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ABSTRACT OF DISSERTATION

PROPERTIES AND OPTIMIZATION OF RESPIRATORY NAVIGATOR
GATING FOR SPIRAL CINE DENSE CARDIAC MRI

Cardiac magnetic resonance (MR) imaging can non-invasively assess heart
function. Displacement encoding with stimulated echoes (DENSE) is an advanced
cardiac MR imaging technique that measures tissue displacement and can be used
to quantify cardiac mechanics (e.g. strain and torsion). When combined with
clinical risk factors, cardiac mechanics have been shown to be better predictors of
mortality than traditional measures of heart function.

End-expiratory breath-holds are typically used to minimize respiratory motion
artifacts. Unfortunately, requiring subjects to breath-hold introduces limitations
with the duration of image acquisition and quality of data acquired, especially in
patients with limited ability to hold their breath. Thus, DENSE acquisitions often
require respiratory navigator gating, which works by measuring the diaphragm
during normal breathing and only acquiring data when the diaphragm is within a
pre-defined acceptance window.

Unfortunately, navigator gating results in long scan durations due to
inconsistent breathing patterns. Also, the navigator echo can be used in different
ways to accept or reject image data, which creates several navigator configuration
options. Each respiratory navigator configuration has distinct advantages and
disadvantages that directly affect scan duration and image quality, which can affect
derived cardiac mechanics. Scan duration and image quality need to be optimized
to improve the clinical utility of DENSE. Thus, the goal of this project was to
optimize those parameters. To accomplish this goal, we set out to complete 3 aims:
1) understand how respiratory gating affects the reproducibility of measures of
cardiac mechanics, 2) determine the optimal respiratory navigator configuration,
and 3) reduce scan duration by developing and using an interactive videogame to
optimize navigator efficiency.

Aim 1 of this project demonstrated that the variability in torsion, but not strain,
could be significantly reduced through the use of a respiratory navigator compared to
traditional breath-holds. Aim 2 demonstrated that, among the configuration options,



the dual-navigator configuration resulted in the best image quality compared to the
reference standard (traditional breath-holds), but also resulted in the longest scan
duration. In Aim 3, we developed an interactive breathing-controlled videogame
and demonstrated that its use during cardiac MR can significantly reduce scan
duration compared to traditional free-breathing and also led to a small improvement
in signal-to-noise ratio of the acquired images.

In summary, respiratory navigator gating with DENSE 1) reduces the variability
in measured LV torsion, 2) results in the best image quality with the dual-navigator
configuration, and 3) results in significantly shorter scan durations through the use
of an interactive videogame. Selecting the optimal navigator configuration and
using an interactive videogame can improve the clinical utility of DENSE.

KEYWORDS: Respiratory Navigator Gating, Cardiac Magnetic Resonance
Imaging, Displacement Encoding with Stimulated Echoes, Cardiac Mechanics,
Interactive Videogame
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CHAPTER 1

BACKGROUND

1.1 Heart Disease

Heart disease is the leading cause of death for both adult men and women [1]. The

term ”heart disease” refers to conditions that involve narrow or blocked blood vessels,

which can lead to a heart attack, or conditions that affect the heart muscle, valves,

or rhythm, which can lead to inefficient pumping and heart failure [1]. In addition to

adults, there are children who are born with congenital heart disease (CHD), heart

defects that can be present at birth, which is a growing problem that affects over 2

million people in the US alone [2]. As surgical and medical therapies have improved,

children with CHD are living to adulthood. For both adults and children, in order

to develop improved techniques for treatment and therapy, heart disease and cardiac

function need to be accurately monitored.

1.2 Standard Cardiac Magnetic Resonance Imaging (MRI) and

Traditional Measures of Cardiac Function

Magnetic resonance imaging (MRI), a non-invasive, non-ionizing medical

imaging technique, has become standard protocol for diagnosis, prognosis, and

management of acquired and congenital heart diseases. Traditional measures of

cardiac function, such as ventricular volumes, ventricular mass, and ejection

fraction, can be derived from standard cardiac MRI. Whole heart function is

typically assessed with these traditional metrics, but unfortunately, they may not

contain enough information to explain the complex nature of some heart diseases.

Moreover, there is a growing body of evidence that suggests that, when combined

with clinical risk factors (e.g. hypertension), advanced measures of cardiac

mechanics (e.g. cardiac strains and torsion) are better predictors of mortality
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Figure 1.1: Measuring cardiac strains dramatically improves the ability to
predict mortality.

compared to traditional measures [3] (Figure 1.1).

1.3 Advanced Measures of Function: Cardiac Mechanics

Cardiac mechanics, such as strain and torsion, measure the deformation of the

heart as it contracts and relaxes throughout the cardiac cycle. Strain is a measure

of how small segments of the myocardium shorten or lengthen during contraction

and relaxation [4, 5]. In segments of the left ventricle, strain is commonly measured

in three orthogonal directions: circumferential, radial, and longitudinal (Figure 1.2).

Torsion is a measure of the twisting motion along the longitudinal axis of the heart

throughout the cardiac cycle [6, 7]. Cardiac mechanics can be quantified from

analyzing the motion of small regions of the heart, which can be achieved by using

an advanced imaging technique called spiral cine Displacement ENcoding with

Stimulated Echoes (DENSE) [8].

1.4 Displacement Encoded Cardiac MRI

Spiral cine DENSE is an advanced cardiac magnetic resonance imaging technique

that directly encodes the displacement of the myocardial tissue into the phase of

the MR signal [8]. DENSE allows for simple and accurate quantification of cardiac

2
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Figure 1.2: Strain analysis of myocardial segments in three orthogonal
directions. A) Definition of the three orthogonal strain components: radial,
circumferential, and longitudinal. B) Example circumferential strain curves over time
throughout the cardiac cycle. Each curve represents the strain for a single myocardial
segment. Negative values denote shortening.

mechanics. In addition, DENSE has good spatial resolution and good reproducibility

[9, 10]. Moreover, DENSE has been used to quantify cardiac mechanics in both

healthy and diseased animals and humans [8, 11, 12, 13, 9]

1.5 Respiratory Motion and Blurring

Due to the heart’s position resting on the diaphragm (Figure 1.3), breathing during

CMR acquisition results in respiratory image artifacts [14], which make images blurry

and unusable (Figure 1.4). Thus, cardiac MR images are typically acquired using end-

expiratory breath-holds, which are used to suspend respiration so the bulk motion of

the heart is minimized during imaging. DENSE acquisitions are typically performed

using end-expiratory breath-holds that are ∼15–20 s in duration [12, 15, 13, 16, 17,

18, 19]. However, this method’s success depends upon the patient’s ability to breath-

hold, which is limited in young subjects and many stages of advanced heart disease.
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Figure 1.3: During respiration, diaphragm motion causes the heart to
translate a significant distance while the imaging plane remains fixed.

1.6 Inconsistent Breath-holds

Unfortunately, patients typically struggle to achieve a consistent diaphragm

position between successive breath-holds and variations of 4–13 mm are normal

[20, 21, 22, 23, 24]. Inconsistent breath-holds can impact the position of the heart

with respect to the imaging plane (Figure 1.3). Peak strains vary along the

longitudinal axis of the heart [25, 26, 27, 28, 29, 30, 31] and torsion is typically

computed from two images acquired during separate end-expiratory breath-holds

[30]. In both cases, quantification of mechanics is performed assuming images were

acquired at the same, consistent diaphragm position. Thus, we expect that

translation of the heart with respect to the imaging plane (due to inconsistent

end-expiratory positions) will result in differences and/or variability in measured

strains and torsion. Thus, Aim 1 of this project was to determine if this variability

could be reduced by using a respiratory navigator to improve the consistency of the

diaphragm position between breath-holds.
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Figure 1.4: High-quality image vs image with breathing artifacts that
results in unusable data.

1.7 Respiratory Navigator Gating

Respiratory navigator gating works by measuring the diaphragm position during

normal breathing and only acquiring data when the diaphragm is within a

pre-defined acceptance window (Figure 1.5). Respiratory navigator gating is also

used to overcome the limitations of short acquisitions (end-expiratory breath-holds),

which limit the ability to acquire more robust data, such as high-resolution [32] or

three-dimensional (3D) DENSE imaging [16, 33, 34]. However, dissimilar to other

cardiac MRI techniques, the navigator echo in the DENSE cardiac MRI sequence

cannot happen at the beginning of the cardiac cycle as it would disrupt the

displacement encoding. Instead, the navigator echo follows immediately after data

acquisition, at the end of the cardiac cycle; this creates several configurations

(prospective, retrospective, and dual) as to how the navigator can be used to either

accept or reject acquired DENSE data. Previous studies have reported using the

prospective single navigator configuration [16, 34]. Each configuration has distinct

advantages and disadvantages that can directly affect image quality and scan

duration, but no formal comparison of the configurations has been performed.

Moreover, the accuracy of derived cardiac mechanics and overall image quality for

these navigator configurations compared with breath-hold acquisitions as a reference

5



standard are unknown. Therefore, Aim 2 of this project was to determine the

optimal navigator configuration compared to the ”gold-standard” (breath-holds).

1.8 Navigator Efficiency

Navigator efficiency is defined as the ratio of the time for which image data are

accepted to the total time required to complete the image acquisition.

Unfortunately, due to poor navigator efficiency, respiratory navigator gating results

in significantly increased scan duration. For example, previous CMR studies have

reported respiratory navigator efficiencies of 20 to 45% in adults [35, 36, 37, 38].

This poor navigator efficiency lengthens the duration of currently used clinical

imaging and limits clinical feasibility of emerging advanced imaging techniques.

In general, navigator efficiency is poor due to inconsistent breathing patterns

[20, 21, 22] (Figure 1.6), as commonly seen in children, and due to the patient being

generally unaware of the desired acceptance window location. The use of visual

feedback of the diaphragm position during CMR has been shown to improve breathing

consistency and efficiency in adults up to 29% compared to traditional acquisitions

without feedback [36, 37]. Therefore, it’s important to investigate whether similar

benefits can be achieved using visual feedback with pediatric participants, which could

have substantial clinical benefit. Therefore, Aim 3 of this project was to develop and

engage pediatric participants with a navigator-controlled videogame to help control

breathing patterns, which would improve navigator efficiency.

1.9 Dissertation Outline

The overall goal of this project was to optimize respiratory navigator gating,

which would improve the clinical utility of DENSE. To accomplish this goal, we set

out to accomplish 3 aims: 1) understand how respiratory navigator gating could

improve the reproducibility of measures of cardiac mechanics, 2) determine the

optimal respiratory navigator configuration, and 3) improve navigator efficiency,

6
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which reduces scan duration, by developing an interactive breathing-controlled

videogame during cardiac MRI.

In Chapters 2 and 3, we address Aim 1 and the effects of inconsistent

end-expiratory diaphragm position between breath-holds and respiratory navigator

gating on DENSE-derived cardiac mechanics, such as left ventricular strain and

torsion. In Chapter 2, we learn that cardiac strain is insensitive to normal changes

in end-expiratory position between breath-hold DENSE acquisitions. In Chapter 3,

we discover that use of a respiratory navigator significantly reduces the variability of

cardiac torsion and thus the sample size needed to detect small changes in torsion.

The conclusions of the studies performed for Chapters 2 and 3 discuss the

importance of employing a respiratory navigator or some form of consistent

respiratory compensation for future studies.

In Chapter 4, we address Aim 2 and determine the optimal navigator

configuration compared to the breath-hold ”gold-standard”. We learn that left

ventricular peak strains were not different between breath-held and navigator-gated

DENSE acquisitions and image quality (as measured by signal-to-noise ratio) was

reduced with single navigator configurations (prospective and retrospective), but

not the dual configuration, compared to breath-held acquisitions. Unfortunately, use

of the dual configuration resulted in a trade off with navigator efficiency, which was

the poorest compared to the other navigator configurations. The conclusion of

chapter 4 discusses that some form of visual feedback of the diaphragm was helpful

in improving the poor navigator efficiency of the dual navigator.

In Chapter 5, we address Aim 3 by developing and testing an interactive breathing-

controlled videogame for improving navigator efficiency during cardiac MRI. Fifty

children participated in using the videogame during navigator-gated DENSE cardiac

MRI. Analysis was performed to assess the videogame’s effects on navigator efficiency,

heart rate, and derived strain compared to normal free-breathing. We discovered that

8



using the videogame during navigator-gated cardiac MRI resulted in a substantial

(76%) improvement in navigator efficiency, which leads to a 43% reduction in scan

duration, and a slight (5%) improvement in image quality. Importantly, we also learn

that these results can be achieved without lengthy pre-scan training on how to use

the videogame. The conclusion of this chapter discusses that these findings should

be generalizable to all cardiac MRI that employ the use of a respiratory navigator.

In Chapter 6, we discuss a summary of the results of all studies, their clinical

implications, and future directions.
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CHAPTER 2

EFFECTS OF PATIENT-SPECIFIC VARIABILITY IN

INCONSISTENT END-EXPIRATORY DIAPHRAGM POSITION ON

THE QUANTIFICATION OF LEFT VENTRICULAR CARDIAC

STRAINS

2.1 Background

Cardiac strains describe the deformation of myocardial tissue during contraction

and relaxation. Measures of cardiac strains have been shown to be superior

predictors of outcomes, such as mortality, compared to traditional measures of

cardiac function or traditional clinical risk factors alone [3]. Imaging can

non-invasively assess cardiac strains using echocardiographic techniques such as

speckle tracking [5] and cardiovascular magnetic resonance (MR) techniques such as

myocardial feature tracking [39], myocardial tissue tagging [40, 41], phase velocity

mapping [42], strain encoding [43], and displacement encoding with stimulated

echoes (DENSE) [8, 11].

Peak strains vary longitudinally throughout the left ventricle

[25, 26, 27, 28, 29, 30, 31]. For example, previous studies have shown that left

ventricular radial, circumferential, and longitudinal strains vary between the base

and apex by up to 14%, 5%, and 5% (absolute), respectively

[25, 26, 27, 28, 29, 30, 31]. Cardiac MR images are often acquired during

end-expiratory breath-holds to minimize respiratory motion artifacts. However, it is

difficult to achieve consistency in end-expiratory diaphragm position between

successive breath holds, and variations of 4 to 13 mm are normal [20, 21, 22, 23, 24].

Inconsistent end-expiratory positions will impact the position of the heart with

respect to the imaging plane (Figure 2.1). For example, previous studies have
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Figure 2.1: During respiration, diaphragm motion causes the heart to
translate a significant distance while the imaging plane remains fixed.

reported short-axis and long-axis through-plane displacements of up to 14 mm due

to displacement of diaphragm position between breath-holds [44, 45], and other

studies have reported that the superior/inferior position of the heart can displace

55-92% of the displacement of the diaphragm position [46, 47]. Because peak strains

vary throughout the left ventricle, we hypothesized that translation of the heart

with respect to the imaging plane would result in differences and variability in

measured strains.

To our knowledge, no study has evaluated the sensitivity of cardiac strains to

natural end-expiratory position variability. This is an important knowledge gap,

especially since the use of cardiac strains is increasing dramatically both in research

and clinical practice. The purpose of this study was to determine if normal

inconsistency in end-expiratory position significantly affects the quantification of

cardiac strains and therefore results in higher variability in measured cardiac strains

compared to strains measured at a consistent end-expiratory position by using a

respiratory navigator.
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2.2 Methods

2.2.1 Subjects

The study protocol was approved by the local Institutional Review Board. Ten

healthy volunteers without known cardiovascular disease or chronic illnesses and 7

patients with a history of heart disease (known diagnosis of heart failure,

cardiomyopathy, or myocardial infarction) provided written informed consent.

Image acquisitions were performed on a 3T Siemens Tim Trio (Siemens Healthcare,

Erlangen, Germany) scanner with a 6-element chest coil and a 24-element spine coil.

2.2.2 Quantification of Inconsistent End-Expiratory Positions

To determine the inconsistency in end-expiratory positions for each subject, a

respiratory navigator sequence measured the diaphragm position (Figure 2.2) during

10 consecutive breath-holds. During each breath-hold, the diaphragm position was

imaged three times per second over a period of 10 seconds for 30 total measurements.

No cardiac image data were collected during these acquisitions. The mode of the

30 diaphragm positions defined the measured end-expiratory position of that breath-

hold. The patient-specific minimum, middle, and maximum end-expiratory positions

were defined from the series of 10 breath-holds (Figure 2.3).

2.2.3 DENSE Acquisition

For each subject, navigator-gated 2D spiral cine DENSE in 2-chamber and

4-chamber long-axis and basal, mid-ventricular, and apical short-axis orientations of

the left ventricle were acquired four times. Specifically, all image orientations were

acquired with the navigator acceptance window prescribed at the patient-specific

maximum and minimum end-expiratory positions, and twice in the middle position

to quantify variability in strain independent of end-expiratory position variability

(Figure 2.3). A navigator feedback system, which used an angled mirror and

12
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measured at the high-contrast interface between the lung (dark) and the liver (bright).
(Right) Image of a measured diaphragm position over time during a breath-hold.
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projector screen placed at the back of the scanner bore, was used to facilitate

quicker acquisitions by enabling subjects to view the navigator acceptance window

position in real-time during image acquisition [48]. For each end-expiratory

position, all image orientations were acquired within a single navigator-gated scan.

Prospective ECG gating was used during DENSE acquisitions. The number of

cardiac phases ranged from 31 to 49 and varied based on subject heart rate.

Additional DENSE imaging parameters included: spiral interleaves = 6,

FOV = 360x360 mm2, pixel spacing = 2.8x2.8 mm2, slice thickness = 8 mm, TE =

1.1 ms, TR = 17 ms, variable flip angle = 20◦, displacement encoding = 0.06

cyc/mm [10], through-plane dephasing = 0.08 cyc/mm [15], CSPAMM echo

suppression [12], and view sharing. A dual-navigator strategy was used, requiring

the diaphragm to be within the navigator acceptance window (±3 mm) both before

and after the data acquisition during each R-R interval [49].

2.2.4 DENSE Post-Processing

DENSE image data were analyzed using the open-source software,

DENSEanalysis [50]. For each image orientation, the left ventricular myocardium

was manually delineated using epicardial and endocardial contours and an

end-diastolic and end-systolic cardiac phase [51]. Post-processing and segmentation

were performed as described by Suever et al. [51]. Seed points indicating

unwrapped phase data were manually selected, and a path-following algorithm was

used to unwrap the displacement-encoded phase data. The resulting displacement

trajectories were further processed by applying spatial smoothing and temporal

fitting as previously described [18].

Two-dimensional Lagrangian strains were computed from the smoothed

trajectories over the entire cardiac cycle. Radial and circumferential strains were

computed from the short-axis images and longitudinal strain was computed from the

long-axis images. Global peak strains were calculated by averaging the mean strain
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curves of all the myocardial segments and identifying the peak of the global mean

curve. Regional peak strains were computed by averaging the strain curves from all

the myocardial segments for a given region and identifying the peak of the regional

curve. Segmental peak strains were computed by identifying the peak of the strain

curve for each myocardial segment. For peak longitudinal strain computation, pixels

within 10% of left ventricular longitudinal length from the most basal and apical

regions were excluded because of the increased noise which is typically observed in

the strain curves in those regions. Peak strain was defined as positive for thickening

(radial) and negative for shortening (circumferential and longitudinal).

2.2.5 Statistics

Statistical analyses were performed using R version 3.2.2 (R Foundation for

Statistical Computing, Vienna, Austria). All continuous variables were expressed as

mean ± standard deviation or range. Cardiac strains were tested for normality

using a Shapiro-Wilk test.

To quantify mean differences in cardiac strains due to inconsistent end-expiratory

positions (minimum, middle, and maximum positions), cardiac strains were compared

between the patient-specific acceptance window positions using a two-way analysis

of variance (ANOVA) with repeated measures with group (healthy vs patient) and

acceptance window position as the independent factors. A Scheirer-Ray-Hare test

was used for data determined to be non-normally distributed [52]. Using the results

of the two-way ANOVA or Scheirer-Ray-Hare test, the interaction between group

and acceptance window position on cardiac strains was determined. If there was no

interaction between group and acceptance window position, the groups were combined

and mean differences due to inconsistent end-expiratory positions were quantified

by comparing cardiac strains between acceptance window positions using a one-way

ANOVA with repeated measures with acceptance window position as the independent

factor. A Friedman test was used for data determined to be non-normally distributed
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[52].

To quantify variability due to inconsistent end-expiratory positions, the standard

deviations of strains were compared between the inconsistent positions (maximum,

middle, and minimum) and consistent positions (two acquisitions at the middle

position) using a Students t-test. For all statistical tests, significance was defined as

p < 0.05. Bland-Altman analysis [53] was used to assess the reproducibility of each

measurement using inter-test 95% limits of agreement defined using the two

measurements from the middle position. Inconsistency in end-expiratory position

across ten separate breath-holds for each subject was reported using both ranges

and standard deviations from the ten breath-holds, and these values were compared

between patients and healthy controls.

Power analyses were performed to quantify the ability of this study to detect

meaningful differences in strain between the different end-expiratory positions.

Because repeated-measures ANOVAs were used to detect differences, and because

equations for power are not readily available for repeated-measures ANOVA,

simulations were performed to estimate power. Specifically, for each strain, 10,000

iterations were performed. For each iteration, strain values for the minimum

end-expiratory position were randomly drawn from a normal distribution using the

mean and standard deviation across the subjects measured in this study. The

number of strain values drawn corresponded with the number of subjects (healthy

and patients combined). For a given difference to detect, δ, values at the two other

end-expiratory positions were calculated by adding δ/2 and δ to the values at the

minimum position. Measurement variability was then added to those two

end-expiratory positions by drawing random values from a normal distribution with

zero mean and a standard deviation equal to the measured average standard

deviation of the differences between any two positions. In this manner, each

iteration simulated a mean difference of δ between the minimum and maximum
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breath-hold positions and included typical inter-test measurement variability. The

percentage of iterations for which a repeated-measures ANOVA yielded a significant

result (p < 0.05) was the estimate of power. The 95% confidence interval of that

estimate was calculated from the normal approximation to the binomial distribution

with N = 10,000. The values of δ that yielded at least 80% power were reported

separately for global and regional strains.

2.3 Results

Ten healthy volunteers (Age: 22 ± 6 years, 60% female) along with 7 patient

volunteers (Age: 57 ± 8 years, 43% female) were recruited. One healthy subject was

excluded due to movement during imaging, so data from the remaining 9 healthy

subjects are reported.

2.3.1 Inconsistent End-Expiratory Positions

The average range of end-expiratory positions were not significantly different

(p = 0.94) between the healthy (10.1 ± 4.8 mm) and patient (10.3 ± 4.2 mm)

groups (total range of 4-19 mm). Since range is sensitive to outliers, the standard

deviation of end-expiratory position was also compared between groups, and

similarly there were no significant differences (3.1 ± 1.3 mm vs 3.4 ± 1.7 mm,

p = 0.70) [54].

2.3.2 Differences and Variability in Peak Strains

There was no interaction between group (healthy vs patient) and navigator

acceptance window position for peak strains (Table 2.1), thus the remaining

analyses were performed with all subjects combined. Neither global, regional, nor

segmental peak strains were significantly different as a function of acceptance

window position (Tables 2.1, 2.2, and 2.3). Moreover, the differences in mean strain

between any two acceptance window positions were each smaller than their
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corresponding inter-test 95% limits of agreement (Table 2.1). For example, mean

global circumferential strain across acceptance window positions ranged from -16%

to -17%; the difference was 1%, which is smaller than the corresponding inter-test

95% limits of agreement of ±1.7% (Table 2.1). Finally, the standard deviations in

peak strains were not significantly different between inconsistent (minimum, middle,

and maximum) and consistent (repeated measurements at middle position)

acceptance window positions for all subjects combined (Table 2.4). With at least

80% power, this study had the ability to detect strain differences of 4.7%, 1.0%, and

1.7% (absolute) between end-expiratory positions for global radial, circumferential,

and longitudinal strain, respectively (Table 2.5). Additionally, this study had at

least 80% power to detect differences of 8.9%, 2.2% and 2.6% for regional radial,

circumferential, and longitudinal strain, respectively (Table 2.5). For both global

and regional strains, detectable strain differences were smaller than the

corresponding inter-test 95% limits of agreement (Table 2.5).
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Table 2.1: Global and regional peak strains (mean standard deviation) from the three acceptance window
positions (minimum, middle, and maximum) for all subjects combined.

Measurement
Acceptance Window Position

p-value† 95% LoA p-value‡
Minimum Middle Maximum

Radial Strain (%)
Global 29 ± 12 29 ± 12 30 ± 13 0.95 ±7.9 0.99

Base 37 ± 15 35 ± 14 37 ± 14 0.95 ±13.1 0.89
Mid-Ventricle 28 ± 11 29 ± 14 28 ± 13 0.77 ±10.4 0.51

Apex 26 ± 12 27 ± 10 29 ± 16 0.78 ±15.8 0.79
Circum. Strain (%)

Global -16 ± 4 -17 ± 4 -17 ± 5 0.57 ±1.7 0.65
Base -15 ± 4 -15 ± 4 -15 ± 4 0.83 ±3.6 0.71

Mid-Ventricle -16 ± 4 -17 ± 4 -17 ± 4 0.17 ±2.1 0.78
Apex -19 ± 5 -19 ± 5 -19 ± 5 0.98 ±4.6 0.93

Long. Strain (%)
Global -12 ± 4 -12 ± 3 -13 ± 4 0.44 ±3.2 0.48

2ch -13 ± 3 -12 ± 3 -13 ± 4 0.94 ±6.2 0.75
4ch -12 ± 4 -13 ± 4 -13 ± 4 0.84 ±4.1 0.38

†Results from test comparing acceptance window positions
‡Results from test comparing interaction between group (healthy vs patient) and acceptance
window position
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Table 2.2: Segmental circumferential strain (%, mean ± standard deviation) from the three acceptance window
positions (minimum, middle, and maximum) for all subjects combined.

Acceptance Window Anterior Anteroseptal Inferoseptal Inferior Inferolateral Anterolateral
Position Strain P Strain P Strain P Strain P Strain P Strain P

Basal

Max -16±5
0.99

-14±5
1.0

-14±5
0.95

-15±5
0.91

-19±6
0.88

-19±5
0.76Mid -16±3 -13±5 -15±5 -15±5 -18±5 -19±5

Min -15±4 -13±5 -15±4 -15±5 -19±6 -18±4

Mid-Ventricular

Max -17±5
0.93

-14±5
0.83

-13±5
0.87

-17±5
0.93

-22±6
1.0

-20±6
0.81Mid -17±5 -14±4 -14±4 -18±5 -21±4 -21±6

Min -17±6 -14±4 -13±4 -17±3 -20±5 -21±6

Apical

Max -18±5
0.66

-15±6
0.99

-17±6
0.79

-20±6
0.98

-23±7
0.84

-22±6
0.99Mid -18±5 -15±5 -17±6 -20±6 -23±6 -22±7

Min -18±6 -15±5 -16±6 -21±6 -24±6 -21±7

P-values indicate results from test comparing acceptance window positions.
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Table 2.3: Segmental radial strain (%, mean ± standard deviation) from the three acceptance window positions
(minimum, middle, and maximum) for all subjects combined.

Acceptance Window Anterior Anteroseptal Inferoseptal Inferior Inferolateral Anterolateral
Position Strain P Strain P Strain P Strain P Strain P Strain P

Basal

Max 37±20
0.78

36±16
0.61

40±20
0.53

43±23
0.77

47±29
0.94

41±21
0.64Mid 40±21 41±18 37±14 36±21 47±31 44±24

Min 38±18 38±17 37±18 40±22 51±29 46±28

Mid-Ventricular

Max 28±17
0.94

33±24
0.44

34±15
0.88

32±15
0.96

36±32
0.83

32±17
0.49Mid 31±19 35±19 31±13 33±24 38±29 33±18

Min 30±19 36±14 36±16 31±21 35±24 28±17

Apical

Max 28±24
0.72

36±37
0.87

41±21
0.83

41±37
0.20

31±23
0.84

27±16
0.69Mid 23±12 31±13 39±20 40±20 27±17 26±15

Min 25±15 35±24 40±27 34±24 29±20 33±16

P-values indicate results from test comparing acceptance window positions.
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2.4 Discussion

Quantification of cardiac strains typically requires a series of image acquisitions

performed during end-expiratory breath-holds. This study explored the effects of

inconsistent end-expiratory positions on the quantification of left ventricular cardiac

strains. The results of the study showed that 1) inconsistent end-expiratory

positions had minimal effect on the quantification of global and regional peak

strains compared to inter-test variability for a given imaging location; and 2) the

variability of global and regional peak strains was similar between inconsistent and

consistent end-expiratory positions. Importantly, these findings provide assurance

that the measurement of cardiac strains is relatively robust with respect to

inconsistent end-expiratory positions.

Peak strains vary throughout the left ventricle. For example, we found that the

magnitude of circumferential strain was 2% (absolute) higher in the apical region

than the base–in agreement with previous studies [25, 26, 27, 28, 29, 30]–and radial

strain was 9% (absolute) higher in the basal region than the apex. Due to these

strain gradients, we hypothesized that the displacement of the heart due to motion

of the diaphragm with respect to the imaging plane would create differences in

measured strains. For example, we might expect that radial strains for the

maximum end-expiratory position (i.e., maximal exhalation) would be lower in

magnitude compared to the minimum end-expiratory position due to the heart

being imaged more apically. We also might expect this to manifest as higher

variability in strains across different end-expiratory positions compared to consistent

end-expiratory positions. The likely explanation for finding that there is no

difference in strains between end-expiratory positions is that, because the

longitudinal axis of the heart (base to apex) is not necessarily perpendicular to the

diaphragm plane, a 10 mm translation in the diaphragm position does not directly

correspond with a 10 mm translation of the heart through the imaging plane. Thus,
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Table 2.4: Standard deviation of global and regional peak strains across
inconsistent (maximum, middle, minimum) and consistent (middle and
repeated middle) acceptance window positions. Values reported as mean ±
standard deviation.

Measurement
Acceptance Window Positioning

p-value
Inconsistent Consistent

Radial Strain (%)
Global 3.2 ± 1.7 2.3 ± 1.8 0.17

Base 4.9 ± 2.5 3.5 ± 3.3 0.18
Mid-Ventricle 4.3 ± 2.5 2.5 ± 2.8 0.10

Apex 5.7 ± 4.1 4.3 ± 3.9 0.16
Circumferential Strain (%)

Global 0.7 ± 0.4 0.5 ± 0.3 0.10
Base 1.0 ± 0.5 1.1 ± 0.7 0.41

Mid-Ventricle 0.7 ± 0.3 0.6 ± 0.5 0.55
Apex 1.4 ± 0.9 1.4 ± 0.9 0.95

Longitudinal Strain (%)
Global 1.1 ± 0.7 0.8 ± 0.9 0.27

2ch 1.4 ± 1.1 1.5 ± 1.6 0.89
4ch 1.4 ± 1.6 1.2 ± 0.9 0.72

Table 2.5: Power analyses for the ability to detect a difference in global
and regional strain between different end-expiratory positions. Inter-test
95% limits of agreement are shown for reference comparison.

Measurement Power (%)
Difference To Detect Inter-test Limits

(absolute, %) (%)

Radial Strain (%)
Global 80.9 ± 0.8 4.7 ±7.9

Base 96.1 ± 0.4
8.9

±13.1
Mid-Ventricle 98.4 ± 0.2 ±10.4

Apex 80.2 ± 0.8 ±15.8
Circumferential Strain (%)

Global 80.5 ± 0.8 1.0 ±1.7
Base 99.6 ± 0.1

2.2
±3.6

Mid-Ventricle 100 ± 0.0 ±2.1
Apex 80.6 ± 0.8 ±4.6

Longitudinal Strain (%)
Global 80.0 ± 0.8 1.7 ±3.2

2ch 95.0 ± 0.4
2.6

±6.2
4ch 80.5 ± 0.8 ±4.1
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the minimal translation of the heart does not lead to a significant difference in the

measured cardiac strains.

Previous studies suggest that regions of the heart could displace at least 3 and

possibly up to 14 mm through the fixed imaging plane between breath-holds [44,

45, 46, 47]. Our study had an average range of end-expiratory diaphragm position

between breath-holds of approximately 10 mm, which is consistent with previous

studies. Since the imaging slice thickness is 8 mm, even with a 14 mm through-plane

displacement, there is likely not much difference in the acquired data from the imaged

heart locations compared to the imaging plane location. Overall, since there were no

significant differences in peak global, regional, and segmental strains between end-

expiratory positions, patient end-expiratory diaphragm position does not have to be

monitored when performing breath-hold DENSE acquisition for single image analyses.

The goal of this study was to quantify the effects of inconsistent end-expiratory

positions on cardiac strains by computing the differences in strain between different

end-expiratory positions. Thus, it was important for this study to detect meaningful

strain differences between different patient-specific end-expiratory positions. The

study had 80% power to detect global strain differences of 4.7%, 1.0%, and 1.7%

and regional strain differences of 8.9%, 2.2%, and 2.6%, between different

end-expiratory positions for radial, circumferential, and longitudinal strain,

respectively. Importantly, these detectable differences were similar to or smaller

than this study’s reported inter-test 95% limits of agreement (Table 2.5) and

previously reported values of inter-test limits of agreement for circumferential strain

(±2.0 %) and radial strain (±13.0 %) [10]. Notably, in some regions, the power to

detect a meaningful difference was much higher (close to 100%) indicating that, in

those regions, this study may have had the ability to detect even smaller than

reported detectable differences.

We used DENSE to investigate our hypothesis that a patient’s normal variability
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in end-expiratory position between image acquisitions significantly affects the

quantification of cardiac strains. DENSE was chosen to test our hypothesis because

it has been previously shown to have good reproducibility [9], can be acquired with

high spatial resolution [8, 11], and enables straightforward computation of cardiac

strains. However, our findings should generalize to other image acquisitions that are

used to derive measures of cardiac strains such as echocardiography, tagged MRI,

etc.

2.4.1 Limitations

We used respiratory navigator gating to acquire the DENSE cardiac images,

which reduces respiratory artifacts during image acquisition, so we could not

measure the effect of inconsistent end-expiratory position during breath-holds on

the derived strains. It would be beneficial to quantify the amount of end-expiratory

position variability during breath-hold cardiac MR image acquisition to determine

whether the magnitude of inconsistent end-expiratory positions correlates with

changes in strain values. An example would be to explore whether inconsistent

end-expiratory positions during a breath-hold DENSE scan causes blurring due to

motion and results in lower strain magnitudes.

This study examined the effects of inconsistent end-expiratory positions on

cardiac strains in a small patient sample. It would be beneficial to investigate this

effect in a larger patient sample who have heterogeneous contraction patterns, for

example, due to myocardial infarction. These patients may have steeper gradients in

strain across infarcted to non-infarcted tissue regions [55]. Therefore, we cannot

definitively say that the effects of inconsistent end-expiratory positions in that

setting are similarly small and negligible. Future studies should investigate strain

variability due to inconsistent end-expiratory positions in patients who have

infarcted tissue in specific regions (e.g. anterior vs inferior).
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2.5 Conclusion

The quantification of peak left ventricular cardiac strains is relatively insensitive

to normal variations in end-expiratory positions between image acquisitions. Since

there were no differences in peak strain between end-expiratory positions, patient

end-expiratory diaphragm position does not have to be monitored when performing

breath-hold DENSE acquisition for single image analyses. These findings should

generalize to other image acquisitions that are used to derive measures of cardiac

strains.
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CHAPTER 3

USING A RESPIRATORY NAVIGATOR REDUCES VARIABILITY

WHEN QUANTIFYING LEFT VENTRICULAR TORSION

Adapted from Hamlet SM, Haggerty CM, Suever JD, Wehner GJ, Andres KN,

Powell DK, Charnigo RJ, Fornwalt BK. Using a Respiratory Navigator Significantly

Reduces Variability when Quantifying Left Ventricular Torsion with Cardiovascular

Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance. 2017, 19:25.

[54]

3.1 Background

The purpose of this work was to determine the effects of using a respiratory

navigator on the variability of left ventricular torsion derived from spiral cine

displacement encoding with stimulated echoes (DENSE) MRI. In this chapter, we

discuss the two separate experimental protocols (using 1. enforced and 2. natural

variability in end-expiratory position) used to test the hypothesis that high

inter-test variability in left ventricular torsion is partly due to inconsistent

breath-hold positions during serial image acquisitions, which could be significantly

improved by using a respiratory navigator for cardiac MRI-based quantification of

left ventricular torsion.

Left ventricular (LV) torsion is an important indicator of cardiac function [56, 4];

however, the quantification of torsion is limited by poor inter-test reproducibility. For

example, a previous study with myocardial tagging demonstrated that the inter-test

variability of torsion represented nearly 50% of the mean value [30]. This substantial

variability reduces prognostic value for individual patients and leads to larger required

sample sizes for research studies to detect meaningful differences or changes. Previous

studies have reported that sample sizes ranging from 80-107 are required to detect
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a 10% relative difference in torsion with 90% power [30, 7, 57]. Reducing variability

and lowering required sample sizes is important to improve the clinical and research

utility of torsion.

LV torsion is typically quantified as the gradient of twist along the longitudinal axis

of the heart. This gradient is computed using twist derived from two short axis images

(basal and apical) of the LV and the longitudinal distance between the images [30]

(Figure 3.1). End-expiratory breath-holds are used to minimize respiratory motion

artifacts, and the basal and apical short axis images are typically acquired during

separate breath-holds. When post processing the image data to compute LV torsion,

the longitudinal distance between the short axis images is calculated from either A)

assumptions derived from an additional longitudinal image (echocardiography) or B)

information specifying the location of the imaging planes in 3D space taken from the

Digital Imaging and Communications in Medicine (DICOM) image header (cardiac

magnetic resonance [MR]). A confounding factor that is not considered is that the

exact end-expiratory position may differ by up to 13 mm between separate breath-

holds [20, 21, 22, 23, 24], which creates differences in heart position between the basal

and apical image acquisitions (Figure 3.2). We hypothesized that inconsistent end-

expiratory diaphragm positions during serial breath-holds accounts for a significant

portion of the variability in measured LV torsion and that this variability could be

reduced by using cardiac MR based quantification of LV torsion with a respiratory

navigator.

3.2 Methods

Respiratory related variability in measured LV torsion was assessed with two

distinct experimental protocols: 1) using enforced variability in end-expiratory

position between acquisitions and 2) allowing for natural variability in

end-expiratory position between acquisitions. The former experiment was performed

to establish an upper bound on respiratory related variability in torsion, while the
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Figure 3.1: Computation of LV torsion from basal and apical images.
The curved arrows represent the relative twist along the longitudinal axis of the
left ventricle. LV twist (φ) was measured as the difference in rotation between the
apex (φa) and base (φb) (twist direction shown as viewed from foot to head). Torsion
τ was computed as LV twist divided by the distance (d) between basal and apical
image locations.
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Figure 3.2: Real time images of the diaphragm as it translates during
a respiratory cycle. During respiration, diaphragm motion causes the heart to
translate a substantial distance through the fixed imaging plane.
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latter mimics a more relevant clinical setting. In both experiments, the effect of

using a respiratory navigator to ensure a consistent end-expiratory position on

torsion variability was also quantified. The local Institutional Review Board

approved the study protocols, and all subjects provided written informed consent.

3.2.1 LV Motion Quantification

Imaging was performed on a 3T Siemens Tim Trio (Siemens Healthcare, Erlangen,

Germany) with a 6 element chest coil and a 24 element spine coil. LV twist was

measured at basal and apical short axis locations in both experiments using 2D spiral

cine Displacement Encoding with Stimulated Echoes (DENSE) cardiac MR [16, 58].

The basal and apical short axis locations were defined as follows: On a four

chamber image, five short axis slices were planned equidistant across the end

systolic endocardial ventricular long axis length. The slices were planned such that

the outermost slices did not extend beyond the mitral valve plane and endocardial

apex, respectively. The second and fourth slices of this stack were defined as the

basal and apical short axis locations. Imaging parameters were: spiral interleaves =

6, interleaves per frame = 2, FOV = 360x360 mm2, pixel spacing = 2.8x2.8 mm2,

slice thickness = 8 mm, TE/TR = 1.1/17 ms, temporal resolution = 34 ms, variable

flip angle = 20◦, displacement encoding = 0.06 cyc/mm [10], through plane

dephasing = 0.08 cyc/mm [15], CSPAMM echo suppression [12], view sharing,

prospective ECG gating, and a dual–navigator strategy [48] with an acceptance

window of ±3 mm. For each cardiac cycle, the navigator echo occurred immediately

after data acquisition. The dual–navigator strategy required the diaphragm position

to be within the acceptance window for both the preceding and current cardiac

cycles in order for data to be accepted.

DENSEanalysis [50] was used to derive LV twist from the DENSE images.

Epicardial and endocardial contours were manually delineated on the DENSE

magnitude images at end-diastolic and end-systolic cardiac phases [51]. Post
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processing was performed as previously described [51]. A semi-automatic path

following algorithm was used to unwrap the displacement encoded phase data. The

resulting displacement trajectories were further processed by applying spatial

smoothing and temporal fitting [18].

LV twist was computed over the cardiac cycle relative to the centroid of the

endocardial boundary at end-diastole. The distance between the basal and apical

image locations was calculated from the DICOM headers. LV torsion was computed

as the difference in rotation between the apex and base (φ) divided by the distance

(d) between the basal and apical image locations [30, 59, 60] (Figure 3.1).

3.2.2 Experiment 1: Enforced End-Expiratory Variability

Ten healthy volunteers with no known cardiovascular disease or chronic illnesses

and seven patients with a history of heart disease (known diagnosis of heart failure,

cardiomyopathy, or myocardial infarction) were recruited; these are the same

volunteers from Chapter 2. We first quantified the end-expiratory variability for

each subject by acquiring respiratory navigator measurements (90-180 cross pair

configuration; Figure 3.3) of 10 consecutive, 10 second breath-holds. No cardiac

image data were acquired, but the mode position of each breath-hold was retained

to identify subject specific minimum, middle and maximum end-expiratory positions

of the diaphragm across the 10 breath-holds (Figure 3.4). These subject specific

positions were then used to define the locations of the navigator acceptance

windows for subsequent acquisitions of respiratory navigator-gated DENSE.

Specifically, the basal and apical slices were both acquired with the navigator

acceptance window at each of the three positions. Moreover, the acquisitions at the

middle acceptance window location were repeated to define inter-test variability

when ensuring a consistent position with a respiratory navigator. For all scans, the

image of the respiratory navigator was projected to the subjects in real time during

DENSE acquisition, which helped to ensure consistent efficiency [49] across scans
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Figure 3.3: Respiratory navigator gating. (Left) The diaphragm position is at
the high contrast interface between the lung (dark) and the liver (bright). (Right)
Image of a measured diaphragm position over time for separate breath-holds. For this
subject, there was an 11 mm difference in end-expiratory position between breath-
hold 1 and breath-hold 10.

despite varying acceptance locations.

With three independent measurements at both LV locations, nine permutations

of torsion were calculated from the possible combinations (Figure 3.5), providing

an estimate of torsion variability due to inconsistent end-expiratory positions. This

variability in torsion was compared to the inter-test variability (i.e., comparing the two

torsion measures acquired at the middle navigator acceptance position, Figure 3.5)

to isolate respiratory position effects.

3.2.3 Experiment 2: Natural End-Expiratory Variability

We next sought to quantify the effects of natural end-expiratory variability.

Twenty new healthy volunteers were recruited. In these subjects, 10 basal and

apical images were each acquired with two protocols: 1) during consecutive

breath-holds, and 2) during consecutive navigator-gated acquisitions with a single

acceptance window location. In each case, the 10 image pairs were used to derive 20
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Figure 3.4: Measured end-expiratory diaphragm positions were used to
define subject specific maximum, middle, and minimum end-expiratory
positions. The maximum diaphragm position was defined as being closer to the
end-expiratory position while the minimum diaphragm position was defined as being
closer to the end-inspiratory position.
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Figure 3.5: The nine possible torsion permutations were constructed from
three basal and three apical images. One basal and apical image was acquired
for each subject specific end-expiratory position (maximum, middle, and minimum).
Image acquisitions were repeated at the middle position to assess inter-test variability
(far right).
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measurements of LV torsion, by combining each basal twist measurement with the

two closest apical twist measurements in the temporal sequence. The torsion

variability between these protocols was then quantified to compare the differences as

a result of consistent (navigator-gated) and inconsistent (breath-hold)

end-expiratory positions. Importantly, to monitor the end-expiratory position of the

breath-hold acquisitions, the scans were acquired with the respiratory navigator

enabled, but with a wide (±50 mm) acceptance window width that never resulted in

the exclusion of acquired image data.

3.2.4 Statistics

Statistical analyses were performed using R version 3.2.2 (R Foundation for

Statistical Computing, Vienna, Austria). All continuous variables were expressed as

mean ± standard deviation and group means were compared using Student’s t tests.

Pearson correlation was used to observe associations between continuous variables.

For experiment 1, the inter-test variability of torsion was quantified using 95%

inter-test limits of agreement of the two middle navigator acceptance window scans.

To test for an overall difference in variability between inconsistent and consistent end-

expiratory positions, the LV torsion permutations from the variable end-expiratory

positions were compared to the 95% inter-test limits of agreement using a binomial

test to evaluate whether values fell within the 95% limits significantly less than 95%

of the time. The root mean squared error (RMSE) was then computed to quantify

the differences in variability. Specifically, the RMSE for the consistent end-expiratory

position was derived by computing the mean squared error (MSE) of the two middle

acceptance window scans and taking the square root. The RMSE for the LV torsion

permutations was derived by separately computing the MSE of the permutations with

respect to each of the two middle acceptance window scans, averaging the MSEs, and

taking the square root.

For experiment 2, breath-hold and navigator-gated acquisitions were compared
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by computing the standard deviations of the 20 respective measurements and

performing a Student’s t test. Variability in torsion was also quantified using 95%

inter-test limits of agreement, which were computed using the standard deviation of

the difference between consecutive pairs of torsion measurements. For all statistical

tests, significance was defined as p < 0.05.

3.2.5 Theoretical Sample Size Calculation

To quantify the effects of the differences in torsion measurement variability, we

computed theoretical sample sizes required to detect a clinically meaningful change

in LV torsion for each experimental condition. Study sample sizes required to detect

a 10% relative difference in LV torsion with a power of 90% and a significance level

of 0.05 were computed using the standard deviation of the inter-test differences in

torsion (α) and the equation:

n = f(α, P ) · σ2 · 2

δ2
(3.1)

where n is the sample size per group, α is the significance level, P is the power, f

is the value of the factor for different values of α and P (f = 10.5 for α = 0.05 and P

= 0.90), and δ is the magnitude of the difference to be detected [61]. To determine the

improvement in sample size compared to other modalities, sample sizes calculated by

this formula were compared to those calculated based on data from previous studies

that quantified LV torsion.

3.3 Results

For experiment 1, ten healthy volunteers (Age: 22 ± 6 years, Range: 19−38 years,

60% female) and seven patients (Age: 57 ± 8 years, Range: 45−67 years, 43% female)

were enrolled. One healthy volunteer was excluded due to movement during imaging,

so data from the remaining nine healthy volunteers are reported. For experiment 2,
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Figure 3.6: Inconsistent end-expiratory positions across ten consecutive
breath holds in patients and healthy controls. There were no significant
differences in either the range (a) or standard deviation (b) of end-expiratory position
between the healthy and patient groups. Solid red lines denote the mean for each
group.

20 healthy volunteers (Age: 25 ± 4 years, Range: 20−34 years, 60% female) were

enrolled.

3.3.1 Inconsistent End-Expiratory Positions

From experiment 1, the intra-subject range and standard deviation of

end-expiratory positions were 10.2 ± 4.4 mm and 3.3 ± 1.4 mm, respectively. There

was no significant difference in the range or standard deviation of end-expiratory

position between healthy and patient groups (p = 0.94 and p = 0.70, respectively;

Figure 3.6). From experiment 2, the intra-subject range and standard deviation of

end-expiratory positions over 20 breath-holds were 13.9 ± 10.5 mm and 3.8 ± 3.1

mm, respectively.
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3.3.2 Torsion

DENSE images and displacements from a representative subject show the relative

twist differences between the base and apex at end-systole (Figure 3.7). Table 3.1

summarizes the LV torsion results for each protocol. From experiment 1, the inter-

test limits of agreement at a consistent position were ±0.6 ◦/cm, and the binomial

test indicated that the variability in LV torsion due to enforced variability in end-

expiratory position was significantly higher than the variability at a consistent end-

expiratory position (p < 0.001). Specifically, the RMSE of LV torsion permutations

across end-expiratory positions was 0.56± 0.24 ◦/cm (range: 0.2−1.3 ◦/cm), while the

RMSE from a consistent end-expiratory position was 57% lower (0.24 ± 0.16 ◦/cm).

Moreover, there was a moderate correlation across subjects between the torsion RMSE

and the range of end-expiratory positions (r = 0.50, p = 0.049, Figure 3.8). Finally,

the mean LV torsion for consistent end-expiratory positions was not significantly

different between the healthy (3.6 ± 1.2 ◦/cm) and patient (3.2 ± 1.3 ◦/cm) groups

(p = 0.30).

For experiment 2, consecutive breath-holds yielded a significantly larger

standard deviation of LV torsion compared to consecutive navigator scans (0.24 ±

0.10 ◦/cm vs 0.18 ± 0.06 ◦/cm, p = 0.02). There was a moderate correlation across

subjects between the standard deviation of torsion and the standard deviation of

end-expiratory position (r = 0.34, p = 0.03, Figure 3.9). The 95% limits of

agreement from the consecutive breath-hold scans and consecutive navigator-gated

acquisitions were ±0.74 ◦/cm and ±0.56 ◦/cm, respectively.

3.3.3 Theoretical Sample Sizes

The theoretical sample sizes required to detect a 10% relative difference in peak

torsion (δ = 0.34 ◦/cm) from each experimental protocol are shown in Table 3.2.

From both experiments, using a respiratory navigator with DENSE produced
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Figure 3.7: DENSE images from a representative subject show the relative
twist differences between the basal and apical images at end systole. Twist
in the basal region is predominantly in the clockwise direction, while the apex is
predominantly counter clockwise.

Table 3.1: Mean (± standard deviation) of torsion across the volunteers
within each experiment.

Method (experiment) Torsion (◦/cm) p-value

Experiment 1*
Enforced inconsistent positions 3.4 ± 0.4

0.85
Consistent positions with navigator 3.4 ± 0.2

Experiment 2
Enforced inconsistent positions 3.6 ± 0.3

0.32
Consistent positions with navigator 3.5 ± 0.2

*Reported values are from combined group of healthy and patient volunteers
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Figure 3.9: Variability of torsion due to naturally inconsistent end-
expiratory positions versus the standard deviation of end-expiratory
position. There was a moderate positive correlation between the standard deviation
of LV torsion and the standard deviation of end-expiratory position (r = 0.34, p =
0.03). The dashed gray line illustrates the linear best fit.
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Table 3.2: Sample sizes required to detect a 10% relative change in LV
torsion calculated using data in this and previous studies.

Method (experiment) Sample Size (n)

Experiment 1
Enforced inconsistent positions 66
Consistent positions with navigator 16

Experiment 2
Enforced inconsistent positions 26
Consistent positions with navigator 15

Previous Studies
Cardiac MR Tagging [30] 107
Cardiac MR Feature Tracking [7] 81
3D Speckle Tracking [57] 80

similar sample size estimates (n = 16 and 15). By comparison, sample sizes based

on measurements with variable end-expiratory positions were up to 313% higher.

Additionally, compared to other modalities, using a respiratory navigator with

DENSE provided an 80 to 86% reduction in the required sample size compared to

cardiac MR tagging [30], cardiac MR feature tracking [7], and 3D speckle tracking

echocardiography [57] (Table 3.2).

3.4 Discussion

This study explored the effects of inconsistent end-expiratory diaphragm

positions on the quantification of LV torsion and showed that enforcing a consistent

end-expiratory position with a respiratory navigator can significantly reduce

inter-test variability of measured LV torsion. Our primary findings include 1) using

a respiratory navigator with DENSE to enforce a consistent end-expiratory position

reduced the variability in measuring torsion by 2257%; 2) this decreased variability

reduced the required sample sizes to detect a 10% relative difference in torsion from

n = 66 to n = 16 (from enforced variability to consistent) and n = 26 to n = 15

(from natural variability to consistent); 3) the variability of LV torsion due to

inconsistent end-expiratory positions had a modest correlation with the variability
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in end-expiratory positions, such that greater inconsistency in end-expiratory

positions was associated with larger errors in measured LV torsion. Regarding

inconsistency in end-expiratory positions, within each subject, substantial

inconsistency existed with a mean range of 10 ± 4 mm and 14 ± 10 mm in

experiment 1 and 2, respectively, which was similar to that reported previously (7 to

13 mm) [20, 21, 22, 23, 24].

LV torsion is an important indicator of cardiac function because it integrates the

three dimensional deformation of the complex myocardial fiber architecture into a

single metric [56, 4]. In many disease states, small disruptions in normal cardiac

geometry—and thus torsion—may precede appreciable changes in global cardiac

function. For example, previous studies in mice and canines have reported that

changes in torsion precede changes in ejection fraction and volumes in obese animals

compared to healthy controls [62, 63]. Previous human studies have reported that

LV torsion differs between younger and older populations, and is also reduced in

patients with hypertrophic cardiomyopathy, valvular heart disease, myocardial

infarction, and dilated cardiomyopathy compared to healthy controls

[4, 59, 64, 27, 65, 66]. Therefore, accurate and reproducible quantification of LV

torsion may provide a robust, clinically relevant marker of cardiac health and

function.

For LV torsion to be a useful clinical measurement, minimizing the magnitudes

and sources of measurement error is important. A previous cardiac MR tagging study

reported mean torsion values of 3.4 ◦/cm with inter study 95% limits of agreement

of ±1.6 ◦/cm, representing a large percentage of the mean [30]. Previous cardiac MR

feature tracking studies have reported inter-test limits of agreement of ±0.9 ◦/cm

[7, 6]. Using DENSE cardiac MR, we observed a similar mean LV torsion of 3.4

◦/cm for all subjects combined in experiment 1 and 3.5 ◦/cm in experiment 2, and

smaller inter-test 95% limits of agreement from the breath hold scans in experiment
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2 (±0.74 ◦/cm). However, the observed inter-test 95% limits of agreement were

considerably smaller when using a respiratory navigator (±0.6 ◦/cm and ±0.56 ◦/cm

for experiments 1 and 2, respectively). An important distinction between the present

study and previous studies, apart from cardiac MR sequence differences, is control of

the end-expiratory position when quantifying the inter-test variability.

From experiment 1, by comparing the variability of LV torsion inclusive of

enforced, inconsistent end-expiratory positions (0.56 ± 0.34 ◦/cm) to the variability

without this inconsistency (0.24 ± 0.16 ◦/cm), we determined that using a

respiratory navigator to ensure a consistent end-expiratory position reduced the

variability in measured LV torsion by 57%. In experiment 2, using a respiratory

navigator reduced the variability in measured LV torsion by 22% compared to the

variability in LV torsion inclusive of naturally inconsistent end-expiratory positions.

In this study, we examined variability in measured LV torsion. A previous

cardiac MR study examined the bias in LV twist and circumferential longitudinal

(CL) shear angle between different acquisition techniques, including breath holds

and free breathing [67]. In agreement with that previous study [67], we did not

observe a bias in torsion between breath hold and navigator gated scans (Table 3.1).

To detect a 10% relative difference in peak LV torsion, experiment 1 found that

using DENSE with a respiratory navigator required a sample size of only n = 16

subjects, which is about 76% lower than the sample size required when using DENSE

without a respiratory navigator (n = 66). In experiment 2, we found similar results

where using DENSE with natural respiratory variability required a sample size of 26

compared to using DENSE with a respiratory navigator (n = 15). Using a respiratory

navigator with DENSE provided an 80 to 86% reduction in the required sample size

compared to cardiac MR tagging [30], cardiac MR feature tracking [7], and 3D speckle

tracking echocardiography [57].

These findings have meaningful implications for future cardiac MR based
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quantification of LV torsion in the clinical and research settings. First, acquisition of

LV torsion data using a respiratory navigator should be employed, where feasible, to

minimize variability. This approach is not typical in the majority of published

papers reporting torsion and may reduce clinical feasibility of such data acquisition;

however, the additional effort appears justified by the considerable reduction in

variance. If inconsistency in end-expiratory position is not addressed with the data

acquisition, then it is important to incorporate effects of inconsistent end-expiratory

position into the assessment of the standard error of measurement for LV torsion,

which will substantially increase needed sample sizes for research trials or reduce

prognostic value for individual subjects.

These results also have important implications for echocardiography. While

operators may be able to correct for inconsistency in end-expiratory position by

adjusting the position of the probe, it is unlikely that the operator can recreate the

exact distance between each short axis image that was measured from the long axis

image. Because inconsistent end-expiratory positions are a source of measurement

variability in measured LV torsion in cardiac MR, the discrepancy in distances may

be a source of substantial variability in measured LV torsion in echocardiography.

We used spiral cine DENSE to investigate our hypothesis that inconsistent end-

expiratory positions accounts for a significant portion of the variability in measured

torsion and that inter-test reproducibility could be improved by using a respiratory

navigator. We chose to use spiral cine DENSE to investigate our hypothesis since it

allows for simple quantification of mechanics, has good spatial resolution, has good

reproducibility, and includes a respiratory navigator, which allows control of the end-

expiratory position during image acquisition [16, 9, 8, 11]. However, our findings

should generalize to all other imaging modalities that use short axis images to quantify

torsion.
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3.4.1 Limitations and Future Directions

We examined the effects of variable end-expiratory position on LV torsion in a

small patient sample. It may be beneficial to examine these results in a larger, more

heterogeneous patient sample to determine whether specific diseases affect the results

more than others, especially conditions that affect a patient’s ability to repeatedly

hold his or her breath reproducibly (for example, pulmonary diseases).

The breath-hold acquisition protocol was not performed in patients due to their

limited breath-holding ability and lengthy duration of DENSE breath holds ( 20

seconds). Based on these factors, we expect that patients would demonstrate higher

variability in LV torsion with the breath-hold measures compared to the healthy

volunteers we studied. Hence, the potential reduction in mean variability when using

the respiratory navigator may in fact be higher in patients than the 22% we report

from the healthy volunteers in experiment 2. Nevertheless, the reduction in LV torsion

variability patients will achieve by using a respiratory navigator will likely fall between

the study’s reported values of 22 and 57%.

3.5 Conclusion

Using a respiratory navigator to enforce a consistent end-expiratory position

during image acquisition can reduce the variability in measured LV torsion by

22−57%. Accounting for inconsistent end-expiratory positions results in favorable

inter-test variability and reduces required sample sizes by 80 to 86% compared to

previous studies. Future efforts to measure LV torsion should use a respiratory

navigator or similar form of consistent respiratory compensation.
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CHAPTER 4

OPTIMAL RESPIRATORY NAVIGATOR CONFIGURATION

Adapted from Hamlet SM, Haggerty CM, Suever JD, Wehner GJ, Andres KN,

Powell DK, Zhong X, Fornwalt BK. Optimal Configuration of Respiratory

Navigator Gating for the Quantification of Left Ventricular Strain Using Spiral Cine

Displacement Encoding with Stimulated Echoes (DENSE) MRI. Journal of Magnetic

Resonance Imaging. 2017. 45(3):796-794 [49]

4.1 Introduction

The purpose of this work was to determine the optimal respiratory navigator

gating configuration for the quantification of left ventricular strain using spiral cine

displacement encoding with stimulating echoes (DENSE) MRI. In this chapter, we

detail the different respiratory navigator configurations, their advantages and

disadvantages, and the experimental protocol used to compare them against a

reference standard breath-hold acquisition. The results of this study identify the

optimal respiratory navigator configuration in adults and children.

Magnetic resonance (MR) can be used to non-invasively assess cardiac function.

Displacement encoding with stimulated echoes (DENSE) is an advanced cardiac MR

imaging technique that directly measures tissue displacements and can be used to

quantify cardiac mechanics, such as myocardial strains and torsion [8, 11]. When

combined with clinical risk factors, these measures of cardiac mechanics have been

shown to be better predictors of mortality than traditional measures of cardiac

function, such as ejection fraction [3].

Compensation for respiratory motion is an important consideration for all

cardiac MR techniques, particularly quantitative imaging sequences like spiral cine

DENSE. DENSE acquisitions are generally performed using end-expiratory
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breath-holds (∼15-20 seconds in duration) [12, 15, 13, 16, 17, 18, 19]; however, this

approach is constrained by the patient’s ability to breath-hold, which is limited in

young subjects and many stages of advanced heart disease. Furthermore, short

acquisitions preclude the ability to capture more robust data, such as

three-dimensional (3D) DENSE [16, 33, 34], or high resolution imaging [32].

As with many other cardiac MR sequences, a respiratory navigator has been

used to overcome this time limitation by allowing the subject to breathe freely but

restricting data acquisition based on the position of the diaphragm within a

prescribed ’acceptance’ window [16]. However, unlike some other MR sequences, the

navigator echo in the DENSE sequence cannot occur at the beginning of the cardiac

cycle, since this would lead to interference with displacement encoding. Instead, the

navigator echo must occur at the end of the cardiac cycle, immediately after data

acquisition. This creates several options for how the navigator can then be used to

either accept or reject the acquired DENSE data (Figure 4.1). For example, a single

echo can be used retrospectively or prospectively to define acceptance of DENSE

data from the current or preceding cardiac cycle, respectively. Alternatively, a

dual-navigator configuration can be used, which requires an echo from the current

and preceding cardiac cycle to define acceptance of DENSE data (Figure 4.1). Each

configuration has distinct advantages and disadvantages. For example, compared to

the single navigator configurations, the dual-navigator configuration has more

rigorous criteria for correctly accepting data (Figure 4.2). However, these strict

criteria likely lead to worse navigator efficiency compared to the single navigator

configurations (Figure 4.2).

Previous studies using navigator-gated DENSE have reported using a prospective

single navigator configuration [16, 34]. However, there has been no formal comparison

of the available navigator configurations. Moreover, the accuracy of derived cardiac

mechanics and overall image quality for these navigator configurations compared with
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breath-hold acquisitions as a reference standard are largely unknown. The purpose of

this study was to determine the optimal configuration of respiratory navigator gating

for the quantification of left ventricular strain using spiral cine DENSE MRI.

4.2 Methods

4.2.1 Subjects

Ten healthy adults and 20 healthy children without known history of

cardiovascular disease or chronic illnesses and with a normal 12-lead

electrocardiogram were prospectively enrolled. The protocol was approved by the

local Institutional Review Board and all subjects provided written informed consent

(or assent/parental consent, as appropriate).

4.2.2 Image Acquisition

Image acquisition was performed on a 3T Siemens Tim Trio (Siemens

Healthcare, Erlangen, Germany) with a 6-element chest coil and a 24-element spine

coil. 2D spiral cine DENSE [16, 58] in mid-ventricular short-axis and four-chamber

long-axis orientations were separately acquired using breath-holds and retrospective,

prospective, and dual navigator gating. Due to the lengthy breath-hold duration

(∼20 seconds), breath-hold acquisitions were not performed in children. The order

of acquisition of the navigator gating configurations was randomized. Prospective

ECG gating was used and the number of cardiac phases was selected to allow

100-150 ms at the end of the cardiac cycle for heart rate variability. Acquisition

parameters for all scans were: spiral type: uniform density, interleaves = 6,

interleaves per beat = 2, FOV = 360x360 mm2, pixel spacing = 2.8x2.8 mm2, slice

thickness = 8 mm, TE = 1.1 ms, TR = 17 ms, variable flip angle = 20◦ [58, 68],

displacement encoding = 0.06 cyc/mm [10], through-plane dephasing = 0.08

cyc/mm [15] CSPAMM echo suppression [12], and view sharing. The temporal

resolution was 34 ms, however sliding window view sharing yielded a 17 ms
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of Accepted/Discarded data in the example above illustrate how a dual navigator
gating configuration will discard more data compared to single navigator gating
configurations (retrospective and prospective) and lead to lower navigator efficiency.
The red ’x’ or green ’o’ represents the detected diaphragm location being outside or
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temporal resolution between reconstructed cardiac frames. Based on the DENSE

parameters, acquisition duration for each orientation was 20 heartbeats.

The respiratory navigator was placed over the dome of the liver. Subjects were

asked to breathe comfortably and a scout navigator was used to track the

diaphragm. The navigator acceptance window was placed so that the maximum

acceptance window position was located 1-2 millimeters above the subject’s

maximum expiration position. A navigator acceptance window of ±3 mm (total

range of 7 mm) was used for all navigator gated scans. Navigator efficiency was

measured as the number of cardiac cycles from which data were acquired and

accepted over the total number of cardiac cycles required to complete a scan.
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4.2.3 Navigator Feedback

Because the dual-navigator configuration was expected to decrease navigator

efficiency, we developed and tested a feedback system, which allowed the subject to

view their diaphragm position in real-time during image acquisition. The goal was

to compensate for reduced navigator efficiency in order to preserve the clinical

feasibility of DENSE imaging using a dual-navigator configuration.

The feedback system consisted of an angled mirror placed above the patient’s head

so that an image of the diaphragm location was viewable on a screen located at the

back of the scanner bore. The image of the diaphragm location (respiratory navigator

display) was projected from the scanner console’s video feed onto the screen with an

MRI-compatible projector. After all other scans were completed, subjects used this

feedback system, with the dual-navigator gating configuration, to acquire the same

short-axis and long-axis images.

This feedback system was also used prior to the breath-hold scan to ensure a

consistent end-expiratory diaphragm location between the navigator-gated

acquisitions and the breath-hold acquisitions. With instruction, the subject exhaled

and breath-held in the acceptance window, at which point the navigated scan was

halted and the breath-hold acquisition was immediately performed. Breath-hold

acquisitions were always performed after the navigator-gated acquisitions that did

not involve navigator feedback in order to minimize the potential effect of navigator

feedback on respiratory patterns.

4.2.4 DENSE Post-Processing

All DENSE images were analyzed using custom, open-source MATLAB (The

Mathworks Inc, Natick, MA) software, DENSEanalysis [50]. For each set of DENSE

images, endocardial and epicardial boundaries were drawn on the magnitude image

from an end-diastolic and end-systolic frame. A simplified analysis technique was
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used to reconstruct the motion field [51]. The displacement-encoded phase images

were unwrapped using a path-following algorithm with manual selection of seed

points. The resulting Lagrangian displacements underwent spatial smoothing and

temporal fitting as previously described [18].

Segmental two-dimensional Lagrangian strains were computed over the cardiac

cycle for 6 segments in the short-axis images (radial and circumferential strain) and

from the long-axis images (longitudinal strain). Cardiac segments were defined using

the American Heart Association 17-segment model. For segmental strain, peak strain

was computed for each segment and reported using mean and standard deviation of

all segments. Average peak strains were computed by averaging the strain curves

of all the myocardial segments together and finding the peak of this average strain

curve. When computing peak longitudinal strain, pixels within 10% of left ventricular

longitudinal length from the most basal and apical regions were excluded in order to

remove the noise which is typically observed in the strain curves in those regions.

Thickening was defined by convention as positive strain, whereas shortening was

defined as negative.

4.2.5 Analysis

Mean modified coefficient of variation (CoV) [10, 9, 58] was used to measure

agreement in strain between different navigator configurations and breath-holds. The

calculation of the CoV is shown below where N is the number of subjects and x1 and

x2 are the strain measurements.

CoV =
ΣN

i=1[St.Dev(x1[i], x2[i])]/N

|ΣN
i=1[(x1[i] + x2[i])/2]/N |

(4.1)

Consistent with previous studies reporting CoVs [9, 69, 70, 6, 7], results less than

or equal to 20% were considered acceptable.

To compare image quality, signal-to-noise ratio (SNR) was computed using the
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DENSE magnitude images at end-systole. SNR was quantified from the average

myocardial signal and the standard deviation of the noise within an area free from

tissue or imaging artifacts [10, 58, 71]. Because the MR signal has a Rician

distribution, corrections were applied to calculate the true SNR [72]. The measured

standard deviation, σM , was used to compute the true standard deviation, σ, by

σ =

√
2

4− π
∗ σM ≈ 1.526 ∗ σM (4.2)

The measured myocardial signal, M , was used to compute the true myocardial

signal, S, by

S =
√
M2 − σ2 (4.3)

SNR was defined as the ratio of the true myocardial signal (S) to the true standard

deviation (σ).

4.2.6 Comparison of Acquisition Configurations

We compared peak global and segmental strains (circumferential, radial, and

longitudinal) and SNR of the end-systolic DENSE magnitude images between each

acquisition technique (breath-hold and navigator gating) in adults. Bland-Altman

analyses [53], CoV [9], and 95% confidence intervals (CI) were used to measure

agreement in strain between the separate navigator configurations and breath-holds.

A paired Student’s t-test was used to compare strains between navigator

configurations and breath-holds. We also compared SNR and navigator efficiency

between all navigator configurations (dual, retrospective, and prospective) in adults

and children using a one-way repeated measures ANOVA with post-hoc analyses

and Bonferroni correction. All data are presented as mean ± one standard

deviation. Significance was defined as p < 0.05.
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4.3 Results

Ten healthy adults (Age: 23 ± 3 years, 40% female) and 20 healthy children (Age:

13 ± 3 years, 45% female) were enrolled in the study. DENSE data were successfully

acquired in all subjects except for one child who could not complete the study protocol

due to an erratic respiratory pattern.

4.3.1 Average Peak Strains

Average peak left ventricular strains are shown in Table 4.1. There were no

significant mean differences in circumferential, radial, and longitudinal strain

between the dual, retrospective, and prospective navigator configurations and

breath-holds in adults (Figure 4.3). Compared to breath-holds, all navigator

configurations had a CoV of less than 20% for circumferential, radial, and

longitudinal strain in adults (Figure 4.3). The differences in strain are listed as

confidence intervals in Table 4.4. Peak segmental left ventricular strains are shown

in Table 4.2). There were no significant differences in segmental strain between the

navigator configurations and breath-holds except for radial strain from the

prospective configuration (p = 0.002, Table 4.3). Compared to breath-holds, all

navigator configurations had CoVs of less than 20% except for radial segmental

strain (19-28%) (Table 4.3).

4.3.2 Signal-to-Noise Ratio

In adults, single navigator configurations had a 17-28% reduction in SNR

compared to breath-hold DENSE (Table 4.5). There was no difference in SNR

between the dual navigator configuration and breath-hold DENSE (p = 0.06).

Among navigator configurations, dual and retrospective navigator configurations

were comparable and both had better SNR (23% and 15%, respectively) compared

to the prospective configuration (p = 0.02, p = 0.004, respectively).
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Table 4.1: Average strains for different acquisition techniques.

Mean ± Std. Dev.
Adults Children

Circumferential Strain (%)
Breath-hold -17 ± 2 –

Retrospective -18 ± 2 -19 ± 2
Prospective -17 ± 3 -18 ± 2

Dual -18 ± 3 -20 ± 2
Radial Strain (%)

Breath-hold 30 ± 10 –
Retrospective 26 ± 9 30 ± 9

Prospective 31 ± 7 26 ± 12
Dual 27 ± 9 27 ± 12

Longitudinal Strain (%)
Breath-hold -14 ± 2 –

Retrospective -14 ± 2 -14 ± 2
Prospective -13 ± 2 -14 ± 2

Dual -14 ± 2 -14 ± 2

Table 4.2: Segmental strain results for navigator gating and breath-holds
in adults.

Mean ± Std. Dev.
Circumferential Strain (%)

Breath-hold -18 ± 5
Retrospective -18 ± 5

Prospective -18 ± 5
Dual -18 ± 4

Radial Strain (%)
Breath-hold 35 ± 16

Retrospective 34 ± 16
Prospective 42 ± 17

Dual 34 ± 16
Longitudinal Strain (%)

Breath-hold -13 ± 4
Retrospective -14 ± 3

Prospective -13 ± 3
Dual -14 ± 4

54



−22 −20 −18 −16 −14
−6

−4

−2

0

2

4

6

Mean (%)

E
c
c
 D

u
a

l 
−

 B
H

 (
%

)

2.4

−3.4

−0.5

Mean CoV = 6%

Dual vs Breath-hold

Ecc

Retro vs Breath-hold Pro vs Breath-hold

Err

Ell

−22 −20 −18 −16 −14 −12
−6

−4

−2

0

2

4

6

Mean (%)

E
c
c
 P

ro
 −

 B
H

 (
%

)

5.6

−3.4

1.1

Mean CoV = 8%

−22 −20 −18 −16 −14 −12
−6

−4

−2

0

2

4

6

Mean (%)

E
c
c
 R

e
tr

o
 −

 B
H

 (
%

)

2.9

−2.9

0.0

Mean CoV = 5%

10 20 30 40 50
−20

−10

0

10

20

Mean (%)

E
rr

 D
u

a
l 
−

 B
H

 (
%

)

13.3

−18.4

−2.6

Mean CoV = 17%

10 20 30 40 50
−20

−10

0

10

20

Mean (%)

E
rr

 P
ro

 −
 B

H
 (

%
)

18.0

−12.5

2.8

Mean CoV = 14%

10 20 30 40 50
−20

−10

0

10

20

Mean (%)

E
rr

 R
e

tr
o

 −
 B

H
 (

%
) 10.3

−15.7

−2.7

Mean CoV = 15%

−16 −14 −12
−6

−4

−2

0

2

4

6

Mean (%)

E
ll 

D
u

a
l 
−

 B
H

 (
%

)

4.2

−3.1

0.5

Mean CoV = 8%

−16 −14 −12 −10
−6

−4

−2

0

2

4

6

Mean (%)

E
ll 

P
ro

 −
 B

H
 (

%
)

5.7

−3.0

1.3

Mean CoV = 11%

−18 −16 −14 −12 −10
−6

−4

−2

0

2

4

6

Mean (%)

E
ll 

R
e

tr
o

 −
 B

H
 (

%
) 3.2

−3.0

0.1

Mean CoV = 7%

p = 0.29p = 0.95 p = 0.17

p = 0.34p = 0.23 p = 0.29

p = 0.38p = 0.85 p = 0.09

Figure 4.3: Bland-Altman plots of average peak circumferential (Ecc),
radial (Err), and longitudinal (Ell) strains for retrospective, prospective,
and dual navigator gating vs breath-hold.
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Table 4.3: Segmental strain agreement between navigator gating and
breath-holds from spiral cine DENSE.

Bias 95% LoA CoV (%) p-value

Circumferential Strain (%)
Retrospective–Breath-hold 0 ± 5 8 0.94

Prospective–Breath-hold 0 ± 8 13 0.78
Dual–Breath-hold -1 ± 5 8 0.11

Radial Strain (%)
Retrospective–Breath-hold 0 ± 25 19 0.79

Prospective–Breath-hold 8 ± 36 28 0.002*
Dual–Breath-hold -1 ± 29 23 0.61

Longitudinal Strain (%)
Retrospective–Breath-hold -1 ± 7 13 0.17

Prospective–Breath-hold 0 ± 9 17 0.75
Dual–Breath-hold -1 ± 8 13 0.19

* indicates p < 0.05

Table 4.4: CI Results for Differences in Strain Between Navigator Gating
and Breathhold DENSE.

95% LoA p-value

Circumferential Strain (%)
Retrospective–Breath-hold [-1.0–1.1] 0.95

Prospective–Breath-hold [-0.6–2.7] 0.17
Dual–Breath-hold [-1.6-0.5] 0.29

Radial Strain (%)
Retrospective–Breath-hold [-7.4–2.0] 0.23

Prospective–Breath-hold [-2.8–8.3] 0.29
Dual–Breath-hold [-8.3-3.2] 0.34

Longitudinal Strain (%)
Retrospective–Breath-hold [-1.0-2.0] 0.85

Prospective–Breath-hold [-0.3-2.9] 0.09
Dual–Breath-hold [-0.8–1.9] 0.38
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Table 4.5: Signal-to-noise ratios for different navigator gating
configurations in adults and children.

Adults p-value Children p-value

Breath-hold 18 ± 8

< 0.001

–

< 0.001
Retrospective 15 ± 6*† 22 ± 6‡

Prospective 13 ± 5* 20 ± 8‡
Dual 16 ± 7 27 ± 9

* p < 0.05 vs. breath-hold; † p < 0.05 vs. prospective; ‡ p < 0.05 vs. dual

In children, SNR also differed based on navigator gating configuration (Table 4.5).

The dual navigator configuration had the highest SNR compared to the retrospective

(23% higher, p < 0.001) and prospective (35% higher, p < 0.001) configurations.

There was no difference in SNR between the retrospective and prospective navigator

configurations (p = 0.15).

4.3.3 Navigator Efficiency

For adults and children combined, there were significant differences in navigator

efficiency between navigator configurations (p < 0.001, Table 4.6). The

retrospective and prospective navigator configurations had higher navigator

efficiencies than the dual navigator configuration by an average of 54% (p < 0.001)

and 60% (p < 0.001), respectively. Using visual feedback with the dual navigator

configuration improved navigator efficiency by 57% (p < 0.001) compared to the

dual configuration without feedback and resulted in comparable efficiency to the

single navigator configurations. The scan times mirrored the navigator efficiency

results. For example, scan times for adults were, on average, 64, 37, 37, and 25

seconds for the dual, retrospective, prospective configurations, and the dual

navigator configuration with feedback, respectively.
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Table 4.6: Navigator efficiencies for different navigator gating
configurations in adults and children.

Pooled p-value Adults Children

Retrospective 54 ± 15*

< 0.001

48 ± 15* 57 ± 16*
Prospective 56 ± 15* 52 ± 17* 58 ± 14*

Dual 35 ± 13 31 ± 16 37 ± 11
Dual Feedback 55 ± 16* 67 ± 11* 48 ± 15*

* p < 0.05 vs. dual (without feedback)

4.4 Discussion

The use of respiratory navigated acquisitions for spiral cine DENSE extends the

potential utility of the technique by removing restrictions on patient breath-holding

abilities and allowing for high resolution [32] and/or three dimensional [16, 33] data

collection. While previous studies have used a respiratory navigator with DENSE,

the optimal configuration for gating and how it might differ among subjects has

not been explored. This study addressed these knowledge gaps by showing that: 1)

left ventricular peak strains were not different between breath-held and navigator-

gated DENSE acquisitions; 2) SNR was reduced with single navigator configurations,

but not the dual configuration, compared to breath-held acquisitions; 3) the SNR

benefit of the dual navigator configuration was offset by reduced navigator efficiency

compared to single navigator configurations, but visual navigator feedback maintained

clinically acceptable efficiencies for the dual navigator acquisition. The following

paragraphs explore each of these findings in greater detail.

There were no significant mean differences and good paired agreement of all

peak strains between retrospective, prospective, and dual navigator configurations

and breath-holds in adults. This finding agrees with the prior work by Zhong et al.,

which compared segmental strains from navigator-gated 3D DENSE to breath-hold

2D DENSE [16] and similarly reported acceptable agreement. Our study extends

this work by demonstrating that the agreement exists not only for prospective
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navigator-gating used by Zhong et al., but for retrospective and dual

navigator-gating configurations as well. Demonstrating this agreement of strain

values–a primary endpoint for most DENSE acquisitions–has pragmatic value by

ensuring that data from acquisitions with differing respiratory compensation can be

readily compared.

Our results demonstrate that using a single navigator configuration resulted in

significantly lower SNR compared to breath-hold DENSE acquisitions. While this

result was only demonstrated in adults because of the prohibitively long breath-hold

duration in children, it is reasonable to assume that a similar trend holds in children as

well. Among the navigator configurations, the dual configurations provided the best

SNR as it was superior to prospective navigator gating in both adults and children,

had better SNR than retrospective gating in children, and resulted in comparable

SNR to breath-hold DENSE.

Differences in SNR among the different acquisitions are likely attributable to

heart rate and respiratory variability. The breath-hold acquisitions had the shortest

acquisition time, with presumably less physiologic variability. Also, the dual

navigator configuration had the most stringent acceptance criteria, which likely

minimized the effects of respiratory variability during acquisition compared to the

other configurations. This reasoning is supported by previous studies, which have

reported associations between consistent diaphragm position during navigator-gated

acquisitions and improved SNR [36, 37]. In both adults and children, the

prospective navigator configuration had the lowest SNR of all navigator

configurations. The observed difference in SNR between the single navigator

configurations was perhaps unexpected given the theoretical similarities in their

design and function. However, these differences are similarly attributable to the

effects of variability: for the retrospective navigator, the interval between the R

wave and the navigator echo is fixed, whereas heart rate changes during the scan
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will affect the interval between the navigator echo and the succeeding R wave in

prospective gating, increasing the likelihood of respiratory variability during that

interval. Based on these findings, the use of prospective navigator gating for

DENSE should be avoided.

Notably, a previous study compared SNR of a 2D steady-state free precession

sequence between dual navigator-gated and breath-hold acquisitions and found that

end-systolic myocardial SNR for breath-hold acquisitions was 23% lower than the

dual navigator configuration in adults [73]. This finding contrasts with our data in

which the dual navigator configuration was statistically comparable to breath-hold.

However, the previous study had substantially different imaging parameters between

their dual navigator-gated acquisition and the breath-hold acquisition, which likely

accounted for the observed SNR differences [73].

Although the purpose of this study was to determine the optimal navigator gating

strategy, it is worth noting that SNR was higher for children than it was for adults.

The difference in SNR between adults and children is likely related to the smaller

body habitus of children, which results in a shorter distance between the MRI coils

and the heart. Moreover, adults likely have more adipose tissue, which could also lead

to lower SNR. Ultimately, these SNR differences may lead to differences in inter-test

reproducibility between adults and children.

As expected, single navigator gating configurations resulted in better navigator

efficiency compared to dual navigator gating, due to the additional acceptance criteria

constraints of the dual navigator. Simply put, more data are discarded with dual

navigator gating, leading to prolonged scan time. Previous studies using a single-

navigator configuration with the same size acceptance window (±3 mm) reported

navigator gating efficiencies ranging from 20 to 48% [16, 36, 35]. Compared to these

studies, we observed slightly better single-navigator efficiencies of 48 to 52% in adults

and 57 to 58% in children. The dual navigator efficiency was comparable to results
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from previous studies [73].

To potentially offset this reduced efficiency, we evaluated the effect of providing

the subject with visual feedback of the diaphragm position, which has been shown

to considerably improve navigator efficiency compared to traditional free-breathing

acquisitions [36]. We found that using visual feedback during dual navigator gated

acquisitions improved navigator efficiency compared to the dual configuration without

feedback and resulted in comparable efficiency to the single navigator configurations.

The improvement with feedback was not uniform across adults and children (i.e., the

improvement in kids was not as substantial), perhaps reflecting the superior ability

of the adults to hold their breath within the acceptance window. Alternatively, the

difference may be indicative of the non-intuitive nature of the respiratory navigator

display and the differential abilities of adults and kids to quickly learn and use it. This

provides motivation for the work in Chapter 5, where we developed and transformed

the navigator image to a more kid-friendly video game design to improve usability

and navigator efficiency [48].

The increased scan time associated with the dual navigator configuration presents

an obvious trade-off with improved SNR for its utility in a clinical setting where time

is a critical consideration. In adults, given the minimal difference in SNR between the

dual and retrospective navigator configurations, the substantial drop in efficiency with

the dual navigator may not be justified. In children, however, the SNR benefit with

dual navigator gating is more substantial and warrants consideration to optimize data

quality. Hence the demonstrated improvement in navigator efficiency by providing the

subject with visual feedback is an important finding because it provides one option

for compromise: achieving improved SNR while approximately maintaining scan time

compared to other navigator configurations.

This study was performed using 2D cine DENSE. However, given the similarity in

the fundamental sequence designs of 2D and 3D DENSE, the results are applicable to
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3D cine DENSE acquisitions as well. In fact, given the longer time generally required

for 3D data acquisition, respiratory compensation/navigation is essential, so these

results are highly relevant. Specifically, our navigator efficiency findings agree with

reported efficiencies from a previous study using 3D DENSE [16]. Also, while absolute

magnitudes of SNR may differ with more data acquired, there is no reason to suspect

that the relative differences in SNR would change between different navigator gating

strategies when applying these results to 3D DENSE.

4.4.1 Limitations and Future Directions

A limitation of this study is the potentially limited power for detecting small

strain differences between navigator configurations and breath-hold DENSE.

However, our study had 80% power to detect a difference of 1.5% between the

retrospective navigator configuration and breath-holds. This 1.5% difference is

smaller than the typical inter-test limits of agreement of circumferential strain [10].

Moreover, even if the strains from the prospective navigator configuration, which

had the worst agreement, are in fact different from the breath-hold technique, the

conclusions of the study would not change as the prospective navigator

configuration was separately found to be sub-optimal based on SNR.

Another limitation was the lack of breath-hold data for the pediatric subjects.

The DENSE acquisition required 20 heartbeats. The required breath-hold time was

further extended by using a navigator-gated pre-scan to ensure that breath-holds

were performed at the same diaphragm position as the navigator-gated scans. This

duration was viewed to be prohibitively long for pediatric subjects, and so no breath-

hold DENSE data were acquired in these cases. The equivalence of DENSE-derived

strains between breath-hold and navigator sequences was demonstrated in adults.

Since children did not undergo breath-hold DENSE, we must caution future studies

regarding these strain results as they apply to children. However, since the relative

SNR and navigator efficiency results from navigator gating were similar to those in
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adults, we would expect potential differences to be small. Furthermore, the primary

objective of the study was to identify optimal navigator configurations for DENSE,

so the lack of breath-hold data in children is a minor limitation.

A third limitation of this study is the lack of assessment of clinical patients.

Cardiac patients, who routinely undergo MR imaging and who may have limited

ability to hold their breath, may not be able to perform the lengthy breath-hold scan

and may not achieve as high navigator efficiency when performing a dual navigator

scan with feedback. However, since this population is more likely to undergo DENSE

MR imaging than this study’s volunteer subjects, it would be beneficial to determine

whether the results remain the same. For example, it may be important to use dual

navigator gating, even at the expense of navigator efficiency, to achieve higher SNR,

since SNR is commonly lower in the clinical patient population compared to healthy

volunteers.

4.5 Conclusion

For spiral cine DENSE acquisitions, respiratory navigator gating and breath-hold

acquisitions yield comparable values of left ventricular peak strains. However,

differences in signal-to-noise ratios and navigator efficiencies were observed among

the different navigator gating configurations, which warrant consideration in clinical

and research protocol design. In adult subjects, the dual navigator configuration

produced the best SNR, although only slightly better than the single retrospective

navigator, which produced acceptable SNR and therefore may be used to maintain

good efficiency. For children, the benefit of a dual navigator configuration for

improved SNR was even more apparent, but resulted in a considerable drop in scan

efficiency. The prospective navigator resulted in the poorest SNR and should be

avoided. The use of visual navigator feedback represents an effective option to

maintain navigator efficiency while using the dual navigator in children (and adults).
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CHAPTER 5

INTERACTIVE FEEDBACK GAME DESIGNED TO IMPROVE

NAVIGATOR EFFICIENCY

Adapted from Hamlet SM, Haggerty CM, Suever JD, Wehner GJ, Grabau JD,

Andres KN, Vandsburger MH, Powell DK, Sorrell VL, Fornwalt BK. An interactive

videogame designed to improve respiratory navigator efficiency in children

undergoing cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic

Resonance. 2016. 18:54 [48]

5.1 Background

Advanced cardiac magnetic resonance (MR) acquisitions, which often require

respiratory navigator gating, have poor scan efficiency or long scan times, especially

in children. Importantly, in Chapter 4, the dual navigator configuration was shown

to have the best SNR, but worst navigator efficiency. Thus, it is important to

improve the efficiency as this currently limits the clinical feasibility of advanced

imaging techniques. The purpose of this study was to develop and have children use

an interactive, breathing-controlled feedback videogame during DENSE cardiac MR

to improve navigator efficiency and maintain image quality compared to no

feedback.

Cardiac magnetic resonance (MR) can be used to non-invasively assess heart

function. In the clinical setting, cardiac MR techniques play an important role in

the diagnosis and monitoring of the complex anatomy and physiology of congenital

and acquired heart diseases. Moreover, there is considerable pre-clinical research

devoted to the development and evaluation of new, advanced imaging techniques,

such as 3D displacement encoding with stimulated echoes (DENSE) [16], 3D steady

state free precession [74], and 4D flow imaging [75]. These new techniques have
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demonstrated promise in distinguishing normal and pathological tissue deformation

and blood flow and may become beneficial tools in the diagnosis and management of

heart disease. Many of these clinical and pre-clinical techniques require scan

durations that exceed patients’ ability to hold their breath.

End-expiratory breath-holds are used by many cardiac MR sequences to

minimize respiratory-motion artifacts. However, requiring subjects to hold their

breath introduces significant limitations on the duration of data acquisition or the

quality of the acquired images, particularly for young children or patients with

advanced disease. A common alternative is respiratory navigator gating, which

works by measuring the diaphragm position during normal breathing and only

acquiring data when the diaphragm is within a pre-defined acceptance window

(Figure 5.1a). The trade-off of respiratory navigator gating is significantly increased

scan duration because of poor navigator efficiency. For example, previous cardiac

MR studies have reported respiratory navigator efficiencies of 20 to 45% in adults

[35, 36, 37, 38]. This poor navigator efficiency lengthens the duration of currently

used clinical imaging and limits clinical feasibility of emerging advanced imaging

techniques.

Navigator efficiency is typically poor because breathing patterns can be erratic

[20, 21, 22], and the patient is generally unaware of the desired acceptance window

location. Providing the patient with visual feedback of the diaphragm position

during cardiac MR (”navigator feedback”) has been shown to improve breathing

consistency and scan efficiency in adults [36, 20]. For example, studies have shown

efficiency improvements up to 29% (absolute) compared to traditional acquisitions

without feedback [36, 37]. Importantly, these previous studies have demonstrated

that image quality from navigator feedback acquisitions is similar to acquisitions

without feedback [36, 37]. The potential to achieve similar benefits using navigator

feedback with pediatric participants has not been explored. Given the challenge of
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Figure 5.1: Feedback videogame. (A) Cropped version of the Siemens Syngo
navigator image that was processed in real-time during cardiac MR acquisition to yield
the feedback videogame. (B) Example frame of the navigator feedback videogame
interface, which was shown to the child during cardiac MR (yellow overlay text was
not shown to the child).

keeping these participants still and motionless for long periods of time, this

improved efficiency could have substantial clinical benefit.

Most previous studies involving navigator feedback simply utilized the built-in

navigator display. One previous study evaluated a custom videogame interface in a

study of adults for increasing navigator efficiency [37]. Such an interface theoretically

combines the benefits of visual feedback with an intuitive and engaging design for

the user–attributes that are highly desirable for scanning children. Thus, the present

study sought to extend and tailor this paradigm specifically for children by providing

navigator feedback in the form of an interactive, kid-friendly videogame. Moreover,

this study sought to test this design using DENSE, an imaging technique that can

be used to quantify advanced measures of heart function such as cardiac strains. We

hypothesized that navigator feedback using an interactive videogame (that we would

develop) during cardiac MR would improve navigator efficiency and maintain image

quality and strains in children.
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5.2 Methods

5.2.1 Feedback videogame overview

A navigator feedback videogame (FG), called ”Bubble Gulp”, was developed

using MATLAB (The Mathworks Inc, Natick, MA). Each frame of the navigator

image provided within the Siemens Syngo user-interface (Siemens Healthcare,

Erlangen, Germany) (Figure 5.1a) was captured using an Epiphan DVI2USB 3.0

(Epiphan Systems Inc., Palo Alto, California) frame grabber and processed in

real-time during cardiac MR to yield a kid-friendly representation of the diaphragm

position (Figure 5.1b). Navigator image processing was performed using an

externally connected laptop running Windows 7 with an Intel Core i7 processor and

16 GB of RAM. The FG interface was then projected to the participant in the

scanner using an angled mirror and a magnetic resonance compatible projector

(Figure 5.2).

The diaphragm position relative to the acceptance window (Figure 5.1a) was

represented by the vertical position of a fish character relative to parallel green lines

containing scrolling dots, representing bubbles (Figure 5.1b). The objective of the

game was to control the fish’s vertical position, which was updated with each

navigator pulse, so it would ”gulp” bubbles and acquire points. To incentivize slow,

stable breathing, point values increased as the fish spent more time within the green

lines, instead of frequent short-duration breath-holds. However, prior to any use of

the FG, children were instructed not to hold their breath for an uncomfortable

amount of time and to breathe when needed. Finally, the FG interface displayed

text to instruct children how to adjust their breathing to place the fish in between

the green lines (Figure 5.1b).
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Figure 5.2: MRI Feedback Setup Feedback videogame was shown to children
during cardiac MR with an angled mirror and MR-compatible projector.

5.2.2 Motivation for Design

Bubble Gulp’s overall design was based on three concepts: portability,

compatibility, and independence. First, Bubble Gulp needed to have the ability to be

transfered easily from one MRI machine site to another so that the system can be

easily relocated to collaborators or within research groups. Second, Bubble Gulp

needed to be compatible with multiple MRI machine vendors (and their

corresponding navigator image designs) so that its use was not restricted to one

vendor. Third, Bubble Gulp needed to work independently from the MRI machine

and to not directly integrate with the MR machine’s software so that its use does

not affect the delicate controls.

5.2.3 Hardware Design

The hardware design begins with the MRI computer itself, which has the ability

to independently display the navigator image on one of its video outputs. The overall

block diagram is shown in Figure 5.3. The second video signal only displayed the

navigator image. This signal was split so that one signal was connected to a monitor

in the control room (for viewing the navigator image in real time) and the second

signal was connected to the Epiphan DVI2USB 3.0 (Epiphan Systems Inc., Palo
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Alto, California) frame grabber, so that the navigator image could be captured and

processed into the videogame.

This DVI frame grabber allowed for high resolution (up to 1920x1200) capturing

at up to 60 frames per second (fps), which allowed for simpler image processing

due to more accurate image capturing. Most importantly, this frame grabber had a

Java interface for Windows, Linux, and Mac OS X. Thus, we wrote a small Matlab

”wrapper” program to interface and connect with the frame grabber so that the

entirety of the Bubble Gulp code was written using Matlab.

The frame grabber was connected directly to the laptop via USB. Once the

navigator image was captured, the Matlab code on the laptop processed the image

into Bubble Gulp which was displayed as an independent Matlab figure window on

the laptop’s secondary display through the VGA port. This VGA port was then

connected to an MRI-compatible projector within the MRI room, which displayed

Bubble Gulp to the child on a screen at the back of the scanner bore (Figure 5.2).

Not shown in the block diagram is a VGA splitter that allowed Bubble Gulp to also

be seen by the operator in the MR control room.

Regarding the overall design, the hardware design allowed for portability and

independence, since the interface simply connected to the video output on the

scanner and did not integrate with the scanner software, and compatibility, since

multiple machine vendors have some form of video output that can be used to

capture the navigator image with a frame grabber.

5.2.4 Overall Software Design

The overall software design is shown in Figure 5.4 and was written using Matlab

(Mathworks, Natick, MA). The input to the software was a navigator image, which

was captured using the DVI framegrabber and the Matlab wrapper class for the

Java interface, which contained a method that allowed simple capture of the frame.

Since the navigator image was updated with new data with every patient heartbeat
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Figure 5.4: Overall software block diagram for Bubble Gulp (Feedback
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(typically lower than 120 heartbeats per minute), a frame sampling rate of 10 fps was

sufficient to capture all changes in diaphragm position. The diaphragm location was

identified and, if different from the previous position, the new position was used to

update the videogame.

5.2.5 Algorithm

The overall goal of the image processing algorithm is to identify the location of the

diaphragm position with respect to the acceptance window (Figure 5.5). Once a new

navigator image was sampled using the frame grabber, the first step was to identify the

Microsoft Windows’ window region of interest (ROI). The next step was to identify

the Red Search Window ROI (Figure 5.6). The search window ROI was then used to

crop the image because the videogame only needed to identify the diaphragm position
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Figure 5.5: Overall image processing algorithm block diagram for Bubble
Gulp (Feedback Game).

with respect to the acceptance window, all area outside of the search window ROI

was ignored. Within the new cropped image, the green acceptance window borders

were identified along with the current diaphragm location (right-most bar). Since

the DVI frame grabber captured such high resolution images, the pure color channels

were used to identify the red and green ROIs. This entire algorithm (Figure 5.5)

only has to be run 1 time (for the first frame) so long as the position of the red

search window remain the same (which will occur if the operator does not move the

navigator image window during scanning). This is because the previous positions of

the red search window, green acceptance window, and diaphragm position are always

stored and compared with the new position. For example, if the position of the red

search window is the same as previous, then the algorithm can used the previously

stored positions to identify the current vertical location of the diaphragm position

with respect to the acceptance window position. This removes several processing

steps and saves time. Specifically, the entire algorithm takes about 200 ms. However,

if you remove extra processing steps by having the same red search window positions,

then the algorithm takes about 100 to 150ms.

The text feedback instructions requires another simple algorithm to instruct the

patient on how to breathe in order to place his or her diaphragm position within the
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Figure 5.6: Example Navigator Image to be Processed.

acceptance window. This text is displayed underneath the acceptance window on

the left side of the videogame (Figure 5.1b). This algorithm is shown in Figure 5.7.

The acceptance window locations and diaphragm location were passed as inputs to

the ”feedback” function that determined if the diaphragm position was within the

acceptance window. This function then would output the appropriate response to

the subject on whether he or she should ”hold”, ”breathe in”, or ”breathe out”

(Figure 5.7). The subjects were instructed to use this feedback text as a guideline

when needed so that they still breathed comfortably.

5.2.6 Participants

Fifty children without significant past medical history were recruited.

Participants were recruited from the broader clinical community based out of our

university medical center using a wide range of participant recruitment services
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provided by the University of Kentucky Center for Clinical and Translational

Science. All participants were screened with a 12-lead ECG prior to imaging to rule

out arrhythmias. The local Institutional Review Board at the University of

Kentucky approved the study protocol and all participants and legal guardians

provided written informed consent or assent.

5.2.7 Imaging

All imaging was performed using a 3T Siemens Tim Trio (Siemens Healthcare,

Erlangen, Germany) with a 6-element chest coil and a 24-element spine coil. For

each participant, navigator-gated 2D spiral cine DENSE cardiac MR [16, 58] images

from mid-ventricular, 4-chamber, basal, and apical image orientations were

separately acquired with no feedback (NF) and then while using the FG. No

instructions regarding breathing were given for the NF acquisitions, thus

participants were allowed to breathe naturally. Between acquisitions with NF and

those with the FG, each participant underwent two 30-heartbeat practice scans to

familiarize himself or herself with the FG.

DENSE imaging parameters included: number of spiral interleaves = 12,

interleaves per beat = 2, FOV= 360 360 mm2, pixel spacing = 2.8 2.8 mm2,slice

thickness = 8 mm, TE = 1.4 ms, TR = 17 ms, variable flip angle = 20◦,

displacement encoding = 0.06 cyc/mm [10], through-plane dephasing = 0.08
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cyc/mm [15], CSPAMM echo suppression [12], view sharing and a dual–navigator

strategy [48] with an acceptance window size of ±3 mm. For each cardiac cycle, the

navigator echo occurred immediately after data acquisition. The dual–navigator

strategy required the diaphragm position to be within the acceptance window for

both the preceding and current cardiac cycles for data to be accepted. Prospective

ECG gating was performed and 23–51 cardiac phases were acquired depending on

participant heart rate. As a result of the imaging parameters, each complete image

acquisition required 38 heartbeats that satisfied the navigator gating criteria.

Due to erratic respiratory patterns or participant movement, image acquisition

can be difficult to complete in children in a reasonable amount of time with NF. As

scan session duration increases, the likelihood of patient movement also increases, so

we defined criteria for maintaining a target scan protocol duration of 30 min. We

defined image acquisition as incomplete (data not acquired) following 192 heartbeats

without a completed image acquisition. Progressing past 192 heartbeats for a 38-

heartbeat scan is equivalent to achieving less than 20% navigator efficiency, which

is worse than previously reported NF values [35, 36, 37, 38]. Once any NF image

acquisition was marked as incomplete, we proceeded to the FG acquisitions. If a

participant moved, the number of acquired image orientations was reduced from four

(mid, 4ch, base, apex) to two (mid, 4ch) to ensure at least two images were acquired

with NF and FG.

5.2.8 Calculation of cardiac strains from DENSE

DENSE images were analyzed using DENSEanalysis [50], a custom, open-source

MATLAB (the Mathworks Inc, Natick, MA) software. To delineate the

myocardium, endocardial and epicardial boundaries were manually drawn on the

DENSE magnitude image using an end-systolic and end-diastolic frame. The

motion field was reconstructed using a simplified analysis technique [51]. Using

manual selection of seed points, which indicated unwrapped phase data, a

74



path-following algorithm was used to unwrap the displacement-encoded phase data.

Temporal fitting and spatial smoothing was applied to the resulting Lagrangian

displacements as previously described [18].

Two-dimensional segmental Lagrangian strains were quantified from the

smoothed trajectories over the entire cardiac cycle. Radial and circumferential

strain was computed for 6 myocardial segments of the short-axis images and

longitudinal strain was computed from the long-axis images. The strain curves of all

the cardiac segments were averaged into a single mean curve. Global peak strain

was quantified by averaging the strain curves from each slice and finding the

resulting peak strain of this curve. When computing peak longitudinal strain, pixels

within 10% of left ventricular longitudinal length of the most basal and apical

regions were excluded due to increased noise typically observed in the strain curves

in those regions. Peak strain was defined according to typical convention as a

positive for thickening (radial strain) and negative for shortening (circumferential

and longitudinal strain).

5.2.9 Analysis

This study measured navigator efficiency and heart rate during image acquisition

and used image signal-to-noise ratio (SNR) of the end-systolic DENSE magnitude

image as a measure of image quality. Navigator efficiency was defined as the ratio of

the number of heartbeats for which image data were accepted to the total number of

heart beats required to complete the image acquisition. To compare image quality,

signal to noise ratio (SNR) was calculated for each cardiac phase of each DENSE

magnitude image. SNR was computed from the average signal of the myocardium

and the standard deviation of the signal (noise) within an area without signal (free

from tissue and imaging artifacts). Due to the Rician distribution of the MR signal,

corrections were applied to the measured standard deviation (σM in Equation 5.1) and

measured myocardial signal (M in Equation 5.2) to compute the true SNR [58, 10, 72].
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The SNR was defined as the ratio of the true myocardial signal to the true standard

deviation.

σ =

√
2

4− π
∗ σM ≈ 1.526 ∗ σM (5.1)

S =
√
M2 − σ2 (5.2)

For incomplete NF image acquisitions (satisfied stoppage criterion), navigator

efficiency and heart rate measurements were computed based on the partial data that

were acquired.

5.2.10 Training

Off-scanner training has been used by other investigators to ensure participants

are comfortable and understand a navigator feedback interface before entering the

magnet [36]. We wanted to determine the efficacy of off- scanner training with the

FG on navigator efficiency, image quality, and heart rate. Thus, 30 of the 50 enrolled

participants were randomized into equal groups to either receive extensive off-scanner

training or no off-scanner training prior to scanning; thus, the groups were referred

to as ’trained’ and ’untrained.’ As mentioned above, all subjects (including trained

and untrained participants) underwent minimal training in the scanner, which was

defined as two 30-heartbeat practice scans prior to FG acquisitions. The remaining 20

participants also received off-scanner training, but they were not included within the

trained subgroup for analysis because they were not randomized to this treatment.

Each trained participant was introduced to the FG using an MRI simulator prior

to the formal study. The MRI simulator utilized a PrimeSense Carmine 1.09 (Prime-

Sense, Tel Aviv, Israel) 3D camera to precisely measure the chest wall and abdomen

excursion as a proxy for diaphragm translation [76, 77]. Each participant had to

complete goal-based training before advancing to cardiac MR scanning. Training
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time was recorded for all trained participants.

5.2.11 Training Protocol

The goal-based training protocol was as follows: First, the children were

instructed to perform 3 sequential end-expiratory breath-holds to determine the

optimal location for the acceptance window. Then the children were instructed to

complete 9 levels of the FG, which progressed in difficulty. Difficulty was increased

by either 1) decreasing the acceptance window size or 2) increasing the time delay

between chest excursion recording and fish location update. Because the navigator

gating sequence only measures the diaphragm position during each heartbeat,

children with slower heartbeats may experience ”delays” between diaphragm

movement and fish location update. In order to complete each level, the children

had to acquire 100 points. If all bubbles were acquired in a row without breaks,

each level could be completed in ∼33 seconds.

5.2.12 Statistics

Statistical analyses were completed using R version 3.2.2 (R Foundation for

Statistical Computing, Vienna, Austria). All continuous measurements were

reported as mean ± standard deviation. Navigator efficiency, SNR, heart rate, and

global left ventricular strains were tested for normality using a Shapiro-Wilk test.

Average navigator efficiency, SNR, heart rate, and strain were compared between

NF and FG acquisitions using a paired student’s t-test or Wilcoxon Signed-Rank

test when appropriate, and compared between untrained and trained groups using a

student’s t-test or Mann-Whitney U test when appropriate. To determine whether

age influenced navigator efficiency, age was correlated with navigator efficiency for

both NF and FG acquisitions.

77



5.3 Results

Fifty-six children were prospectively enrolled. Six children were excluded from

the study due to either being uncomfortable in an MRI scanner, having premature

ventricular contractions, having ECG-monitoring equipment fail, or consistently

moving during scanning. Thus, this study reported data on 50 children (Age: 14 ±

3 years, 48% female) without significant past medical history, which included a

subset of 30 children randomized to either the off-scanner trained (n = 15; Age: 15

± 3 years, 47% female) or untrained (n = 15; Age: 13 ± 3, 66% female) groups. All

trained participants successfully completed off-scanner training and the mean

goal-based training duration was 11 ± 2 min. The prescribed stoppage criterion for

the NF scans was met in 11 cases, resulting in fewer completed NF images for those

participants. Additionally, four participants moved during scanning, which included

two during NF scans and two during FG scans, resulting in the completion of the

abridged imaging protocol, as described in the methods.

5.3.1 Navigator Efficiency

Using the FG significantly improved average navigator efficiency compared to NF

(58 ± 13% vs 33 ± 15%, p < 0.001, Figure 5.8a). Average navigator efficiency

was not correlated with age for either NF or FG image acquisitions (r = 0.07, p =

0.63; r=0.14, p = 0.32, Figure 5.8b). There was no significant difference in average

navigator efficiency between untrained and off-scanner trained groups for FG image

acquisitions (57 ± 17% vs 57 ± 11%, p = 0.90, Figure 5.9).

5.3.2 SNR

Use of the FG significantly improved SNR compared to NF (22 ± 6 vs 21 ± 6, p

= 0.01, Figure 5.10). There was no significant difference in SNR between untrained

and off-scanner trained groups for FG images (22 ± 6 vs 21 ± 6, p = 0.77).
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Figure 5.8: (A) Average navigator efficiency for No Feedback and Feedback
Game image acquisitions. Use of the feedback game significantly increased
navigator efficiency compared to no feedback. The solid red line indicates the mean
of each group. (B) Average navigator efficiency vs age for No Feedback
(NF) and Feedback Game (FG) image acquisitions. There was no correlation
between navigator efficiency and age for either no feedback (r = -0.07, p = 0.63) or
feedback game (r = 0.14, p = 0.32) acquisitions. The solid lines indicate the line of
best fit for each group.
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Figure 5.11: Mean and standard deviation of heart rate for No Feedback
and Feedback Game acquisitions. Use of the feedback game resulted in
significantly higher heart rate compared to no feedback. There was no significant
difference in standard deviation of heart rate between no feedback and feedback game
acquisitions. The solid red line indicates the mean of each group.

5.3.3 Heart rate

On average, heart rate during FG scans was slightly higher than NF acquisitions

(75 ± 13 vs 72 ± 12 bpm, p < 0.001, Figure 5.11), but there were no differences in the

standard deviation of heart rate (5.9 ± 2.2 vs 6.1 ± 3.9 bpm, p =0.30, Figure 5.11b).

Heart rate was similarly elevated during FG acquisitions in both the untrained and

off-scanner trained groups compared to NF acquisitions (p < 0.001 and p = 0.03,

respectively, Table 5.1).
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Table 5.1: Average Heart Rate for Off-scanner Trained and Untrained groups.

HeartRate (bpm) Trained Untrained
No Feedback Feedback Game p-value No Feedback Feedback Game p-value

Mean 72 ± 13 76 ± 16 0.03 72 ± 9 78 ± 9 < 0.001
Standard Deviation 6.9 ± 5.0 5.7 ± 2.4 0.80 5.3 ± 2.4 6.0 ± 2.0 0.17

82



Table 5.2: Global peak strain results for NF and FG scans.

No Feedback Feedback Game p-value

Circumferential Strain (%) -17 ± 2 -16 ± 2 < 0.001
Radial Strain (%) 44 ± 11 40 ± 10 0.005
Longitudinal Strain (%) -13 ± 2 -13 ± 2 0.38

5.3.4 Strain

Global circumferential and radial strains derived from FG acquisitions were

slightly lower in magnitude compared to NF acquisitions (16 ± 2% vs 17 ± 2%, p <

0.001; 40 ± 10% vs 44 ± 11%, p = 0.005, respectively, Table 5.2). There were no

differences in longitudinal strain between NF and FG acquisitions (13 ± 2% vs 13 ±

2%, p =0.38).

5.3.5 Survey Responses

In order to formally measure the enjoyment and response of the children playing

the Feedback Game, we asked the children to fill out a post-scan survey that consisted

of 7 questions. Those questions and responses are listed below. In general, most

participants 1) found Bubble Gulp to be easy to play; 2) enjoyed playing Bubble Gulp;

3) thought they were generally getting better as they played; 4) thought training

was/would have been somewhat helpful; 5) had no comments on how to improve

Bubble Gulp; 6) enjoy playing videogames; and 7) play videogames daily.
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Figure 5.12: Question 1. How easy was playing Bubble Gulp?
1: Really easy
2: Easy
3: Neither easy nor difficult
4: Difficult
5: Really Difficult
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Figure 5.13: Question 2. How much did you enjoy playing Bubble Gulp?
1: Really enjoyed it
2: Enjoyed it
3: Neither
4: Did not enjoy it
5: Really did not enjoy it
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Figure 5.14: Question 3. Did you think you were getting better, stayed the same, or
were getting worse as you were playing Bubble Gulp at the end of the study compared
to when you first tried it?
1: Better
2: Stayed the same
3: Worse
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Figure 5.15: Question 4. We have a pretend MRI scanner where you can learn to
play Bubble Gulp before getting into the actual MRI scanner. Do you think using
this pretend MRI scanner first would have been/was:
1: Very helpful
2: Somewhat helpful
3: Not helpful
4: A total wast of time
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Figure 5.16: Question 6. How much do you enjoy playing videogames?
1: Really enjoy
2: Enjoy
3: Neither
4: Do not enjoy
5: Really do not enjoy

5. Do you have any comments on how to improve Bubble Gulp?

• Mostly ”None”

• ”Make the fish pink”

• ”Make the lines further a part on the screen”

• ”Liked the simple concept and how could control with breathing”

• ”Reverse direction of fish movement with breathing”

• ”Make not as glitchy, (make smoother)”

• ”Make lines move to more comfortable spot to breathe in” (this subject moved)
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Figure 5.17: Question 7. How often do you play videogames?
1: Daily
2: 2-3 times per week
3: Weekly
4: 1-2 times per month
5: Seldom to never
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5.4 Discussion

Feedback of the diaphragm position during cardiac MR has been shown to improve

navigator efficiency in adults [36, 37]. This study explored how the use of a feedback

game (FG) affects navigator efficiency compared to traditional no feedback (NF)

acquisitions in children. The results of the study showed that, compared to NF,

using the FG resulted in 1) substantially improved navigator efficiency (from 33 to

58%); 2) slightly improved SNR; 3) slightly higher mean heart rate; and 4) slightly

lower global strain magnitudes. Importantly, these results were not affected by using

an off-scanner training protocol, which suggests that lengthy, robust training (11 min

in our protocol) does not need to be a part of the clinical/imaging workflow to benefit

from the use of this interface.

5.4.1 Navigator Efficiency

Navigator efficiency was improved from 33 to 58% by using a FG in children

(Figure 5.8a). This increase in navigator efficiency led to a 43% reduction in the

number of heartbeats required to complete a scan. Studies have shown that

feedback of the diaphragm position during cardiac MR results in a more

reproducible breath-hold position [36, 37, 78], which can lead to improved navigator

efficiency. Previous cardiac MR studies have reported that NF navigator efficiencies

can vary from 20 to 45% in adults [35, 36, 37, 38], and we found a comparable NF

navigator efficiency of 33% in children using a conservative dual-navigator

acceptance strategy. Visual feedback of the diaphragm position has been shown to

improve end-expiratory navigator efficiency from 45 to 56% [37] and from 42 to 71%

with the addition of supplemental oxygen [36] leading to a 20% and 41% reduction

in the number of required heartbeats, respectively. With the use of the FG, we

found a slightly better improvement of navigator efficiency from 33 to 58% in

children without the use of supplemental oxygen. Average navigator efficiency was
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not correlated with age (Figure 5.8b). Therefore, children ages eight and older

should be able to utilize the FG to effectively improve navigator efficiency compared

to conventional NF acquisitions.

Off-scanner training using an MRI-simulator was not necessary to achieve the

observed improvement in navigator efficiency using the FG. Instead, the subjects

with minimal training immediately prior to data acquisition had equivalent efficiency

as their extensively-trained counterparts. While this finding might suggest that the

chest wall excursion-based training method was ineffective, it is more likely that the

intuitive interface design was easy to learn and therefore the children did not require

much training. Importantly, the two 30-beat practice scans provided some degree of

training in both cases, which is intuitively necessary. Future efforts can optimize that

practice time to provide the needed minimal training in the most efficient manner.

5.4.2 SNR

We found that using the FG slightly improved the SNR of the end-systolic

magnitude images of our spiral DENSE sequence by 5% compared to NF for all

images combined (p = 0.01, Figure 5.10). This finding contrasts with previous

studies, which reported image quality score using 2 expert reviewers and found that

the use of diaphragmatic feedback maintained image quality compared to NF

acquisitions [36, 37]. The difference in image quality is likely sequence dependent.

The previous studies were performed using steady-state free precession.

Additionally, it is likely that quantitative measurement of SNR is more sensitive at

detecting small differences in image quality compared to subjective image scoring by

expert reviewers.

5.4.3 Heart Rate

A potential negative finding of this study was the slight increase in heart rate

observed with the use of the feedback game. To be clear, this difference did not
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represent an increase in heart rate variabilityas evidenced by the comparable

standard deviation valuesbut simply a higher baseline value. Such findings are not

unprecedented, as a previous cardiac MR study found a mean heart rate increase of

5 beats/min with use of navigator feedback in adults (compared to our 3

beats/min), and similarly no differences in heart rate variability between NF and

navigator feedback [36]. A likely reason for this difference is the longer breath-holds

performed during the FG, which could have increased the heart rate, compared to

relaxed breathing during NF. Another mechanism could be related to stimulation

and adrenaline associated with playing the game, compared to the relaxed, passive

state associated with NF.

The importance and implications of this potential heart rate difference likely

depends on the imaging application. While it may mean very little for purely

anatomic evaluations, functional measures, such as strains, may be affected by

changing loading conditions and contractility [79]. To counteract such effects, if

undesirable, patients could be coached to relax when playing the game and to not

be too competitive. The design of the game could be modified to enforce such

behavior; for example, by programmatically requiring the participant to

inhale/exhale after a fixed period of time, or instructing him/her to periodically

take a series of relaxed breaths between cycles of breath-holding.

5.4.4 Strains

We observed small, but statistically significant decreases in global circumferential

and radial strains with use of the FG, compared with NF. There was, however, no

difference in longitudinal strain. While these findings warrant further study and

consideration, the clinical relevance of such small differences (1% for circumferential

strain, 4% for radial strain) is likely minimal as they are smaller than previously

observed inter-test (±2.0% for circumferential, ±13% for radial) and inter-observer

(±1.4% for circumferential, ±14% for radial) 95% limits of agreement for DENSE
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[58, 10].

5.4.5 Clinical Implications

Importantly, the equipment needed to utilize the FG is minimal and does not

directly integrate into an imaging pulse sequence design; it connects externally to

the scanner user interface. Due to the minimal equipment needed and non-invasive

connection to the MRI scanner, we anticipate that the FG system can be easily

adopted at research and clinical sites that perform cardiac MR navigator gating,

especially in children. Since navigator efficiency can be increased from 33 to 58%,

leading to reduced acquisition times, use of the FG can help improve the clinical

feasibility of advanced imaging techniques. While reducing the acquisition time would

likely be the most common use of increased navigator efficiency from the FG, the saved

time could also be re-allocated to improve image spatial or temporal resolution [36].

Importantly, pre-scan training was not necessary for navigator efficiency improvement

with our system, so clinical and research sites would not need to invest in an MRI

simulator environment or spend significant time training children. Navigator feedback

has been shown to reduce acquisition time in adults [36], thus, the use of the current

FG will likely work well in adults also.

Since we only acquired DENSE images for this study, the specific findings are only

definitively relevant for DENSE. However, it is reasonable to expect that these findings

are generalizable to many other cardiac MR acquisitions that utilize a respiratory

navigator. Possible exceptions include higher resolution applications, such as coronary

MR angiography, which may be more sensitive to registration issues. Further study

is needed to test this technique for these applications.

5.4.6 Comparison with Previous Work

A previous study presented a respiratory biofeedback game and continuously

adaptive windowing strategy (CLAWS) to increase navigator efficiency of imaging
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the thoracic aorta. The authors reported an increase in efficiency in that study from

45 to 56% in adults [37], which represents a smaller magnitude of improvement (25%

vs 11%) but a similar end result (58% vs 56%) compared to our study. Although

the two studies are similar, there are distinct differences in design. Most notably,

the previous study was in adults; whereas we exclusively focused on children, based

on their limited ability to breath-hold and thus potentially greater need for

respiratory navigated sequences. Additionally, the previous study modified their

pulse sequence to allow acquisition of multiple navigator echoes, likely providing a

smoother game experience. We did not modify our cine pulse sequence in our

evaluation–we had a single navigator echo per cardiac cycle–to ensure more general

clinical applicability. Collectively, these studies demonstrate the potential utility of

user-friendly interfaces for improving efficiency and image quality of cardiovascular

imaging sequences using a respiratory navigator in a broad array of patients.

5.4.7 Limitations

This study used a dual-navigator strategy when performing image acquisition.

Dual-navigator strategies have stricter data acceptance criteria compared to

previously used single-navigator strategies [16], and, given the same imaging

parameters, will likely result in lower navigator efficiencies. However, a previous

study using a single-navigator strategy with navigator feedback reported similar

navigator efficiency results compared to our study. Therefore, the use of the FG

with a single-navigator strategy will likely have similar results to this study except

that both NF and FG acquisitions may have improved navigator efficiency

compared to a dual-navigator strategy.

The respiratory navigator gating sequence used in this study only measured the

diaphragm position once per cardiac cycle. This low refresh rate can make fine control

of the diaphragm position more challenging, especially for participants who may have

lower heart rates. Increasing the number of navigator echoes per cardiac cycle could
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therefore improve performance, but such modifications may not be possible for all

sequences, as is the case for DENSE. Furthermore, even with this limitation, we still

found substantial improvement in navigator efficiency when using the FG compared

to NF acquisitions.

Due to the randomization of the participants into the trained and untrained

groups, there was no attempt to balance age between groups. Therefore, the average

trained participant was about 2 years older than the average untrained participant.

We found that there was no difference in FG navigator efficiency between trained

and untrained participants. Even though there was an age difference between

trained and untrained groups, there was no correlation between age and navigator

efficiency with the FG (Figure 5.8b); thus, the results of the study apply to all

children aged eight to eighteen.

In order to accurately assess the NF navigator efficiency as it would be in the

clinical setting, we did not want to influence the children’s natural breathing

pattern. In particular, we did not want the breathing pattern performed during the

FG acquisitions to influence the NF breathing pattern. Therefore, NF acquisitions

were always performed before FG acquisitions. Since the order of NF and FG

acquisitions was not randomized, this may have affected the results as participants

may have become more comfortable as they spent more time in the MRI scanner.

However, performing this randomization likely would have resulted in similar

conclusions and we felt that it was important to prioritize accurate measurement of

the navigator efficiency of the NF acquisitions.

Due to the potential for patient movement or erratic breathing patterns, we

utilized a stoppage criterion to attempt to maintain a 30 min protocol length. We

observed eleven cases which satisfied stoppage criterion and four cases of patient

movement (one which also satisfied stoppage criterion). In these participants, we

estimated navigator efficiency, SNR, and heart rate from fewer acquisitions than the
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remaining participants. However, since we used all the data that we did acquire for

each participant, the computed values are appropriate.

The two 30-heartbeat practice scans were not included in the computation and

analysis of navigator efficiency for the FG technique. Their inclusion would only

slightly decrease the reported gains in efficiency (for example, if we used the FG

to acquire 300 heart beats of actual data, the reduction in scan time would change

minimally from 43 to 37% after accounting for the two practice scans); however, it

must be noted that the selection of those practice parameters was arbitrary and not

optimized. In reality, less training is likely required to familiarize the subject with

the interface, so factoring this specific training design into the analysis is not critical.

We performed this study in children without significant past medical history.

While we did attempt to recruit from a broad clinical population using recruitment

services at our Center for Clinical and Translational Science, the population we

ultimately studied may not be entirely representative of a standard pediatric clinical

population that would routinely undergo cardiac MRI. For example, approximately

25% of patients with tetralogy of Fallot may have learning and behavioral

difficulties [80], which may impair their ability to benefit from the feedback game. It

is therefore reasonable to expect that the true benefit of the feedback game in a

standard clinical population will be smaller than what was measured in the current

study, but still better than what can be expected without the use of feedback. Even

if only half of the patients benefit to the extent shown in the current study, the

overall navigator efficiency for the clinical population would still increase from 33%

efficiency to 46% efficiency (a 38% relative benefit). Future research will seek to

evaluate this in further detail as we implement the feedback game during routine

clinical workflows.
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5.5 Conclusion

Use of a respiratory navigator feedback game designed to engage children during

navigator-gated cardiac MRI improved navigator efficiency in children from 33 to

58%. This improved efficiency reduces the number of heartbeats and corresponding

scan durations by 43%, and is also associated with a 5% increase in SNR for spiral

cine DENSE. Pre-scan training on how to use the feedback game is not necessary to

achieve the improvement in navigator efficiency. These findings should generalize to

all cardiac MRI acquisitions that utilize a respiratory navigator.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

The overall goal of this project was to optimize respiratory navigator gating to

improve the clinical utility of spiral cine DENSE cardiac MRI for the quantification

of cardiac mechanics. To accomplish this goal, we completed 3 aims: 1) determined

how using a respiratory navigator affects the reproducibility of measures of cardiac

mechanics, 2) determined the optimal respiratory navigator gating configuration, and

3) developed and tested an interactive respiratory-controlled videogame to improve

navigator efficiency during cardiac MRI.

6.1.1 Aim 1

The purpose of Aim 1 was to understand how using a respiratory navigator

during DENSE cardiac MRI can affect the derived cardiac mechanics. Aim 1 was

separated into two different studies. In the first study, we examined how the

measurement of cardiac strain is affected by inconsistent end-expiratory

breath-holds and how using a respiratory navigator could reduce differences and

variability in strain. Specifically, we wanted to determine if normal inconsistency in

end-expiratory diaphragm position between separate image acquisitions significantly

affects estimates of cardiac strains. Strain varies longitudinally throughout the heart

[25, 26, 27, 28, 29, 30, 31] and patients struggle to hold their breath consistently

[20, 21, 22, 23, 24]. Thus, we hypothesized that inconsistent end-expiratory

positions during image acquisition affects the quantification of cardiac strains and

therefore results in higher variability in measured strain compared to strains

measured at a consistent end-expiratory position by using a respiratory navigator.

Analysis was performed in 10 healthy volunteers (Age: 22 ± 6 years, 60%
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female) including seven patients with heart disease (Age: 57 ± 8 years, 43% female).

To simulate end-expiratory position inconsistency, DENSE images were each

acquired at the patient-specific minimum, middle, and maximum end-expiratory

positions; a repeated acquisition at the middle position was used to quantify

variability independent of end-expiratory differences. The range of end-expiratory

positions across 10 breath-holds was 10 ± 4 mm. There were no significant

differences in global or regional peak radial, circumferential, or longitudinal strains

measured at the different end-expiratory positions (p = 0.17-0.98). In general, there

were also no differences in variability in global or regional peak strains between

inconsistent (minimum, middle, and maximum) and consistent (two acquisitions

from middle position) end-expiratory positions (p = 0.10-0.95). In summary, Aim 1

Study 1 demonstrated that measurements of left ventricular peak strains with

DENSE cardiac MR are relatively insensitive to normal changes in end-expiratory

position between separate image acquisitions. Importantly, this indicates that using

a respiratory navigator to ensure a consistent end-expiratory position is not

required for acquisitions used to derive cardiac strains.

In the second study, we examined how variability in the quantification of left

ventricular torsion is affected by using a respiratory navigator. Torsion is computed

using a basal and apical image acquired during separate end-expiratory breath-holds

and the assumption that the distance between the acquired images is precisely known.

However, because patients typically struggle to achieve a consistent end-expiratory

position for multiple image acquisitions [20, 21, 22, 23, 24], this inconsistency in

end-expiratory position could lead to variability in the measurement of torsion. Since

torsion has been shown to be limited by high variability [30], we hypothesized that this

variability was partly due to inconsistent end-expiratory positions during serial image

acquisition, which could be significantly improved by using a respiratory navigator.

We assessed respiratory-related variability in 2 experiments. In experiment 1, 10
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healthy volunteers (Age: 22 ± 6 years, 60% female) including seven patients with

heart disease (Age: 57 ± 8 years, 43% female) underwent DENSE cardiac MRI to

compare inter-test variability between consistent and inconsistent end-expiratory

positions due to enforced end-expiratory position variability. In experiment 2,

twenty new, healthy volunteers (Age: 25 ± 4 years, 60% female) underwent DENSE

cardiac MRI to compare inter-test variability between breath-held and

navigator-gated acquisitions to assess variability due to natural end-expiratory

breath-hold position variability. From experiment 1, enforced variability in

end-expiratory position translated to considerable variability in measured torsion

(0.56 ± 0.34 ◦/cm), whereas inter-test variability with consistent end-expiratory

position was 57% lower (0.24 ± 0.16 ◦/cm, p < 0.001). From the second experiment,

natural respiratory variability from consecutive breath-holds translated to a

variability in torsion of 0.24 ± 0.10 ◦/cm, which was significantly higher than the

variability from navigator-gated scans (0.18 ± 0.06 ◦/cm, p = 0.02). By using a

respiratory navigator with DENSE, theoretical sample sizes to detect a clinically

meaningful change in torsion were reduced from 66 to 16 and 26 to 15, by using a

respiratory navigator, as calculated from the two experiments. Aim 1 Study 2

demonstrated that a substantial portion (22-57%) of the inter-test variability of

torsion can be reduced by using a respiratory navigator to ensure a consistent

breath-hold position between image acquisitions.

6.1.2 Aim 2

The purpose of Aim 2 was to determine the optimal respiratory navigator gating

configuration for the quantification of left ventricular strain using spiral cine

DENSE MRI. Two-dimensional spiral cine DENSE was performed using two

single-navigator configurations (retrospective, prospective) and a combined

dual-navigator configuration in 10 healthy adults (Age: 23 ± 3 years, 40% female)

and 20 healthy children (Age: 13 ± 3 years, 45% female). The adults also

100



underwent breath-hold DENSE as a reference standard for comparisons. Peak left

ventricular strains, signal-to-noise ratio (SNR), and navigator efficiency were

compared. Subjects also underwent dual-navigator gating with and without visual

feedback to determine the effect on navigator efficiency. There were no differences in

circumferential, radial, and longitudinal strains between navigator-gated and

breath-hold DENSE (p = 0.09-0.95). The dual configuration maintained SNR

compared with breath-hold acquisitions (16 versus 18, p = 0.06). SNR for the

prospective configuration was lower than for the dual navigator in adults (p =

0.004) and children (p < 0.001). Navigator efficiency was higher (p < 0.001) for

both retrospective (54%) and prospective (56%) configurations compared with the

dual configuration (35%). Visual feedback improved the dual configuration

navigator efficiency to 55% (p < 0.001). Aim 2 demonstrated when quantifying left

ventricular strains using spiral cine DENSE MRI, 1) a dual navigator configuration

results in the highest SNR in adults and children, 2) in adults, a retrospective

configuration has good navigator efficiency without a substantial drop in SNR, 3)

prospective gating should be avoided because it has the lowest SNR, and 4) visual

feedback represents an effective option to maintain navigator efficiency while using a

dual navigator configuration.

6.1.3 Aim 3

The purpose of Aim 3 was to develop and test an interactive videogame designed

to improve navigator efficiency in children undergoing DENSE cardiac MRI.

Advanced cardiac MRI acquisitions often require long scan durations that

necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced

scan efficiency, particularly when the patient’s breathing patterns are inconsistent,

as is commonly seen in children. We hypothesized that engaging pediatric

participants with a navigator-controlled videogame to help control breathing

patterns would improve navigator efficiency and maintain image quality. We
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developed custom software that processed the Siemens respiratory navigator image

in real-time during CMR and represented diaphragm position using a cartoon

avatar, which was projected to the participant in the scanner as visual feedback.

The game incentivized children to breathe such that the avatar was positioned

within the navigator acceptance window (±3 mm) throughout image acquisition.

Fifty children (Age: 14 ± 3 years, 48% female) without significant past medical

history underwent a respiratory navigator-gated 2D spiral cine DENSE cardiac MRI

acquisition first without feedback and then with the feedback videogame. Thirty of

the 50 children were randomized to undergo off-scanner training with the videogame

using a MRI simulator, or no off-scanner training. Navigator efficiency, SNR, and

global left-ventricular strains were determined for each participant and compared.

Using the videogame improved average navigator efficiency from 33 ± 15 to 58 ±

13% (p < 0.001) and improved SNR by 5% (p = 0.01) compared to acquisitions

without feedback. There was no difference in navigator efficiency (p = 0.90) or SNR

(p = 0.77) between untrained and trained participants for videogame acquisitions.

Circumferential and radial strains derived from videogame acquisitions were slightly

reduced compared to no feedback acquisitions (16 ± 2% vs 17 ± 2%, p < 0.001; 40

± 10% vs 44 ± 11%, p = 0.005, respectively). There were no differences in

longitudinal strain (p = 0.38). Aim 3 demonstrated that use of a respiratory

navigator feedback videogame during navigator-gated CMR improved navigator

efficiency in children from 33 to 58%. This improved efficiency was associated with

a 5% increase in SNR for spiral cine DENSE. Off-scanner training was not required

to achieve the improvement in navigator efficiency.

6.2 Clinical Implications

The goal of this project was to optimize respiratory navigator gating for use

during DENSE cardiac MRI. From Aim 1 Study 1, it was demonstrated that the

quantification of peak left ventricular cardiac strains was relatively insensitive to
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normal variations in end-expiratory positions between image acquisitions. In the

clinical setting, since there were no differences in peak strain between

end-expiratory positions, patient end-expiratory diaphragm position does not have

to be monitored when performing breath-hold DENSE acquisition for single image

analyses. These findings should generalize to other image acquisitions that are used

to derive measures of cardiac strains.

However, Aim 1 Study 2 demonstrated that using a respiratory navigator

significantly improves the variability of measured left ventricular torsion. Thus,

where possible, a respiratory navigator should be employed for acquisition of left

ventricular torsion data to minimize variability. For torsion, if inconsistency in

end-expiratory position is not taken care of during scans, then it is important to

understand its effects, which will lead to dramatically increased study sample sizes

for research and reduce the ability to detect meaningful differences in torsion in

individual patients.

From Aim 2, the dual-navigator configuration has been shown to result in the

best image quality in both adults and children. It is important to understand the

limitations of the dual-navigator before employing it in clinical practice, however,

due to its worse navigator efficiency compared to other navigator configurations.

Therefore, some form of visual feedback (of the diaphragm position) should be used,

where possible, to achieve an adequate scan duration along with the improved image

quality.

From Aim 3, it was demonstrated that using an interactive feedback videogame

during DENSE cardiac MRI substantially improved navigator efficiency.

Importantly, 1) minimal equipment is needed to implement the videogame and 2)

the equipment does not directly integrate into an imaging sequence; it connects

externally to the scanner user interface. Thus, the videogame can easily be adopted

at research and clinical sites that utilize navigator-gated cardiac MRI acquisitions,
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especially in children. Since using the videogame results in improved navigator

efficiency, which lead to reduced acquisition times, use of the videogame can help

improve the clinical feasibility of advanced imaging techniques, such as DENSE.

Besides reducing acquisition time, which saves time, increased navigator efficiency

can also be used to acquire more data, such as to improve spatial or temporal

resolution of images [36].

Notably, off-scanner training was not required to achieve the improved navigator

efficiency by using the videogame. Therefore, clinical and research sites would not

have to invest in resources for building a simulator or spend significant time training

children prior to undergoing navigator-gated cardiac MRI acquisitions. This study

was performed only in children, but since previous studies have shown that navigator

feedback can improve navigator efficiency in adults [36, 20], the videogame should also

work well in adults. The findings of this study are definitely applicable to cardiac

DENSE MRI, but it is likely that these findings generalize to several cardiac MRI

techniques that use a respiratory navigator. Higher resolution imaging, which may be

more sensitive to registration issues, may not result in the same findings. An example

would be coronary MR angiography.

6.3 Future Directions

A future direction of the feedback videogame would be to set up the videogame

at other research sites, particularly sites that have a high throughput of patients who

undergo cardiac MRI acquisitions. Due to its non-invasive connection to the scanner,

the videogame can be easily adopted. Recently, the videogame has been implemented

on a different MRI acquisition platform (Philips) at Boston Children’s Hospital to

test its efficacy in a patient population. Instead of capturing a navigator image and

processing it to extract the desired locations, this Philips acquisition platform had a

continuously updating text file containing the required locations (acceptance window

and diaphragm position). Due to the modular nature of the code, all that was needed
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was to write a new input source class that accepted an updating log file instead of

a navigator image. If new features are needed in order to adapt the videogame to a

different scanner or for patients to better understand or benefit from the videogame,

they can be easily added.

Currently, the videogame is written using MATLAB, which requires the purchase

of a license. Another possible future direction would be to re-design the videogame

using free programming software so that it can be more freely distributed and won’t

be limiting to people who do not have the MATLAB software license.

Lastly, it would be beneficial to eventually incorporate the videogame as a viewing

option within the scanner software itself. This would make the videogame even more

adoptable at clinical and research sites. Collaborations with MRI vendors such as

Siemens or Philips would be required to achieve this goal, and are currently being

investigated.

This project focused on improving respiratory navigator gating for DENSE

cardiac MRI. However, there are other respiratory compensation techniques that

may be beneficial to improving the clinical utility of DENSE. For example,

automated respiratory gating. One technique involves continuously adjusting the

navigator acceptance window in order to always have it placed at the optimal

position. This is required because patient end-expiratory positions tend to drift over

time, so the acceptance window, which is typically placed at a particular location

prior to the scan, will not remain in the optimal position for the entirety of the

scan. This is especially true for long scans, such as three-dimensional DENSE

cardiac MRI which can take upwards of 20 minutes. Fortunately, the continuously

updating position of the acceptance window will help improve navigator efficiency

compared to a fixed acceptance window.

Another alternative technique for respiratory compensation uses the acquired

image data itself to identify adjustments needed to compensate for respiratory
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motion. For example, instead of acquiring a separate image to track the diaphragm,

the heart image data itself is used to follow the respiratory-related motion of the

heart [81]. This technique allows for complete ”free-breathing”, which is essentially

leads to 100% navigator efficiency. Importantly, at least for coronary MR

angiography, a previous study showed that this technique led to comparable image

data while reducing scan times by about half (14 to 7 minutes) [81].

Using this same concept, along with sparse undersampling and ”smart” image

reconstruction, there are other techniques that could be used with DENSE to

improve clinical utility. Typically, DENSE is acquired by a spiral sampling pattern

in frequency space and then, after other processing steps, is inverse Fourier

transformed into image space. For spiral cine DENSE in this project, an adequate

number of samples were acquired for accurate, non-blurry images. However, by

randomly undersampling k-space (or frequency space) and using smart iterative

image reconstruction techniques, image acquisition time can be dramatically

reduced and still lead to accurate strain and displacement values [82]. As a tradeoff,

the time saved during image reconstruction is spent multi-times over on the image

reconstruction side due to its iterative nature. For example, a full 3D acquisition

may take a few minutes to acquire (undersampled, of course), but may take days to

reconstruct depending on the cost function used to converge to a solution.

Another technique that can be used to reduce data acquisition is the use of outer

volume suppression or zonal excitation. Typically, with DENSE, the entire heart is

encoded before reading out image data. However, with zonal excitation, DENSE

acquisitions are performed by selectively exciting a volume of tissue around the

heart, which allows for fewer spiral interleaves to be acquired and shorter

acquisitions [83]. Overall, these new techniques will need to be tested for their

robustness and reproducibility to ensure research and clinical utility.
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