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ABSTRACT OF DISSERTATION

Toric Bundles as Mori Dream Spaces

A projective, normal variety is called a Mori dream space when its Cox ring is finitely
generated. These spaces are desirable to have, as they behave nicely under the Min-
imal Model Program, but no complete classification of them yet exists. Some early
work identified that all toric varieties are examples of Mori dream spaces, as their
Cox rings are polynomial rings. Therefore, a natural next step is to investigate pro-
jectivized toric vector bundles. These spaces still carry much of the combinatorial
data as toric varieties, but have more variable behavior that means that they aren’t
as straightforward as Mori dream spaces. Expanding on Gonzalez’s 2012 result that
all rank 2 projectivized toric vector bundles are Mori dream spaces, we give a com-
binatorial sufficient condition for when a rank r bundle is Mori dream, using Kaveh
and Manon’s description of a toric vector bundle by a linear ideal and an integral
matrix. We then address the question: if a toric vector bundle projectivizes to a
Mori dream space, when is the projectivization of the direct sum of that bundle with
itself a Mori dream space? Expanding on the nice families of bundles found, we
compute the positivity-related cones for these bundles and provide a description of
additional classes of toric vector bundles that uphold the Fujita conjectures. Finally,
we conclude with the subduction and KM algorithms, two Macaulay2-implemented
algorithms that allow us to produce finite presentations of Cox rings of projectivized
toric vector bundles, provided they exist, allowing for future work in the study of
these bundles as Mori dream spaces.

KEYWORDS: Mori dream space, toric vector bundle, toric flag bundle, positivity,
subduction
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Chapter 1 Background

The goal of this chapter is to establish necessary definitions and results for future
chapters. Due to time and length constraints, decisions had to be made about
where to begin and end the discussions in this chapter, always with the goal for this
document to be as self-contained as possible. If necessary, additional information
can be found in the following texts, each of which being the primary reference for
the section they correspond to:

• Section 1.1: Algebraic Geometry by R. Hartshorne [10]

• Section 1.2: Toric Geometry by Cox, Little, and Schenck [2]

• Section 1.3: Tropical Geometry by Maclagan and Sturmfels [23]

• Section 1.4: Matroid Theory by J. Oxley [26]

In Section 1.1, we establish the foundational definitions of algebraic geometry, focused
around a discussion of varieties and divisors. Section 1.2 introduces framework def-
initions from polyhedral geometry before establishing fundamental definitions from
toric geometry, including this document’s key characters: the toric vector bundle. In
Section 1.3, we discuss a relatively-new area of algebraic geometry: tropical geome-
try, an integral tool for connecting geometry to combinatorics. Finally, we conclude
with Section 1.4 as a brief overview of the terms and results we’ll need from matroid
theory, including a theorem that connects many of the previous sections’ objects
together.

1.1 Algebraic Geometry

1.1.1 Varieties

Classically, algebraic geometry is the study of varieties. For a field k and a subset
I ⊂ k[x1, ..., xn], an algebraic variety is the collection

V (I) = {ā := (a1, ..., an) ∈ kn | f(ā) = 0 for all f ∈ I}.

Unless otherwise stated, we will exclusively consider the case where k = C. There
are many different adjectives that one may put before “variety” to further impose

1



conditions. These will be introduced as they are needed. The classical first example
of a variety is given in Example 1.1.1.

Example 1.1.1. Let I = ⟨y − x2⟩ ⊂ C[x, y]. Then the variety associated to I,
denoted V (I), is all points (x, y) where y − x2 = 0. Rearranging allows for this to
be recognized as y = x2. Therefore, V (I) = {(x, y) | y = x2}.

There are multiple topologies that can be put on affine varieties, but the one we
will primarily consider is the Zariski topology, in which the closed sets are sub-
varieties and the Zariski open sets are their complements. There are instances
where some Zariski open subsets are themselves affine varieties. For example, given
f ∈ C[V ]\{0}, let

Vf = {p ∈ V | f(p) ̸= 0} ⊆ V.

Then Vf is Zariski open in V and can also be shown to be an affine variety.

There is a set which acts as a pseudo-inverse to varieties (for a discussion on why
these sets are not inverses, see [4]). Given a set X ⊂ Cn, consider

I(X) = {f ∈ C[x1, ..., xn] | f(ā) = 0 for all ā ∈ X}.

It can be shown that I(X) is an ideal. Notice that if two functions, f and g, agree on
all points x̄ ∈ X, we have 0 = f(x̄)− g(x̄) = (f − g)(x̄). Therefore, (f − g) ∈ I(X).
We can form the ring where all such functions are identified in what Cox, Little, and
Schenck [2] call “the most important algebraic object” associated to a variety.

Definition 1.1.2. For a set X ⊂ Cn, C[X] = C[x1, ..., xn]/I(X) is the coordinate
ring of X.

The coordinate ring (and the relationship between V (I) and I(X)) allows us to utilize
a ring structure on varieties. For example, we can represent the variety V (y − x2)
by C[x, y]/⟨y − x2⟩. The following details key properties of coordinate rings:

• For an affine variety V , C[X] is an integral domain if and only if I(V ) is a
prime ideal.

• A point p of an affine variety V , gives the maximal ideal

mp = {f ∈ C(X) | f(p) = 0}

and, by Hilbert’s Nullstellensatz, all maximal ideals of A(V ) arise in this way.
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• Two affine varieties are isomorphic if and only if their coordinate rings are
isomorphic C-algebras.

The second correspondence allows us to define a new ring, given a variety. For an
variety X, the local ring of X at a point p in X is

C[X]p =

{
f

g
| f, g ∈ C[X] and g(p) ̸= 0

}
.

Note that because of the relationship between p and mp, the local ring of X at a
point p is occasionally denoted C[X]mp .

Crucially, the last point is no longer true when we begin studying projective varieties.
A projective variety, V ⊂ Pn

C, is the vanishing set of finitely many homogeneous
polynomials from C[x1, ..., xn]. Note that, in this case, we take homogeneous to
mean that each term of the polynomial has the same degree (the sum of the expo-
nents in a given term). The fact that two projective varieties can be isomorphic rings
and yet not have isomorphic coordinate rings alludes to the subtleties of projective
coordinate rings that we’ll discuss more in future chapters.

1.1.2 Divisors

Along with studying various varieties, it is also of interest to study divisors. In
general, a Weil divisor is a formal sum of prime codimension-1 subvarieties of a
space. However, it is not uncommon for authors to simply say “divisor” when what
they mean is “Weil divisor.” Keeping with this tradition, unless otherwise stated,
this text will omit the modifier and assume all divisors are Weil.

Definition 1.1.3. A (Weil) divisor is a formal linear combination, D =
∑
aidi of

codimension-1 subvarieties, where ai ∈ Z and di are prime divisors.

The order of vanishing of f at di and is defined to be

orddi(f) = sup{p ∈ N | f ∈ mp
di
},

where mdi is the maximal ideal associated to the generic point of the prime divisor
di (see [2]). The following establishes some common adjective modifiers associated
to divisors.

• A divisor is called effective if ai ≥ 0 for each i.

3



• A divisor is principal if it is defined by a single function and can be written
(f) := div(f) =

∑
orddi(f) · di.

Definition 1.1.4. For an algebraic variety, X, the class group of X is CL(X) =
Div(X)/Prin(X), where Div(X) are the divisors of X and Prin(X) are the principal
divisors of X.

Recall that a variety is called normal if the local ring at every point is an integrally
closed domain.

Definition 1.1.5. For a normal, projective variety X with finitely generated class
group, the Cox ring of X, denoted Cox(X), is defined as

Cox(X) =
⊕

[D]∈CL(X)

H0 (X,D)

where H0(X,D) = {f ∈ C(X) | (div(f) +D) is effective} is the group of global sec-
tions of D on X.

Note that the sum is taken over divisor classes; therefore, we must choose a repre-
sentative of each divisor class. However, this computation is independent of this
choice of representative since, for any two divisors D and D′ which differ by a
principal generator (therefore are elements of the same class in CL(X)) we have
H0(X,D) ∼= H0(X,D′). However, we do need to take some care that these repre-
sentatives are chosen uniformly (see [1]).

While there was a study of Mori dream spaces prior to Hu and Keel’s 2008 paper,
the following theorem establishes an equivalence that we use as the definition of a
Mori dream space.

Theorem 1.1.6 (Hu, Keel [15]). A normal projective variety X is a Mori dream
space if and only if Cox(X) is finitely generated.

We will continue our discussion of Mori dream spaces much more starting in Chapter
2.

1.2 Toric Geometry

In this section, we conclude the background chapter by summarizing the first chapter
of [2]. We introduce toric geometry through the lens of polyhedral geometry. While
the mathematics is fairly intuitive, a discussion of polyhedral geometry does require
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many definitions. The section concludes by introducing the main focus of our study.

A torus T of dimension n is an algebraic variety isomorphic to (C×)n where C× :=
C\{0}. Under this isomorphism, T inherits a group structure. We then have the
following definition for a toric variety.

Definition 1.2.1. An affine toric variety is an irreducible affine variety V containing
a torus T as a Zariski open subset such that the action of T on itself extends to an
action of T on V .

We are interested in building a toric variety from a fan, Σ. We will now go through
the results and terms necessary to construct a toric variety in this way.

A character of T is a group homomorphism χ : T → C× utilizing an isomorphism
T ∼= (C×)n then choosing m = (a1, ..., an) ∈ Zn, mapping

χm : (C×)n → C×, (t1, ..., tn) 7→ ta11 · · · tann .

As all characters of (C×)n arise in this way [16], the set of all characters of (C×)n,
M , forms a group isomorphic to Zn. The group M is called the character lattice
of T .

Similarly, a one-parameter subgroup of a torus T is a group homomorphism
λ : C× → T . For u = (b1, ..., bn) ∈ Zn, we get the mapping

λu : C× → (C×)n, (t) 7→ (tb1 , ..., tbn).

[16] also shows that all one-parameter subgroups take this form. Letting N denote
the set of all one-parameter subgroups, the lattice of one-parameter subgroups,
we get an isomorphism N ∼= Zn.

M and N have a pairing, meaning there is a natural bilinear map

⟨ , ⟩ :M ×N → Z.

After choosing an isomorphism T ∼= (C×)n identifying M,N ∼= Zn, the pairing can
be realized as the usual dot product, ie.

⟨m,u⟩ =
n∑

i=1

aibi

5



where m = (a1, ..., an) and u = (b1, ..., bn). This pairing realizes the subgroups as
duals of each other, ie. M = HomZ(N,Z) and N = HomZ(M,Z).

We now introduce cones, a key building block of a fan. There are two construc-
tions used to construct/describe a cone: the V -description (“vertex”) and the H-
description (“hyperplane”). We start with using the V -description to define a convex
polyhedral cone and later use the H-description to define its dual.

A convex polyhedral cone in N is a set of the form

σ = Cone(S) =

{∑
u∈S

λuu | λu ≥ 0

}
⊆ N

where S ⊆ N is finite. Since we will not consider the non-convex case, the “convex”
modifier will often be suppressed. The dimension of a polyhedral cone, denoted
dim(σ), is the smallest subspaceW = Span(σ) of N containing σ. Given a polyhedral
cone σ ⊂ N , we can form the dual cone by

σ∨ = {m ∈M | ⟨m,u⟩ ≥ 0 for all u ∈ σ}.

Proposition 1.2.2. Let σ ⊆ N be a polyhedral cone. Then σ∨ is a polyhedral cone
in M and (σ∨)∨ = σ.

Given 0 ̸= m ∈M , we define

H+
m = {u ∈ N | ⟨m,u⟩ ≥ 0}

to be a positive half-space. When the inequality is instead an equality, we have a
hyperplane, denoted Hm. A face of a polyhedral cone σ is τ = Hm ∩ σ for some
m ∈ σ∨. The containment of a face in a cone is denoted τ ⪯ σ.

Example 1.2.3. The below graphic shows an example of how a hyperplane defines
a face of the shaded polytope.

6



⟨ai, x⟩ ≥ bi

Figure 1.1: Polytope with a face defined by a hyperplane

A polytope in N is a set of the form

P = Conv(S) =

{∑
u∈S

λuu | λu ≥ 0,
∑
u∈S

λu = 1

}
⊆ N

where S ⊆ N is finite. We say that P is the convex hull of S.

Faces of a cone σ have the following properties:

• Every face of σ is a polyhedral cone.

• The intersection of two faces is a face.

• A face of a face is a face.

A facet is a face of codimension 1 and an edge is a face of dimension 1. When
the origin is a face of a cone, that cone is called strongly convex. Since the edges
of these cones all begin at the origin, they are called rays. These rays carry vital
information when the cone is rational.

Let N be a lattice where NR = N ⊗ZR. Then a polyhedral cone σ ⊆ NR is rational
if σ = Cone(S) for some finite set S ⊆ N .

Example 1.2.4. We have the following example of a rational fan.

7



σ1

σ2

σ3
σ4

Figure 1.2: Rational fan in R2.

where the ray generators are (1, 0), (0, 1), (−1,−1) and (1,−1).

Lemma 1.2.5. A strongly convex rational cone is generated by its rays.

Proposition 1.2.6. (Gordon’s Lemma) Let σ ⊆ NR be a rational polyhedral cone.
The lattice points

Sσ = σ∨ ∩M ⊆M

form a finitely generated semigroup.

This semigroup allows us to build a toric variety from a cone, stated explicitly in the
following theorem.

Theorem 1.2.7. Let σ ⊆ NR ∼= Rn be a rational polyhedral cone with semigroup Sσ.
Then

Tσ = Spec(C[Sσ]) = Spec(σ∨ ∩M)

is an affine toric variety. Moreover, all affine toric varieties come about in this way.

By Gordon’s Lemma, we are able to ensure that Spec(σ∨ ∩M) is, in fact, a variety.
We can now use this information to create other toric varieties by gluing together
affine toric varieties. Our first step in this is to consider a collection of cones, called
a fan. More formally, a fan Σ is a collection of strongly convex polyhedral cones in
NR such that

1. If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ.

8



2. If σ, τ ∈ Σ, then σ ∩ τ is a face of each.

Definition 1.2.8. Given a fan Σ inNR, the abstract toric variety Y (Σ) is constructed
from affine toric varieties, Tσ for σ ∈ Σ, by gluing Tσ and Tσ′ along their common
open subset Tσ∩σ′ for all σ, σ′ ∈ Σ.

Example 1.2.9. Let r ∈ N and consider Σr in NR = R2 shown below

σ1

σ2σ3

σ4

(−1, r)

Figure 1.3: The fan structure, Σr, for Hr.

The corresponding toric variety Y (Σr) is covered by open affine subsets

Uσ1 = Spec(C[x, y]) ∼= C2

Uσ2 = Spec(C[x, y−1]) ∼= C2

Uσ3 = Spec(C[x−1, x−ry−1]) ∼= C2

Uσ4 = Spec(C[x−1, xry]) ∼= C2

We call Y (Σr) the Hirzebruch surface Hr.

1.2.1 (Projectivized) Toric Vector Bundles

In order to introduce toric vector bundles, we first present vector bundles in general.
Conceptually, one can imagine a vector bundle over a space X as the attachment of
a vector space Vx to every point x ∈ X along with a notion of continuity between
these vector spaces which reflects the topological structure of X itself. Locally, a
vector bundle appears as a product space while its global structure may be more
intricate. To formalize this idea, we have the following definition.

9



Definition 1.2.10. A vector bundle consists of:

1. a pair of topological spaces (E , X)

2. a continuous surjection π : E → X from the total space E to the base space X

3. for every x in X, the structure of a finite-dimensional vector space on the fiber
π−1({x})

where, for every point p in X, there is an open neighborhood U ⊆ X of p, a natural
number k, and a homeomorphism

ϕ : U × Ck → π−1(U)

such that for all x ∈ U we have (π ◦ ϕ)(x, v) = x for all v ∈ Ck and the map
v 7→ ϕ(x, v) is a linear isomorphism of vector spaces.

A toric vector bundle, denoted E , is a vector bundle over Y (Σ) along with the
information of a torus action on E which is linear on the fibers and for which the pro-
jection map π is equivariant, i.e. the following diagram commutes when the vertical
maps are the projection π and the horizontal maps are the action of the torus T.

T× E E

T× Y (Σ) Y (Σ)

We say that the rank of a toric vector bundle is the dimension of its fiber.

Example 1.2.11. Let Ep be the fiber over the point p ∈ Y (Σ). In the case where
dim(Ep) = 1, the vector bundle is referred to as a line bundle. There are two
foundational examples of line bundles we consider. First, the tautological bundle
over Pn is formed by making the fiber over a point p ∈ Pn the associated line
lp ∈ Cn+1. The sheaf of sections of the dual of the tautological bundle is called the
twisting sheaf. As a nod to this duality, the twisting sheaf is denoted O(1) while
the tautological bundle is denoted O(−1). It is well-known that toric line bundles are
classified by piecewise linear functions on Σ. When we are not referring specifically
to one of these bundles, a line bundle will be denoted L.

Another example of toric vector bundles we consider at tangent bundles. A tangent
space to a toric variety at a point is the collection of all tangent vectors to that
point; then, the tangent bundle is all such tangent spaces for the points of the
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variety. To see that the tangent bundle is a toric vector bundle, consider the torus
action Φt : p 7→ p · t for t ∈ T. Letting Tp be the tangent bundle at the point p, we
can extend Φt to

dΦt|p : Tp 7→ Tp·t.

The product rule for derivatives then defines an algebraic action of t on T . We
predominately consider the tangent (and cotangent) bundle of projective spaces to
serve as examples (and nonexamples) as Mori dream spaces (see Theorem 2.1.3.)

We then obtain a projectivized toric vector bundle from a toric vector bundle by
replacing each fiber Ep with PE∨

p . Projectivized toric vector bundles exhibit some nice
behavior. For example, projectivized toric vector bundles are smooth and projective
over the base field. Also, the Picard group of a projectivized toric vector bundle PE ,
denoted Pic(PE) can be decomposed as

Pic(PE) ∼= Pic(Y (Σ))× Z ∼= CL(PE)

where the line bundles on PE are obtained from pullbacks from Y (Σ) and the iso-
morphism to the class group is a result of the bundles being smooth [14].

Example 1.2.12. Consider O ⊕ O(r) as a bundle over P1. We can realize the
Hirzebruch surface Hr as a projectivized toric vector bundle Hr

∼= P(O ⊕O(r)).

Klyachko classified toric vector bundles on X in terms of finite dimensional vector
spaces E with collections of Z-graded filtrations {Eρ

r}, called the Klyachko data.
This identification is summarized from [20] as follows: Let E be the fiber of E over
the identity point of the base torus T ⊆ Y (Σ). For all rays ρ ∈ Σ(1) and r ∈ Z, we
have the subspace Eρ

r ⊆ E and the filtration

E ⊇ ... ⊇ Eρ
r ⊇ Eρ

r+1 ⊇ ... ⊇ 0.

For all top-dimensional cones in Σ and m ∈M , we have L ⊆ E with

E ∼=
⊕
m∈M

Lm

such that, for all ρ ∈ σ(1) with ray generator u,

Eρ
r =

⊕
⟨u,m⟩≥r

Lm.
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1.3 Tropical Geometry

Tropical geometry is a relatively new field of mathematics that allows for a beautiful
connection between algebra and combinatorics. At the heart of tropical geometry
is the tropical semi-ring, R ∪ {∞}. In this ring, “addition” (denoted ⊕) and
“multiplication” (denoted ⊗) are defined as follows:

x⊕ y := min(x, y) x⊗ y := x+ y

Note that, in some references, tropical addition is defined as x⊕y := max(x, y). While
these constructions are isomorphic, we will exclusively use the plus-min convention.
The following example demonstrated how a computation with these operations may
be done.

Example 1.3.1. 2⊗ (3⊕ 4) = 2⊗ (min(3, 4)) = 2⊗ 3 = 2 + 3 = 5.

Many of the expected properties of these operations still hold. For example, commu-
tativity and distributively hold in both operations. However, not everything carries
over from the classical operation analogs.

Remark 1.3.2. Tropical multiplication, ⊗, has an inverse. For a ∈ R, we have that
a⊗−a = a+(−a) = 0. However, tropical addition, ⊕, does not have an inverse. The
only way for min(a, b) = ∞ is if a = b = ∞. The non-invertibility of ⊕ is exactly
why (R ∪ {∞},⊕,⊗) is a semi-ring and not a ring.

To see why the identities are what they are, let’s consider first tropical addition. We
need a number x such that for any a ∈ R,

a⊕ x = min(a, x) = a.

Therefore, the identity for ⊕ is +∞. Similarly, considering tropical multiplication,
we need a number x such that for any a ∈ R,

a⊗ x = a+ x = a.

Therefore, the identity for ⊗ is 0.
These operations can be extended beyond the real numbers. A tropical polynomial
is a finite linear combination of tropical monomials:

f(x1, ..., xn) = a⊗ xi11 x
i2
2 · · · xinn ⊕ b⊗ xj11 x

j2
2 · · · xjnn ⊕ · · ·
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where the coefficients a, b, ... are real numbers are the exponents i1, j1, ... are integers.
While the tropical multiplication between the x∗ have been suppressed, we can apply
the tropical operations to rewrite the above as

trop(f(x1, ..., xn)) = min(a+ i1x1 + ...+ inxn, b+ j1x1 + ...+ jnxn, ...).

This rewrite allows us to make the following observation.

Lemma 1.3.3. The tropical polynomials in the variables x1, ..., xn are precisely the
piecewise-linear concave functions on Rn with integer coefficients.

Example 1.3.4. Consider f = (0 ⊗ x3) ⊕ (1 ⊗ x2) ⊕ (3 ⊗ x) ⊕ 6. Applying the
tropical operations gives f = min(3x, 1 + 2x, 3 + x, 6). Each of these functions is
plotted below, along with the minimum bolded in black. The piecewise black line is
the graph of f .

1 2 3 4 5 6 7

1

2

3

4

5

6 y = 6
y = 3x

y = 1 + 2x
y = 3 + x

Figure 1.4: The graph of four lines and the corresponding tropical polynomial.

Another similarity between algebraic and tropical geometry is an object that can be
formed from polynomials: varieties. Crucially, it is not longer appropriate to define
the tropical variety as the zero-locus of a collection of polynomials. Instead, we need
to introduce the notion of term ordering. In general, a term order is a choice of
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convention of how to impose an ordering on the terms of a polynomial. For our
study, we primarily consider ordering the terms by a weight vector w.

Definition 1.3.5. For a polynomial f(x) =
∑

a∈A cax
a ∈ K[x±1 , ..., x

±
n ] and a weight

w = (w1, ..., wn) ∈ Rn, the initial form of f with respect to w is

inw(f) =

{∑
a′∈A

ca′x
a′ | ⟨a′,w⟩ ≤ ⟨a,w⟩, for a ∈ A

}
.

Example 1.3.6. Consider f(x, y) = x2+xy2+y3 andw = (1, 2). Then our exponent
vectors, a, are:

(2, 0) (1, 2) (0, 3)

Computing the dot products, we get

(1, 2) · (2, 0) = 2 + 0 = 2 (1, 2) · (1, 2) = 5 (0, 3) · (1, 2) = 6

As 2 is the smallest result, we identify the term of f with exponent vector (2, 0).
Therefore, in(1,2)(f(x, y)) = x2.

However, our initial forms are not limited to being monomial.

Example 1.3.7. Consider g(x, y) = x2 + xy2 + y3 + y and w = (1, 2). Then:

(2, 0)︸ ︷︷ ︸
x2

· (1, 2)︸ ︷︷ ︸
w

= 2 = (0, 1)︸ ︷︷ ︸
y

· (1, 2)︸ ︷︷ ︸
w

The other dot products can be computed to confirm that 2 is the smallest result. So
in(1,2)(g(x, y)) = x2 + y.

Using the language of initial forms, we can define a tropical variety.

Definition 1.3.8. For a collection of polynomials F = {f1, ..., fk} ∈ K[x±1 , ..., x
±
n ],

the tropical variety, TV(F ), is

TV(F ) = {w ∈ Rn | inw(fi) is not a monomial}
= {w ∈ Rn | the min of trop(fi)(w) occurs at least twice}.

Note that the condition of the minimum of the tropical polynomial, trop(f), occur-
ring at least twice is graphically represented by the function changing from one part
of the piecewise-linear portion to another.

14



Example 1.3.9. Referencing the function f and graph shown in Example 1.3.4, we
can see that TV(f) = {(1, 3), (2, 5), (3, 6)}.

Example 1.3.10. For f(x, y) = x2 + xy2 + y3 + y, we’ve seen in Example 1.3.7 that
in(1,2)(f) = x2 + y. As this is not a monomial, (1, 2) ∈ TV(f). We have

trop(f)|(x,y)=(1,2) = min{2x, x+ 2y, 3y, y}|(1,2) = min{2, 5, 3, 2} = 2

which occurs when 2x = y ≤ x+ 2y, 3y.

Let I be an ideal in C[x1, ..., xn]. A finite generating set T of I is a tropical basis
if, for all vectors w ∈ Rn, there is a polynomial f ∈ I for which the minimum in
trop(f)(w) is achieved only once if and only if there is a g ∈ T for which the mini-
mum in trop(g)(w) is achieved only once.

We can extend the idea of initial forms to all polynomials contained in an ideal. If
I is a homogeneous ideal in C[x0, ..., xn], then its initial ideal is

inw(I) = ⟨inw(f) | f ∈ I⟩.

As this is infinitely generated, it would be preferable if there were a way to finitely
describe the initial ideal; however, that would take a very particular generating set.
A collection G = {g1, ..., gk} ⊂ I is a Gröbner basis for I with respect to w if

inw(I) = ⟨inw(g1), ..., inw(gk)⟩.

There are a number of ways to confirm that the collection you have is a Gröbner
basis. We will use the following:

Proposition 1.3.11. A collection G = {g1, ..., gk} is a Gröbner basis if and only if
S(gi, gj) = 1 for all gi, gj ∈ G where

S(gi, gj) =
LCM(gi, gj)

LT(gi)
gi +

LCM(gi, gj)

LT(gj)
gj

is called the S-pair of gi and gj.

In this proposition, LT(g∗) is the leading term, the first term of g∗ after the
terms have been ordered under the chosen ordering. We have that G is a uni-
versal Gröbner basis if G is a Gröbner basis with respect to every term order.

Gröbner bases come with an associated fan structure, called the Gröbner fan, of
polyhedral cones indexing initial ideals. The top-dimensional cones correspond to
distinct monomial initial ideals with respect to a term order.
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Example 1.3.12. Consider the ideal L = ⟨x1 − x2, x2 − x3⟩ ⊂ C[x1, x2, x3]. The
Gröbner fan of L is GFan(L) ∼= R3 with rays corresponding to the term order weights
(1, 0, 0), (0, 1, 0), and (0, 0, 1).

Definition 1.3.13. Let L be a linear ideal with tropicalized linear space

Trop(L) =
⋂
f∈L

TV (trop(f)) .

Then, for τ a maximal face of the Gröbner fan of L, the apartment associated to τ ,
denoted Aτ , is the intersection of τ with the tropicalized linear space of L, i.e.

Aτ = τ ∩ Trop(L).

In Chapter 2, we will use the data of points from Trop(L) to help define a toric vector
bundle. However, we first need to conclude this chapter on background information
with one final section.

1.4 Matroid Theory

Matroids are rich combinatorial objects with applications to countless areas of math-
ematics. While we will only cover information necessary for our study, interested
readers should refer to James Oxley’s Matroid Theory [26].

Definition 1.4.1. A matroid M is a pair (E, I) where E is a finite set and I ⊂ 2E

is a collection such that:

• ∅ ∈ I

• If I ∈ J and I ′ ⊆ I, then I ′ ∈ I.

• If I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ (I2 − I1) such that I1 ∪ e ∈ I.

The elements I ∈ I are called independent sets. Minimally dependent sets are
called circuits and the collection of all circuits for a matroid M is denoted C(M).
The rank of a set S ⊆ E, denoted rk(S), is given by

rk(S) := max
I⊆S

|I|.

The rank of the matroidM = (E, I) is then the rank of its ground set, ie. rk(M) := rk(E).
Using this notion, we have that a set S is independent if and only if rk(S) = |S|. A
flat of a matroid is a set F ⊆ E such that

rk(F ∪ {x}) = rk(F ) + 1
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for all x ∈ E\F . The collection of all flats of a matroid M is denoted L(M). Under
inclusion, the pair (L(M),⊆) forms a geometric lattice called the lattice of flats.

Given a linear ideal L, we can define the corresponding matroidM(L) as the matroid
on y1, ..., ym where a set I is independent if and only if I/L is independent.

While the combinatorial structure of a matroid can be arbitrarily complex, we will
focus our study on two of the nicer, better-understood classes of matroids. First, the
uniform matroid on n elements, denoted U r

n, is the matroid whose independent
sets are exactly those which contain at most r elements. Note that this means that,
for a uniform matroid, the circuits are all those sets which contain exactly r + 1
elements. Second, a matroid is called representable if there exists a matrix A
whose columns correspond to the elements of M with linearly independent columns
of A corresponding to independent elements of M .

Example 1.4.2. Consider the matrix

A =

[
1 0 1
0 1 1

]
.

The corresponding matroid has three elements where any two of them are indepen-
dent, so A is a representation of U2

3 .

Matroids have an associated fan structure, called the Bergman fan. For a matroid
M on n elements, the Bergman fan of M, denoted B(M), is

B(M) = {w ∈ Rn | the minimum min
i∈c

wi occurs at least twice ∀c ∈ C(M)}.

Example 1.4.3. Consider U2
3 . The Bergman fan is

B(U2
3 ) = {w ∈ R3 | xi = xj ≤ xk for i, j, k distinct in {1, 2, 3}}.

To see the fan structure of B(M), we need to consider a related object: the matroid
polytope. For a matroid M, the matroid polytope, P (M) is

P (M) = Conv

(∑
i∈I

ei | I ∈ I

)
.

That is to say, the matroid polytope is the convex hull of the indicator vectors
associated to the independent sets of M.
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Example 1.4.4. Consider the uniform matroid U2
3 . Then

P (M) = Conv({(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)})

Figure 1.5: The matroid polytope of U2
3 .

Then, taking the inner normal fan to the maximal faces of the matroid polytope,
denoted N (P (M)), we have that B(M) is a subfan of N (P (M)). The following
theorem provides the connection between matroid theory, tropical geometry, and our
study of toric vector bundles.

Theorem 1.4.5. For a linear ideal L, M(L) is the matroid whose circuits are
minimally supported generators of L. Then Trop(L) = B(M(L)) and GFan(L) =
N (P (M(L))).

Copyright© Courtney George, 2023.
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Chapter 2 Toric Vector Bundles

2.1 Past Results

Mori dream spaces are desirable to have, as they are well-behaved in the Minimal
Model Program and other areas of birational geometry. However, while there are
known examples and counterexamples, no complete classification of them yet exists.
Some of the first examples of known Mori dream spaces were given by Cox in [3]
where he showed that the Cox ring of a toric variety is a polynomial ring, making
them some of the most trivial examples. This led Hering, Payne, and Mustaţă to ask
when a projectivized toric vector bundle PE is a Mori dream space [13]. Projectivized
toric vector bundles still carry much of the combinatorial data of their toric variety
(see [20], [18]), but have variable behavior which leads to them not always being
Mori dream spaces. The following two theorems describe some of the first results
in investigating when a projectivized toric vector bundle is a Mori dream space and
Example 2.1.3 demonstrates how things could go wrong.

Theorem 2.1.1 (Hausen, Süß, [12]). Projectivized tangent bundles of toric varieties
are Mori dream spaces.

Notice this result is an example of how a nice bundle on a well-understood example of
a Mori dream space can give a Mori dream space. This theorem also gives an infinite
family of Mori dream spaces of arbitrarily high rank. The next theorem identifies
another natural candidate for nice bundles: bundles of low rank.

Theorem 2.1.2 (González, [6]). For a rank 2 toric vector bundle E, the projectivized
toric vector bundle PE is a Mori dream space.

Therefore, this begs the question: What about rank 3 bundles? Unfortunately, this
case is not as straightforward. In their paper [8], González, Hering, Payne, and Süß,
construct the following example of a toric threefold whose projectivized cotangent
bundle is not a Mori dream space.

Example 2.1.3 ([8], Example 4.2). Let k be a field of characteristic not equal to
two or three. The vectors

v1 = (0, 0, 1), v2 = (0, 1, 0), v3 = (1, 1, 1), v4 = (−1,−2,−2)
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span the four rays of a unique complete fan Σ4 ∈ R3. The corresponding toric variety
Y (Σ4) is isomorphic to P3. We also consider the vectors

v5 = (1, 1, 2), v6 = (0,−1, 1), v7 = (1, 0, 1), v8 = (1,−1, 1),

v9 = (−1,−2,−1), v10 = (−1,−1, 0), v11 = (−1,−1, 1),

v12 = (−1, 0, 1), v13 = (−1, 1, 1), v14 = (0, 1, 1)

and let Σi be the stellar subdivision of Σi−1 along the ray spanned by vi, for 5 ≤ i ≤
14. Letting Σ = Σ14, the authors then show that the Cox ring of the projectivized
cotangent bundle of Y (Σ) is isomorphic to the Cox ring of the blowup BlS(P2

k), where
S = {v⊥1 , ..., v⊥14}, which is known to not be finitely generated. Therefore, PT ∗Y (Σ)
cannot be a Mori dream space.

Therefore, we would like to find a condition that would be sufficient to check that a
projectivized toric vector bundle is a Mori dream space. In order to do this, we move
from algebraic geometry to combinatorics, associating to each toric vector bundle
a matrix D and a linear ideal L ⊆ C[y1, ..., yn]. We refer to this matrix D as the
diagram associated to the toric vector bundle.

Definition 2.1.4. For a fan Σ and linear ideal L, a diagram D of (Σ, L) is a matrix
whose rows are indexed by the rays of Σ satisfying:

1. each row of D is a point in Trop(L),

2. if pi1 , ..., pil ∈ Σ(1) are rays contained in the same face, then the corresponding
rows live in a common apartment of Trop(L).

This association of (L,D) to a toric vector bundle is a way of encoding the Klyachko
data into combinatorial objects. What’s more, this process is reversible; by passing
through the Klyachko data, we can associate every toric vector bundle to a pair (L,D)
and every (L,D) represents a toric vector bundle. This association is described in
[18] and is summarized in the following procedure:

1. Form the matrix D by D(i,j) = r when the last place yj appears in the ith

filtration is r.

2. The ideal L is the ideal of relations that hold amongst the spanning set of each
vector space in the filtration.

This collection of matrices, compatible with a linear ideal L and fan Σ, forms a fan,
which we’ll denote ∆(Σ, L). When no confusion will arise, we will use the notation
E(L,D) to denote the toric vector bundle E corresponding to the linear ideal L and
matrix D.
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Remark 2.1.5. For a toric vector bundle E and a line bundle L, we have that
P(E ⊗L) ∼= P(E). This action corresponds to adding a fixed integer to every entry in
a row of D. Therefore, by tensoring with the appropriate line bundle, we can assume
without loss of generality that all entries of D are nonnegative.

Example 2.1.6. Consider T P2, the tangent bundle of P2. The Klychako data for
this bundle is

Eρi(j) =


0 j > 1

⟨yi⟩ j = 1

E j < 1

∀ρi ∈ Σ(1), 0 ≤ i ≤ 2

The rays of the fan of T P2 look like:

ρ1

ρ2

ρ0

Figure 2.1: The rays of the fan of T P2.

with generators ρ1, ρ2, and ρ0 = −ρ1 − ρ2. Therefore, we get that L = ⟨y0 + y1 + y2⟩
and

D =

1 0 0
0 1 0
0 0 1

 .
2.1.1 Subduction and KM Algorithms

The subduction algorithm was introduced in [17] as a way to produce a finite gen-
erating set of the associated graded grν(A) for a valuation ν. Given an algebra and
valuation (A, ν) and elements f ∈ A, the algorithm inductively writes the elements
f in terms of a special generating set called a Khovanskii basis, B. We will start by
introducing the subduction algorithm in general before discussing how this algorithm
has been adapted to produce generators of a closely-related Rees algebra, aiding in
our study of projectivized toric vector bundles.
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Given a totally ordered abelian group Γ, a (Γ-valued) valuation of a domain D is
a map ν : D → Γ ∪ {∞} such that, for all a, b ∈ D, we have:

• ν(a) = ∞ if and only if a = 0

• ν(ab) = ν(a) + ν(b)

• ν(a+ b) ≥ min(ν(a), ν(b)) with equality when ν(a) ̸= ν(b)

A valuation is called trivial if ν(a) = 0 for all a ∈ D×.

Consider a finitely generated K−algebra A of Krull dimension d. A is equipped with
a valuation ν,

ν : A\{0} → Qr for some 0 < r ≤ d

which restricts to a trivial valuation on K. We then form the value semigroup of
ν:

S(A, ν) := im(ν) = {ν(f) | 0 ̸= f ∈ A}

For a ∈ Qr, the valuation ν gives the filtration Fν⪰a on A by

Fν⪰a = {f ∈ A | ν(f) ⪰ a} ∪ {0}.

We can similarly form the space Fν≻a. Then the associated graded is the graded
ring

grν(A) =
⊕
a∈Zr

Fν⪰a/Fν≻a

Notably, the associated graded is also a domain. For 0 ̸= f ∈ A, we can consider
f̄ in grν(A). These are the images of f ∈ Fν⪰a/Fν≻a where ν(f) = a. This notion
allows us to define one of the subduction algorithm’s crucial elements.

Definition 2.1.7. A set B ⊆ A is a Khovanskii basis for (A, ν) if the image of B
in grν(A) forms a set of algebra generators.

It should be noted that there is no requirement for our Khovanskii basis to be finite.
Rather, it is the goal of the subduction algorithm to write an element f ∈ A using
only finitely many elements of B. Below is a description of the pseudocode provided
in [17].
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Algorithm 1: Subduction Algorithm

Input : A Khovanskii basis B ⊂ A and an element 0 ̸= f ∈ A
Output: A polynomial expression for f in terms of finitely many elements

of B
1 We find b1, ..., bn ∈ B and p(x1, ..., xn) such that f̄ = p(b̄1, ..., b̄n).
2 if f = p(b1, ...bn) then
3 return p(b1, ..., bn);
4 else
5 set f1 = f − p(b1, ..., bn) and repeat;
6 end

Kaveh and Manon [17] give conditions to confirm the above algorithm does termi-
nate. However, as is often the case with generating sets, it would be preferable if the
Khovanskii basis B were finite. Also in [17], Kaveh and Manon give an algorithm
for obtaining a finite Khovanskii basis, provided one exists. The pseudocode for this
algorithm is provided below; however, we first need to establish some concepts.

Let B = {b1, ..., bn} be an algebra generating set for A. For 1 ≤ i ≤ n, set A =
{ν(bi)}. Let k[x] denote the polynomial algebra in indeterminates x = (x1, ..., xn)
and consider the surjective homomorphism

φ : k[x] → A xi 7→ bi

and let I = ker(φ). We also consider the homomorphism

ψ : k[x] → grν(A) xi 7→ b̄i

where b̄i is the image of bi in grν(A). Let J = ker(ψ).

Let M be the r× n matrix whose columns are the vectors ν(b1), ..., ν(bn). Using M ,
we can define a partial order on the group Qn as follows. Given α, β ∈ Qn, we say
that α ≻M β if Mα ≻ Mβ, where ≻ is the total order on Qr from the definition
of ν. Note that it is not necessary that M is square (and therefore not necessarily
invertible); therefore, it can happen that α ̸= β but Mα = Mβ. In this case, we
have that α and β are incompatible under the partial order ≻M . Using this ordering,
we can define an initial form of a polynomial p(x) =

∑
α cαx

α ∈ k[x] as:

inM(p)(x) =
∑
β

cβx
β
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where the sum is over all β with Mβ = min{Mα | cα ̸= 0}. Let inM(I) be the ideal
of k[x] generated by inM(p) for p ∈ I. We note that, by properties of initial forms,
inM(I) ⊆ J . It will be of interest when inM(I) = J , justified in the following result.

Theorem 2.1.8. [[17], Theorem 2.17] Let B = {b1, ..., bn} be a set of algebra gener-
ators for A. Then the following are equivalent:

1. B is a Khovanskii basis.

2. The ideals inM(I) and J coincide.

3. Let {p1, ..., ps} be a set of homogeneous generators for the ideal J . Then for
1 ≤ i ≤ s, the subduction algorithm is applicable to represent pi(b1, ...bn) as a
polynomial in the bi.

We can now include Kaveh and Manon’s algorithm for finding a finite Khovanskii
basis starting from a set of algebra generators, provided that such a basis exists.

Algorithm 2: KM Algorithm

Input : A finite set of k-algebra generators B = {b1, ..., bn} for A.
Output: An extension of {b1, ..., bn} to a finite Khovanskii basis B.

1 Let φ : k[x1, ..., xn] → A, xi 7→ bi.
2 Let ψ : k[x1, ..., xn] → grν(A), xi 7→ b̄i.
3 Set I = ker(φ) and J = ker(ψ)
4 Take an element g ∈ J . Set h = g(b1, .., bn) and h̄ = ψ(h).
5 Verify if h̄ is an element of the subalgebra generated by B̄.
6 If yes, find p(x1, ..., xn) such that h̄ = p(b̄1, ..., b̄n). Set h1 = h− p(b1, ..., bn).

If h1 = 0, go to step (8). Otherwise, replace h with h1 and go back to step
(5).

7 If no, append h to B.
8 Repeat until there are no generators left of J .
9 If no elements were added to G then B is our desired finite Khovanskii basis.

Otherwise, return to step (1).

We would like to adapt the KM Algorithm to the case of projectivized toric vector
bundles. We use a relationship between the associated graded, Rees algebras (defined
below), and the Cox ring of a projectivized toric vector bundles. Recall that, for an
ideal I ⊆ C[x1, ..., xn], we can define the initial ideal of I with respect to a weight
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vector ω. When inω(I) is prime, the vector ω is called a prime point. For prime
points, we get an associated weight valuation

νω : A→ Qr ∪ {∞}, f 7→ max{min{⟨ω, α⟩ | p =
∑

cαx
α}, p ϕ−→ f}

Using this valuation, we obtain an additional equivalent condition for certifying our
Khovanskii basis:

Theorem 2.1.9. [17] (continued from Theorem 2.1.8)

4. For ω = (ν(f1), ..., ν(fn)) ∈ Trop(IB), the valuations ν and νω are equal.

This weighted valuation also allows us to define a filtration similar to the one for the
associated graded:

F ω
a = {f ∈ A | νω(f) ⪰ a} ∪ {0}.

Kaveh and Manon [17] then use these filtrations to define the Rees algebra

R(ω,A) =
⊕
a∈Z

F ω
a .

We can consider a collection of points {ω1, ..., ωn} and define the Rees algebra for
the collection.

Definition 2.1.10. [17] Given the collection {ω1, ..., ωn} of prime points, we can
define the multi-Rees algebra as:

R({ω1, ..., ωn}, A) =
⊕
ā∈Zn

F ω1
a1

∩ ... ∩ F ωn
an .

We will use an adaptation of the KM algorithm to compute the Rees algebra for an
increasingly large number of prime points. The following proposition from [17] gives
a way to iteratively compute these Rees algebras.

Proposition 2.1.11. The above multi-Rees algebra can be realized as an iterated
Rees algebra, where adding a prime point to the collection can be carried through by
intersecting by the additional filtration.

Cox rings of projectivized toric vector bundles appear when the ideal L is linear
and the points ωi are taken from Trop(L). We think of C[ȳ]/L as

⊕
ℓ≥0 Sym

ℓ(E),
where the direct sum decomposition is by Sym-degree, and E the general fiber of

the bundle associated to D =
[
ω1...ωn

]T
and ∆(Σ, L). In this way, all toric vector

25



bundles are associated to an arrangement of points on a tropicalized linear space.
We can then ask: For which arrangements S = {ω1, ..., ωn} ⊆ Trop(L) is the Rees
algebra R(S,A) finitely generated? To this end, we use the fact that for a linear
ideal L, all points ω ∈ Trop(L) are prime points. Therefore, we can apply Definition
2.1.10 to our projectivized toric vector bundle, allowing us to associate R(S,A) to
Cox(PE).

Theorem 2.1.12. [17] For a projectivized toric vector bundle PE corresponding to

the diagram D =
[
ω1 . . . ωn

]T
, the Cox ring is

Cox(PE) =
⊕
ā∈Zn

F ω1
a1

∩ ... ∩ F ωn
an

with grading by Zn ∼= Pic(Y (Σ))×M .

Therefore, if Cox(PE) is finitely generated, by Proposition 2.1.11, we can use the
KM Algorithm to find a generating set. Moreover, the most (beautifully) convoluted
way, we compute a presentation of the Cox ring by computing generators of the Rees
algebra by computing generators of the associated graded. We have the following
pseudocode that we use to extend our algebra generators to a finite Khovanskii basis.
This code is used repeatedly to confirm that a projectivized toric vector bundle is
Mori dream, see Example 2.2.6. For a complete version of this code, see Appendix
3.3.

Algorithm 3: KM Algorithm for Toric Vector Bundles

Input : Algebra generators, weight vector
Output: Extension of the given algebra generators to a Khovanskii basis

1 loadPackage gfanInterface
2 R = frac(Q[t1, ..., tr, y1, ..., yn])
3 S = Q[X1, ..., Xr, Y1, ..., Yn]
4 in(weight)(B) = gfanInitialForms(generators)
5 φ : S → R with target generators
6 ψ : S → R with target in(weight)(B)
7 Let I = ker(φ) and J = ker(ψ)
8 Set K = gfanInitialForms(I).
9 Verify whether K = J .

10 If yes, then return generators.
11 If no, then choose g ∈ J\K. Add φ(g) to generators and repeat steps 4-9.
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Not only does this code confirm that our projectivized toric vector bundle is a Mori
dream space, it also computes a presentation of the Cox ring. However, these pre-
sentations could be infinite, so we also need a criterion for this algorithm to stop.
The following theorem from [17] gives a necessary and sufficient stopping condition
(which has the added bonus of being easily implemented in a programming software.)

Let ν be a valuation and let the pair (A, ν) have Khovanskii basis B ⊆ A. Let IB be
the kernel of

ΦB : C[X̄, Ȳ ] → C[t±1 , ..., t±n , ȳ], Xi 7→ t−1
i , Yi 7→ bjt

Dj

where D =
[
ω1 ... ωn

]T
and Dj denotes the j

th column of D.

Theorem 2.1.13. Let B ⊆ A be a Khovanskii basis and let IB be as above. Each ωi

lifts to a tropical point ω̃i ∈ Trop(L). Then B generates Cox(PE) if and only if each
ω̃i is a prime point if and only if ⟨IB, Xi⟩ is a prime ideal for all i ∈ {1, ..., n}.

Therefore, this algorithm also allows the user to answer a simple question: is PE a
Mori dream space? While it is not an effective method for answering that question in
the negative, the algorithm does serve as part of the experimentation to determine
which patterns in (L,D) gave rise to Mori dream space bundles. These patterns
identify different classes of bundles and allow us to prove properties about theses
classes, which we’ll discuss in the next section.

We conclude with a corollary to Theorem 2.1.13 that allows us to extend a toric
vector bundle by a line bundle and maintain the Mori dream space property. This
result is a direct application to 2.1.13.

Corollary 2.1.14. Let E be a toric vector bundle such that PE is a Mori dream
space. Then P(E ⊕ L) is a Mori dream space for a line bundle L.

Proof. Let B ⊆ Cox(PE) be a generating set. Then by Theorem 2.1.13, ⟨Xi, IB⟩ is
prime where IB is the kernel of

ΦB : C[X̄, Ȳ ] → C[t±1 , ..., t±n , ȳ], Xi 7→ t−1
i , Yi 7→ bjt

Dj .

Then for P(E ⊕ L), we have

ΦB′ : C[X̄, Ȳ , Z] → C[t±1 , ..., t±n , ȳ, z], Xi 7→ t−1
i , Yi 7→ bjt

Dj , Z 7→ ztD
′

with IB′ = ker(ΦB′). The ideal IB is contained in C[X̄, Ȳ , Z] and ⟨Xi, IB⟩ = ⟨Xi, IB′⟩
since there is no interaction by the variable Z. Then, ⟨Xi, IB′⟩ is prime and P(E ⊕L)
is a Mori dream space.
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Corollary 2.1.15. Let E be a reducible rank 3 toric vector bundle. Then PE is a
Mori dream space.

Proof. If E is reducible, it decomposes as either L ⊕ L ⊕ L or E ′ ⊕ L for E ′ a rank
2 bundle. In the first case, E is a split line bundle and Cox(PE) is isomorphic to a
polynomial ring. In the second, we have that PE is a Mori dream space by Corollary
2.1.14.

2.2 Rank r Bundles

Expanding on González’s result, we are interested in identifying conditions for when
a rank r projectivized toric vector bundle is a Mori dream space. We do this by
identifying combinatorial conditions on (L,D) which ensure the Mori dream space
property holds.

2.2.1 Complete Intersection Bundles

Complete intersection (CI) bundles are introduced in [18] as the class of toric
vector bundles E with linear ideal L ⊂ K[y1, . . . , ys] and diagram D ∈ ∆(L,Σ) whose
Cox ring Cox(PE) is presented by homogenizations of a minimal generating set of
L. In particular, notice that this means that if E is a CI bundle, then PE is a Mori
dream space.

Therefore we are interested in more than just confirming that a toric vector bundle is
CI. We would also like a procedure to construct these bundles to produce an infinite
class of Mori dream spaces. For the following, let M be an s × d matrix of rank d
such that L is generated by the rows of M . For a subset A ⊂ [n] let MA be the
matrix obtained from M by omitting columns where the rows of the diagram D
corresponding to A do not share a common minimal entry. Finally, let mA be the
rank of MA. The following is [18, Proposition 6.2].

Theorem 2.2.1. The toric vector bundle E(L,D) is a complete intersection (CI)
bundle if and only if for all i ∈ A ⊆ [n], 1 +m{i} < |A|+mA.

The collection of diagrams D associated to a CI bundle (with respect to some min-
imal generating set of L) form integral points in a subfan F(L,Σ) ⊆ ∆(L,Σ). The
class of complete intersection toric vector bundles contains two distinguished sub-
classes. First, we say a toric vector bundle E with diagram D is sparse if each row
of D has at most one non-zero entry. The class of sparse toric vector bundles con-
tains all vector bundles of rank 2, all tangent bundles of smooth toric varieties, and
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more generally coincides with those toric vector bundles whose Klyachko filtrations
contain at most one step of dimension 1. The projectivizations of sparse toric vector
bundles can be shown to belong to a distinguished class of Mori dream spaces called
arrangement varieties (see [11]).

Second, we say a toric vector bundle E is uniform if the matrixM is very general - ie
has no vanishing minors. Not all uniform toric vector bundles are complete intersec-
tion toric vector bundles, but the condition in Theorem 2.2.1 simplifies considerably
for uniform toric vector bundles (see Theorem 2.2.2 below). We say a uniform toric
vector bundle is of type Ur

m if the matroid corresponding to L is uniform of rank r
on m elements. In order to highlight the structure of the uniform matroid, the fan
corresponding to uniform toric vector bundles will be denoted ∆(U r

m,Σ).

The case s = r + 1 are the sparse hypersurfaces, these toric vector bundles form
an extremal family within the uniform sparse toric vector bundles. Any such toric
vector bundle has M an all 1’s row with r + 1 entries, and the associated sparse
diagram D is always a point in ∆(U r

r+1,Σ), when Σ is any fan with r + 1 rays.

In the case that our toric vector bundle is uniform, Theorem 2.2.1 is able to be
restated as follows.

Theorem 2.2.2. Let D be the n × m diagram corresponding to a rank r uniform
projectivized toric vector bundle. Then, for every choice of p rows, if all of the
nonzero entries appear in r+ p− 2 columns, the corresponding toric vector bundle is
a CI bundle.

Proof. We show this condition is equivalent to that posed in Theorem 2.2.1. By
Kaveh and Manon [18], a CI bundle must meet the following inequality:

1 + min{n− r, si} < |A|+min{n− r, sA} ∀i ∈ A

where sA is the number of columns with common nonzero entry from A ⊆ [r].
However, min{n− r, si} = n− r for all i ∈ A. Therefore, we have:

1 + n− r < l + sA =⇒ n− r − l + 1 < sA

Therefore, for a bundle to be CI, the nonzero entries in any l rows are trapped in
r + l − 2 columns.

When the matrix D has the maximum r − 1 nonzero entries per row, then we get a
more concise, easier to check version of Theorem 2.2.2.

29



Corollary 2.2.3. Let D be as in Theorem 2.2.2 and further suppose that D has r−1
nonzero entries per row. Then, for every pair of rows in D, if the nonzero entries of
those rows are contained in r columns, then the corresponding toric vector bundle is
a CI bundle.

Proof. We show that the containment of nonzero entries of a pair of rows in this
setting is equivalent to the conditions stated in Theorem 2.2.2. Suppose every choice
of two rows has their nonzero entries contained in r columns. Since each row of D
has r − 1 nonzero entries, this is equivalent to the pair of rows having r − 2 of their
nonzero entries in the same column. Therefore, every row has one entry that is not
bound by the constraint and can be anywhere. So p rows have p such “free” entries,
meaning that p rows must have nonzero entries in (r − 2) + p columns.

Using this description, we have a quick certification for when our bundle over Pn is
a CI bundle.

Corollary 2.2.4. Let E(U r
m, D) be a rank r bundle over Pn with D a (n + 1) ×m

matrix. Then if m− r < n, E is a CI bundle.

Proof. By Kaveh and Manon [18], any collection of ≤ n rows of D lives in a common
apartment, so the nonzero entries are contained in ≤ r columns. Therefore, we check
the case where our collection of rows is all rows.
Suppose that m− r < n. Then, adding r and subtracting 1, we get m ≤ n+ r − 1.
This can be rewritten to be m ≤ (n + 1) + r − 2. By Theorem 2.2.2, the bundle is
CI.

Example 2.2.5. Consider E as a rank 3 bundle over P2 with L = ⟨
∑5

i=1 yi,
∑5

i=1 iyi⟩
with

D =

1 1 0 0 0
0 1 1 0 0
0 1 0 0 1

 .
One can check that for every choice of subset of the rows of D, the nonzero entries
of those rows live in p + r − 2 = p + 1 columns. For example, choosing rows 1 and
2, the nonzero entries are contained in p+1 = 3 columns. Checking all such subsets
confirms that D meets the sufficient condition, so E is a CI bundle.

However, this result is truly only a sufficient condition. We have examples, such as
Example 2.2.6 that demonstrate just how fragile this condition is.
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Example 2.2.6. Consider E as a rank 3 bundle over P2 with L = ⟨
∑5

i=1 yi,
∑5

i=1 iyi⟩,
as in Example 2.2.5, but now suppose

D =

1 1 0 0 0
0 1 1 0 0
0 0 1 0 1

 .
where entries d3,2 and d3,3 have been swapped. Now, any collection containing row
3 does not meet the sufficient condition. However, the KM algorithm confirms that,
for this E , we have that PE is still a Mori dream space.

2.2.2 New bundles from old

We describe a number of extension theorems, allowing us to form infinitely many
new CI bundles of the same type. We describe these new bundles by adding columns
to D. We suppose an m − r ×m matrix M has been given such that L = ker(M).
In particular, we take the rows of M to be a minimal generating set of L. In what
follows we consider the extension (D′, L′) of a pair (D,L), where D′ = [D | U ] and
L′ = ker(M ′) for M ′ = [M | X]. We let E be the toric vector bundle corresponding
to the pair (D,L) and let E ′ be the toric vector bundle corresponding to the pair
(D′, L′). For the sake of simplicity we assume that D and D′ are non-negative.

Proposition 2.2.7. Let E be a CI toric vector bundle, and suppose that every entry
of the i-th row of U is larger than every entry in the i-th row of D, then E ′ is CI.

Proof. Let p′1, . . . , p
′
m−r denote the homogenizations of the rows ofM ′ and p1, . . . , pm−r

denote the homogenizations of the rows of M . For any row of D′, the initial forms of
the p′k agree with those of the pk. It follows that the initial ideal inŵi

(I) is prime and
generated by these initial forms, the theorem then follows from Theorem 2.1.13.

When E is a uniform bundle it is more straightforward to find extensions.

Proposition 2.2.8. Let E be a uniform CI toric vector bundle defined by M a very
general matrix, and suppose that M ′ defined by an X which also makes M ′ very
general, then E ′ is a uniform CI bundle for any non-negative D′ extending D.

Proof. The diagram D must satisfy the conditions of Theorem 2.2.2. But it is then
immediate that D′ also satisfies these conditions.

Definition 2.2.9. We say that a toric vector bundle E(L,D) is monomial if inσ(L)
is a monomial ideal for all maximal σ ∈ Σ.
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This condition holds precisely when, for each maximal face σ ∈ Σ, the minimal face
of the Gröbner fan of L containing the rows of D corresponding to σ is a maximal
face.

Example 2.2.10. When E(L,D) is uniform, to check if E is monomial, it suffices
to confirm that all choices of r − 1 rows of D have a unique minimal element. Let
L = ⟨y1 + y2 + y3 + y4⟩ ⊂ C[y1, ..., y4] and

D =

1 1 0 0
1 0 1 0
1 0 0 1

 .
Then E(L,D) is a rank-3 bundle and it suffices to check that every pair of rows has
a unique minimal element. This can be quickly confirmed since every pair of rows
has a unique zero column, so E is a monomial bundle.

Remark 2.2.11. We note that there is no implication between a bundle being
monomial and a bundle being uniform. However, the fact that the maximal cones
of a uniform bundle are spanned by r − 1 rays does allow for nice combinatorial
conditions on when a uniform bundle is monomial. For example, if D is an m × n
matrix then, in order for E(L,D) to be monomial, the support of each row needs to
be disjoint from all others but still have ⌊n

2
⌋ − 1 nonzero entries.

Lemma 2.2.12. Let E be a uniform CI toric vector bundle. Further suppose that
D ≥ 0 has no zero columns. Then E ′ is a uniform monomial toric vector bundle if
and only if every choice of r − 1 rows of D has exactly one zero column.

Proof. By Proposition 2.2.8, E ′ is CI. Therefore, we need only check that inσ(L
′) is

monomial for all maximal σ ∈ Σ. Since E is uniform, Σ(1) = ej for 1 ≤ j ≤ m and
the maximal cones σ ∈ Σ are generated by r − 1 such rays. Since D has no zero
columns, every choice of r − 1 rows of D corresponds to a maximal cone of Σ.

Theorem 2.2.13. Let E be a uniform monomial toric vector bundle. Then E ′ is a
uniform monomial toric vector bundle if and only if X ≥ 0 has no more than r − 2
zero entries per column.

Proof. By the above lemma, it suffices to confirm that every choice of r − 1 rows of
D′ has exactly one zero column. Note that this is only possible if X has no column
with more than r − 2 zero entries since, if there were, choosing these rows would
introduce another zero column.
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2.3 Sums of Bundles

The work in this section was obtained in collaboration with Christopher Manon and
appears in [5]. We consider, when PE and PF are Mori dream spaces, whether
P(E ⊕ F) is a Mori dream space. We investigate this question in the particular case
that E = F .

Question 2.3.1. If PE is a Mori dream space, when is P(E ⊕E) and more generally
P(E ⊗ V ) a Mori dream space, for V is a finite-dimensional vector space?

We find that the answer to this question is closely related to the study of flag vari-
eties. Therefore, before stating the main results, we begin with a review of some key
definitions.

Let E be a vector space of dimension r. Given a strictly increasing sequence of
integers I = {i1, . . . , id} ⊆ {1, ..., r − 1}, the flag variety FLI(E) is the space of
flags

0 ⊂ V1 ⊂ . . . ⊂ Vd ⊂ E

where each Vj is a subspace of dimension ij. Well-known examples of flag varieties
include projective spaces and Grassmannians.

Then a flag variety is a full flag variety if I = {1, ..., r− 1}. We note that bundles
of flag varieties are natural generalizations of projectivized vector bundles. For my
work, we focus on the case of flag bundles over toric varieties. A toric flag bundle
over Y (Σ) is a bundle with fibers isomorphic to FLI(E), equipped with a compatible
torus action. (Notably, any E gives rise to a FLI(E).)

Therefore, we ask: When is FLI(E) a Mori dream space? In order to address this
question, we need to review some background material on representation theory of
the general linear group, GL(E), the group of invertible matrices on E.

2.3.1 Representation Theory of GL(E)

A linear algebraic group is a subgroup of GL(E) defined by polynomial equations.
A representation of a group G is a homomorphism

Π : G→ GL(V )
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where V is a finite dimensional vector space. A connected linear algebraic group G is
a reductive group if it has a representation with finite kernel which is a direct sum
of irreducible representations (representations with no nontrivial subspaces). For a
reductive group G, a G-representation V , and a subspace N ⊂ V , let ⟨N⟩G ⊆ V de-
note the subrepresentation generated by N. We say that ⟨N⟩G is the G-span
of N.

The dominant weights of GL(E) are indexed by integral tuples λ = (λ1, . . . , λr),
where r = dim(E) and λ1 ≥ . . . ≥ λr. Of special importance are the weights with
λr ≥ 0, which correspond to the Young tableaux, a left-justified collection of boxes
with (not necessarily strictly) decreasing number of rows. By abuse of notation, we
let λ denote the tableau whose i-th row has length λi. For a Young tableau λ, define

SλV := cλ(V
⊗n) = aλ(bλ(V

⊗n))

where aλ(V
⊗n) =

⊗
i Sym

λi(V ) and bλ(V
⊗n) =

⊗
j

∧λ′
j(V ) to be the Schur func-

tion associated to λ. If λr ≥ 0, the corresponding irreducible GL(E) representation
is obtained by evaluating the Schur functor Sλ : VectK → VectK at E.

For example, consider the exterior power algebra, the algebra that uses exterior
product (or wedge product) as its multiplication. The exterior power

∧ℓE corre-
sponds to the weight ωℓ = (1, . . . , 1, 0, . . . , 0) with ℓ 1’s and r−ℓ 0’s. Any irreducible
Vλ of GL(E) can be realized as a tensor product of a Schur functor and a (possibly
negative) power of the determinant: Vλ ∼= (

∧r E)λr ⊗ Sλ̄(E). Here λ̄ = λ − λrωr

corresponds to a tableau with r − 1 rows. Using this identification, we get that the
dual Vλ∗ is

Vλ∗ = (
r∧
E)−λr ⊗ Sλ̄∗(E),

where

λ̄∗ =
r−1∑
i=1

niωr−1−i if λ̄ =
r−1∑
i=1

niωi.

Let |λ| =
∑r

i=1 λi. When λr ≥ 0 this is the number of boxes in the tableau corre-
sponding to λ. We let row(λ) be the number of rows in λ.

We need some classical identities from representation theory. The Cauchy identity
gives the decomposition of Symℓ(E ⊗ V ) as a GL(E)×GL(V ) representation:
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Symℓ(E ⊗ V ) =
⊕
|λ|=ℓ

Sλ(E)⊗ Sλ(V ).

If row(λ) > MIN{dim(E), dim(V )}, then Sλ(E)⊗Sλ(V ) = 0. In this way, the Cauchy
identity encodes the GL(E)×GL(V ) isotypical decomposition of the polynomial ring
generated by E ⊗ V :

Sym(E ⊗ V ) =
⊕

row(λ)≤MIN{dim(E),dim(V )}

Sλ(E)⊗ Sλ(V ).

A choice of basis B = {e1, . . . , er} ∈ E determines the maximal torus T ⊂ GL(E)
of those g ∈ GL(E) which are diagonal when expressed in B. Likewise, this choice
determines the subgroup B of upper triangular matrices, and its unipotent radical
U ⊂ B. (In this setting, U is the set of upper triangular matrices with 1’s along the
diagonal.) Any Sλ(E) has a unique 1-dimensional subspace fixed by the action of U .
This subspace is isomorphic to the 1−dimensional representation of B with weight
λ, called the highest weight.

2.3.2 Cox rings of flag bundles

Before proving the main theorem of this section, we will need the following results,
which appear in [5], courtesy of Christopher Manon.

Theorem 2.3.2. Let U be the unipotent radical of B. For any toric vector bundle
E we have:

Cox(P(E ⊗ E))U ∼= Cox(FL(E))[t], (2.1)

where t is a parameter of Sym degree r.

Proof. For any Young diagram with ≤ r rows we can write Sλ(E) = (
∧r E)λr ⊗Sλ̄(E),

where λ̄ = λ− λrωr. Let D =
⊕

Pic(X(Σ))D, then

D ⊗ Sλ(E) ∼= D ⊗ (
r∧
E)λr ⊗ Sλ̄(E) ∼= D ⊗ Sλ̄(E).

It follows that
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Cox(P(E⊗E))U =
⊕

row(λ)≤r

H0(X(Σ),D⊗Sλ̄(E))⊗Sλ(E)
U =

⊕
λ̄,λr

H0(X(Σ),D⊗Sλ̄(E))tλr

The right hand side is the ring Cox(FL(E))[t].

Theorem 2.3.2 relates the projectivized sum of bundles to flag bundles. Next, we form
another crucial connection by analyzing the representation theory of these sums.

Proposition 2.3.3. Let H ⊆ G be an inclusion of reductive groups, and suppose
that R ⊆ S is an inclusion of H representations such that the H action on S extends
to an action by G. Moreover, suppose that every G-highest weight vector in S is in
R, then if M ⊆ S is a G representation, we have:

M = ⟨M ∩R⟩G

Proof. The inclusion ⟨M ∩ R⟩G ⊆ M is clear. Let M =
⊕

λ∈Λ+
Mλ ⊗ Vλ be the

G-isotypical decomposition of M , where Mλ are the U+ invariants in M of weight λ.
For any λ ∈ Λ+ we have ⟨Mλ⟩G =Mλ ⊗ Vλ. By assumption Mλ ⊆ R, so Mλ ⊗ Vλ =
⟨Mλ⟩G ⊆ ⟨M ∩R⟩G. As a consequence we conclude that M ⊆ ⟨M ∩R⟩G.

Lemma 2.3.4. Let W ⊆ V be finite dimensional vector spaces. Then there is an in-
clusion Cox(P(E⊗W )) ⊆ Cox(P(E⊗V )) of GL(W ) algebras. If dim(V ) ≥ dim(W ) ≥
r, then every GL(V ) highest weight vector in Cox(P(E ⊗ V )) is in Cox(P(E ⊗W )).

Proof. We show inclusion by proving there exists a monomorphism Cox(P(E⊗W )) →
Cox(P(E ⊗ V )). The inclusion W → V induces a map of sheaves Sym(E ⊗W ) →
Sym(E ⊗ V ). By checking the map on affine neighborhoods, we confirm this map is
a monomorphism. For a chosen d we have:

Symd(E ⊗W ) =
⊕
|λ|=d

Sλ(E)⊗ Sλ(W ) →
⊕
|λ|=d

Sλ(E)⊗ Sλ(V ) = Symd(E ⊗ V ) (2.2)

We still have a monomorphism after tensoring (2.2) with any line bundle L, and
taking global sections commutes with direct sums, so we obtain a monomorphism
Cox(P(E ⊗W )) → Cox(P(E ⊗ V )).
After choosing compatible bases, we viewW → V as the inclusion of the first dim(W )
basis members, inducing the upper-left inclusion GL(W ) → GL(V ). Any compatible
ordering on this basis gives a choice of Borel subgroups in GL(W ) and GL(V ). We
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have row(λ) ≤ r, so all highest weight vectors corresponding to these Borel subgroups
in the Sλ(V ) only involve the first r members of the basis. This implies that any
such highest weight vector of Cox(P(E ⊗ V )) lies in Cox(P(E ⊗W )).

Theorem 2.3.5. Let dim(V ) = ℓ. The projectivized toric vector bundle P(E ⊗ V ) is
a Mori dream space if and only if the flag bundle FLI(E) is a Mori dream space for
all |I| ≤ ℓ. Moreover, the full flag bundle FL(E) is a Mori dream space if and only
if P(E ⊗ V ) is a Mori dream space for all finite dimensional vector spaces V .

Proof. We consider

Cox(FL[ℓ](E)) =
⊕

row(λ)≤ℓ

H0(X(Σ), Sλ(E)⊗D)

for ℓ < r. For dim(V ) = ℓ, this is Cox(P(E⊗V ))UV , and coincides with a graded sub-
ring of Cox(P(E⊗E))U under the inclusion in Lemma 2.3.4. Moreover, Cox(FLI(E))
is a graded subring of Cox(FL[ℓ](E)). These identities imply that Cox(FL[ℓ](E)) is
finitely generated if and only if Cox(FLI(E)) is finitely generated for all I ⊆ [ℓ] if
and only if Cox(P(E ⊗ V )) is finitely generated.

Observe that in the case ℓ = r − 1, FL(E) is finitely generated if and only if
Cox(P(E ⊗ E)) is finitely generated if and only if Cox(P(E ⊗ V )) is finitely gen-
erated for all dim(V ) > r by Theorem 2.3.2 and Lemma 2.3.4. We can also obtain
general information about the generating sets of these rings.

Corollary 2.3.6. Let Ω ⊂ Λ+ be a set of Young diagrams such that the corresponding
summands generate Cox(FL[ℓ](E)), then:

1. the Ω components generate Cox(P(E ⊗ V )) if dim(V ) = ℓ < r.

2. the Ω ∪ {ωr} components generate Cox(P(E ⊗ V )) if dim(V ) = ℓ ≥ r.

Proof. For a G-algebra R, the components which generate RU+ also generate R [9].
Now take R = Cox(E ⊗ V ) and use Theorem 2.3.2.

We are able to extend this theorem to consider the direct sum of a bundle with itself
an arbitrary number of times.

Theorem 2.3.7. Let dim(V ) ≥ r, then Cox(P(E ⊗ V )) is generated by the GL(V )-
span of the generators of Cox(P(E ⊗ E)) ⊆ Cox(P(E ⊗ V )).
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Proof. From Lemma 2.3.4 we get an inclusion Cox(P(E ⊗E)) → Cox(P(E ⊗V )) such
that ⟨Cox(P(E ⊗E))⟩GL(V ) = Cox(P(E ⊗V )). Let F ⊂ Cox(P(E ⊗E)) ⊂ Cox(P(E ⊗
V )) be the vector space spanned by a K-generating set of Cox(P(E ⊗ E)). The
subspace ⟨F ⟩GL(V ) then generates the GL(V ) subring K⟨F ⟩GL(V ) ⊆ Cox(P(E ⊗ V )).
By construction, this subring is generated in the same degree as Cox(P(E ⊗E)). By
Lemma 2.3.4 and Proposition 2.3.3 we have:

K⟨F ⟩GL(V ) = ⟨K⟨F ⟩GL(V )∩Cox(P(E⊗E))⟩GL(V ) = ⟨Cox(E⊗E)⟩GL(V ) = Cox(P(E⊗V ))

We find this is related to the theory of representation stability. In particular, we see
a connection to the following result of Weyl.

Theorem 2.3.8 (Weyl, [28]). Let E be a finite dimensional representation of a
group Γ. For a vector space V , let Γ act on E ⊗ V through E. If the invariant
ring K[E otimesE]Γ is generated in degree d, then the invariant ring K[E ⊗ V ]Γ is
generated in degree d for all finite dimensional vector spaces V .

We can relate these results to families of bundles we’ve previously discussed, namely
CI and sparse hypersurface bundles. If E is CI bundle and V is any vector space of
dimension ℓ, then we can ask if E ⊗ V is also CI bundle. The following is straight-
forward using Proposition 2.2.1.

Proposition 2.3.9. If E is a CI bundle, then E ⊗ V is CI bundle if and only if for
all i ∈ A ⊆ [n], 1 + ℓm{i} < |A|+ ℓmA.

Since sparse hypersurface bundles are the simplest case of CI bundles, we can apply
Proposition 2.3.9 to the following corollary.

Corollary 2.3.10. If E is a sparse hypersurface toric vector bundle, then P(E ⊗ V )
and FL(E) are Mori dream spaces for any vector space V .

We conclude this section with a few computations that demonstrate the utility of
the proceeding theorems.

Corollary 2.3.11. Let E be a rank 2 toric vector bundle. Then P(E ⊗ V ) is a Mori
dream space for all finite dimensional vector spaces V .

Proof. Because E is rank 2, its fibers are isomorphic to C2. Considering the flag
bundle, FL(C2) ∼= P1, so FL(E) is a rank 2 projectivized toric vector bundle, which
is always a Mori dream space by González [7]. Therefore, by 2.3.5, P(E ⊗ V ) is a
Mori dream space for all finite dimensional vector spaces V .
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Corollary 2.3.12. For the toric threefold Z referenced in Theorem 2.1.3, P(T Z ⊕
T Z) is not a Mori dream space.

Proof. We can realize the projectivized cotangent bundle PT ∗Z as a quotient of
FL(T Z). Therefore, PT ∗Z not being a Mori dream space implies FL(T Z) is not a
Mori dream space implies P(T Z ⊕ T Z) is not a Mori dream space.

2.4 The twisted tangent bundle of Pn

The term “twisted commutative algebra” is described in [27] as “a theory for han-
dling commutative algebras with large groups of linear symmetries.” More precisely,
a twisted commutative algebra is a functor from Vect to the category of asso-
ciative unital commutative C-algebras such that the resulting functor from Vect to
Vect by forgetting the algebra structure is polynomial. In this section we describe
presentations for the twisted Cox ring, V → Cox(P(Tn ⊗ V )), of the tangent bundle
Tn of projective space Pn, and the Cox ring of its full flag bundle FLTn.

The tangent bundle Tn is a sparse hypersurface toric vector bundle, where D is the
n+1×n+1 identity matrix, andM is the 1×n+1 all 1’s matrix. By Corollary 2.3.10,
P(Tn⊗V ), and FLTn are Mori dream spaces for any vector space V , along with any
Grassmannian bundle Grℓ(Tn) by implication. We can extend these observations
further with the next lemma. It is a straightforward consequence of [18, Theorem
1.5].

Lemma 2.4.1. Let E1 and E2 be vector bundles over toric varieties Y (Σ1) and Y (Σ2),
respectively, and suppose that P(E1) and P(E2) are Mori dream spaces, then P(E1 ×
E2) is a Mori dream space, where E1 × E2 is the product toric vector bundle over
Y (Σ1)× Y (Σ2).

Corollary 2.4.2. Let E1 and E2 be as above, and suppose that FL(E1) and FL(E2)
are Mori dream spaces, then FL(E1×E2) and P((E1×E2)⊗V ) are Mori dream spaces
for any V .

Proof. We apply Lemma 2.4.1 to (E1 ⊗ V )× (E2 ⊗ V ) ∼= (E1 × E2)⊗ V .

We now give the result that allows us to justify our future discussions on Cox ring
presentations. To do this, we establish the notation that n = (n1, . . . , nm) with
ni > 0, and let Tn denote the tangent bundle of

∏m
i=1 Pni .

Corollary 2.4.3. For any V , P(Tn ⊗ V ) and FLTn are a Mori dream spaces.
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The Cox ring Cox(PT2) has the following presentation:

Cox(PT2) = K[x1, x2, x3, Y1, Y2, Y3]/⟨x1Y1 + x2Y2 + x3Y3⟩

The rank of T2 is 2, so by Theorem 2.3.6 we should expect higher degree gener-
ators and relations in the presentation of Cox(P(T2 ⊕ T2)). We can directly com-
pute (using [18, Algorithm 5.6]) the Cox ring of P(T2 ⊕ T2) to be the quotient of
K[x1, x2, x3, Y1, Y2, Y3, Z1, Z2, Z3,W ] by the ideal:

I2,2 = ⟨Y3Z2 − Y2Z3 − x1W, Y3Z1 − Y1Z3 + x2W, Y2Z1 − Y1Z2 − x3W,

x1Z1 + x2Z2 + x3Z3, x1Y1 + x2Y2 + x3Y3⟩.

After a change of coordinates, this ideal is recognizable as the Plücker ideal defining
the Grassmannian variety Gr2(5) ⊂ P9 in its Plücker embedding. In the grading by
Pic(P(T2⊕T2)) ∼= Pic(P2)×Z ∼= Z×Z, deg(xi) = (−1, 0), deg(Yi) = deg(Zj) = (1, 1),
and deg(W ) = (3, 2).

The purpose of the rest of this section is to find the appropriate generalization of
these observations. We start with the case Tn ⊗Km with m < n.

Proposition 2.4.4. Let 1 ≤ m < n, then Cox(Tn ⊗Km) has the following presenta-
tion:

Cox(P(Tn ⊗Km)) = K[xj, Yij | 1 ≤ i ≤ m, 0 ≤ j ≤ n]/⟨
∑

xjYij | 1 ≤ i ≤ m⟩

.

Proof. The tangent bundles Tn, Tn⊗K2, . . . , Tn⊗Kn−1 are complete intersections by
Corollary 2.3.10.

In the grading by Pic(P(Tn ⊗ Km)) ∼= Pic(Pn) × Z ∼= Z × Z, deg(xj) = (−1, 0),
deg(Yij) = (1, 1). By Corollary 2.3.6 we should expect the case m = n to require
an additional generator of Sym degree n. We use [18, Theorem 1.5] and a close
relationship with a particular Zelevinsky quiver variety to compute the presentation
of Cox(P(Tn ⊗ Kn)). For an array r = (rij)0≤i≤j≤n of nonnegative integers with
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rii = ri, the quiver ideal Ir ⊆ C[f ] is generated by the union over i < j of the size
1 + rij minors in the project Φi+1...Φj of matrices of variables:

Ir = ⟨minors of size 1 + rij in Φi+1...Φj for i < j⟩.

The quiver locus ωr ⊆ Mat is the zero set of the quiver ideal Ir.

The quiver variety we need corresponds to the rank array r:

r =

2 1 0
n 0

n+ 1 n− 1 1
1 1 0 2

This is the rank array for the quiver:

K Kn+1 Kn,
Φ1 Φ2

where rank(Φ1) ≤ 1, rank(Φ2) ≤ n − 1, and rank(Φ2Φ1) = 0. By [24, Theorem
17.23], the ideal:

Ir = ⟨
∑

xjYij, detY (j)⟩ ⊂ K[xj, Yij | 1 ≤ i ≤ n, 0 ≤ j ≤ n]

is prime and Cohen-Macaulay. Here Y (j) denotes the n × n minor of the matrix
n× n+ 1 Y = [Yij] obtained by forgetting the j-th column.

Following [18, Theorem 1.5], we start with a potential presentation of Cox(P(Tn ⊗
Kn)), given as a map Φ between polynomial rings. Letting I = ker(Φ), in order to
show that Cox(P(Tn⊗Kn)) = Im(Φ) it is necessary and sufficient to show that ⟨I, xj⟩
is a prime ideal for 0 ≤ j ≤ n, where:
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Φ : K[xj, Yij,W ] → K[t±j , yij]

xj → t−1
j

W → det[y(0)]t0 · · · tn

Yi0 → (−
n∑

j=1

yij)t0

Yi1 → yi1tj
...

Yin → yintn

First we must identify the kernel I.

Proposition 2.4.5. The kernel of the map Φ is the ideal:

⟨
∑

xjYij, detY (j)− xjW | 1 ≤ i ≤ n, 0 ≤ i ≤ n⟩.

Proof. For now let J = ⟨
∑
xjYij, detY (j) − xjW | 1 ≤ i ≤ n, 0 ≤ i ≤ n⟩. It is

straightforward to check that J ⊆ I. We define a partial term order δ by weighting
the variables xj → 0, Yij → 0, W → 1. We have:

Ir ⊆ inδ(J) ⊆ inδ(I)

The 0-locus of inδ(I) has dimension equal to that of the 0-locus of I, which is n2+n+1.
This is the same as the dimension of the quiver variety defined by Ir. It follows that
Ir = inδ(J) = inδ(I), and I = J .

Next, for use of Theorem 2.1.13, we must show that ⟨I, xj⟩ is always prime. The
fact that in(I) = Ir implies that I is a Cohen-Macaulay ideal and that ⟨I, xi⟩ is also
Cohen-Macaulay. It is straightforward to show that ⟨I, xj⟩ is generically reduced.
This and the Cohen-Macaulay property implies that ⟨I, xj⟩ is reduced and unmixed.
We show that the corresponding variety is irreducible by arguing that it has one
top-dimensional component. We require the following lemma.

Lemma 2.4.6. Let ∅ ≠ S ⊆ [n], and let JS = ⟨
∑

i∈S Yji, detY (j) | 0 ≤ j ≤ n⟩ be
the ideal of the variety FS. The given generating set of JS is a Gröbner basis, and
dim(FS) = n2 − 1.
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Proof. Consider the matrix of variables
Y10 Y11 . . . Y1n
Y20 Y21 . . . Y2n
Y30 Y31 . . . Y3n
...

...
. . .

...
Yn0 Yn1 . . . Ynn


under the term order:

Y10 ≺ Y11 ≺ . . . ≺ Y1n ≺ Y20 ≺ Y21 ≺ . . . ≺ Y2n ≺ Y30 ≺ Y31 ≺ . . . ≺ Ynn,

where the Yj0 element is the smallest in the row, but the ordering completes the
row from left to right before moving on to the next row. Let |S| = k. Without
loss of generality we can have these forms appear together and at the beginning of
the matrix (starting in column two since we will consider deleting the first column).
Therefore, we wish to verify that the generators fj =

∑k
i=1 Yji, 1 ≤ j ≤ n and

detY (j) form a Gröbner basis.
We verify that the generators are a Gröbner basis by computing the S-pairs. The fj
and the determinants each independently form their own respective Gröbner bases.
In particular, the fj are linear, and the minors are the usual generating set of the
ideal of a determinantal variety. It remains to show that the the S-pair of one of the
fj and one detY (j) reduces to zero.
Without loss of generality, we consider detY (0). It is straightforward to show that
the lead term LT(detY (0)) = Y11Y22...Ynn. Observe that LT(detY (0)) is disjoint
from the lead term of every fj except for f1. Therefore, we only need to consider
S(f1, detY (0)):

S1 = S(f1, detY (0)) = Y22Y33...Ynn(Y11 + Y12 + ...+ Y1k)− detY (0)

= Y22Y33...Ynn(Y12 + ...+ Y1k)− (detY (0)− Y11Y22...Ynn).

There are (n − 1)! terms of the determinant with the coefficient Y11, so the LT(S1)
will also be one of these terms. In each of these determinant minors, the Yjj term
will lead, so LT(S1) = −Y11Y22Y33...Ynn−1Yn−1n. Notice LT(f1)|LT(S1), so we have:
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S2 = S1 − (−Y22...Ynn−1Yn−1n)(f1)

= Y22Y33...Ynn(Y12 + ...+ Y1k)− (detY (0) + Y11Y22...Ynn)

− (−Y22...Ynn−1Yn−1n)(Y11 + Y12 + ...+ Y1k)

= (Y22Y33...Ynn − Y22...Ynn−1Yn−1n)(Y12 + ...+ Y1k)− detY (0)

− Y11Y22...Ynn + Y11Y22...Ynn−1Yn−1n).

We continue in this way until we have accounted for all of the terms of the determi-
nant that contain Y11, giving:

S(n−1)! = (Y12 + Y13 + ...+ Y1k)(detY (0)1,1))− (detY (0))− Y11(detY (0)1,1)))

= (f1 − Y11)(detY (0)1,1)− (detY (0)− Y11(detY (0)1,1)),

where Y (0)1,1 is the minor of Y (0) achieved from deleting the first row and first
column. Then, S(n−1)! has no remaining terms that contain Y11, so we move on to
the next lowest term: Y12. Notice that, per the term order, the next leading terms of
the determinant will contain Y12Y21 since Y21 is the smallest term in the second row.
In fact, the lead terms will appear in the same order as when we considered terms
containing Y11, just with the opposite sign and Y22 term replaced with Y21. That
is to stay, LT(S(n−1)!) = −Y12Y21Y33...Ynn, which is divisible by LT(f2) = Y21. This
gives:

S((n−1)!+1) = S(n−1)! − (−Y12Y33...Ynn)(f2)
= (f1 − Y11)(detY (0)1,1)− [detY (0)− Y11(detY (0)1,1)]

− (−Y12Y33...Ynn)(Y21 + ...+ Y2k)

= (f1 − Y11)(detY (0)1,1) + (Y22 + ...+ Y2k)(Y12Y33...Ynk)

− (detY (0)− Y11(detY (0)1,1)− Y12Y21Y33...Ynn).

Continuing in this way, we’ll get:

S2(n−1)! = (f1 − Y11)(detY (0)1,1)− (f2 − Y21)(detY (0)1,2)

− ((detY (0)− Y11(detY (0)1,1) + Y12(detY (0)1,2)).
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At the end of each k(n − 1)! steps, we are pulling the cofactor Y1k(detY (0)1,k off
detY (0) and adding (fk − LT(fk))(detY (0)1,k. It follows that:

Sn! = (f1−Y11)(detY (0)1,1)−(f2−Y21)(detY (0)2,1)+...+(−1)n+1(fn−Ynn−1)(detY (0)nn−1).

In particular:

Sn! = det


(f1 − Y11) Y12 . . . Y1n

...
...

. . .
...

(fn − Yn1) Yn2 . . . Ynn


 = 0.

as the first column is the sum of the k − 1 columns used to create fj, creating a lin-
ear dependence. We conclude that the collection of generators forms a Gröbner basis.

We now compute the dimension of FS. Consider the collection {Y01...Ynn} of n(n +
1) variables. We wish to determine the dimension of the initial ideal, in(JS), by
determining the degree of the largest monomial,M , not divisible by any generator of
in(JS). Notice that, from the fj, in(JS) contains n degree 1 lead terms, {Y11, ..., Y1n},
none of which can appear in M . However, the product of the remaining n2 variables
is still divisible by the lead terms of the determinants. In order to remove these, we
consider how many variables could possible end up in the top left corner of the of
the n × n minor, Y . These terms come from the first two columns of our general
matrix. However, the entire second column has been removed from consideration
by the lead terms of the linear forms. Therefore, we consider only the first column.
With n rows, there is 1 entry from the first column that could appear in the top
left position, all of which appear in the subsequent lead term of the corresponding
determinant. Therefore, these terms also cannot appear in M . This is all the terms
that need to be removed since the lead term of all the determinants is the product
of its diagonal entries, all of which contain an entry from the first two columns of
the general n× (n+ 1) matrix. Therefore,

dim(FS) = deg(M) = n(n+ 1)− (n)− 1 = n2 − 1.
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Proposition 2.4.7. The ideal ⟨I, xj⟩ is prime.

Proof. It suffices to treat the case j = 0. The ideal ⟨I, x0⟩ is generated by
∑n

j=1 xjYij
for 1 ≤ i ≤ n, the minor detY (0), and detY (j)−xjW for 1 ≤ j ≤ n. The initial ideal
inδ⟨I, xj⟩ contains ⟨Ir, xj⟩, and the dimensions of the varieties of these ideals coincide,
so it suffices to check if ⟨Ir, xj⟩ is prime. Let V be the variety of this ideal, then there
is a T n equivariant extension f ∗ : K[x1, . . . , xn] → K[V ]. Let O(S) ⊆ An

K be the orbit
of T n where xj ̸= 0 for j ∈ S, then the fibers of the map f : V → An

K over any O(S)
are all isomorphic. We use this to compute the dimension of f−1(O(S)) = VS.
Starting with the smallest case S = ∅, we set all xj = 0. The fiber is then the
determinantal variety cut out by ⟨detY (j) | 0 ≤ j ̸= n⟩. This variety has dimension
(n − 1)((n + 1) + n − (n − 1)) = n2 + n − 2. If S ̸= ∅, we can consider the
fiber FS over the point pS, where Xj(pS) = 1 j ∈ S, Xj(pS) = 0 j /∈ S. We have
dim(VS) = dim(FS)+|S|. The variety FS is cut out by the ideal ⟨

∑
j∈S Yij, det(Y (j)⟩.

By Lemma 2.4.6, dim(FS) is n2 − 1. As a consequence, dim(VS) = n2 − 1 + |S| <
n2 + n− 1 = dim(V[n]).
We conclude that V[n] has strictly higher dimension than all other VS, so the closure
V [n] ⊆ V is a top dimensional component. But the complement of this closure
must be composed of constructible sets of strictly smaller dimension. It follows that
V = V [n], and that V is reduced and irreducible.

Now by [18, Theorem 1.5] we have:

Cox(P(Tn ⊗Kn)) = K[xj, Yij,W ]/⟨
∑

xjYij, detY (j)− xjW ⟩.

Remark 2.4.8. In principle the multigraded Hilbert series of Cox(P(Tn⊗Kn)) should
be expressible in terms of the K-polynomial of quiver variety determined by the rank
array r. This involves the so-called Grothendieck polynomials, see [21].

By Theorem 2.3.7, Cox(P(Tn ⊗Km)) for m ≥ n is the image of the map:
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Φm : K[xj, Yij,Wτ ] → K[t±j , yij]

xj → t−1
j

Wτ → det[y(0, τ)]t0 · · · tn

Yi0 → (−
n∑

j=1

yij)t0

Yi1 → yi1tj
...

Yin → yintn

where 1 ≤ i ≤ m, 0 ≤ j ≤ n, and τ ∈
∧m[n] = {S ⊂ [n] | |S| = n}. In the grading by

Pic(P(Tn⊗Km)) ∼= Z×Z, the addition generators Wτ all have degree (n+1, n). We
can rephrase this by saying that there is a surjection of twisted commutative algebras:

ΦV : Sym

(
Kn+1 ⊕ (Kn+1 ⊗ V )⊕

n∧
V

)
→ Cox(P(Tn ⊗ V )).

Remark 2.4.9. In future work, it may be of interest to find a description of the
functor V → ker(ΦV ).

2.4.1 The full flag bundle FLTn

By Theorem 2.3.2, the Cox ring Cox(FLTn) is the algebra of invariants Cox(P(Tn ⊗
Kn−1))Un−1 , where Un−1 is the group of n− 1× n− 1 lower-triangular matrices. The
action of Un−1 on Cox(P(Tn ⊗ Kn−1)) extends to an action on the presenting poly-
nomial ring K[xj, Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n − 1], so we obtain a presentation by
invariants:

K[xj, Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n− 1]Un−1 → Cox(FLTn) → 0.
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The algebra K[xj, Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n − 1]Un−1 ⊂ K[xj, Yij | 0 ≤ j ≤
n, 1 ≤ i ≤ n − 1] is a polynomial ring in n + 1 variables over the Plücker algebra
of minors of the matrix [Yij]. We present Cox(FLTn) as a quotient of the polyno-
mial ring K[xj, Pτ , P0,τ | 0 ≤ j ≤ n, τ ⊂ [n]]. We make use of the realization of
Cox(P(Tn ⊗Kn−1)) as a subalgebra of K[tj, yij], to get that Cox(FLTn) is the image
of the polynomial map Ψ : K[xj, Pτ , P0,τ | 0 ≤ j ≤ n, τ ⊂ [n]] → K[tj, yij], where:

Ψ(xj) = t−1
j ,

Ψ(Pτ ) = det[y(τ)]tτ ,

Ψ(P0,τ ) =
n∑

j=1

det[y(j, τ)]t0t
τ .

Here y(τ) denotes the minor on the first |τ | rows and the τ columns of [yij]. The map
Ψ factors through the quotient map from K[xj, Yij | 0 ≤ j ≤ n, 1 ≤ i ≤ n−1]Un−1 , so
the usual quadratic Plücker relations hold among the Pτ and P0,τ . Additionally, we
have the relations

∑
j /∈τ xjPjτ = 0, which are consequences of the defining relations

of Cox(P(Tn ⊗Kn−1)).

Theorem 2.4.10. The ideal ker(Ψ) presenting (FLTn) is generated by the Plücker
relations among the Pτ and P0,τ , along with the quadratics

∑
j /∈τ xjPjτ = 0.

For the proof of Theorem 2.4.10 we use a subduction argument [17, Algorithm 1.4]
involving a modification of the semigroup GZn of Gel’fand-Zetlin patterns with n
rows. A Gel’fand-Zetlin pattern g ∈ GZn is an array of integers arranged in n
rows, where the i-th row has n + 1 − i entries gij. These integers satisfy additional
interlacing inequalities : gij ≥ gi+1,j ≥ gi,j+1. Let GZ+

n be the set of patterns with
g1n = 0. It is well-known that the Cox ring Cox(FL(Kn)) has a discrete valuation
vGT with value semigroup is GZ+

n . The generators of GZ+
n are in bijection with

strict subsets τ ⊂ [n], and in turn, with the Plücker generators of Cox(FL(Kn)).
The pattern g(τ) corresponding to τ is the unique pattern with |τ ∩ [n− i + 1]| 1’s
and |[n− i+ 1] \ τ | 0’s in row i.
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Proof of Theorem 2.4.10. We select a monomial ordering on K[tj, yij] which satisfies
yij ≺ tℓ for all i, j, ℓ, and is diagonal on the yij. In particular, the initial form
in≺ det[y(τ)] is the product of the diagonal terms. The following construction should
be compared to the Gel’fand-Zetlin degeneration of the usual flag variety.
We identify the initial forms in≺t

−1
j , in≺ det[y(τ)]tτ , in≺ det[y(0, τ)]t0t

τ with certain
extended Gel’fand-Zetlin patterns. The form in≺xj is sent to (0,−ej) ∈ GZn ×
Zn+1, and in≺ det[y(τ)]tτ is sent to (g(τ),

∑
j∈τ ej) ∈ GZn × Zn+1. The initial form

in≺
∑n

j=1 det[y(j, τ)]t0t
τ requires some discussion. Observe that this sum can be

rewritten as
∑

j /∈τ det[y(j, τ)]t0t
τ . The initial monomial from these minors will then

be the diagonal term of the minor (ℓ, τ) where ℓ is the first element of [n] not
in τ . We let τ ∗ denote τ ∪ {ℓ}. Accordingly, we send in≺

∑n
j=1 det[y(j, τ)]t0t

τ to

(g(τ ∗), e0 +
∑

j∈τ ej) ∈ GZn × Zn+1.
We must compute a generating set of binomial relations on these extended Gel’fand-
Zetlin patterns, then show that each relation can be lifted to an element in the ideal
generated by the Plücker relations and the

∑
j /∈τ xjPjτ = 0. Following [17, Theorem

1.4], we have then shown that these relations generate ker(Ψ), and that (FLTn) has
a full rank valuation with Khovanskii basis given by the xj and Pτ .
To simplify notation, we let (0,−eℓ) be denoted by [−ℓ], (g(τ),

∑
j∈τ ej) be denoted

by [τ, 0], and (g(τ ∗), e0 +
∑

j∈τ ej) be denoted by [τ ∗, ℓ], where ℓ is the element
“replaced” by 0. Observe that [τ, a] makes sense if and only if [a] ⊂ τ .
Now we have several natural classes of binomial relations. For any a ∈ [n] with
[a] ⊂ τ we have:

[−a][τ, 0] = [0][τ, a].

Next, for any τ, η ⊂ [n],

[τ, 0][η, 0] = [τ ∪ η, 0][τ ∩ η, 0]

For any marked [τ, a][η, b] we can perform relations like this and the there is al-
ways a compatible assignment of the markings a, b. We call relations of this type
“union/intersection” relations. The first type of relation above lifts to

∑
j /∈τ xjPτ = 0,

and the union/intersection lifts to a Plücker relation. Therefore, if we check that
these relations suffice to generate the binomial ideal which vanishes on the initial
forms, we have shown that the required relations generate ker(Ψ).
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Let us suppose we have two words A1 · · ·An, B1 · · ·Bn whose product maps to the
same extended Gel’fand-Zetlin pattern. We must show that after applications of the
above binomial relations, these words can be taken to a common word. If any element
[−a] corresponds to an [a] not supported by a pattern elsewhere in the word, this can
be read off the Zn+1 component of the corresponding extended pattern. Moreover,
any [−a] for a which appear in some (τ, 0) can be turned into [0] using the first
relation above. The number of these elements can also be read off the extended
pattern, so we may assume without loss of generality that both words do not contain
any elements [−a] for a ∈ {0} ∪ [n]. Next, using the union/intersection relations, we
can assume that the underlying Gel’fand-Zetlin patterns of the Ai and Bi are the
same, with possibly different markings. Select a pattern on both sides, A1 = [τ, a1],
B1 = [τ, b1]. If both markings are equal (including the case that they are 0), we
may factor off this top element and appeal to induction. If not, say a1 < b1. We
must conclude that [a1] ⊂ τ and [b1] ⊂ τ . Moreover, there must be some other
pattern Aj = [η, b1]. Indeed, the set of markings can be deduced by comparing the
total Gel’fand-Zetlin pattern of the word to its Zn component. Now we can form
[τ, a1][η, b1] = [τ, b1][η, a1] as [a1] ⊂ [b1] ⊂ η. We factor off the first element of both
words, and once again appeal to induction. This completes the proof.

Remark 2.4.11. These descriptions are presented for the tangent bundle Tn since
that’s the framework for which the results were originally obtained. However, af-
ter further consideration, each argument in this section holds up for E a sparse,
hypersurface bundle. We intend to address this in future work.

Copyright© Courtney George, 2023.
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Chapter 3 Positivity Properties of Toric Vector Bundles

This chapter chronologically followed our study of projectivized toric vector bundles
as Mori dream spaces discussed in the previous chapter. In particular, the class of
Mori dream space bundles is so well-behaved that it is natural to wonder about the
geometry of these bundles. We find that these nicely described (monomial, CI, sparse,
etc.) toric vector bundles have desirable implications between the commonly-studied
positivity properties. To begin our discussion of these results, we first establish some
fundamental ideas. These definitions and foundational results are summarized from
[10] and [22].

3.1 Background

Let X be an n-dimensional nonsingular variety and let D be a divisor on X. Then,
for a curve C on X, intersection number of D with C, written D · C, generalizes
the number of times two curves intersect in higher dimensions (see [22]). We will use
the intersection number as a positivity metric for a divisor.

Recall that a Weil divisor is a formal linear combination, D =
∑
aidi, where ai ∈ Z

and di are prime codimension-1 subvarieties. Additionally, we have another classi-
cal family of divisors: Cartier divisors. A Cartier divisor is a collection {Ui, fi}
where {Ui} are an open cover of X, fi ∈ K×(X), and figij = fjgij on Ui ∩ Uj for
gij a regular function on Ui ∩ Uj. Over a nonsingular variety, we can realize Cartier
divisors as Weil divisors by defining D =

∑
v ordv(fi)[v] for the fi from the {Ui, fi}

pairs that define our Cartier divisors [10]. For a variety X, we will denote the Weil
divisors on X by WDiv(X) and the Cartier divisors by CDiv(X). We recall that the
class group of X is CL(X) = WDiv(X)/Prin(X). The Cartier divisor analogue to
the class group is the Picard group, Pic(X).

To establish the environment we will work in, consider a variety X and Cartier
divisors D,D′ ∈ Div(X). We then say that D is numerically equivalent to D′,
written D ∼num D′, if D · C = D′ · C for all irreducible curves C. We then define
the Néron-Severi group to be N(X) := CDiv(X)/ ∼num. We will consider the
Néron-Severi space to be NQ(X) := N(X)⊗Q. We then have the following diagram:
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CDiv(X) WDiv(X)

Pic(X) CL(X)

N(X)

However, we are considering the case where X is a smooth, projective variety, we
get that CDiv(X) ∼= WDiv(X) and Pic(X) ∼= CL(X) [10]. We then get a natural
map CL(X) → N(X). For our study, we make the assumption that the class group
CL(X) is finitely generated, meaning CL(X) → N(X) becomes an isomorphism after
tensoring with Q. Therefore, we work with the definition that NQ(X) := CL(X)⊗Q.

3.1.1 Positivity of Divisors on Varieties

Effective divisor classes give us a first notion of positivity. Recall that a divisor
D =

∑
aidi is called effective if ai ≥ 0 for all i. The complete linear system of

a divisor D on a variety X, denoted |D|, is the set of all effective divisors linearly
equivalent D. Recall that two divisors D and E are linearly equivalent if there is
a rational function f on X such that E = D + div(f). A divisor class is called
an effective divisor class if there exists an E ∈ |D| where E is effective. It is
called a pseudoeffective divisor class if there exists an n ∈ N such that n|D| is
effective. Pseudoeffective classes generate a cone, called the pseudoeffective cone,
PsEff(X) ⊆ NQ(X). Contained in the pseudoeffective cone is the effective monoid,
Eff(X) ⊆ PsEff(X).

Basepoint-free-ness provides the second, more sharpened notion of positivity. The
base locus of a complete linear system |D|, denoted Bl(|D|), is the common inter-
section of the supports of effective divisors in |D|. More specifically,

Bl(|D|) :=
⋂

E∈|D|

Supp(E).

Notice that Bl(|D|) = X if |D| is not effective. D is called basepoint free (bpf) if
Bl(|D|) = ∅. Like in the effective case, we get that the basepoint free divisors form
a monoid BPF(X) ⊆ N(X). A divisor D is called semi-ample if there exists an
n ∈ N such that nD is basepoint free. The collection of semi-ample divisors of D
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generate a cone, called the semi-ample cone, which we’ll denote SAmp(X).

We recall that the space of global sections H0(X,D) = {f ∈ K(X) | div(f)+D ≥ 0}
is a vector space in the space of rational functions on X. When X is complete, we
have that H0(X,D) is finite-dimensional with dimension depending only on |D|.
Then, choosing a basis {f1, ..., fd} of H0(X,D), we have the map:

φ : X\Bl(|D|) → PH0(X,D)∨, x 7→ [f0(x) : ... : fd(x)].

A change of basis amounts to an action by the projective general linear group. We
also have that a different choice of D ∈ |D| defines a natural isomorphism between
section spaces. Notice that if X is basepoint free, we have

φ : X → PH0(X,D)∨.

Then a divisor D is very ample if φ is an embedding. D is called ample if there
exists n ∈ N such that nD is very ample.

Recalling intersection numbers, we then say that a divisor D is nef if the intersection
number of D with a curve C, written D ·C, is nonnegative for all curves C in X. We
let NEF(X),Amp(X) ⊆ N(X)Q be the cones generated by nef and ample divisors
on X. Crucially, due to Kleiman, we have the following relationship.

Theorem 3.1.1. [19] For a projective variety X, the nef cone of X is the closure of
the ample cone of X.

For a variety X, the canonical bundle, ωX , is a line bundle that can be realized
as the top exterior power of the tangent bundle of X, ωX =

∧d TX . A canonical
divisor, KX , is then a divisor such that ωX = L(KX). An anticanonical divisor is
any divisor −K such that K is canonical. In terms of the bundles, the anticanonical
bundle is the inverse bundle ω−1 such that ω is canonical. When −KX is ample, the
space X is called Fano.

The study of positivity properties and canonical bundles led Fujita to the following
conjectures.

Conjecture 3.1.2. Let X be smooth of dimension n and let A ∈ CL(X) be ample,
then

1. for m ≥ n+ 1, KX +mA is basepoint free,
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2. for m ≥ n+ 2, KX +mA is very ample.

We will refer to the first part of the conjecture as Fujita freeness and the second
part as Fujita ampleness. The Fujita conjectures have been confirmed for particular
cases, like smooth projective toric varieties. However, since their declaration in 1988,
they has not been proven. We approach these conjectures for special bundles over Pn̄.

Mori’s cone theorem ([22, Theorem 1.5.33]) shows that if X and A are as in 3.1.2,
then KX + mA is nef if m ≥ n + 1 and ample if m ≥ n + 2 (see [22, Section
10.4]). Therefore, to prove Fujita’s freeness and ampleness conjectures it is sufficient
to show that nef implies basepoint free and ample implies very ample on PE(L,D).
Note that these implications do not hold in general, and we conclude this chapter
with an example of a case where nef does not imply basepoint free.

Remark 3.1.3. I cannot help but share the rant that many around me have heard as
I was writing this chapter. The names for these positivity properties are inconsistent
and frustrating. You mean to tell me that “semi-ample” is not a property related to
ampleness? Maddening. I propose we (as a community) adopt the following naming
convention:

very ample → ample

ample → pseudo-ample

semi-ample → pseudo-basepoint free

However, no one has given me the power to change these namings. Therefore, for
consistency’s sake, this document will (unfortunately) continue to use the names as
they are classically defined.

3.1.2 Positivity of Mori Dream Spaces

When our space X is a Mori dream space, we have a much more computational de-
scription of these positivity monoids and cones. In particular, we consider the case
where X is a smooth variety with finitely generated class group.

Let f1, ..., fn be a homogeneous (with respect to CL(X)) generating set of Cox(X).
Let deg(fi) be the class-grading of fi ∈ Cox(X). We then have the maps

φ : Qn
≥0 → N(X), (a1, ..., an) 7→

∑
ai deg(fi)

and
ψ : Zn

≥0 → N(X), (a1, ..., an) 7→
∑

ai deg(fi).
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The image of φ is then the pseudoeffective cone of X, PEff(X). The image of ψ
is the effective monoid of X, Eff(X).

We can define cones of the divisors that have nonvanishing sections at given points.
In particular, we can define the monoid at a point p as

Sp := {D | ∃s ∈ H0(X,D), s(p) ̸= 0}.

Note that, with the nonvanishing section, these monoids see the positivity at the
point.

Proposition 3.1.4. Let X be a Mori dream space. Then Sp is generated by deg(fi)
for fi generators of Cox(X) such that fi(p) ̸= 0.

Proof. Let D ∈ Sp. Then there exists s ∈ H0(X,D) such that s(p) ̸= 0. Write
s =

∑
cαf

α1
1 ...fαn

n . Since this is homogeneous, we have D =
∑
αi deg(fi). Since at

least one of the terms of s must be nonzero at p, we have fi(p) ̸= 0 for all αi > 0.

Define Cp := Q≥0Sp. We then have the following definition for two of the cones we
will consider.

Proposition 3.1.5. The basepoint free cone of a Mori dream space X is

BPF(X) =
⋂
p∈X

Sp

and the semi-ample cone is

SAmp(X) =
⋂
p∈X

Cp.

In the above proposition, we denote
⋂
Cp as the semi-ample cone. For a general

variety X, this intersection does define only the semi-ample cone. However, in the
case that X is a Mori dream space, these we have that the semi-ample cone and the
nef cone coincide [1]. As the nef cone is of more interest to our study, we will refer
to this intersection as NEF(X).

In summary, for a divisor X, we have the following cone containments:

Amp(X) ⊆ NEF(X) ⊆ SAmp(X) ⊆ PsEff(X).

We have a similar inclusion for the associated monoids:

BPF(X) ⊆ Eff(X).
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We can see from Propositions 3.1.4 and 3.1.5 that it suffices to consider only finitely
many points p ∈ X. In particular, these cones are polyhedral and the monoids are
finitely generated.

3.2 Positivity for Mori Dream Space Bundles

Throughout this section, we consider the case where PE is a Mori dream space. Pre-
sentations of Cox(PE) for various projectivized toric vector bundles are constructed
in [18]. Let Xi ∈ Cox(PE) for 1 ≤ i ≤ n denote the section of the pullback of the
class of the i-th toric divisor on Y (Σ) corresponding to the ith ray of Σ. For each
generator yj ∈ C[y1, . . . , ym] there is a corresponding section Yj ∈ Cox(E). The j-th
column Dj of the diagram D defines an element dj =

∑
Dijei ∈ CL(Y (Σ)). The

divisor classes of these sections are as follows:

deg(Xi) = (−ei, 0),

deg(Yj) = (dj, 1).

We compute the various positivity cones for PE . Expanding on Proposition 3.1.5, we
have the following proposition that details exactly which finite collection of points
we need to consider.

Proposition 3.2.1. For BPF(PE) and NEF(PE) it suffices to consider the points in
the TN -fixed-point fibers (PE)σ ⊂ PE.

Proof. Let p ∈ PE , and let n ∈ N be such that p0 = limt→0 χn(t) ◦ p ∈ PEσ for a
maximal face σ ∈ Σ. Now if s ∈ Cox(PE) is a TN−quasi-invariant section, we must
have s(p) = 0 implies s(p0) = 0. As a consequence, any section which does not
vanish at p0 must not vanish at p, so Sp ⊇ Sp0 and Cp ⊇ Cp0 .

3.2.1 Bundles over a general toric variety, Y (Σ)

Now, we want to reduce the number of points that we need to consider. Let L ⊂
C[y1, . . . , ym] be a linear ideal. Then consider the lattice of flats of the matroid
M(inσL). To each maximal flat in M(inσL), we can associate a point, formalized in
the following definition.

Definition 3.2.2. For σ ∈ Σ a maximal face, and F a maximal flat of the matroid
M(inσL), let pσ,F ∈ PEσ be such that an entry is nonzero if and only if that entry
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corresponds to F . (There is a unique point in the zero-locus of inσL, up to scaling,
since F is maximal.) Let Sσ,F and Cσ,F be the monoid and rational cone of nonzero
sections associated to pσ,F .

Theorem 3.2.3. Let E be a toric vector bundle over Y (Σ) with Cox(PE) generated
in Sym-degree 1. Then BPF(PE) =

⋂
σ,F Sσ,F , and NEF(PE) =

⋂
σ,F Cσ,F .

Proof. By Proposition 3.2.1, we only need to consider points p ∈ V (inσL) ⊆ Pm+1.
We have that the {yi | yi(p) = 0} form a flat, Fp. To see this, suppose that ⟨Fp⟩ ≠ Fp.
Then let y ∈ ⟨Fp⟩\Fp. This allows us to write y =

∑
aiyi for yi ∈ Fp. However, if

yi(p) = 0 for all yi ∈ Fp, then y(p) = 0. So Fp is a flat. As a consequence, if F is a
maximal flat containing Fp. By Proposition 3.1.4, Cpσ,F ⊆ Cp.

Recall that a monomial toric vector bundle E(L,D) is a toric vector bundle where
inσ(L) is a monomial ideal for all maximal σ ∈ Σ, where Σ. Monomial toric vector
bundles are a natural family to consider for positivity properties since the property of
being monomial has a nice description in terms of the cones of the Gröbner fan. Ad-
ditionally, the bundle having a unique minimal generator serves as a sort of “generic
case” for a collection of points in Trop(L).

Lemma 3.2.4. Let E be a monomial bundle over Y (Σ), and let σ ∈ Σ be a maximal
face, then any maximal flat F of M(inσL) is the complement of a single element.

Proof. Each initial ideal inσL is a monomial ideal. As a consequence, M(inσL) has
a single basis of r elements and m− r loops.

Lemma 3.2.5. Let E be a monomial toric vector bundle on Y (Σ) with Cox(PE)
generated in Sym-degree 1. Then the monoids Sσ,F are freely generated and the
cones Cσ,F are smooth.

Proof. By Lemma 3.2.4, for some i ∈ [m] we must have Sσ,F = −Sσ×{0}+Z≥0(di, 1).
This is always a freely generated monoid.

Proposition 3.2.6. Let E be a monomial toric vector bundle on Y (Σ) with Cox(PE)
generated in Sym-degree 1, then any nef divisor on PE is basepoint free. In particular,
PE satisfies Fujita’s freeness conjecture.

Proof. By Theorem 3.2.3 we have BPF(PE) =
⋂

σ,F Sσ,F . The intersection of a set
of saturated monoids is a saturated monoid, so any integral nef divisor is already a
member of BPF(PE).
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Corollary 3.2.7. Let E(L,D) be a CI bundle with D =
[
ω1...ωn

]T
. If for all σ,∑

i∈σ(1) ωi lives in the interior of a maximal face of GFan(L), then PE satisfies Fujita
freeness.

Proof. The Gröbner fan condition implies that the bundle in monomial.

3.2.2 Bundles over projective space

Theorem 3.2.8. Let E be a bundle over Pn with Cox(PE) generated in Sym-degree
1. Then any pseudoeffective class on PE is effective and any nef class on PE is
basepoint free. In particular, E satisfies Fujita freeness.

Proof. Similarly to Proposition 3.2.6, Cox(PE) begin generated in Sym-degree 1
means that any monoid Sσ,F is of the form Z≥0{(−1, 0), (dj, 1)} for dj ∈ Z≥0. Let-
ting d = max{dj}, we have that the effective monoid of any such bundle is generated
by (−1, 0) and (d, 1). Similarly, by intersecting, the basepoint free monoid of PE is
generated by (−1, 0) and (min{dj}, 1).

Corollary 3.2.9. Let E be a uniform bundle over Pn with m−r < n (as in Corollary
2.2.4). Then E satisfies Fujita freeness.

The following example shows that, even in the simplest possible case, the above
theorem does not hold over products of projective spaces.

Example 3.2.10. Consider a monomial bundle E(L,D) on P1 × P1 with L = ⟨y1 +
y2 + y3 + y4⟩ and

D =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 .
We then map

deg(Y1) = (a1, 0, 1)

deg(Y2) = (0, a2, 1)

deg(Y3) = (a3, 0, 1)

deg(Y4) = (0, a4, 1)

and have the cones shown in Figure 3.1.
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a1 a3

a2

a4

Figure 3.1: The class group, CL(PE).

Here, the negative orthant is the (saturated!) nef cone. However, the integral points
on the line connecting a3 and a4 represent classes that are pseudoeffective but not
effective.

We now give an example of a bundle over Pn that is not generated in Sym-degree 1.
As a result, we are able to produce a pseudoeffective class that is not effective.

Example 3.2.11. Let T2 denote the tangent bundle of P2. It is known ([12, 8, 18, 5]
that PT2 is a Mori dream space with Cox ring

Cox(PT2) = C[X1, X2, X3, Y1, Y2, Y3]/⟨X1Y1 +X2Y2 +X3Y3⟩.

In particular, T2 is a CI toric vector bundle. See [5] for an account of the Cox
rings of projectivized toric vector bundles of the form P(T2 ⊗ V ), where V is a finite
dimensional vector space. Here we consider a different operation; let Sym2T2 denote
the 2-nd symmetric power of T2. It can be shown that PSym2T2 is isomorphic to
the Hilbert space Hilb2(P2). Below we give the diagram and linear ideal defining
Sym2T2.
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L = ⟨y11 + y12 + y13, y12 + y22 + y23, y13 + y23 + y33⟩ ⊂ C[y12, y13, y23, y11, y22, y33]

D =

1 1 0 2 0 0
1 0 1 0 2 0
0 1 1 0 0 2



The corresponding elements X1, X2, X3, Y12, Y13, Y23, Y11, Y22, Y33 ⊂ Cox(PSym2T2)
do not suffice to generate. However, after an application of the KM algorithm, we
find a single new generator Z ∈ Cox(PSym2T2). The Cox ring of PSym2T2

∼= Hilb2P2

is then generated by X1, X2, X3 Y12, Y13, Y23, Y11, Y22, Y33, Z subject to the ideal:

X1Y13 +X2Y23 +X3Y33, X2Y12 +X1Y11 +X3Y13, X1Y12 +X2Y22 +X3Y23,

X1X2Z + Y13Y23 − Y12Y33, X2X3Z + Y12Y13 − Y23Y11, X1X3Z + Y12Y23 − Y13Y22,

X2
2Z − Y 2

13 + Y11Y33, X2
2Z − Y 2

12 + Y11Y22, X2
1Z − Y 2

23 + Y22Y33,

2Y12Y13Y23 − Y 2
23Y11 − Y 2

13Y22 − Y 2
12Y33 + Y11Y22Y33.

The degrees of these generators in CL(PSym2T2) ∼= Z× Z are:

deg(Xi) = (−1, 0), deg(Yij) = (2, 1), deg(Z) = (6, 2).

In particular, the class (3, 1) = 1
2
deg(Z) lies in the pseudo-effective cone but is not

effective. This class corresponds to the exceptional divisor of Hilb2P2 when it is
viewed as a blow-up of the symmetric power Sym2P2.
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3.2.3 Bundles over products of projective space

We now extend to consider the positivity properties of bundles over a product of pro-
jective spaces. Similar to in Chapter 2, we let n̄ = (n1, ..., nk) so Pn̄ = Pn1 × ... × Pnk .
We begin by presenting a combinatorial condition for a bundle over Pn̄ to satisfy the
Fujita conjectures before showing that many of our favorite bundles meet that con-
dition.

Theorem 3.2.12. Let E be a toric vector bundle over Pn with R(PE) generated in
Sym-degree 1, and suppose further that for any 1 ≤ j ≤ m there is a maximal face σ
such that yj is a coloop of M(inσL), then:

1. Any Nef class on PE is basepoint-free,

2. Any ample class on PE is very ample,

3. PE satisfies Fujita’s freeness and ampleness conjectures.

Proof. It suffices to prove 1 and 2. We consider the split toric vector bundle VD =⊕m
j=1O(Dj) determined by the columns of the diagram D. We have a surjec-

tion FD → E and an embedding PE → PFD, and the Cox ring R(PFD) presents
R(PE) via the generators Xi, Yj. As a consequence, we get inclusions BPF(PVD) ⊆
BPF(PE) as subsets of CL(PVD) ∼= CL(PE). Our assumption implies that BPF(PE) =⋂m

j=1(−NEF(Pn), 0) + Z≥0(dj, 1) = BPF(PVD). This directly implies 1. Also, it fol-
lows that any Nef class or basepoint-free class on PE extends to a Nef or basepoint-free
class on PVD. The space PVD is a smooth toric variety, so any ample class is very
ample (in fact projectively normal in this case), so the same must be true for PE .
This proves 2 and 3.

The conditions of the previous theorem are made easier to establish by the following
lemma.

Lemma 3.2.13. Let E be toric vector bundle over X(Σ) associated to (L,D), and
suppose that every circuit of the ideal L has at least one 0 entry in each row of D.
Then if Dj ̸= 0 there is some maximal σ ∈ Σ such that yj is a coloop of M(inσL).

Proof. We will show that there must be some σ ∈ Σ for which yj is not supported
on any linear polynomial in inσ(L). If this is the case, we can find a standard basis
for inσ(L) containing yj, and define p by setting yj(p) = 1, yk(p) = 0 k ̸= j.
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Observe that if yj is supported on a linear form in inσ(L) then yj must be supported
on some linear form in every row of D corresponding to the elements of σ(1). It
follows that if yj is supported on a linear form in each inσ(L), then yj is supported
on at least one linear form in the initial ideal of each row of D. Moreover, the circuits
of L form a universal Gröbner basis, so we conclude that for each row β of D there
is a circuit Cβ ∈ L such that yj is supported on the initial form inβ(Cβ). But the
minimum entry in a row supported on a circuit must be 0. We conclude that Dj = 0,
which is a contradiction.

The diagram condition in Lemma 3.2.13 is satisfied for both sparse bundles and
uniform bundles, so we obtain the following corollary.

Corollary 3.2.14. Let E be a sparse toric vector bundle or a uniform toric vector
bundle over Pn with R(PE) generated in Sym-degree 1, then:

1. Any Nef class on PE is basepoint-free,

2. Any ample class on PE is very ample,

3. PE satisfies Fujita’s freeness and ampleness conjectures.

Notice that this gives us a way to produce an infinite family of bundles over Pn̄

that satisfy the Fujita conjectures, since CI bundles are uniform and generated in
Sym-degree 1.

3.3 Example where NEF does not imply basepoint free

We conclude this chapter by examining an example of a toric vector bundle E whose
projectivization PE has classes that is nef, but not basepoint free. We consider
Y (Σ) = P1 × P1 blown up at 2 points, resulting in the following fan structure.

We let E(L,D) be the toric vector bundle corresponding to

L = ⟨y1 + y2 + y3⟩ ⊂ C[y1, y2, y3],
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D =


c1 0 0
c2 0 0
c3 0 0
c4 0 0
0 c5 0
0 0 c6



Computation of the nef cones in Macaulay2 allow us to test multiple values of
c1, ..., c6. For this example, we consider the case where c1 = 3, c2 = 6, c3 = 9, c4 =
2, c5 = 9, c6 = 6; however, these values can be replaced with any nonnegative values
and maintain properties of PE . Toric vector bundles of this form have previously
found use as counterexamples to global generation in work of Nødland [25]. The Cox
ring Cox(PE) is presented as follows:

C[x1, x2, x3, x4, x5, x6, Y1, Y2, Y3]/⟨x31x62x93x24Y1 + x95Y2 + x66Y3⟩.

We let the classes of the toric divisors corresponding to the rays of Σ be denoted
ei ∈ CL(Y (Σ)) 1 ≤ i ≤ 6. The class group CL(Y (Σ)) is freely generated by
e1, e2, e3, e4 with e5 = e1 + e2 + e3 and e6 = e2 + 2e3 + e4. As a consequence,
the generators of Cox(PE) have the following classes in CL(PE) ∼= CL(Y (Σ))× Z:

[xi] = (−ei, 0)
[Y1] = (3e1 + 6e2 + 9e3 + 2e4, 1)

[Y2] = (9e1 + 9e2 + 9e3, 1)

[Y6] = (6e2 + 12e3 + 6e4, 1)

We label the cones of Σ counter clockwise: σ1 = Q≥0{(1, 0), (1, 1)}, σ2 = Q≥0{(1, 1), (1, 2)},
σ3 = Q≥0{(1, 2), (0, 1)}, σ4 = Q≥0{(0, 1), (−1, 0)}, σ5 = Q≥0{(−1, 0), (0,−1)}, and
σ6 = Q≥0{(0,−1), (1, 0)} (See Figure 3.2).

Each initial ideal inσi
L has two minimal elements which we denote with a 0, 1 vector

indicating the support of the element. For example, over σ1 the initial ideal is
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σ1

σ2σ3
σ4

σ5 σ6

Figure 3.2: The fan of P1 × P1 with labeled cones

inσ1L = ⟨y2 + y3⟩, which has minimally supported solution types 100 (e.g. (3, 0, 0)
and 011 (e.g. (0,−5, 5)). There are 12 corresponding monoids:

S100
1 = ⟨(−e3, 0), (−e4, 0), (−e5, 0), (−e6, 0), (3e1 + 6e2 + 9e3 + 2e4, 1)⟩

S011
1 = ⟨(−e3, 0), (−e4, 0), (−e5, 0), (−e6, 0), (9e1 + 9e2 + 9e3, 1), (6e2 + 12e3 + 6e4, 1)⟩

S100
2 = ⟨(−e1, 0), (−e4, 0), (−e5, 0), (−e6, 0), (3e1 + 6e2 + 9e3 + 2e4, 1)⟩

S011
2 = ⟨(−e1, 0), (−e4, 0), (−e5, 0), (−e6, 0), (9e1 + 9e2 + 9e3, 1), (6e2 + 12e3 + 6e4, 1)⟩

S100
3 = ⟨(−e1, 0), (−e2, 0), (−e5, 0), (−e6, 0), (3e1 + 6e2 + 9e3 + 2e4, 1)⟩

S011
3 = ⟨(−e1, 0), (−e2, 0), (−e5, 0), (−e6, 0), (9e1 + 9e2 + 9e3, 1), (6e2 + 12e3 + 6e4, 1)⟩

S100
4 = ⟨(−e1, 0), (−e2, 0), (−e3, 0), (−e6, 0), (3e1 + 6e2 + 9e3 + 2e4, 1)⟩

S010
4 = ⟨(−e1, 0), (−e2, 0), (−e3, 0), (−e6, 0), (9e1 + 9e2 + 9e3, 1)⟩
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S010
5 = ⟨(−e1, 0), (−e2, 0), (−e3, 0), (−e4, 0), (9e1 + 9e2 + 9e3, 1), ⟩

S001
5 = ⟨(−e1, 0), (−e2, 0), (−e3, 0), (−e4, 0), (6e2 + 12e3 + 6e4, 1)⟩

S100
6 = ⟨(−e2, 0), (−e3, 0), (−e4, 0), (−e5, 0), (3e1 + 6e2 + 9e3 + 2e4, 1), ⟩

S001
6 = ⟨(−e2, 0), (−e3, 0), (−e4, 0), (−e5, 0), (6e2 + 12e3 + 6e4, 1)⟩

Every monoid except S011
1 , S011

2 , S011
3 is smooth. Intuitively, it is the distance between

the rays generated by [Y2] and [Y3] which is allowing for integral points in the convex
hulls of these monoids to be missed.

We let C∗∗∗
i be the cone generated by S∗∗∗

i so that NEF(PE) =
⋂
C∗∗∗

i and BPF(PE) =⋂
S∗∗∗
i .

We get the following vectors as the generators of our Hilbert basis:


−2
−2
−2
−1
0

 ,

0
5
10
0
2

 ,

0
1
2
0
1

 ,

0
2
3
0
1

 ,

0
3
5
0
1

 ,

−1
−1
−1
0
0

 ,

0
2
4
0
1

 ,

−1
2
5
0
1




0
3
3
−1
1

 ,

−1
−1
−2
−1
0

 ,


0
−1
−2
−1
0

 ,

0
3
4
0
1



We the check which, if any, of the basis elements is not able to be written as an
integral combination of the ray generators that define each of our unsaturated cones,
C011

1 , C011
2 , C011

3 . We get that the pairs




0
−1
−2
−1
0

 , C011
1






0
5
10
0
2

 , C011
2






0
−1
−2
−1
0

 , C011
3


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have exactly this issue. Therefore, these classes are not basepoint free.

Copyright© Courtney George, 2023.
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Appendices

Appendix A: KM Algorithm Code

Disclaimer: This code, as it appears, is workable for rank 3 bundles with L = ⟨
∑
yi,
∑
iyi⟩.

The two places where these pieces of data are noted in comments. Changing the rank
is easy. Changing the linear ideal is more complicated, as Macaulay2 is particular
about which ring elements live in and it is possible for the user to input their ideal
in a way incompatible to the adaptedBasis code. It is very much the intention to
continue improving this code so that it works as generally as possible.

Crucially, we need to load the gfan package:

loadPackage "gfanInterface"

Given two ideals, in(I) and J, findMissingGen finds an element of J that is not in
in(I) and returns that element.

findMissingGen = (K,J) -> (

newGens0 = {};

L1 = flatten entries mingens J;

for i from 0 to #L1-1 do(newGens0 = append(newGens0, L1_i % K));

newGens = delete(0_S,newGens0);

return newGens#0;

)

Despite not being the main called function, khovanskiiBasis is what runs the KM
Algorithm given the row of the diagram D as the weight w.

khovanskiiBasis = (w, polyRing, algebraGens, limit, D) -> (

R = polyRing;

n = #algebraGens;

S = QQ[X_1..X_#D, Y_1..Y_(n-#D)];

B = new MutableList from toList(limit:0);
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for i from 0 to n - 1 do (

B#i = algebraGens#i;

);

R’ = QQ[y_1..y_(#transpose(D)),t_1..t_#D];

subB = apply((toList B)_(toList((#D)..n-1)), i -> sub(i,R’));

inB = apply(flatten prepend((toList B)_(toList(0..(#D-1))),

gfanInitialForms(subB, -w)), i -> sub(i, R));

phi = map(R,S, (toList B)_(toList(0..n-1)));

psi = map(R,S, inB);

I = ker phi;

J = ker psi;

u = for b in inB list (

E = matrix{(exponents(b))#0};

matrix{w}*transpose(E))_(0,0)

;

if I == 0 then (

return toList B;

) else (

K = ideal gfanInitialForms(flatten entries mingens I, -u,

"ideal" => true);

while (J != K) do (

if n > limit then (

break

) else (

g = sub(findMissingGen(K,J), S);

B#n = phi(g);

n = n + 1;

subB = apply((toList B)_(toList((#D)..n-1)), i -> sub(i,R’));

inB = apply(flatten prepend((toList B)_(toList(0..(#D-1))),
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gfanInitialForms(subB, -w)), i -> sub(i, R));

S = QQ[X_1..X_#D, Y_1..Y_(n-#D)];

phi = map(R,S, (toList B)_(toList(0..n-1)));

psi = map(R,S, inB);

I = ker phi;

J = ker psi;

u = for b in inB list (

E = matrix{(exponents(b))#0};

(matrix{w}*transpose(E))_(0,0)

);

K = ideal gfanInitialForms(flatten entries mingens I, -u,

"ideal" => true);

)

);

if n > limit then (

print "limit reached";

return toList B;

) else (

return toList B;

)

)

)

pickFirstL identifies the locations of the nonzero entries of the input vector v, then
selects other entries (as many needed for the rank r). This function is called by
adaptedBasis to choose the appropriate variables to serve as the adapted basis.

pickFirstL = (v) -> (

ones = delete(null, for i from 0 to #transpose(D) - 1 list if

v_i != 0 then i + 1);

howMany = 3 - #ones; --here, 3 = rank. Needs to be changed if rank changes.

comp = toList ((set toList {1..#transpose(D)}_0) - set ones);

comp = comp_(toList(0..howMany - 1));
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return ones|comp

)

pickL serves a similar function to pickFirstL. However, it takes into account the
adapted basis chosen from the previous iteration and tries to pick as many of the
same variables as possible.

pickL = (v,w) -> (

onesV = delete(null, for i from 0 to #transpose(D) - 1

list if v_i != 0 then i + 1);

onesW = ones = delete(null, for i from 0 to #transpose(D) - 1

list if w_i != 0 then i + 1);

ones = onesV | onesW;

if commonest ones == sort ones then return pickFirstL(v) else

return unique ones;

)

The function adaptedBasis identifies the variables that form the adapted basis, then
writes the complementary variables in terms of the basis with respect to the relations
identified in I.

adaptedBasis = (posL,gensL,originalRing) -> (

agens = new MutableList from toList(y_1..y_(#transpose(D)));

n = #gensL - #transpose(D);

wts = new MutableList from toList(#D+#transpose(D):1);

M = toList ((set toList {1..#transpose(D)}_0) - set posL);

for i in M do wts#(i-1) = 10^3;

wts = toList wts;

S = QQ[y_1..y_(#transpose(D)), t_1..t_#D, Weights => wts];

A = sum (for i from 1 to #transpose(D) list y_i);

B = sum (for i from 1 to #transpose(D) list i*y_i);

I = ideal(A,B); --This says that the ideal L=<A,B>.

This needs to be changed if the linear ideal changes.

adB = M / (i -> (y_i % I));

adB = adB / (f -> sub(f,originalRing));
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p1 = M_0 -1;

p2 = M_1 -1;

agens#p1 = adB_0;

agens#p2 = adB_1;

if n > 0 then (for i from #transpose(D) to (#gensL-1) do

(agens = append(agens,sub(gensL_i, S) % I)));

agens = toList agens;

agens = agens / (f -> sub(f,originalRing));

return agens;

)

QRing is a quick function that forms the appropriate quotient ring based on the
number of columns of the diagram D.

QRing = (D) -> (

R’=QQ[y_1..y_(#transpose(D)),t_1..t_#D, s_1..s_#D];

Ilist = {};

for i from 1 to #D do Ilist = append(Ilist, t_i*s_i-1);

R = R’/ideal(Ilist);

return R;

)

Finally, the star of the show, the lead function: allRows. Given your diagram D and
a positive integer, this functions runs the KM algorithm on an algebra generating
set inductively using the rows of D as the weight vectors. The provided integer is
the number of iterations the function will go through per row before returning an
message that it has exceeded its limit.

allRows = (D, limit) -> (

R = QRing(D);

zeroList = toList(2*#D: 0);

oneList= toList(#D: 1);
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expT_0 = toList(#D+#transpose(D):1);

kBasis_0 = toList(s_1..s_#D)|toList {y_1..y_(#transpose(D))}_0;

for k from 0 to (#D-1) do(

if k == 0 then (

almostAlgGens_k = flatten prepend(toList(s_1..s_#D),

adaptedBasis(pickFirstL(D_k,r),(kBasis_k)_{#D..(#kBasis_k)-1},R));)

else (

almostAlgGens_k = flatten prepend(toList(s_1..s_#D),

adaptedBasis(pickL(D_k, D_(k-1)),(kBasis_k)_{#D..(#kBasis_k)-1},R)););

algGens = new MutableList from almostAlgGens_k;

for j from 0 to k do(for l from 0 to (#expT_j)-1 do(

algGens#l = algGens#l*(expT_j)_l));

alggens_k = toList algGens;

w_k=flatten append(D_k, zeroList);

newBasis_k = delete(0, khovanskiiBasis(w_k,R,alggens_k,limit,D));

expT_(k+1) = flatten prepend(oneList,apply(D_k, j->t_(k+1)^j));

extraTs = {};

for i from 1 to (#newBasis_k - #(expT_(k+1))) do

(extraTs = append(extraTs,t_(k+1)));

expT_(k+1) = flatten append((expT_(k+1)), extraTs);

expT_(k+1) = apply((expT_(k+1)), j -> sub(j, R));

kBasis_(k+1) = {};

for j from 0 to #(expT_(k+1))-1 do(

kBasis_(k+1) = append(kBasis_(k+1), (newBasis_k)_j*((expT_(k+1))_j));

);

return kBasis_(#D);

)
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Appendix B: Positivity

needsPackage "Polyhedra"

The function doesNEF was written to allow us to run many test cases at once. The
input variable n is the number of rays the user wants the blowup of P1 × P1 to have
and L is the max integer that an entry of the C-touple may obtain.

doesNEF = (n,L) -> (

cValues = (n:1)..(n:L);

goodVal = {};

for i in cValues do if abs(i_-1 - i_-2) > 1 then goodVal = append(goodVal, i);

resultValues = {};

for i in goodVal do resultValues = append(resultValues, difN(n,i));

return resultValues

);

difN takes the n value input in doesNEF and, one at a time, the C-touple produced.
It then computes all the Cp cones and intersects to compute the NEF cone. It then
computes a Hilbert Basis and tests if each Hilbert Basis element can be written
as an integral combination of the rays generating each of the Cp. If yes, move on.
Otherwise, return this C-touple.

difN = (n, C) -> (

for i from 1 to #C do c_i = C_(i-1);

rList= {};

for i from 0 to n-3 do rList = append(rList, replace(i, -1, toList(n-1:0)));

rList = append(rList, -append(append(toList(n-3:1),0),0));

rList = append(rList, -append(append(prepend(0,toList(1..n-4)),1),0));

for i from 1 to n-1 do Rays_(i,i+1) = transpose matrix drop(rList, {i-1,i});

Rays_(n,1) = transpose matrix drop(drop(rList, -1), {0,0});

for i from 1 to n-1 do Cones_(i,i+1) = coneFromVData Rays_(i,i+1);

Cones_(n,1) = coneFromVData Rays_(n,1);

type1 = append(for i from 1 to n-2 list c_i,1);
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type2 = append(append(toList(n-3 : c_(n-1)),0),1);

type3 = append(append(prepend(0,for i from 1 to n-4 list i*c_n),c_n),1);

allMat = {};

for i from 1 to n-3 do allMat = append(allMat,

M_(i,i+1,100) = (transpose matrix {type1}) | rays Cones_(i, i+1));

for i from 1 to n-3 do allMat = append(allMat,

M_(i,i+1,011) = (transpose matrix {type2, type3}) | rays Cones_(i,i+1));

allMat = append(allMat,

M_(n-2, n-1, 100) = (transpose matrix {type1}) | rays Cones_(n-2, n-1));

allMat = append(allMat,

M_(n-2, n-1, 010) = (transpose matrix {type2}) | rays Cones_(n-2, n-1));

allMat = append(allMat,

M_(n-1, n, 010) = (transpose matrix {type2}) | rays Cones_(n-1, n));

allMat = append(allMat,

M_(n-1, n, 001) = (transpose matrix {type3}) | rays Cones_(n-1, n));

allMat = append(allMat,

M_(n,1, 100) = (transpose matrix {type1}) | rays Cones_(n, 1));

allMat = append(allMat,

M_(n,1, 001) = (transpose matrix {type3}) | rays Cones_(n, 1));

allCones = {};

for i in allMat do allCones = append(allCones, coneFromVData i);

intCone = intersection(allCones_0, allCones_1);

for i from 2 to (#allCones-1) do intCone = intersection(intCone, allCones_i);

HB = hilbertBasis intCone;

nonsatCones = {};

for i from 1 to n-3 do nonsatCones = append(nonsatCones, M_(i,i+1,011));

latPts = {};

for i in HB do (

for j in nonsatCones do (
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latPts = append(latPts,

latticePoints(polyhedronFromHData(-id_(ZZ^(#entries transpose j)),

transpose matrix{toList(#entries transpose j : 0)}, j, i)))

));

if number(latPts, i -> i=={}) == 0 then "{}" else C

);
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