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ABSTRACT OF DISSERTATION

Methods of Computing Graph Gonalities

Chip firing is a category of games played on graphs. The gonality of a graph tells us
how many chips are needed to win one variation of the chip firing game. The focus
of this dissertation is to provide a variety of new strategies to compute the gonality
of various graph families. One family of graphs which this dissertation is particularly
interested in is rook graphs. Rook graphs are the Cartesian product of two or more
complete graphs and we prove that the gonality of two dimensional rook graphs is
the expected value of (n− 1)m where n is the size of the smaller complete graph and
m is the size of the larger.
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Chapter 1 Introduction

In [3] Baker and Norine describe the divisor theory of graphs, which is a discrete
analogue for the divisor theory of algebraic curves. Divisor theory of graphs is often
described as a chip firing game in which a player is given a graph which some number
of chips on each vertex, and the player can fire a vertex by transferring one chip away
from the vertex along each of its edges. The player wins the game if they can get to a
configuration where no vertex has a negative number of chips. The gonality gon(G)
of a graph G is a graph invariant that tells us the fewest number of chips the player
would require such that one chip can be stolen and the player could still win.

The primary motivation for computing the gonality of graphs is to better under-
stand the gonality of algebraic curves, which is the minimal degree of a nonconstant
rational map from that curve to the projective line. Given some algebraic curve C,
we can degenerate it to a union of lines C ′ and then produce the dual graph of C ′

which we will call G. Then the minimum gonality over all refinements of G is a lower
bound for the gonality of C.

In this paper we introduce multiple new methods that can be used to compute the
gonality of many different families of graphs. The first half of this paper is focused
on the scramble number of a graph, a newly invented graph invariant denoted sn(G).
The main result from this section is the following.

Theorem 1.0.1. For any graph G, we have sn(G) ≤ gon(G).

Prior to the development of the scramble number, the treewidth of a graph, de-
noted tw(G), was shown to be a lower bound on gonality in [9]. The scramble number
is in fact a tighter lower bound than treewidth. Because of this improvement, we can
use the scramble number to compute the gonality of various graph families which were
previously unknown. Many of these graphs arrive naturally from algebraic geometry.
We will also discuss interesting properties about the scramble number, including the
fact that it is invariant under graph refinement, something that is not true for graph
gonality.

The second half of this paper is focused on “Column Equitable Divisor” proof
methods. This style of proof can be used to compute the gonality of graphs with a
highly regular grid structure. This method is used to compute the gonality of two
dimensional rook graphs. One motivation is that rook graphs are the dual graphs
of a certain degeneration of complete intersection curves. In [9] van Dobben de
Bruyn and Gijswijt raise the question of computing the gonality of n−dimensional
cubes Qn, which are examples of rook graphs. In [2] Aidun and Morrison show that
gon(Kn□Km) = (n− 1)m if n ≤ m and n ≤ 5. One of the main results of this paper
is the full generalization of this theorem.

Theorem 1.0.2. If n ≤ m, gon(Kn□Km) = (n− 1)m.

This result matches the lower bound for the gonality of complete intersection
curves given by Lazarsfeld in [6], where Exercise 4.12 shows the complete intersection
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of hypersurfaces of degrees 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar−1 has gonality d ≥ (a1 −
1)a2 · · · ar−1. While Theorem 1.0.2 is a significant result, it does not preclude the
possibility of some refinement of a rook graph having smaller gonality. However in
Chapter 3 we also prove the following.

Theorem 1.0.3. If m ≥ (n− 2)(n− 1), sn(Kn□Km) = (n− 1)m.

This shows that, at least in cases wherem is sufficiently larger than n, the gonality
of Kn□Km does not decrease under any refinement.

In this paper, we also compute the scramble number of some three dimensional
rook graphs. In chapter 3, we prove the following result.

Theorem 1.0.4. Let 2 ≤ n ≤ m, then sn(K2□Kn□Km) = nm.

The gonality of this family of rook graphs was known to be at most nm, and
therefore this result also computes the gonality of all three dimensional rook graphs
where the smallest dimension is 2. Further study is required to determine if any other
three dimensional rook graphs have a scramble number matching its gonality.

In Chapter 4, we also explore higher gonalities of two dimensional rook graphs.
There are not many families of graphs in which higher gonalities are currently known.
However, for two dimensional rook graphs, we prove the following.

Theorem 1.0.5. Let n,m ≥ 2, then gon2(Kn□Km) = nm− 1 and gon3(Kn□Km) =
nm.

It is not currently known if the 4-gonality behaves nicely for these graphs as it
does with the 2 and 3-gonalities.

Finally, at the end of Chapter 4 we explore queen graphs and use a row equitable
divisor argument to prove the following result.

Theorem 1.0.6. Let 2 ≤ n ≤ m, then we have

gon(Qn,m) =


3 if n = m = 2

7 if n = m = 3

n(m− 1) otherwise.

Copyright© Noah D. Speeter, 2023.
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Chapter 2 Preliminaries

We begin by establishing terminology and giving background results.

2.0.1 Graphs

For the entirety of this paper, we will assume that our graphs are connected and
without loops. However, multiple edges between vertices are allowed. Given a graph
G, we denote the vertex set by V (G) and the edge set by E(G). If A ⊆ V (G) then
the complement of A will be denoted as Ac. A subgraph of a graph G is a graph that
can be obtained from G by deleting edges and deleting isolated vertices. A minor
of a graph G is a graph that can be obtained from G by contracting edges, deleting
edges, and deleting isolated vertices.

Definition 2.0.1. A partition of the vertices into two sets, (A,Ac) is referred to as
a cut. The cut-set E(A,Ac) is the set of edges that have one end in A and the other
end in Ac.

Definition 2.0.2. Given a graph G, H is a minor of G if H can be obtained by
contracting edges of G as well as deleting vertices and edges of G.

Definition 2.0.3. Given two graphs G and H, we can construct a new graph by
taking their Cartesian product G□H, with vertex set

V (G□H) = {(x, y)|x ∈ V (G), y ∈ V (H)}

and edge set

E(G□H) = {(x, y1) ∼ (x, y2)|y1 ∼ y2 ∈ E(H)} ∪ {(x1, y) ∼ (x2, y)|x1 ∼ x2 ∈ E(G)}.

Definition 2.0.4. A rook graph is the Cartesian product of 2 or more complete
graphs.

The n×m rook graph Kn□Km can be represented as an n×m lattice where two
lattice points are adjacent if they share either the same row or column. The name
rook graph comes from this lattice representation because two vertices are adjacent
if they are a rooks move apart.

Similar to the rook graphs we also have the queen graphs in which vertices are
adjacent if they are a queen’s move apart. we can define queen graphs more formally
as follows.

Definition 2.0.5. The queen graph Qn,m is the graph with vertex set

V (Qn,m) = {vi,j|i ∈ [n], j ∈ [m]}

and edge set

E(Qn,m) = {vi,j ∼ vi,l} ∪ {vi,j ∼ vk,j} ∪ {vi,j ∼ vk,l| |k − i| = |l − j|}.

3



2.0.2 Graph Divisors and Chip Firing

In this section we give a brief summary of divisor theory on finite graphs. For a more
thorough description, we refer the reader to [4].

Definition 2.0.6. A divisor D on a graph G is a Z−linear combination of the vertices
in G, or alternatively, an integer vector in ZV (G).

Divisors on a graph are often described as stacks of poker chips on each vertex,
where a negative number on a vertex is thought of as a debt. Because of this, divisors
are sometimes referred to as chip configurations.

Definition 2.0.7. The degree of a divisor, denoted deg(D), is the sum of all coordi-
nates of the vector D ∈ ZV (G), or simply the sum of all chips and debts.

We “fire” a vertex v by transferring one chip along each edge connected to v, away
from that fired vertex. The number of chips v loses is equal to the degree of v, and
every vertex adjacent to v will gain one chip. If two or more vertices are fired, the
resulting divisor will be the same regardless of what order the vertices were fired in.
Furthermore, if we obtain D′ by starting with divisor D and firing some vertex subset
A, then we can obtain D from D′ by firing Ac. This imposes equivalence classes on
the set of divisors of a fixed degree, where two divisors are equivalent if and only if
there are some series of chip fires apart from one another.

Definition 2.0.8. A divisor is effective if all vertices have a non-negative number
of chips, and we say a divisor is effective away from v if all vertices, apart from
v ∈ V (G), have a non-negative number of chips.

Definition 2.0.9. Given an effective divisor D, the support of the divisor denoted
Supp(D), is the set of vertices with a positive number of chips.

Example 2.0.10. In Figure 2.1, we see two equivalent divisors of degree 2. The
divisor D′ is effective while D is not.

2

-1

D

-1

2

1

1

D′

Figure 2.1: Two equivalent divisors D and D′. D′ is obtained from D by firing both
vertices which had two chips.

Definition 2.0.11. The following terms are needed to understand Dhar’s burning
algorithm and the proof of Theorem 1.0.2

4



• A divisor is v-reduced if it is effective away from v, and firing any subset of
V (G) \ v results in a divisor that is not effective away from v.

• A divisor D has rank of at least r if, for every effective divisor E of degree r,
D − E is equivalent to an effective divisor.

• The gonality of a graph G, denoted gon(G), is the fewest number of chips needed
to construct a divisor of rank 1.

Another way to understand the rank of a divisor is in the context of a chip firing
game. If a divisor D has rank r, that means if someone were to steal r chips from
anywhere on the graph, even from vertices that have 0 or a debt of chips, then there
is some series of chip firings one could perform to get back an effective divisor. It
also means that there is at least one way to steal r+1 chips that would make getting
back to an effective divisor impossible.

Example 2.0.12. In Figure 2.2, we see a divisor of rank 1. If a chip is stolen from the
center vertex, the divisor will still be effective. If a chip is stolen from a left vertex,
we can fire the center vertex along with the two vertices on the right to obtain an
effective divisor. We know the rank of this divisor cannot be greater than 1 because
stealing a chip from a vertex on the right and stealing another chip from a vertex on
the left results in a divisor that is not equivalent to any effective divisors. There are
no ways to construct a rank 1 divisor on this graph with fewer than 2 chips so the
gonality of the graph is therefore 2.

2

Figure 2.2: A divisor with rank 1.

Lemma 2.0.13. If a divisor D is v-reduced, and v has 0 or fewer chips, then D does
not have positive rank.

Proof. Let the stolen chip be from the specified vertex v. Then v has a negative
number of chips and since D is v−reduced, firing any other set of vertices will result
in a non-effective divisor.

Copyright© Noah D. Speeter, 2023.

5



Chapter 3 Brambles and Scrambles

We make the following definition.

Definition 3.0.1. A scramble in a graph G is a set S = {E1, . . . , En} of connected
subsets of V (G).

We will often refer to the subsets Ei as eggs. Scrambles with certain properties
have been studied extensively in the graph theory literature.

Definition 3.0.2. A bramble is a scramble S with the property that E ∪ E ′ is
connected for every pair E,E ′ ∈ S . It is called a strict bramble if every pair of
elements E,E ′ ∈ S has nonempty intersection.

Definition 3.0.3. A set C ⊆ V (G) is a hitting set of a scramble S if C ∩E ̸= ∅ for
all E ∈ S .

The order of a bramble B is the minimum size of a hitting set. The bramble
number of a graph G is the maximum order of a bramble in G, and is denoted bn(G).
A result of Seymour and Thomas shows that the bramble number of a graph is
closely related to another well-known graph invariant, known as the treewidth tw(G).
In particular, tw(G) = bn(G)− 1 for any graph G [8]. Here, we define some related
notions for more general scrambles.

Definition 3.0.4. We say that (A,Ac) is an egg cut of our scramble S if there are
two eggs E1, E2 such that E1 ⊆ A,E2 ⊆ Ac. The set of edges E(A,Ac) is referred to
as the egg cut-set or simply the cut-set, when the context is clear that we are talking
about an egg cut.

Definition 3.0.5. Given a scramble S with minimal hitting set C and minimal egg
cut-set E(A,Ac), the order of S , denoted ||S ||, is min{|C|, |E(A,Ac)|}. In the case
where S is a strict bramble and does not have any egg cuts we say that the size of
the minimal egg cut-set is ∞.

We note the following observations about the scramble order of brambles.

Lemma 3.0.6. The order of a strict bramble is equal to its scramble order.

Proof. Let B be a strict bramble of order k. By definition, the scramble order of B
is min{k,∞} = k

Lemma 3.0.7. Let B be a bramble of order k. Then the scramble order of B is
either k or k − 1.

Proof. By definition, there is a hitting set C ⊂ V (G) of size k that covers B, and no
such set of size less than k. The scramble order of B is therefore at most k. By [9,
Lemma 2.3], if E,E ′ ∈ B and A ⊂ V (G) is a subset such that E ⊆ A and E ′ ⊆ Ac,
then |E(A,Ac)| ≥ k− 1. It follows that the scramble order of B is at least k− 1.

6



Corollary 3.0.8. For any graph G, we have tw(G) ≤ sn(G).

Proof. Let B be a bramble of maximum order k in G. By [8], we have tw(G) = k−1.
By Lemma 3.0.7, the scramble order of B is at least k− 1, hence sn(G) ≥ k− 1.

3.1 Properties of The Scramble Number

We now prove our main result about the scramble number. Namely, that the scramble
number of a graph is a lower bound for the graph’s gonality. Our argument follows
closely that of [9, Theorem 2.1], which shows that the treewidth of a graph is a lower
bound for the graph’s gonality. Indeed, we defined the scramble number with the
specific goal of stating [9, Theorem 2.1] in its maximum generality.

Theorem 1.0.1. For any graph G, we have sn(G) ≤ gon(G).

Proof. Let S be a scramble on G, and let D′ be an effective divisor of positive rank
on G. We will show that deg(D′) ≥ ||S ||. Among the effective divisors equivalent to
D′, we choose D such that Supp(D) intersects a maximum number of eggs in S . If
Supp(D) is a hitting set for S then, by definition,

deg(D) ≥ |Supp(D)| ≥ ||S ||.

Conversely, suppose that there is some egg E ∈ S that does not intersect Supp(D),
and let v ∈ E. Since D has positive rank and v /∈ Supp(D), it follows that D is not
v−reduced. Therefore there exists a chain

∅ ⊊ U1 ⊆ · · · ⊆ Uk ⊂ V (G)∖ {v}

and a sequence of effective divisors D0, D1, . . . , Dk such that:

1. D0 = D,

2. Dk is v-reduced, and

3. Di is obtained from Di−1 by firing the set Ui, for all i.

Since D has positive rank, we see that v ∈ Supp(Dk) and hence Supp(Dk) intersects
E. By assumption, Supp(Dk) does not intersect more eggs than Supp(D), so there
is at least one egg E ′ that intersects Supp(D) but not Supp(Dk). Let i ≤ k be
the smallest index such that there is some E ′ ∈ S that intersects Supp(D) but not
Supp(Di). Then E ′ ∩ Supp(Di−1) ̸= ∅ and E ′ ∩ Supp(Di) = ∅. By [9, Lemma 2.2], it
follows that E ′ ⊆ Ui.

Again, by assumption, Supp(Di−1) does not intersect more eggs than Supp(D),
so Supp(Di−1) does not intersect E. Let j ≥ i be the smallest index such that
E ∩ Supp(Dj−1) = ∅ and E ∩ Supp(Dj) ̸= ∅. Since Dj−1 can be obtained from Dj

by firing U c
j , we see that E ⊆ U c

j ⊆ U c
i . Since E ⊆ U c

i and E ′ ⊆ Ui, it follows by the
definition of a scramble that |E(Ui, U

c
i )| ≥ ||S ||. Since

deg(Di−1) ≥
∑
u∈Ui

Di−1(u) ≥ |E(Ui, U
c
i )|,

7



we have
deg(Di−1) ≥ ||S ||.

One of the major advantages of the treewidth bound from [9] is that the treewidth
is minor monotone. In other words, if G′ is a graph minor of a graph G, then
tw(G′) ≤ tw(G). This is not true of the scramble number, as the following example
shows.

Example 3.1.1. Let G be the graph depicted in Figure 3.1. If v is the green vertex,
then the divisor 3v (the divisor with 3 chips on v) has positive rank. It follows that
the gonality of G is at most 3, and thus the scramble number of G is at most 3 by
Theorem 1.0.1.

Figure 3.1: A graph G with scramble number 3.

Now, let G′ be the graph pictured in Figure 3.2, obtained by contracting the red
edge in G. The 4 colored subsets are the eggs of a scramble S , which we now show
has scramble order 4. Because the 4 eggs are disjoint, there is no hitting set of size less
than 4. Now, let A ⊂ V (G′) be a set with the property that both A and Ac contain
an egg. By exchanging the roles of A and Ac, we may assume that A contains the
center red vertex. If A consists solely of this vertex, then |E(A,Ac)| = 6. Otherwise,
A contains some, but not all, of the vertices on the hexagonal outer ring. We then see
that E(A,Ac) contains at least two edges in the hexagonal outer ring, and at least
two edges that have the center red vertex as an endpoint. Thus, |E(A,Ac)| ≥ 4.

While the scramble number is not minor monotone, it is subgraph monotone.

Proposition 3.1.2. If G′ is a subgraph of G, then sn(G′) ≤ sn(G).

Figure 3.2: The graph G′ is a graph minor of G with higher scramble number.

8



Proof. Let S ′ be a scramble on G′, and let S be the scramble on G with the
same eggs as S ′ on G′. We will show that ||S || ≥ ||S ′||. If C ⊂ V (G) is a
hitting set for S , then C ∩ V (G′) is a hitting set for S ′. Now, let A be a subset
of V (G) such that A and Ac both contain eggs of S . Then A ∩ V (G′) is a subset
of V (G′) with the property that both it and its complement contain eggs of S ′, and
|E(A,Ac)| ≥ |E(A ∩ V (G′), Ac ∩ V (G′))|. It follows that ||S || ≥ ||S ′||.

The scramble number is also invariant under refinement.

Proposition 3.1.3. If G′ is a refinement of G, then sn(G) = sn(G′).

Proof. By induction, it suffices to consider the case where G has one fewer vertex
than G′. Let v and w be adjacent vertices in G, and let G′ be the graph obtained by
subdividing an edge between v and w, introducing a vertex u between them.

First, we will show that sn(G) ≤ sn(G′). To see this, let S be a scramble on G.
For each egg E ∈ S , we define a connected subset E ′ ⊂ V (G′) as follows. If v /∈ E,
then E ′ = E, and if v ∈ E, then E ′ = E ∪ {u}. Let

S ′ = {E ′|E ∈ S }.

We will show that ||S ′|| ≥ ||S ||.
Let C ⊂ V (G′) be a hitting set for S ′. If u /∈ C, then C is also a hitting set

for S . On the other hand, if u ∈ C, then since every egg in S ′ that contains u
also contains v, the set C ′ = C ∪ {v}∖ {u} is a hitting set for S ′ with the property
that u /∈ C ′ and |C ′| ≤ |C|. Now, let A be a subset of V (G′) such that both A and
Ac contain eggs of S ′. By exchanging A and Ac, we may assume that u /∈ A. We
may then think of A also as a subset of V (G) with the property that both A and Ac

contain eggs of S . If both v and w are contained in A, then the number of edges
leaving A in V (G) is 1 fewer than the number of edges leaving A in V (G′). Otherwise,
these two numbers are equal. It follows that ||S ′|| ≥ ||S ||.

We now show that sn(G) ≥ sn(G′). To see this, let S ′ be a scramble on G′ of
maximal scramble order. If sn(G) = 1, then by Corollary 3.1.6 below, we see that G
is a tree. It follows that G′ is a tree as well, and sn(G′) = 1 by another application
of Corollary 3.1.6. We may therefore assume that sn(G) ≥ 2, and for contradiction
that ||S ′|| ≥ 3.

If every egg in S ′ contains u, then S ′ has a hitting set of size 1, a contradiction.
It follows that if {u} ∈ S ′, then the set A = {u} has the property that both A and
Ac contain eggs of S ′. Thus, ||S ′|| ≤ |E(A,Ac)| = 2, another contradiction. We
may therefore assume that {u} /∈ S ′. Let

S = {E ′ ∩ V (G)|E ′ ∈ S ′}.

We will show that ||S || ≥ ||S ′||.
Let C ⊂ V (G) be a hitting set for S . Since {u} /∈ S ′, we see that C is also a

hitting set for S ′. Now, let A be a subset of V (G) with the property that both A
and Ac contain eggs of S . As above, define the set A′ as follows. If v /∈ A, then
A′ = A, and if v ∈ A, then A′ = A ∪ {u}. We see that |E(A,Ac)| = |E(A′, A′c)|. It
follows that ||S || ≥ ||S ′||.
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Example 3.1.4. The graph on the left in Figure 3.3 has gonality 2. By Theo-
rem 1.0.1, its scramble number is at most 2. Since it is not a tree, by Corollary 3.1.6
below, its scramble number is exactly 2.

On the other hand, the graph on the right has gonality 3. Since it is a refinement
of the graph on the left, however, by Proposition 3.1.3 the two graphs have the same
scramble number. Thus, the graph on the right is an example where the gonality and
scramble number disagree.

Figure 3.3: Two graphs with the same scramble number, but different gonalities.

We close out this section with some observations about graphs of low scramble
number.

Lemma 3.1.5. If G is a cycle, then sn(G) = 2.

Proof. For any v ∈ V (G) consider the scramble S =
{
{v}, V (G) ∖ {v}

}
. Because

the two eggs are disjoint, any hitting set has size at least two. If A is a subset of
the vertices such that both A and Ac contain eggs, then either A or Ac is equal to
{v}. Since |E(A,Ac)| = 2, we see that ||S || = 2. There can be no scramble of higher
order because, if A ⊊ V (G) is a connected subset, then |E(A,Ac)| = 2.

Corollary 3.1.6. The scramble number of a graph G is 1 if and only if G is a tree.

Proof. If G is a tree, then

1 = tw(G) ≤ sn(G) ≤ gon(G) = 1,

so sn(G) = 1. On the other hand, if G is not a tree, then it contains a cycle. By
Proposition 3.1.2, the scramble number of G is at least that of the cycle, and by
Lemma 3.1.5, the scramble number of the cycle is 2.

3.2 Using the Scramble Number to Compute the Gonality of Cartesian
Product Graphs

In this section, we compute the scramble numbers and gonalities of several well-known
families of graphs. The purpose of this section is to illustrate the advantages of the
scramble number as a tool for computing gonality, as the constructions are relatively
simple in comparison to the preexisting literature.

The following examples all arise as Cartesian products of graphs. Recall that the
Cartesian product of two graphs G1 and G2, denoted G1□G2, is the graph with vertex
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set V (G1) × V (G2) and an edge between (u1, u2) and (v1, v2) if either u1 = v1 and
there is an edge between u2 and v2, or u2 = v2 and there is an edge between u1 and
v1. For a fixed vertex v ∈ G1, we refer to the set

Cv =
{
(v, w) ∈ V (G1□G2)|w ∈ G2

}
as a column. Similarly, for w ∈ G2, we refer to the set

Rw =
{
(v, w) ∈ V (G1□G2)|v ∈ G1

}
as a row. A bound on the gonality of Cartesian products can be found in [2].

Proposition 3.2.1. [2, Proposition 1.3] For any two graphs G1 and G2,

gon(G1□G2) ≤ min
{
gon(G1)|V (G2)|, gon(G2)|V (G1)|

}
.

We provide several examples where this bound is achieved. It is a standard result
that the m× n grid graph has treewidth min{m,n}, and it is shown in [9] that such
graphs have gonality min{m,n} as well. A grid graph is an example of the product
of two trees, a family of graphs whose gonality is computed in [2]. We reproduce this
result here using the scramble number.

Proposition 3.2.2. [2, Proposition 3.2] If T1 and T2 are trees, then

gon(T1□T2) = sn(T1□T2) = min
{
|V (T1)|, |V (T2)|

}
.

Proof. By Proposition 3.2.1, the gonality of T1□T2 is at most min{|V (T1)|, |V (T2)|}.
We therefore seek to bound the gonality from below. By Theorem 1.0.1, it suffices to
construct a scramble of scramble order min{|V (T1)|, |V (T2)|}.

Let S be the set of columns in T1□T2. Any row Rw is a hitting set for S , and
|Rw| = |V (T1)|. Moreover, if v ∈ T1 is a leaf, then |E(Cv, C

c
v)| = |V (T2)|. It follows

that
||S || ≤ min

{
|V (T1)|, |V (T2)|

}
.

Since the number of columns is |V (T1)| and they are disjoint, there is no hitting
set of size less than |V (T1)|. Now, let A be a subset of V (T1□T2) with the property
that both A and Ac contain a column. Then every row of T1□T2 contains a vertex
in A and a vertex in Ac, so every row contains an edge in E(A,Ac). It follows that
|E(A,Ac)| is greater than or equal to the number of rows, which is |V (T2)|. It follows
that

||S || ≥ min
{
|V (T1)|, |V (T2)|

}
.

In [1], the authors compute the treewidth of the stacked prism graphs Ym,n, the
cartesian product of a cycle with m vertices and a path with n vertices. They show
that the gonality of Ym,n is equal to its treewdith, except in the special case where
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m = 2n. We prove the following generalization, which holds even in this special case.
Even in the cases where the gonality has been previously computed, we believe that
our constructions, using scrambles rather than brambles, are much simpler. For this
reason, we have treated these graphs for all m and n uniformly.

Proposition 3.2.3. If C is a cycle and T is a tree, then

gon(C□T ) = sn(C□T ) = min
{
|V (C)|, 2|V (T )|

}
.

Proof. By Proposition 3.2.1, we have gon(C□T ) ≤ min{|V (C)|, 2|V (T )|}. We now
compute a lower bound. By Theorem 1.0.1, it suffices to construct a scramble of
scramble order min{|V (C)|, 2|V (T )|}.

Again, we let S be the set of columns in C□T . (See, for example, Figure 3.4.)
Any row Rw is a hitting set for S , and |Rw| = |V (C)|. Moreover, for any v ∈ C we
have |E(Cv, C

c
v)| = 2|V (T )|. It follows that

||S || ≤ min
{
|V (C)|, 2|V (T )|

}
.

Since the number of columns is |V (C)| and they are disjoint, there is no hitting
set of size less than |V (C)|. Now, let A be a subset of V (C□T ) with the property
that both A and Ac contain a column. Then every row of C□T contains a vertex in
A and a vertex in Ac, so every row contains at least two edges in E(A,Ac). It follows
that |E(A,Ac)| is greater than or equal to twice the number of rows, which is |V (T )|.
It follows that

||S || ≥ min
{
|V (C)|, 2|V (T )|

}
.

Figure 3.4: The stacked prism graph Y4,2 with a scramble of scramble order 4. Note
that, by [1, Proposition 3.3], the treewidth of Y4,2 is only 3.

Note that in the special case where m = 2n, Proposition 3.2.3 shows that the
scramble number of the stacked prism graph Ym,n can be strictly greater than the
treewidth. In [1], the authors also compute the treewidth of the toroidal grid graphs
Tm,n, the product of a cycle with m vertices and a cycle with n vertices. They further
show that the gonality of Tm,n is equal to its treewidth, except in the special cases
where m = n or m = n ± 1. As with the stacked prism graphs, we compute the
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gonality of these graphs for all m and n uniformly, including the cases not covered in
[1].

Proposition 3.2.4. We have

gon(Tm,n) = sn(Tm,n) = min{2m, 2n}.

Proof. By Proposition 3.2.1, gon(Tm,n) ≤ min{2m, 2n}, so we will compute a lower
bound. By Theorem 1.0.1, it suffices to construct a scramble of scramble order
min{2m, 2n}.

Let S be the set of columns in Tm,n with one vertex removed. (See, for example,
Figure 3.5.) The union of any two rows is a hitting set for S of size 2m. Moreover,
for any vertex v in the cycle of length m, we see that both Cv and Cc

v contain an egg,
and we have |E(Cv, C

c
v)| = 2n. It follows that

||S || ≤ min{2m, 2n}.

If C is a subset of the vertices of size less than 2m, then some column contains
at most 1 vertex of C, hence C is not a hitting set for S . Now, let A be a subset
of V (Tm,n) with the property that both A and Ac contain eggs. Specifically, suppose
that A contains every vertex in column Cv except for possibly (v, w), and that Ac

contains every vertex in column Cv′ except for possibly (v′, w′). If w′′ ̸= w,w′ is a
vertex in the cycle of length n, then the row Rw′′ contains a vertex in A and a vertex
in Ac, so at least two edges in Rw′′ are contained in E(A,Ac). If (v, w) /∈ A, then
the two edges in column Cv with endpoints (v, w) are contained in E(A,Ac), and
similarly, if (v′, w′) /∈ Ac, then the two edges in column Cv′ with endpoints (v′, w′)
are contained in E(A,Ac). On the other hand, if (v, w) ∈ A and (v′, w) ∈ Ac, then
at least two edges in Rw are contained in E(A,Ac), and similarly, if (v′, w′) ∈ Ac and
(v, w′) ∈ A, then at least two edges in Rw′ are contained in E(A,Ac). It follows that

||S || ≥ min{2m, 2n}.

Figure 3.5: Two representative eggs in T4,4.
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3.3 The Scramble Number of Rook Graphs

Recall that a rook graph is the Cartesian product of two or more complete graphs. The
gonality of the complete graph Kn is n− 1 so by Proposition 3.2.1, gon(Kn□Km) ≤
(n − 1)m if n ≤ m. In the next chapter we will show that this bound is actually
an equality using other methods. However in the meantime we will use the scramble
number to realize this bound for many 2 dimensional rook graphs. We begin this
section with the following theorem which will assist us in that computation.

Theorem 3.3.1. Given a cut A
∐

B on Kn□Km Such that |A|, |B| ≥ n−1, we have
|E(A,B)| ≥ (n− 1)m.

Proof. First, we establish that the proposition holds if either A or B has at most m
vertices. Assume without loss of generality that n − 1 ≤ |A| ≤ m. Every vertex in
Kn□Km has degree n+m− 2, and thus

|E(A,B)| = (n+m− 2)|A| − 2k,

where k is the number of edges with both ends in A. The number k reaches a maximal
value of

(|A|
2

)
when all vertices of A are in a single row or column. Thus we need only

to consider the case where A is contained in a single row. Then

|E(A,B)| = |A|(m− |A|) + |A|(n− 1),

where |A|(m−|A|) represents the number of horizontal cut edges between two vertices
in the same row, and |A|(n− 1) represents the number of vertical cut edges between
two vertices contained in the same column.

|A|(m− |A|) + |A|(n− 1) = |A|(m+ n− |A| − 1).

This product is minimized at the boundary cases when |A| = n− 1 or |A| = m, and
the resulting product is (n− 1)m.

Next, we establish that the proposition holds if both A and B contain an entire
row. Without loss of generality, assume the first row is entirely in A and the second
row is entirely in B. Then there are m cut edges between those two rows and each of
the remaining (n− 2)m vertices will have a vertical cut edge between itself and one
of the first two rows. Thus |E(A,B)| ≥ (n− 1)m.

Finally, we assume that both |A|, |B| ≥ m + 1, there are 0 ≤ i ≤ n − 2 rows
completely contained in A and no rows completely contained in B. Because |B| ≥
m+1, there will be at least i(m+1) vertical cut edges between the vertices in B and
the i rows in A. The remaining n− i rows contain at least one vertex in A and one
vertex in B. Thus each of these rows contains at least m − 1 horizontal cut edges.
Thus

|E(A,B)| ≥ i(m+1)+(n−i)(m−1) > i(m−1)+(n−i)(m−1) = n(m−1) ≥ (n−1)m.
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Lemma 3.3.2. For all m ≥ 2 we have sn(K2□Km) = m = gon(K2□Km)

Proof. By Theorem 1.0.1 and Proposition 3.2.1, it suffices to find a scramble of order
n. Let S be the scramble where every vertex is its own egg. Then the minimal
hitting set is all of V (K2□Km). By Theorem 3.3.1, any egg cut of S will have a
cut-set of size greater than or equal to m. Therefore ||S || = m.

Lemma 3.3.3. For all m ≥ 3, we have sn(K3□Km) = 2m = gon(K3□Km).

Proof. Again by Theorem 1.0.1 and Proposition 3.2.1, it suffices to find a scramble
of order 2n. Let S be the scramble where the eggs consist of every two adjacent
vertices. By Theorem 3.3.1, The minimal egg cut-set size is 2m. If C is a hitting set
of S , then C must contain 2 out of 3 vertices in every column. Then |C| ≥ 2m and
thus ||S || = 2m.

Unfortunately, for larger values of n, the scramble number of Kn□Km does not
always match the gonality, and it becomes increasingly more difficult to compute. A
good candidate for a maximal scramble on a rook graph is the scramble where the
eggs are all connected subsets of size n − 1. We will refer to this scramble as S∗

n,m.
By Theorem 3.3.1, the minimal cutset of S∗

n,m is always (n − 1)m = gon(Kn□Km),
so the order of S∗

n,m is only less than the gonality if the minimal hitting set is too
small. We can find a minimal hitting set indirectly by instead looking for a maximal
avoidance set, which is the largest subset of vertices that do not contain an entire
egg. In the case of S∗

n,m, we need to avoid all connected subsets of size n − 1. The
complement of a maximal avoidance set is a minimal hitting set. Thus, if a scramble
on Kn□Km has a maximal avoidance set of size k, then it has a minimal hitting set
of size nm− k.

Example 3.3.4. We show that sn(K4□K4) = 11. Note that this is strictly smaller
than gon(K4□K4) = 12.

Figure 3.6: A maximal avoidance set of size 5.

In Figure 3.3.4 we see that the 5 circled vertices do not contain a connected subset
of 3 or more vertices. However, any collection of 6 vertices must contain a connected
subset of 3 vertices. This is because selecting 6 vertices from 4 columns either requires
selecting 3 or more vertices from a single column or selecting 2 vertices from 2 separate
columns. If the latter of these cases occurs, then either the 4 selected vertices are
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already connected or every row has one vertex and the next vertex selected will result
in a connected subset of 3 vertices.

Therefore the 11 vertices not circled in figure 3.3.4 forms a minimal hitting set
for the scramble S∗

4,4, meaning ||S∗
4,4|| = 11. We then conclude that sn(Kn□K4) = 11

because any scramble on this graph with a minimal hitting set larger than 11 would
require eggs of size 2 or 1, and any such scramble would have a minimum egg cut set
that is size 10 or smaller.

Theorem 1.0.3. If m ≥ (n− 2)(n− 1), then sn(Kn□Km) = ||S∗
n,m|| = (n− 1)m.

Proof. Recall that S∗
n,m is the scramble where every connected vertex subset of size

n−1 is an egg. We show that any set A withm+1 vertices cannot be an avoidance set.
Given such a set, there must be one column with at least 2 vertices in A. Without loss
of generality, we say (1, 1) and (2, 1) are in A. Since (1, 1) ∼ (2, 1) all of the vertices
in A that are in the first two rows will form a connected component, and therefore A
can have at most n − 2 vertices in the first two columns. This means that A has at
least m+1− (n− 2) vertices in the remaining n− 2 rows. Since m ≥ (n− 2)(n− 1),
we have

m+ 1− (n− 2) ≥ (n− 2)(n− 1)− (n− 2) + 1 = (n− 2)2 + 1,

and therefore A must have at least n − 1 vertices in a single column, meaning that
A cannot be an avoidance set. We conclude that any hitting set of S∗

n,m must be of
size (n− 1)m or larger.

Figure 3.7: An avoidance set of size 6=m+ 1.

Theorem 3.3.5. If m < (n− 2)(n− 1), then ||S∗
n,m|| < (n− 1)m.

Proof. First, we consider the case where m = k(n−2)+r for some nonzero remainder
1 ≤ r < n− 2. Then we aim to construct an avoidance set of size m+ 1. In the first
k rows, we select n − 2 vertices per row such that each vertex comes from a unique
column. Since m = k(n− 2) + r < (n− 2)(n− 1) we know k ≤ n− 2, and thus there
are r columns and at least 2 rows that have no vertices selected. Selecting any set of
r + 1 vertices from these leftover rows and columns will result in an avoidance set of
size m+ 1 (see Figure 3.7 for the case n = 4,m = 5, k = 2, r = 1).
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Next, we consider the case where m = k(n − 2) for some k ≤ n − 2. We select
n−2 vertices from each of the first k−1 rows, and n−3 vertices from row k such that
each vertex is from a unique column. From the last remaining column that has not
yet had a vertex selected, we select two from rows k+1, . . . , n. The selected vertices
then form an avoidance set of size m+ 1.

In cases where m and n are relatively close in size, S∗
n,m might not be optimal.

That is, we can find a scramble of larger order on that graph. This makes computing
the scramble number of general rook graphs increasingly difficult as m and n get
large.

Example 3.3.6. Given the graph K6□K6, we first consider the scramble S∗
6,6 con-

sisting of all possible eggs of size 5. This scramble has a hitting set of size 24 since
we can construct an avoidance set of size 12 pictured in Figure 3.8. However, if we
create a new scramble T ∗ by augmenting the egg set of S∗

6,6 to also include all 4-
vertex squares, we increase the minimum hitting set to size 27 without decreasing the
minimum cut set size. One could also include “S” and “Z” shaped 4-vertex subsets
into the egg set without diminishing the size of the minimal cut-set, however, this
will not increase the order of the scramble since Figure 3.9 already avoids such eggs.
Including any other eggs of size ≤ 4 would decrease the minimal cut set to values less
than 27. Thus sn(K6□K6) = 27.

We note that K6□K6 is the smallest rook graph whose scramble number is strictly
greater than the order of S∗

n,m. Theorem 1.0.3 shows that for n ≤ 5, sn(Kn□Km) =
||S∗

n,m|| for all but finitely many values of m. These cases can be checked by hand.

Figure 3.8: A maximal avoidance set of size 12 of the scramble S∗
6,6.

3.4 Scrambles on 3-Dimensional Rook Graphs

Up until this point, we have only considered 2-dimensional rook graphs. When trying
to compute the gonality of graphs which are the product of three or more complete
graphs, many of our strategies cannot be immediately generalized. However the
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Figure 3.9: A maximal avoidance set of size 9 of the scramble T ∗

scramble number can still be used to compute gonality in some circumstances such
as in the following theorem.

Theorem 1.0.4. Let 2 ≤ n ≤ m, then sn(K2□Kn□Km) = gon(K2□Kn□Km) = nm.

Proof. Consider the scramble S with an egg set consisting of all connected subsets
of n vertices. It suffices to show that ||S || = nm.

We first establish that given any cut A
∐

B such that |A|, |B| ≥ n will have
|E(A,B)| ≥ nm. Much of this argument is similar to the proof of Theorem 3.3.1. We
begin by considering the case where either A or B has at most m vertices. Assume
without loss of generality that n ≤ |A| ≤ m. Every vertex has degree n+m− 1, and
thus

|E(A,B)| = (n+m− 1)|A| − 2k,

where k is the number of edges with both ends in A. The value k reaches a maximum
value when all vertices of A are in a single copy of Km. In this case, we would have

|E(A,B)| = |A|(m− |A|) + |A|n,

where |A|(m− |A|) represents the cut edges contained within the single copy of Km,
and |A|n represents the number of cut edges between two vertices contained in the
same copies of Kn or K2.

|A|(m− |A|) + |A|n = |A|(m+ n− |A|).

This product is minimized at the boundary cases when |A| = n or |A| = m, and the
resulting product is nm.

Next, we show that the proposition holds if there is at least one copy of K2□Kn

with all vertices in A and another copy of K2□Kn with all vertices in B. Without loss
of generality, say the first copy of K2□Kn is in A and the second is in B. Between
these two copies of K2□Kn there will be 2n cut edges. Additionally, for every vertex
in the remaining m − 2 copies of K2□Kn there will be a cut edge between that
vertex and one of the first two copies of K2□Kn. Thus we have a minimum of
2n(m− 1) = 2nm− 2n cut edges. Since 2 ≤ n ≤ m, we have 2n ≤ nm, and thus

2nm− 2n ≥ 2nm− nm = nm.
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Finally, we assume there are no copies of K2□Kn that only have vertices in B and
there are i copies of K2□Kn that contain only vertices in A, where 0 ≤ i ≤ m − 1.
because of our first case, we can assume |B| ≥ m+ 1 and therefore there are at least
i(m + 1) cut edges between the vertices in B and the i copies of K2□Kn in A. For
each of the remaining m − i copies of K2□Kn that contain at least one vertex in
A and B, by Theorem 3.3.1, there are at least n cut edges contained in that copy.
Therefore

|E(A,B)| ≥ n(m− i) + i(m+ 1) = nm+ i(m+ 1)− in = nm+ i(m+ 1− n).

Since n ≤ m, we know (m+1−n) is a positive integer and therefore |E(A,B)| ≥ nm.
This establishes the minimum egg cut set of the scramble S to be nm.

Next, one needs to show that the minimum hitting set of S is at least nm. To do
this we assume that A ⊂ V (K2□Kn□Km) only contains nm − 1 vertices, and then
show that it misses some egg in S .

Select the copy of K2□Kn that contains the fewest vertices in A. This copy must
contain fewer than n vertices in A so by the pigeon hole principle, there is some copy
of K2 in which neither vertex is contained in A. Therefore all vertices in this copy of
K2□Kn which are not in A are connected. Thus, there are at least n + 1 connected
vertices not contained in A, meaning A cannot be a hitting set of S . Therefore
||S || = nm.

While it is certainly possible there are other 3-dimensional rook graphs which have
scramble number equal to the expected gonality, we also have the following result.

Theorem 3.4.1. If n ≥ 3, then sn(Kn□Kn□Kn) is strictly less than (n− 1)n2.

Proof. Consider the following set A ⊂ V (Kn□Kn□Kn):

A = {(1, 1, k)|2 ≤ k ≤ n} ∪ {(1, j, 1)|2 ≤ j ≤ n} ∪ {(i, k, k)|2 ≤ i ≤ n, 1 ≤ k ≤ n}

The set A contains n+2 different connected components, each component having
n− 1 vertices. Since

|A| = (n+ 2)(n− 1) = n2 + n− 2 ≥ n2 + 1,

we have |Ac| ≤ (n− 1)n2 − 1. Furthermore, |Ac| will intersect with every connected
vertex subset of size at least n. If S is a scramble on Kn□Kn□Kn, then either, Ac

is a hitting set of S , or S has an egg contained in one of the connected components
of A. If the former is true then ||S || ≤ |Ac| ≤ (n − 1)n2 − 1. If the latter is true,
then S has an egg E, such that E has n − 1 or fewer vertices, and every vertex in
E is adjacent to one another. If E has i vertices, then the egg cut-set E(E,Ec) will
consist of i(n − i) + i(2n − 2) edges. This is because i(n − i) counts the number of
edges between the i vertices in E and the n − i vertices not in E, but in the same
line as E. Each vertex in E is also adjacent to 2n− 2 other vertices which are not in
the same line as E. Then we use the fact that n ≥ 3 and i ≤ n− 1 to get

i(n− i) + i(2n− 2) = i(3n− i− 2) ≤ i(n2 − i− 2) ≤ (n− 1)(n2 − i− 2) < (n− i)n2.

Thus S will have either a hitting set or an egg cut set smaller than (n− 1)n2.
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Figure 3.10: The set A for K3□K3□K3 as described in the proof of Theorem 6.3

Copyright© Noah D. Speeter, 2023.
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Chapter 4 Column Equitable Divisor Methods

4.1 Dhar’s burning algorithm

Here we briefly review Dhar’s burning algorithm, which was first introduced in [5].
This algorithm tells us what series of chip fires need to occur in order to get a divisor
D to an equivalent divisor D′ that is v-reduced for some chosen vertex v. We begin
the algorithm by starting a fire at our chosen vertex. It should be noted by the reader
that this notion of starting a fire is separate from chip firing. The fire spreads to all
edges adjacent to a burning vertex, and a vertex will burn if it has more burning
adjacent edges than it does chips. If the entire graph burns, then the divisor is
reduced at the vertex v. Otherwise, if there is some set of unburnt vertices left, we
fire these vertices and start a new fire at v. The process continues until we have a
divisor in which all vertices will burn.

Lemma 4.1.1. If D is an effective divisor of degree at most n− 2 on Kn, then a fire
started on any vertex with no chips will burn the entire graph.

Proof. Let k be the number of unburnt vertices left after starting a fire on some
vertex with no chips. For these k vertices to not catch fire, they each must have a
minimum of n− k chips. Since our divisor is effective and has degree at most n− 2,
we must have k(n− k) ≤ (n− 2). The only values for which this inequality holds are
k = 0 and k = n. We know k ̸= n because one vertex was burnt at the beginning.
Therefore all vertices must burn.

4.2 Gonality of Rook Graphs

For the remainder of the paper, we will assume without loss of generality that n ≤ m.

Definition 4.2.1. Given a divisor D on Kn□Km, a poorest column of D refers to a
copy of Kn that contains the fewest number of chips. Similarly, a poorest row refers
to a copy of Km that contains the fewest number of chips.

Note that a poorest row/column need not be unique.

Theorem 1.0.2. If n ≤ m, gon(Kn□Km) = (n− 1)m.

Proof. First, we observe that gon(Kn□Km) ≤ (n − 1)m since the divisor that has
one chip on every vertex except for one row which is left empty, has degree (n− 1)m
and positive rank. We then need to show that every divisor of degree (n − 1)m − 1
does not have positive rank.

Let D be an effective divisor of degree (n−1)m−1, and without loss of generality,
we assume that D has a maximal number of chips in its poorest column among all
equivalent effective divisors. A poorest column contains at most n− 2 chips and by
Lemma 4.1.1, starting a fire at one of the vertices with no chips will make the entire
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column burn. Additionally, the poorest row of D will have at most m− 2 chips since
(n − 1)m − 1 ≤ n(m − 1) − 1. Because an entire column has burned, the poorest
row must also burn. We then assume for contradiction that there is some nonempty
subset U ⊂ V (Kn□Km) which is left unburnt. We can then fire U to obtain a new
effective divisor D′.

If column k has j > 0 vertices in U , then firing U will transfer j(n − j) chips
from the j vertices in U to the other n− j vertices in column k. Since D′ is effective,
column k will have at least j(n− j) chips in D′. Because the poorest row has burned,
j < n and thus, j(n− j) ≥ n− 1. Therefore any column that intersects with U , will
not become the poorest column of D′. However, every column that doesn’t intersect
with U will gain |U | chips once U is fired. This is a contradiction since we assumed
D maximized the number of chips in the poorest column. Therefore all vertices of
Kn□Km must burn, meaning D is v-reduced for some vertex that has 0 chips. Then
by Lemma 2.0.13, we conclude that D does not have positive rank.

Recall that the gonality of a graph G is the fewest number of chips needed to
construct a divisor of rank 1. In other words, if gon(G) = j then there is some divisor
D of degree j such that if someone were to take one chip from any vertex, we could
get back to an effective divisor through a series of chip fires. We can expand on this
idea by asking how many chips we need to make a divisor that can withstand the
theft of more than just one chip.

Definition 4.2.2. Given a graph G, the k−gonality of G, denoted gonk(G) is the
fewest number of chips needed to construct a divisor of rank k.

Lemma 4.2.3. Given a graph G, gonk(G) ≤ gonk+1(G)− 1.

Proof. Let D be a divisor on G of degree gonk+1(G), and having rank k + 1. If we
take away a single chip from any vertex which has a positive number of chips, we
are left with a divisor of degree gonk+1(G) − 1 and rank k. Therefore gonk(G) ≤
gonk+1(G)− 1.

With this lemma, we have enough information to modify the proof of 1.0.2 in
order to compute the 2 and 3-gonalities of two dimensional rook graphs.

Theorem 1.0.5. Let n,m ≥ 2, then gon2(Kn□Km) = nm− 1 and gon3(Kn□Km) =
nm.

Proof. There are two main components to this proof. First, we will show that there
exists a divisor of degree nm of rank at least 3. Second, we will show that no divisor
of degree nm− 2 has rank 2.

Given a graph G, one can show that the divisor D has positive rank if for every
vertex v ∈ V (G), there is some equivalent effective divisor D′, where v has a positive
number of chips. Similarly, D has rank at least k if we can take away any k− 1 chips
and still be left with a divisor such that for any vertex v, there is some equivalent
effective divisor where v has a positive number of chips. Let D be the divisor on
Kn□Km in which every vertex has exactly 1 chip. We then consider all possible ways
to take away 2 chips from D.
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• If 2 chips are taken from a single vertex v, we can fire all vertices except v.
Then v will have n+m− 3 chips and all other vertices have either 1 or 0 chips.
Assuming n,m ≥ 2, v will have a positive number of chips.

• If chips are taken from v1 and v2 which lie in the same row or column, we can
fire all of the other rows or columns to produce an effective divisor where both
v1 and v2 have a positive number of chips.

• If chips are taken from v1 and v2 which lie in different rows and columns, we
can fire all vertices except v1 to produce an effective divisor where v1 has a
positive number of chips. Similarly, we can fire all vertices except v2 to produce
a different effective divisor where v2 has a positive number of chips.

Therefore D has rank at least 3 and gon3(Kn□km) ≤ nm.
Next, we let E be an effective divisor of degree nm − 2. We assume E has a

maximal number of chips in its poorest column. First, we consider the case where
the poorest columns have n − 1 chips. We begin by selecting one of the poorest
columns, and removing a chip from a vertex that has a positive number of chips. By
Lemma 4.1.1, starting a fire on any vertex in this column with no chips will result
in the entire column burning. Now that an entire column is burning, every other
column with n-1 chips must also burn due to the same argument as in the proof of
Lemma 4.1.1. We can understand this by thinking of the original burning column as
a singular burning vertex that is adjacent to every vertex in a given column. This
then reduces to the case where we have the graph Kn+1 with only n− 1 chips.

Since E is degree nm−2, and the poorest column has n−1 chips, if a column has
n+ i chips for i ≥ 0, then there must be at least i+2 other columns with n−1 chips.
All of these i + 2 columns with n− 1 chips will burn, which will lead to the column
with n + i chips burning as well. Therefore the entire graph burns and E does not
have rank 2.

Next, we assume that E has a poorest column with ≤ n − 2 chips. We remove
a chip from a poorest row, which would have at most m − 1 chips. We then start a
fire on some vertex with zero chips in that row. This row now has at most m − 2
chips, and thus it must burn entirely. Any column with ≤ n− 2 chips will also burn.
We then assume for contradiction that some subset U ⊂ V (Kn□Km) will be left
unburnt. If we fire the vertices in U to produce the new divisor E ′, we know from the
proof of Theorem 1.0.2 that any column which intersects with U will have at least
n − 1 chips in E ′. Every other column will increase the number of chips it has by
|U |. This contradicts the fact that E maximized the chips in the poorest column,
and the poorest column had ≤ n − 2 chips. Therefore the entire graph must burn
and E does not have rank 2. Thus we conclude that gon2(Kn□Km) = nm − 1 and
gon3(Kn□Km) = nm.

4.3 Gonality of Queen Graphs

The n × m queen graph can be depicted as an n × m grid where two vertices are
adjacent if they are a queen’s move apart (i.e they lie in the same row or column, or
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they are diagonal from one another). Because the rook graph Kn□Km is a spanning
subgraph of Qn,m, we can modify the column equitable divisor method to help us
compute the gonality of Qn,m.

Lemma 4.3.1. Let n,m ≥ 4, then gon(Qn,m) ≤ n(m− 1).

Proof. It is sufficient to show that for n,m ≥ 4, there always exists a divisor of degree
n(m−1) having positive rank. A result from [7] states that for n ≥ 4 you can place n
queens on an n×n chessboard such that no two queens can attack one another. This
means that for Qn,n there exists a subset of n vertices which are all independent of
one another (pairwise non-adjacent). This also means there will exist n independent
vertices within the first n columns of Qn,m.

Let I be an independent set of n vertices on Qn,m and consider the divisor which
places one chip on all vertices except the n vertices in I. If a chip is stolen from one of
the vertices not in I then the resulting divisor is already effective. If a chip is stolen
from some vertex v ∈ I then we can fire all vertices except v to obtain an effective
divisor. Note that since I is an independent set, all vertices adjacent to v are not in
I and therefore have one chip which will transfer to v.

Theorem 4.3.2. Let n ≤ m, then gon(Qn,m) ≥ n(m− 1).

Proof. Let D be an effective divisor on Qn,m of degree n(m− 1)− 1. Without loss of
generality, assume that D maximizes the number of chips in its poorest row among
all effective divisors equivalent to D. We then run Dhar’s burning algorithm starting
on a vertex that lies in the poorest row and has no chips. The poorest row will have
at most m− 2 chips and by Lemma 4.1.1, the entire row will burn. Next we consider
the following two cases.

In Case 1 we assume that every other row has at least one vertex burn. We then
assume for contradiction that there is some nonempty subset U ⊂ V (Qn,m) which is
left unburnt. We can then fire U to obtain a new effective divisor D′.

If row k has j > 0 vertices in U , then firing U will transfer j(m−j) chips from the
j vertices in U to the other m− j vertices in row k. Since D′ is effective, row k will
have at least j(m− j) chips in D′. Since we assumed that at least one vertex in row
k has burned, j < m and thus, j(m− j) ≥ m− 1. Therefore any row that intersects
with U , will not become the poorest row of D′. However, every row that doesn’t
intersect with U will gain more than |U | chips once U is fired. This is a contradiction
since we assumed D maximized the number of chips in the poorest column.

In Case 2 we assume that at least one row is entirely contained in the set of
unburnt vertices U . We then consider the cut set E(U,U c). Since both U and U c

contain an entire row, they both contain at least m ≥ n− 1 vertices and by Theorem
3.3.1, E(U,U c) has at least (n− 1)m non-diagonal cut edges. The first and last row
of a queen graph shares 2(m− n + 1) diagonal edges between them and every other

24



pair of rows will have more diagonal edges. thus

|E(U,U c)| ≥ (n− 1)m+ 2(m− n+ 1)

= nm−m+ 2m− 2n+ 2

= nm+m− 2n+ 2

≥ nm− n+ 2

= (m− 1)n+ 2.

This is a contradiction because firing U should produce another effective divisor,
which is impossible if |E(U,U c)| > deg(D). Therefore the entire graph must burn
and D does not have positive rank.

By combining Lemma 4.3.1 and Theorem 4.3.2, we can now classify the gonality
of all queen graphs.

Theorem 1.0.6. Let 2 ≤ n ≤ m, then we have

gon(Qn,m) =


3 if n = m = 2

7 if n = m = 3

n(m− 1) otherwise.

Proof. The only cases cases which are not yet proven by Lemma 4.3.1 and Theorem
4.3.2 are when n = 2 or n = 3. By a similar argument as in Lemma 4.3.1 the gonality
of these graphs is bounded above by nm−α(Qn,m) where α(Qn,m) is the independence
number, or in this context, the largest number of non-attacking queens that be placed
on an n×m chess board. Fortunately the only two chess boards where the number of
non-attacking queens is less than n, are the 2× 2 case and the 3× 3 case. Q2,2

∼= K4

so the gonality is 3.
The largest number of non-attacking queens which can be placed on a 3× 3 chess

board is 2, so gon(Q3,3) ≤ 7. We can then use the scramble number to show equality.
Let S be the scramble in which every pair of adjacent edges is an egg. because
the largest independent set on Q3,3 has size 2, a minimal hitting set of S has size
7. By Theorem 3.3.1, any egg cut set has at least 6 non-diagonal edges. The only
way to partition the vertices of Q3,3 into a cut that has no diagonal cut edges would
be to partition them in the same manner a chess board is separated into black and
white squares. However this cut would have has 12 edges in the cut set. Therefore
sn(Q3,3) = 7 = gon(Q3,3).

Copyright© Noah D. Speeter, 2023.
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