in 

acutely acidotic animals. Conversely, ruminal pH reduction during SARA is due to the 

accumulation of VFA. Lactic acid does not accumulate during SARA because lactate-

utilizing bacteria are still active (Goad et al., 1998). Nonpregnant, nonlactating dairy 

cows fed a high-grain diet (65% grain) displayed a depression of mean, minimum, and 

maximum daily ruminal pH compared to a period when consuming chopped hay, and 

cows experienced SARA in the first week of high-grain feeding (Steele et al., 2011a). 
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Ruminal Osmolality 

Osmolality of the ruminal fluid also oscillates in a cyclic manner with changes of 

pH and concentrations of VFA due to feeding regime (Allen, 1997). Rumen fluid tends to 

be hypotonic compared to blood (< 280 mosmol/kg) prior to feeding (Warner and Stacy, 

1965). After feeding, ruminal osmolality increases with maximum values around 400 

mosmol/kg (Warner and Stacy, 1965; Bennink et al., 1978). Researchers found a linear 

correlation between VFA concentrations and osmotic pressure of rumen fluid (Bennink et 

al., 1978). Therefore, as the concentration of VFA increases with high-grain feeding and 

acidosis, ruminal osmolality increases. Osmolality of the rumen changes to a greater 

extent with acidosis compared to normal conditions than does ruminal pH or hydrogen 

ion concentration (Owens et al., 1998). Not only does the osmolality of ruminal fluid 

influence potential difference across the ruminal epithelium (Stacy and Warner, 1972) 

and thus, absorption of some substrates (Stacy and Warner, 1966; Warner and Stacy, 

1968; Tabaru et al., 1990), but high osmolality may also be linked to reduced voluntary 

feed intake under experimental conditions (Bergen, 1972). 

Absorption & Metabolism of VFA 

After generation of VFA from fermentation, the VFA may be absorbed into 

ruminal epithelial cells through passive diffusion of undissociated acid or facilitated 

diffusion of dissociated VFA via transport proteins (Connor et al., 2010). With pKa 

around 4.8, most of the VFAs are in the dissociated state within normal pH ranges of the 

rumen (5.8-6.8). It was estimated that VFA absorption removes about 53% of protons in 

the rumen (Allen, 1997). High osmolality during acidosis decreases the rate of acid 

absorption from the rumen (Tabaru et al., 1990), and thus, VFA and lactate start to 
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accumulate in the rumen. One mechanism of VFA absorption involves exchanging 

ionized acids in the rumen for bicarbonate. However, a reduction in absorption rate leads 

to a decrease in bicarbonate flowing into the rumen, which further diminishes the 

buffering capacity and decreases the ruminal pH (Owens et al., 1998).  

Blood Acid-Base Status 

 Maintenance of blood acid-base balance is critical for the health and performance 

of an animal. The relative concentration of acids, bases, and buffers in solution 

determines the pH of blood, and mammals must maintain blood pH between 7.36 and 

7.44 (Houpt, 1989). A blood pH above 7.44 would indicate systemic alkalosis, and a pH 

below 7.36 would indicate systemic acidosis. Regulation of the pH of body fluids relies 

primarily on the bicarbonate (HCO3) buffering system (Owens et al., 1998). Once 

absorbed from the rumen into epithelial cells, VFA must be in the undissociated form to 

pass through the basal membrane of the epithelium. As the acids enter the blood, they 

dissociate into the anion and a hydrogen ion (Huber, 1976).  Bicarbonate combines with 

the hydrogen ion to form carbonic acid (H2CO3), and the acid combines with a cation, 

such as sodium. Carbonic acid then dissociates to release carbon dioxide (CO2) and 

water, resulting in a decrease in bicarbonate and increase in CO2 concentrations in the 

blood. This change in the ratio of bicarbonate to carbon dioxide would lower blood pH. 

Normally, there is an excess of base in the blood, but an acid load may overcome the 

bicarbonate buffering capacity and decrease the base excess (Gianesella et al., 2010). 

Changes in fermentation, absorption, and ruminal pH associated with acidosis 

have potential to affect blood acid-base status. High acid concentrations in the rumen 

could deplete the bicarbonate buffering system of the blood. In fact, ruminal VFA 
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concentrations negatively correlate with blood bicarbonate concentrations (Faverdin et 

al., 1999). However, the influence of ruminal acidosis on acid-base status is still 

somewhat unclear. While some articles report reduced blood bicarbonate and pH during 

acute acidosis, others indicate acid-base changes were minimal. For example, after acute 

ruminal acidosis was induced in cows via oral sucrose dosing, blood pH, bicarbonate, and 

base excess decreased below the physiological normal range (Indrova et al., 2017). Blood 

HCO3
- decreased rapidly after wethers were switched from alfalfa hay to a 65% 

concentrate diet, which created a subacute ruminal acidotic situation (Huntington et al., 

1981). Additionally, rumen pH, blood bicarbonate to carbon dioxide ratio, and blood pH 

were decreased at the time that steers stopped eating after being switched from alfalfa hay 

to a high-grain diet (Uhart and Carroll, 1967). Conversely, blood pH and bicarbonate 

values of steers infused with glucose to simulate acute acidosis were only slightly 

reduced when ruminal pH was lowest (Harmon et al., 1985). Similarly, during SARA, 

there were minimal changes in acid-base status of hay-adapated and grain-adapted steers 

(Goad et al., 1998). These researchers noted that decreases in blood bicarbonate and base 

excess in cattle following a grain challenge may be due to increased VFA absorption 

from the rumen during SARA and physiological compensation. When the bicarbonate 

buffering system becomes exhausted and is no longer able to compensate for the greater 

VFA absorption, the blood pH may decrease leading to more serious conditions. 

Strategies to Prevent Ruminal Acidosis 

The best approach for controlling acidosis in production is through prevention. 

Although the frequency of acute ruminal acidosis is low in today’s beef cattle feedlots 

and dairies, a substantial amount of research has been done on methods to prevent 
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acidosis, particularly subacute acidosis. General efforts have focused on management 

practices and methods for controlling ruminal and blood pH, controlling lactate 

production and utilization, and regulating feed intake and eating patterns. 

Feeding management can modulate intake patterns and limit supply of starch to 

help prevent ruminal acidosis. Diluting a high-grain diet with roughage increases 

chewing time and saliva production and thereby, decreases eating rate, increases buffer 

input, and raises ruminal pH (Owens et al., 1998; Galyean and Defoor, 2003). The 

additional physical fill from the roughage also serves to decrease meal size (Owens et al., 

1998), while the scratch factor effect helps to maintain health of ruminal papillae (Bartley 

et al., 1981; Loerch, 1991). Gradually switching, as opposed to rapidly changing, cattle 

from a forage diet to a high-grain diet is the most common method of preventing ruminal 

acidosis in feedlots. Yet, the cost per unit of energy of forage and the slower gain makes 

a long adaptation uneconomical for producers (Meissner et al., 2010). The chance for 

ruminal acidosis increases when cattle consume more total feed or eat quickly because 

these events increase starch delivery to the rumen and decrease pH. Regularity of feed 

delivery would help prevent animals from overeating and/or increasing eating rate and 

thus, would inhibit large swings in ruminal pH and decrease the risk of acidosis 

(Schwartzkopf-Genswein et al., 2004). Use of distilling or brewing byproducts and 

middlings (ex. wheat midds, gluten feed, distiller’s grains), which have had the starch 

extracted, in place of cereal grains in cattle diets will also help reduce starch intake and 

control ruminal pH (Owens et al., 1998; Nagaraja and Lechtenberg, 2007a). Similarly, 

blending grains, such as wheat and barley, that have higher rates of fermentation, with 

those that have slower rates of fermentation (ex. cracked corn) should decrease the risk of 
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inducing acidosis (Nagaraja and Lechtenberg, 2007a). Many nutritional and management 

strategies to prevent acidosis are aimed at ameliorating large depressions in ruminal pH 

by slowing starch fermentation and limiting starch supply. 

Addition of ruminal buffers to the diet helps resist changes in pH by neutralizing 

acids. Compounds like sodium bicarbonate and potassium bicarbonate (KHCO3) act as 

buffers by sequestering excess H+, thereby neutralizing acid (Hernandez et al., 2014). For 

example, addition of bentonite with dolomite or KHCO3, buffers that were helpful for 

high-moisture corn diets, to a high-grain diet for steers resulted in a quicker recovery 

after an acidotic challenge as evidenced by greater blood bicarbonate levels (Horn et al., 

1979). In vitro supplementation of a high-grain diet with sodium bicarbonate increased 

final pH and reduced lactate and biogenic amine concentrations, but sodium bicarbonate 

supplementation was unable to prevent the accumulation of bacterial endotoxin (Mao et 

al., 2017). Dietary ingredients that increase saliva flow to the rumen also increase 

buffering capacity through the bicarbonate in saliva and prevent depressions in ruminal 

pH (Owens et al., 1998). As a result, supplementation of ruminal buffers is an important 

strategy for preventing ruminal acidosis. Alkalinizing agents, such as magnesium oxide, 

in the diet increase the pH of ruminal fluid and may also help prevent acidosis. However, 

some of the effects of acidosis appear to be pH-independent and cannot be resolved by 

buffers alone (Calsamiglia et al., 2012).   

A nutritional management strategy for preventing metabolic acidosis following 

ruminal acidosis involves altering the dietary cation-anion difference, also known as 

DCAD. The DCAD is defined as the mEq of Na + K – Cl – S/kg of DM (Apper-Bossard 

et al., 2010). Cations increase the base load, but anions raise the acid load of the diet 
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(Owens et al., 1998). Within the gastrointestinal tract, Na and K are usually absorbed in 

exchange for a proton, while Cl and S are absorbed in exchange for a bicarbonate ion 

(Apper-Bossard et al., 2010). Thus, the DCAD of the diet has potential to influence blood 

acid-base status. When you increase the DCAD of the diet, blood pH and blood 

bicarbonate concentration increases (Peyraud and Apper-Bossard, 2006). Feeding a high 

DCAD diet increased DMI in cows fed high amounts of rapidly degradable starch likely 

due to the positive DCAD helping to maintain blood acid-base status (Apper-Bossard et 

al., 2010). Positive DCAD can also influence ruminal fermentation, increase ruminal pH 

(Roche et al., 2005), and may have a ruminal buffering effect (Apper-Bossard et al., 

2006). However, when the DCAD is too high, it can also lead to an imbalanced acid-base 

status, leading to changes in urinary pH (Gianesella et al., 2010).   

Antibiotics have been widely used in the cattle industry to help prevent ruminal 

acidosis by controlling microbial populations and altering ruminal fermentation. Tylosin 

and virginiamycin are two approved antibiotics that inhibit gram-positive, lactate-

producing bacteria (Nagaraja et al., 1997) by blocking protein synthesis (Cocito, 1979). 

These antibiotics help to stabilize fermentation in the rumen and prevent acidosis (Rogers 

et al., 1995; Coe et al., 1999). For example, cattle could be switched from a forage diet to 

an all wheat diet without acidosis complications when the cattle were fed virginiamycin 

(Zorrilla-Rios et al., 1991). Perhaps the most important and widely used antibiotic is an 

ionophore called monensin, which forms lipid-soluble complexes with cations and affects 

their transport across cell membranes (Nagaraja and Lechtenberg, 2007a). This 

compound is antimicrobial because it disrupts sodium-potassium balance and pH in 

gram-positive bacterial cells, which hinders crucial processes and leads to cell death 
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(Łowicki and Huczynski, 2013). Thus, monensin alters fermentation by changing the 

rumen microbiome and fermentation patterns (Nagaraja et al., 1997). However, a unique 

effect of monensin, unlike that of other antibiotics, is that monensin impacts feed intake. 

Consistently, monensin lowers feed intake and improves feed efficiency (Nagaraja and 

Lechtenberg, 2007a). Supplementation of feedlot cattle rapidly switched to high-grain 

diets with monensin decreased the mean variance in daily intake (Burrin et al., 1988). 

Inclusion of monensin in the diet of cattle increased number of meals and reduced DMI 

rate following an acidosis challenge (Erickson et al., 2003). Total daily ruminal 

contractions tended to be reduced by monensin supplementation, which could have 

impacted rumination, turnover, and feed intake (Deswysen et al., 1987b). Therefore, 

monensin and other antibiotics produce a more stable rumen fermentation and reduce the 

risk of acidosis. 

Public concerns about antibiotic resistance have led researchers to examine other 

feed additives, including dicarboxylic organic acids, for manipulation of the rumen 

microbiome and prevention of ruminal acidosis (Castillo et al., 2004). Malate and 

fumarate are the main dicarboxylic acids that have been investigated. As intermediates in 

the succinate-propionate pathway of bacteria, malate and fumarate stimulate the growth 

of S. ruminantium, a bacteria which uses that pathway, in vitro and following a grain 

challenge, resulting in enhanced utilization of lactate and prevention of a pH decrease 

(Martin and Streeter, 1995; Castillo et al., 2004). Yet, experimental findings with 

supplementation of organic acids to prevent ruminal acidosis are conflicting. Malate was 

ineffective at preventing ruminal acidosis in feedlot studies (Martin et al., 1999), and its 
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level of supplementation necessary for benefits may be uneconomical (Kung Jr. et al., 

1982; Devant et al., 2007). 

Digestive functions of the gut can be improved by feeding or dosing with 

probiotics, also known as direct-fed microbials. Probiotics are live microbial supplements 

that bolster populations of beneficial bacteria in the GIT microbiome (Hernandez et al., 

2014). The goal of probiotics is to stimulate lactate-utilizing bacteria, such as M. elsdenii 

and/or S. ruminantium, to decrease lactate concentrations in the rumen, avoid ruminal pH 

depressions, and help prevent ruminal acidosis (Owens et al., 1998; Hernandez et al., 

2014). Drenching of the rumen with M. elsdenii, strain 41125, was useful for preventing 

the depression of pH to acidotic levels, reducing variation in feed intake, and inhibiting 

the accumulation of lactic acid in cattle and sheep given feedlot diets in experimental 

situations (Drouillard, 2004; McDaniel, 2009; Meissner et al., 2010). However, the 

benefits of strain 41125 in large scale, feedlot scenarios still needs to be investigated. 

Yeasts and fungi, primarily Saccharomyces cerevisiae and Aspergillus oryzae, 

respectively, may also aid in prevention of ruminal acidosis by altering rumen motility 

and reducing lactate production (Desnoyers et al., 2009; Hernandez et al., 2014).   

Interestingly, immunization has even been investigated as a way to prevent 

ruminal acidosis. Rumen pH was greater and L-lactate concentrations were lower in 

sheep that were vaccinated against S. bovis and Lactobacillus spp. versus controls (Gill et 

al., 2000; Calsamiglia et al., 2012). Likewise, ruminal pH was greater and counts of the 

target bacteria were reduced when cattle were fed polyclonal antibodies against S. bovis 

and Fusobacterium necrophorum (DiLorenzo et al., 2006; DiLorenzo et al., 2008). More 
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research is needed on practicality and economics of using vaccines or antibodies to help 

prevent ruminal acidosis. 

Effects of High-Grain Feeding on the Rumen Epithelium 

The rumen is composed of a cornified, non-glandular, multilayered, stratified 

squamous epithelium (SSE). Proceeding in the direction from the basement membrane to 

the lumen of the rumen, the layers of the rumen epithelium consist of the stratum basale, 

stratum spinosum, stratum granulosum, and stratum corneum. Ruminal papillae, are 

finger-like projections of epithelium that function to expand the surface area and increase 

absorption of VFA.   

When ruminants are switched from a high-forage diet to a high-grain diet, the 

rumen epithelium goes through an adaptation process involving changes in structure and 

function. A proteomic study using differential in gel electrophoresis (DIGE) 

demonstrated that after two days of concentrate feeding sixty differentially expressed 

proteins existed in sheep rumen epithelial tissue between hay-fed and concentrate-fed 

animals (Bondzio et al., 2011). After six weeks, there were only fourteen differentially 

expressed proteins, suggesting that the rumen epithelium does adapt during a diet change. 

Changes of epithelia architecture and metabolism are necessary for the epithelium to be 

able to handle the greater acid load due to an enhanced rate of fermentation. These data 

suggested that the ruminal epithelium changes and adapts to high-grain diets. 

Structural and Metabolic Changes 

  Adaptation of the ruminal epithelium to high-grain diets involves changes in 

structure and cellular maturation. The shape and size of papillae are altered by 
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mechanical (“scratch factor”) and chemical stimulation. As a result, morphology of 

rumen papillae varies greatly with diet. Importantly, feeding increasing levels of dietary 

grain increases papillae size (Goodlad, 1981; Gaebel et al., 1987; Odongo et al., 2006) 

and increases SSE proliferation (Goodlad, 1981; Shen et al., 2004) and morphogenesis 

(Steele et al., 2009). These events increase the surface area for VFA absorption.   

Furthermore, the layers of the ruminal epithelium change and become less 

organized as ruminants are fed concentrate-based diets. Feeding a high-grain diet to dairy 

cows reduced the overall thickness of the ruminal epithelium, as well as depth of the 

stratum basale, stratum spinosum, and stratum granulosum layers (Steele et al., 2011a). In 

goats, a high-grain diet fed for seven weeks increased thickness of the stratum corneum 

and reduced thickness of the granulosum stratum compared to goats fed an all hay diet 

(Liu et al., 2013). Yet, there was no difference in the thickness of the sum of the 

spinosum and basale stratum between treatment groups (Liu et al., 2013). The rate of 

cellular migration increased with high-grain feeding and SARA, resulting in the 

appearance of undifferentiated cells near the stratum corneum and reduced cellular 

organization (Steele et al., 2011a). 

Parakeratosis or hyperkeratosis often occurs in beef cattle consuming high-grain 

diets (Nocek, 1997) and is characterized by thickening and excessive sloughing of the 

stratum corneum and accretion of keratinized, nucleated squamous cells (Bull et al., 

1965; Hinders and Owen, 1965). When cattle are experiencing SARA, the rate of cellular 

aging decreases, which increases the chance ruminal papillae will become parakeratotic, 

hardened and clump together (Steele et al., 2011a). Ruminal parakeratosis may be an 

adaptive condition the SSE undergoes to protect against the low ruminal pH and high 
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acid load due to high-grain feeding by compromising absorption across the ruminal 

epithelium (Bull et al., 1965; Hinders and Owen, 1965; Penner et al., 2011). Thickness of 

the stratum corneum in growing goats fed 60% barley grain was about 40% greater 

compared to goats fed 0 or 30% grain for six weeks (Metzler-Zebeli et al., 2013). Even 

after a short period of high-grain feeding, sheep had thicker stratum corneum, which was 

indicative of ruminal parakeratosis (Steele et al., 2012b). The stratum corneum displayed 

widespread sloughing when dairy cows experienced acute (Steele et al., 2009) or 

subacute ruminal acidosis (Steele et al., 2011a). Keratinization score of dorsal and ventral 

rumen were greater, signifying more keratinization, for goats fed 60% grain (Metzler-

Zebeli et al., 2013). Another study using goats fed a high-grain diet, showed 

parakeratosis and significant cellular damage of rumen papillae from goats fed the high-

grain diet (Liu et al., 2013).   

Exposure of the ruminal epithelium to high acid concentrations for prolonged 

periods is commonly associated with rumenitis (Fell and Weekes, 1975). Rumenitis is the 

local inflammation of the rumen wall. Lesions or abscesses in the ruminal epithelium due 

to acid damage predispose cattle to liver abscesses by allowing bacteria, such as 

Fusobacterium necrophorum, to colonize and penetrate the epithelium (Nagaraja and 

Lechtenberg, 2007b). Surprisingly, lesion scores were lower, indicating less lesions on 

papillae, in goats fed 60% grain compared to those fed 0 or 30% (Metzler-Zebeli et al., 

2013). 

Impact on Barrier Function 

The first line of defense for maintaining whole animal homeostasis during a high-

grain challenge is the rumen epithelium (Steele et al., 2012b). Luminal contents of the 
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gastrointestinal tract are essentially extrinsic to the animal; the epithelium must be able to 

differentiate and absorb usable nutrients but prevent potentially harmful or unwanted 

compounds from being absorbed (Mani et al., 2012). Barrier function of the rumen 

epithelium is required for maintenance of electrochemical gradients that are needed for 

active transport of nutrients. As an important site for absorption of VFA and electrolytes 

(Na+, K+, Mg+, and Cl-), the reticulorumen relies heavily on these gradients (Lodemann 

and Martens, 2006). Rumen epithelium is considered a ‘moderately tight’ epithelia 

(Powell, 1981). If the barrier function of the rumen epithelium becomes compromised, it 

could enable the translocation of harmful metabolites or bacteria from the rumen into 

systemic circulation via the portal vein (Nagaraja and Titgemeyer, 2007; Plaizier et al., 

2009; Zebeli and Metzler-Zebeli, 2012). 

Damage to the SSE of the reticulorumen due to low ruminal pH and high rumen 

osmolality has been associated with a decline in barrier function (Zebeli and Metzler-

Zebeli, 2012). High rumen osmolality may lead to swelling of ruminal papillae and 

eventual rupture (Kleen et al., 2003), which would further compromise the barrier 

function of the ruminal SSE. Hypertonic ruminal osmotic pressure also induced 

breakdown of cell junctions in the stratum granulosum (zonula occludens) and increased 

intracellular spaces in the stratum basale (Gemmell and Stacy, 1973). Large gaps were 

found between cells of the stratum granulosum, and desmosomes became 

indistinguishable when dairy cows were fed a high-grain diet, which indicated a 

reduction in intracellular adhesion and tight junctions (Steele et al., 2011a). These gaps 

would provide opportunities for microbes and potential pathogens to translocate from the 

rumen to the blood and cause inflammation. Cellular necrosis in the deeper cell layers, 
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swelling of mitochondria, and cellular junction erosion has also been detected in rumen 

epithelial tissue from sheep (Gaebel et al., 1989) and goats (Liu et al., 2013) fed a high-

grain diet.   

Acidic pH conditions in the rumen that occur during acidosis increase the 

permeability of the rumen epithelium. For example, permeability of rumen tissue to 3H-

mannitol was increased in the presence of lipopolysaccharide (LPS) at acidic pH values 

between 4.5 and 5.5, but not between 5.5 and 7.4 (Emmanuel et al., 2007). Under normal 

ruminal pH ranges, the rumen epithelia is impermeable to histamine, another toxic 

microbial byproduct associated with feeding high-grain diets (Nocek, 1997; Aschenbach 

et al., 2000). However, absorption of histamine across sheep rumen epithelia increased 

greatly when the pH declined (Aschenbach et al., 2000). Likewise, permeability of rumen 

mucosa increased when the mucosal side of an Ussing chamber had a pH of 5.5 

(Emmanuel et al., 2007). Reducing the mucosal pH of isolated sheep rumen epithelium to 

5.5 led to a reduction in the short-circuit current (Isc) and increased conductance (Gt), 

which suggested ion transport was reduced and permeability was increased (Gaebel et al., 

1989). One group created a mild SARA challenge in sheep with an oral glucose drench 

and took samples of ruminal epithelia post-slaughter for an in vitro experiment (Penner et 

al., 2010). Baseline measurements of serosal-to-mucosal flux rate of partially 3H-labeled 

mannitol (Jmannitol-SM, a marker for paracellular permeability), Gt, and Isc were not 

different between tissues from SARA sheep and control sheep (water drench). Yet, when 

the mucosal pH of the Ussing chamber was lowered to 5.2, epithelial permeability and 

conductance increased in the recovery period after the challenge, suggesting epithelial 

barrier function was reduced at that time (Penner et al., 2010). The authors suggested that 
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other problems, such as parakeratosis or inflammation, greater acid load severity, or 

repeated bouts of acid insult, may be necessary to lead to rumen epithelial barrier 

dysfunction. Therefore, low ruminal pH, and compromised epithelial barrier function, 

such as that which occurs with acidosis, could lead to a “leaky gut” condition and 

increased absorption of toxic metabolites produced by microbes (Zebeli and Metzler-

Zebeli, 2012).   

Localization and expression of tight junctional proteins in rumen SSE is affected 

by high-grain feeding. Tight junctions (TJ) are important for maintaining the polarity of 

cells and controlling the permeability of the epithelial barrier (Graham and Simmons, 

2005; Penner et al., 2011). Specifically, the tight junctions are key to preventing the 

translocation of toxins from the rumen. Transmembrane proteins (claudins and occludin) 

connect neighboring cells together and are linked to plaque proteins (e.g. zona occuldens-

1) which connect to the cytoskeleton (Fanning and Anderson, 1998). Ruminal epithelium 

of hay-fed goats displayed a continuous band of tight junctional proteins stained (claudin-

1, claudin-4, and occludin) at the cell borders (Liu et al., 2013). Conversely, goats fed a 

high-grain diet had irregular and discontinuous staining of claudin-1 and claudin-4 at the 

cell borders with very little staining of occludin at cell borders and increased staining of 

occludin in the cytoplasm (Liu et al., 2013). In correspondence with the protein staining, 

goats fed high-grain had reduced mRNA expression for claudin-4, occuldin, and zona 

occulden-1 and an increase in expression of claudin-1 in rumen epithelium compared to 

controls (Liu et al., 2013). Thus, protein expression levels mirrored the mRNA 

expression patterns.   
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Alterations in Gene and Protein Expression 

Feeding a high-grain diet greatly modifies epithelial gene expression and proteins. 

A bovine 24 k microarrary revealed 5,200 differentially expressed genes between cows 

fed a high-concentrate (64% concentrate) and low-concentrate (8% concentrate) diet for 

approximately four weeks (Taniguchi et al., 2010). For example, expression of the 

cadherin desmoglein 1 mRNA in rumen papillae was downregulated when dairy cows 

were fed a high-grain diet compared to a high-forage diet (Steele et al., 2011a). This 

finding further supports evidence of compromised structural integrity of the rumen 

epithelium when cattle consume high-grain diets.   

Ruminal epithelial growth may be mediated through the regulation of expression 

of insulin-like growth factor binding proteins (IGFBPs) by ruminal VFA concentrations 

(Steele et al., 2011a). Insulin-like growth factor binding-protein 5 (IGFBP5) mRNA was 

upregulated during weeks 1 and 3 of high-grain feeding in non-lactating dairy cows, 

while IGFBP3 and 6 were downregulated. Since IGFBP5 promotes effects of IGF-1, it 

could play a role in increasing rumen SSE proliferation. Conversely, IGFBP3 acts in an 

opposite manner and blocks IGF-1 cellular effects. Because it was downregulated during 

high-grain feeding, this event could be important for enhancing epithelial proliferation. 

Butyrate downregulated IGFBP3 in intestinal epithelial cells and blocked apoptosis 

(Sanderson, 2004). Thus, an increase in the proportion of butyrate in the rumen during 

high-grain feeding could enhance cellular growth via this mechanism, which is 

independent of IGF-1 concentrations in blood (Steele et al., 2012a). Insulin-like growth 

factor binding-protein 6 (IGFBP6) preferentially binds IGF-2, instead of IGF-1, and 

inhibits growth (Iosef et al., 2010). The upregulation of IGFBP5 and downregulation of 
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IGFBP3 were demonstrated in lactating dairy cows fed a high-grain diet also (Steele et 

al., 2012a). Therefore, these expression patterns could play a role in the ruminal epithelial 

growth during consumption of high-grain diets. 

Carbonic anhydrase 1 is a metabolic protein of rumen SSE involved in a variety 

of functions, but a critical function during consumption of high-grain diets is 

maintenance of pH. This enzyme is responsible for the hydration of CO2 and dehydration 

of HCO3
- (Bondzio et al., 2011). Although one method of VFA absorption occurs via 

exchange for HCO3
-, carbonic anhydrase 1 protein expression was downregulated in 

sheep rumen epithelial tissue after six weeks of feeding a concentrate-supplemented diet 

(Bondzio et al., 2011).   

Genes and proteins involved with the regulation of the actin cytoskeleton are 

influenced by feeding high-grain diets. The actin cytoskeleton controls eukaryotic cell 

shape and internal organization. Annotation of differentially expressed genes between 

Holstein cows fed low- or high-concentrate diets showed one of the major pathways 

influenced was regulation of the actin cytoskeleton (Taniguchi et al., 2010). Maintenance 

of cell structure is important for the cell to be able to deal with ruminal acidity and 

increased VFA concentration (Taniguchi et al., 2010). Similarly, proteomic analysis 

demonstrated that actin-related protein 3 (ARP3), part of a complex that is crucial for the 

actin cytoskeleton, was upregulated at the translational level after sheep were fed a high-

concentrate diet for six weeks (Bondzio et al., 2011). These results suggest alterations in 

the cytoskeleton and gap junctions might play an important role in structural and 

morphological modifications to the rumen SSE during high-grain diet adaptation.   
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Members of the annexin family of proteins, ANXA1 and ANXA5, were also 

differentially expressed in ovine ruminal epithelial tissue based on concentrate level in 

the diet (Bondzio et al., 2011). While ANXA1 was upregulated by 2 days and 6 weeks of 

concentrate feeding compared to hay-fed animals, ANXA5 was dowregulated 2 days 

after concentrate feeding and was not different at 6 weeks from expression in hay-fed 

animals. Annexin 1 protein is key to the process of actin remodeling (Xiao et al., 2007), 

so it could be part of the cytoskeletal changes occurring during high-grain feeding. 

Additionally, ANXA1 and ANXA5 are able to form ion channels (Isas et al., 2000; 

Neumann et al., 2000), which could be related to ruminal Ca2+ transport (Gerke et al., 

2005). Concentrate-fed sheep displayed increased ruminal Ca2+ transport compared to 

hay-fed sheep (Uppal et al., 2003). Cytosolic phospholipase A2 (cPLA2), an important 

enzyme for signal transduction during inflammation events, can be inhibited by ANXA1 

and ANXA5 (Russo-Marie, 1999; Kim et al., 2001). Therefore, the annexin proteins, 

which exert anti-inflammatory properties, might be involved in the immune response to 

high-grain diets (Khafipour et al., 2009b; Zebeli et al., 2010a).   

Expression of nutrient transporters was altered when ruminants were fed high-

grain diets. Some of the monocarboxylate transporter (MCT) family members are 

important for VFA absorption and transport across the SSE. More specifically, MCT1 is 

located on the basolateral membrane of ruminal SSE and hindgut epithelium and 

cotransports VFA, lactate, or ketones with H+ out of cells into the blood (Kirat et al., 

2006; Graham et al., 2007). Researchers believe that an apical MCT, likely MCT4, is 

responsible for lactate and VFA transport into ruminal epithelial cells (Aschenbach et al., 

2009; Aschenbach et al., 2011). The MCT4 protein has also been found at the apical and 
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basolateral membranes in ruminant hindgut epithelium (Kirat et al., 2007). 

Monocarboxylate transporter 1 (MCT1) mRNA expression in ventral rumen epithelium 

was upregulated by 45% when goats were fed a diet of 60% ground barley grain for six 

weeks compared to diets of 0 or 30% grain (Metzler-Zebeli et al., 2013). This response 

was likely an attempt to reduce the intracellular acid load by greater efflux of acid from 

the cells and increase available energetic substrates in the blood. Conversely, MCT4 and 

sodium-dependent glucose-linked transporter-1 (SGLT1) gene expression were 

downregulated in goats fed the high-grain diet.  

Adapting ruminants to a high-grain diet has been associated with changes in genes 

related to cholesterol homeostasis. One route of VFA metabolism in epithelial cells is 

through acetyl-CoA and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to cholesterol 

synthesis. Hypercholesterolemia within cells is associated with alterations in membrane 

permeability, inflammation, and increased proliferation and migration (Kleemann and 

Kooistra, 2005). Since these are common issues with ruminal acidosis, genes related to 

cholesterol homeostasis may be important for regulating this condition. Microarray 

results and Ingenuity Pathway Analysis demonstrated downregulation of gene expression 

for enzymes [acetyl-CoA acetyltransferase 2, cytoplasmic 3-hydroxy-3-methylglutaryl-

CoA synthase 1 (HMGCS1), HMG-CoA reductase, farnesyl-diphosphate 

farnesyltransferase 1, farnesyl disphosphate synthase, and lanosterol synthase] involved 

in the cholesterol biosynthetic pathway in rumen papillae from the first to third week of 

high-grain feeding in non-lactating dairy cows (Steele et al., 2011b). Similarly, HMGCS1 

expression was downregulated in high-grain fed lactating cows compared to high-forage 

fed cows during a time when the most severe form of SARA occurred (Steele et al., 
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2012a). Sterol regulatory element-binding protein 2 (SREBP2) is part of a family of 

transcription factors that control expression of many of these genes and thus, activation of 

cholesterol biosynthesis, at the transcriptional level (Steele et al., 2011b; Steele et al., 

2012a). Furthermore, two genes in the liver X receptor and retinoid X receptor 

(LXR/RXR) activation pathway [ATP-binding cassette, subfamily A, member 1 and low-

density lipoprotein receptor] regulate efflux and influx of cholesterol from cells, 

respectively, and were differentially expressed from the first to third week of high-grain 

feeding (Steele et al., 2011b). 

High-Grain Diets and the Inflammatory Response 

One physiological response of feeding high-grain diets that has received 

considerable attention in research is the inflammatory response. Due to the design of the 

ruminant gastrointestinal tract (i.e., pre-gastric fermentation), ruminants have a greater 

potential for exposure to toxins than many other animals. Damage to the gut mucosa due 

to diet and translocation of toxic metabolites because of reduced gut barrier function can 

lead to local and systemic inflammation, respectively (Horadagoda et al., 1999). For 

example, feeding dairy cows a high-concentrate diet led to the upregulation of 

inflammation related genes, such as interleukins-1β, 2, 6, and 8, in ruminal epithelium, 

suggesting local inflammation had occurred (Zhang et al., 2016). As mentioned 

previously, high-grain feeding and acidosis can compromise epithelial barrier function of 

the animal. Experimentally induced leaky gut also caused inflammation in cattle (Kvidera 

et al., 2017). 
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Endotoxin/Lipopolysaccharide 

While several toxic metabolites are produced in the rumen by microbes during 

extended bouts of low ruminal pH, endotoxin, also known as lipopolysaccharide (LPS), 

has received the most attention in research pertaining to high-grain diets and acidosis. 

Endotoxin is a bioactive, pro-inflammatory molecule contained in the cell walls of all 

gram-negative bacteria. Concentration of LPS in rumen fluid increases during massive 

lysis of dead GNB or when free LPS is shed from rapidly growing GNB (Nagaraja et al., 

1978b). Baseline concentration of endotoxin in the rumen of cattle derived from several 

studies was 3.6-3.9 log10 EU/mL (Zebeli et al., 2012).   

Since high-grain diets increase the energy available in the rumen and lead to fast 

growth of bacteria, it is logical that the concentration of LPS in rumen fluid would 

increase with greater concentrate levels in the diet.  In fact, feeding high levels of grain 

increased the concentration of LPS in the gastrointestinal tract lumen (Emmanuel et al., 

2008; Khafipour et al., 2009b). Several other studies have demonstrated an increase in 

ruminal LPS concentrations when cattle experience acute (Andersen et al., 1994) or 

subacute acidosis (Gozho et al., 2005; Gozho et al., 2006). Gradual adaptation of Jersey 

steers from 0 to 61% concentrate (in the form of wheat-barley pellets) diets displayed a 

quadratic increase for rumen fluid LPS concentration (Gozho et al., 2006). A meta-

analysis study using the breakpoint model revealed a diet threshold of 35% concentrate 

above which rumen endotoxin concentrations in cattle increased linearly with increasing 

concentrate in the diet (Zebeli et al., 2012).   

Researchers hypothesized that LPS from the rumen may translocate across the 

rumen SSE into the portal circulation during acidosis, which would initiate the acute 
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phase response leading to systemic inflammation (Dougherty et al., 1975a; Nagaraja et 

al., 1978a; Andersen et al., 1994; Gozho et al., 2005). In vitro studies with isolated 

epithelia provided support to this hypothesis. Endotoxin was shown to pass through 

rumen and colonic mucosal tissue from feedlot steers using an Ussing Chamber 

(Emmanuel et al., 2007). Perfusate pH was held at either 4.5, 5.5, or 6.5 for rumen tissue 

samples, and LPS translocated to the serosal side under all pH conditions tested. 

Translocation of LPS was also demonstrated with colonic tissue and pH values of 5.5, 

6.5, and 7.4. Yet, the amount of LPS used in this study was at supraphysiological 

concentrations (500 μg/mL) compared to rumen exposure during SARA (Gozho et al., 

2007; Emmanuel et al., 2008).   

Evidence of LPS translocation into the blood in the literature is conflicting. Some 

studies did not detect LPS in peripheral blood under acute acidotic conditions (Andersen 

and Jarlov, 1990; Andersen et al., 1994). Although grain-induced SARA was related to 

an increase in ruminal LPS and blood serum amyloid A (SAA), no LPS was detected in 

peripheral blood (Gozho et al., 2007). Likewise, feeding a 50% grain and alfalfa pellets 

diet to dairy cows led to low ruminal pH readings and high free rumen LPS 

concentrations, but LPS and LPS-binding protein concentrations in peripheral blood were 

not affected (Khafipour et al., 2009a). Thus, these researchers believed that LPS was not 

translocated into blood and therefore, did not cause inflammation. A couple studies have 

reported concentrations of LPS in blood by overfeeding grain, which caused acute 

acidosis (Dougherty et al., 1975a; Aiumlamai et al., 1992). However, only two studies 

have reported evidence of LPS in peripheral blood of ruminants during SARA (Khafipour 

et al., 2009b; Liu et al., 2013).   
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The mechanism(s) and location(s) of LPS translocation are not fully understood. 

While there was greater concentration of free rumen LPS when SARA was induced with 

alfalfa pellets than with grain, no LPS was detected in peripheral circulation with alfalfa 

pellets (Khafipour et al., 2009a; b). These results led researchers to suggest that 

peripheral LPS does not come from translocation across the rumen (Khafipour et al., 

2009a). When rumens of steers were infused with Cr-labeled LPS, there was no evidence 

of translocation into lymph or portal circulation (Lassman, 1980). Free LPS that travels 

out of the rumen is detoxified in the duodenum by bile acids (Bertok, 1998). However, 

portal vein LPS levels were increased when gut permeability was increased by chronic 

ethanol exposure (Enomoto et al., 2001). Thus, researchers noted peripheral LPS during 

SARA likely comes from translocation through the simple columnar epithelium of the 

intestines (Khafipour et al., 2009a).   

Several enteric pathogens, including LPS, can reduce epithelial barrier function 

by altering F-actin and tight junctional proteins (Hecht et al., 1988; Fasano et al., 1991; 

Philpott et al., 1996; Nusrat et al., 2001; Chin et al., 2002; Scott et al., 2002). Escherichia 

coli LPS (50 μg/mL) applied to the apical side of nontumorigenic epithelial cell 

monolayers led to apoptosis, interfered with tight junctional zonula occludens-1, and 

increased epithelial permeability to dextran 3000 (Chin et al., 2006). In this study, LPS 

initiated disruption of intestinal epithelial barrier function in a caspase-3-dependent 

manner, which could potentially be a target for therapeutic treatment of microbial-related 

gastrointestinal conditions, such as inflammatory bowel disease or acidosis. The epithelia 

of the small and large intestine have very different composition and structure than the 

rumen epithelium, however, which could affect how much LPS is necessary to 
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compromise barrier function and the rate of LPS translocation (Graham and Simmons, 

2005). Another study provided evidence that the mRNA expression of proinflammatory 

cytokines (i.e. inflammation) was related to changes in TJ protein expression. These data 

further suggest that the disruption of ruminal epithelial barrier function may cause a 

“leaky” gut, which would allow LPS translocation thereby triggering an inflammatory 

response (Liu et al., 2013). Similarly, the cytokines, tumor necrosis factor-α (TNF-α) and 

interferon γ (IFN-γ) are known to be able to regulate expression of TJ proteins, so the 

interaction may be two-fold. 

Acute Phase Response 

When an event or agent, such as endotoxin, interferes with the homeostasis of an 

animal, the acute phase response (APR) is initiated. Generally, the APR is a nonspecific 

attempt to clear the body of the agent(s) that caused the disruption so that homeostasis 

can be reestablished (Gabay and Kushner, 1999). Therefore, the innate immune system 

serves to activate an APR and releases acute phase proteins (APP) from the liver and 

extra hepatic tissues as a protective mechanism. Cytokines, such as interleukin-1 (IL-1), 

interleukin-6 (IL-6), and TNF-α signal hepatocytes to synthesize the APP (Alsemgeest et 

al., 1996). These APP work to detoxify LPS in the liver so that it does not reach 

peripheral circulation (Andersen, 2000).   

Toll-like receptors (TLR) function as pattern recognition receptors that sense host 

epimural and exogenous bacteria and bacterial products, such as LPS, and activate an 

immune response and cytokine production in the animal (Hooper et al., 2012). These 

receptors (TLR-1 through TLR-10) have been found to be expressed in the rumen 

epithelium of cattle (Malmuthuge et al., 2012) and are important for homeostasis of host-
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microbial interactions in monogastric animals (Hooper et al., 2012). While TLR-2 binds 

to ligands from gram-positive bacteria (Yoshimura et al., 1999), TLR-4 recognizes 

ligands from GNB (Takeuchi et al., 1999). 

Lipopolysaccharide-binding protein binds and transports LPS in the blood to help 

clear it from circulation through transfer to macrophages or lipoproteins (Gallay et al., 

1994). As a result, evidence of LPS translocation could be provided by increases in LBP 

in circulation (Sriskandan and Altmann, 2008). In serum, LBP complexed with LPS 

facilitates the transfer of LPS to CD14, a glycosylphosphatidylinositol-anchored 

membrane or soluble protein (Janssens and Beyaert, 2003; Fitzgerald et al., 2004). This 

new complex binds to and activates TLR-4/myeloid differentiation-2, a receptor complex 

on the membrane of neutrophils and cells of monocytic lineage that will activate these 

cells (Fitzgerald et al., 2004). Subsequent signal transduction requires four Toll-

interleukin 1 resistance-domain adapter molecules and leads to the activation of 

transcription factors for nuclear factor κB and production of pro-inflammatory cytokines 

(Fitzgerald et al., 2004).     

Some important APPs in cattle include serum amyloid A (SAA) and haptoglobin 

(Gozho et al., 2007; Emmanuel et al., 2008; Ametaj et al., 2009; Khafipour et al., 2009b). 

Serum amyloid A binds to endotoxin in the blood to neutralize it (Levels et al., 2001). 

Haptoglobin binds free hemoglobin released during hemolysis of erythrocytes and 

prevents the iron, which is needed for growth and replication, from being used by 

invading bacteria (Wassell, 2000). Studies have suggested plasma SAA may serve as a 

better and more sensitive biomarker of inflammation than plasma haptoglobin 

(Horadagoda et al., 1999; Zebeli et al., 2012). 
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Feeding a high-grain diet to induce SARA produces an inflammatory response, 

likely due to the translocation of toxins via the reduced barrier function of the rumen 

and/or intestinal epithelium. When SARA was experimentally induced, SAA 

concentrations steadily increased in plasma from 33.6 ± 36.53 to 170.7 ± 36.53 μg/mL, 

showing a significant difference from hay feeding on d 2, 3, 4, and 5 of feeding wheat-

barley pellets (Gozho et al., 2005). Steers had higher serum haptoglobin concentrations 

on d 3 and 5 of feeding wheat-barley pellets compared to those fed hay. 

Haptoglobin was reported to be detectable in cattle only when there was an 

inflammatory response (Deignan et al., 2000). Feeding a 76% concentrate diet induced 

SARA and resulted in increased SAA and haptoglobin, suggesting inflammation occurred 

(Gozho et al., 2006). Grain-induced SARA in mid lactation dairy cows led to an elevated 

SAA concentration, yet did not affect haptoglobin or other biomarkers of inflammation 

(Gozho et al., 2007). Additionally, feeding lactating cows 30 or 45% barley grain on a 

DM basis increased concentrations of APP in plasma, suggesting that there may have 

been translocation of LPS into the blood (Emmanuel et al., 2008). Expression levels of 

the proinflammatory cytokines, TNF-α and interferon-γ, mRNA in rumen epithelium 

increased when goats consumed a high-grain diet (Liu et al., 2013).   

Various factors can affect the chance or severity of inflammation from high-grain 

diets. The risk of systemic inflammation increased linearly when cattle were fed a diet 

more than 44.1% rapidly fermentable carbohydrates, which was greater than the 

threshold for endotoxin increase described above (Zebeli et al., 2012). Endotoxin 

concentrations increased linearly in rumen fluid of cattle when ruminal pH was below 6.0 

for more than 95.6 min/d. Similar thresholds were found for increases in plasma SAA and 
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haptoglobin. These data indicated that cattle may be able to cope with a certain endotoxin 

load and low ruminal pH before the ruminal epithelium becomes compromised and APR 

is initiated. Moreover, the toxicity level of endotoxin will affect the ability to cause 

inflammation in the animal. Endotoxin from E. coli, for example, has greater virulence 

potential and is more toxic than endotoxin from common rumen gram-negative bacteria, 

such as M. elsdenii and F. succinogenes (Hurley, 1995; Khafipour et al., 2011). 

The development of these inflammatory proteins and activation of an APR can 

have significant energy and nutrient requirements. Feeding dairy cows in early lactation 

increasing amounts of barley grain was related to release of LPS and inflammatory 

proteins, but correlated negatively with feed efficiency and energy balance (Zebeli and 

Ametaj, 2009). Thus, cattle performance would likely be hindered during an 

inflammatory response, such as could be induced by feeding high-grain diets (Elsasser et 

al., 2008). 

Feed Intake  

 The amount of feed an animal consumes and their feeding behavior (i.e., meal 

size, meal frequency, eating rate, etc.) has a substantial impact on the ruminal 

environment. Notably, the fermentation profiles, saliva flow, water intake, ruminal 

passage rates, and ruminal pH patterns are affected by altering feed intake. Understanding 

how feed intake affects ruminal conditions, metabolism, and whole-animal physiology is 

important to understanding and solving problems associated with feeding high-grain 

diets. 
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Feedback Regulation 

Feed intake regulation in animals is a complex system comprised of a multitude 

of short-term and long-term regulators. Short-term regulation involves control of meal 

initiation and cessation or hunger and satiety. Whereas, maintenance of body weight or 

composition is the goal for long-term regulation. Climate, photoperiod, and physiological 

stage are examples of some factors that would influence long-term feed intake regulation 

(Forbes and Barrio, 1992). What is interesting about regulation of feed intake is that 

virtually all aspects of the animal and the environment can result in feedback signals at 

any given time and are translated into usable information by the body. The vast amount 

of factors that affect intake make it a difficult topic of study.   

The gastrointestinal tract is innervated with the vagus nerve and sympathetic 

nerves, which relay afferent signals from the digestive system to the central nervous 

system. Specifically, the hypothalamus and nucleus tractus solitarius (NTS) serve as the 

appetite control centers in the brain. After receiving information from the periphery, the 

hypothalamus and NTS integrate those signals and “respond” via efferent neurons, 

leading to an alteration in feed intake (Sartin et al., 2011). Generally, signals from the 

lateral hypothalamus and dorsomedial hypothalamus are orexigenic (i.e. signal hunger 

and stimulate feeding), and signals from the ventromedial hypothalamus and 

paraventricular nucleus are anorexigenic (Sartin et al., 2010; Sartin et al., 2011). 

Neuropeptide Y (NPY) and agouti-related protein (AGRP) neurons in the arcuate nucleus 

increase appetite, while proopiomelanocortin (POMC) neurons decrease appetite (Sartin 

et al., 2010). Although it is commonly stated that animals eat to meet their energy 

requirements, researchers have yet to discover a receptor in the body for energy (Forbes 
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and Barrio, 1992). A wide variety of mechanical, chemical, and hormonal factors 

influence voluntary feed intake of ruminants in combination with each other (Grovum, 

1988).   

Distention of the reticulorumen is the mechanical or physical factor that limits 

voluntary dry matter intake in ruminants. As the energy concentration of a diet increases, 

an animal will commonly increase feed intake in order to try to meet their energy 

requirements (Montgomery and Baumgardt, 1965) if protein supply is adequate. 

However, the gut fill or capacity of the reticulorumen can limit the amount of feed the 

animal can consume (Allen, 1996). Therefore, there is a maximum amount of energy the 

animal can get from the diet. If the diet has poor digestibility or is high in forage, this 

may become an issue as the animal may not be able to eat enough to meet energy 

requirements. Tension receptors, also called mechanoreceptors, in the muscular walls of 

the reticulorumen sense the stretching of the forestomach from distension and send 

signals to the central nervous system to stop eating (Leek, 1969). The medial wall of the 

reticulum and cranial sac contains the most mechanoreceptors, whereas the caudal rumen 

has few. Distension may be particularly important for regulating feed intake during meals 

(Ketelaars and Tolkamp, 1996), but it should not be considered alone when attempting to 

understand feed intake responses (Fisher, 2002). When cattle are consuming a high-grain 

diet, distention is not a primary regulator of feed intake because the diet contains 

adequate energy supply.  

Products of digestion play important chemostatic roles in feed intake regulation 

when cattle are fed high-grain diets. Chemical factors, such as cytokines, VFA, 

osmolality, and other metabolites or nutrients, are known to influence feed intake in 
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ruminants. Cytokines produced during an immune response serve as chemical controllers 

of feed intake in ruminants. Peripheral and central administration of two important 

cytokines, IL-1β and TNFα, lead to a decrease in feed intake by acting indirectly through 

neural pathways or possibly directly on the brain (Langhans and Hrupka, 1999). In fact, 

intravenous infusion of a low dose of LPS was associated with a sharp increase in plasma 

TNFα concentrations and decreased feed intake in cattle (Steiger et al., 1999). Cytokines 

likely also play important roles in controlling normal feeding, not just during infection or 

disease (Langhans and Hrupka, 1999). Volatile fatty acids serve as an end-product, 

negative feedback signal. Therefore, infusions of VFA into the vascular system and 

rumen depress food intake (Dowden and Jacobson, 1960; Baile and Forbes, 1974). 

Several studies have also demonstrated that propionate infused into the portal vein of 

ruminants depressed feed intake to a greater extent than acetate infusion (Baile, 1971; 

Anil and Forbes, 1980; Elliot et al., 1985). Forestomach epithelial chemical receptors that 

were activated by VFA infusions have been investigated (Crichlow and Leek, 1981; 

1986; Crichlow, 1988). Yet, VFA were often infused or dosed intraruminally as sodium 

salts (to prevent tissue damage) at supraphysiological levels, so it confounds effects of 

the VFA themselves and osmotic effects (Forbes and Barrio, 1992). Intraruminal dosing 

of isosmotic loads of NaCl, polyethylene-glycol (PEG-400; an osmotically active 

molecule that cannot be absorbed), Na-acetate, and Na-propionate resulted in similar 

decreases in feed intake of sheep (Grovum and Bignell, 1989; Grovum, 1995). These data 

suggest that ruminal osmoreceptors help detect increases in rumen fluid osmolality and 

mediate reductions in feed intake (Carter and Grovum, 1988; Carter and Grovum, 1990; 

Grovum, 1995). It is critical to consider water intake in these studies and future research 
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because increased rumen tonicity stimulates drinking, which can dilute infusion effects 

(Forbes and Barrio, 1992). Additionally, other metabolites and nutrients have been 

proposed to aid in feed intake regulation in ruminants.   

The hepatic oxidation theory states that oxidation of various fuel sources in the 

liver result in afferent vagal nerve impulses, which are integrated by the NTS and lead to 

changes in feed intake (Allen et al., 2009; Sartin et al., 2011). This theory assumes that 

ruminants will increase feed intake when energy consumed per unit of ATP produced in 

the liver is maximized (Allen et al., 2009). Compounds believed to be controlling feed 

intake in this manner in ruminants include VFA (Leuvenink et al., 1997; DiCostanzo et 

al., 1999), amino acids (Kuhara et al., 1991), and lipids (Choi and Palmquist, 1996; 

Faverdin et al., 1999). Propionate has been a key focus of this work since it is heavily 

oxidized in the ruminant liver by the tricarboxylic acid cycle (Allen et al., 2009). 

Therefore, metabolic signals and ruminal tonicity are important chemostatic regulators of 

feed intake in ruminants. 

Hormones synthesized in adipose tissue and the gut can impact feed intake of 

animals. Leptin, commonly called the satiety hormone, is produced by fat cells (Dyer et 

al., 1997; Daniel et al., 2003) in response to high energy levels (Kadokawa et al., 2007). 

Therefore, leptin serves as a signal to inhibit feed intake by crossing the blood-brain 

barrier (Thomas et al., 2001; Adam et al., 2006) and activating POMC neurons in the 

hypothalamus that inhibit feeding and inhibiting NPY and AGRP neurons that stimulate 

feeding (Sartin et al., 2011). Insulin, a hormone produced by the pancreas, has been 

shown to increase leptin concentrations in blood (Asakuma et al., 2003), so it could 

indirectly impact feed intake. In contrast to leptin, ghrelin, commonly called the hunger 
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hormone (Cummings et al., 2001), increases appetite and stimulates feed intake (Howick 

et al., 2017). Oxyntic glands in the abomasum are the primary site for ghrelin synthesis 

(Huang et al., 2006), but it is also produced by enteroendocrine cells in the intestines 

(Date et al., 2000; Sugino et al., 2004). Ghrelin produces an orexigenic response by 

activating the growth hormone secretagogue receptor subtype 1a in the arcuate nucleus of 

the hypothalamus (Howick et al., 2017) where the blood-brain barrier is incomplete 

(Grouselle et al., 2008). Removing rumen contents to decrease rumen fill also resulted in 

an increase in ghrelin concentrations (Gregorini et al., 2009). In addition, there are many 

other molecules synthesized by the GIT that produce satiety signals in animals. For 

example, cholecystokinin (CCK) is a another hormone secreted from enteroendocrine 

cells in the duodenum and serves as a feed intake suppressor in domestic livestock (Sartin 

et al., 2011). These hormones signals are integrated by the hypothalamus along with other 

homeostatic and external factors to regulate feed intake.  

Management, feeding practices, and feeding behavior can also have an impact on 

cattle feed intake, rumination patterns, and risk of acidosis (González et al., 2012). 

Increasing the frequency of feed delivery from one to four times per day increased feed 

intake in cattle, which could have partly been due to a reduction in acidosis (Tremere et 

al., 1968). Another study showed no differences in feed intake, meal size or frequency, 

and daily mean ruminal pH when the frequency of feeding was increased from one to 

four times per day in beef cattle (Robles et al., 2007). However, the eating rate and feed 

consumed within 2 h after the first feeding declined linearly with increasing frequency of 

feeding (Robles et al., 2007). Feeding behavior of animals can also be influenced by feed 

bunk management method used by the feedlots. For example, steers fed using a clean 
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bunk management program consumed less meals than steers fed with a traditional ad 

libitum system (Erickson et al., 2003). The cattle under clean bunk management ate larger 

meals than the traditional fed steers, but total daily feed intake did not differ. Eating rate 

was also greater under the clean bunk program. Increasing the eating rate would reduce 

feed mastication and saliva production, which would reduce buffering capacity of the 

rumen (González et al., 2012). Because of these behavioral changes, the post-prandial 

drop in ruminal pH was greater for steers in the clean bunk program, leading to more 

daily variation in ruminal pH (Erickson et al., 2003). Thus, cattle under clean bunk 

management could be more likely to experience ruminal acidosis. Day-to-day variations 

in feed delivered or offered may increase the risk for ruminal acidosis (Schwartzkopf-

Genswein et al., 2003; Schwartzkopf-Genswein et al., 2004). Competition at the feed 

bunk, lameness, and even weather can also alter feeding behavior and therefore, influence 

ruminal pH and likelihood of animals to experience ruminal acidosis (González et al., 

2012).  

Effect of High-Grain Diets or Ruminal Acidosis on Feed Intake 

When cattle are transitioned to high-grain diets, they are more likely to experience 

ruminal acidosis and animals often display decreased or erratic feed intake. Increased 

acid load in the rumen and ruminal pH below approximately 5.5 is linked to a reduction 

in DMI (Fulton et al., 1979a; Harmon et al., 1985). Acidosis, in both forms, has been 

characterized by this period of “off-feed” (Fulton et al., 1979b; Kezar and Church, 1979). 

Researchers have also used the day-to-day variation in feed intake of individual animals 

as an index of SARA (Britton and Stock, 1987; Britton et al., 1991). Some evidence 

suggests that animals are most likely to reduce feed intake during adaptation to high-
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grain diets when the diet is 70-75% concentrate (Tremere et al., 1968). Furthermore, a 

reduction in feed intake can directly cause loss of intestinal barrier function and 

inflammation (Kvidera et al., 2017), which may exacerbate or enable harmful effects of 

acidosis. However, studies showing feed intake depression during acidosis in cattle have 

been inconsistent (González et al., 2012). For example, acidosis induced by grain and 

alfalfa pellets decreased ruminal pH equally, but feed intake was increased with the 

alfalfa pellets and decreased with the grain (Khafipour et al., 2009a; b). This may be due 

to the multifaceted acidosis syndrome as well as the complicated network of factors that 

control feed intake. The mechanisms involved in this reduction in feed intake with diet 

transitions and SARA have not been fully described and warrant further investigation. 

The interrelationship between feeding behavior and rumen acid-base balance are 

important for understanding changes that occur with feeding high-concentrate diets and 

acidosis. Synchronization between acid production and elimination (via absorption, 

passage, or neutralization with buffer) hinges on feeding behavior (González et al., 2012). 

To begin, meal size influences the amount of organic acids produced in the rumen and 

therefore, the acid load present. A larger meal, increases the amount of acid produced. 

Eating rate affects chewing time and feed ensalivation and consequently, buffer addition 

to the rumen. A faster eating rate reduces chewing time, feed ensalivation, and buffering 

capacity (Beauchemin et al., 2008). Since high-grain diets have a low percent of forage 

and small particle sizes, they allow a faster eating rate and result in larger meals (Dado 

and Allen, 1995; Tolkamp et al., 2002). Pattern of feed intake throughout the day and 

meal frequency also directly influence the balance of acid production to acid elimination 

in the rumen. Increasing meal frequency or distributing meals more evenly throughout 
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the day will lead to a better harmonization of these processes. Thus, animals being 

transitioned to a more acidogenic diet need to change their feeding behavior by 

consuming smaller meals more often to help reduce the effects of acidosis (González et 

al., 2012). Animals undergoing an acidosis challenge reduced meal size and increased 

meal frequency (DeVries et al., 2009). This response may have been an attempt to 

stabilize ruminal fermentation patterns throughout the day. When changes in feeding 

behavior and metabolism overwhelm the capacity of the animal to prevent organic acid 

accumulation in the rumen, feed intake may be depressed (González et al., 2012). In 

order to self-regulate, animals must understand the post-ingestive consequences of more 

fermentable diets (González et al., 2012).   

Theories for Reduction in DMI with SARA 

 Researchers have provided several explanations for a reduction in DMI with 

SARA, which will be briefly described here. One theory states that a low ruminal pH is 

sensed by chemoreceptors in the reticulorumen that feedback to the brain to signal a 

decrease in intake (Forbes and Barrio, 1992). Likewise, accumulation of organic acids, 

high absorption of VFA, and increased movement of water from the blood to the rumen 

would increase osmolality in the rumen and blood, which could be detected by 

osmoreceptors and signal a decrease in feed intake (Carter and Grovum, 1990; Owens et 

al., 1998). Another theory suggests that the decrease in intake is due to the low ruminal 

pH reducing forestomach motility and thus, decreasing passage rate (Dougherty et al., 

1975b; Slyter, 1976; Forbes and Barrio, 1992). Feed intake may be reduced due to the 

high concentration of fermentation products available to the liver, leading to high energy 

status, also known as the hepatic oxidation theory (Allen et al., 2009; Sartin et al., 2011). 
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Lastly, low ruminal pH may be causing a reduction in DMI by increasing bacterial 

endotoxins and histamine, thereby, causing an inflammatory response (Kleen et al., 2003; 

Gonzalez et al., 2008b) and/or decreasing frequency and amplitude of ruminal 

contractions (Dougherty et al., 1975b; Andersen, 2003; Plaizier et al., 2009). All of these 

theories are likely correct, at least in part, due to the multidimensional aspects of acidosis 

syndrome, which makes studying and identifying mechanisms of feed intake regulation 

during acidosis difficult.   

Rumen Motility 

Overview of Cattle Forestomach Motility 

The stomach of cattle is quadrolocular or composed of four compartments: the 

rumen, reticulum, omasum, and abomasum (Church, 1976). The reticulorumen (reticulum 

and rumen) serves as the primary site of microbial fermentation and has complex patterns 

of motility, which are involved in mixing ingesta (to increase fermentation and 

absorption), rumination, eructation, and the passage of ruminal contents through the 

reticulo-omasal orifice. There are five sacs in the rumen separated by pillars: the dorsal 

sac, dorsal blind sac, ventral blind sac, ventral sac, and cranial sac. Motility patterns 

result mainly from contractions of the pillars within the reticulorumen. Two muscle 

layers help coordinate these motility patterns: the deep muscles (which have a circular 

orientation around the foregut) and the superficial muscles (which run cranial to caudal).   

Reticulo-ruminal motility can be separated into different categories based on the 

cycle of contractions. Primary contractions represent the mixing cycle and occur as a 

wave of contractions over the foregut, proceeding cranial to caudal. They involve all sacs 
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of the rumen and always begin with a reticular contraction. An example cycle of a 

primary contraction would include contractions proceeding in this order: biphasic 

reticulum contraction  cranial sac  dorsal sac  dorsal blind sac  ventral sac  

ventral blind sac  dorsal blind sac  ventral sac. Secondary contractions are the 

eructation (removal of gas from the rumen) cycle and are independent of a reticular 

contraction. These contractions tend to occur during or after primary contractions 

(Ruckebusch and Tomov, 1973) and usually involve contraction of the ventral blind sac 

 dorsal blind sac  dorsal sac  relaxation of ventral blind sac. The cranial and 

longitudinal pillars may be involved in secondary cycles, with the cranial pillar remaining 

partially contracted to prevent digesta from going into the reticulum (Reid and Cornwall, 

1959). This cycle serves to push gas to the esophagus and cardial sphincter for eructation. 

Without secondary cycles to allow the gases produced by microbial fermentation to 

escape, cattle would experience bloat, a condition which can be life-threatening. The 

relationship of primary to secondary contractions is generally 1:1 with 1 contraction 

occurring every minute. Rumination is also another type of motility related to the bovine 

foregut that occurs before a primary cycle (Church, 1976). Rumination involves a 

reticular contraction  diaphragm contraction  opening of cardia  antiperistalsis of 

ingesta up the esophagus  reswallowing of fluid  rechewing feed  and 

reswallowing feed. As a process of regurgitation, remastication, reinsalivation, and 

redeglutition, rumination is important for the additional mechanical breakdown of fibrous 

feedstuffs, reduction of particle size, and buffering of the reticulo-rumen. 

The omasum has motility as well, but much less is known about this organ 

because its anatomical location makes it more difficult to study (Church, 1976). When 



 

 

49 
 

the reticulum contracts, the omasal neck contracts, followed by the omasal canal and 

omasal body. Compared to the reticulo-rumen, these contractions are slower and longer. 

Pattern of contractility of the omasum proceeds like a wave of contraction which moves 

slowly over the omasal body (Bueno and Ruckebusch, 1974). For most of the cycle of 

reticulo-ruminal contractions, the omasal orifice is open. However, after the last 

contraction of the reticulum, the orifice closes tightly, the pressure in the neck of the 

omasum drops, and pressure in the omasum increases (Balch et al., 1951). Hence, the 

omasum has a kind of valve-like action.  Also, there is considerable variation in omasal 

motility between animals. 

Normal abomasal motility has not been investigated to a great extent. The fundus 

region of the abomasum usually does not contract, but the body may have peristaltic 

waves of contractions. Most of the motility is associated with the distal area of the 

abomasum or the pyloric antrum (Phillipson, 1970). Generally, it appears that abomasal 

motility is similar to that of the monogastric stomach. 

Mechanism of Control of Rumen Motility 

Reticulo-ruminal contractions can also be categorized by their method of 

regulation (Grovum, 1986). Extrinsic contractions are those which are regulated by the 

vagus nerve. Conversely, intrinsic contractions are not regulated by the vagus nerve. 

Motility can be affected by activity of the animal, satiety level, diet, cannulation, and 

health or disease states (such as acute ruminal acidosis). Neural control of extrinsic 

gastrointestinal tract motility is regulated by the gastric center of the medulla oblongata 

in the brain. This area of the brain receives sensory input from various neurons and the 

hypothalamus and can either stimulate or inhibit gastrointestinal tract motility.   
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Starting at the point of food entry, buccal receptors in the mouth, stimulated by 

eating and rumination, communicate with the gastric center to stimulate motility. If the 

reticulo-rumen becomes severely distended, high-threshold tension receptors in the 

cardia, reticulum, reticulo-ruminal fold, cranial pillar, and longitudinal pillars can send 

signals to the gastric center via afferent neurons to decrease motility. Conversely, low-

threshold tension receptors in the reticulum, reticulo-ruminal fold, and cranial sac are 

able to detect mild distension and tell the gastric center to stimulate motility. The 

presence of free gas in the reticulo-rumen can be detected by stretch (gas) receptors in the 

cardia and dorsal sac and signal to increase motility. When concentrations of 

undissociated/protonated VFA increase in the reticulo-rumen, acid receptors in the 

reticulum and rumen can activate vagal nerve endings and inhibit motility. Likewise, acid 

receptors in the abomasum tell the gastric center to increase reticulo-ruminal motility 

when acid builds up due to emptying of abomasal contents. Tension receptors in the 

abomasum can sense abomasal distension and communicate back to the gastric center to 

decrease motility. All of these receptors would signal the gastric center via vagal afferent 

neurons. Then, the gastric center sends efferent motor signals via the vagal nerve to the 

foregut organs to either stimulate or inhibit motility by alterations in the type, frequency, 

amplitude, and duration of contractions. 

Additionally, foregut motility is also influenced by intrinsic, non-vagal activity. 

For example, when sheep were subjected to vagotomy, they were able to regain some 

motility in the reticulo-rumen within 1 d, with strong contractions evident by 1-2 weeks 

(Gregory, 1982). The myenteric plexus influences the intrinsic cholinergic motility of the 

reticulo-rumen (as evidenced by inhibition of motility with atropine in vagotomized 
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sheep), which is mainly regulated by distention of the reticulo-rumen (Gregory, 1984). 

After vagotomy, the omasum displayed long bursts of slow wave-like activity that was 

not coordinated with motility of the reticulo-rumen, and atropine did not inhibit omasal 

motility (Gregory, 1982). Therefore, it is likely that the control of omasal motility does 

not depend solely on cholinergic control.   

Gastrointestinal tract motility is also regulated by hormonal control. Motilin is a 

produced by EC2 cells in the gut (small intestine) and brain; it can increase GIT motility 

and also controls gastric emptying. Substance P is a gut and neuropeptide secreted from 

EC1 cells in the gut (reticular groove, reticulum, rumen, omasum, and intestines) and 

brain (subcortical region and hypothalamus). Since substance P influences blood flow 

and stimulates smooth muscle contractions, it works to increase motility. Also, vasoactive 

intestinal peptide (VIP) is produced by D1 cells in the gut (all segments of the ruminant 

stomach) and brain (supraoptic nucleus, suprachiasmatic nucleus, and lateral preoptic 

area) and serves to relax smooth muscle and thereby, inhibit motility.   

Thus, the control of bovine foregut motility is highly complex involving an 

integration of local and central control mechanisms for regulation of motility in the intact 

animal. 

Impact of Acidosis on Ruminal Motility 

Acute ruminal acidosis has been associated with a reduction in rumen motility. 

When the pH of ruminal contents was instantly decreased to 4.0, rumen motility stopped 

about 2 hours later (Juhasz and Szegedi, 1968). Researchers have observed that amplitude 

and frequency of rumen contractions gradually decreases to stasis with lactic or acute 

acidosis (Bruce and Huber, 1973). Experimentally inducing acute acidosis in sheep by 
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intraruminal carbohydrate challenges [dosing with finely ground wheat (Crichlow, 1989), 

a sucrose solution (Kezar and Church, 1979), and VFAs (Ash, 1959; Gregory, 1987) has 

led to inhibition or complete stasis of reticulorumen motility. Studies have demonstrated 

that forestomach motility is decreased within 4-6 hours, and ruminal stasis or atony may 

occur between 8-12 hours following carbohydrate dosing (Dirksen, 1970; Crichlow and 

Chaplin, 1985). Contraction frequency and amplitude of sheep were also reduced by 

duodenal infusion of lactic acid (Bruce and Huber, 1973). A decrease in ruminal 

contractions and ruminal stasis may be a protective mechanism the animal has developed 

to reduce acid absorption and thus, prevent systemic acidosis (Dunlop and Stefaniak, 

1965; Ahrens, 1967; Huber, 1976). However, the effect of SARA during typical dietary 

transitions on rumen motility is still unclear.   

These alterations in rumen motility during a diet transition and acidosis are likely 

due to the regulatory mechanisms mentioned above. For example, switching animals to a 

higher concentrate diet would probably result in less stimulation of buccal receptors due 

to finer particles and less rumination, which may reduce motility. Likewise, acid 

receptors in the rumen would be more stimulated due to the higher fermentation rate of 

the concentrates and increased acid concentrations, which could also inhibit motility. In 

the 1970s, the stasis of rumen motility was believed to be due to a blood borne substance 

(ie. hormone) and not due to local hydrogen ion receptors in the rumen mucosa (Bruce 

and Huber, 1973; Huber, 1976). Yet, there was some evidence that suggested the central 

nervous system was involved in the inhibition of reticulorumen motility by undissociated 

acid in the rumen (Svendsen, 1973). Ruminal hypertonicity (high osmotic pressure) has 

also been shown to sometimes reduce the frequency of ruminal contractions (Carter and 
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Grovum, 1990), likely via osmoreceptors in the rumen that also help regulate feed intake. 

Additionally, some diseases, including endotoxaemia, cause reticuloruminal stasis in 

cattle (Eades, 1993; 1997). Thus, the possibility exists that during acidosis, the reduced 

barrier function of the rumen may allow LPS to translocate into venous blood and lead to 

a series of events that reduce motility of the reticulorumen. If forestomach contractions 

become reduced, feed intake and behavior of the animal could also be affected. It is still 

unclear what mechanisms of rumen motility regulation are important during diet 

transitions and SARA. 

Animal Variation in Response to Carbohydrate Challenges 

A large amount of animal-to-animal variation exists in response of animals to 

carbohydrate loading, which makes studying acidosis even more complicated. Many 

publications have noted the variation in animal responses to rapidly fermentable 

carbohydrate substrates given to experimental animals on a body weight basis (Huber, 

1971; Dougherty et al., 1975b; Suber et al., 1979). Upon evaluating models of 

experimentally induced acute and subacute acidosis, researchers found considerable 

variation in the animals’ ability to deal with the grain challenge (Brown et al., 2000). For 

this study, five steers were ruminally dosed with 3% of BW as steam-flaked corn, split 

into four doses, after one day of feed restriction. One steer was euthanized due to 

complications from acute ruminal acidosis, but another steer on the same treatment 

showed no clinical signs. In another study, beef heifers adapted to a 90% concentrate diet 

from a 40% concentrate diet with both rapid and gradual adaptation protocols 

demonstrated substantial variation in ability to tolerate the adaptation as evidenced by 

maintenance of healthy ruminal pH and maintenance of DMI (Bevans et al., 2005). 
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A large amount of individual variability could be due to differences in absorptive 

capacity of the rumen epithelium (Zebeli and Metzler-Zebeli, 2012). In vitro apical 

epithelial uptake of acetate and butyrate was greater in rumen tissue from sheep that were 

more resistant to SARA than susceptible sheep (Penner et al., 2009a). Additionally, sheep 

that were more resistant to the SARA challenge had greater concentrations of plasma β-

hydroxybutyrate than sheep that developed SARA. This suggests that animals with 

greater absorptive and metabolic capacity of rumen epithelium for these VFAs would be 

more resistant to SARA (Zebeli and Metzler-Zebeli, 2012).   

Furthermore, acidosis-susceptible (AS) and acidosis resistant (AR) cattle may 

differ in expression of genes involved with intracellular pH regulation. For example, the 

sodium hydrogen exchangers are prominent in the rumen epithelium. Sodium hydrogen 

exchanger isoform 3 (NHE3), which imports Na+ from the rumen and exports H+ to the 

rumen, had a greater expression in AR steers than AS steers (Schlau et al., 2012). 

Therefore, AR animals may be accustomed to having a slightly lower ruminal pH and 

could be less susceptible to acidotic challenges. 

Some research has suggested that adaptation of the ruminal microbial populations 

in grain-adapted animals is responsible for tolerance to grain (Allison et al., 1964). Cattle 

that differ in susceptibility to SARA also appear to have different rumen microbial 

communities. Copy number of total bacterial 16S rRNA genes (an indication of bacterial 

density) in rumen contents and attached to the epithelial surface (epimural) were greater 

in AS than AR steers (Chen et al., 2012). The authors speculated that the higher bacterial 

density in AS animals related to a more active bacterial community, greater fermentation 

as evidenced by higher VFA concentrations, and a lower ruminal pH. Rumen contents 
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and epimural bacterial diversity were also different between AS and AR cattle. Therefore, 

differences in epimural bacterial communities within the rumen of animals may play a 

role in animal variation in response to experimentally-induced acidosis. 

Conclusion 

Feeding cattle high-grain diets is important for maximizing growth and 

production. Yet, acidosis that can ensue while transitioning cattle is a multidimensional 

syndrome, which can affect animal physiology, behavior, and health, leading to 

decreased productivity. Regulation of feeding behavior and rumen motility appear to be 

closely related. This may help explain some of the adverse effects of diet transitions and 

SARA on cattle, as well as why some cattle are able to handle diet transitions to high-

grain diets better than others. Additionally, reduced epithelial barrier function during 

acidosis may enable LPS to translocate across the rumen epithelium and enter the blood, 

but it has not been determined where exactly LPS translocates from in the gastrointestinal 

tract. More research is necessary to understand mechanisms of dietary adaptation and 

inflammation during transitions in an attempt to try to counteract these events and 

improve animal efficiency. 
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CHAPTER 3: AUTOMATED SYSTEM FOR CHARACTERIZING SHORT-
TERM FEEDING BEHAVIOR AND REAL-TIME FORESTOMACH MOTILITY 

IN CATTLE 
 

Introduction 

Cattle exhibit differing feeding patterns throughout the feeding cycle that can 

influence the ruminal environment. For example, animals may demonstrate long bouts of 

eating, followed by long bouts of resting and ruminating, or they may have small meals 

frequently, with smaller bouts of resting and ruminating. Several health-related (Gonzalez 

et al., 2008c; Wolfger et al., 2015), environmental (Rittenhouse and Senft, 1982; Hahn, 

1995), managerial (Erickson et al., 2003; Schwartzkopf-Genswein et al., 2003; Gonzalez 

et al., 2008a), and social (Voisinet et al., 1997) factors influence short-term feeding 

behavior in cattle, which make measuring feeding behavior of interest. However, current 

systems designed to monitor individual animal feeding behavior only record feeding 

times (Theurer et al., 2013), are expensive, or do not automate data analysis. Some of 

these systems are more applicable to a pen-feeding or feedlot situation (Schwartzkopf-

Genswein et al., 2011) and may allow for multiple treatments in the same pen. Yet, 

feeding behavior is also relevant during intensive research studies of individually stalled 

animals or at facilities without these larger pen-based intake monitoring systems. 

Evaluation of cattle feeding behavior is important for understanding physiological 

relationships between feed intake and gastrointestinal function. Therefore, an automated 

system to monitor and characterize short-term feeding behavior of individually-housed 

livestock is warranted.   
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Changes in motility of the reticulo-rumen have been associated with alterations in 

feed intake and feeding behavior (Church, 1976; Della-Fera and Baile, 1980; Deswysen 

et al., 1987a; Kaya et al., 1992). Particularly, rumen motility can influence passage rate of 

contents, and thereby, has potential to alter feed intake. Feed intake also stimulates rumen 

motility, suggesting the control of these events is interrelated. Patterns of feed intake and 

forestomach motility of cattle can affect animal health through their influence on ruminal 

pH. For example, greater ruminal contractions directly increase rate of fermentation. 

Similarly, larger meals may lead to greater fluctuations in ruminal pH, particularly when 

cattle are fed high-concentrate diets. Low ruminal pH reduces or is associated with erratic 

feed intake (Fulton et al., 1979a; Cooper et al., 1999a) and may lead to inhibition of 

rumen motility (Huber, 1976). Yet, the literature rarely investigates feeding behavior, 

ruminal motility, and ruminal pH in the same experiment. 

The objective of this study was to develop a system to continuously monitor feed 

intake and rumen motility of individually-housed animals. Specific objectives were to: 

(1) Evaluate the use of feed bunk and ruminal cavity instrumentation to measure feed 

intake and ruminal motility, respectively. 

(2) Develop data analysis algorithms to characterize feeding behavior and ruminal 

contractions. 
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Materials and Methods 

Equipment 

Feed Intake System 

A welded support bracket was secured to the top metal frame at the front of the 

animal stalls. At the headspace outside the stall, feed bunks were mounted onto stainless 

steel, S-beam load cells (LC101-500/LC111-500, Omegadyne, Sunbury, Ohio) and 

suspended from the bracket approximately 5 cm off the ground using metal chains 

(Figure 3-1). The two rear sections of bunk, next to the animal pen, was then secured to 

the front of the animal pen using a short piece of metal chain and double-ended snap to 

prevent excessive swinging of the bunks during animal interference, such as head-

scratching. There were a total of 8 feedbunk-load cells set-up at the facility (University 

of Kentucky C. Oran Little Research Center, Beef Unit, Versailles, Kentucky). Load 

cells were connected via 4-conductor shielded cables (PT06F10-6S, Omegadyne) to a 

data logger (CR1000, Campbell Scientific, Inc., Logan, Utah), which was programmed 

to record feed weight at 1-min intervals. Based on feeding behavior of cattle, this time 

interval was believed to be a reliable indicator of short-term feeding behavior (Robles et 

al., 2007). The load cells were supplied with 13.5 Vdc excitation and produced a nominal 

40.5 mV signal at the 227 kg (500 lbs) rated load capacity. The CR1000 analog inputs 

were set to “AutoRange” when measuring the differential voltage outputs of the load 

cells. The maximum analog-to-digital conversion range expected based on the loads 

applied was ±7.5 mV, which provided a resolution of 1.0 μV corresponding to 0.12 kg. 

Data from the logger were downloaded to a laptop computer after each 24-h feeding 

cycle via USB connection using logger software (PC200W, Campbell Scientific, Inc.). 



 

 

59 
 

The data logger stored data in a .DAT file, which was a comma-delimited text file. Data 

in the .DAT file was imported into Excel (2016, Microsoft Corporation, Redmond, 

Washington), split into columns, using the text-to-columns function with comma as the 

delimiter, and saved as an Excel file (.xlsx) before being imported into MATLAB 

(R2015b, The Mathworks, Inc., Natick, Massachusetts) for processing and analysis. 

Load cells and the feed intake measurement system were evaluated for accuracy 

by addition of standardized weights (1, 2, 4, 8, 22.7, and 30.7 kg) to the feed bunks and 

comparison of theoretical weight with CR1000 output weight. On average, the percent 

error in weight was 1.37 ± 0.89%.  

Rumen Motility System 

Disposable blood pressure transducers (MLT0670; ADInstruments Inc., Colorado 

Springs, CO) connected to data acquisition hardware (PowerLab 8/30, ADInstruments, 

Inc.) through bridge amplifiers (FE221; ADInstruments, Inc.) were used to monitor 

pressure changes in the rumen and characterize rumen contractions. The pressure 

monitoring system had a manufacturer specified accuracy of ±0.2 mmHg and a 

resolution of 0.01 mmHg. Pressure transducers were manually calibrated using a 2-point 

sample method before each use with a sphygmomanometer (ReliOn® manual blood 

pressure monitor, Walmart, Inc., Bentonville, AR). LabChart software (ADInstruments, 

Inc.) incorporated the calibration converting voltage to pressure prior to recording data. 

A water-filled (2 L; 2 kg) balloon (60.96 cm Tuf-Tex® jumbo balloons, Maple City 

Rubber Company, Norwalk, OH) attached to a Tygon® catheter (i.d. = 3.2 mm; o.d. = 6.4 

mm) with castration bands (Ideal Instruments, Neogen Corporation, Lansing, MI) and 

plastic hose clamps (i.d. minimum 11.4 mm; i.d. maximum = 13 mm; Cole-Palmer 
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Instrument Co., Vernon Hills, IL) was inserted into the ventral sac of the rumen of each 

animal (Figure 3-2A). Balloons were weighed to maintain consistent fill between 

animals. Balloons were changed if the balloons appeared to leak or were torn resulting in 

loss of signal. A small hole was made in the plug of the rumen cannula to allow the 

catheter to pass through. The end of the catheter external to the animal was equipped 

with a tubing-to-Luer Lock adapter for connection to the pressure transducer stopcock 

(Figure 3-2B). Water filled the pressure transducer by opening the release valve until 

water trickled out and no air bubbles were visible in the transducer or catheter.    

The data acquisition hardware was directly connected to a laptop computer with a 

USB connection. Rumen pressure data were recorded continuously using LabChart 

software at a rate of 4 samples/s, which allowed real-time observation of the pressure 

signal. The recording file was saved hourly and monitored periodically for problems with 

equipment or signals. After recording was finished, rumen pressure versus time data 

were exported from LabChart to Excel. The leading header was deleted from the 

spreadsheet file, and elapsed seconds of recording were generated in the first column. 

Periods of poor quality data where equipment issues occurred during recordings, such as 

a balloon breaking or a cable connection getting wet and no longer working, were 

manually removed from the spreadsheet and replaced with a value of 0. These zeros were 

subsequently ignored when processing.  

Explanation of Algorithms 

Meal Detection 

A LoadCell.m script was written in MATLAB for meal detection and calculation 

of meal durations and meal sizes. The script was designed to be run on one 24-h period at 
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a time in which the animals were fed once daily.  No other modification of the import 

data was necessary unless the user intended to focus on a certain time-period of 

measurement within that 24 h. The script was designed to handle data from up to eight 

load cells. Figure 3-3 displays an overview of the LoadCell.m algorithm. 

The script imported the Excel file containing the load cell data. Script parameters, 

including the filter order for smoothing and minimum time (min) required between 

feeding events for them to be considered separate meals (also called the inter-meal 

interval) were defined. Data from the load cell output file were extracted to sort out 

timestamp and weight data for each individual load cell. Each individual load cell weight 

data was separated. Time in elapsed minutes was generated and used for plotting of the 

data. Weights were smoothed using a one-dimensional n-order median filter, which 

reduced noise while preserving the sharp transitions in weight at the beginning and end of 

a meal. The median filter order was manually adjusted to remove noise, any large peaks 

(high weight values), or significant, rapid changes in weight due to animal interference 

with the bunk, but not so much as to greatly affect the relative weights recorded that were 

from feeding.  

The difference between two consecutive measurements of the filtered weight data 

was calculated, thereby generating the first-order derivative of the signal. The differences 

between measurements were evaluated to determine if there was a change in weight 

beyond a threshold (i.e. was the slope negative enough to not be due to error in 

measurement), which distinguished if the animal was eating. Any weight loss from the 

bunk was assumed to be due to feed consumption. The inter-meal interval (i.e. threshold 

of time between eating events for them to be considered separate meals) was set to 30 
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min. Eating events or meals that were within 30 min of the last meal end were combined 

into a single meal. 

The elapsed time, filtered weight data, and beginnings and ends of meals were 

plotted to help identify any errors in detecting meals (Figure 3-4). The script marked a 

green “O” where feeding began and a red “X” where feeding stopped for each meal. 

Results from each animal or load cell were printed on separate figures. The plots 

provided an opportunity to check the filter order, slope threshold, and meal criterion were 

appropriate for the data set. For example, if there were still relatively large spikes in the 

weight data, the order of the filter was increased. Likewise, if the meals did not seem to 

start and end at the “ramp” of the weight data, the slope threshold was adjusted. Meal 

durations were calculated in one-minute resolution for each meal by determining the 

difference of the meal start and meal end elapsed time. Additionally, meal size was 

estimated for each meal by subtracting the filtered feed bunk weight at the end of the 

meal from the weight at the start of the meal. 

The final two processes of the script served to prepare the resulting analysis for 

output.  Animal identification numbers were associated with each load cell by user 

prompts. The meal duration and meal size results for all load cells or animals were 

gathered together, along with the timestamp at which the meals began for each animal 

and was exported in an Excel spreadsheet. Accuracy of the parameters for the data were 

evaluated by summing the meal sizes for each animal and comparing the result to 

manually measured feed and orts.  
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Ruminal Contractions 

The MotilityPeaks.m script was prepared in MATLAB for filtering noise from 

pressure data, detecting contractions, and evaluating contraction amplitude, duration, and 

frequency. The pressure signals from individual animals were extracted from the channel 

output and plotted against elapsed time (sec) for visualization. Also, the hour of recording 

that each reading came from was extracted from the dataset. A one-dimensional n-order 

median filter smoothed pressure readings, and resulting data were plotted against elapsed 

time. The order of the median filter and the amplitude threshold were defined as 15 and 4 

mmHg, respectively. Figure 3-5 displays an example of the filtered data plotted overtop 

the raw data for a short period of time. 

Ruminal contractions were detected using the findpeaks function within the Signal 

Processing Toolbox of MATLAB and filtered pressure data (Figure 3-6). Next, the 

derivative of the smoothed pressure signal was calculated, filtered to remove noise, and 

used to determine the duration of each contraction event using start and stop slope 

thresholds of 0.002 and 0.0005 mmHg/s, respectively. For each peak, the start and stop 

points of the contraction were found by beginning 3.75 sec (peak offset = 15 samples) in 

either direction from the peak location and determining where the derivative of the signal 

surpassed the above thresholds. The peak offset prevented the flat part of the peak being 

detected as the start or stop of the contraction. Figure 3-7 shows the start, end, and peak 

of contractions for the same window of time as Figures 3-5 and 3-6 using filtered 

pressure data. Duration of each contraction was calculated by subtracting the start time 

from the stop time. An output file was generated which described each contraction event 
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by listing the peak number, pressure at the peak, amplitude, duration, and hour of 

recording in which the contraction occurred.   

Evaluation of Effectiveness 

Meal Detection Script 

The LoadCell.m script was evaluated using sample data from fourteen days 

across all eight load cells by manually inspecting the output plot indicating identified 

meal start and end times in contrast to the filtered weight data. Failure criteria included 

not identifying that a meal had occurred, not combining successive small meals into a 

single meal, and identifying a meal that did not occur. During analysis of this sample 

data, the order of the median filter was set to 28 and the inter-meal interval was set at 30 

min. 

Ruminal Contractions Script 

The MotilityPeaks.m script was evaluated using sample data from 24 h of 

continuous recording from three animals. The script was modified to generate additional 

figures, which simultaneously plotted the raw data, smoothed data, and contraction start, 

stop, and peak points for each animal. Upon analyzing the data using the script, random 

sections of the output plots (100 peaks per animal) were visually inspected to identify and 

evaluate contraction events. Errors of interest included not identifying a significant 

contraction that had occurred, identification of a contraction that did not occur, and 

grossly misrepresenting the start, end, or peak of the contraction. 
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Experimental Application 

All procedures with live animals were approved by the University of Kentucky 

Institutional Animal Care and Use Committee (#2018-2973). Feed intake and rumen 

motility systems were used to evaluate short-term feeding behavior and ruminal 

contractions on two common, grain-based diets for feedlot cattle, approximately 70% 

concentrate (MED) and 90% concentrate (HIGH), respectively. Eight ruminally 

cannulated, crossbred beef heifers (BW = 534 ± 23 kg) were housed indoors in individual 

stalls fitted with the feed intake system at the University of Kentucky, C. Oran Little 

Research Farm, Beef Unit, Intensive Research building. Animals were fed diets ad 

libitum and had free access to water throughout the experiment. After acclimation (21 d) 

to the MED diet, rumen motility and feed intake were monitored continuously for 24 h 

following feeding using the above-described methods. During data collection periods, 

heifers were haltered and tied to the headspace in front of the bunk and had the stall gate 

chained back to restrict excessive movement of the animals. However, the cattle were 

able to lay down, stand up, and exhibit moderate lateral movement. Heifers were given 

another day on MED following motility recording and then abruptly switched to HIGH. 

Beginning immediately prior to feeding HIGH, feeding behavior and rumen motility were 

recorded continuously for 48 h. This abrupt dietary switch was used a model for a 

subacute ruminal acidosis challenge (defined as ruminal pH below 5.6 for greater than 

180 min per day). Samples of diets and orts were collected each day of recording and 

dried in a 55°C oven for 48 h for determination of dry matter (DM) content and used for 

manual calculation of dry matter intake (DMI).  
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All thresholds, peak offset, inter-meal interval, and all other parameter inputs for 

the scripts used for this experimental application were the same as described above for 

the evaluation of effectiveness of the scripts. Following download of load cell data from 

the data logger, the data were analyzed in MATLAB using the meal detection algorithm. 

A meal was defined as a continuous eating event, and a break of at least 30 min (inter-

meal interval) with no weight changes was used to differentiate between meals. The order 

of the medium filter was set to 30. Number of meals were enumerated, and meal 

durations and sizes were averaged for each animal and day. Meal sizes of all meals were 

summed to produce a total daily feed intake for each animal and day for comparison to 

manually measured as-fed and DMI. For the script-generated DMI, only the DM content 

of the diet was used to correct as-fed intakes. 

Rumen motility data were formatted as described above and analyzed in 

MATLAB using the rumen contraction algorithm.  Any contractions which had a peak 

pressure, amplitude, duration or width at half-prominence above 100 were removed from 

the dataset to eliminate outliers that did not make sense biologically. Average contraction 

amplitude, duration, and peak pressure was determined with proc MEANS of SAS 9.4 

(SAS Institute Inc., Cary, NC) for each hour and animal for each day.  

Statistical Analysis 

Day/feeding cycle was considered the treatment (MED, HIGH d1, and HIGH d2). 

Manually determined daily intakes, daily intakes using summed meal sizes, meal 

frequency, meal duration, and meal size were analyzed as a randomized block design 

using proc MIXED of SAS 9.4 for the effect of day/treatment. Contraction amplitude, 

duration, and peak pressure were analyzed using proc MIXED for the effect of 
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day/treatment, hour, and their interaction, in addition to considering hour as a repeated 

measure. Compound symmetry was used as the covariance structure. In both models, 

block was considered a random effect. Degrees of freedom were estimated using the 

Satterthwaite approximation. Means reported are the least square means. Mean 

comparison was conducted using the least significant difference and P < 0.05, if the 

probability of a greater F-statistic was significant for an effect.  

Results 

Meal Detection 

Script Evaluation 

A total of 1,003 individual meals were detected from the sample data of eight load 

cells over fourteen days. The most common error was not combining successive short 

meals into a single larger meal, which occurred 11 times. Five instances of identifying a 

meal that did not occur were observed. Two instances of not identifying that a meal 

occurred, or that the meal size and length were substantially underreported, were also 

observed. An example of an instance when both the meal size and duration were 

underreported is shown in Figure 3-8. Combined errors represented approximately 1.8% 

of the total number of meals detected in the sample data. Given the relatively low error 

rate for a large sample size, no further adjustments were made to the filtering or threshold 

settings. 

Experimental Results 

Results for feed intake and feeding behavior are presented in Table 3-1. 

Comparison of feeding behavior before the dietary switch (MED) and 2 days 
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immediately following switching diets (HIGH) using meal detection script results. 

Manual as-fed intake (kg/d) was affected by treatment (P = 0.045); it was reduced on d2 

of HIGH feeding, but was not different between MED and HIGH d1. As-fed intake 

determined by summing the meal sizes from the algorithm output was not different (P = 

0.159) between treatments and also was between 1.76 and 3.4 kg lower than manually 

determined as-fed intake. Conversely, treatment tended (P = 0.097) to affect manually 

measured DM intake (kg/d). Manual DM intake was decreased on HIGH d2 compared to 

HIGH d1, but neither were different from MED. Script-generated DM intake (kg/d), 

calculated using the script-generated as-fed intake and diet DM, was influenced (P = 

0.029) by treatment; DM intake on HIGH d1 was greater than MED, but neither 

treatment was different than HIGH d2. However, script-generated DM intake was 

between 1.17 and 2.49 kg lower than manually-determined DM intake. Average meal 

frequency, meal duration, and meal size were not affected (P > 0.10) by treatment. 

Motility Detection 

Script Evaluation 

Approximately 6,700 individual contractions were detected from the sample data 

of three animals over 24 hours. Applying the median filter resulted in a rounding of the 

contraction peaks. Thus, it was expected and accepted that the smoothing would result in 

slightly lower peak pressures compared to the raw data. Initially, the order of the median 

filter was set to 5 in an attempt to minimize peak rounding. However, this resulted in 14 

instances alone in the 300 peaks observed where one contraction was identified as 2 

peaks and 16.7% of contractions being misrepresented in some manner. Therefore, the 

order of the filter was increased to 15 and data were reanalyzed. The most common error 
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in the 300 peaks manually observed was not counting a contraction as a peak because the 

filtering reduced the amplitude below the threshold, which appeared to occur 6 times. 

Yet, it was recognized that this was a result of the necessary smoothing that needed to be 

conducted for adequate analysis. Some odd-shaped contraction waveforms resulted in the 

start or stop of the contraction (and subsequently, duration) being misrepresented, which 

occurred 4 times. An example of this error is displayed in Figure 3-9. Only 4% of the 

observed contractions displayed errors, so no further adjustments were made to the 

median filter, slope thresholds, or peak offset. 

Experimental Results 

Ruminal contraction/motility results are shown in Table 3-2. Comparison of 

rumen motility contractions before the dietary switch (MED) and 2 days immediately 

following switching diets (HIGH) using motility detection script results. The effect of 

treatment was significant (P < 0.05) for all contraction variables. Amplitude of 

contractions was greater on MED than on either day on HIGH. Similarly, contraction 

duration was shorter on HIGH days compared to MED. Duration of contractions was also 

influenced by hour (P < 0.01) as demonstrated in Figure 3-10. After feeding, duration of 

contractions briefly increased before gradually decreasing. Then, 18 hours after feeding, 

contraction duration started to increase steadily until the next feeding. There was a 

significant treatment × hour interaction for contraction frequency, which is depicted in 

Figure 3-11. There were no differences between treatments for contraction frequency at 

hours 4, 5, 7, 8, 9, 10, 12, 14, 16, 17, 18, 20, 22, 23, or 24. Contraction frequency was 

greater for HIGH d1 than MED or HIGH d2 at hour 3, yet HIGH d1 frequency was lower 

than HIGH d2 at hour 19 and lower than MED at hour 21. HIGH d2 frequency was lower 
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than MED or HIGH d1 at hour 1 and 15, lower than HIGH d1 at hour 2, 3, and 11, as 

well as being lower than MED at hour 6 and 13. Contraction peak pressure was greater 

on HIGH d2 than the other treatments. 

Discussion 

The purpose of the research was to propose systems for simultaneous monitoring 

of individual feed intake and rumen motility, as well as algorithms for analyzing data 

from such systems to characterize feeding behavior and ruminal contractions. This 

technology would be particularly beneficial in scientific or research settings where 

animals are housed individually. Ability to gather and easily analyze data pertaining to 

these events is crucial for understanding interrelationships between animal physiology 

and behavior. Automated systems for measuring and quantifying feeding behavior and 

ruminal motility are necessary due to the amount of events each animal exhibits in a 

feeding cycle. For example, in our experiment using 8 animals recorded for just 3 feeding 

cycles or days, 268 meals and 50,441 ruminal contractions were detected. 

Feeding behavior of cattle has typically been collected by direct observation or 

time-lapse video recordings (Friend et al., 1977; Vasilatos and Wangsness, 1980). 

Additionally, before the development of technologies for intake monitoring, feed intake 

had to be calculated by manually measuring feed provided and refused. These procedures 

are labor intensive and difficult to conduct for a large number of animals or over an 

extended period of time, particularly if the researcher is interested in characterization of 

feed intake for each bunk visit or meal. Thus, several validated measurement systems 

have used feed disappearance recorded from feed bunks mounted onto load cells to 

calculate feed intake and/or characterize feeding behavior, such as the Insentec system 
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(Hokofarm Group B.V., the Netherlands; Tolkamp et al., 2000a; Halli et al., 2015), 

Pinpointer feeders (Universal Identification Systems Corp., Cookeville, TN; Cole, 1995), 

Calan gates (American Calan, Northwood, NH; Cole, 1995), Intergado monitoring 

system (Intergado Ltd., Contagem, Minas Gerais, Brazil; Chizzotti et al., 2015), and 

others (Bach et al., 2004). The use of radio frequency identification (RFID) tags has also 

improved the ability to measure feeding behavior on group-housed animals. Some of 

these RFID systems record bunk visits and location to determine time spent at the bunk 

and duration of each bunk visit, but do not record feed intake (Sowell et al., 1998; Sowell 

et al., 1999; DeVries et al., 2003) because bunks are not connected to load cells.  

Our system utilized feed disappearance from the bunk to characterize feed intake 

and feeding behavior. A 1-min interval between weight recordings, such as used with our 

system, is believed to be a reliable indicator of short-term feeding behavior (Robles et al., 

2007). The stored load cell data downloaded from the data logger in this experiment 

provided a distinct time-series recording where weight of the feed in the bunk decreased 

in ramps (ie. meals) over time. Feeding behavior of the animals could be assessed by 

evaluating reduction in weight of feed in the bunks over time. Whereas the previously 

mentioned systems focus on bunk visits to characterize feeding behavior, our algorithm 

emphasizes natural hunger-satiety patterns and characterizes feeding behavior by 

“meals.” In addition, meals have been found to be a more biologically relevant unit to 

characterize short-term feeding behavior than visits (Tolkamp et al., 2000a). 

Previous assessment of short-term feeding behavior has used a log-survivorship, 

log-frequency, or log-normal analysis to split eating events into bouts or meals (Tolkamp 

et al., 1998; Tolkamp and Kyriazakis, 1999; Tolkamp et al., 2000b) with varying inter-
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meal intervals between animals. However, the algorithm described in this article applied 

a set inter-meal interval criterion to separate eating events into meals across all animals. 

This interval was determined by manually adjusting the variable in whole minute 

increments until a value was found which appeared to fit all data sets accurately. 

Increasing or decreasing the inter-meal interval from the value chosen had little effect on 

the end feeding behavior results. We believe that the inter-meal interval selected was 

appropriate for determining overall feeding behavior whilst avoiding over-analyzing the 

data. In doing so, differences in animal responses detected could be attributable to 

differences between treatments instead of confounding results due to potential differences 

between animals. 

Based on the evaluation performed for the LoadCell.m MATLAB script and due 

to the relatively small percentage of error, we believed that the script was appropriately 

detecting meals when there was a reduction in feed from the feed bunk. The script 

underestimated as-fed intake and DMI by approximately 15%, suggesting this algorithm 

was not accurate for directly estimating feed and DMI. However, the script was sensitive 

enough to resolve differences in DMI between treatments that were evident by manual 

measurement, despite the smoothing used in the algorithm. In another study, animals 

undergoing an acidosis challenge reduced meal size and increased meal frequency 

(DeVries et al., 2009). Yet, there were no differences between treatments in this study, 

which may have been due to the mild severity of the challenge and the large animal-to-

animal variation in response to acidosis challenges (Huber, 1971; Brown et al., 2000; 

Bevans et al., 2005). The results consistently showed biologically acceptable values for 

feeding behavior across all treatments and variables, when compared to the range of other 
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reported feeding behavior analyses (Tolkamp et al., 2000a; Robles et al., 2007; Moya et 

al., 2011; Carlson et al., 2014; Moya et al., 2014; Swanson et al., 2014). Granted, the 

range of feeding behavior values is highly variable due to differences between rations, 

feeding conditions and frequency, and management strategies. A comparison and 

validation of meal patterns and sizes by visual observation would also be beneficial for 

future work. 

Various methods have been reported in the literature for measuring forestomach 

motility. However, some are invasive, such as electromyography (McLeay and Smith, 

2006; Poole et al., 2009), or require extensive manual analysis of pressure recordings 

(Titchen, 1960; Colvin and Daniels, 1965; Froetschel et al., 1986), which can limit the 

duration of recording to an amount of data that may be analyzed in an appropriate time-

frame. Other technology systems that have been used for motility assessment adapted 

hardware and software designed for a different type of signal and did not allow for export 

of time series data (Egert et al., 2014). Several researchers have used a water-filled tube 

or balloon to record intraruminal pressure within contents and measure forestomach 

motility (Colvin and Daniels, 1965; Kezar and Church, 1979; McSweeney et al., 1989; 

Dado and Allen, 1993; Egert et al., 2014). By this method, contractions of the 

forestomach increase the pressure in the rumen, and changes in pressure relate to rumen 

motility. Therefore, our balloon and catheter system for recording intraruminal pressure 

appears to be an appropriate method for collecting motility data. As ruminally-cannulated 

animals are commonly used in nutritional physiology research on cattle, this system 

could be used by many researchers without additional training or animal surgery. Motility 

of the reticulo-rumen recorded by the system described in this paper generated pressure 
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versus time-series data, which enabled the freedom of choosing a type of analysis. When 

ruminal contractions occurred, a waveform was evident in which pressure gradually 

increased and then gradually decreased to relative baseline. Analysis of rumen motility 

and characterization of ruminal contractions were derived from these data. 

Upon evaluating the motility script, ruminal contractions appeared to be 

accurately detected and few errors were found in the analysis, especially in relation to the 

number of events or contractions that were detected. Other published studies have 

reported amplitude of reticuloruminal contractions ranging from about 6 to 20 mmHg 

(Kezar and Church, 1979; Gregory, 1982; Crichlow, 1989; Egert et al., 2014). The 

contractions of the ventral sac reported in this article averaged between 9 and 11 mmHg, 

which places our results within the range of other published studies. Similarly, frequency 

of reticuloruminal contractions has been reported to range from about 0.75 to 2.85 

contractions per minute. Again, the frequencies reported for the three treatments in our 

experimental application were within the reported range and appear to be biologically 

relevant. However, it is important to note that the values reported for contraction 

amplitude and frequency are likely dependent on the method of recording motility, 

animal management and diet, time after feeding that motility was recorded, and 

forestomach compartment or sac from which the pressure is measured. Contraction 

duration has not been commonly reported in the literature, but duration of ventral sac 

contractions measured using a different recording system and software for analysis was 

approximately 10 seconds (Egert et al., 2014). Since the average durations of ventral sac 

contractions from our experiment were approximately 12 seconds, our method provides 

results that are physiologically acceptable. Pressure at the peak of ruminal contractions is 
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variable and largely depends on whether the animal is standing or laying (Egert et al., 

2014). Therefore, it may serve as an indirect indicator of lying time in cattle. The 

experimental results would indicate that animals laid down more on the second day on 

the high grain diet than the other treatments. 

Conclusions 

This article described systems for monitoring feeding behavior and reticulorumen 

motility in cattle and detailed algorithms for data analysis of the data received from these 

systems. Evaluation of the algorithms and how accurately they characterized feeding 

behavior and rumen motility produced low error rates, leading to successful evaluation of 

the systems and algorithms. An experiment applying these systems and analyzing the 

data using the described algorithms produced acceptable results that were close to or 

within the range of values previously published using less automated methods. As a 

result, these systems and algorithms may have important applications for ruminant 

physiology and behavior research in future studies. 
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Tables and Figures 

Table 3-1. Comparison of feeding behavior before the dietary switch (MED) and 2 days 

immediately following switching diets (HIGH) using meal detection script results  

Variable Dietary Treatment SEM3 P-value4 
MED1 HIGH2 d1 HIGH d2 

Manual as-fed intake, kg/d 19.60a 18.98a 15.80b 1.52 0.0449 
Manual dry matter intake, kg/d 10.91ab 12.35a 10.22b 0.67 0.0965 
Script-generated as-fed intake, 
kg/d 

16.20 15.96 14.04 2.50 0.1593 

Script-generated dry matter 
intake, kg/d 8.42b 10.35a 9.05ab 0.67 0.0288 

Meal frequency, meals/d 11.1 11.8 13.0 1.22 0.1810 
Meal duration, min 17.98 19.43 15.67 1.70 0.3062 
Meal size, g (as-fed) 1463.9 1560.5 1264.2 208.1 0.5013 

 

1 MED = 70% concentrate diet 
2 HIGH = 90% concentrate diet 
3 SEM = Standard error of the mean 
4 Data were analyzed using proc MIXED of SAS 9.4 (SAS Institute Inc., Cary, NC) for 
the effect of treatment. 
a-b Means within a row without common superscripts differ (P < 0.05) 
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Table 3-2. Comparison of rumen motility contractions before the dietary switch (MED) 

and 2 days immediately following switching diets (HIGH) using motility detection script 

results 

Contraction Variable 
Dietary Treatment 

SEM3 
P-value4 

MED1 HIGH3 d1 HIGH d2 Trt Hour Trt* 
Hour 

Amplitude, mmHg 10.61a 9.33b 9.28b 0.38 <0.01 0.632 0.113 
Duration, s 12.20a 11.94b 11.91b 0.21 <0.01 <0.01 0.661 
Frequency, 
contractions/min 1.72a 1.67a 1.55b 0.16 <0.01 <0.01 <0.01 

Peak pressure, mmHg 22.42b 22.26b 24.60a 1.49 0.049 0.264 0.453 
 

1 MED = 70% concentrate diet 
2 HIGH = 90% concentrate diet 
3 SEM = Standard error of the mean 
4 Data were analyzed using proc MIXED of SAS 9.4 (SAS Institute Inc., Cary, NC) for 
the effect of treatment, hour, and their interaction, using hour as a repeated measure. 
a-b Means within a row without common superscripts differ (P < 0.05) 
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Figure 3-1. Example set-up of a feed bunk suspended from the S-beam load cell mounted 

onto the support bracket in front of an animal’s pen. 
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Figure 3-2. A) A 2-L water-filled balloon attached to a catheter using castration bands 

placed over top of the balloon on the tubing between tubing cuffs and secured with 

plastic hose clamps. B) Display of how the balloon catheter exits the rumen and the 

pressure transducer is secured to the rumen cannula. Zip ties were used to make sure 

connections between the catheter and transducer remained tight, to stabilize the stopcock 

so that it remained open to allow passage of water from the catheter to the transducer, and 

to attach the pressure transducer to the rumen cannula. 
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Figure 3-3. Flow diagram illustrating the process of feeding behavior analysis using 

MATLAB “LoadCell.m” script. 
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Figure 3-4. Example load cell data with meal start and end times shown. 
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Figure 3-5. Comparison of raw and filtered data from rumen motility recordings for a 

short period of time. 
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Figure 3-6. Analysis of sample rumen motility data using the MATLAB “findpeaks” 

function (figure exported from MATLAB). Prominence was used as the contraction 

amplitude. However, width (half-prominence) was not used in any calculations for 

contraction characteristics. 
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Figure 3-7. Identification of rumen contraction start, end, and peak values from sample 

data. The contraction start and end points were determined by calculating the first 

derivative of the filtered data and determining when the derivative surpassed start and 

stop thresholds. Contraction peak values were obtained from MATLAB “findpeaks” 

function.    
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Figure 3-8. Example error of a meal size and length being underreported. Both the start 

and the end of the meal were incorrectly identified due to a more gradual change in slope 

until the thresholds were reached. 
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Figure 3-9. Example error of a contraction stop and duration being misrepresented due to 

the odd-shape of the contraction waveform. 
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Figure 3-10. Duration of ruminal contraction throughout the feeding cycle as determined 

by analysis using the ruminal contractions algorithm. Contraction duration was calculated 

by subtracting the end time of the contraction from the start time. Error bars represent the 

standard error of the mean contraction duration. 
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Figure 3-11. Ruminal contraction frequency throughout the feeding cycle determined 

from number of contraction peaks identified using the ruminal contraction algorithm. 

Rumen motility was measured using a water-filled balloon inserted into the ventral sac of 

the rumen connected to a pressure transducer and signal integration system. Pooled SEM 

= 0.197. 
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CHAPTER 4: A MODERATE TRANSITION OF BEEF HEIFERS TO A 90% 
CONCENTRATE DIET AS A MODEL FOR SUBACUTE RUMINAL ACIDOSIS 

INDUCED ALTERATIONS IN FEEDING BEHAVIOR, RUMEN 
ENVIRONMENT, RETICULORUMEN MOTILITY, AND BLOOD ACID-BASE 

STATUS 

Introduction 

The transition period when cattle are acclimated from a high-forage diet to a high-

grain, rapidly fermentable diet increases the risk for ruminal acidosis (Bevans et al., 

2005; Brown et al., 2006). If ruminal acidosis occurs, cattle typically decrease feed 

intake, exhibit erratic feeding behavior (Fulton et al., 1979a; Cooper et al., 1999b), or 

may go “off-feed” (Fulton et al., 1979b; Kezar and Church, 1979). Ultimately, these 

changes result in lower average daily gains (Koers et al., 1976; Owens et al., 1998) and 

significant losses for producers. Yet, relationships between ruminal acidosis and feed 

intake variation or potential mechanisms for these alterations have not been fully 

described.  

One aspect of rumen physiology that has received little attention in cattle fed high 

concentrate diets is rumen motility. Since rumen motility can influence digesta passage 

out of the rumen, it has potential to alter feed intake. Several overlapping factors of 

regulation suggest that control of motility and feed intake are related (Bruce and Huber, 

1973; Church, 1976; Grovum, 1986; Kaya et al., 1992). Ruminal stasis and reductions in 

contraction amplitude and frequency have been demonstrated with acute acidosis (Juhász 

and Szegedi, 1968; Bruce and Huber, 1973; Cebrat, 1979; Kezar and Church, 1979), but 

rumen motility during typical diet transitions, which induce SARA, has not be 

investigated. Rumen motility directly influences rate of fermentation, and reduced 

motility may serve as a protective mechanism to prevent further reductions in ruminal 
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pH. There is no evidence in the literature to relate rumen motility with ruminal pH and 

voluntary feed intake in cattle other than acute acidosis causing ruminal stasis. Feeding 

behavior and reticulorumen motility may directly affect animal health and productivity 

by influencing the rumen environment, specifically rumen acid-base balance. 

 The objectives of this experiment were to 1) characterize a moderate transition of 

beef cattle to a high-grain diet in regards to feeding behavior, liquid passage rate, ruminal 

pH, rumen fluid VFA, ruminal temperature, rumen motility, and blood acid-base status, 

2) determine if this typical dietary transition and associated SARA would impact rumen 

motility, and 3) evaluate the relationships between feeding behavior, ruminal pH, and 

rumen motility. 

Materials and Methods 

All procedures used in this experiment involving heifers were approved by the 

University of Kentucky Institutional Animal Care and Use Committee (2018-2973) and 

conducted at the University of Kentucky C. Oran Little Research Center, Beef Unit, in 

Versailles, KY. 

Animals and Experimental Design 

Eight ruminally-cannulated Angus crossbred beef heifers (BW = 534 ± 23 kg) 

were adapted to a 70% concentrate, high-moisture corn-based diet (T70; Table 4-1) and 

remained on this diet for 14 d prior to the initiation of the trial. For logistical reasons and 

due to frequency of sampling, the experiment was conducted in 3 blocks of experimental 

animals (block 1, n = 3; block 2, n = 3, and block 3, n = 2). At the beginning of the trial, 

animals were weighed, randomly assigned to blocks, and one block was moved indoors 
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for housing in individual stalls. Heifers were accustomed to being housed indoors from 

previous experiences, but they were given a 6 d acclimation period in indoor housing 

while being fed ad libitum the transition diet, T70, before experimentation began (total 

adaptation period was 14 d). All animals had ad libitum access to water. Heifers were fed 

T70 for 3 (d -2 through 0) additional days to allow for baseline measurements on the T70 

diet. 

On d 1, all animals were switched to a 90% concentrate, high-moisture corn-based 

diet (H90; Table 4-1) offered ad libitum for 4 days (d 1-4). Data were collected 

throughout the experiment with sampling occurring for different physiological 

measurements at various time points as discussed below. The process was repeated for 

the second and third blocks of animals as described above.  

Feeding Behavior 

Feeding occurred at 0900, and feed samples were collected daily, composited for 

each diet, and analyzed for nutrient composition by wet chemistry through Dairy One 

Forage Laboratory (DM: AOAC method 930.15; ash: AOAC method 942.05; crude 

protein: AOAC method 990.03; fat: AOAC method 2003.05; ADF: ANKOM Technology 

method 5; aNDF: ANKOM Technology method 6; lignin: ANKOM Technology method 

9; minerals: samples digested using CEM Microwave Accelerated Reaction System with 

MarsXpress Temperature Control and analyzed by ICP using a radial spectrometer). Orts 

were collected daily at 0800, weighed, and recorded from the previous day in order to 

adjust feed amounts and maintain at least 5% excess throughout the experiment as well as 

calculate individual feed intake. Water consumption was measured using flow meters and 

recorded daily at the time of feeding to determine daily water intake. On d -2, -1, 1, and 



 

 

92 
 

2, frequency of meals (meals/d) and average meal size and duration were calculated for 

each animal on each day by inputing feed disappearance data from feed bunks mounted 

onto load cells (LC101-500/LC111-500, Omegadyne, Sunbury, OH) which record weight 

at 1-min intervals into a meal detection algorithm written in MATLAB R2015b (The 

MathWorks, Inc., Natick, MA) as outlined previously (Dissertation Chapter 3). A meal 

was defined as a continuous feeding event, where a break of at least 30 min with no 

weight changes was used to differentiate between meals. Additionally, the time for 

consumption of 25%, 50%, 75%, and 100% of daily intake was calculated by inputting 

feed disappearance data into GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA) 

and modeling using the exponential – one phase decay model with automatic outlier 

elimination.   

Rumen Fluid Sample Collection and Analyses 

 Rumen fluid samples were collected via a suction strainer from the ventral sac. A 

slit in the cannula plug was created, which allowed passage of the strainer, to ease the 

stress of multiple cannula plug removals on the animals and to avoid possible disruption 

of the ruminal environment. Approximately 100 mL of rumen fluid was collected from 

each animal immediately before feeding (0 h) and 4, 8, 12, 16, 20, 24, 30, 36, 42, 48, 54, 

60 & 66 h after feeding on d -2 during 70% concentrate diet feeding and at the same 

times relative to feeding on d 1 during 90% concentrate diet feeding. A 15-mL sample of 

rumen fluid from each animal was transferred to screw-top conical vials and centrifuged 

for 5 min at 2000 × g. Duplicate 1-mL samples of supernatant rumen fluid from each 

animal and time point were processed for VFA analysis by being placed into 

microcentrifuge tubes, combined with 100 μL 85 mM 2-ethylbutyrate internal standard, 
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capped, and mixed for approximately 2 seconds using a vortex. Next, 100 μL 50% meta-

phosphoric acid were added, tubes were recapped, mixed for approximately 5 seconds 

using a vortex, and frozen (-4°C) to allow for protein precipitation.  Tubes were thawed, 

centrifuged at 20,000 × g for 20 min, and the supernatant was transferred to GC injection 

vials and capped. Gas chromatography with a flame ionization detector (Agilent HP6890 

Plus GC with Agilent 7683 Series Injector and Auto Sampler; Agilent Technologies, 

Santa Clara, CA) and a Supelco 25326 Nukol fused silica capillary column (15 m × 0.53 

mm × 0.5 µM film thickness; Sigma/Supelco, Bellefonte, PA) were used to determine 

VFA concentrations in the rumen fluid samples. Analysis involved injection of 0.2 μL of 

each sample in duplicate at 110°C with a 2:1 split, a 1-min hold, temperature increase at 

5°C/min to 125°C for 2 min, and the set point for inlet and injector at 260°C. 

Ruminal pH & Temperature Measurements 

 Ruminal pH (RpH) was monitored (readings every 1 min) using rumen data 

loggers (SRL-T9, DASCOR, Inc., Escondido, CA) for 48 h beginning immediately prior 

to feeding on d -2 and d 1. A data logger and lithium ion battery sealed in a watertight 

capsule was equipped with a pH electrode exposed to the rumen contents but unable to 

contact the ruminal epithelium (Penner et al., 2006). This device was inserted into the 

ventral sac of the rumen through the cannula before feeding on d -2 and 1. The pH 

electrodes were calibrated before and after each measurement period using pH buffers 7 

and 4. Ruminal pH was measured and recorded continuously from 0 to 24 h relative to 

feeding the T70 diet on d -2 and -1 as well as 0 to 24 h relative to feeding the H90 diet on 

d 1 and 2. When not in use, the pH electrodes were stored in a storage solution 

(DASCOR, Inc.). Data were stored in the data logger and downloaded after each use. 
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From these data, minimum RpH, mean RpH, maximum RpH, duration RpH < 5.8 

(min/d), duration RpH < 5.6 (min/d), and duration RpH < 5.5 (min/d) were determined 

and summarized for each animal and each 24-h period or day. Furthermore, mean RpH 

was calculated for each hour on each day. 

 The data logger was also equipped with a built-in sensor to measure ruminal 

temperature (Trum) at the same time pH was recorded (Mohammed et al., 2014). 

Minimum Trum, mean Trum, and maximum Trum were determined for each animal on 

each day. Additionally, mean Trum was calculated for each hour on each day. 

Rumen Fill and Liquid Dilution Rate Estimates 

 Prior to feeding on d -3 and 4, the rumens of heifers were completely manually 

evacuated to determine rumen fill. Contents for each animal were weighed, thoroughly 

mixed by hand, and subsampled in triplicate for DM analysis (dried at 55°C for 48 h). 

Remaining contents were then immediately returned to the animal. Dry contents of the 

rumen were determined by multiplying the weight of wet contents by the average DM 

percentage of rumen contents divided by 100.  

On d -2 and d 1, animals were intraruminally pulse-dosed with 500 mL Cr:EDTA 

solution (53 mM Cr, adjusted to pH 6.7) immediately before feeding at 0855 to evaluate 

liquid passage from the rumen. The Cr:EDTA solution was spread throughout the rumen 

by injection into various areas. Approximately 100 mL of rumen fluid was collected via 

suction strainer from the ventral sac at 0 (before feeding, before Cr:EDTA dosing), 1, 2, 

4, 8, 12, 18, and 24 h post-dosing. Ten mL samples of fluid from each animal and time 

point were placed in a conical vial and frozen (-4°C). Samples for the 4, 8, 12, and 24 h 

time periods were taken from the 100 mL collected for VFA analysis mentioned above to 
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prevent excessive removal of rumen fluid. After thawing, samples were centrifuged at 

20,000 × g for 30 min. One mL of supernatant was transferred to glass test tubes and 

diluted using nanopure water at a ratio of 1:4 for analysis.  Chromium concentrations for 

each sample were determined in triplicate using atomic absorption analysis (AAnalyst 

200, PerkinElmer Inc., Waltham, MA) at a wavelength of 357.87 nm. If sample responses 

were out of the range of the standard curve, a portion of the sample was diluted until 

within the concentration range and reanalyzed. Liquid volume of the rumen and passage 

rate variables were estimated by linear regression of the natural logarithm of Cr 

concentration against sampling time using GraphPad Prizm 7 (GraphPad Software, Inc., 

La Jolla, CA).  Rate of outflow was determined by the following equation: 

|𝑃𝑃| =  
𝐶𝐶𝐶𝐶𝑑𝑑
𝐶𝐶𝐶𝐶𝑧𝑧

 (𝐹𝐹𝐹𝐹𝐹𝐹) 

Where P represented liquid passage rate (L/h), Crd represented the amount of Cr dosed 

(mg), Crz represented the concentration of Cr at time zero (mg/L), and FDR represented 

the fractional dilution rate of Cr (slope or /h). Ruminal liquid dilution rate (%/h) was 

calculated as the absolute value of FDR*100. Retention time (RT) was calculated as the 

absolute value of 1/FDR. Liquid half-life in the rumen was calculated as the absolute 

value of natural log of 2/FDR. Rumen liquid volume (L) was determined by dividing the 

amount of Cr dosed (Crd) by the amount of Cr present at time zero (Crz). 

Motility Measurements 

Rumen motility was measured continuously for 48 h beginning immediately prior 

to feeding on d -2 and d 1. Disposable blood pressure transducers (MLT0670; 

ADInstruments Inc., Colorado Springs, CO) connected to a PowerLab 8/30 
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(ADInstruments, Inc.) through bridge amplifiers (FE221; ADInstruments, Inc.) were used 

to monitor pressure changes in the rumen and characterize rumen contractions. A water-

filled (2 L) balloon attached to a Tygon catheter (i.d. = 3.2 mm; o.d. = 6.4 mm) was 

inserted into the ventral sac of the rumen on d -2 and d 1 prior to feeding. Balloons were 

weighed to maintain consistent fill between animals and were changed if the balloon 

broke or leaked. A small hole was made in the plug of the rumen cannula to allow the 

balloon catheter to pass through. The end of the catheter external to the animal was 

equipped with a tubing-luer lock adapter for connection to the pressure transducer 

stopcock. Data were recorded using LabChart software (ADInstruments, Inc.) and 

imported into MATLAB for smoothing and analysis.  

Analysis of rumen contractions was conducted as described previously (Chapter 

3) with modifications. Briefly, pressure versus time data were imported into MATLAB 

and filtered using a one-dimensional median filter (order = 15). The “findpeaks” function 

of MATLAB was used to detect contraction peaks through the duration of the recording. 

Peak prominence was used as the contraction amplitude, and the amplitude threshold was 

set at 4 mmHg. The start and end of each contraction was determined by scanning the 

derivative of the pressure signal and finding the time where the derivative of the pressure 

signal fell below the slope threshold of 0.05 on either side of the peak. A peak offset of 

10 was used to prevent the flat portion at the peak from being detected as the beginning 

or end. Then, the duration of each contraction was calculated by taking the difference of 

the start and stop times. Contractions that had amplitudes (mmHg) or durations (s) greater 

than 100 were removed due to inconsistency with biological conditions. Means for 

contraction amplitude and duration were generated for each animal, day (Avg. of T70 
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days, d1 on H90, and d2 on H90), and hour using SAS. Contraction frequency 

(contractions/min) was calculated as the number of peaks detected each hour divided by 

60 min. Statistical analysis was performed on these means. 

Blood Samples and Measurements 

 The jugular vein of the heifers was catheterized (BD Angiocath venous catheter, 

14 g, 5.25”) on d -3 and an I.V. catheter extension set was attached. Before sample 

collection, 10 mL of blood and heparinized saline was extracted and discarded. An 

approximately 1 mL blood sample from each animal and time point were then collected 

into a sterile, heparinized syringe, capped, and placed on ice, for no more than 30 min, 

until analysis in duplicate for pH, pCO2, pO2, Na+, K+, and Ca2+ via a blood gas analyzer 

(GEM Premier 3000, Instrument Laboratory, Bedford, MA).  After collection, catheters 

were filled with approximately 5 mL heparinized saline (20 U heparin/mL) to prevent 

clotting. Blood HCO3
- was calculated from the pH and pCO2 using a pK of 6.1 for the 

bicarbonate buffering system and the following equation, derived from the Henderson-

Hasselbach equation: 

𝐻𝐻𝐻𝐻𝐻𝐻3− =  0.03 × 𝑝𝑝𝑝𝑝𝑝𝑝2  × 10(𝑝𝑝𝑝𝑝−6.1).  

Base excess (BE) was determined using the following equation: 

𝐵𝐵𝐵𝐵 = (0.02786 × 𝑝𝑝𝑝𝑝𝑝𝑝2  ×  10(𝑝𝑝𝑝𝑝−6.1)) + (13.77 × 𝑝𝑝𝑝𝑝) − 124.58. 

Statistical Analysis 

 Animal was considered the experimental unit. Effects were considered significant 

at P < 0.05, and effects with 0.05 < P < 0.1 were considered to show a tendency. The 

lsmeans were calculated for each analysis and compared when significant effects were 

present using the least significant difference (LSD) test. All data were analyzed using 
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proc MIXED of SAS 9.4 as a randomized complete block with repeated measures, where 

block was always considered a random effect. An autoregressive covariance structure 

was used for repeated measures models, unless otherwise noted. Since timing of events 

was one of the critical inquiries of this study, the treatment was time relative to the high-

grain diet/SARA challenge. Thus, most variables were compared between the average of 

days on T70 (to establish a baseline) and each day on the H90 diet (d1 H90 and d2 H90) 

making day (relative to transition) the only fixed effect in the model, and day was 

considered the repeated variable.  

 Additionally, mean ruminal pH and temperature for each hour and day were 

analyzed using proc MIXED of SAS as described above with modifications; fixed effects 

included in the model were day, hour, and the interaction, and day*hour was used as the 

repeated variable. Linear, quadratic, and cubic regressions were conducted using proc 

REG of SAS on the lsmeans for mean ruminal pH and temperature when effect of hour 

was significant to determine goodness of fit.  

Rumen motility variables were analyzed as described above for ruminal pH, 

however, using a compound symmetry covariance structure. When an interaction was 

present, regressions (linear, quadratic, and cubic) were conducted on hourly lsmeans for 

each day to determine the nature of the response by day. 

Mean VFA concentrations in rumen fluid and blood variables were analyzed for 

fixed effects of diet (T70 and H90), hour (0-66h) and the interaction, with diet*hour as 

the repeated variable.  

Prior to analysis of rumen liquid dilution and passage related variables, four 

extreme observations were removed from this data set (one observation each for RT, 
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liquid half-life, rumen liquid volume, and liquid flow rate) because they were driving 

non-normality for these variables. Similarly, prior to analysis of rumen motility variables, 

extreme observations for each variable were removed in an effort to correct non-

normality if they were greater than the third quartile + interquartile range or below the 

first quartile – interquartile range. 

In order to ascertain relationships between feed intake, ruminal pH, and motility 

variables, daily mean values for variables in the above categories were used for multiple 

linear regression. Possible regressors included DMI, water intake, meal duration, meal 

size (g), meal frequency, minimum ruminal pH, mean ruminal pH, maximum ruminal 

pH, time ruminal pH < 5.8, time ruminal pH < 5.6, time ruminal pH < 5.5, mean ruminal 

temperature, contraction amplitude, contraction duration, and contraction frequency. 

When evaluating an intake and feeding behavior variable, all other intake or feeding 

behavior variables were removed from the model. Similar conditions were used for 

motility variables and ruminal variables. The REG procedure of SAS was used with 

backward elimination variable selection, which removed the variable in the model with 

the largest p-value at each step until all variables remaining in the model were significant 

at α = 0.05. 

Results 

 During this moderate transition from a 70% to a 90% concentrate, high-grain diet, 

DMI of heifers tended (P=0.087; Figure 4-1A) to be influenced by day relative to H90 

feeding. Heifers tended to increase DMI on the first day of H90 feeding compared to T70 

and then returned to T70 levels on the second day. Water intake was affected (P=0.008; 

Figure 4-1B) by day relative to H90 feeding, where water intake increased on the first 
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day of H90 feeding compared to T70. Total water intake tended (P=0.10) to be different 

between days, such that water intake on the first day of H90 was greater than on the 

second day of H90 feeding. However, average meal duration, size, and frequency were 

not affected by day (Table 4-2). Feeding behavior analysis resulted in significant effects 

of day for time to consume 25% (P=0.007), 50% (P=0.009), and 100% (P=0.036) of 

daily intake and tended to be significant for time to consume 75% (P=0.068) of daily 

intake (Table 4-2). The time it took heifers to consume 25%, 50%, and 100% of their 

daily intake was greater on d 2 of H90 feeding compared to T70 or d1 H90, meaning 

consumption rate was reduced on d 2. 

 Acetate, propionate, butyrate, valerate, total VFA, and butyrate proportion of total 

VFA were affected by time (P<0.001; Table 4-3) and displayed temporal patterns relative 

to feeding at 0, 24, and 48 h. There was also a significant effect of diet (P≤0.001; Table 

4-3) for propionate and total VFA, where concentrations were greater on H90 compared 

to T70. Additionally, there was a diet*time interaction for isobutyrate (P=0.034) and 

isovalerate (P=0.006) and tended to be an interaction for acetate (P=0.071; Table 4-3). 

Isobutyrate concentration at 4 and 8 h after feeding was greater during H90 than T70, 

whereas concentration at 66 h after feeding was greater during T70 compared to H90 

(Figure 4-2A). Isovalerate concentrations were reduced on H90 compared to T70 at 30, 

36, 54, 60, and 66 h post-feeding (Figure 4-2B). Interactions between diet and time also 

existed for acetate proportion (P<0.001), propionate proportion (P=0.037), and the 

acetate:propionate ratio (P=0.020). Acetate proportion of total VFA during H90 was 

reduced compared to T70 from 20 h through 66h (Figure 4-3A). Propionate proportion of 

total VFA during H90 was greater than T70 at 30, 48, 54, 60, and 66 h (Figure 4-3B). In 
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accordance with these results, the acetate:propionate ratio differed between diets at 4, 48, 

54, 60, and 66 h, where the ratio was reduced during H90 compared to T70 at 48-66h 

(Figure 4-3C). 

 Ruminal pH minimum (P=0.003), mean (P<0.001), and maximum (P=0.007) 

were significantly influenced by day relative to H90 feeding (Table 4-4). Minimum and 

mean RpH were greater on T70 compared to either day on H90, yet maximum RpH 

decreased successively with each day on H90. The amount of time RpH was below 

thresholds of 5.8 (P<0.001), 5.6 (P<0.001), and 5.5 (P=0.002) were all affected by day, 

where amount of time below the thresholds increased successively with each day on H90 

(Table 4-4). Minimum, mean, and maximum ruminal temperature were not affected by 

day. However, mean ruminal temperature tended (P=0.068) to have a day*hour 

interaction. Both mean RpH (Figure 4-4A) and Trum (Figure 4-4B) displayed an overall 

effect of hour or time (P<0.001) across both diets with quadratic responses (mean RpH: 

R2=0.856; mean Trum: R2=0.931). Mean RpH decreased to about 12 h after feeding and 

then increased (Figure 4-4A). Conversely, mean Trum increased until about 16 h after 

feeding and then decreased (Figure 4-4B). 

 The effect of diet was not significant for any rumen fill or rumen liquid dilution 

and passage rate related variables (Table 4-5). 

 Results from analysis of rumen motility variables are shown in Table 4-6. 

Reticulorumen contraction amplitude was reduced (P<0.001) on d 1 and d 2 of feeding 

the H90 diet compared to feeding the T70 diet (Figure 4-5). Contraction duration was 

reduced (P<0.001) on d 1 of H90 feeding compared to T70 or d 2 H90 (Figure 4-6A). 

Additionally, hour relative to feeding influenced (P<0.001) duration of contractions, with 
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a cubic (P<0.001; R2=0.663) response through the 24-h feeding cycle (Figure 4-6B). 

There was a day*hour interaction (P<0.001) for frequency of reticulorumen contractions 

(Figure 4-7). The frequency response over time during T70 feeding was cubic (P<0.001; 

R2=0.546). The best-fitting regression model for d 1 H90 was a linear model (P<0.001; 

R2=0.620), because although the quadratic and cubic models were significant, the 

quadratic and cubic variables were not significantly different from zero, suggesting those 

models overfit the data. No regression model was significant for d 2 H90, but there were 

several time points that d 2 H90 was less than both T70 and d 1 H90 (1 and 2 h), less than 

T70 (6, 13, 15, and 16 h), and less than d 1 H90 (3, 7, and 9 h). Furthermore, d 2 H90 

contraction frequency was greater than that of T70 at 23 h. Pressure at the peak of 

motility contractions was affected by day (P=0.009) of transition, where peak pressure on 

d 2 of H90 feeding was greater than that on T70 (Figure 4-8). 

 For jugular blood acid-base and electrolyte status, there were no diet*time 

interactions (Table 4-7). Blood pH tended to be influenced by time (P=0.063). The partial 

pressure of CO2 was affected by time (P<0.001), where the response decreased after 

feeding and then increased slightly before each feeding at 24 and 48 h (Figure 4-9A). 

Blood HCO3 concentrations were reduced (P=0.030) during H90 feeding and also 

affected by time (P<0.001), following a similar pattern as pCO2 (Figure 4-9B). Similarly, 

base excess in blood was lower (P=0.024) on the H90 diet and impacted by time 

(P<0.001), displaying temporal patterns similar to pCO2 and HCO3 (Figure 4-9C). 

Conversely, ionized Na concentration in blood was greater (P<0.001) on the H90 diet and 

affected by time (P=0.013; Figure 4-10A). Ionized K concentrations were only affected 

by time (P<0.001; Figure 4-10B). 
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Multiple linear regression conducted using backwards elimination variable 

selection resulted in significant models for all dependent variables chosen, except DMI, 

some of which resulted in a simple linear model with only one variable remaining in the 

model (Table 4-8, Table 4-9, and Table 4-10). Mean ruminal pH and time below ruminal 

pH thresholds were the most common dependent variables regressing intake and feeding 

behavior, but reticuloruminal contraction frequency also helped moderately explain (R2 ≈ 

0.4-0.5) these variables (Table 4-8). Meal characteristic and ruminal pH variables were 

common regressors for motility dependent variables (Table 4-9). In fact, approximately 

72% of the variation in contraction frequency could be explained by meal duration, meal 

size, mean RpH, and time that RpH < 5.5. Water intake and meal characteristics were 

significant drivers of ruminal pH related dependent variables (Table 4-10). Additionally, 

contraction frequency was also a significant regressor for time that RpH < 5.6 and 5.5. 

Although it resulted in a significant linear regression with contraction duration, only 

about 20% of the variation in mean Trum could be explained using this model. Thus, 

some of these models should be used with caution when used for predicting values of 

dependent variables. 

Discussion 

 The aim of the present study was to interrelate feeding behavior, rumen variables 

and motility, along with acid-base status during a moderate transition of beef cattle to a 

high-grain diet. Both acute and subacute acidosis may be characterized by a period of 

“off-feed” (Fulton et al., 1979b; Kezar and Church, 1979), but less is known in regards to 

physiological changes associated with a mild or more typical dietary transition. While the 

impact of severe or acute ruminal acidosis had been demonstrated to strongly inhibit 
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(Cebrat, 1979; Kezar and Church, 1979) or completely abolish rumen motility (Juhasz 

and Szegedi, 1968; Bruce and Huber, 1973), the effect of a subacute condition on rumen 

motility was yet to be determined before this study.  

 During this experiment, there was a tendency for heifers to increase DMI on the 

first day of high-grain feeding (Figure 4-1A). Despite a return to baseline (T70) levels on 

the second day of high-grain feeding, the animals did not appear to reduce feed intake or 

go “off-feed” but rather decreased intake compared to the first day which is typical for 

stepwise transitions. It was logical that the animals consumed more water on the first day 

of high-grain feeding (Figure 4-1B) when they tended to consume more DM. This extra 

water may also have helped to alleviate some of the negative consequences of a greater 

DMI of a more rapidly fermentable diet by moderating ruminal pH, but this did not occur 

on the second day of high-grain feeding as water intake (including from feed) was lower 

indicating DMI was the primary driver for water intake (Figure 4-1C). 

 Feeding behavior can greatly impact rumen acid-base balance through its 

influence on fermentable substrate present in the rumen. For example, larger meals and 

faster consumption rates increase the acid production. If feeding behavior and rumen 

metabolism overwhelm the capacity of the animal to prevent acid accumulation in the 

rumen, ruminal pH would be depressed and feed intake may decrease (González et al., 

2012). In the current study, there were no effects of transitioning cattle from the 70% 

concentrate transition diet to the 90% high-grain diet on meal duration, size, or frequency 

(Table 4-2). Conversely, another study had demonstrated that animals undergoing an 

acidosis challenge reduced meal size and increased meal frequency (DeVries et al., 

2009). Meal size did appear to decrease as cattle were transitioned, but this was not 
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significant (P≈0.14; Table 4-2). The biggest impact on feeding behavior occurred on the 

second day of high-grain feeding with an increase in time to consume feed. Thus, because 

heifers tended to consume more feed on the first day of high-grain feeding but they did so 

in the same amount of time, they had a faster consumption rate on this first day of high-

grain feeding compared to 70% concentrate feeding. This could have contributed to 

unfavorable conditions for ruminal acid-base balance and caused a reduction in ruminal 

pH, which led to animals reducing consumption rate (or increasing the time to consume 

feed proportions) on the second day of high-grain feeding, such as was seen in this study. 

 Volatile fatty acid concentrations in rumen fluid changed over time in patterns 

related to feeding, which have been previously demonstrated. As is typical for when 

cattle are switched to a diet with more grain, propionate and total VFA concentrations 

were greater on the diet containing more concentrate (H90; Table 4-3). This suggested 

that there was a greater acid load in the rumen on the higher concentrate diet, but ruminal 

total VFA concentrations increased only 10%.  

 The goal of this study to introduce a mild SARA was achieved as evidenced by 

the time below ruminal pH thresholds. One study used a ruminal pH below 5.6 for 180 

min or more per day to diagnose SARA (Gozho et al., 2005), while another classified a 

ruminal pH less than 5.8 for approximately 100 min as a mild bout of SARA (Penner et 

al., 2010). In the current study, time that ruminal pH was below 5.6 was much less than 

180 min on the 70% diet (Table 4-4). However, switching animals from a 70% to a 90% 

concentrate diet progressively increased the amount of time that ruminal pH was below 

5.6, greater than 500 min/d, for the first two days on the high-grain diet. Meanwhile, the 

ruminal pH did not drop excessively low to indicate acute acidosis.  
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 The patterns of ruminal pH and temperature over time were as expected for a once 

daily feeding, ad libitum bunk management scenario. Under these conditions, ruminal pH 

decreased from microbial fermentation of substrates immediately after feeding until about 

half-way through the feeding cycle, then returned to baseline levels before the next 

feeding (Figure 4-4A). Consequently, the heat of fermentation generated after feeding 

(Blaxter, 1962) likely resulted in a slight rise in ruminal temperature and then subsequent 

decrease after fermentation substrates available in the rumen began to diminish (Figure 

4-4B). Despite having ad libitum access to feed, ruminal pH and temperature patterns 

mirrored that of animals fed once daily. Research has suggested that ad libitum feed bunk 

management is advantageous over alternative strategies because restricted feeding or 

clean bunk management can lead to animals consuming a few large meals during the day 

at a faster rate, which resulted in greater post-prandial reductions in ruminal pH (Erickson 

et al., 2003; Schwartzkopf-Genswein et al., 2003). Frequency of feeding has been shown 

to influence feed intake, eating rate, rumination patterns, and post-prandial patterns of 

ruminal pH (Robles et al., 2007; González et al., 2012). For example, if the animals in 

this study were fed twice daily instead of once, two low periods for ruminal pH would 

have been expected during the 24-h feeding cycle instead of only one. Increasing feeding 

frequency may lead to more stable ruminal pH and decreased acidosis problems by 

encouraging more meals, a more even distribution of feed intake over time, smaller meal 

sizes (particularly of meals immediately following feed delivery), and better 

synchronization of acid production, elimination, and neutralization with salivary buffers 

from rumination (Soto-Navarro et al., 2000; González et al., 2012).  
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 Although cattle did not stop eating during this dietary transition which induced 

SARA, reticulorumen motility was, in fact, altered. Specifically, amplitude of 

contractions was reduced by about 10% on both the first and second day of high-grain 

feeding compared to on the 70% diet, and duration of contractions was reduced by about 

2% on the first day of high-grain feeding but returned to normal on the second. These 

reductions occurred despite no obvious change in rumen fill within these first two days 

(personal observational data, ruminal fill, and liquid volumes). Both the first and second 

days of high-grain feeding indicated that animals were experiencing SARA. The 

frequency of reticulorumen contractions over time was influenced by day, where 

frequency declined linearly over time on the first day of high-grain feeding and was less 

than other days on the second day at several time points, which suggested a sustained 

reduction. Particularly, d2 H90 lacked the greater contraction frequency values 

immediately around feeding as seen in other days. Thus, the appearance of SARA 

coincided with a decrease in rumen motility, despite the small magnitude of changes. It is 

still unclear, however, which regulation pathway(s) for rumen motility (i.e. buccal 

receptors, acid receptors, osmoreceptors, central nervous system, or an inflammatory 

response from bacterial endotoxin) is/are responsible for the alterations (Svendsen, 1973; 

Huber, 1976; Grovum, 1986; Carter and Grovum, 1990; Andersen, 2003). Contraction 

duration was also influenced by time, which agreed with a previously published study 

(Egert et al., 2014) and displayed similar post-prandial patterns. The increase in 

contraction peak pressure on the second day of high-grain feeding could have been due to 

an alteration in lying behavior, where lying increased baseline pressure in the rumen and 

subsequently, peak pressure. Since the animals were experiencing long periods of low 
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ruminal pH by the second day after the dietary switch, they could have laid down more 

(not determined) often to ruminate. The instance of lying increasing pressure in the 

rumen was also observed in Egert et al. (2014). 

Despite alterations in rumen motility, ruminal liquid dilution and flow rate were 

not affected within the first few days of switching to the high-grain diet (Table 4-5). 

However, it is unclear if particulate or fiber passage rate was affected. Due to the small 

average particle size and highly fermentable ingredients of these diets, it would be 

surprising if particulate passage was reduced, unless motility was completely abolished. 

Evidence in the literature suggested that there was a close, positive relationship between 

frequency of reticular contractions and rumen fluid liquid turnover rates when comparing 

diets of no hay, low hay or high hay content (Sissons et al., 1984). In contrast, another 

study demonstrated that duration of reticular contractions was the influential variable of 

ruminal motility that can affect fractional passage rates of ruminal fluid and particulate 

matter (Okine et al., 1989). However, this study used a 100% forage-based diet of ground 

bromegrass and alfalfa hays. As both frequency and duration of reticulorumen 

contractions were altered in the current experiment, perhaps the lack of effect on ruminal 

liquid dilution rate could be due to the low forage/highly fermentable ingredients of this 

diet.  

Bicarbonate serves as the primary buffering system of bodily fluids, such as 

blood. Animals were able to maintain blood pH within normal ranges (Houpt, 1989) 

during the dietary transition from the 70% to 90% concentrate diet, suggesting 

bicarbonate was able to compensate for any potential changes in blood pH (Owens et al., 

1998). However, the transition did impact other measures of metabolic acid-base status as 
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evidenced by a reduction in base excess and bicarbonate; however, the magnitude of 

change was small (Table 4-7). In this case, the base excess was technically a base deficit 

due to the negative values, which signified that the animals were experiencing metabolic 

acidosis on both diets, with a more severe metabolic acidosis on the high-grain diet. Base 

excess of blood is reduced when bicarbonate leaves the blood. Since the high-grain diet 

indicated greater concentrations of VFA in the rumen fluid and lower ruminal pH, the 

reduction in base excess and blood bicarbonate may have been due to greater movement 

of bicarbonate across ruminal epithelium into the rumen in exchange for ionized VFA 

(Stevens, 1970) or to help maintain healthy ruminal pH. Theoretically, if there was a 

reduction in bicarbonate concentration in the blood without a coinciding reduction in 

pCO2, the blood pH should have decreased (Higgins, 2008). Yet, no differences were 

detected between diets for blood pH or pCO2. It is important to note that low bicarbonate 

concentrations can disturb central nervous system function, even when blood pH is not 

affected (Owens et al., 1998). Because rumen motility is controlled in part by the central 

nervous system and vagus nerve (Grovum, 1986), acid-base status may have contributed 

to the reduction in rumen motility. 

Electrolyte balance is also important for homeostasis and many bodily functions. 

Sodium, for example, is the major cation in extracellular fluid and helps maintain osmotic 

balance of cells. In this study, blood sodium concentrations increased when animals were 

transitioned to the high-grain diet (Table 4-7). The sodium hydrogen exchanger isoform 3 

present in the rumen epithelium imports Na+ from the rumen in exchange for a H+ from 

the blood (Schlau et al., 2012). Thus, the increase in Na in the blood may have been in 



 

 

110 
 

part due to an upregulation of this exchanger to try to maintain appropriate blood pH and 

would help explain the reduction in ruminal pH seen on the high-grain diet.  

Multiple regression analysis confirmed that feeding behavior, ruminal pH, and 

ruminal motility variables are intricately related. Whether the parameter estimates were 

positive or negative can give some insight into the direction of the relationships between 

these variables. For example, DMI, as a percentage of the 70% diet intake, of cattle could 

be moderately explained by mean ruminal pH and the time ruminal pH was below 5.8, 

such that as the mean ruminal pH or length of time that pH was below that threshold 

increased, the DMI was reduced. A similar situation existed for the change in DMI in kg 

from the 70% diet intake (Table 4-8). Likewise, meal duration and meal size could be 

moderately estimated by the time that ruminal pH was below 5.8 and 5.5 along with 

ruminal contraction frequency. Increases in contraction frequency and ruminal pH below 

5.5 were associated with increases in these variables, while increases in the time ruminal 

pH was below 5.8 was associated with decreases in these variables. Perhaps the opposite 

nature of the association for the two thresholds in this case was due to the time ruminal 

pH was below 5.8 being more an indicator of SARA, whereas time ruminal pH was 

below 5.5 may be more of an indicator of acute ruminal acidosis. Therefore, it would 

seem logical that if animals had a large meal size, they may experience more periods of 

low, acute-like ruminal pH (<5.5). Yet, if ruminal pH was modestly reduced (<5.8), the 

animals would be under a subacute situation and may reduce meal size. It is important to 

not use these regressions to determine cause and effect because it cannot be determined 

from these equations which event caused what response; it can only be used to report that 

there is a relationship between the variables and the strength of those relationships. 
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Regression analysis showed that decreases in amplitude of reticulorumen contractions 

were also associated with reductions in minimum ruminal pH (Table 4-9). Frequency of 

ruminal contractions produced the most accurate prediction equation of all the variables 

tested with an R2=0.72 using meal duration, meal size, mean ruminal pH, and time 

ruminal pH was below 5.5 as regressors. Reductions in contraction frequency were 

associated with increases in meal duration, mean ruminal pH, and/or time ruminal pH 

was below 5.5, as well as decreases in meal size. These data agreed with literature that 

showed rumen contraction amplitude and frequency were reduced during acute acidosis 

(Bruce and Huber, 1973). Not surprisingly, water intake was the primary regressor for 

minimum, mean, and maximum ruminal pH variables (Table 4-10). Intake of water can 

greatly affect ruminal temperature and pH. However, for the time below threshold levels, 

meal duration and contraction frequency appeared more influential (larger absolute value 

for parameter estimate) than water intake. For example, a one min change in meal 

duration would have changed the time ruminal pH was below 5.8 by approximately 770 

min, whereas a one L change in water consumption would have only changed the time 

ruminal pH was below 5.8 by about 26 min. Greater length of time ruminal pH was 

below 5.6 and 5.5 (i.e. the animal was experiencing longer bouts of SARA) was 

associated with a reduction in contraction frequency or motility. Therefore, this further 

emphasizes the finding that SARA was associated with a change in reticulorumen 

motility. 

Conclusion 

 This study demonstrated that rumen motility was reduced by a SARA challenge 

experienced during a typical feedlot dietary transition. However, animals did not stop 



 

 

112 
 

eating, suggesting rumen motility was not impacted enough to slow passage rate and 

influence voluntary DMI. While meal size, duration, and frequency were not changed 

during the transition, consumption rate of feed was increased on the first day of high-

grain feeding and likely influenced the depression in ruminal pH. Overall, feeding 

behavior, ruminal pH, and ruminal motility variables were clearly interrelated. Further 

research needs to be conducted to ascertain mechanisms of rumen motility regulation that 

are important during SARA or periods where animals reduce feed intake during dietary 

transitions.  



 

 

113 
 

Tables and Figures 

Table 4-1. Composition of diets and ingredients. 

 

 

 

  

 

1 T70: Transition diet; 70% concentrate 
2 H90: High-grain finishing diet; 90% concentrate 
3 Contained 56.34% Cl, 36.53% Na, 1.2% S, 0.06% Ca, 68.9 ppm Co, 1837.7 ppm Cu, 
119.9 I, 9290.2 ppm Fe, 4792.3 ppm Mn, 18.5 ppm Se, and 5520.2 ppm Zn on a DM 
basis. 
4 Composed of vitamin A acetate (1,814,368 IU/kg), D-activated animal sterol (source of 
vitamin D3; 362,874 IU/kg), vitamin E supplement (227 IU/kg), roughage products, 
calcium carbonate, and mineral oil. 
 

 

  

Item 
Diet 

T701 H902 
Ingredient, % DM basis   
   Corn silage 54.00 18.00 
   High moisture corn 37.48 74.95 
   Soybean meal 5.69 4.00 
   Urea 0.55 0.50 
   Tallow 0.30 0.30 
   Limestone 1.10 1.40 
   Trace Mineral Premix3 0.45 0.45 
   Vitamin A, D, & E Premix4 0.15 0.15 
   Sodium sulfate 0.16 - 
   Potassium sulfate 0.12 0.25 
Nutrient Composition, % DM basis   
   Crude Protein 12.6 11.2 
   ADF 14.6 6.4 
   aNDF 22.1 9.6 
   TDN 75.0 83.0 
   Calcium 0.66 0.52 
   Phosphorus 0.40 0.37 
   Magnesium 0.15 0.12 
   Potassium 0.89 0.70 
   Sodium 0.236 0.177 
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Table 4-2. Feeding behavior for beef heifers during transitioning to a high-grain, finishing diet 

Item Treatment SEM3 P-value 
 T701 d1 H902 d 2 H90 
Meal Characteristics      
   Duration, min 18.51 16.78 15.69 1.53 0.372 
   Size3, g 1525 1299 1264 140.3 0.143 
   Frequency, meals/d 13.0 12.3 12.6 0.7 0.524 
Consumption Rate Modeling 
(amount of daily intake) 

     

  Time to consume 25%, min 185.6b 222.8b 434.9a 48.5 0.007 
   Time to consume 50%, min 465.4b 485.2b 763.0a 64.3 0.009 
   Time to consume 75%, min 871.3 933.1 1216.3 89.9 0.068 
   Time to consume 100%4, min 1454b 1450b 1854a 140.3 0.036 

 

1 T70: Average of d -2 and -1 when on 70% concentrate transition diet 
2 H90: High-grain finishing diet; 90% concentrate 
3 SEM represents a pooled SEM across all days 
a,b Means within a row without a common superscript letter are significantly different. 
4 Statistical analysis was conducted on transformed data due to non-normality. Means presented are back-transformed means. 
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Table 4-3. Volatile fatty acid (VFA) concentrations in rumen fluid from beef heifers 

during transitioning to a high-grain, finishing diet 

Item Diet SEM P-value 
T701 H902 Diet Time3 Diet*Time 

Volatile fatty acid, mM       
   Acetate 54.51 57.01 3.55 0.106 <0.001 0.071 
   Propionate 33.64 41.67 4.61 0.001 <0.001 0.840 
   Butyrate 10.24 11.85 3.15 0.542 <0.001 0.457 
   Isobutyrate 0.903 0.913 0.12 0.897 0.001 0.034 
   Isovalerate 2.41 2.04 0.18 0.110 <0.001 0.006 
   Valerate 2.86 3.19 0.39 0.152 <0.001 0.601 
   Total VFA 104.6 116.7 9.11 <0.001 <0.001 0.611 
Proportion of total VFA       
   Acetate 0.526 0.493 0.019 0.004 <0.001 <0.001 
   Propionate 0.319 0.352 0.021 0.081 <0.001 0.037 
   Butyrate 0.095 0.100 0.019 0.729 <0.001 0.350 
Acetate:Propionate 1.701 1.578 0.216 0.407 <0.001 0.020 

 

1 T70: 70% concentrate transition diet 
2 H90: High-grain finishing diet; 90% concentrate 
3 VFA were evaluated at 0, 4, 8, 12, 16, 20, 24, 30, 36, 42, 48, 54, 60 & 66 h after feeding 
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Table 4-4. Ruminal pH and temperature for heifers during transitioning to a high-grain, finishing diet 

Item Treatment SEM P-value 
T701 d 1 H902 d 2 H90 Day Hour Day*Hour 

Ruminal pH        
   Minimum 5.51a 5.17b 5.06b 0.083 0.003 - - 
   Mean 6.16a 5.76b 5.59b 0.099 <0.001 <0.001 0.635 
   Maximum 6.88a 6.65b 6.41c 0.092 0.007 - - 
   Time below 5.8, min 159c 756b 1024a 1293 <0.001 - - 
   Time below 5.6, min 47c 557b 862a 1393 <0.001 - - 
   Time below 5.5, min 22c 478b 745a 3.623 0.002 - - 
Ruminal Temperature        
   Minimum 38.9 38.2 39.1 0.39 0.141 - - 
   Mean 40.3 40.4 40.3 0.13 0.888 <0.001 0.068 
   Maximum 41.0 41.1 40.9 0.13 0.371 - - 

 

1 T70: Average of d -2 and -1 when on 70% concentrate transition diet 
2 H90: High-grain finishing diet; 90% concentrate 
3 SEM represents pooled standard error of the means 
a,b,c Means within a row without a common superscript letter are significantly different 
- Indicates effect was not evaluated for that variable 
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Table 4-5. Rumen fill and liquid dilution rate estimates for cattle consuming a 70% or 

90% concentrate-based diet 

 

 

 

 

 

 

 

 
1 T70: Transition diet; 70% concentrate 
2 H90: High-grain finishing diet; 90% concentrate 
3 SEM represents pooled standard error of the means 

Item 
Diet 

SEM P-Value 
T701 H902 

Rumen content dry matter, % 14.2 15.5 0.65 0.245 
Wet contents, kg 55.6 52.2 2.3 0.196 
Wet contents, g/kg BW 104.0 97.9 5.0 0.216 
Dry contents, kg 7.9 8.1 0.5 0.824 
Dry contents, kg/kg BW 14.8 15.2 1.0 0.790 
Fractional dilution rate (FDR) -0.057 -0.054 0.0055 0.556 
Liquid dilution rate, %/h 5.68 5.38 0.55 0.556 
Mean retention time, h 18.38 18.09 1.43 0.857 
Half life, h 12.74 12.53 0.983 0.846 
Rumen liquid volume, L 77.15 74.76 4.513 0.256 
Liquid flow rate, L/h 4.33 4.26 0.253 0.878 
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Table 4-6. ANOVA analysis and regressions for rumen motility variables 

 

1 T70: average on transition diet; 70% concentrate 
2 H90: High-grain finishing diet; 90% concentrate 
3 Despite significant quadratic and cubic models for d1 H90 contraction frequency, the quadratic and cubic variables were not 
significantly different from zero, suggesting these models were overfitting the data. 

Item 
P-value  Linear  Quadratic  Cubic 

Day Hour Day*Hour  P-value Adj. r2  P-value Adj.  r2  P-value Adj.  r2 
Amplitude <0.001 0.217 0.354  - -  - -  - - 
Duration <0.001 <0.001 0.781  0.524 -0.03  <0.001 0.490  <0.001 0.612 
Frequency <0.001 <0.001 <0.001  - -  - -  - - 
   T701 - - -  0.002 0.318  0.01 0.296  0.001 0.478 
   d1 H902,3 - - -  <0.001 0.603  <0.001 0.598  <0.001 0.605 
   d2 H90 - - -  0.531 -0.027  0.408 -0.006  0.471 -0.017 
Peak Pressure 0.009 0.610 0.978  - -  - -  - - 
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Table 4-7. Jugular blood acid-base and electrolyte status of beef heifers during a 

moderate transition to a finishing diet 

Item Diet SEM3 P-value 
T701 H902 Diet Time Diet*Time 

Blood acid-base       
   pH 7.414 7.407 0.005 0.134 0.063 0.710 
   pCO2, mmHg 35.08 33.92 0.53 0.120 <0.001 0.576 
   pO2, mmHg 45.42 46.65 1.7 0.311 0.231 0.458 
   HCO3

-, mmol/L 21.56 20.50 0.40 0.030 <0.001 0.915 
   Base Excess, 
mmol/L 

-2.49 -3.56 0.42 0.024 <0.001 0.934 

Electrolyte       
   Ionized Na, mmol/L 141.9 143.1 0.15 <0.001 0.013 0.562 
   Ionized K, mmol/L 3.28 3.24 0.032 0.283 <0.001 0.152 
   Ionized Ca, mmol/L 1.02 1.01 0.027 0.246 0.541 0.665 

 

1 T70: Transition diet; 70% concentrate 
2 H90: High-grain finishing diet; 90% concentrate 
3 SEM represents pooled standard error of the means 
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Table 4-8. Multiple regression analysis of intake and feeding behavior variables to determine relationships between intake, 

ruminal, and motility variables and predictability of those variables. 

Dependent Variable Variables remaining in 
model 

Model 
P-value r2 Adj. r2 Parameter 

estimate SE 

DMI, kg None - - - - - 

DMI, % of T701 Mean RpH2 0.026 0.430 0.343 -147.32 49.03 
RpH < 5.8 -0.109 0.04 

Change in DMI from T70, kg Mean RpH 0.030 0.418 0.329 -16.41 5.47 
RpH < 5.8 -0.012 0.005 

Water, L RpH < 5.5 0.002 0.447 0.394 0.013 0.003 
Contraction frequency 16.06 6.67 

Meal duration, min 
RpH < 5.8 

0.003 0.510 0.433 
-0.0019 0.00073 

RpH < 5.5 0.0018 0.00075 
Contraction frequency 0.692 0.265 

Meal size, g 
RpH < 5.8 

0.001 0.561 0.491 
-0.931 0.29 

RpH < 5.5 0.803 0.32 
Contraction frequency 823.02 257.4 

Meal frequency, meals/d 
RpH < 5.6 

0.014 0.436 0.342 
0.010 0.0045 

RpH < 5.5 -0.011 0.0046 
Mean Trum3 0.634 0.226 

 

1 T70: Transition diet; 70% concentrate; average value for DMI on this diet 
2 RpH: ruminal pH 
3 Trum: ruminal temperature 
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Table 4-9. Multiple regression analysis of rumen motility variables to determine relationships between intake, ruminal, and 

motility variables and predictability of those variables. 

Dependent Variable Variables remaining 
in model 

Model 
P-value r2 Adj. r2 Parameter 

estimate SE 

Amplitude, mmHg Minimum RpH1 0.005 0.309 0.277 2.06 0.66 

Duration, s 
Meal duration 

0.028 0.389 0.288 
-24.83 11.19 

Meal size, g 0.025 0.011 
Mean Trum2 0.073 0.025 

Frequency, contractions/min 

Meal duration 

<0.001 0.720 0.658 

-19.62 9.33 
Meal size, g 0.020 0.009 
Mean RpH -0.97 0.223 
RpH < 5.5 -0.00093 0.0002 

 

1 RpH: ruminal pH 
2 Trum: ruminal temperature 
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Table 4-10. Multiple regression analysis of ruminal pH and temperature variables to determine relationships between intake, 

ruminal, and motility variables and predictability of those variables. 

Dependent Variable Variables remaining 
in model 

Model 
P-value r2 Adj. r2 Parameter 

estimate SE 

Minimum RpH1 Water 0.006 0.405 0.346 -0.018 0.0063 
Meal size, g 0.00038 0.00016 

Mean RpH Water 0.001 0.487 0.436 -0.026 0.0076 
Meal size, g 0.00051 0.00019 

Maximum RpH Water 0.006 0.300 0.269 -0.0203 0.0066 

Time RpH < 5.8, min Water <0.001 0.504 0.454 26.55 8.98 
Meal duration -771.53 229.45 

Time RpH < 5.6, min 
Water 

<0.001 0.512 0.466 
33.19 8.69 

Contraction 
frequency 

-1032.5 324 

Time RpH < 5.5, min 
Water 

<0.001 0.537 0.493 
33.74 8.35 

Contraction 
frequency 

-1033.5 311.2 

Mean Trum2, °C Contraction duration 0.033 0.200 0.162 2.89 1.26 
 

1 RpH: ruminal pH 
2 Trum: ruminal temperature 
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Figure 4-1. Dry matter (A; P=0.087), water (B; P=0.008), and total water (including from 

feed; C; P=0.10) intake of beef heifers during a moderate transition from a 70% (T70) to 

a 90% concentrate (H90) diet. The T70 bar represents the average of 4 days on T70 (d -3 

through 0), immediately prior to switching to the H90 diet. Columns without a common 

letter differed (P<0.05).  
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Figure 4-1 continued. 
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Figure 4-2. Concentrations of isobutyrate (A) and isovalerate (B) in rumen fluid at a 

given time point relative to feeding differed between diets (diet*time interaction). Times 

marked with an asterisk (*) denote that T70 and H90 differed (P<0.05) at that time point. 
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Figure 4-3. Proportion of total VFA in rumen fluid represented by acetate (A), propionate 

(B), as well as the acetate:propionate ratio (C) at a particular time point relative to 

feeding was dependent on diet (diet*time interaction). Times marked with an asterisk (*) 

denote that T70 and H90 differed (P<0.05) at that time point. 
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Figure 4-3 continued. 
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Figure 4-4. Mean ruminal pH (A) and temperature (B) varied by hour relative to feeding. 

A) Across the 24-hour feeding cycle, mean ruminal pH decreased and then increased 

resulting in a significant quadratic (P<0.001) response. B) Inversely, mean ruminal 

temperature increased then decreased over the feeding cycle, which also resulted in a 

significant quadratic (P<0.001) response. 
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Figure 4-5. Reticulorumen contraction amplitude in cattle during a moderate transition 

from a 70% concentrate diet (T70) to a high-grain finishing diet (H90). Amplitude was 

reduced (P<0.001) on both days during H90 feeding compared to during T70 feeding. 

Columns without a common letter differed (P<0.05). 
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Figure 4-6. Cattle reticulorumen contraction duration during a moderate transition to a 

high-grain finishing diet. A) Day influenced (P<0.0001) contraction duration where 

contraction duration was reduced on the first day of high-grain (d1 H90) feeding 

compared to on a 70% concentrate diet (Avg. T70) or the second day of high-grain 

feeding (d2 H90). Columns without a common letter differed (P<0.05). B) Duration of 

contractions was affected (P<0.0001) by hour after feeding, where in general, the 

response was cubic (P<0.001; r2=0.663) throughout the feeding cycle. Error bars 

represent the average SEM across all hours.  
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Figure 4-6 continued. 
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Figure 4-7. Frequency of reticulorumen contractions in cattle during a moderate transition 

from a 70% concentrate transition diet (T70) to a 90%, high-grain finishing diet (H90). 

The effect of hour was influenced by day (P<0.001). Generally, contraction frequency 

was reduced for several hours after feeding on d2 H90 compared to those hours on 

previous days. 
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Figure 4-8. Pressure at the peak of reticulorumen contractions in cattle during a moderate 

transition from a 70% concentrate diet (T70) to a 90%, high-grain diet (H90). Peak 

pressure was affected (P=0.009) by day of transition, where peak pressure increased on d 

2 of feeding H90 compared to feeding T70. Columns without a common letter differed 

(P<0.05). 
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Figure 4-9. Jugular blood partial pressure of CO2 (A), bicarbonate (B), and base excess 

(C) were affected (P<0.001) by time. Error bars present the average SEM across all 

hours. 
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Figure 4-9 continued. 
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Figure 4-10. Jugular blood ionized sodium (A) and ionized potassium (B) were affected 

by time. Error bars present the average pooled SEM across all hours. Means without a 

common letter differed (P<0.05). 
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CHAPTER 5: EVALUATION OF CHANGES IN FEEDING BEHAVIOR, 
RUMINAL ENVIRONMENT, AND RUMEN MOTILITY ASSOCIATED WITH 

REDUCTIONS IN FEED INTAKE FOLLOWING A LARGE INCREASE IN 
DIETARY CONCENTRATE 

Introduction 

During the transition to a high-grain diet, cattle may experience periods of 

subacute ruminal acidosis (SARA) and demonstrate erratic feeding behavior, or go “off-

feed.” This period of “off-feed” has been noted under both acute and subacute acidotic 

conditions (Fulton et al., 1979a; Kezar and Church, 1979). Although reductions in DMI 

have been used to diagnose SARA (Kleen et al., 2003), effects of SARA on DMI are 

inconsistent. Furthermore, some cattle appear to be highly affected during a dietary 

transition, whereas others are not (Brown et al., 2000; Bevans et al., 2005). Feeding 

behavior, such as meal size and frequency, may be altered by increasing concentrate in 

the diet, even if total DMI is not affected (Li et al., 2012), and can influence ruminal pH 

and the rumen environment. 

Rumen motility can influence digesta passage, content mixing, and presentation 

of substrate to the absorptive surface of the rumen, and therefore, it has potential to alter 

feed intake and VFA absorption. Little is known about motility during the transition to 

high-grain diets and periods of ruminal acidosis. Previous research from our laboratory 

demonstrated that rumen motility was reduced when cattle were transitioned from a 70% 

to a 90% concentrate diet (Dissertation Chapter 4). Yet, the effects of a more abrupt 

transition (increase in concentrate content of the diet) where cattle are given ab libitum 

access to feed on rumen motility has not been investigated. 

As cattle are switched to a high-grain diet, notable changes occur in the color and 

consistency of rumen fluid. Rate of VFA absorption from the rumen has been shown to 
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decrease during acidosis, which could be due to high osmolality from accumulation of 

VFA (Tabaru et al., 1990) and/or slow diffusion of substrates through rumen fluid. 

Viscosity of rumen fluid may play a key role in quality of mixing, movement of VFA 

through the fluid, and presentation of VFA to the ruminal epithelium for absorption, 

thereby influencing ruminal pH. However, there is no evidence in the literature that 

relates rumen motility with ruminal pH, rumen fluid viscosity and altered feed intake in 

cattle.   

 The objectives of this experiment were to 1) investigate what behavior and 

physiological parameters could be associated with the timing of when animals go “off-

feed”, 2) determine if an abrupt transition by increasing concentrate in the diet would 

affect rumen motility, and 3) evaluate rumen fluid viscosity as cattle are adapted to a 

high-grain diet.  

Materials and Methods 

All procedures used in this experiment involving heifers were approved by the 

University of Kentucky Institutional Animal Care and Use Committee (2018-2973) and 

conducted at the University of Kentucky C. Oran Little Research Center, Beef Unit, in 

Versailles, KY. 

Animals and Experimental Design 

Ten Holstein steers (pre-surgery BW ± SEM = 278 ± 10.3 kg) were fitted with 

rumen cannula (#2C rumen cannula, Bar Diamond Inc., Parma, ID). Steers were withheld 

from food (24 h) and water (12 h) prior to surgery. Steers were blocked by weight prior to 

surgery to determine pairs for surgeries and sampling. 
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The cannulated steers were adapted to a diet composed of 50% chopped tall 

fescue K31 hay and 50% concentrate supplement (MIX; Table 5-1) prior to the initiation 

of the trial. Steers were given at least a 21 d acclimation period and fed ad libitum the 

MIX diet. Animals (pre-sampling BW ± SEM = 304 ± 13 kg) were fed MIX for three 

additional days (d -2 to 0) to allow for baseline measurements conducted primarily on d -

1 (also called MIX day). All animals were then abruptly changed to a 90% concentrate, 

high-moisture corn-based diet (HG; Table 5-1) offered ad libitum. Measurements were 

taken on d 1-3 of feeding HG (HGd1, HGd2, and HGd3, respectively).  Thus, each block 

(n=7) included measurements on the baseline MIX diet and after switching to the HG 

diet. Data were collected throughout the experiment at various time points as discussed 

below. All animals had ad libitum access to water throughout the experiment.  

Ruminal pH was monitored manually using a benchtop pH meter (S220 

SevenCompact™ pH/Ion meter, Mettler Toledo, LLC, Columbus, OH) at rumen fluid 

collection times (see below). If rumen fluid measured pH of 4.2 or lower, the rumen of 

affected animal(s) was evacuated immediately and inoculated with rumen contents from a 

donor animal, ending the sampling from that animal. 

Feeding Behavior 

Feeding occurred at 0900, and feed samples were collected daily, composited for 

each diet, and analyzed for DM content (55°C for 48 h; used for DMI adjustment) and 

nutrient composition by wet chemistry through Dairy One Forage Laboratory (DM: 

AOAC method 930.15; ash: AOAC method 942.05; crude protein: AOAC method 

990.03; fat: AOAC method 2003.05; ADF: ANKOM Technology method 5; aNDF: 

ANKOM Technology method 6). Orts were collected daily at 0830, weighed, and 
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recorded from the previous day in order to adjust feed amounts and maintain at least 5% 

excess throughout the experiment as well as calculate individual feed intake. Water 

consumption was measured using flow meters and recorded at 0, 4, 8, 12, and 24 h 

relative to feeding on sampling days to determine water intake. Total water intake (L/d) 

was determined by summing the measured water intake and amount of water in feed 

consumed (based on DM content of feed; assuming 1 kg = 1 L). Frequency of meals 

(meals/d) and average meal size and duration was analyzed (MATLAB R2015b, The 

MathWorks, Inc., Natick, MA) for each animal on each day by feed disappearance from 

feed bunks mounted onto load cells (LC101-500/LC111-500, Omegadyne, Sunbury, OH) 

which record bunk weight at 1-min intervals using an algorithm previously described 

(Dissertation Chapter 3). A meal was defined as a continuous feeding event. A break of at 

least 30 min with no weight changes was used to differentiate between meals. A median 

filter (n=20) was applied to the data before meal detection to remove noise created from 

animals moving the suspended feed bunk. The time for consumption of 75% of daily 

intake was calculated using one-phase decay exponential regression with automatic 

outlier determination (GraphPad Prism 7, GraphPad Software, Inc., La Jolla, CA). 

Animals were also scored based on their susceptibility to go “off-feed” during the 

transition by their DMI on HGd2, where animals that consumed more than 4 kg of DM 

received a score of 1 (least susceptible), 1-4 kg DM received a score of 2 (moderately 

susceptible), 0-1 kg DM received a score of 3 (highly susceptible), and animals for which 

the experiment had to be stopped early due to low ruminal pH received a score of 4 (most 

susceptible). This score was only used as a means of categorizing animals for multiple 

regression, as discussed below. 
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Rumen Fluid Sample Collection and Analyses 

 Rumen fluid samples were collected via a suction strainer from the ventral sac. A 

slit in the cannula plug was created to allow passage of the strainer and prevent any effect 

of multiple plug removals on the animals’ responses. Approximately 50 mL of rumen 

fluid was collected from each animal into screw-top conical vials immediately before 

feeding (0 h) and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 18, 20, and 24 h after feeding during 

baseline measurements (d -1) and at the same times, relative to feeding of the HG diet on 

d 1-3. Samples were transported to the laboratory immediately measured manually for pH 

using a benchtop meter (S220 SevenCompact™ pH/Ion meter, Mettler Toledo, LLC, 

Columbus, OH; used for monitoring animal condition and was separate from continuous 

pH recording discussed below), and then placed on ice. A portion of the rumen fluid from 

each animal and time point was strained through a fine mesh, stainless steel strainer (item 

# MS2K-3S; Winco, DWL International Trading, LLC, Lodi, NJ), collected into 15 mL 

conical vials, frozen at -20°C, and saved for subsequent viscosity analysis. Remaining 

rumen fluid was centrifuged for 5 min at 2000 × g. Duplicate 1-mL samples of 

supernatant rumen fluid from each animal and time point were processed for VFA 

analysis. 

Processing for VFA analysis involved combining 1 mL supernatant sample and 

100 μL 85 mM 2-ethylbutyrate internal standard into microcentrifuge tubes, capping, and 

mixing for approximately 2 seconds using a vortex. Next, 100 μL 50% meta-phosphoric 

acid was added, tubes were recapped, mixed for approximately 5 seconds using a vortex, 

and frozen (-20°C) to allow for protein precipitation. Tubes were thawed, centrifuged at 

20,000 × g for 20 min, and supernatant was transferred to GC injection vials and capped. 
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Gas chromatography with a flame ionization detector (Agilent HP6890 Plus GC with 

Agilent 7683 Series Injector and Auto Sampler; Agilent Technologies, Santa Clara, CA) 

and a fused silica capillary column (Supelco 25326 Nukol; 15 m × 0.53 mm × 0.5 µM 

film thickness; Sigma/Supelco, Bellefonte, PA) was used to determine VFA 

concentrations in the rumen fluid samples. Analysis involved injection of 0.2 μL of each 

sample in duplicate at 110°C with a 2:1 split, a 1-min hold, temperature increase at 

5°C/min to 125°C for 2 min, and the set point for inlet and injector at 260°C.   

For viscosity analysis, the 15 mL samples of rumen fluid in conical vials were 

thawed and vortexed for at least 10 s to thoroughly mix any substances that precipitated 

during freezing. A 40 mm diameter, parallel plate (stainless steel Peltier plate) rheometer 

(Discovery HR-2 hybrid rheometer, TA Instruments, New Castle, DE) and TRIOS 

Software (TA Instruments) were used to measure the viscosity of rumen fluid between 

shear rates of 20 and 200 s-1 using a 4 point method, where viscosity was averaged over 

30 seconds at each shear rate. Samples were pre-warmed for 5 min in a 39°C water bath, 

analyzed at 39°C in duplicate, and a table of shear rate, shear stress, and viscosities over 

the 4 shear rates was exported from TRIOS into Microsoft Excel. Apparent viscosity was 

calculated by averaging the measured viscosity of the 4 shear rates. According to the 

power law model of the rheological properties of fluids: 

𝜎𝜎 = 𝐾𝐾𝛾̇𝛾𝑛𝑛, 

where 𝜎𝜎 = shear stress, 𝐾𝐾 = consistency coefficient, 𝛾̇𝛾 = shear rate, and 𝑛𝑛 = power law 

index.  Taking the natural log of both sides of the equation resulted in the equation:  

ln𝜎𝜎 = ln𝐾𝐾 + 𝑛𝑛 ln 𝛾̇𝛾. 
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A graph of ln(shear stress) versus ln(shear rate) was generated. Thus, the power law 

index of the sample was equal to the slope of a linear trendline and the consistency 

coefficient equaled 𝑒𝑒(𝑦𝑦 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖).  Analysis was only accepted if the R2 value of the 

regression was greater than or equal to 0.99. 

Liquid Dilution Rate, Volatile Fatty Acid Absorption, and Saliva Production Estimates 

 On d -1, 1, 2, and 3, animals were intraruminally pulse-dosed with 500 mL 

Cr:EDTA/n-valeric acid solution (53 mM Cr, 20 mM valeric acid, adjusted to pH 6.0) 

immediately before feeding at 0900 to evaluate liquid passage rate through the rumen and 

estimate VFA absorption. Approximately 50 mL of rumen fluid was collected via suction 

strainer from the ventral sac at 0 (before feeding, before Cr:EDTA/n-valeric acid dosing), 

0.5, 1, 2, 4, 8, 12, 18, 20, and 24 h post-dosing. Samples of fluid from each animal and 

time point were strained and placed in a conical vial and frozen (-4°C). Samples for 

common time periods were taken from the samples collected for VFA analysis mentioned 

above to prevent excessive removal of rumen fluid. The same 15-mL frozen sample was 

used to take samples for Cr and viscosity analysis. After thawing, a portion of the sample 

was transferred to a microcentrifuge tube and centrifuged at 20,000 × g for 30 min. The 

supernatant was then diluted 5-fold with nanopure water. Chromium concentrations for 

each sample were determined in duplicate using atomic absorption analysis (AAnalyst 

200, PerkinElmer Inc., Waltham, MA) and a wavelength of 357.87 nm. If samples 

responses were out of the range of the standard curve, a portion of the sample was diluted 

until within the concentration range. Baseline concentrations of Cr (0 h) were used to 

correct the concentrations measured at each individual time point. Concentration of Cr 

after dosing and fractional clearance rate of Cr were determined by calculation of the 
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exponential decay rate for Cr using the proc NLIN procedure of SAS (version 9.4, SAS 

Institute Inc., Cary, NC) and the following equation: 

𝐶𝐶𝑡𝑡 =  𝐶𝐶0  ×  𝑒𝑒−𝑘𝑘×𝑡𝑡, 

where Ct represented concentration at a given time, C0 represented the concentration at 

time 0 h, k represented the fractional rate of clearance (also known as fractional dilution 

rate), and t represented time in hours (Allen et al., 2000; Resende Junior et al., 2006; 

Penner et al., 2009b). Liquid half-life in the rumen was calculated as the absolute value of 

0.693/k. Rumen liquid volume (L) was determined by dividing the amount of Cr dosed 

by the amount of Cr present at time zero (C0). Liquid flow rate (L/h) was calculated as 

k*rumen liquid volume. 

Valerate concentrations were determine by gas chromatography as described 

above. As with Cr, concentration of valerate at 0 h were used to correct concentrations 

measured at each individual time point. Exponential decay of valerate over time was 

determined using proc NLIN of SAS and the above equation, where k represented the 

fractional clearance rate (Kc) of valerate. Fractional clearance rate (Kc) of valerate 

included both absorption and passage. Thus, fractional absorption rate (Ka) of valerate 

was determined by subtracting the rate of Cr clearance (assumed to equal valerate 

passage rate, Kp) from the rate of valerate clearance (Kc). It was also assumed that rate of 

n-valeric acid absorption rate was similar to the rates of other VFA absorption (Allen et 

al., 2000). 

Endogenous contributions to ruminal fluid outflow were estimated by subtracting 

total water consumed (L/d) from ruminal fluid outflow (L/d; obtained by multiplying the 

liquid flow rate by 24 h/d). Net transruminal flux was assumed to be minimal, so this 
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endogenous contribution was considered saliva production (Jacques et al., 1989). 

Salivary flow was calculated by dividing the saliva production by 24 h. 

Motility Measurements and Lying Behavior Estimates 

A water-filled (2 L) balloon attached to a Tygon catheter (i.d. = 3.2 mm; o.d. = 

6.4 mm) was inserted into the cranial sac of the rumen on d -2 prior to feeding. Balloons 

were weighed to maintain consistent fill between animals. Balloons were changed and 

replaced after 24 h of use or if equipment failure occurred. A small hole was made in the 

plug of the rumen cannula to allow the catheter to pass through. Disposable blood 

pressure transducers (MLT0670; ADInstruments Inc., Colorado Springs, CO) connected 

to a PowerLab 8/30 (ADInstruments, Inc.) through bridge amplifiers (FE221; 

ADInstruments, Inc.) were used to monitor pressure changes in the rumen and 

characterize rumen contractions. The end of the catheter external to the animal was 

equipped with a tubing to luer lock adapter for connection to the pressure transducer 

stopcock. Rumen motility was measured continuously (2 samples/sec) for 24 h beginning 

immediately prior to feeding on d -1 and for 72 h after feeding on d 1. Animals were tied 

in their stalls with access to water and their feed bunk during recordings to prevent 

complications with equipment connections.  

Data was recorded using LabChart software (ADInstruments, Inc.), saved every 6 

h, raw data were exported from LabChart, and imported into MATLAB for smoothing 

(median filter; order = 10) and analysis of contractions using the “findpeaks” function of 

the MATLAB Signal Processing Toolbox, as previously described (Chapter 4). A 

minimum amplitude of 3 mmHg was used in the algorithm to identify contractions peaks. 

Post-processing was conducted in SAS, whereby contractions having an amplitude or 
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duration greater than 30 mmHg or 30 sec, respectively, were removed from the dataset to 

eliminate appropriate outliers, such as those created when the animal laid down, causing 

a spike in pressure not associated with a forestomach contraction. The MEANS 

procedure of SAS was used to calculate number of contractions detected each hour and 

generate mean contraction peak pressure, amplitude, and duration for each hour. Then, 

the number of contractions detected per hour was divided by 60 min to determine 

contraction frequency (contractions/min). Additionally, the hourly means were 

categorized as being in either period 1 (1-6 h post-feeding), 2 (7-12 h post-feeding), 3 

(13-18 h post-feeding), or 4 (19-24 h post-feeding) of the feeding cycle. 

When animals laid down, the baseline pressure reading suddenly and greatly 

increased and would be sustained until the animal stood back up. With this observation, 

these periods of increased pressure were used to estimate lying behavior of cattle during 

pressure recordings on MIX, HGd1, HGd2, and HGd3, or until the experiment was 

stopped. Post-experimentation, each recording was observed in LabChart at 5:1 

horizontal scaling and scrolled through to find lying bouts. Using the Data Pad feature of 

LabChart, the start time, end time, and duration of each lying bout was estimated by 

selection of the increased pressure section. Total lying time for each animal and day was 

determined by summing all lying bouts. The MEANS procedure of SAS was used to 

determine number of lying bouts and average lying bout duration for each day relative to 

HG feeding. 

Ruminal pH & Temperature Measurements 

 In addition to the spot rumen fluid sampling to monitor ruminal pH manually, 

ruminal pH (RpH) was monitored continuously (readings every 1 min) using rumen data 
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loggers (SRL-T9, DASCOR, Inc., Escondido, CA) for 24 h beginning immediately prior 

to feeding on d -1 and 72 h from feeding on d 1. A data logger and lithium ion battery 

sealed in a watertight capsule was equipped with a pH electrode exposed to the rumen 

contents but unable to contact the ruminal epithelium (Penner et al., 2006). This device 

was inserted into the ventral sac of the rumen through the cannula before feeding on d -1 

and 1. A new probe was inserted every 24 h after insertion on d 1 to ensure the probe was 

working properly throughout the high-grain feeding. The pH electrodes were calibrated 

before and after each measurement period using pH buffers 7 and 4. When not in use, the 

pH electrodes were stored in a storage solution (DASCOR, Inc.). Readings were stored in 

the data logger and downloaded from the data logger after each use. From these data, 

minimum RpH, mean RpH, maximum RpH, duration RpH < 5.8 (min/d), duration RpH < 

5.5 (min/d), and duration RpH < 5.0 (min/d) were determined and summarized for each 

animal, day, and period (as described above for motility variables). Mean RpH was also 

determined for each animal, day, and hour. 

 The rumen data logger (SRL-T9) was also equipped with a built-in sensor to 

measure ruminal temperature (Trum) at the same time pH was recorded (Mohammed et 

al., 2014).  Minimum Trum, mean Trum, and maximum Trum were determined for each 

animal on each day and period. Mean Trum was also determined for each animal, day, 

and hour.  

Statistical Analysis 

The treatment was the high-grain diet challenge (transition from MIX to HG) with 

interest in the timing of changes. All data were analyzed using proc MIXED procedure of 

SAS 9.4 as a randomized complete block with repeated measures using block as a 
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random variable. An autoregressive covariance structure was used for most repeated 

measures models, with exceptions for intake and feeding behavior (heterogeneous 

compound symmetry), liquid passage (heterogeneous autoregressive), motility and 

viscosity (compound symmetry). These other structures were used because the 

autoregressive structure had errors or the chosen structure lowered the Bayesian 

information criterion (BIC). Fixed effect included in all models was day relative to HG 

feeding (MIX, HGd1, HGd2, and HGd3). When appropriate for some variables, the fixed 

effects of hour or period and the interaction with day were also included in the model. 

Effects were considered significant at P < 0.05, and effects with 0.05 < P < 0.1 were 

considered to show a tendency. The lsmeans were calculated for each analysis and 

compared when significant effects were present using the least significant difference 

(LSD) test. The sampling protocol had to be stopped early on the second day of HG 

feeding (HGd2) for two animals because the RpH dropped too low (MIX: n = 10; HGd1: 

n = 10; HGd2: n = 8; HGd3: n = 8). 

Results 

 Dry matter intake was influenced (P=0.0002) by day relative to the dietary switch. 

Animals increased DMI on HGd1 compared to the MIX diet (Figure 5-1A). Then, DM 

intake was reduced on HGd2 and HGd3 compared to both MIX and HGd1. Water intake 

was also affected by day (P=0.0083), where total water intake was reduced on HGd2 

compared to previous days, but was not different from HGd3 (Figure 5-1B). 

 Feeding behavior of cattle during the abrupt dietary increase in concentrate was 

impacted by day. In particular, meal size was not different between MIX and HGd1, but 

was lower on HGd2 and HGd3 (P=0.0053; Table 5-2). Meal duration was also influenced 
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by day (P<0.0001), where duration was not different between MIX and HGd1, but was 

lowest on HGd2 and intermediate on HGd3 (Table 5-2). However, meal frequency was 

not affected by day (P=0.2764). Consumption rate modeling showed that the time for 

animals to consume 75% of their daily DMI was reduced on HGd1 compared to MIX, 

suggesting animals increased consumption rate on HGd1 (P=0.047; Table 5-2). Time to 

consume 75% of DMI on HGd2 was not different from any other day, and had returned 

to MIX baseline levels on HGd3. 

 Ruminal concentrations of all measured individual VFA and total VFA displayed 

day*hour interactions (P<0.01; Table 5-3; Figure 5-2). The percentage of total VFA 

represented by acetate and propionate also showed day*hour interactions (P<0.02; Figure 

5-3A and B), while percentage of total VFA represented by butyrate tended to have a 

day*hour interaction, with significant day (P=0.0016) and hour (P=0.0022) effects 

(Figure 5-3C and D).  

 Rumen fluid apparent viscosity showed a day*hour interaction (P<0.0001; Figure 

5-4). Viscosity was unchanged throughout the feeding cycle on MIX, but increased 

greatly between 6 and 12 h post-feeding on HGd1, evidenced by the greater viscosity at 

12 h post-feeding on HGd1 than all previous time points. Viscosity remained elevated 

through HGd2 but progressively decreased and by HGd3, viscosity levels were returned 

to baseline MIX levels. The power law index of the rumen fluid also displayed a 

day*hour interaction (P=0.0273; Figure 5-5). Once again, by 12 h post-feeding on HGd1, 

power law index was reduced and remained reduced through 6 h post-feeding on HGd2, 

but returned to baseline levels by 12 h post-feeding HGd2 for the remainder of the 

experiment. 



 

 

150 
 

Rumen fractional clearance rate of Cr tended (P=0.0624) to be affected by day 

with greater rates on HGd3 (Table 5-4). Half-life of Cr in the rumen tended (P=0.0946) 

to be altered by day, with greater values on HGd2 (Table 5-4). Rumen liquid volume was 

reduced on HGd3 compared to all other days (P=0.0094; Table 5-4). Liquid flow rate was 

not affected by day (P=0.4074). Clearance rate of VFA from the rumen was reduced by 

HGd2 after the dietary switch (compared to MIX and HGd1), and on HGd3 clearance 

rate of VFA was only reduced compared to MIX (P=0.0045). Positive clearance values 

signify net loss or removal of VFA from the rumen, whereas negative clearance rates 

denote net accumulation of VFA in the rumen. In other words, negative clearance rates 

suggest no net loss of VFA from the rumen by passage or absorption, but VFA 

production was exceeding passage and absorption. Absorption rate of VFA from the 

rumen was not changed on HGd1 compared to MIX, but was reduced on HGd2 and 

HGd3 compared to MIX (P=0.0058). Additionally, saliva production estimates differed 

between days (P=0.039; Figure 5-6), where production was greater on HGd3 than HGd1 

or HGd2. 

When hourly means of reticulorumen motility variables were analyzed for the 

effects of day, hour and the interaction, only day was significant for contraction 

amplitude (P<0.0001) and duration (P<0.0001), but a day*hour interaction existed for 

contraction frequency. Amplitude was reduced on HGd1 compared to MIX and further 

reduced on HGd2 and HGd3 compared to HGd1 (Figure 5-7A). Duration of contractions 

was not changed on HGd1, but was greater on HGd2 compared to all other days (Figure 

5-7B). Contraction frequency over time showed a positive quadratic response on MIX 

and HGd1 that were similar (P<0.0001), negative quadratic response on HGd2 
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(P<0.0001) below MIX and HGd1 levels, and a positive linear response on HGd3 

(P<0.01; Figure 5-7C). When hourly motility means were analyzed for the effects of day, 

period, and the interaction, all reticulorumen motility variables displayed a day*period 

interaction (P<0.05; Table 5-5). Reticulorumen contraction amplitude began to be 

reduced on HGd1, particularly towards the end of the feeding cycle, was significantly 

reduced in period 1-3 of HGd2 compared to MIX, and remained reduced on all periods of 

HGd3 (P=0.0402). Contraction duration began to increase on HGd2, particularly period 3 

and 4, but was mostly returned to baseline levels on HGd3 (P=0.0038). On MIX and 

HGd1, contraction frequency showed similar patterns (P<0.0001). However, on HGd2 

and HGd3, frequency was reduced compared to previous days, with a low reached in 

period 4 of HGd2. Contraction peak pressure displayed similar patterns throughout the 

feeding cycle on MIX and HGd1 with an increase in peak pressure after feeding through 

period 3, after which it began to return to initial levels. Yet, peak pressure decreased 

across the feeding cycle on HGd2, then showed a similar pattern, but with greater peak 

pressures, for HGd3 as MIX and HGd1. 

Lying bout duration was influenced by day (P=0.0133; Table 5-5). Animals 

appeared to have average lying duration that was greater on MIX than the first three days 

on HG. Additionally, lying bout frequency tended (P=0.0784) to be greater on HGd1 than 

HGd2 (Table 5-5). Total lying time was not significantly altered by day. 

Minimum RpH as well as duration RpH< 5.8, 5.5, and 5.0 were influenced by day 

(P<0.01; Table 5-6). The minimum RpH was reduced on HGd1, HGd2, and HGd3 

compared to MIX (P<0.0001). Duration RpH < 5.8 and 5.5 was greater on HGd1, HGd2, 

and HGd3 compared to MIX (P=0.0031 and 0.0179, respectively). For HGd1 and HGd2, 
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duration RpH < 5.0 increased from that on MIX, but was returned to MIX levels on 

HGd3 (P=0.0148). Mean RpH displayed a day*hour interaction (P=0.0001), where 

significant quadratic responses (P<0.01) were found for MIX, HGd1, and HGd3 and a 

positive linear response (P<0.01) was found for HGd2. When RpH variables were 

analyzed for the effects of day, period, and the interaction, all showed a day*period 

interaction (P≤0.0011; Figure 5-9, Figure 5-10).  

Minimum Trum was reduced on HGd2 compared to previous days (P=0.0363). 

Mean Trum showed a day (P=0.0308) and hour (P<0.0001) effect. Mean Trum was less 

on HGd2 than HGd3. When analyzed for the effects of day, period, and the interaction, 

minimum Trum showed a significant interaction (P=0.0298) while mean and maximum 

Trum had significant day and period effects (alternative Table 5-6). Mean Trum was 

progressively increased from period 1 through 3, but period 4 was not different from 2 or 

3. Maximum Trum was greater on all three days of HG feeding compared to MIX. 

Discussion 

This study aimed to investigate the relationships between physiological 

parameters and timing of when animals go “off-feed” during an abrupt increase in dietary 

concentrate. Reductions in feed intake, variable DMI, and/or erratic feeding patterns have 

been reported when ruminal pH was low, animals are transitioned to a high-grain diet, or 

when animals undergo an acidosis challenge (Dirksen, 1970; Fulton et al., 1979a; Cooper 

et al., 1999a). However, cattle appear to vary greatly in their ability to tolerate ingested 

grain or their susceptibility to experience ruminal acidosis and go “off-feed” during these 

events (Dougherty et al., 1975b; Brown et al., 2000; Bevans et al., 2005; Brown et al., 

2006). Therefore, the results of the study attempted to evaluate if the timing of changes in 
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a variety of physiological variables were associated with when animals reduced feed 

intake or the extent to which they went “off-feed.” 

In this experiment, steers increased DMI on the first day of high-grain feeding and 

reduced intake on the second day of high-grain feeding, which is typical when 

concentrate percentage increases in the diet and animals are allowed ad libitum access to 

feed. Since diets with greater percentages of concentrate have smaller particle sizes with 

greater density, animals are able to eat them faster (Beauchemin et al., 2008), as 

evidenced by the 50% reduction in time to consume 75% of their DMI. Then, the post-

ingestive consequences of the greater intake take hold at the end of the first day and could 

be associated with the reduction in feed intake on the second day. Some animals 

completely or nearly completely avoided feed on the second day of high-grain feeding, 

which demonstrated that the abrupt dietary switch from 50% concentrate to 90% 

concentrate was sufficient to cause some animals to go “off-feed.” However, as 

mentioned previously, there was a great diversity in individual animal tolerance. 

Animals varied greatly in ability to tolerate the grain challenge. A greater 

susceptibility score denoted that animal went “off-feed” to a greater extent. Three steers 

had susceptibility scores of 1 (low), whose DMI on HGd1 ranged from 78-150% of their 

MIX DMI. The animal who consumed 78% of its previous DMI was the only animal that 

appeared to self-regulate and consume less DMI on the first day of high-grain feeding. 

Nevertheless, some researchers believe that animals need to have experienced the post-

ingestive consequences of diets that are more fermentable in order to be able to do this 

voluntarily to avoid a ‘lethal meal’ (González et al., 2012). One steer had a susceptibility 

score of 2 and consumed about 115% of their MIX DMI on HGd1. Four steers had a 
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score of 3, and they consumed between 132% and 260% of their MIX DMI on HGd1. 

Despite one animal consuming 260% of their MIX DMI on HGd1 and going completely 

“off-feed” on HGd2, this animal did not experience excessively low ruminal pH. This 

suggested that animal may have compensated for the increased acid load by other means, 

such as a greater absorptive capacity of ruminal epithelium (Penner et al., 2009a; Zebeli 

and Metzler-Zebeli, 2012), greater expression of genes in the rumen involved in 

maintenance of intracellular pH (Schlau et al., 2012), or a more well-adapted ruminal 

microbial community (Allison et al., 1964; Chen et al., 2012). Two steers had a score of 4 

and consumed 123-159% of their MIX DMI on HGd1. Thus, there appeared to be no 

clear correlation between DMI consumed on HGd1 and susceptibility of the animal to go 

“off-feed” during the dietary transition; other mechanisms must be involved with helping 

the animal deal with the acidosis challenge. 

Feeding behavior is a key determinant of rumen acid-base balance due to its 

implications on synchronization of acid production and elimination. Larger meals, which 

often occur for animals consuming high-grain diets with small particle sizes, and faster 

consumption rates increase the acid load in the rumen and may overwhelm the capacity 

for ruminal metabolism and pH regulation leading to accumulation of acid in the rumen, 

reduction in ruminal pH, and potential reductions in feed intake (Dado and Allen, 1995; 

Tolkamp et al., 2002). In this study, meal size was not increased on the first day of high-

grain feeding, but animals did consume their daily DMI faster on this day than on the 

MIX diet. Faster consumption would also increase the acid challenge for the animals.  

Conversely, smaller, more frequent meals help to stabilize ruminal pH and reduce the risk 

of ruminal acidosis (González et al., 2012). In a previous study, animals undergoing an 
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acidotic challenge reduced meal size and also increased meal frequency (DeVries et al., 

2009). Meal size and duration were reduced on the second day of high-grain feeding in 

this experiment, which is when animals consumed less DM than previous days, but meal 

frequency was not affected. Overall, the greater DMI and faster consumption rate on the 

first day of high-grain feeding, might have resulted in post-ingestive consequences that 

led animals to reduce intake, meal size, and meal duration on the second day of high-

grain feeding. Along with these changes in meal characteristics that would help 

synchronize acid production and elimination, the greater saliva production on HGd3 

would have aided in buffering the rumen and may have facilitated animal recovery from 

the acidotic insult. 

On the first day of high-grain feeding, total VFA concentrations in the rumen 

were greater than all other days for a significant portion of the day (6-18h post-feeding). 

This suggested that there was a greater acid load in the rumen at this time. Yet, saliva 

production, which would help eliminate acid through neutralization with bicarbonate, was 

not different from MIX on this day. Ruminal pH data showed reduced pH on HGd1 and 

increased time pH was below thresholds and changes were sustained through HGd3. 

Together, these data suggested the experiment was successful at experimentally inducing 

ruminal acidosis. Previously, some studies have used a ruminal pH below 5.6 for more 

than 180 min or below 5.8 for about 100 min to diagnose SARA (Gozho et al., 2005; 

Penner et al., 2010). On all three days of feeding the high-grain diet, the duration that 

ruminal pH was below 5.5 was well above 180 min, indicating that the challenge was at 

least a severe SARA challenge. Since ruminal pH was below 5.0 for more than 100 min 

on HGd1 and HGd2, one may conclude that the abrupt dietary switch imposed in this 
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study was actually an acute acidotic challenge. Interestingly, despite ruminal pH being 

below 5.0 for approximately 200 min on the first day of high-grain feeding (including a 

significant portion during period 3), animals did not appear to reduce feed intake until the 

second day, suggesting ruminal pH was not solely responsible for reducing feed intake. 

Previous research in dairy cows (Khafipour et al., 2009a; b) and beef cattle (Faleiro et al., 

2011) also came to the conclusion that ruminal pH was not responsible for the reduction 

in feed intake. For example, while two acidosis challenges with either grain or alfalfa 

pellets both reduced ruminal pH, the grain-induced acidosis reduced feed intake, but the 

alfalfa-induced acidosis actually increased intake (Khafipour et al., 2009a; b).  

Around the same time on the first day of high-grain feeding that the reduction in 

mean ruminal pH was first evident (period 2 or 7-12 h post-feeding), rumen fluid 

viscosity was greatly increased (12 h post-feeding). In fact, the main period that ruminal 

pH was reduced and viscosity was increased were very similar. Viscosity was increased 

from 12 h post-feeding on the first day through 12 h post-feeding on the second day of 

high-grain feeding, while ruminal pH was reduced from period 2 on the first day through 

period 3 on the second day of high-grain feeding. This finding suggested that rumen fluid 

viscosity and maintenance of ruminal pH are associated, as hypothesized. Power law 

index, which was below 1 for the rumen fluid samples, revealed that rumen fluid behaves 

as a pseudoplastic or shear thinning fluid, which means viscosity would decrease as 

mixing increases. This property may be beneficial during this transition since the rumen 

fluid had a greater viscosity and would then need less force for the same extent of 

mixing.  
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Reticulorumen motility is responsible for the mixing of rumen fluid and contents 

(Waghorn and Reid, 1983). Our previous study, which induced SARA, observed a 

reduction in reticulorumen contraction amplitude, duration, and frequency. In the current 

study using a more severe acidotic model, reticulorumen motility was also altered, but in 

a different manner. While amplitude and frequency was reduced during the dietary 

transition, contraction duration actually increased slightly on the second day of high-grain 

feeding. The reason for an increase in contraction duration is unknown and warrants 

further investigation. Previous research has reported inhibition (Cebrat, 1979; Kezar and 

Church, 1979) or complete abolishment (Juhasz and Szegedi, 1968) of rumen motility 

with severe or acute acidosis, so the reduction in contraction amplitude and frequency 

were expected. Motility changes occurred primarily on the second day of high-grain 

feeding, which was after important changes in ruminal pH. Thus, the reduction in ruminal 

pH may have at least in part been associated with or led to reductions in rumen motility. 

Some research has suggested that factors, such as bacterial endotoxins or histamine, 

arising during low ruminal pH periods could reduce contraction amplitude and frequency 

(Dougherty et al., 1975b; Andersen, 2003; Plaizier et al., 2009). Yet, the exact 

mechanism (such as buccal receptors, acid receptors, osmoreceptors, central nervous 

system, or the acute phase response) responsible for altering rumen motility during 

dietary transitions and ruminal acidosis is still unknown. Furthermore, the reduced 

motility could resemble a lower shear rate. Despite the reduction in shear rate, the 

reduced power law index could help maintain mixing of the greater viscosity rumen fluid.  

Lying behavior of cattle was also altered by the abrupt increase from 50% 

concentrate to 90% concentrate in this study. In our previous studies, we noted that lying 
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increased baseline ruminal pressure (Egert et al., 2014), thus creating a relationship 

between lying behavior and contraction peak pressures, which we used to quantify lying 

behavior in this experiment. Based on this relationship, the contraction peak pressures 

suggested that animals laid down less on the second day and more on the third day of 

high-grain feeding compared to the MIX diet. Total lying time tended to be lower on the 

second day of high-grain feeding, which would agree with the lower peak pressure seen 

on this day. Steers laid down for longer periods of time on average on the 50% 

concentrate diet compared to the high-grain diet, which would be expected for a more 

forage-based diet that fills up the rumen faster and requires longer periods of rumination.  

The reduction in rumen motility seen in this study may have been associated with 

the tendencies for alterations in ruminal liquid retention time and half-life, which could 

have suggested slowed passage. Other research has demonstrated close, positive 

relationships between frequency and duration of reticular contractions with ruminal liquid 

passage rates (Sissons et al., 1984; Okine et al., 1989). However, liquid flow rate was not 

affected by day and fractional liquid dilution rate only tended to be different between 

days. Thus, perhaps the reduction in motility was not large enough to slow liquid passage 

in this study. 

Estimates of VFA absorption rate suggested that absorption was reduced on the 

second and third day of high-grain feeding compared to the 50% concentrate diet. 

Research has shown that a linear correlation existed between VFA concentrations and 

osmotic pressure of rumen fluid (Bennink et al., 1978). Additionally, high osmolality in 

the rumen during acidosis decreased the rate of acid absorption (Tabaru et al., 1990). 

Ruminal osmoreceptors can also detect increases in rumen fluid osmolality and mediate 
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reductions in feed intake (Carter and Grovum, 1988; Carter and Grovum, 1990). While 

ruminal osmolality was not measured in this experiment, the switch to the high-grain diet 

did lead to the animals experiencing ruminal acidosis and increased VFA concentration. 

This would suggest greater ruminal osmolality and may help explain the reduced VFA 

absorption rate seen in this study. The greater viscosity of rumen fluid observed in this 

study could slow the movement of absorptive substrates and VFA through the rumen 

fluid and to the ruminal epithelium, which could also have been related to the reduced 

VFA absorption. A decreased VFA absorption rate would lead to an accumulation of 

VFA in the rumen and associated reduction in ruminal pH, such as described for the 

current study. Furthermore, since one mechanism of VFA absorption from the rumen 

involves exchange of an ionized acid for a bicarbonate, reduced VFA absorption by this 

mechanism would also reduce bicarbonate flow into the rumen and buffering capacity 

(Owens et al., 1998). 

Conclusions 

This study investigated the relationships between physiological parameters and 

the timing of when animals go “off-feed” during an abrupt dietary increase in 

concentrate. The grain engorgement model switching cattle from 50% to 90% concentrate 

was successful at inducing ruminal acidosis and did reduce reticulorumen motility, albeit 

minor in magnitude. Patterns of ruminal pH, viscosity, and motility changes were related 

to when cattle reduced feed intake. Furthermore, this study determined that rumen fluid 

viscosity increased during an abrupt increase in dietary concentrate and was associated 

with periods of reduced ruminal pH, motility, and VFA absorption. 
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Tables and Figures 

Table 5-1. Composition of diets and ingredients. 

Item Diet 
MIX HG 

Ingredient, % DM basis   
   Fescue, K31 Hay 50 - 
   Corn silage - 18.00 
   Cracked corn 37.4 - 
   High-moisture corn - 74.95 
   Soybean meal - 4.00 
   Dried distiller grains 4.6 - 
   Corn gluten feed 6.1 - 
   Urea 0.46 0.50 
   Tallow 0.46 0.30 
   Limestone 1.05 1.40 
   Trace mineral premix1 0.6 0.45 
   Magnesium oxide 0.03 - 
   Potassium oxide 0.11 - 
   Salt 0.18 - 
   Vitamin A, D, & E Premix2 - 0.15 
   Potassium sulfate - 0.25 
Nutrient Composition, DM basis   
   Crude Protein, % 12.5 11.6 
   ADF, % 24.8 6.4 
   aNDF, % 47.2 15.1 
   TDN, % 67 77 
   Calcium, % 0.27 0.44 
   Phosphorus, % 0.41 0.36 
   Magnesium, % 0.17 0.12 
   Potassium, % 1.45 0.71 
   Sodium, % 0.211 0.144 
   Sulfur, % 0.16 0.15 
   Iron, ppm 175 105 
   Zinc, ppm 66 43 
   Copper, ppm 8 9 
   Manganese, ppm 43 25 
   Molybdenum, ppm 0.9 0.5 

 

1 Contained 56.34% Cl, 36.53% Na, 1.2% S, 0.06% Ca, 68.9 ppm Co, 1837.7 ppm Cu, 
119.9 I, 9290.2 ppm Fe, 4792.3 ppm Mn, 18.5 ppm Se, and 5520.2 ppm Zn on a DM 
basis. 
2 Composed of vitamin A acetate (1,814,368 IU/kg), D-activated animal sterol (source of 
vitamin D3; 362,874 IU/kg), vitamin E supplement (227 IU/kg), roughage products, 
calcium carbonate, and mineral oil. 
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Table 5-2. Feeding behavior of cattle as they were abruptly switched from a hay and 

grain mixed diet (MIX) to a 90% concentrate, high-grain (HG) diet. 

Item Day Pooled 
SEM5 P-value MIX1 HGd12 HGd23 HGd34 

Meal Characteristics       
   Size, g 1817a 1706a 667b 857b 199 0.0053 
   Duration, min 40.9a 30.5a 8.1c 15.2b 3.1 <0.0001 
   Frequency, meals/d 7.50 9.00 5.58 9.34 1.18 0.2764 
Time to consume 
75% of DMI, min 620a 294b 407ab 813a 111 0.047 

 
1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate 
supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5SEM represents a pooled SEM across all days 
a,b,c Means within a row without a common superscript letter are significantly different. 
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Table 5-3. Ruminal volatile fatty acid (VFA) concentrations in cattle that where abruptly 

switched from a hay-grain mix (MIX) diet to a high-grain (HG) diet. 

 
1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate 
supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
* Highest order term for this regression model was not significantly different from zero 
 

Item 
P-value Linear Quadratic Cubic 

Day Hour Day* 
Hour P-value Adj. r2 P-value Adj. r2 P-value Adj. r2 

Acetate <0.0001 0.0048 0.0013       
   MIX1    0.0414 0.2652 0.0033 0.6178 0.0082* 0.6174 
   HGd12    0.0994* 0.1572 <0.0001 0.9084 <0.0001 0.9671 
   HGd23    0.0009 0.6184 0.0044* 0.5950 0.0129* 0.5753 
   HGd34    0.1322* 0.1205 0.2118* 0.1202 0.0594 0.3928 
Propionate 0.0013 0.0006 <0.0001       
   MIX    0.0803* 0.1843 0.0008 0.7119 <0.0001 0.9102 
   HGd1    0.7205* -0.0777 0.0005 0.7347 <0.0001 0.9902 
   HGd2    0.8310* -0.0862 0.0094 0.5279 0.0194* 0.5333 
   HGd3    <0.0001 0.8657 <0.0001* 0.8630 0.0001* 0.8480 
Butyrate 0.0002 <0.0001 0.0004       
   MIX    0.2655* 0.0304 <0.0001 0.8100 <0.0001 0.9026 
   HGd1    0.0220 0.3372 <0.0001 0.9535 <0.0001* 0.9489 
   HGd2    0.0002 0.7006 0.0010* 0.6996 0.0012* 0.7534 
   HGd3    0.0841* 0.1784 0.0062 0.5661 0.0024 0.7124 
Valerate <0.0001 <0.0001 0.0063       
   MIX    0.0013 0.5928 0.0015* 0.6736 0.0007 0.7794 
   HGd1    0.6063* -0.0637 0.0104 0.5182 <0.0001 0.9112 
   HGd2    0.0003 0.6820 0.0021* 0.6503 0.0084* 0.6156 
   HGd3    0.0067 0.4569 0.0058* 0.5720 0.0043* 0.6701 
Total VFA 0.0002 0.0002 0.0008       
   MIX    0.0471 0.2497 0.0008 0.7141 0.0006 0.7921 
   HGd1    0.1521* 0.1023 <0.0001 0.9096 <0.0001 0.9803 
   HGd2    0.0020 0.5607 0.0091* 0.5317 0.0075* 0.6250 
   HGd3    0.0061 0.4656 0.0078* 0.5456 0.0042 0.6720 
Percentage of 
Total VFA 

         

   Acetate 0.0001 0.1150 0.0164       
      MIX    0.1328* 0.1200 0.0028 0.6291 0.0001 0.8482 
      HGd1    0.8557* -0.0875 <0.0001 0.8325 <0.0001 0.9333 
      HGd2    0.0003 0.6903 <0.0001 0.9517 <0.0001* 0.9543 
      HGd3    <0.0001 0.9253 <0.0001* 0.9316 <0.0001* 0.9264 
   Propionate 0.0045 0.2260 <0.0001       
      MIX    0.1199* 0.1331 0.0022 0.6459 <0.0001 0.8931 
      HGd1    0.0021 0.5533 0.0016 0.6691 <0.0001 0.9066 
      HGd2    0.0008 0.6262 <0.0001 0.8332 0.0003* 0.8172 
      HGd3    0.0040 0.5036 0.0005 0.7391 0.0002 0.8369 
   Butyrate 0.0016 0.0022 0.0604 0.0416 0.2647 <0.0001 0.9242 <0.0001* 0.9176 
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Table 5-4. Rumen liquid dilution or passage rate (Kp) and volatile fatty acid (VFA) clearance (Kc) and absorption rate (Ka) 

estimates from Cr and valerate disappearance from the rumen for cattle through the transition as they were abruptly switched 

from a 50% chopped hay and 50% concentrate supplement (MIX) to a 90% concentrate finishing diet (HG). 

 
1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5SEM represents a pooled SEM across all days 
6 Fractional dilution rate of liquid in the rumen was calculated by exponential decay of Cr  

7VFA clearance rate was calculated by exponential decay of valerate 
8VFA absorption rate was calculated by subtracting the rumen fractional dilution rate (assumed to equal valerate passage rate; 
Kp) from the rumen VFA clearance rate (Kc) 
9Total VFA concentration at 0 h (mol/L) × rumen liquid volume (L) × VFA absorption rate (%/h) 
a,b,c Means within a row without a common superscript letter are significantly different. 

Item 
Day Pooled 

SEM5 P-Value 
MIX1 HGd12 HGd23 HGd34 

Fractional dilution rate, %/h (FDR;  Kp)6 7.27 8.10 7.54 11.67 1.36 0.0624 
Cr half-life, h 9.93 9.02 16.36 7.55 1.95 0.0946 
Rumen liquid volume, L 41.67a 39.76a 41.15a 32.49b 2.45 0.0094 
Liquid flow rate, L/h 3.00 3.15 2.71 3.81 0.381 0.4074 
VFA clearance rate, %/h (Kc)7 8.35a 3.46ab -6.49c -0.62bc 2.6 0.0045 
VFA absorption rate, %/h (Ka)8 1.20a -4.96ab -11.44b -12.74b 2.8 0.0058 
Total VFA absorption, mol/h9 2.79 -10.15 -36.21 -27.12 10.2 0.0576 
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Table 5-5. Reticulorumen motility contraction characteristics and lying behavior as cattle are abruptly switched from a 50% 

chopped hay and 50% concentrate supplement (MIX) diet to a 90% concentrate finishing diet (HG). 

Item Day Pooled 
SEM5 

P-value 
MIX1 HGd12 HGd23 HGd34 Day Period Day*Period 

Amplitude, mmHg 7.80 7.10 6.74 6.62 0.47 <0.0001 0.4679 0.0402 
Duration, s 15.1 14.9 15.9 15.2 0.20 <0.0001 0.0123 0.0038 
Frequency, 
contractions/min 

1.39 1.40 0.89 0.82 0.07 <0.0001 <0.0001 <0.0001 

Peak pressure, mmHg 6.12 8.39 5.87 12.14 2.36 <0.0001 <0.0001 0.0030 
Lying frequency, 
bouts/d 

10.2 13.2 9.8 11.1 1.7 0.0784 - - 

Lying duration, 
min/bout 

66.6a 44.4b 48.8b 54.7b 4.8 0.0133 - - 

Total lying time, min 653.4 567.0 458.8 572.8 83.7 0.2213 - - 
 

1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5SEM represents a pooled SEM across all days 
a,b Means within a row without a common superscript letter are significantly different. 
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Table 5-6. Ruminal pH and temperature during an abrupt transition from a hay-grain mixed (MIX) diet to a high-grain, 

finishing (HG) diet. 

Item Day SEM5 P-value 
MIX1 HGd12 HGd23 HGd34 Day Hour Day*Hour 

Ruminal pH         
   Minimum 6.38a 5.04b 5.01b 5.30b 0.157 <0.0001 - - 
   Mean 6.82 5.80 5.96 6.12 0.137 <0.0001 <0.0001 0.0001 
   Maximum 7.19 6.93 7.11 7.11 0.109 0.355 - - 
   Duration < 5.8, min <1b 617.6a 508.6a 495.6a 117 0.0031 - - 
   Duration < 5.5, min <1b 426.2a 318.7a 288.8a 95 0.0179 - - 
   Duration < 5.0, min <1b 205.6a 141.4a 33.9b 60 0.0148 - - 
Ruminal temperature         
   Minimum, °C 37.6a 36.7a 34.3b 36.0ab 0.78 0.0363 - - 
   Mean, °C 39.3ab 39.4ab 39.0b 39.6a 0.16 0.0308 <0.0001 0.9355 
   Maximum, °C 40.1 40.3 39.8 40.3 0.24 0.2249 - - 

 

1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5SEM represents a pooled SEM across all days 
a,b Means within a row without a common superscript letter are significantly different 
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Figure 5-1. Feed and total water intake as cattle were underwent a large increase in 

dietary concentrate from 50% (MIX) to a 90% concentrate, high-grain (HG) diet. A) Dry 

matter intake was altered (P=0.0002) by day relative to the switch. Cattle increased DMI 

on the first day of high-grain feeding (HGd1) compared to MIX, but then reduced DMI 

on the second (HGd2) and third (HGd3) days of high-grain feeding compared to previous 

days. B) Total water intake (including from feed) was influenced (P=0.0083) by day 

relative to the abrupt switch to the high-grain diet, where consumption was reduced on 

HGd2 compared to previous days. 

 
 

 

A) 

B) 
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Figure 5-2. Volatile fatty acid (VFA) concentrations in rumen fluid displayed day*hour 

interactions (P<0.01).  A) Acetate concentration was greater on HGd1 than all other days 

from 8 h to 20h post-feeding. B) Propionate concentration was greater on HGd1 than all 

other days from 4 h to 10 h post-feeding. C) Butyrate concentration was greater on HGd1 

than all other days from 8 h to 18 h post-feeding. D) Total VFA concentration was 

greater on HGd1 than all other days from 6 h to 18 h post-feeding. 

 

 

 

A) 

B) 
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Figure 5-2 continued. 

 

 

 

C) 

D) 
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Figure 5-3. A) The percentage of total VFA represented by A) acetate and B) propionate 

displayed day*hour interactions (P<0.02). Acetate percentage was reduced around 

feeding (0 h) on HGd3 compared to all other days. Propionate percentage was reduced on 

HGd2 from 0 to 12 h following feeding compared to all other days. Percentage of total 

VFA represented by butyrate had significant effects of C) day (P=0.0016) and D) hour 

(P=0.0022). Percentage of butyrate was greater on all three days of HG feeding compared 

to MIX and showed a quadratic (P<0.0001) response by hour. 

 

 

 

A) 

B) 
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Figure 5-3 continued. 

 

 

 

C) 

D) 
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Figure 5-4. Rumen fluid viscosity displayed a day*hour interaction (P<0.01). Rumen 

fluid viscosity of steers abruptly switched to a high-grain diet increased greatly by 12 h 

after feeding on the first day of high-grain feeding (HGd1) compared to the 50% 

concentrate diet (MIX) and remained elevated throughout the second day of high-grain 

feeding (HGd2). 
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Figure 5-5. The power law index for rumen fluid displayed a day*hour interaction 

(P<0.01), where the index was reduced from 12 h after feeding on the first day of high-

grain feeding (HGd1) through 6 h after feeding on the second day of high-grain feeding 

(HGd2). 
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Figure 5-6. Saliva production was influenced by day (P=0.039), where saliva production 

was greater on the third day of high-grain feeding (HGd3) compared to the first or second 

day of high-grain feeding (HGd1 and HGd2, respectively). 
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Figure 5-7. Changes in reticulorumen motility following abruptly switching cattle from a 

50% concentrate to a 90% concentrate high-grain diet. A) Reticulorumen contraction 

amplitude was reduced (P<0.0001) by the first day of high-grain feeding (HGd1) and was 

further reduced on day 2 (HGd2) and day 3 (HGd3) of high-grain feeding. B) 

Reticulorumen contraction duration was greater (P<0.0001) on the second day of  high-

grain (HGd2) feeding compared to all other days. C) Reticulorumen contraction 

frequency displayed a day*hour interaction (P<0.0001). On the hay-grain mixed diet 

(MIX), high-grain diet day 1 (HGd1), and high-grain diet day 2 (HGd2) the responses 

were quadratic (P<0.0001) throughout the feeding cycle, whereas contraction frequency 

increased linearly (P<0.01) on high-grain day 3 (HGd3). 
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Figure 5-7 continued.  
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Figure 5-8. Ruminal pH mean showed a day*hour interaction (P=0.0001). Quadratic responses (P<0.01) over hour relative to 

feeding were found for the 50% concentrate diet (MIX), first day of 90% concentrate, high-grain feeding (HGd1), and third 

day of high-grain feeding (HGd3) and a positive linear response (P<0.01) was found for the second day of high-grain feeding 

(HGd2).  
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Figure 5-9. Ruminal pH changes as cattle were abruptly switched from a 50% to a 90% 

concentrate diet. Ruminal pH minimum, mean, and maximum showed day*period 

interactions (P<0.001). A) Minimum ruminal pH was reduced during period 1 of the first 

day of high-grain feeding (HGd1) and remained reduced for the remainder of the 

experiment. B) Mean ruminal pH was decreased during period 1 of HGd1 and was 

further reduced in later periods. On the second day of high-grain feeding (HGd2), mean 

ruminal pH increase progressively. While still reduced compared to the 50% concentrate 

diet (MIX), mean ruminal pH showed a similar pattern as MIX on HGd3. C) Maximum 

ruminal pH showed a similar pattern across days as minimum and mean ruminal pH.  
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Figure 5-9 continued.  
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Figure 5-10. Changes of duration that ruminal pH was below thresholds as cattle were 

abruptly switched from a 50% to 90% concentrate diet. Duration that ruminal pH was 

below 5.8, 5.5, and 5.0 showed day*period interactions (P<0.01). A) Duration that 

ruminal pH was below 5.8 increased greatly by period 2 of the first day of high-grain 

feeding (HGd1), then decreased across the second day of high-grain feeding (HGd2), and 

yet, remained elevated compared to the 50% diet on the third day of high-grain feeding 

(HGd3). B) The duration that ruminal pH was below 5.5 increased by period 2 on HGd1, 

returned to MIX durations in period 4 of HGd2, and then increased by period 2 again on 

HGd3. C) Duration that ruminal pH was below 5.0 increased in period 3 of HGd1, but 

returned to baseline levels in period 2 of HGd2. 
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Figure 5-10 continued. 
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CHAPTER 6: IMPACT OF A LARGE INCREASE IN DIETARY 
CONCENTRATE ON BLOOD ACID-BASE STATUS AND PLASMA 

LIPOPOLYSACCHARIDE CONCENTRATIONS AND ASSOCIATED 
REDUCTION IN FEED INTAKE OF CATTLE  

Introduction 

During the transition to a high-grain diet, cattle may experience periods of 

subacute ruminal acidosis (SARA) and demonstrate erratic feeding behavior, or go “off-

feed.” This period of “off-feed” has been noted under both acute and subacute acidotic 

conditions (Fulton et al., 1979a; Kezar and Church, 1979). Although reductions in DMI 

have been used to diagnose SARA (Kleen et al., 2003), effects of SARA on DMI are 

inconsistent. Furthermore, some cattle appear to be highly affected during a dietary 

transition, whereas others are not (Brown et al., 2000; Bevans et al., 2005).  

Communication between the immune system and central nervous system could 

also be important for a reduction in feed intake during diet transitions. Cattle can 

experience inflammation, elicited by bacterial endotoxin or lipopolysaccharide (LPS), as 

they are transitioned to high-grain diets (Gozho et al., 2005; Gozho et al., 2006; 2007; 

Khafipour et al., 2009b; Zebeli and Metzler-Zebeli, 2012). Although LPS increases in the 

rumen of cattle during transition to high-grain diets, evidence of LPS in the blood has 

been conflicting (Gozho et al., 2007; Khafipour et al., 2009a; b; Liu et al., 2013). Some 

researchers believe that LPS in peripheral blood during SARA comes from translocation 

from the intestines and therefore, does not pass the stratified squamous ruminal 

epithelium (Khafipour et al., 2009a). However, translocation of LPS across the rumen 

epithelium has been shown in vitro (Emmanuel et al., 2007). Although LPS has been 

detected in peripheral and portal blood samples taken during SARA, this result cannot 

determine the location of LPS passage within the gastrointestinal tract. 
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The objectives of this experiment were to 1) investigate what physiological 

parameters, specifically related to blood variables, could be associated with the timing of 

when animals go “off-feed” and 2) determine if LPS moves across the rumen epithelium 

to blood. 

Materials and Methods 

All procedures used in this experiment involving heifers were approved by the 

University of Kentucky Institutional Animal Care and Use Committee (2018-2973) and 

conducted at the University of Kentucky C. Oran Little Research Center, Beef Unit, in 

Versailles, KY. 

Animals and Experiment Design 

Animal feeding and management was conducted as described above (Chapter 5). 

Ten Holstein steers (pre-surgery BW ± SEM = 278 ± 10.3 kg) were fitted with permanent 

indwelling catheters in the mesenteric artery (MA) (Huntington et al., 1989), portal vein 

(PV), and (Silicone Tubing 1.02 mm ID, 2.16 mm OD, Helix Medical Inc., Carpinteria, 

CA) the right ruminal vein (RV) (Kristensen and Harmon, 2004) and fitted with a rumen 

cannula (#2C rumen cannula, Bar Diamond Inc., Parma, ID). Steers were withheld from 

food (48 h) and water (24 h) prior to catheterization surgery. A jugular catheter 

(Abbocath AB453534, 14 gauge catheter, 17 gauge needle, 5.5”) was first placed and 

then tied in place with 2 braunamid sutures placed cutaneously and filled with 

heparinized saline to ensure patentcy. Anesthesia was induced by i.v. administration of 

0.11 mg/kg xylazine followed by 1.0 mg/kg ketamine, and the steers were intubated and 

placed on the surgery table in left lateral recumbency. Steers received Lactated Ringers 
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i.v. during surgery (6-10 mL/kg BW/h). The surgical site was prepared for sterile surgery 

by scrubbing with Hibiclens (3 times) and rinsing with sterile water. The final scrub was 

performed wearing sterile gloves, rinsing with sterile water, and finally spraying with 

alcohol and iodine. All surgical personnel wore caps, masks, sterile gowns and gloves, 

and the steer was draped with sterile drapes. Catheter patency was maintained by weekly 

aspiration of catheter fluid, flushing with saline, and filling with saline containing 100 

U/mL of heparin and 0.1 % benzyl alcohol. Animals were allowed to recover for two 

weeks prior to rumen cannulation surgery and given at least two weeks for recovery 

following cannulation surgery before experimentation began. Animals were paired by 

weight to determine animals for surgeries, using the heaviest animals first. Surgeries on 

sets of animals were staggered in an effort to minimize time between surgeries and 

experimentation for each block. Steers (pre-sampling BW ± SEM = 304 ± 13 kg) were 

adapted to a diet composed of 50% chopped tall fescue K31 hay and 50% concentrate 

supplement (MIX; Table 5-1). Baseline measurements on MIX were taken, and then 

animals were abruptly switched to a 90%, high-moisture corn based diet (HG; Table 5-1) 

offered ad libitum. Measurements were taken on d 1-3 of feeding HG (HGd1, HGd2, and 

HGd3, respectively). 

Blood Sampling and Analysis 

 Blood (approximately 10 mL from each vessel) was collected from the MA, PV, 

and RV of each animal into sterile, heparinized syringes and transferred to screw-top 

conical vials immediately before feeding (0 h) and 2, 4, 6, 8, 10, 12, 16, and 24 h after 

feeding during MIX baseline measurements (d -1) and at the same times, relative to 

feeding of the HG diet, on d 1-3. Catheters were inserted into the jugular vein on d -2 for 
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a representative systemic blood sample in case MA catheters had already stopped 

working or failed during sampling. Before sample collection, approximately 8 mL of 

blood and heparinized saline was extracted and discarded. A 10 mL-sample of blood 

from each vessel and animal was then collected into heparinized syringes, transferred to a 

screw-top vial, and put on ice until transport to the laboratory for processing. 

Additionally, 1 mL samples of blood from each vessel were collected via sterile, 

heparinized syringes, capped, placed on ice, for no more than 30 min, until analysis in 

duplicate for pH, pCO2, and pO2 via a blood gas analyzer (GEM Premier 3000, 

Instrument Laboratory, Bedford, MA). Blood HCO3
- and base excess were calculated as 

previously described (Chapter 4). After collection, catheters were refilled with 4 mL 

heparinized saline to prevent clotting. Plasma was obtained by centrifuging at 5000 × g 

for 30 min, separated into 2-mL aliquots, and stored at -20°C for later analyses. 

Concentration of LPS in plasma was measured by a chromogenic end-point Limulus 

amebocyte lysate assay (Pierce™ Chromogenic Endotoxin Quant Kit, catalog #s: A39552 

and A39553, Thermo Fisher Scientific, Waltham, MA). Prior to the assay, aliquot plasma 

samples were thawed, diluted to 1:100, heated at 75°C for 15 min on a heating block, and 

cooled before analysis according to the manufacturers’ instructions. Prior to statistical 

analysis, each sample was categorized by level of LPS (Below = below detection limit of 

assay or 0-1 EU/mL; Low = 1-2.99 EU/mL; Medium = 3-5.99 EU/mL; High = 6-10 

EU/mL; Above = greater than 10 EU/mL). The PV and RV venous-arterial difference for 

each animal and time point available was calculated by subtracting the concentration of 

the systemic sample at that time from the concentration of the venous sample. 
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Statistical Analysis 

 The treatment was the high-grain diet challenge (transition from MIX to HG) with 

interest in the timing of changes. All data, except LPS levels in blood, were analyzed 

using proc MIXED procedure of SAS 9.4 as a randomized complete block with repeated 

measures using block as a random variable. Fixed effect included in all models was day 

relative to HG feeding (MIX, HGd1, HGd2, and HGd3). When appropriate for some 

variables, the fixed effects of hour or period and the interaction with day were also 

included in the model. Effects were considered significant at P < 0.05, and effects with 

0.05 < P < 0.1 were considered to show a tendency. The lsmeans were calculated for each 

analysis and compared when significant effects were present using the least significant 

difference (LSD) test. 

Lipopolysaccharide in the blood was analyzed multiple ways. Firstly, data from 

all vessels were analyzed using proc MIXED as a randomized complete block design 

using block as a random variable and vessel type, day, and vessel*day as fixed effects. 

The remaining analyses were conducted separately for each type of vessel. Concentration 

of LPS was analyzed using proc MIXED as a randomized complete block with repeated 

measures using block as a random variable. Fixed effects included in the model were day, 

hour, and the interaction. The repeated variable was hour, the subject was animal, and a 

compound symmetry covariance structure was used. Additionally, the level of LPS was 

analyzed using proc GLIMMIX of SAS as a randomized complete block, using block as a 

random variable and day, hour, and the interaction as fixed effects. When the effect of 

day was or tended to be significant, frequency of samples in each level was determined 
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for each day and used for regression analysis using proc REG of SAS for linear and 

quadratic models. 

In order to investigate relationships between the physiological variables measured 

and animal susceptibility to go “off-feed” during this dietary transition, daily mean values 

for variables measured in the previous experiment (Chapter 5) as well as blood variables 

measured in this experiment were used in proc CORR of SAS and multiple linear 

regression. Variables of interest and possible regressors included: susceptibility score, 

DMI, water intake, total water intake, meal frequency, meal duration, meal size, 

fractional liquid dilution rate, VFA absorption rate, saliva production, mean RpH, 

duration RpH < 5.5, duration RpH < 5.0, mean Trum, contraction amplitude, contraction 

duration, contraction frequency, lying bouts, lying duration, rumen fluid viscosity, 

systemic pH, systemic HCO3, PV pH, pV HCO3, RV pH, RV HCO3, systemic LPS, PV 

LPS, and RV LPS. Only variables which were significantly correlated with the variable 

of interest were used as regressors for multiple linear regression. However, when 

evaluating a variable, all other variables of the same category (or those that it had been 

calculated from or used to calculate) were removed from the model, even if significantly 

correlated. For example, water intake and meal characteristics would not be used in 

multiple regression for DMI, even though they were significantly correlated. The REG 

procedure of SAS was used with backward elimination variable selection, which removed 

the variable in the model with the largest p-value at each step until all variables 

remaining in the model were significant at α = 0.05. 
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Results 

Blood vessel catheter patency was difficult to maintain. Ultimately, blood 

sampling occurred from all ten animals for systemic (MA: n=6; jugular vein: n=4) 

samples, nine animals for PV samples, and four animals for RV samples. 

Systemic blood pH, bicarbonate and base excess exhibited day*hour interactions 

(Table 6-1; Figure 6-1). The partial pressure of CO2 in systemic blood was reduced on 

HGd2 compared to previous days (P=0.0352) and also influenced by hour (P<0.0001). 

All PV blood variables, except partial pressure of O2, displayed significant day*hour 

interactions (Table 6-1; Figure 6-2). Partial pressure of O2 in PV blood was affected by 

day (P=0.006), where it was reduced on HGd1 and HGd2 compared to MIX, and was 

affected by hour (P<0.0001). Ruminal vein blood partial pressures of CO2 and O2 were 

influenced by day (P=0.0151 and 0.0434, respectively; Table 6-1), where CO2 pressure 

was lower on HGd1, HGd2, and HGd3 and O2 pressure was greater on HGd1 compared 

to MIX. Day tended (P=0.0751) to impact bicarbonate concentration in RV blood, with 

lower concentrations on HGd2. Hour affected RV partial pressure of O2 (P=0.0463), 

bicarbonate (P=0.0027), and base excess (P=0.0094), while it tended to influence partial 

pressure of CO2 and hematocrit. 

 Analysis of LPS concentrations across all vessels demonstrated a tendency 

(P=0.0763) for a vessel effect, where RV LPS was greatest (Systemic = 3.94 ± 0.6; PV = 

3.14 ± 0.65; RV = 5.54 ± 0.93). There was also a significant day (P=0.0355) effect in 

which LPS concentration was greater on all HG days compared to MIX. Systemic blood 

vessel LPS concentration in plasma was not impacted by day or hour, but LPS level was 

influenced by day (P=0.0034; Table 6-2). The number of plasma samples with detectable 
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levels of LPS increased with time on the HG diet as evidenced by the fact the number of 

samples below detectable limits decreased linearly (P=0.0241; Figure 6-3A). Portal vein 

plasma LPS concentration and V-A difference were not influenced by day or hour. 

However, LPS level in PV plasma tended (P=0.0833) to be impacted by day, where once 

again, the number of samples below detectable limits decreased linearly (P<0.0001) over 

successive days (Figure 6-3B). Concentration of LPS in RV plasma tended (P=0.0665) to 

be affected by day, where concentrations tended to be higher on HGd3 compared to other 

days. Additionally, the V-A difference for RV plasma samples were impacted by day 

(P=0.0294), where V-A difference was greater on HGd3 than MIX of HGd2, suggesting 

concentrations were higher in the RV than systemic blood on HGd3. 

 The Pearson correlation coefficients helped to focus the list of possible regressors, 

so that the model for multiple regression was of full rank (i.e. it did not have an infinite 

number of least squares solutions for the estimates). Multiple linear regression conducted 

by backwards elimination variable selection resulted in significant models for all 

dependent variables chosen, yet many models led to simple linear models with only one 

variable remaining in the model (Table 6-3, Table 6-4, Table 6-5, Table 6-6, Table 6-7, 

Table 6-8). Intake and feeding behavior variables most frequently had motility and PV 

variables as significant regressors (Table 6-3). Meal frequency had the greatest R-squared 

for intake and feeding variables, suggesting the regressors could explain about 61% of 

variation in meal frequency (Table 6-3). Susceptibility score was positively, linearly 

correlated (P=0.0111) with duration RpH < 5.0, which was the only remaining regressor 

(Table 6-3). Rumen fluid viscosity was linearly related (P=0.0069) to contraction 

duration, where increases in contraction duration were associated with increases in 
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viscosity (Table 6-4). Bicarbonate in blood pools were important regressors for liquid 

dilution rate, VFA absorption rate, and saliva production (Table 6-4). Reticulorumen 

motility and lying behavior variables commonly had RV variables as regressors (Table 

6-5). Approximately 71% of the variation in contraction frequency could be explained by 

DMI and RV pH (Table 6-5). All ruminal pH variables resulted in simple linear models 

with only one regressor (Table 6-6). Saliva production and DMI were common regressors 

for blood acid-base variables (Table 6-7). About 66% of variation in PV bicarbonate 

could be explained by DMI, saliva production, and duration RpH < 5.5 (Table 6-7). 

Systemic LPS concentration was positively related (P=0.0433) to susceptibility score 

(Table 6-8). Concentration of LPS in blood pools helped explain several variables (Table 

6-3, Table 6-4, Table 6-5, and Table 6-7). For example, contraction amplitude and RV 

LPS were negatively related (P=0.3678; Table 6-5 and Table 6-8). Some of the 

regression models resulted in low R-squared values, and these should be used with 

caution for predicting values for dependent variables. 

Discussion 

This study aimed to investigate the relationships between blood acid-base and 

endotoxin concentrations and timing of when animals go “off-feed” during an abrupt 

increase in dietary concentrate. In addition, it was intended to determine associations 

between all of the physiological variables measured in the previous experiment to 

evaluate the complex relationships involved during periods when animals reduce feed 

intake during dietary transitions. 

In addition to serving as a key buffering system in the rumen, bicarbonate is the 

primary acid-base buffering system in the blood. Blood bicarbonate concentrations have 
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been negatively correlated with ruminal VFA concentrations (Faverdin et al., 1999). The 

high ruminal VFA concentrations (Chapter 5) that occurred after switching to the high-

grain diet in this study could potentially deplete the bicarbonate buffering system of the 

blood by increasing movement of bicarbonate into the rumen in exchange for ionized 

VFA (Stevens, 1970) or to help maintain adequate ruminal pH. Changes in blood 

bicarbonate and pH due to ruminal acidosis have been reported (Huntington et al., 1981; 

Indrova et al., 2017), but were sometimes small in magnitude (Harmon et al., 1985; Goad 

et al., 1998). Systemic blood pH was very close to ideal (7.4) during the dietary switch, 

suggesting the system was able to compensate. Bicarbonate concentrations in systemic 

blood were greater on the first day of high-grain feeding from about 6 h to 10 h post-

feeding and then lower for several hours after feeding on the second and third day of 

high-grain feeding compared to other days. Thus, the period with reduced bicarbonate 

concentration was associated with a time when most animals were “off-feed.” One may 

speculate that because animals were not consuming feed, they were chewing less, and 

thereby producing less saliva, which resulted in a smaller bicarbonate pool. Yet, the exact 

timing or cause and effect of these events cannot be determined from the current study. 

Blood bicarbonate to carbon dioxide ratio and blood pH were also decreased when steers 

stopped eating after a switch from alfalfa hay to a high-grain diet (Uhart and Carroll, 

1967). Low bicarbonate concentrations can disrupt central nervous system function, even 

if blood pH is not affected (Owens et al., 1998). Therefore, reductions in feed intake and 

rumen motility observed in this study (Chapter 5), which are controlled in part by the 

central nervous system and vagus nerve (Grovum, 1986; Sartin et al., 2010; Sartin et al., 

2011), could have been associated with this reduction in bicarbonate. Additionally, the 
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partial pressure of carbon dioxide in PV was also reduced for several hours after feeding 

on the second and third day of high-grain feeding. Comparison of pH and bicarbonate for 

systemic and PV blood, showed that systemic pH and bicarbonate were still reduced on 

HGd3 when feed intake started to return to normal, yet PV pH and bicarbonate appeared 

to increase the latter half of HGd2. This suggested that the systemic blood pH and 

bicarbonate was not a driver for the transitory reduction and recovery of feed intake, but 

that PV pH and bicarbonate may be a potential driver.  

Regardless of diet, RV blood pH was lower than portal and systemic blood pH 

and at levels that would be considered acidotic for systemic blood. The relatively lower 

pH of RV blood compared to PV and systemic blood is likely due to the vast amount of 

VFA that are absorbed from the rumen, which increase the acid load of the blood and 

reduce pH. Portal vein blood is a mixture of blood from the rumen as well as blood from 

the intestines, so it would be diluted RV blood since there are comparatively not as many 

VFA or acids absorbed through the intestines. Bicarbonate tended to be impacted by day, 

and partial pressure of carbon dioxide was decreased by the high-grain diet. The lowest 

bicarbonate tended to be on the second day of high-grain feeding, which could have been 

associated with why animals had reduced feed intake on this day. There is a high demand 

for bicarbonate in the rumen to help absorb VFA and buffer ruminal contents. One 

mechanism of VFA absorption from the rumen involves exchanging an ionized acid from 

the rumen for bicarbonate from the blood (Owens et al., 1998). As ruminal VFA 

absorption rate estimates suggested VFA absorption rate was reduced in this study 

(Chapter 5), this could have impacted bicarbonate concentrations. Since the ruminal 

epithelium is composed of highly active cells, CO2 produced from cellular aerobic 
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metabolism must be exported from cells to the blood. There was greater partial pressure 

of CO2 in RV compared to systemic or PV blood, which could be indicative of the 

cellular respiration capacity of ruminal epithelial cells.  

Bacterial endotoxin, also known as LPS, has been one of the factors associated 

with the negative effects of feeding high-grain diets and ruminal acidosis. As part of the 

cell wall of gram-negative bacteria, LPS is abundant in the rumen and increased in the 

gastrointestinal lumen when ruminants are fed high-grain diets (Emmanuel et al., 2008; 

Khafipour et al., 2009b; Zebeli et al., 2012). In this study, LPS concentrations did not 

increase in systemic plasma or portal vein plasma. However, it is important to note that 

there was a wide range of LPS concentrations obtained, which inflated the standard errors 

and could have attributed to the lack of effects and ruminal vein observations were quite 

limited because of the loss of catheter patency. Despite this lack of effect for actual 

concentrations in these blood pools, when LPS was categorized by five levels, there was 

a significant effect of day for systemic plasma and tended to be significant for portal vein 

plasma. To further explain, the number of samples with detectable levels of LPS 

increased with days on the high-grain diet. Interestingly, RV plasma LPS concentrations 

tended to increase on the high-grain diet, particularly by the third day. Ultimately, the 

LPS can trigger an inflammatory response once it is in the blood, which could affect 

reticulorumen motility as well as feed intake. Due to the presence of LPS detected in 

blood pools during this experiment, it is likely that animals were under some degree of 

inflammatory response. However, blood cytokines were not measured for this study.  

Reports of LPS translocation into the blood are conflicting; while some studies 

observed increases in LPS in peripheral blood with acute acidosis (Dougherty et al., 
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1975a; Aiumlamai et al., 1992) and SARA (Khafipour et al., 2009b; Liu et al., 2013), 

other studies found no changes (Gozho et al., 2007; Khafipour et al., 2009a). The point of 

LPS entry into the blood has also been a point of conflicting evidence in the literature 

(Emmanuel et al., 2007; Khafipour et al., 2009a). Therefore, another objective of this 

experiment was to try to deduce the point of translocation of LPS into the blood. The V-

A difference for RV plasma LPS was positive and significantly increased by the third day 

of high-grain feeding. This suggested that concentrations were higher in the RV than 

systemic blood on this day, which was likely due to translocation of LPS from the rumen 

into the RV. Although these data do not distinctly prove translocation across the ruminal 

epithelium, they do support the possibility. This translocation appeared to not occur until 

the third day of high-grain feeding when animals began to recover from the acidosis 

challenge, indicating translocation across the ruminal epithelium may not be a large 

driver for the depression in feed intake seen on the second day of high-grain feeding. 

Greater V-A difference for RV plasma LPS suggested that rumen epithelial integrity and 

barrier function was compromised during the abrupt transition from a 50% concentrate to 

90% concentrate diet. This would agree with previously reported findings of a decline in 

barrier function of the reticulorumen epithelium during acidosis, low ruminal pH, high 

ruminal osmolality, or when animals were fed high-grain diets (Gaebel et al., 1989; 

Emmanuel et al., 2007; Penner et al., 2010; Steele et al., 2011a; Zebeli et al., 2012; Liu et 

al., 2013). 

Multiple regression analysis enabled the deduction of important relationships 

between these physiological variables that changed as cattle were switched to the high-

grain diet. Many of the relationships observed have been previously reported, such as 
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DMI and reticulorumen contraction frequency were positively related. For example, 

contraction frequency was greater when animals were consuming feed compared to 

resting periods (Church, 1976; Waghorn and Reid, 1983; Grovum, 1986). Because 

animals that consumed more feed, generally spent more time eating, this relationship is 

logical. Also, mean RpH was positively linearly related to lying duration, meaning 

animals that had higher ruminal pH, would have greater average lying duration. 

Theoretically, this makes sense because a higher pH would typically mean the animal 

was on a more forage-based diet, which would require more rumination and would likely 

be associated with longer periods spent lying down and ruminating. The fact that 

susceptibility score was positively linearly correlated with duration that ruminal pH was 

below 5.0 and systemic LPS, separately, made sense with the scoring system. Animals 

which had longer durations with ruminal pH below 5.0 suggested more severe ruminal 

acidosis, or greater concentrations of LPS suggested more chance for an inflammatory 

response. These animals were more likely to go “off-feed”, thus, having a greater 

susceptibility score. These data suggested that the animals that were more tolerant to the 

grain challenge may have had less epithelial barrier damage (allowed less LPS to get to 

the blood) or were somehow equipped to maintain a healthier ruminal pH. Other 

relationships were more novel. As an example, rumen fluid viscosity was positively 

related to contraction duration. In this experiment, contraction duration increased with 

high-grain feeding along with apparent viscosity. Whether the increased contraction 

duration was an attempt to counteract the reduced mixing from greater viscosity or the 

viscosity increased to try to reduce mixing/slow fermentation despite increased 

contraction duration in order to maintain a healthier ruminal pH, is yet to be determined. 
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Other research has reported reductions in motility or reticuloruminal stasis in cattle with 

endotoxemia (Eades, 1993; 1997), or LPS in the blood. Results of correlation and 

regression analysis showed that ruminal vein LPS, not systemic or portal vein, was the 

variable most associated with contraction amplitude. As ruminal vein LPS concentrations 

increased, contraction amplitude was reduced, suggesting the inflammatory response 

induced from LPS translocated across the ruminal epithelium may be a key driver for the 

reduction in rumen motility during an acidotic challenge. Ruminal vein LPS was also the 

only remaining regressor for systemic pH and portal vein pH, indicating relationships 

between immune response elicitors and pH balance.  

Not surprisingly, saliva production (Chapter 5) helped explain bicarbonate 

concentrations in all three blood pools analyzed. Saliva has a high concentration of 

bicarbonate and phosphate and is very important for rumen function and buffering, 

particularly neutralization of acids (Bailey and Balch, 1961; Erdman, 1988). Contrary to 

what would be expected, systemic LPS concentration decreased as susceptibility score 

increased (i.e. the animal reduced intake to a greater extent). Yet, the low R-squared for 

this model and large range in systemic LPS concentrations indicated this relationship may 

not be accurate. Overall, it was evident that the feeding behavior, ruminal pH, 

reticulorumen motility, blood acid-base, and blood LPS variables were intimately related. 

Conclusions 

This study investigated the relationships between physiological variables and the 

timing of when animals go “off-feed” during an abrupt dietary increase in concentrate. 

The control of feed intake and relationships with the feeding behavior, ruminal pH, 

motility, blood acid-base, and plasma LPS variables appeared to be highly complex. The 
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V-A difference for ruminal vein plasma concentrations suggested that LPS was likely 

translocated across the ruminal epithelium, but it may not be a driver for the reduction of 

feed intake since it occurred after the large decrease in feed intake. Further research is 

needed to focus specifically on the various aspects of physiological changes associated 

with when animals go “off-feed” in order to potentially find a way to amend the problem.
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Tables and Figures 

Table 6-1. Blood acid-base status of cattle during an abrupt, large concentrate increase in order to transition to a finishing diet 

Item Day SEM5 P-value 
MIX1 HGd12 HGd23 HGd34 Day Hour Day*Hour 

Systemic Vessel6         
   pH 7.409 7.419 7.399 7.400 0.0087 0.0017 0.0007 0.0054 
   pCO2, mmHg 47.68a 47.50ab 45.82c 46.01bc 0.5487 0.0352 <0.0001 0.5812 
   HCO3

-, mmol/L 29.18 29.75 27.48 27.71 0.5515 <0.0001 <0.0001 0.0276 
   Base Excess, mmol/L 4.54 5.20 2.82 3.04 0.6117 <0.0001 <0.0001 0.0105 
   Hematocrit, % 26.39 26.41 26.60 26.22 0.7018 0.9028 0.1034 0.1405 
Portal Vein         
   pH 7.311 7.314 7.318 7.327 0.0047 0.1132 <0.0001 0.0086 
   pCO2, mmHg 61.36 61.03 56.29 56.41 1.1045 <0.0001 <0.0001 0.0014 
   pO2, mmHg 47.60b 51.05a 50.12a 49.21ab 1.3243 0.0060 <0.0001 0.0955 
   HCO3

-, mmol/L 29.96 30.03 27.94 28.56 0.5306 <0.0001 <0.0001 0.0004 
   Base Excess, mmol/L 3.923 4.041 2.14 2.856 0.511 0.0004 <0.0001 0.0003 
   Hematocrit, % 25.80 26.22 26.51 25.99 0.689 0.7381 0.0433 0.0061 
Ruminal Vein         
   pH 7.174 7.224 7.242 7.247 0.039 0.1206 0.4094 0.2357 
   pCO2, mmHg 79.11a 70.28b 65.24b 64.94b 6.52 0.0151 0.0884 0.8757 
   pO2, mmHg 56.45b 63.40a 60.32ab 59.36ab 4.46 0.0434 0.0463 0.4861 
   HCO3

-, mmol/L 27.66 27.79 26.20 27.00 0.634 0.0751 0.0027 0.1045 
   Base Excess, mmol/L -0.107 0.693 -0.585 0.299 0.696 0.3761 0.0094 0.1189 
   Hematocrit, % 26.21 26.45 25.86 25.43 0.647 0.4746 0.0992 0.5620 

 

1MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate supplement 
2HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5SEM represents a pooled SEM across all days 
6Systemic blood samples were collected from either the jugular vein (n=4) or mesenteric artery (n=6) 
a,b,c Means within a row without a common superscript differ 
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Table 6-2. Plasma lipopolysaccharide concentrations in blood pools and venous-arterial differences as cattle were abruptly 

switched from a 50% hay, 50% concentrate mixed (MIX) diet to a 90% concentrate, high-grain, finishing (HG). 

Item Day SEM5 P-value 
MIX1 HGd12 HGd23 HGd34 Day Hour Day*Hour 

Systemic Vessel6         
   LPS, EU/mL 0.74 2.12 2.29 1.31 1.58 0.7092 0.3896 0.9993 
Portal Vein         
   LPS, EU/mL 1.54 3.39 4.65 3.16 1.12 0.262 0.6395 0.5168 
   V-A difference, EU/mL -1.23 -0.34 -2.55 1.40 1.54 0.3785 0.133 0.4069 
   LPS Level      0.0833 0.944 0.957 
Ruminal Vein         
   LPS, EU/mL 2.55 5.44 4.94 9.48 1.72 0.0665 0.9315 0.2076 
   V-A difference, EU/mL 0.12b 2.60ab -3.65b 6.80*a 2.6 0.0294 0.9204 0.5305 

 

1 MIX: diet composed of 50% chopped tall fescue K31 hay and 50% concentrate supplement 
2 HGd1: first day of feeding a 90% high-moisture corn based, finishing diet 
3 HGd2: second day of feeding a 90% high-moisture corn based, finishing diet 
4 HGd3: third day of feeding a 90% high-moisture corn based, finishing diet 
5 SEM represents a pooled SEM across all days 
6 Systemic blood samples were collected from either the jugular vein (n=4) or mesenteric artery (n=6) 
* V-A difference mean was different from zero (P<0.05) 
a,b Means within a row without a common superscript differ 
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Table 6-3. Multiple regression analysis of intake and feeding behavior variables to determine relationships with other 

variables. 

Dependent Variable Variable(s) remaining in model Model P-
value R-squared Parameter 

estimate SE 

DMI Contraction frequency <0.0001 0.3794 5.47 1.2 
Water intake PV1 LPS2 0.0165 0.1771 -1.04 0.4 

Total water intake 
Duration RpH3 < 5.0 

0.0069 0.3474 
0.016 0.0075 

Contraction frequency 7.75 3.71 
PV LPS -0.900 0.433 

Meal duration 
Contraction duration 

<0.0001 0.5792 
-10.57 2.78 

Lying duration 0.433 0.125 
PV HCO3 3.47 1.33 

Meal size 
Contraction duration 

<0.0001 0.5586 
-296.46 129.4 

Contraction frequency 873.80 270.4 
PV LPS -62.27 28.4 

Meal Frequency 
Fractional liquid dilution rate 

<0.0001 0.6098 
106.63 24.1 

Saliva production -0.0999 0.034 
PV HCO3 0.859 0.31 

Susceptibility score4 Duration RpH < 5.0 0.0111 0.1749 0.0025 0.0009 
 

1 PV: portal vein 
2 LPS: lipopolysaccharide 
3RpH: ruminal pH 
4 Scores were based on the animal’s DM intake on the second day of high-grain feeding: 1 (low susceptibility) = consumed 4 
or more kg DM; 2 = 1-4 kg DM consumed; 3 = 0-1 kg DM consumed; and 4 (high susceptibility) = experiment was stopped 
due to low ruminal pH
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Table 6-4. Multiple regression analysis of rumen fluid viscosity, ruminal passage rate, VFA absorption rate, and saliva 

production variables to determine relationships with other variables. 

Dependent Variable Variable(s) remaining in model Model P-value R-squared Parameter 
estimate SE 

Rumen fluid viscosity Contraction duration 0.0069 0.1959 2.29 0.80 

Fractional liquid dilution rate 
Systemic1 HCO3 

0.0059 0.6983 
-0.021 0.009 

PV2 HCO3 0.031 0.010 
RV3 LPS4 0.0037 0.001 

VFA absorption rate PV pH 0.0119 0.2545 -3.64 1.3 
Saliva production RV HCO3 0.0136 0.4103 7.25 2.5 

 

1 Systemic samples were taken from the jugular vein (n=4) or mesenteric artery (n=6). 
2 PV: portal vein 
3 RV: ruminal vein 
4 LPS: lipopolysaccharide 
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Table 6-5. Multiple regression analysis of reticulorumen motility and lying behavior variables to determine relationships with 

other variables. 

Dependent Variable Variable(s) remaining in 
model 

Model  
P-value R-squared Parameter 

estimate SE 

Contraction amplitude RV1 LPS2 0.0215 0.3678 -0.149 0.06 

Contraction duration Rumen fluid viscosity 0.0030 0.6526 0.115 0.04 
RV pH 6.18 1.9 

Contraction frequency DMI 0.0011 0.7089 0.084 0.02 
RV pH -2.45 0.86 

Lying bouts RV pH 0.0477 0.2884 -30.0 13.6 

Lying duration Meal duration 0.0030 0.2971 0.304 0.15 
Mean RpH3 10.81 4.6 

 

1 RV: ruminal vein 
2 LPS: lipopolysaccharide 
3 RpH: ruminal pH
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Table 6-6. Multiple regression analysis of ruminal pH and temperature variables to determine relationships with other 

variables. 

Dependent Variable Variable(s) remaining in model Model P-
value R-squared Parameter 

estimate SE 

Mean RpH1 Lying duration 0.0058 0.2034 0.015 0.005 
Duration RpH < 5.5 PV2 HCO3 0.0157 0.1794 -80.35 31.4 
Duration RpH < 5.0 Susceptibility score3 0.0111 0.1794 69.48 25.9 

Mean Trum4 Meal frequency 0.0014 0.3293 0.066 0.02 
Contraction amplitude -0.12 0.05 

 

1 RpH: ruminal pH  
2 PV: portal vein 
3 Scores were based on the animal’s DM intake on the second day of high-grain feeding: 1 (low susceptibility) = consumed 4 
or more kg DM; 2 = 1-4 kg DM consumed; 3 = 0-1 kg DM consumed; and 4 (high susceptibility) = experiment had to be 
stopped early due to low ruminal pH 
4 Trum: ruminal temperature 
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Table 6-7. Multiple regression analysis of blood acid-base variables to determine relationships with other variables. 

Dependent Variable Variable(s) remaining in model Model P-
value R-squared Parameter 

estimate SE 

Systemic1 pH RV2 LPS3 0.0295 0.3370 0.00034 0.001 

Systemic HCO3 
DMI <0.0001 0.4856 0.304 0.07 

Saliva production 0.021 0.009 
PV4 pH RV LPS 0.0484 0.2868 0.002 0.0009 

PV HCO3 
DMI 

<0.0001 0.6625 
0.271 0.05 

Saliva production 0.02 0.007 
Duration RpH5 < 5.5 -0.0018 0.0006 

RV pH Contraction frequency 0.0064 0.6010 -0.11 0.04 
Lying bouts -0.0088 0.003 

RV HCO3 
DMI 0.0060 0.6058 0.198 0.08 

Saliva production 0.046 0.017 
 
1 Systemic samples were taken from the jugular vein (n=4) or mesenteric artery (n=6). 
2 RV: ruminal vein 
3 LPS: lipopolysaccharide 
4 PV: portal vein 

5 RpH: ruminal pH 
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Table 6-8. Multiple regression analysis of plasma lipopolysaccharide (LPS) variables to determine relationships with other 

variables. 

Dependent Variable Variable(s) remaining in model Model P-
value R-squared Parameter 

estimate SE 

Systemic1 LPS Susceptibility Score2 0.0433 0.1147 -1.17 0.56 
PV3 LPS Water intake 0.0165 0.1771 -0.17 0.07 
RV4 LPS Contraction amplitude 0.0215 0.3678 -2.48 0.94 

 
1 Systemic samples were taken from the jugular vein (n=4) or mesenteric artery (n=6). 
2 Scores were based on the animal’s DM intake on the second day of high-grain feeding: 1 (low susceptibility) = consumed 4 
or more kg DM; 2 = 1-4 kg DM consumed; 3 = 0-1 kg DM consumed; and 4 (high susceptibility) = experiment had to be 
stopped early due to low ruminal pH 
3 PV: portal vein 
4 RV: ruminal vein 
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Figure 6-1. Systemic blood vessel blood-acid base changes as cattle were abruptly switched from a 50% to 90% concentrate, 

high-grain diet. Systemic vessel pH and bicarbonate showed day*hour interactions (P=0.0054 and P=0.0276, respectively). 
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Figure 6-2. Portal vein blood acid-base changes as cattle abruptly switched from a 50% to 90% concentrate, high-grain diet. 

Portal vein blood pH and bicarbonate concentrations displayed day*hour interactions (P=0.0086 and P=0.0004), respectively).  
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Figure 6-3. Level of lipopolysaccharide in systemic and portal vein blood samples. A) 

Systemic blood vessel lipopolysaccharide level in cattle was influenced (P=0.0034) by 

day relative to the abrupt dietary switch from a 50% to a 90% concentrate diet (Hour: 

P=0.1514; Day*Hour: P=0.352). The frequency of observations for samples that were 

below detectable levels was reduced linearly (P=0.0241), meaning more samples had 

detectable levels, with increasing time on the high-grain diet. B) Portal vein plasma 

lipopolysaccharide levels tended (P=0.0833) to be influenced by day relative to the 

abrupt dietary transition, where the number of samples below detectable limits decreased 

linearly (P<0.0001) over successive days following the dietary switch.  
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CHAPTER 7: SUMMARY AND CONCLUSIONS 
 

Finishing beef cattle on high-concentrate diets is typical for the feedlot industry, 

which helps to maximize productivity and profitability. Yet, the period when cattle are 

transitioned from a high-forage to a high-concentrate diet can increase the risk for 

ruminal acidosis, along with other gastrointestinal disorders, and may be associated with 

reductions in feed intake or erratic feeding behavior. Animal responses to high-

concentrate challenges or dietary transitions are also highly variable; some animals 

appear better equipped to adjust to the new fermentation substrates without complications 

compared to others. The reasons for feed intake reductions and varying animal 

susceptibility for adverse intake or health effects with transitions to high-grain diets are 

still not fully understood. Particularly, the goal of this dissertation was to investigate 

relationships between behavior and physiological adaptations of cattle during 

transitioning to high-concentrate diets with emphasis on effects on forestomach motility 

and endotoxin translocation. 

To study this dietary transition period in cattle, two measurement systems and 

their corresponding algorithms for analysis were developed and validated for recording 

and characterizing short-term feeding behavior and reticulorumen motility. The low error 

rates found in validation and response values congruent with published literature 

suggested these systems were accurate. The automated nature of these systems, along 

with the ability to analyze large amounts of data, were significant improvements from 

other methods and make them vital to research efforts. 
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While acute ruminal acidosis had been previously reported to reduce 

reticulorumen motility (Juhász and Szegedi, 1968; Bruce and Huber, 1973; Cebrat, 1979; 

Kezar and Church, 1979) and led to a reduction in feed intake (Dirksen, 1970; Fulton et 

al., 1979a; b), the effects of subacute ruminal acidosis on reticulorumen motility had not 

been determined, despite some studies indicating reductions in feed intake. The second 

part of this series of experiments showed that transitioning cattle from an approximately 

70% concentrate to 90% concentrate diet which induced a mild subacute ruminal acidosis 

reduced reticulorumen motility, altered consumption rate without affecting meal 

characteristics, and confirmed that feeding behavior, ruminal pH, and rumen motility 

variables were intricately related. Although reticulorumen motility was reduced, it did not 

slow passage rate and therefore, may not have been responsible for the moderate 

decreases in DMI seen on the second day of high-grain feeding compared to the first day. 

In the next experiment of these series, an abrupt increase in dietary concentrate 

from 50% to 90% concentrate was used to induce a more severe ruminal acidosis and 

cause some animals to go “off-feed.” Steers exhibited greater DMI and faster 

consumption rate on the first day of high-grain feeding, which may have resulted in post-

ingestive consequences that led animals to reduce intake, meal size, and meal duration on 

the second day of high-grain feeding. As has been reported before in the literature, there 

was great variation between animal susceptibility to go “off-feed.” Furthermore, 

reticulorumen contraction amplitude and frequency were also reduced, while rumen fluid 

viscosity was increased, which could have reduced presentation of VFA to the absorptive 

surface and subsequent absorption rate, as suggested by absorption rate estimates.  
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Blood acid-base status and inflammatory response during a nutritional challenge, 

such as this abrupt transition from the 50% to 90% concentrate diet, can also be related to 

when changes in feed intake occurred. Reductions in systemic and portal vein 

bicarbonate were associated with the second day of high-grain feeding when cattle were 

“off-feed.” Additionally, plasma samples had more detectable levels of 

lipopolysaccharide with increasing days on feed, which would induce an inflammatory 

response. Concentrations of lipopolysaccharide within the ruminal vein were greater than 

systemic plasma suggesting that translocation likely occurred across the ruminal 

epithelium, for which previous evidence was conflicting. 

In conclusion, it was clear that the relationships between changes in feeding 

behavior, reticulorumen motility, rumen fluid viscosity, blood acid-base balance, and 

blood lipopolysaccharide were linked with when cattle reduced feed intake. These 

associations appeared to be convoluted, which greatly complicates the challenge of 

determining why animals went “off-feed” during these dietary transitions. A multi-

faceted approach to alleviate the intake reduction associated with transitioning cattle to 

high-grain diets and subsequent potential ruminal acidosis is necessary. By increasing 

understanding of the physiological and behavioral mechanisms by which cattle adapt to 

high-grain diets, we could improve animal health and performance through these diet 

transitions. 
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APPENDICES 
 
Appendix A: Preliminary dietary step-up experiment 

Introduction 

In order to increase growth performance and efficiency, cattle are often finished 

on high-grain diets.  It has been reported that incidence, prevalence, and severity of 

ruminal acidosis was greatest towards the end of the finishing phase (Castillo-Lopez et 

al., 2014).  However, the transitioning period when cattle are acclimated from a forage 

diet to a high-concentrate, rapidly fermentable diet increases the risk for ruminal acidosis 

(Bevans et al., 2005; Brown et al., 2006) and disrupts the microbial population (Goad et 

al., 1998; Tajima et al., 2001).  As the proportion of concentrate in the diet increases, 

volatile fatty acid (VFA) production in the forestomach increases, which decreases the 

pH of ruminal contents.  Starch intake has been positively associated with maximum and 

mean ruminal temperature, and the maximum ruminal temperature was negatively related 

to minimum ruminal pH (Mohammed et al., 2014). If ruminal acidosis occurs, cattle 

typically decrease feed intake which, along with decreased absorption, results in lower 

average daily gains (Koers et al., 1976; Owens et al., 1998).  As a result, ruminal acidosis 

leads to significant losses for the producer.  Yet, the cause and effect relationship of 

ruminal acidosis and feed intake variation has not been determined (Cooper et al., 1999). 

Type and processing of grain could also influence extent and rate of ruminal 

fermentation and ruminal pH, which may alter feed intake.  For example, grain 

processing which decreases particle size or gelatinizes starch granules should increase 

starch degradation in the rumen and VFA production, enhancing the risk for acidosis 

(Stock et al., 1987).  High-moisture corn (HMC), a common component of feed for 
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finishing cattle, is fermented more rapidly than dry rolled corn (DRC), making it more 

likely to induce ruminal acidosis (Benton et al., 2005; Nagaraja and Lechtenberg, 2007).   

The objectives of this experiment were to 1) characterize how transitioning cattle 

to a high-grain diet affects feed intake, ruminal pH and VFA concentrations, ruminal 

temperature, rumen motility and 2) determine a diet (DRM versus HMC) and dietary 

transition period likely to induce ruminal acidosis.   

Materials and Methods 

Animals and Management 

Eight ruminally-cannulated Holstein steers (BW = 559 ± 35 kg) were maintained 

on corn silage in outdoor, partially covered barns prior to the initiation of the experiment. 

At the beginning of the experiment, animals were weighed, paired by weight into 4 

blocks, and moved indoors for housing at 22°C in individual 3 m × 3 m stalls with ad 

libitum access to water. Steers were accustomed to housing indoors from previous 

experiences, but they were given a 7 d acclimation period on the starter diet before 

experimentation begins. Then, experimentation started with all steers fed a starter diet 

(CS; approximately 50% concentrate; Phase 1; Table A-1) composed primarily of corn 

silage at 2.5 x NEm for 7 days.  Steers from each block were randomly assigned and 

transitioned to one of two high-grain diet treatments: dry-rolled corn (DRC) or high-

moisture corn (HMC). A supplement was prepared for each diet to meet protein, mineral, 

and vitamin requirements (NRC, 2000). Each transition diet, either a DRC 70% 

concentrate (T-DRC) or HMC 70% concentrate (T-HMC) diet (Phase 2), was fed for 7 

days (Table A-1; Figure A-1). The final diets, either a DRC 90% concentrate (F-DRC) or 

HMC 90% concentrate (F-HMC), however, were fed for 21 d (Phase 3 and 4; Table A-1; 
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Figure A-1). Orts were collected daily, weighed, and recorded from the previous day 

before feeding in order to adjust feed amounts and maintain ad libitum feeding 

throughout the experiment. Additional data was collected throughout the experiment with 

sampling occurring for different variables at various time points (Figure A-1). 

Motility Measurements 

Rumen motility was measured for 24 hr periods beginning on d 2, 5, and 7 of each 

diet beginning at 0900 and additionally, twice at the end of feeding the finishing diet 

(experimental d 2, 5, 7, 9, 12, 14, 16, 19, 21, 33, and 35). A wireless telemetry system 

(emkaPACK4G telemetry system, emka TECHNOLOGIES USA, Falls Church, 

Virginia) was used to monitor pressure changes in the rumen and characterize rumen 

contractions as described by Egert et al. (2014) with modifications. Briefly, a water filled 

(2L) balloon attached to a Tygon catheter (i.d. = 3.2 mm; o.d. = 6.4 mm) was inserted 

into the ventral sac of the rumen. Balloons were weighed to maintain consistent fill 

between animals and days. The balloons remained in the rumen, even when motility was 

not being measured, to help eliminate alterations in motility due to the added weight of 

the water-filled balloon in the rumen on sampling days. Balloons were changed on d 2, 8, 

15, 22, and 32, or as needed. A small hole was made in the plug of the rumen cannula to 

allow the catheter to pass through. The end of the catheter external to the animal was 

equipped with a shut-off female quick coupling (collection 1; KENT Systems, LLC., 

Loveland, CO) to prevent water leakage when not connected to the pressure transducer 

system. Bovine backpacks (BBPs) were made using a 200-round ammo pack and a strap 

(composed of a buckle, about 90 cm of 5 cm wide nylon webbing, about a 90 cm elastic 

insert riveted to the nylon, then 120 cm of nylon webbing) with 3 eyelets where the 
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webbing would sit on the top of the back of the animals. A 17.2 cm x 7.6 cm snap-lid 

plastic container (Snapware, World Kitchen, Rosemont, IL), with a hole burned through 

one side for insertion of a stainless steel male luer lock bulkhead adapter with luer lock 

side on the outside of the container, housed the pressure transducer and transmitter and 

was inserted into the ammo pack. Cheesecloth was placed on the bottom of the container 

to prevent excessive movement. A female luer lock to 2.4 cm barb adapter connected the 

pressure transducer to a 5.5 cm piece of silicone tubing (i.d. = 2.4 mm; o.d. = 4.0 mm) 

attached to the barb of the bulkhead adapter. The transducer was taped to the side of the 

container to prevent the tubing from kinking. A piece of about 20 cm piece of Tygon 

tubing (i.d. = 3.2 mm; o.d. = 6.4 mm) was connected to the bulkhead adapter in the 

plastic container with a luer lock to hose adapter (female luer thread style 200 series barb, 

3.2 mm i.d. tubing; Cole-Parmer Instruments, Vernon Hills, IL) through a hole in the 

bottom of the ammo pack. A collection 1 triggering open-flow rotating male quick 

coupling on the other end of the 20 cm Tygon tubing allowed passage of water from the 

balloon and catheter to the pressure transducer for measurement of ruminal contractions. 

The ammo pack was attached to the strap using zip ties placed through the eyelets in the 

straps. The BBPs were then be placed over the animals back, and the strap was secured 

tightly around the animal with the buckle. The buckle was secured to the cannula with a 

zip tie by making a small hole in the cannula flange at least 2.5 cm from the edge of the 

cannula. Transmitters connected to the transducers sent wireless signals to a receiver 

which were displayed and recorded on a laptop.   

Following data analysis using the rhythmic analyzer, values for contraction base, 

peak, amplitude, frequency, time to peak (TTP), relaxation time (RT), duration, and area 
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under the curve for each animal were averaged for each day using the proc MEANS 

procedure of SAS (SAS 9.3, SAS Inst. Inc., Cary, NC).   

Ruminal Measurements 

 Ruminal pH (RpH) was monitored (readings every 1 min) for 24 hr using rumen 

data loggers (SRL-T9, DASCOR, Inc., Escondido, CA) on the same days which motility 

was measured. This device was inserted into the ventral sac of the rumen through the 

cannula before feeding. The pH electrodeswere calibrated before and after each 

measurement period using pH buffers 7 and 4. Data loggers were attached to the catheter 

by the top of the balloon with a zip-tie to aid in locating them in the rumen. When not in 

use, the pH electrodes were stored in a storage solution (DASCOR, Inc.). Readings were 

stored in the data logger and downloaded from data logger after each use.  From these 

data, minimum RpH, mean RpH, maximum RpH, duration RpH < 5.8, and duration RpH 

< 5.5 were determined for each animal on each day. 

 The data logger was also equipped with a built-in sensor to measure ruminal 

temperature (Trum) at the same time pH was recorded (Mohammed et al., 2014). 

Minimum Trum, mean Trum, and maximum Trum were determined for each animal on 

each day. 

Rumen Fluid Sample Collection and VFA Analysis 

 Approximately 100 mL of rumen fluid was collected from each animal 

immediately before feeding and 4, 8, and 12 hr after feeding on motility sampling days 

using a suction strainer. A 15 mL sample of rumen fluid from each animal was 

transferred to screw-top conical vials and centrifuged for 5 min at 2000 × g. Duplicate 1-

mL samples of supernatant rumen fluid from each animal and time point was placed into 
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microcentrifuge tubes, combined with 100 μL 85 mM 2-ethylbutyrate internal standard, 

capped, and mixed for approximately 2 seconds using a vortex.  Next, 100 μL 50% meta-

phosphoric acid was added, tubes were recapped, mixed for approximately 5 seconds 

using a vortex, and frozen overnight (-4°C) to allow for protein precipitation. Tubes were  

thawed, centrifuged at 20,000 × g for 20 min, and supernatant were transferred to GC 

injection vials and capped. Gas chromatography with a flame ionization detector (Agilent 

HP6890 Plus GC with Agilent 7683 Series Injector and Auto Sampler; Agilent 

Technologies, Santa Clara, CA) and a Supelco 25326 Nukol fused silica capillary column 

(15 m × 0.53 mm × 0.5 µM film thickness; Sigma/Supelco, Bellefonte, PA) was used to 

determine VFA concentrations in the rumen fluid samples. Analysis involved injection of 

0.2 μL of each sample in duplicate at 110°C with a 2:1 split, a 1-min hold, temperature 

increase at 5°C/min to 125°C for 2 min, and the setpoint for inlet and injector at 260°C. 

Statistical Analysis 

 Data were analyzed using a randomized complete block design. Blocking 

criterion was body weight, placing animals into 2 dietary treatments (4 blocks of 2 

steers). Diets were randomly assigned within each block. Concentrations of VFA were 

analyzed using proc MIXED of SAS for randomized complete block design with a split-

split plot, with treatment (DRC or HMC) as the whole plot factor, phase (1, 2, 3, or 4) as 

the sub-plot factor, and time (hour relative to feed) as the sub-sub plot factor. All other 

variables were analyzed as an RBD split plot. 
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Conclusions 
 

• DMI was variable through diet transitions  major fluctuations and decrease 

between d 9 and 21 (70% to 90% transition) 

• Some differences between DRC and HMC, with HMC having… 

o Reduced DMI in phase 3 

o Reduced water consumption phases 2-4 

o Longer duration RpH < 5.5 

o Reduced mean and max Trum in phase 3 

• Unexpected results for motility variables => no effect on motility in phases 1-3 

and greater motility in the finishing phase (highest concentrate level) 

• VFA patterns as expected – concentrations increased with time and shifted to 

greater proportion of propionate production with greater concentrate level 
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Tables and Figures 

Table A-1. Preliminary experiment composition of diets and ingredients 

Diet Ingredient 
%, DM basis 

CS T-DRC1 T-HMC2 F-DRC F-HMC 
Corn silage 90.00 54.00 54.00 18.00 18.00 
Dry rolled corn - 37.48 - 74.95 - 
High moisture corn - - 37.48 - 74.95 
Soybean meal 7.38 5.69 5.69 4.00 4.00 
Urea 0.60 0.55 0.55 0.50 0.50 
Tallow 0.30 0.30 0.30 0.30 0.30 
Limestone 0.80 1.10 1.10 1.40 1.40 
Trace mineral premix3 0.45 0.45 0.45 0.45 0.45 
Vitamin A, D, & E premix4 0.15 0.15 0.15 0.15 0.15 
Sodium sulfate 0.32 0.16 0.16 - - 
Potassium sulfate - 0.12 0.12 0.25 0.25 

 

1 DRC: dry-rolled corn 
2 HMC: high-moisture corn 
3 Contained 56.34% Cl, 36.53% Na, 1.2% S, 0.06% Ca, 68.9 ppm Co, 1837.7 ppm Cu, 
119.9 I, 9290.2 ppm Fe, 4792.3 ppm Mn, 18.5 ppm Se, and 5520.2 ppm Zn on a DM 
basis. 
4 Composed of vitamin A acetate (1,814,368 IU/kg), D-activated animal sterol (source of 
vitamin D3; 362,874 IU/kg), vitamin E supplement (227 IU/kg), roughage products, 
calcium carbonate, and mineral oil. 
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Table A-2. Volatile fatty acid concentrations during the dietary transition of steers from 

50% to 90% concentrate diets using an intermediate 70% diet. No treatment effects or 

interactions were detected. 

Item Phase  P-Value 
All 1 2 3 4  Phase Time 

Total VFA, mM  87.9 100.0 102.8 122.0  <0.01 <0.01 
    0 h 88.0        
    4 h 101.0        
    8 h 107.0        
    12 h 116.6        
Acetate, mM  53.3 58.5 52.5 63.5  <0.01 <0.01 
    0 h 50.2        
    4 h 56.2        
    8 h 58.7        
    12 h 62.7        
Propionate, mM  17.3 22.1 34.3 41.5  <0.01 <0.01 
    0 h 22.8        
    4 h 27.8        
    8 h 30.4        
    12 h 34.1        
Butyrate, mM  13.1 15.1 12.1 12.0  0.166 <0.01 
    0 h 11.2        
    4 h 12.6        
    8 h 13.4        
    12 h 15.1        
Acetate:Propionate  3.2 2.9 2.3 1.8  <0.01 <0.01 
    0 h 2.8        
    4 h 2.6        
    8 h 2.5        
    12 h 2.3        
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Figure A-1. Preliminary experiment dietary transition and sampling timeline 

 

Figure A-2. Dry matter intake of steers throughout the experiment on sampling days only 

comparing dry-rolled corn (DRC) and high-moisture corn (HMC) treatments. The effect 

of treatment depended on phase (P=0.0008). Intake was lower for HMC treated steers in 

period 3 (i.e. the beginning of the finishing diet after animals were switched from 70% to 

90%). 
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Figure A-3. Water intake varied by treatment (P=0.04) and phase (P<0.0001) separately. 

Water intake was lower on HMC compared to DRC. 

  

 

Figure A-4. Mean ruminal pH decreased with each step in diet transition (Phase: 

P<0.0001). 
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Figure A-5. Minimum ruminal pH was reduced as concentrate level increased in the diet 

(Phase: P<0.0001). 

 

 

Figure A-6. Increasing concentrate level in the diet increased duration ruminal pH was 

below 5.8 (P<0.0001). 
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Figure A-7. Steers fed HMC had a ruminal pH below 5.5 for more time than DRC-fed 

steers at the end of the finishing period (P=0.0402). 

 

 

Figure A-8. Mean ruminal temp. tended to be lower for HMC-fed steers in the beginning 

of the finishing phase (Phase: P=0.0124; Treatment*Phase: P=0.0635). 
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Figure A-9. Minimum ruminal temperature was not affected by treatment or phase. 

 

 

Figure A-10. Maximum ruminal temperature was lower for HMC steers in the beginning 

of the finishing phase (P=0.0453). 
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Figure A-11. Contraction base (A) and peak (B) tended to be greater at the end of the 

finishing phase (P=0.0772 and P=0.0573, respectively). 

 

 

 

 

 

A) 

B) 
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Figure A-12. Contraction amplitude (A) and frequency (B) was greater at the end of the 

finishing phase (P=0.0205). 

 

 

 

 

 

A) 

B) 
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Figure A-13. Contraction time to peak was greater on the starter diet compared to all 

other phases (P=0.0088). 

 

 

Figure A-14. Contraction area under the curve was greater at the end of the finishing 

phase compared to phase 2 or 3 (P=0.0542). 

 

Copyright © Amanda M. McLean 2019
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Appendix B: MATLAB meal detection and characterization script 

 

%********************************************************************** 
%* Title: LoadCell.m                                                  * 
%* Author: Michael P. Sama & Amanda M. Egert-McLean                   * 
%* Date: 10/25/2018                                                   * 
%* Description: This program takes the raw load cell file in Excel    * 
%*   format and reports the start and duration of each meal. The raw  * 
%*   data is filtered using a median filter and meals that are close  * 
%*   together are considered a single meal.                           * 
%* Prerequisites: None, but variables n and m should be adjusted      * 
%********************************************************************** 
  
clear;  %clear all variables 
clc; %clear the command window 
  
n = 20; %order of median filter, adjust as needed 
m = 30; %difference between start of Meal and end of last Meal for 
combining into one Meal 
[~,~,DATA] = xlsread('Insert file name here'); %read in the load cell 
data file 
  
%extract individual load cell data 
LC1_LBS_AVG = cell2mat(DATA(5:length(DATA),13)); 
LC2_LBS_AVG = cell2mat(DATA(5:length(DATA),14)); 
LC3_LBS_AVG = cell2mat(DATA(5:length(DATA),15)); 
LC4_LBS_AVG = cell2mat(DATA(5:length(DATA),16)); 
LC5_LBS_AVG = cell2mat(DATA(5:length(DATA),17)); 
LC6_LBS_AVG = cell2mat(DATA(5:length(DATA),18)); 
LC7_LBS_AVG = cell2mat(DATA(5:length(DATA),19)); 
LC8_LBS_AVG = cell2mat(DATA(5:length(DATA),20)); 
  
TS = DATA(5:length(DATA),1); %extract the timestamps 
  
ElapsedTime = (0:1:length(LC1_LBS_AVG)-1)'; %x-axis variable for 
elapsed time 
  
% plot raw data 
figure(10) 
subplot(4,2,1) 
plot(ElapsedTime,LC1_LBS_AVG); 
title('LC1') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,2) 
plot(ElapsedTime,LC2_LBS_AVG); 
title('LC2') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,3) 
plot(ElapsedTime,LC3_LBS_AVG); 
title('LC3') 



 

 

229 
 

xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,4) 
plot(ElapsedTime,LC4_LBS_AVG); 
title('LC4') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,5) 
plot(ElapsedTime,LC5_LBS_AVG); 
title('LC5') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,6) 
plot(ElapsedTime,LC6_LBS_AVG); 
title('LC6') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,7) 
plot(ElapsedTime,LC7_LBS_AVG); 
title('LC7') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,8) 
plot(ElapsedTime,LC8_LBS_AVG); 
title('LC8') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
  
%filter all load cell data using an order-n one-dimensional median 
filter 
LC1_LBS_AVG_F = medfilt1(LC1_LBS_AVG,n); 
LC2_LBS_AVG_F = medfilt1(LC2_LBS_AVG,n); 
LC3_LBS_AVG_F = medfilt1(LC3_LBS_AVG,n); 
LC4_LBS_AVG_F = medfilt1(LC4_LBS_AVG,n); 
LC5_LBS_AVG_F = medfilt1(LC5_LBS_AVG,n); 
LC6_LBS_AVG_F = medfilt1(LC6_LBS_AVG,n); 
LC7_LBS_AVG_F = medfilt1(LC7_LBS_AVG,n); 
LC8_LBS_AVG_F = medfilt1(LC8_LBS_AVG,n); 
  
F1 = length(LC1_LBS_AVG_F); 
F2 = length(LC2_LBS_AVG_F); 
F3 = length(LC3_LBS_AVG_F); 
F4 = length(LC4_LBS_AVG_F); 
F5 = length(LC5_LBS_AVG_F); 
F6 = length(LC6_LBS_AVG_F); 
F7 = length(LC7_LBS_AVG_F); 
F8 = length(LC8_LBS_AVG_F); 
  
DATA_OUT = cell.empty(); 
DATA_OUT(1,:) = 
{'LC1','','LC2','','LC3','','LC4','','LC5','','LC6','','LC7','','LC8','
'}; 
DATA_OUT(2,:) = 
{'Weight','','Weight','','Weight','','Weight','','Weight','','Weight','
','Weight','','Weight',''}; 
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DATA_OUT(3:F1+2,1) = num2cell(LC1_LBS_AVG_F(1:length(LC1_LBS_AVG_F))); 
DATA_OUT(3:F2+2,3) = num2cell(LC2_LBS_AVG_F(1:length(LC2_LBS_AVG_F))); 
DATA_OUT(3:F3+2,5) = num2cell(LC3_LBS_AVG_F(1:length(LC3_LBS_AVG_F))); 
DATA_OUT(3:F4+2,7) = num2cell(LC4_LBS_AVG_F(1:length(LC4_LBS_AVG_F))); 
DATA_OUT(3:F5+2,9) = num2cell(LC5_LBS_AVG_F(1:length(LC5_LBS_AVG_F))); 
DATA_OUT(3:F6+2,11) = num2cell(LC6_LBS_AVG_F(1:length(LC6_LBS_AVG_F))); 
DATA_OUT(3:F7+2,13) = num2cell(LC7_LBS_AVG_F(1:length(LC7_LBS_AVG_F))); 
DATA_OUT(3:F8+2,15) = num2cell(LC8_LBS_AVG_F(1:length(LC8_LBS_AVG_F))); 
  
[~,~,temp] = xlsread('Filtered.xlsx'); 
if ~isempty(temp) 
    xlswrite('Filtered.xlsx',zeros(size(temp))*nan); 
end 
xlswrite('Filtered.xlsx',DATA_OUT); 
  
%calculate the first derivative as the difference between two 
measurements 
LC1_LBS_AVG_D = diff(LC1_LBS_AVG_F); 
LC2_LBS_AVG_D = diff(LC2_LBS_AVG_F); 
LC3_LBS_AVG_D = diff(LC3_LBS_AVG_F); 
LC4_LBS_AVG_D = diff(LC4_LBS_AVG_F); 
LC5_LBS_AVG_D = diff(LC5_LBS_AVG_F); 
LC6_LBS_AVG_D = diff(LC6_LBS_AVG_F); 
LC7_LBS_AVG_D = diff(LC7_LBS_AVG_F); 
LC8_LBS_AVG_D = diff(LC8_LBS_AVG_F); 
  
%calculate a binary threshold to differentiate slope 
BinaryLC1 = LC1_LBS_AVG_D < -0.1; 
BinaryLC2 = LC2_LBS_AVG_D < -0.1; 
BinaryLC3 = LC3_LBS_AVG_D < -0.1; 
BinaryLC4 = LC4_LBS_AVG_D < -0.1; 
BinaryLC5 = LC5_LBS_AVG_D < -0.1; 
BinaryLC6 = LC6_LBS_AVG_D < -0.1; 
BinaryLC7 = LC7_LBS_AVG_D < -0.1; 
BinaryLC8 = LC8_LBS_AVG_D < -0.1; 
  
%variables for storing low-to-high and high-to-low transitions 
LH1 = zeros(1,length(BinaryLC1)); 
HL1 = zeros(1,length(BinaryLC1)); 
LH2 = zeros(1,length(BinaryLC2)); 
HL2 = zeros(1,length(BinaryLC2)); 
LH3 = zeros(1,length(BinaryLC3)); 
HL3 = zeros(1,length(BinaryLC3)); 
LH4 = zeros(1,length(BinaryLC4)); 
HL4 = zeros(1,length(BinaryLC4)); 
LH5 = zeros(1,length(BinaryLC5)); 
HL5 = zeros(1,length(BinaryLC5)); 
LH6 = zeros(1,length(BinaryLC6)); 
HL6 = zeros(1,length(BinaryLC6)); 
LH7 = zeros(1,length(BinaryLC7)); 
HL7 = zeros(1,length(BinaryLC7)); 
LH8 = zeros(1,length(BinaryLC8)); 
HL8 = zeros(1,length(BinaryLC8)); 
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%determine the low-to-high and high-to-low transitions 
for i = 1:length(BinaryLC1)-1 
    if ((BinaryLC1(i) == 0) && (BinaryLC1(i+1) == 1)) 
        LH1(i) = 1; 
    elseif ((BinaryLC1(i) == 1) && (BinaryLC1(i+1) == 0)) 
        HL1(i) = 1; 
    end 
    if ((BinaryLC2(i) == 0) && (BinaryLC2(i+1) == 1)) 
        LH2(i) = 1; 
    elseif ((BinaryLC2(i) == 1) && (BinaryLC2(i+1) == 0)) 
        HL2(i) = 1; 
    end    
    if ((BinaryLC3(i) == 0) && (BinaryLC3(i+1) == 1)) 
        LH3(i) = 1; 
    elseif ((BinaryLC3(i) == 1) && (BinaryLC3(i+1) == 0)) 
        HL3(i) = 1; 
    end    
    if ((BinaryLC4(i) == 0) && (BinaryLC4(i+1) == 1)) 
        LH4(i) = 1; 
    elseif ((BinaryLC4(i) == 1) && (BinaryLC4(i+1) == 0)) 
        HL4(i) = 1; 
    end    
    if ((BinaryLC5(i) == 0) && (BinaryLC5(i+1) == 1)) 
        LH5(i) = 1; 
    elseif ((BinaryLC5(i) == 1) && (BinaryLC5(i+1) == 0)) 
        HL5(i) = 1; 
    end    
    if ((BinaryLC6(i) == 0) && (BinaryLC6(i+1) == 1)) 
        LH6(i) = 1; 
    elseif ((BinaryLC6(i) == 1) && (BinaryLC6(i+1) == 0)) 
        HL6(i) = 1; 
    end    
    if ((BinaryLC7(i) == 0) && (BinaryLC7(i+1) == 1)) 
        LH7(i) = 1; 
    elseif ((BinaryLC7(i) == 1) && (BinaryLC7(i+1) == 0)) 
        HL7(i) = 1; 
    end    
    if ((BinaryLC8(i) == 0) && (BinaryLC8(i+1) == 1)) 
        LH8(i) = 1; 
    elseif ((BinaryLC8(i) == 1) && (BinaryLC8(i+1) == 0)) 
        HL8(i) = 1; 
    end    
end 
  
%find the indices of all transitions and calculate Meal duration 
LH1i = find(LH1); %find the indices of all low-to-high transitions 
HL1i = find(HL1)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH2i = find(LH2); %find the indices of all low-to-high transitions 
HL2i = find(HL2)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH3i = find(LH3); %find the indices of all low-to-high transitions 
HL3i = find(HL3)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH4i = find(LH4); %find the indices of all low-to-high transitions 
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HL4i = find(HL4)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH5i = find(LH5); %find the indices of all low-to-high transitions 
HL5i = find(HL5)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH6i = find(LH6); %find the indices of all low-to-high transitions 
HL6i = find(HL6)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH7i = find(LH7); %find the indices of all low-to-high transitions 
HL7i = find(HL7)+1; %find the indices of all high-to-low transitions 
and shift by 1 
LH8i = find(LH8); %find the indices of all low-to-high transitions 
HL8i = find(HL8)+1; %find the indices of all high-to-low transitions 
and shift by 1 
  
%combine feeding events that are less than m minutes apart 
j1 = 0; %iterator variable 
j2 = 0; %iterator variable 
j3 = 0; %iterator variable 
j4 = 0; %iterator variable 
j5 = 0; %iterator variable 
j6 = 0; %iterator variable 
j7 = 0; %iterator variable 
j8 = 0; %iterator variable 
  
for i = 2:length(LH1i) %iterate through all but start of first Meal 
    if LH1i(i) < (HL1i(i-1) + m) %if start is within m minutes of last 
end 
        j1 = j1+ 1; %increment the iterator 
        LH1r(j1) = i;   %store the index of the start to remove 
        HL1r(j1) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH2i) %iterate through all but start of first Meal 
    if LH2i(i) < (HL2i(i-1) + m) %if start is within m minutes of last 
end 
        j2 = j2+ 1; %increment the iterator 
        LH2r(j2) = i;   %store the index of the start to remove 
        HL2r(j2) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH3i) %iterate through all but start of first Meal 
    if LH3i(i) < (HL3i(i-1) + m) %if start is within m minutes of last 
end 
        j3 = j3+ 1; %increment the iterator 
        LH3r(j3) = i;   %store the index of the start to remove 
        HL3r(j3) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH4i) %iterate through all but start of first Meal 
    if LH4i(i) < (HL4i(i-1) + m) %if start is within m minutes of last 
end 
        j4 = j4+ 1; %increment the iterator 
        LH4r(j4) = i;   %store the index of the start to remove 
        HL4r(j4) = i-1; %store the index of the end to remove 
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    end 
end 
for i = 2:length(LH5i) %iterate through all but start of first Meal 
    if LH5i(i) < (HL5i(i-1) + m) %if start is within m minutes of last 
end 
        j5 = j5+ 1; %increment the iterator 
        LH5r(j5) = i;   %store the index of the start to remove 
        HL5r(j5) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH6i) %iterate through all but start of first Meal 
    if LH6i(i) < (HL6i(i-1) + m) %if start is within m minutes of last 
end 
        j6 = j6+ 1; %increment the iterator 
        LH6r(j6) = i;   %store the index of the start to remove 
        HL6r(j6) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH7i) %iterate through all but start of first Meal 
    if LH7i(i) < (HL7i(i-1) + m) %if start is within m minutes of last 
end 
        j7 = j7+ 1; %increment the iterator 
        LH7r(j7) = i;   %store the index of the start to remove 
        HL7r(j7) = i-1; %store the index of the end to remove 
    end 
end 
for i = 2:length(LH8i) %iterate through all but start of first Meal 
    if LH8i(i) < (HL8i(i-1) + m) %if start is within m minutes of last 
end 
        j8 = j8+ 1; %increment the iterator 
        LH8r(j8) = i;   %store the index of the start to remove 
        HL8r(j8) = i-1; %store the index of the end to remove 
    end 
end 
  
  
LH1i(LH1r) = [];  %remove the intermediate Meal start 
HL1i(HL1r) = [];  %remove the intermediate Meal end 
LHL1 = HL1i-LH1i(1:length(HL1i)); %calculate the elapsed time (min) for 
each Meal 
LH2i(LH2r) = [];  %remove the intermediate Meal start 
HL2i(HL2r) = [];  %remove the intermediate Meal end 
LHL2 = HL2i-LH2i(1:length(HL2i)); %calculate the elapsed time (min) for 
each Meal 
LH3i(LH3r) = [];  %remove the intermediate Meal start 
HL3i(HL3r) = [];  %remove the intermediate Meal end 
LHL3 = HL3i-LH3i(1:length(HL3i)); %calculate the elapsed time (min) for 
each Meal 
LH4i(LH4r) = [];  %remove the intermediate Meal start 
HL4i(HL4r) = [];  %remove the intermediate Meal end 
LHL4 = HL4i-LH4i(1:length(HL4i)); %calculate the elapsed time (min) for 
each Meal 
LH5i(LH5r) = [];  %remove the intermediate Meal start 
HL5i(HL5r) = [];  %remove the intermediate Meal end 
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LHL5 = HL5i-LH5i(1:length(HL5i)); %calculate the elapsed time (min) for 
each Meal 
LH6i(LH6r) = [];  %remove the intermediate Meal start 
HL6i(HL6r) = [];  %remove the intermediate Meal end 
LHL6 = HL6i-LH6i(1:length(HL6i)); %calculate the elapsed time (min) for 
each Meal 
LH7i(LH7r) = [];  %remove the intermediate Meal start 
HL7i(HL7r) = [];  %remove the intermediate Meal end 
LHL7 = HL7i-LH7i(1:length(HL7i)); %calculate the elapsed time (min) for 
each Meal 
LH8i(LH8r) = [];  %remove the intermediate Meal start 
HL8i(HL8r) = [];  %remove the intermediate Meal end 
LHL8 = HL8i-LH8i(1:length(HL8i)); %calculate the elapsed time (min) for 
each Meal 
  
%plot filtered data and Meal start/stop points 
figure(1) 
subplot(4,2,1) 
plot(ElapsedTime,LC1_LBS_AVG_F, LH1i, LC1_LBS_AVG_F(LH1i),'go',HL1i, 
LC1_LBS_AVG_F(HL1i),'rx'); 
title('LC1') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,2) 
plot(ElapsedTime,LC2_LBS_AVG_F, LH2i, LC2_LBS_AVG_F(LH2i),'go',HL2i, 
LC2_LBS_AVG_F(HL2i),'rx'); 
title('LC2') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,3) 
plot(ElapsedTime,LC3_LBS_AVG_F, LH3i, LC3_LBS_AVG_F(LH3i),'go',HL3i, 
LC3_LBS_AVG_F(HL3i),'rx'); 
title('LC3') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,4) 
plot(ElapsedTime,LC4_LBS_AVG_F, LH4i, LC4_LBS_AVG_F(LH4i),'go',HL4i, 
LC4_LBS_AVG_F(HL4i),'rx'); 
title('LC4') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,5) 
plot(ElapsedTime,LC5_LBS_AVG_F, LH5i, LC5_LBS_AVG_F(LH5i),'go',HL5i, 
LC5_LBS_AVG_F(HL5i),'rx'); 
title('LC5') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,6) 
plot(ElapsedTime,LC6_LBS_AVG_F, LH6i, LC6_LBS_AVG_F(LH6i),'go',HL6i, 
LC6_LBS_AVG_F(HL6i),'rx'); 
title('LC6') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,7) 
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plot(ElapsedTime,LC7_LBS_AVG_F, LH7i, LC7_LBS_AVG_F(LH7i),'go',HL7i, 
LC7_LBS_AVG_F(HL7i),'rx'); 
title('LC7') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
subplot(4,2,8) 
plot(ElapsedTime,LC8_LBS_AVG_F, LH8i, LC8_LBS_AVG_F(LH8i),'go',HL8i, 
LC8_LBS_AVG_F(HL8i),'rx'); 
title('LC8') 
xlabel('Elapsed Time (min)') 
ylabel('Weight (lbs)') 
  
% Assigns animal numbers to load cells 
anim1 = input('What animal used load cell #1?  '); 
anim2 = input('What animal used load cell #2?  '); 
anim3 = input('What animal used load cell #3?  '); 
anim4 = input('What animal used load cell #4?  '); 
anim5 = input('What animal used load cell #5?  '); 
anim6 = input('What animal used load cell #6?  '); 
anim7 = input('What animal used load cell #7?  '); 
anim8 = input('What animal used load cell #8?  '); 
  
%Calculate meal sizes 
S1 = LC1_LBS_AVG_F(LH1i(1:length(HL1i))) - LC1_LBS_AVG_F(HL1i); 
S2 = LC2_LBS_AVG_F(LH2i(1:length(HL2i))) - LC2_LBS_AVG_F(HL2i); 
S3 = LC3_LBS_AVG_F(LH3i(1:length(HL3i))) - LC3_LBS_AVG_F(HL3i); 
S4 = LC4_LBS_AVG_F(LH4i(1:length(HL4i))) - LC4_LBS_AVG_F(HL4i); 
S5 = LC5_LBS_AVG_F(LH5i(1:length(HL5i))) - LC5_LBS_AVG_F(HL5i); 
S6 = LC6_LBS_AVG_F(LH6i(1:length(HL6i))) - LC6_LBS_AVG_F(HL6i); 
S7 = LC7_LBS_AVG_F(LH7i(1:length(HL7i))) - LC7_LBS_AVG_F(HL7i); 
S8 = LC8_LBS_AVG_F(LH8i(1:length(HL8i))) - LC8_LBS_AVG_F(HL8i); 
  
%compile add processed data into a single spreadsheet and export 
N1 = length(HL1i); 
N2 = length(HL2i); 
N3 = length(HL3i); 
N4 = length(HL4i); 
N5 = length(HL5i); 
N6 = length(HL6i); 
N7 = length(HL7i); 
N8 = length(HL8i); 
% DATA_OUT = num2cell(zeros(N+2,16)); 
DATA_OUT = cell.empty(); 
DATA_OUT(1,:) = 
{'LC1',anim1,'','LC2',anim2,'','LC3',anim3,'','LC4',anim4,'','LC5',anim
5,'','LC6',anim6,'','LC7',anim7,'','LC8',anim8,''}; 
DATA_OUT(2,:) = {'Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size 
(lbs)','Timestamp','Meal Duration (min)','Meal Size (lbs)'}; 
DATA_OUT(3:N1+2,1) = TS(LH1i(1:length(HL1i))); 
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DATA_OUT(3:(N1+2),2) = num2cell(LHL1); 
DATA_OUT(3:(N1+2),3) = num2cell(S1); 
DATA_OUT(3:N2+2,4) = TS(LH2i(1:length(HL2i))); 
DATA_OUT(3:N2+2,5) = num2cell(LHL2); 
DATA_OUT(3:(N2+2),6) = num2cell(S2); 
DATA_OUT(3:N3+2,7) = TS(LH3i(1:length(HL3i))); 
DATA_OUT(3:N3+2,8) = num2cell(LHL3); 
DATA_OUT(3:(N3+2),9) = num2cell(S3); 
DATA_OUT(3:N4+2,10) = TS(LH4i(1:length(HL4i))); 
DATA_OUT(3:N4+2,11) = num2cell(LHL4); 
DATA_OUT(3:(N4+2),12) = num2cell(S4); 
DATA_OUT(3:N5+2,13) = TS(LH5i(1:length(HL5i))); 
DATA_OUT(3:N5+2,14) = num2cell(LHL5); 
DATA_OUT(3:(N5+2),15) = num2cell(S5); 
DATA_OUT(3:N6+2,16) = TS(LH6i(1:length(HL6i))); 
DATA_OUT(3:N6+2,17) = num2cell(LHL6); 
DATA_OUT(3:(N6+2),18) = num2cell(S6); 
DATA_OUT(3:N7+2,19) = TS(LH7i(1:length(HL7i))); 
DATA_OUT(3:N7+2,20) = num2cell(LHL7); 
DATA_OUT(3:(N7+2),21) = num2cell(S7); 
DATA_OUT(3:N8+2,22) = TS(LH8i(1:length(HL8i))); 
DATA_OUT(3:N8+2,23) = num2cell(LHL8); 
DATA_OUT(3:(N8+2),24) = num2cell(S8); 
  
  
  
[~,~,temp] = xlsread('Results.xlsx'); 
if ~isempty(temp) 
    xlswrite('Results.xlsx',zeros(size(temp))*nan); 
end 
xlswrite('Results.xlsx',DATA_OUT); 
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Appendix C: MATLAB rumen motility contraction detection and characterization 

script 

 

%********************************************************************** 
%* Title: MotilityPeaks.m                                             * 
%* Author: Amanda M. Egert-McLean & Michael P. Sama                   * 
%* Date: 03/20/2018                                                   * 
%* Description: This program takes the processed pressure versus time * 
%*   data from an Excel spreadsheet exported from LabChart files,     * 
%*   filters the data, and performs a peak analysis to measure peak   * 
%*   amplitude, duration, and frequency.                              * 
%* Prerequisites: None, but variables aT and n should be adjusted     * 
%********************************************************************** 
  
clear;  %clear all variables 
clc; %clear the command window 
  
aT = 3; %amplitude threshold 
n = 10; %order of median filter, adjust as needed 
  
[~,~,DATA] = xlsread('Insert file name here'); %read in the motility 
data file 
  
%extract individual animal motility pressure data from channels 
Ch1 = cell2mat(DATA(2:length(DATA),4)); 
Ch2 = cell2mat(DATA(2:length(DATA),5)); 
Ch3 = cell2mat(DATA(2:length(DATA),6)); 
  
%extract additional data needed from the input file  
% Sec = cell2mat(DATA(2:length(DATA),1)); %extract the elapsed seconds 
from the recording 
ElapsedTime1 = (0:1:length(Ch1)-1)./4'; %x-axis variable for elapsed 
time %MPS:changed the formula to keep the dimensions of ElapsedTime and 
motility data the same 
ElapsedTime2 = (0:1:length(Ch2)-1)./4'; %x-axis variable for elapsed 
time %MPS:changed the formula to keep the dimensions of ElapsedTime and 
motility data the same 
ElapsedTime3 = (0:1:length(Ch3)-1)./4'; %x-axis variable for elapsed 
time %MPS:changed the formula to keep the dimensions of ElapsedTime and 
motility data the same 
Hour = cell2mat(DATA(2:length(DATA),7)); %extract the hour variable for 
averaging peaks within each hour later 
  
% %plot raw data 
figure(20) 
subplot(1,3,1) 
plot(ElapsedTime1,Ch1); 
title('Channel 1') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
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subplot(1,3,2) 
plot(ElapsedTime2,Ch2); 
title('Channel 2') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
subplot(1,3,3) 
plot(ElapsedTime3,Ch1); 
title('Channel 3') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
  
% filter all motility data using an order-n one-dimensional median 
filter 
Ch1_F = medfilt1(Ch1,n); 
Ch2_F = medfilt1(Ch2,n); 
Ch3_F = medfilt1(Ch3,n); 
  
% plot filtered data 
figure(1) 
plot(ElapsedTime1,Ch1_F); 
title('Channel 1') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
  
figure(2) 
plot(ElapsedTime2,Ch2_F); 
title('Channel 2') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
  
figure(3) 
plot(ElapsedTime3,Ch3_F); 
title('Channel 3') 
xlabel('Elapsed Time (sec)') 
ylabel('Pressure (mmHg)') 
  
%%Use the findpeaks function to detect peaks with a specific minimum  
%%height and output the peak value, location, half-width, and 
prominence of each - 
%% Graphical findpeaks example - switch to [pks,locs,w,p] = 
findpeaks(...) to save the values to variables and remove 
'Anotate','extents' when not plotting. 
figure(4) 
title('Channel 1 Analysis') 
findpeaks(Ch1_F,ElapsedTime1,'Annotate','extents','MinPeakHeight',1,'Mi
nPeakWidth',1,'MinPeakProminence',aT) 
axis([0,max(ElapsedTime1),0,max(Ch1_F)]); 
[pks1,locs1,halfwidth1,amp1]=findpeaks(Ch1_F,ElapsedTime1,'MinPeakHeigh
t',1,'MinPeakWidth',1,'MinPeakProminence',aT); 
  
figure(5) 
title('Channel 2 Analysis') 
findpeaks(Ch2_F,ElapsedTime2,'Annotate','extents','MinPeakHeight',1,'Mi
nPeakWidth',1,'MinPeakProminence',aT) 
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axis([0,max(ElapsedTime2),0,max(Ch2_F)]); 
[pks2,locs2,halfwidth2,amp2]=findpeaks(Ch2_F,ElapsedTime2,'MinPeakHeigh
t',1,'MinPeakWidth',1,'MinPeakProminence',aT); 
  
figure(6) 
title('Channel 3 Analysis') 
findpeaks(Ch3_F,ElapsedTime3,'Annotate','extents','MinPeakHeight',1,'Mi
nPeakWidth',1,'MinPeakProminence',aT) 
axis([0,max(ElapsedTime3),0,max(Ch3_F)]); 
[pks3,locs3,halfwidth3,amp3]=findpeaks(Ch3_F,ElapsedTime3,'MinPeakHeigh
t',1,'MinPeakWidth',1,'MinPeakProminence',aT); 
  
%% Caclulate the duration of each peak 
dCh1_F = diff(Ch1_F);   %compute the first derivative of the pressure 
signal 
dCh1_F(length(Ch1_F)) = 0;  %add a value of zero to the end to keep the 
array length the same 
dCh1_F = medfilt1(dCh1_F,n);    %filter the derivative result to remove 
noise 
  
figure(7)   %create a new figure for plotting the derivative 
plot(ElapsedTime1,dCh1_F); %plot the derivative of the pressure signal 
versus elapsed time 
  
locs1i = locs1*4;   %create an integer array of the peak locations 
(rather than in time) 
  
start = zeros(size(locs1i));    %create an array to store the time at 
the beginning of a contraction surrounding each peak 
stop = zeros(size(locs1i));     %create an array to store the time at 
the end of a contraction surrounding each peak 
  
start_slope_threshold = 0.002; %sets the threshold in terms of the 
derivative of pressure that defines when a contraction starts and 
stops. lowering this value will produce longer durations, increasing it 
will produce shorter durations. 
stop_slope_threshold = 0.005; %sets the threshold in terms of the 
derivative of pressure that defines when a contraction stops. lowering 
this value will produce longer durations, increasing it will produce 
shorter durations. 
peak_offset = 25; %sets the starting point in either direction from the 
peak when searching for the beginnning and end. This prevents the flat 
portion at the peak from being detected as the start or stop time 
         
for i = 1:length(locs1i) %for each peak, find the beginning and end by 
searching from the peak location until the derivative of pressure falls 
below the threshold 
    j = locs1i(i)-peak_offset; 
    if j < 0 
         j=1; 
    end 
    while(j>1) 
       j=j-1; 
       if dCh1_F(j) < start_slope_threshold 
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          break  
       end 
    end 
    start(i) = j/4; 
    j = locs1i(i)+peak_offset; 
    while(j<length(ElapsedTime1)) 
       j=j+1; 
       if dCh1_F(j) > -stop_slope_threshold 
          break  
       end 
    end 
    stop(i) = j/4; 
end 
  
duration1 = stop-start;  %calculate the duration of each contraction 
  
figure(1) 
hold on 
plot(locs1,pks1,'kD',start,Ch1_F(start*4),'gO',stop,Ch1_F(stop*4),'rX')
;    %add markers showing peak, start, and stop locations for each 
contraction 
hold off 
  
for i = 1:length(locs1) 
    for j = 1:24 
        if ((j-1)*3600) <= locs1(1,i) & locs1(1,i) < (j*3600) 
            hour1(1,i)=j; 
        elseif locs1(1,i) > 86400; 
            hour1(1,i)=24; 
        end 
    end 
  
end 
  
  
dCh2_F = diff(Ch2_F);   %compute the first derivative of the pressure 
signal 
dCh2_F(length(Ch2_F)) = 0;  %add a value of zero to the end to keep the 
array length the same 
dCh2_F = medfilt1(dCh2_F,n);    %filter the derivative result to remove 
noise 
  
figure(9)   %create a new figure for plotting the derivative 
plot(ElapsedTime2,dCh2_F); %plot the derivative of the pressure signal 
versus elapsed time 
  
locs2i = locs2*4;   %create an integer array of the peak locations 
(rather than in time) 
  
start2 = zeros(size(locs2i));    %create an array to store the time at 
the beeginning of a contraction surrounding each peak 
stop2 = zeros(size(locs2i));     %create an array to store the time at 
the end of a contraction surrounding each peak 
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for i = 1:length(locs2i) %for each peak, find the beginning and end by 
searching from the peak location until the derivative of pressure falls 
below the threshold 
    j = locs2i(i)-peak_offset; 
    if j < 0 
         j=1; 
    end 
    while(j>1) 
       j=j-1; 
       if dCh2_F(j) < start_slope_threshold 
          break  
       end 
    end 
    start2(i) = j/4; 
    j = locs2i(i)+peak_offset; 
    while(j<length(ElapsedTime2)) 
       j=j+1; 
       if dCh2_F(j) > -stop_slope_threshold 
          break  
       end 
    end 
    stop2(i) = j/4; 
end 
  
duration2 = stop2-start2;  %calculate the duration of each contraction 
  
figure(2) 
hold on 
plot(locs2,pks2,'kD',start2,Ch2_F(start2*4),'gO',stop2,Ch2_F(stop2*4),'
rX');    %add markers showing peak, start, and stop locations for each 
contraction 
hold off 
  
for i = 1:length(locs2) 
    for j = 1:24 
        if ((j-1)*3600) <= locs2(1,i) & locs2(1,i) < (j*3600) 
            hour2(1,i)=j; 
        elseif locs2(1,i) > 86400; 
            hour2(1,i)=24; 
        end 
    end 
  
end 
  
dCh3_F = diff(Ch3_F);   %compute the first derivative of the pressure 
signal 
dCh3_F(length(Ch3_F)) = 0;  %add a value of zero to the end to keep the 
array length the same 
dCh3_F = medfilt1(dCh3_F,n);    %filter the derivative result to remove 
noise 
  
figure(11)   %create a new figure for plotting the derivative 
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plot(ElapsedTime3,dCh3_F); %plot the derivative of the pressure signal 
versus elapsed time 
  
locs3i = locs3*4;   %create an integer array of the peak locations 
(rather than in time) 
  
start3 = zeros(size(locs3i));    %create an array to store the time at 
the beeginning of a contraction surrounding each peak 
stop3 = zeros(size(locs3i));     %create an array to store the time at 
the end of a contraction surrounding each peak 
  
for i = 1:length(locs3i) %for each peak, find the beginning and end by 
searching from the peak location until the derivative of pressure falls 
below the threshold 
    j = locs3i(i)-peak_offset; 
    if j < 0 
         j=1; 
    end 
    while(j>1) 
       j=j-1; 
       if dCh3_F(j) < start_slope_threshold 
          break  
       end 
    end 
    start3(i) = j/4; 
    j = locs3i(i)+peak_offset; 
    while(j<length(ElapsedTime3)) 
       j=j+1; 
       if dCh3_F(j) > -stop_slope_threshold 
          break  
       end 
    end 
    stop3(i) = j/4; 
end 
  
duration3 = stop3-start3;  %calculate the duration of each contraction 
  
figure(3) 
hold on 
plot(locs3,pks3,'kD',start3,Ch3_F(start3*4),'gO',stop3,Ch3_F(stop3*4),'
rX');    %add markers showing peak, start, and stop locations for each 
contraction 
hold off 
  
for i = 1:length(locs3) 
    for j = 1:24 
        if ((j-1)*3600) <= locs3(1,i) & locs3(1,i) < (j*3600) 
            hour3(1,i)=j; 
        elseif locs3(1,i) > 86400; 
            hour3(1,i)=24; 
        end 
    end 
  
end 



 

 

243 
 

  
  
%%Compile analysis results and export as an excel spreadsheet 
N1 = length(pks1); 
N2 = length(pks2); 
N3 = length(pks3); 
  
% Assigns animal numbers to LabChart channels 
anim1 = input('What animal used channel #1?  '); 
anim2 = input('What animal used channel #2?  '); 
anim3 = input('What animal used Channel #3?  '); 
  
DATA_OUT = cell.empty(); 
DATA_OUT(1,:) = {'Channel 1',anim1,'','','','','Channel 
2',anim2,'','','','','Channel 3',anim3,'','','',''}; 
DATA_OUT(2,:) = {'Peak Num','Peak 
Pressure','Amplitude','Width(FWHM)','Duration', 'Hour','Peak Num','Peak 
Pressure','Amplitude','Width(FWHM)','Duration', 'Hour','Peak Num','Peak 
Pressure','Amplitude','Width(FWHM)','Duration', 'Hour'}; 
  
  
    DATA_OUT(3:N1+2,1) = num2cell(1:length(pks1),1); 
    DATA_OUT(3:N1+2,2) = num2cell(pks1(1:length(pks1),1)); 
    DATA_OUT(3:N1+2,3) = num2cell(amp1(1:length(amp1),1)); 
    DATA_OUT(3:N1+2,4) = num2cell(halfwidth1(1,1:length(halfwidth1))); 
    DATA_OUT(3:N1+2,5) = num2cell(duration1(1,1:length(duration1))); 
    DATA_OUT(3:N1+2,6) = num2cell(hour1(1,1:length(hour1))); 
  
    DATA_OUT(3:N2+2,7) = num2cell(1:length(pks2),1); 
    DATA_OUT(3:N2+2,8) = num2cell(pks2(1:length(pks2),1)); 
    DATA_OUT(3:N2+2,9) = num2cell(amp2(1:length(amp2),1)); 
    DATA_OUT(3:N2+2,10) = num2cell(halfwidth2(1,1:length(halfwidth2))); 
    DATA_OUT(3:N2+2,11) = num2cell(duration2(1,1:length(duration2))); 
    DATA_OUT(3:N2+2,12) = num2cell(hour2(1,1:length(hour2))); 
     
    DATA_OUT(3:N3+2,13) = num2cell(1:length(pks3),1); 
    DATA_OUT(3:N3+2,14) = num2cell(pks3(1:length(pks3),1)); 
    DATA_OUT(3:N3+2,15) = num2cell(amp3(1:length(amp3),1)); 
    DATA_OUT(3:N3+2,16) = num2cell(halfwidth3(1,1:length(halfwidth3))); 
    DATA_OUT(3:N3+2,17) = num2cell(duration3(1,1:length(duration3))); 
    DATA_OUT(3:N3+2,18) = num2cell(hour3(1,1:length(hour3))); 
  
[~,~,temp] = xlsread('MotilityResults.xlsx'); 
if ~isempty(temp) 
    xlswrite('MotilityResults.xlsx',zeros(size(temp))*nan); 
end 
xlswrite('MotilityResults.xlsx',DATA_OUT); 
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Appendix D: Rumen score results after switching animals from a 70% to 90% 

concentrate diet 

 
Immediately upon evisceration post-slaughter on d 5, visceral organs were 

transported to the animal lab in W.P. Garrigus Building for processing. The 

reticulorumen was separated from the rest of the digestive tract and emptied of digestive 

contents. Rumen mucosa was inspected for gross pathological lesions and evaluated 

using the following scoring system as outlined by Rezac et al. (2014): normal (epithelium 

appears healthy with thick, lush papillae and no signs of inflammation), mild (sections of 

the ruminal mucosal surface with short [relative to normal] or denuded papillae), and 

severe (active rumenitis lesions: ulcerations characterized by irregularly circular, 

depressed, red spots or healed ulcerations characterized by puckered scars devoid of 

papillae). Two scientists scored each rumen to ensure proper characterization.  

Table D-1. Rumen scores and characteristics  

Animal Block Score Notes 
B77 1 Normal1 high keritanization 
B97 1 Mild2 small burn spot; one potential scar 
B112 1 Normal some keritanization 
B104 2 Mild keritanization, burn spot, grey color 
B114 2 Mild very little keritanization, large burn spot, black color 

B114-2 2 Mild shortened papillae, burn spot, no keritanization visible, 
black color 

B13 3 Was not notified when animals were sent to the meat’s lab B109 3 
 
1 Normal: epithelium appears healthy with thick, lush papillae and no signs of 
inflammation 
2 Mild: sections of the ruminal mucosal surface with short (relative to normal) or denuded 
papillae 
 

 
Copyright © Amanda M. McLean 2019  
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Appendix E: Effect of dietary citrulline on beef cattle performance and carcass 

characteristics through the transition period and finishing 

 
Introduction 

Transitioning cattle to high-grain, finishing diets increases the risk for ruminal 

acidosis (Bevans et al., 2005; Brown et al., 2006) and associated loss of epithelial barrier 

function (Penner et al., 2011; Steele et al., 2011a; Zebeli and Metzler-Zebeli, 2012). 

Damage to the gut epithelia during this time can lead to translocation of toxic 

metabolites, such as lipopolysaccharide, resulting in local (Zhang et al., 2016) and 

systemic (Gozho et al., 2005; Gozho et al., 2006) inflammation (Horadagoda et al., 1999; 

Zebeli et al., 2012). Feeding beef cattle backgrounding and finishing diets led to 

inflammation, as evidenced by increases in plasma acute phase proteins (Ametaj et al., 

2009). In addition, inflammatory responses stimulated by lipopolysaccharide have been 

shown to alter feeding behavior (Zebeli and Metzler-Zebeli, 2012) and reduce DMI in 

dairy cows (Waldron et al., 2003). The transition phase when feedlot cattle are switched 

to high-grain diets appears to be a critical period where supporting immune function 

could be beneficial to cattle growth and performance. 

Arginine is a vital component of inflammation and immune response, as well as 

for several metabolic pathways (Satriano, 2004; Wu, 2013). During the early phase 

response to an inflammatory insult, arginine is converted to nitric oxide (NO) by 

inducible nitric oxide synthase (iNOS). Nitric oxide can have cytotoxic antimicrobial 

activity towards some pathogens and thereby, provide some protection to mammalian 

tissues (De Groote and Fang, 1995).  Arginine is also a precursor for the synthesis of 
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polyamines, proline, and agmatine, which serve as key immune modulators (Zhao et al., 

2018). The pro-proliferative effects of polyamines and role of proline in the extracellular 

matrix make them key components of the repair phase of the inflammatory response 

(Satriano, 2004). Agmatine helps regulate the generation of NO and intracellular 

polyamines levels (Satriano, 2004; Zhao et al., 2018). Arginine supplementation may be 

beneficial during situations that would cause an inflammatory response. During 

inflammatory conditions, arginine consumption is increased but de novo and exogenous 

supplies are reduced due to use for various metabolic and immune functions (Luiking et 

al., 2009; Wijnands et al., 2015), thus creating an arginine deficiency (Zhao et al., 2018). 

However, exogenous L-arginine administration reduced the production of pro-

inflammatory cytokines in rats (Mohamed et al., 2015). Supplementation or intravenous 

infusion of arginine to weaned pigs (Zhu et al., 2013), broiler chickens (Tan et al., 2014), 

fish (Jiang et al., 2015), and mice (Calkins et al., 2001) has been shown to have positive 

effects on the immune response. In addition, jugular arginine infusion to dairy cows 

prevented the decrease in DMI induced by LPS administration (Zhao et al., 2018). 

Therefore, increased arginine available during conditions which may trigger an 

inflammatory response, such as during transitioning to a high-grain diet, could help 

improve cattle performance. 

Originally, all free amino acids were believed to be extensively degraded in the 

rumen by microbes. Recently, however, researchers discovered that citrulline can act as a 

rumen-protected arginine supplement. When adult steers were fed an L-citrulline 

supplement, L-citrulline concentrations in rumen fluid did not change within 4 h post-

feeding, and an in vitro experiment demonstrated little degradation of L-citrulline by 
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rumen microbes within 4 h of incubation (Gilbreath et al., 2017). Citrulline can be 

converted to arginine in virtually all cell types, including enterocytes, adipocytes, 

endothelial cells, macrophages, monocytes, and neurons (Wu and Morris, 1998). Oral 

administration of citrulline to sheep increased plasma citrulline and arginine levels 

(Gilbreath et al., 2018). Thus, citrulline should be able to escape the rumen and be 

available to extrahepatic tissues for biosynthesis of arginine. 

The objectives of this experiment were to determine if citrulline supplemented in 

the diet of beef cattle would increase blood arginine levels, evaluate the effects of 

citrulline supplementation on blood cytokine concentrations, and compare performance 

of cattle who were supplemented with citrulline to those given monensin and tylosin. We 

hypothesized that feeding cattle citrulline through the dietary transition to a high-grain 

diet would improve performance; we expected cattle supplemented with citrulline would 

have greater blood arginine concentrations and lower cytokine concentrations compared 

to those not supplemented with citrulline and that monensin and tylosin supplementation 

would impact these responses. 

Materials and Methods 

Animals and Experimental Design 

The experiment was conducted as a randomized complete block design with a 2 x 

2 factorial arrangement of treatments. One hundred twenty Angus-crossbred steers, from 

the University of Kentucky beef herd (n=48; BW=307.3 ± 0.5 kg) and purchased (n=72; 

BW= 373.7 ± 0.5 kg), were removed from pasture (E+ and non-toxic treatments) and 

held in holding pens overnight before weighing to obtain a shrunk weight on d -6. 

Animals were blocked by source, previous endophyte treatment, and then shrunk weight 
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to randomly allocate animals to pens in 2 barns at the facility. Pens were blocked across 

barn and location within barn. Then, treatments were randomly assigned to pens. All 

animals received a corn silage based diet for 7 d (Exp. D -6 to 0). Prior to beginning the 

study, animals were weighed on 2 consecutive days (Exp. D -1 and 0). Pens received one 

of 4 treatments: 1) control (CTRL; no monensin or tylosin, no citrulline), 2) monensin + 

tylosin, no citrulline (MT), 3) no monensin or tylosin with 45 g citrulline/hd/d (CIT), or 

4) monensin + tylosin with 45 g citrulline/hd/d (MT+CIT). Animals were housed 3 

animals per pen, 10 pens per treatment in an exterior, partially-covered barn at the 

University of Kentucky C. Oran Little Research Center in Versailles, KY. Pens were 

concrete floored and the third closest to the bunk was cleaned and bedded weekly with 

sawdust.  

All animals underwent a step-up transition protocol to a finishing ration over 35 d. 

Four transition diets (T1-T4) were utilized, each being fed for 7 days. Two supplements 

were used, one with monensin + tylosin and one without monensin + tylosin. 

Supplements were mixed into rations at 10% of each diet DM. Pens receiving CIT and 

MT+CIT had their feed top-dressed with 330 g of a cracked corn and L-citrulline mixture 

to provide approximately 45 g citrulline/hd/d. Top-dress mixture was 43.775% L-

citrulline (DM basis) or 40.9% (as-fed basis). Pens receiving CTRL and MT had their 

feed top-dressed with 330 g of a cracked corn and urea mixture to provide an equivalent 

amount of N. Mixture was 22.647% urea (DM basis) or 65.8% (as-fed basis). Pens were 

fed ad libitum once daily. Bunk calls were made daily to adjust feed amounts and 

maintain ad libitum intake. Feed samples were collected weekly for determination of diet 

DM. Orts were weighed weekly, composited by treatment, and a subsample was saved 



 

 

249 
 

for DM analysis to calculate daily DMI. Following the 28 d step-up transition, all animals 

were fed a finishing ration (FIN) containing treatments for 7 days and then weighed on D 

35. Then, all animals received a common diet, without citrulline but containing monensin 

and tylosin, until reaching finishing weight. Cattle were weighed every 28, 21, or 14 d 

after D 35 until they reached finishing weight.  

Blood Sampling and Analysis 

 Jugular vein blood samples from each animal were collected into plasma (10 mL; 

BD Vacutainer EDTA tubes) and serum (10 mL; BD Vacutainer serum blood collection 

tubes) tubes immediately before the step-up (D 0) and the last day of the treatments (D 

35). Plasma tubes were placed on ice until transport to the laboratory where they were 

centrifuged at 1500 x g for 10 min at 4°C. Serum tubes were allowed to clot for 

approximately 60 min and then centrifuged at 1500 x g for 10 min at 4°C. Supernatant 

from serum and plasma tubes was frozen in 2 mL aliquots and stored at -4°C until 

analysis. 

We had intended to analyze plasma for arginine, citrulline, and serum amyloid A 

(SAA), as well as analyze serum for haptoglobin. 

Harvest 

 Animals were shipped in 4 truck loads on 3 dates (December 18th, January 8th, and 

January 22nd) to a commercial slaughter facility in Illinois. Carcass data were obtained for 

each animal from the facility. Final body weight was determined by multiplying the farm 

live weight on the day of shipping by 0.97 (pencil shrink). This final body weight was 

used to determine dressing yield based on hot carcass weights. Livers were scored by a 

trained professional according to the following system: A- = 1-2 small abscesses or 
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abscess scars present; A = 2-4 well-organized abscesses present, generally under 1 inch in 

diameter; A+ = 1 or more large active abscesses present along with inflammation of liver 

tissue surrounding the abscess (Brown et al., 1975). 

Statistical Analysis 

 Performance data were analyzed using proc MIXED procedure of SAS 9.4 (SAS 

Institute Inc., Cary, NC) as a randomized complete block design with repeated measures 

for the fixed effects of MT, CIT, and the interaction, with block considered a random 

variables. The repeated variable was day and an autoregressive covariance structure was 

used. The experimental unit was pen with animal as a replicate within pen. Carcass data 

were analyzed using proc MIXED of SAS as a randomized complete block design for the 

fixed effects of MT, CIT, and the interaction, with block as a random variable. 

Results 

Two cattle were removed from the study and not included in analysis due to 

lameness issues. Citrulline treated cattle had lower DMI from D0-D140 and the entire 

experiment (transition and finishing; D0-D154) and tended to have lower DMI from D0-

D91 and D0-D119 than those not given citrulline (Table E-3). Average daily gain for 

citrulline treated cattle was lower from D0-D91 and tended to be lower D0-D63 and D0-

D119 compared to those not given citrulline (Table E-4). Steers given monensin + tylosin 

were consumed less DM (Table E-3) during the transition period (D0-D35) and had 

greater average daily gains from D0-D63 and D0-D154, which was associated with 

greater feed efficiency (lower feed:gain) in the middle of the finishing period (Table E-4). 

Cattle treated with monensin + tylosin during the transition period had greater final body 

weights, hot carcass weights, and ribeye area (Table E-5). Dressing yield displayed an 
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interaction of MT and CIT, where dressing yield was greater in MT steers compared to 

CTRL steers (Table E-5). Citrulline-treated cattle tended to have a greater percentage of 

cattle grade USDA choice, but this appeared to be related to a numerical reduction in 

percent grading USDA prime (Table E-5). 

Conclusions 

• Citrulline supplementation at a dose of approximately 45 g/hd/d during a 35-d 

transition period to a high-grain diet did not appear to be beneficial to beef cattle 

performance or carcass characteristics. 
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Tables and Figures 

Table E-1. Composition of diets and ingredients 

Diet Ingredient %, DM basis 
T1a T2b T3c T4d FINe 

Corn silage 70 50 35 25 10 
Dried distiller grains 10 20 25 25 25 
Cracked corn 10 20 30 40 27.5 
High-moisture corn - - - - 27.5 
Treatment supplement1 10 10 10 10 10 

 
a T1: transition diet #1 
b T2: transition diet #2 
c T3: transition diet #3 
d T4: transition diet #4 
e FIN: finishing diet 
1 See Table E-2 for composition of treatment supplements 
 
 
Table E-2. Composition of supplements for inclusion or exclusion of monensin and 

tylosin from the diet 

Ingredient %, DM basis 
No MT1 MT2 

Ground corn 69.49 69.236 
Vitamin A, D, & E premix3 0.219 0.219 
Trace mineral premix4 5.006 5.004 
Limestone 19.213 19.207 
Choice white grease 2.505 2.504 
Urea 3.568 3.567 
Rumensin-90 - 0.175 
Tylan-40 - 0.088 

 
1 No MT = supplement used for treatments where no monensin + tylsoin is provided in 
diet (CTRL & CIT) 
2 MT = supplement used for treatments where monensin + tylosin are provided in the diet 
(MT & MT+CIT) 
3 Composed of vitamin A acetate (1,814,368 IU/kg), D-activated animal sterol (source of 
vitamin D3; 362,874 IU/kg), vitamin E supplement (227 IU/kg), roughage products, 
calcium carbonate, and mineral oil. 
4 Contained 56.34% Cl, 36.53% Na, 1.2% S, 0.06% Ca, 68.9 ppm Co, 1837.7 ppm Cu, 
119.9 I, 9290.2 ppm Fe, 4792.3 ppm Mn, 18.5 ppm Se, and 5520.2 ppm Zn on a DM 
basis.
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Table E-3. Weights and dry matter intakes of beef steers that were given supplements containing or not containing citrulline 

(CIT) as well as monensin and tylosin (MT) during the transition period (D0-D35).  

Item 

Treatment 

SEM 

  P-values 
No MT MT  

MT CIT MT*CIT CTRL  
(No CIT) CIT 

MT  
(No CIT) MT+CIT   

Weight, kg          
   D0 344.31 346.56 348.53 349.56 20.25  0.3296 0.6559 0.8682 
   D35 403.83 407.54 406.94 405.84 22.83  0.8863 0.7914 0.6264 
   D63 469.72 468.95 485.14 476.61 21.46  0.0257 0.3527 0.4371 
   D91 548.41 542.84 561.23 550.92 20.2  0.0756 0.1726 0.6799 
   D119 612.81 573.34 595.22 597.17 35.16  0.8749 0.3469 0.2998 
   D140 621.51 575.26 595.66 595.68 35.89  0.9254 0.4285 0.4283 
   D154 619.67 554.9 590.28 585 42.2  0.9933 0.4177 0.4903 
Dry Matter 
Intake, kg/hd/d          
   D0-D35 (during 
treatments) 9.607 9.513 9.113 8.781 0.51  0.0456 0.475 0.689 

   D0-D63 10.326 10.225 10.268 9.805 0.42  0.33 0.2518 0.4593 
   D0-D91 11.214 11.004 11.289 10.716 0.35  0.6262 0.08 0.4082 
   D0-D119 11.661 11.343 11.632 11.182 0.3  0.6316 0.0591 0.7388 
   D0-D140 11.61 11.22 11.684 11.066 0.2  0.8392 0.0161 0.5652 
   D0-D154 11.667 11.183 11.977 11.017 0.23  0.7545 0.005 0.3049 
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Table E-4. Average daily gains and feed efficiency of beef steers throughout the finishing period that were given supplements 

containing or not containing citrulline (CIT) as well as monensin and tylosin (MT) during the transition period (D0-D35). 

Item 

Treatment 

SEM 

  P-values 
No MT MT  

MT CIT MT*CIT CTRL  
(No CIT) CIT 

MT  
(No CIT) MT+CIT   

Average Daily Gain, 
kg/d          
   D0-D35 (during 
treatments) 1.679 1.745 1.652 1.608 0.133  0.3435 0.8982 0.5236 
   D0-D63 1.984 1.943 2.164 2.017 0.055  0.0169 0.0714 0.3009 
   D0-D91 2.241 2.157 2.332 2.213 0.044  0.1036 0.0273 0.6926 
   D0-D119 2.252 2.165 2.277 2.217 0.046  0.3125 0.0589 0.7213 
   D0-D140 2.124 2.078 2.183 2.123 0.064  0.1623 0.1529 0.8387 
   D0-D154 2.073 1.977 2.142 2.127 0.1  0.0464 0.2883 0.434 
Feed:Gain          
   D0-D35 (during 
treatments) 5.827 5.498 5.628 5.666 0.28  0.9458 0.5248 0.4234 
   D0-D63 5.199 5.278 4.769 4.864 0.16  0.0008 0.4531 0.9447 
   D0-D91 5.008 5.119 4.863 4.836 0.16  0.0366 0.6714 0.4869 
   D0-D119 5.178 5.257 5.126 5.044 0.13  0.2079 0.9885 0.4406 
   D0-D140 5.483 5.426 5.369 5.234 0.17  0.1484 0.3606 0.7046 
   D0-D154 5.648 5.737 5.62 5.19 0.26  0.0951 0.309 0.1296 
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Table E-5. Carcass characteristics after finishing for beef steers that were given supplements containing or not containing 

citrulline (CIT) as well as monensin and tylosin (MT) during the transition period (D0-D35). 

Item 

Treatment 

SEM 

  P-values 
No MT MT  

MT CIT MT*CIT CTRL  
(No CIT) CIT 

MT  
(No CIT) MT+CIT   

Final BW, kg 630 621.8 638 635.8 9.8  0.046 0.3351 0.572 
Hot carcass weight, kg 388.56 387.63 397.98 394.16 4.83  0.019 0.4666 0.6578 
Dressing yield, % 61.69b 62.36ab 62.42a 62.02ab 0.36  0.441 0.5847 0.0353 
USDA yield grade 3.23 3.17 3.08 3.17 0.21  0.5102 0.9477 0.5158 
   Yield grade 5, % < 1  3.33 3.33 3.33 2.96  0.5595 0.5595 0.5595 
   Yield grade 4, % 36.67 30 21.67 30 10.42  0.2719 0.9021 0.2716 
   Yield grade 3, % 50 46.66 55 46.67 8.11  0.7599 0.4773 0.7601 
   Yield grade 2, % 13.33 20 20 20 10.57  0.6494 0.6494 0.6494 
Ribeye area, cm2 83.16 84.06 86.64 84.97 2.13  0.034 0.6982 0.2062 
Marbling1 536.45 510.33 527.91 523.25 17.52  0.9015 0.3864 0.5447 
12th rib backfat 
thickness, cm 1.61 1.54 1.59 1.58 0.12  0.8938 0.6174 0.7389 

KPH2, % 1.97 1.96 1.94 1.92 0.04  0.2807 0.5817 0.8622 
USDA Prime, % 28.33 16.67 23.33 13.33 7.25  0.5695 0.1448 0.9091 
USDA Choice, % 71.67 83.34 70 86.67 7.82  0.9159 0.0795 0.7514 
USDA Select, % 0 0 6.67 0 2.22  0.1434 0.1434 0.1434 
Liver Score 03, % 86.67 83.33 83.33 90 6.27  0.7717 0.7719 0.3867 
Liver Score A-3, % 13.33 16.67 16.67 10 6.27  0.7717 0.7719 0.3867 

1 Marbling score 600-699 = moderate 
2 KPH = kidney, pelvic, and heart fat was calculated, not an actual measurement 
3 Liver score was based on the following system: 0 = no abscesses; A- = 1-2 small abscesses or abscess scars 
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