#### University of Kentucky

# **UKnowledge**

Theses and Dissertations--Animal and Food Sciences

Animal and Food Sciences

2019

# RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN VITAMIN-MINERAL MIXES

Qing Li University of Kentucky, qing.li@uky.edu Digital Object Identifier: https://doi.org/10.13023/etd.2019.035

Right click to open a feedback form in a new tab to let us know how this document benefits you.

#### **Recommended Citation**

Li, Qing, "RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN VITAMIN-MINERAL MIXES" (2019). *Theses and Dissertations--Animal and Food Sciences*. 99. https://uknowledge.uky.edu/animalsci\_etds/99

This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

## STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

## **REVIEW, APPROVAL AND ACCEPTANCE**

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Qing Li, Student Dr. James C. Matthews, Major Professor Dr. David L. Harmon, Director of Graduate Studies

# RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN VITAMIN-MINERAL MIXES

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture, Food and Environment at the University of Kentucky

By Qing Li Lexington, Kentucky Director: Dr. James C. Matthews, Professor of Animal and Food Sciences Lexington, Kentucky 2019

Copyright © Qing Li 2019

#### ABSTRACT OF DISSERTATION

### RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN VITAMIN-MINERAL MIXES

The first goal of the current research was to determine whether gene expression profiles differed between whole pituitaries of growing beef steers grazing pastures containing high (HE) or low (LE) amounts of toxic endophyte-infected tall fescue. The global (microarray analysis) and selected targeted (RT-PCR) mRNA expression patterns of pituitaries collected from beef steers (BW =  $266 \pm 15.5$  kg) that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of either HE (0.52 ppm ergot alkaloids) or LE (< 0.03 ppm ergot alkaloids) pastures were compared. Gene expression data were subjected to one-way ANOVA. The pituitaries of HE steers had 542 differentially expressed genes, and the pattern of altered gene expression was dependent on treatment. Targeted RT-PCR analysis corroborated these findings, including decreased expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis (Integrated Pathway Analysis, IPA) identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. In conclusion, consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters. The second goal of this project was to test the hypothesis that sodium selenite (ISe), SEL-PLEX (OSe), vs. a 1:1 blend (MIX) of ISe and OSe in a basal vitamin-mineral (VM) mix would differentially alter pituitary transcriptome profiles in growing beef steers (BW =  $183 \pm 34$  kg) commonly grazing an endophyte-infected tall fescue (HE) pasture. Steers were randomly selected from herds of fall-calving cows grazing HE pasture and consuming VM mixes that contained 35 ppm Se as either ISe, OSe, or MIX forms. Steers were weaned, depleted of Se for 98 d, and subjected to summer-long common grazing of a 10.1 ha HE pasture containing 0.51 ppm ergot alkaloids. Steers were assigned (n = 8) to the same Se-form treatments on which they were raised. Selenium treatments were administered by daily top-dressing 85 g of VM mix onto 0.23 kg soyhulls, using in-pasture Calan gates. Pituitaries were collected at slaughter and changes in global (microarray) and selected (RT-PCR) mRNA expression patterns determined. The effects of Se treatment on relative gene expression were subjected to oneway ANOVA. The form of Se affected the expression of 542 annotated genes. Integrated

Pathway Analysis found a canonical pathway network between prolactin and POMC/ACTH/ a-MSH synthesis-related proteins, and that mitochondrial dysfunction was a top-affected canonical pathway. Targeted RT-PCR analysis found that the relative abundance of mRNA encoding prolactin and POMC/ACTH/ α-MSH synthesis-related proteins was affected by the form of Se, as were mitochondrial dysfunction-related proteins OSe steers appeared to have a greater prolactin synthesis capacity vs. ISe steers through decreased dopamine receptor D2 signaling, whereas MIX steers had a greater prolactin synthesis capacity and release potential by increasing TRH concentrations than ISe steers. OSe steers also had a greater ACTH and  $\alpha$ -MSH synthesis potential than ISe steers. We conclude that form of Se in VM mixes affected genes responsible for prolactin and POMC/ACTH/ $\alpha$ -MSH synthesis, and mitochondrial function in pituitaries of growing beef steers commonly grazing an HE pasture. The third goal was to test the hypothesis that sodium selenite (ISe), SEL-PLEX (OSe), vs. a 1:1 blend (MIX) of ISe and OSe in a basal vitamin-mineral (VM) mix would differentially alter selenoprotein profiles in pituitaries and livers of growing beef steers commonly grazing an endophyte-infected tall fescue (HE) pasture (i.e., the same steers used in Goal 2). The effects of Se treatment on relative gene expression were subjected to one-way ANOVA. The mRNA content of 6 selenoproteins in the pituitary was affected by Se treatments, along with two selenoprotein P receptors, whereas the expression of two selenoproteins was altered in the liver. We conclude that the change in selenoprotein gene expression in pituitaries indicates that OSe steers have a greater potential capacity to manage against oxidative damage, maintain cellular redox balance, and have a better quality control of protein-folding in their pituitaries than ISe steers. The change in selenoprotein gene expression by the liver indicates that MIX steers have a greater redox signaling capacity and capacity to manage oxidative damage than ISe steers.

# KEYWORDS: Bovine pituitary, Ergot alkaloid, Fescue toxicosis, Prolactin, Selenium, Selenoprotein

Qing Li

March 22, 2019

# RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN VITAMIN-MINERAL MIXES

By Qing Li

> Dr. James C. Matthews Director of Dissertation

Dr. David L. Harmon Director of Graduate Studies

March 22, 2019

#### ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my mentor Dr. James Matthews for his extensive knowledge, patience, and continuous support of my Ph.D. study. Besides my mentor, I would like to thank the rest of my Ph.D. committee: Dr. Karen McDowell, Dr. Kuey Chen, Dr. Phillip Bridges, and Dr. Robert Harmon, for their encouragement, insightful comments, and valuable suggestions. In addition, I would like to thank Kwangwon Son, Yang Jia, and Charles Hamilton for their warm help and genuine concern. Last but not the least, I would like to thank my family, for their endless love and support, especially my wife Shuang Liu. I could not have done this without them.

# TABLE OF CONTENTS

| RESPONSES OF BOVINE PITUITARY TRANSCRIPTOME PROFILES TO                 |
|-------------------------------------------------------------------------|
| CONSUMPTION OF TOXIC TALL FESCUE AND FORMS OF SELENIUM IN               |
| VITAMIN-MINERAL MIXES                                                   |
| ACKNOWLEDGEMENTS                                                        |
| TABLE OF CONTENTS iv                                                    |
| LIST OF TABLES ix                                                       |
| LIST OF FIGURES xii                                                     |
| CHAPTER 1. Introduction1                                                |
| CHAPTER 2. Literature Review                                            |
| 2.1 Fescue toxicosis                                                    |
| 2.2 Ergot alkaloids                                                     |
| 2.3 Prolactin                                                           |
| 2.3.1 Prolactin structure                                               |
| 2.3.2 Prolactin receptor                                                |
| 2.3.3 Biological functions of prolactin10                               |
| 2.3.4 Prolactin synthesis and secretion by the anterior pituitary       |
| 2.3.5 Dopaminergic regulation of prolactin secretion                    |
| 2.3.6 Prolactin short-loop feedback regulation                          |
| 2.3.7 Thyrotropin-releasing hormone regulation of prolactin secretion14 |
| 2.3.8 Vasoactive intestinal peptide regulation of prolactin secretion14 |
| 2.3.9 Galanin regulation of prolactin secretion15                       |
| 2.3.10 Autocrine autoregulation of prolactin secretion                  |

| 2.4 Biosynthesis of proopiomelanocortin, ACTH, and $\alpha$ -melanocyte-stimulating    |   |
|----------------------------------------------------------------------------------------|---|
| hormone10                                                                              | б |
| 2.5 Selenium deficiency                                                                | 7 |
| 2.6 Supplemental Se                                                                    | 8 |
| 2.6.1 Inorganic Se                                                                     | 9 |
| 2.6.2 SeMet                                                                            | 9 |
| 2.6.3 Sec                                                                              | 0 |
| 2.7 Selenoprotein synthesis                                                            | 0 |
| 2.8 Twenty-five selenoproteins                                                         | 2 |
| 2.9 Effects of forms of dietary Se on circulating Se and prolactin concentrations, and |   |
| gene expression profile in cattle                                                      | 5 |
| CHAPTER 3. Dissertation Objectives                                                     | 8 |
| CHAPTER 4. Pituitary Genomic Expression Profiles of Steers Are Altered by Grazing of   | f |
| High (HE) vs. Low (LE) Endophyte-infected Tall Fescue Forages <sup>1</sup>             | 0 |
| 4.1 Abstract                                                                           | 0 |
| 4.2 Introduction                                                                       | 2 |
| 4.3 Materials and methods                                                              | 3 |
| 4.3.1 Animal model                                                                     | 3 |
| 4.3.2 Sample collection and RNA preparation                                            | 3 |
| 4.3.3 Microarray analysis6                                                             | 4 |
| 4.3.4 Real-time RT-PCR analysis                                                        | 6 |
| 4.3.5 Selected miRNA-target gene interactions                                          | 7 |
| 4.3.6 Statistical analyses6                                                            | 8 |

| 4.4 Results                                                                      | 68        |
|----------------------------------------------------------------------------------|-----------|
| 4.4.1 Differentially expressed genes                                             | 68        |
| 4.4.2 Functional, canonical pathway, and gene network analyses                   | 69        |
| 4.4.3 Real-time reversed-transcribed PCR analysis of selected mRNA               | 70        |
| 4.4.4 Differentially expressed miRNAs (DEMs) and their predicted targe           | t genes   |
| associated                                                                       | 71        |
| 4.5 Discussion                                                                   | 72        |
| 4.5.1 Fescue toxicosis and prolactin synthesis and secretion                     | 74        |
| 4.5.2 Fescue toxicosis, POMC/ACTH synthesis, and gluconeogenesis                 | 77        |
| 4.5.3 Role of miRNAs in regulating prolactin and POMC/ACTH pathway               | ys78      |
| CHAPTER 5. Forms of Selenium in Vitamin-mineral Mixes Differentially Af          | ffect the |
| Expression of Genes Responsible for Prolactin, ACTH, and $\alpha$ -MSH Synthesis | s and     |
| Mitochondrial Dysfunction in Pituitaries of Steers Grazing Endophyte-infecte     | ed Tall   |
| Fescue <sup>1</sup>                                                              | 147       |
| 5.1 Abstract                                                                     | 147       |
| 5.2 Introduction                                                                 |           |
| 5.3 Materials and methods                                                        | 150       |
| 5.3.1 Animal model                                                               | 150       |
| 5.3.2 Sample collection and RNA preparation                                      | 151       |
| 5.3.3 Microarray analysis                                                        | 151       |
| 5.3.4 Real-time reverse transcription (RT)-PCR analysis                          | 153       |
| 5.3.5 Statistical analysis                                                       | 154       |
| 5.4 Results                                                                      | 154       |

| 5.4.1 Differentially expressed genes154                                             |
|-------------------------------------------------------------------------------------|
| 5.4.2 Pathways and gene network analyses155                                         |
| 5.4.3 Real-time RT-PCR analysis of selected mRNA155                                 |
| 5.5 Discussion                                                                      |
| 5.5.1 Animal model157                                                               |
| 5.5.2 The content of prolactin mRNA is greater in OSe and MIX steer pituitaries.157 |
| 5.5.3 OSe form of Se supplementation had greater prolactin synthesis capacity158    |
| 5.5.4 MIX form increased prolactin synthesis and release potential160               |
| 5.5.5 OSe form of Se supplementation increased POMC/ACTH/ $\alpha$ -MSH synthesis   |
| potential162                                                                        |
| 5.5.6 Functional analysis of the genes involved in mitochondrial dysfunction and    |
| antioxidant defense163                                                              |
| CHAPTER 6. Selenoprotein Gene Expression Profiles in the Pituitary and Liver of     |
| Growing Steers Grazing Endophyte-Infected Tall Fescue Are Sensitive to Different    |
| Forms of Supplemental Selenium222                                                   |
| 6.1 Abstract                                                                        |
| 6.2 Introduction                                                                    |
| 6.3 Materials and methods 225                                                       |
| 6.3.1 Animals model225                                                              |
| 6.3.2 Sample collection and RNA preparation226                                      |
| 6.3.3 Microarray analysis227                                                        |
| 6.3.4 Real-time RT-PCR analysis228                                                  |
| 6.3.5 Statistical analysis229                                                       |

| 6.4 Results                                                          | . 230 |
|----------------------------------------------------------------------|-------|
| 6.4.1 Microarray and real-time RT-PCR analyses of selenoprotein mRNA | 230   |
| 6.4.2 Principal component analysis                                   | 232   |
| 6.5 Discussion                                                       | . 232 |
| CHAPTER 7. Summary and Conclusions                                   | 259   |
| APPENDIX. Example of SAS Analysis                                    | 262   |
| REFERENCES                                                           | 269   |
| VITA                                                                 | 352   |

# LIST OF TABLES

| Table 2.1. Bovine prolactin concentration in plasma or serum.                               |
|---------------------------------------------------------------------------------------------|
| Table 2.2. Biological functions of prolactin in mammals. Adapted from Kelly et al.          |
| (1998) by removal of non-relevant data. For completeness, all the categories have been      |
| included whereas the underlined organ/target are thought to be especially relevant to this  |
| project                                                                                     |
| Table 4.1. Top seven IPA-identified canonical pathways of genes differentially expressed    |
| by pituitary tissue of steers grazing high (HE) vs. low (LE) endophyte-infected forages.81  |
| Table 4.2. IPA-identified canonical pathways of genes central to prolactin production,      |
| secretion, or signaling differentially-expressed by pituitary tissue of steers grazing high |
| (HE) vs. low (LE) endophyte-infected forages                                                |
| Table 4.3. IPA-identified canonical pathways of genes involved in signaling of selected     |
| pituitary-derived hormones differentially-expressed by pituitary tissue of steers grazing   |
| high (HE) vs. low (LE) endophyte-infected forages                                           |
| Table 4.4. Comparison of microarray and real-time RT-PCR identification of selected         |
| genes by pituitary tissue of steers grazing high (HE) vs. low (LE) endophyte-infected       |
| forages                                                                                     |
| Table 4.5. Predicted relationship between differentially-expressed mRNA of prolactin        |
| and ACTH pathway genes, including transcription factors (TF), transcription stimulators     |
| (TS), and transcription inhibitors (TI), known to be targets of microarray-identified       |
| differentially-expressed miRNAs (DEMs)                                                      |

Table 4.6. Primer sets used for quantitative real-time RT-PCR analysis of the selected Table 4.7. List of differentially expressed pituitary genes (P < 0.001, 542 genes) collected from steers grazing high- (HE, n = 8) or low- (LE, n = 8) endophyte-infected forages....92 Table 4.8. List of selected genes involved in prolactin or POMC/ACTH expression expressed by pituitaries collected from steers grazing high- (HE, n = 8) or low- (LE, n = 8) Table 5.1. Top six IPA-identified canonical pathways of genes differentially expressed by pituitary tissue of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a Table 5.2. Comparison of microarray- and real-time RT-PCR (RT-PCR)-determined relative expression of prolactin and POMC/ACTH synthesis related genes in pituitary tissue of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).....167 Table 5.3. Comparison of microarray and real-time RT-PCR (RT-PCR) identification of mitochondrial dysfunction related genes by pituitary tissue of steers grazing endophyteinfected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX). .....169 Table 5.4. Primer sets used for quantitative real-time RT-PCR analysis of the selected differentially expressed genes and reference genes......171

Table 5.5. DEG list (P < 0.005, 542 annotated genes), expressed by pituitaries collected from steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of Table 6.1. Microarray and real-time RT-PCR (RT-PCR) analyses of the effect of consuming 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX) during summer-long grazing of endophyte-infected tall fescue on pituitary selenoprotein gene expression by growing Table 6.2. Microarray and real-time RT-PCR (RT-PCR) analyses of the effect on liver selenoprotein gene expression by growing beef steers consuming 3 mg Se/d in vitaminmineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX) during summer-long grazing of endophyte-infected tall fescue......243 Table 6.3. Primer sets used for quantitative real-time RT-PCR analysis of the selected 

# LIST OF FIGURES

| Figure 2.1. (A) The tetracyclic ergoline ring common to all ergot alkaloids that is       |
|-------------------------------------------------------------------------------------------|
| variously substituted on the C-8 which in this case has an amino acid ring system that    |
| varies at the R1 and R2 substituents to create the various ergopeptine alkaloids. (B) The |
| structural similarities between the ergoline ring and the catecholamines norepinephrine,  |
| dopamine, and serotonin (in bold) (Klotz, 2015)                                           |
| Figure 2.2 Chemical structures of the common ergoline ring structure, lysergic acid, and  |
| selected ergopeptines                                                                     |
| Figure 2.3. Diagram of the human and rat PRL promoters, the PRL gene, and the human       |
| mRNA transcript                                                                           |
| Figure 2.4. The predominant signal transduction pathway of prolactin                      |
| Figure 2.5. Horizontal view of pituitary emphasizing distribution and percentage of       |
| anterior pituitary cell subtypes 50                                                       |
| Figure 2.6. Short-loop feedback mechanism of prolactin regulation                         |
| Figure 2.7. Gene structure and post-translational processing of POMC                      |
| Figure 2.8. Initial metabolism of the principal dietary forms of selenium                 |
| Figure 2.9. Factors essential for selenoprotein synthesis                                 |
| Figure 2.10. The human selenoproteome                                                     |
| Figure 2.11. Scheme of oxidoreductase activities of the thioredoxin system                |
| Figure 2.12. Metabolism of thyroid hormone thyroxine (T4) by the types 1, 2, and 3        |
| deiodinases (DIO1, DIO2, DIO3)                                                            |
| Figure 4.1. Canonical pathway network analysis                                            |

| Figure 4.2. The sequences of the real-time RT-PCR products (5' to 3' orientation) 144            |
|--------------------------------------------------------------------------------------------------|
| Figure 4.3. Principle component analysis of microarray transcriptome analysis of 16              |
| pituitary samples from steers grazing high- (HE, $n = 8$ , red dots) or low- (LE, $n = 8$ , blue |
| dots) endophyte-infected forages                                                                 |
| Figure 4.4. Hierarchical cluster analysis of the 542 "focus" genes selected as                   |
| differentially expressed (ANOVA P-values of $< 0.001$ and false discovery rates of $\leq$        |
| 5%) by the pituitary of steers grazing high- (HE, $n = 8$ ) vs. low- (LE, $n = 8$ ) endophyte-   |
| infected forages                                                                                 |
| Figure 5.1. Canonical pathway network analysis                                                   |
| Figure 5.2. Mechanisms, and mRNA expression responses to Se form treatments, by                  |
| which dopamine and TRH affect prolactin synthesis and release                                    |
| Figure 5.3. Regional biosynthesis of ACTH and $\alpha$ -MSH from POMC in the pituitary . 212     |
| Figure 5.4. Correlation between microarray chips based on intensity values 213                   |
| Figure 5.5. The sequences of the real-time RT-PCR products (5' to 3' orientation) 219            |
| Figure 5.6. Principle component analysis of microarray transcriptome analysis of 20              |
| pituitary samples from steers grazing endophyte-infected tall fescue and supplemented            |
| with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe, $n = 6$ , red dots),     |
| SEL-PLEX (OSe, $n = 7$ , blue dots), or a 1:1 mix of ISe and OSe (MIX, $n = 7$ , green dots)     |
|                                                                                                  |
| Figure 5.7. Hierarchical cluster analysis of the 542 "focus" genes selected as                   |
| differentially expressed (ANOVA P-values of < 0.005 and false discovery rates of $\leq$          |
| 18.8%) by the pituitary of steers grazing endophyte-infected tall fescue and supplemented        |

| with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe, $n = 6$ ), SEL- |
|-----------------------------------------------------------------------------------------|
| PLEX (OSe, $n = 7$ ), or a 1:1 mix of ISe and OSe (MIX, $n = 7$ ) 221                   |
| Figure 6.1. Score plot from principal component analysis of steer (ISe, OSe, and MIX)   |
| parameters showing the correlation of the first two principal components (Components 1  |
| and 2) among Se concentration, glutathione (GSH) content, glutamine synthetase (GS)     |
| activity, and relative mRNA abundance of selenoproteins in liver                        |
| Figure 6.2. Loading plot from principal component analysis of steer (ISe, OSe, and MIX) |
| parameters showing the correlation of the first two principal components (Components 1  |
| and 2) among Se concentration, glutathione (GSH) content, glutamine synthetase (GS)     |
| activity, and relative mRNA abundance of selenoproteins in liver                        |
| Figure 6.3. The sequences of the real-time RT-PCR products (5' to 3' orientation) 258   |

#### **CHAPTER 1. Introduction**

*Epichloe coenophialum* (formerly *Neotyphodium coenophialum*) is an endophytic fungus that infects most tall fescue (Lolium arundinaceum) pastures commonly used in animal grazing systems in the eastern half of the United States (Aiken and Strickland, 2013). The interaction between *E. coenophialum* and tall fescue produces ergot alkaloids (Siegel and Bush, 1994). Consumption of ergot alkaloid-containing tall fescue impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis" (Strickland et al., 2011). There are over 8.5 million cattle grazing endophyte-infected tall fescue pasture (Paterson et al., 1995), and that causes approximately one billion dollar losses to beef industry in the United States annually (Oliver, 1997). Reduced serum prolactin is a recognized marker of fescue toxicosis (Goetsch et al., 1987; Davenport et al., 1993). The anterior pituitary gland secretes hormones that affect control over several physiological processes altered by consumption of ergot alkaloid-containing forages, including hormones for metabolism (TSH), growth (GH), reproduction (LH, FSH), stress responses (ACTH), and lactation (prolactin) (Beardwell and Robertson, 1981). Despite these known relationships, reports that describe the effect of fescue toxicosis on pituitary genomic expression profiles are still very limited.

Besides fescue toxicosis, another challenge faced by many southeastern United States cattle producers is selenium (Se) deficiency. Se-poor soils in this same geographic region result in Se-deficient forages necessitating the need to provide supplemental Se (Dargatz and Ross, 1996). Inorganic Se (ISe, sodium selenite) is the most common form of Se supplemented in cattle diets, whereas organic forms of Se (OSe) derived from

specially cultivated *Saccharomyces cerevisiae* also are available and approved for use in beef cattle diets. Serendipitously, it was found that expression of several genes downregulated in the liver (Liao et al., 2015) of steers grazing high vs. low endophyteinfected forages were upregulated in cattle by consumption of a 1:1 blend of ISe:OSe (MIX) in vitamin-mineral (VM) mixes (Matthews and Bridges, 2014; Matthews et al., 2014). Moreover, it was determined subsequently that steers subjected to summer-long grazing of endophyte-infected pasture and supplemented (3 mg/d) with MIX or OSe forms of Se had greater serum prolactin concentrations than ISe-supplemented steers (Jia et al., 2018). Hence, forms of Se seems to impact gene expression in steer pituitaries, specially genes associated with prolactin synthesis or secretion. However, the effects of forms of Se on gene expression profile in bovine pituitary has not been reported.

In addition, to our knowledge, studies regarding the effects of forms of Se on selenoprotein profile in bovine pituitary and liver tissues have not been reported either. The goals of this dissertation are stated in Chapter 3.

#### **CHAPTER 2. Literature Review**

#### 2.1 Fescue toxicosis

The perennial tall fescue (*Lolium arundinaceum*, formerly *Festuca arundinacea*) is an economically important cool-season bunch-grass, originally from Europe (Buckner et al., 1979). It was first introduced to the United States from Eurasia in the late 1800s, but was not cultivated widely until the 1940s and 1950s (Hoveland, 2009). It is well adapted and the most widely grown grass in the transition zone between the northern and southern regions of the eastern United States (Hemken et al., 1984; Paterson et al., 1995). Today it is estimated that tall fescue covers more than 15 million ha; and in the southeastern US, the most dominant cultivar is Kentucky-31 tall fescue (Buckner et al., 1979; Schmidt and Osborn, 1993; McCulley et al., 2015).

Tall fescue possesses many desirable properties including ease and wide range of establishment and adaptation, extended grazing season, tolerance to adverse climate, soil, and poor management regimes, pest resistance, and high-yield seed production (Ball et al., 1987; Stuedemann and Hoveland, 1988; Roberts et al., 2009). Many of these properties has been attributed to its symbiotic relationship with a fungal endophyte (*Epichloe coenophialum*, formerly *Neotyphodium coenophialum*)(Clay, 1990; Glenn et al., 1996; Schardl et al., 2004), which resides within the leaf, sheaths, and flower culms of tall fescue (Porter and Thompson, 1992). The biochemical basis for endophyteinduced physiological changes in tall fescue is still a mystery, but association with endophytes has been reported to benefit tall fescue in growth, survival, and drought tolerance (Arachevaleta et al., 1989; Schardl et al., 2004).

Although endophyte-host relationship confers tall fescue with many desirable agronomic characteristics, grazing on endophyte-infected tall fescue usually reduces animal performance, especially for livestock like cattle, sheep, and horses (Porter and Thompson, 1992). There are over 8.5 million cattle grazing endophyte-infected tall fescue pasture (Paterson et al., 1995), and that causes approximately one billion dollar losses to beef industry in the United States annually (Oliver, 1997).

Generally, there are three syndromes occurring on cattle grazing tall fescue: fescue foot, fat necrosis, and fescue toxicosis. Fescue foot is a dry and gangrenous condition of feet, which usually occurred with colder environmental temperatures (Bush and Buckner, 1973). Rear feet are most commonly affected (Thompson and Stuedemann, 1993). The second syndrome fat necrosis is a condition of necrotic fat lesions surrounding the intestinal tract from the abomasum to the rectum (Bush and Buckner, 1973). Those two syndromes above are less common to occur and easy to recover when the injured cow is removed from consuming endophyte-infected toxic tall fescue (Bush and Buckner, 1973; Stuedemann and Hoveland, 1988). With regard to the last syndrome, consumption of endophyte-infected tall fescue impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis", also referred to as summer lump or summer fescue toxicosis (Strickland et al., 2011). Specifically, clinical signs of fescue toxicosis in cattle include decreased feed intake, BW gain, milk production, and reproductive efficiency, and elevated body temperature and respiration rates, rough hair coats and preference for shade (Strickland et al., 1993; Brown et al., 2009). This frequently occurring and widespread syndrome over tall fescue pasture regions is the major culprit responsible for

the economic loss in beef industry mentioned above. The reduction of serum prolactin is a recognized and the most commonly analyzed physiologic hallmark of fescue toxicosis (Goetsch et al., 1987; Davenport et al., 1993).

The symbiotic interaction between *E. coenophialum* and tall fescue yields ergot alkaloids (Siegel and Bush, 1994; Strickland et al., 2011). The distribution of ergot alkaloids within the tall fescue varies, with the highest concentration in seed heads (Rottinghaus et al., 1991). Unfortunately, ergot alkaloids are naturally occurring mycotoxins (Bush and Fannin, 2009), and consumption of ergot alkaloids is detrimental to animal productivity, especially for livestock like cattle, sheep, and horses (Porter and Thompson, 1992). Hence, ergot alkaloids have been reported to be responsible for the toxicity of endophyte-infected tall fescue (Lyons et al., 1986; Paterson et al., 1995; Guerre, 2015).

#### 2.2 Ergot alkaloids

Ergot alkaloids are naturally occurring secondary metabolites produced by fungi including members of the *Claviceps* and *Neotyphodium* genera (Strickland et al., 2011). It was discovered that when administered appropriately, ergot alkaloids could be used to improve human health. In fact, the first isolated and identified ergot alkaloid was ergotamine, which was extracted from sclerotia of *Claviceps* for pharmaceutical use (Flieger et al., 1997). The beneficial and pharmacological effects of ergot alkaloids include: treatment of parkinsonism, migraine, thrombosis, cerebrovascular insufficiency, and stimulation of cerebral and peripheral metabolism, etc (Berde and Schild, 1978). However, for livestock producers, it is a totally different story. As mycotoxins, ergot

alkaloids significantly influence livestock health and productivity negatively around the world.

The ergotism in livestock is directly related to the tetracyclic ergoline ring among all ergot alkaloids (Figure 2.1), similar to the ring structure of the biogenic amines, dopamine, epinephrine, norepinephrine, and serotonin (Berde and Stürmer, 1978; Pertz and Eich, 1999). Based on the type of substituent on C-8 of the ergoline ring (Figure 2.1), ergot alkaloids can be divided into 3 classes: clavines, ergopeptines, and lysergic acid and derivatives (Figure 2.2). Among ergopeptines, ergovaline was predominant in endophyteinfected tall fescue pastures, accounting for over 80% of the total ergopeptines and 10 to 50% of the total ergot alkaloids (Lyons et al., 1986).

Ergot alkaloid exerts function through binding biogenic amine receptors, most of which belong to the G protein-coupled receptor family of transmembrane receptors (Goddard III and Abrol, 2007). In addition, ergot alkaloids can function as both agonists and antagonists as ligands (Berde, 1980) and bind with one or more receptor sites (Berde and Stürmer, 1978). Hence, a variety of biological problems are derived from the receptor-alkaloid interactions. The impact of consuming ergot alkaloids from endophyte-infected tall fescue on multiple physiological systems (cardiovascular, growth, reproduction) in livestock has been intensively reviewed (Strickland et al., 2011). One evident influence of ergot alkaloid exposure on the reproductive system is prolactin depression in sera (Hurley et al., 1980) and pituitary glands (Schillo et al., 1988). This symptom is relatively consistent than many others caused by consumption of ergot alkaloids (Strickland et al., 1993). Therefore, reduced prolactin has been adopted as a serological sign of ergot alkaloid exposure.

#### 2.3 Prolactin

Bovine prolactin concentrations in plasma or serum are presented in Table 2.1.2.3.1 Prolactin structureBased on its genetic, structural, and biological properties, prolactin belongs to the

cytokine superfamily which also includes hormones like growth hormone and placental lactogen (Horseman and Yu-Lee, 1994). The genes encoding these 3 hormones were derived from a common ancestral gene by duplication (Niall et al., 1971), which occurred approximately 400 million years ago (Cooke et al., 1981). In addition, the members of this family share a tertiary structure of 4  $\alpha$  helix and bind to a non-tyrosine kinase, single-pass transmembrane receptor (Trott et al., 2008).

The single human prolactin gene that consists of 5 exons and 4 introns is found on chromosome 6, with a gene size of 10 kb (Cooke et al., 1981). The transcription of prolactin is controlled by two independent promoter regions (Figure 2.3). The proximal promoter is required for pituitary-specific prolactin expression, while a superdistal promoter located 5.8 kb upstream of pituitary start site directs extrapituitary expression (Berwaer et al., 1991; Berwaer et al., 1994). The proximal promoter contains multiple binding sites for pituitary-specific positive transcription factor 1 (Pit-1, encoded by POU1F1) which plays a pivotal role in prolactin gene transcription and development of lactotrophs in the anterior pituitary (Fox et al., 1990; Gourdji and Laverriere, 1994). In contrast, the superdistal promoter drives extrapituitary gene expression in a Pit-1-independent manner (Gellersen et al., 1994).

Mature bovine prolactin contains a single chain of 199 amino acids with three intramolecular disulfide bridges between six cysteine residues, and it shares 80% amino

acid sequence homology with human prolactin (Wallis, 1974). Although the major form of pituitary-derived prolactin is about 23 kDa, other variants have been identified in human, as results of alternative splicing, proteolytic cleavage, and other post-translation modification (e.g. phosphorylation and glycosylation) (Freeman et al., 2000).

The predominant site for prolactin production is the anterior pituitary gland. Besides pituitary, prolactin has been reported to be expressed at much smaller amounts at multiple extrapituitary sites in human, including adipose tissue, brain, breast, endometrium, decidua, myometrium, immune cells, placenta, prostate, and skin (Ben-Jonathan et al., 1996; Fitzgerald and Dinan, 2008; Diakonova, 2014).

## 2.3.2 Prolactin receptor

Prolactin was given the name according to the fact that it promotes lactation in mammals (Riddle et al., 1933). However, as a very ancient hormone and that exists in all vertebrates, prolactin has been reported to possess over 300 separate biological activities (Bole-Feysot et al., 1998), more than activities of all other pituitary hormones combined (Fitzgerald and Dinan, 2008). Pituitary-derived prolactin acts as a classical circulating hormone, whereas extrapituitary prolactin is thought to function as a cytokine (Ben-Jonathan et al., 2007). Prolactin exerts its physiological function through interaction with its receptor.

The prolactin receptor is a single-pass membrane-bound protein, which belongs to the class 1 cytokine receptor superfamily (Bazan, 1990a, b). It is devoid of intrinsic tyrosine kinase activity and capable of phosphorylation by cytoplasmic proteins (Ben-Jonathan et al., 2007). Each prolactin receptor contains an extracellular region, a transmembrane region, and an intracellular region (Bole-Feysot et al., 1998). After the

extracellular domain of prolactin receptor binds to a ligand (e.g. prolactin), a ligandinduced prolactin receptor dimerization occurs which is obligatory for subsequent signal transmission (Bernichtein et al., 2010). The role of the transmembrane region in prolactin receptor activation and signaling transmission is still unclear. In contrast, the intracellular domain has been known as a crucial component in the initiation of prolactin receptormediated signal transduction (Freeman et al., 2000). After binding of prolactin to its receptor, several signaling pathways can be activated including the Janus kinase-signal transducer and activator of transcription (Jak-Stat), the mitogen-activated protein kinase (MAPK), and the phosphoinositide 3 kinase pathways (PI3K) (Clevenger et al., 2003), among which is the Jak-Stat cascade predominant pathway (Figure 2.4).

Prolactin receptor isoforms, due to alternative splicing during transcription, have been identified in different mammals. In mice, three major prolactin receptor isoforms have been described including short, intermediate, and long forms (Bole-Feysot et al., 1998). In human, six isoforms of prolactin receptor have been reported (Diakonova, 2014). However, only two distinct prolactin receptor isoforms have been identified in cattle based on their amino acid sequence. In addition, it has been suggested that only the long isoform can mediate the Jak-Stat pathway (Brym et al., 2005). Moreover, elevated mRNA expression of long isoform has been observed in prolactin-overexpressing breast cancer cells and prolactin-transgenic mice (Ling et al., 2000; Liby et al., 2003).

The prolactin receptor is ubiquitously expressed (Nagano and Kelly, 1994; Bakowska and Morrell, 1997; Bole-Feysot et al., 1998), which facilitates over 300 biological functions of prolactin on certain level. The murine studies have shown that the ratio of isoforms varies based on tissues, development stages, and reproductive stages

(e.g. estrous cycle, pregnancy, lactation) (Nagano and Kelly, 1994; Bole-Feysot et al., 1998).

#### 2.3.3 Biological functions of prolactin

Although best known for the role in regulating lactation, prolactin affects a wide variety of biological functions including regulations of reproduction, osmoregulation, immune responses, metabolism, and growth and development. The biological functions of prolactin are summarized in Table 2.2.

#### **2.3.4 Prolactin synthesis and secretion by the anterior pituitary**

The pituitary is an endocrine gland composed of anterior, intermediate, and posterior lobes, with the anterior lobe occupying approximately 80% of the entire gland. An anatomic horizontal view of pituitary is shown in Figure 2.5. The anterior lobe is composed of five tropic cell types, which together secrete six hormones: corticotrophs (ACTH), gonadotrophs (FSH and LH), lactotrophs (prolactin), somatotrophs (GH), and thyrotrophs (TSH). Lactotrophs represent a dynamic population of cells (20-50% of the anterior pituitary cells) depending on the gender and physiological status of the animal (Freeman et al., 2000). In addition, lactotrophs exhibit functional heterogeneity with regard to their responsiveness to secretagogues (Boockfor and Frawley, 1987). Lactotrophs located in the outer zone of the anterior pituitary gland are more responsive to thyrotropin releasing hormone (TRH), whereas those located in the inner zone respond greater to dopamine (Boockfor and Frawley, 1987; Arita et al., 1991).

Lactotrophs inherently possess a large storage capacity and a high basal secretory activity for prolactin. Hence, unlike other pituitary hormones such as LH or ACTH whose secretion regulation is provided in the form of positive stimulus by hypothalamus,

pituitary prolactin secretion is under tonic and predominantly inhibitory regulation by hypothalamus (Ben-Jonathan, 1985). The most influential hypothalamic prolactininhibiting factor is dopamine.

#### 2.3.5 Dopaminergic regulation of prolactin secretion

Dopamine or its agonists have been reported to exhibit potent ability to inhibit prolactin release both in vivo and in vitro (MacLeod, 1969; MacLeod et al., 1970; MacLeod, 1976). There are three hypothalamic dopaminergic neuronal systems including tuberoinfundibular (TIDA), tuberohypophysial (THDA), and periventricular (PHDA) dopaminergic neuronal population (Freeman et al., 2000; Ben-Jonathan and Hnasko, 2001), among which the TIDA, residing in the arcuate nucleus and projecting to the external zone of median eminence, provides the major dopaminergic input to the anterior pituitary (Leong et al., 1983; Kawano and Daikoku, 1987). Dopamine exerts its inhibitory ability of prolactin secretion via binding to a G protein-coupled receptor expressed on the cell membranes of lactotrophs (Ben-Jonathan and Hnasko, 2001). This receptor (DRD2) belongs to D<sub>2</sub> subclass of the dopamine receptor family (Caron et al., 1978; Meador-Woodruff et al., 1989). In rats, two dopamine type two receptors isoforms (long and short) have been identified due to alternative splicing, and the long isoform is the predominant in the pituitary (Guivarc'h et al., 1995). Activation of either isoform in rat lactotrophs leads to repression of prolactin gene (PRL) expression (McChesney et al., 1991).

Dopamine inhibits prolactin gene expression by suppression of adenylyl cyclase activity. Most studies on inhibitory control of dopamine over prolactin expression used rats as models. In both male and female rat anterior pituitary homogenates, dopamine

inhibited basal and vasoactive intestinal peptide-induced adenylate cyclase in a dosedependent manner. A specific DRD2 antagonist, sulpiride, stereo-specifically antagonized the dopamine inhibition of pituitary adenylate cyclase (Enjalbert and Bockaert, 1983; Enjalbert et al., 1990). Moreover, dopamine agonist bromocriptine inhibited prolactin gene promoter activity by 70%, and the inhibition was selective in that other viral or cellular promoters were unresponsive to bromocriptine. In addition to PRL promoter, dopamine caused a 60% decrease in transcription activity of Pit-1 promoter, and part of the inhibition was mediated by the two cAMP response elements (Elsholtz et al., 1991). Those findings combined suggest that DRD2-mediated inhibition of gene expressions of prolactin and Pit-1 by dopamine function through a canonical cAMP/PKA pathways.

The inhibition of prolactin secretion by activation of DRD2 receptors has been reported to link to modification of several potassium and calcium channels (Israel et al., 1987; Lledo et al., 1991). By binding with dopamine receptor DRD2, dopamine excites potassium conductance and inactivates voltage-sensitive calcium channels. As results, plasma membrane hyperpolarization is induced, intracellular calcium concentration is reduced, and prolactin secretion from secretory granules is inhibited. With the application of patch-clamp recording and use of antibodies raised against specific G proteins, it has been shown that the coupling of DRD2 to decreased calcium currents is via G $\alpha$ o, whereas the coupling of DRD2 to increased potassium currents is via G $\alpha$ i (Lledo et al., 1992). Therefore, the inhibition of prolactin release may be due to a combined function of DRD2 coupling with G $\alpha$ i which evokes membrane hyperpolarization by opening

inwardly-rectifying potassium channel (indirect reduction in calcium influx) and DRD2 coupling with  $G\alpha o$  inhibiting voltage-dependent calcium channels.

Dopamine may suppress prolactin secretion through inhibition of inositol phosphate metabolism. In bovine pituitary cell preparation, dopamine agonists inhibited inositol phosphate accumulation and was prevented by DRD2 specific antagonists, suggesting that this effect is mediated through DRD2 activation (Simmonds and Strange, 1985). Therefore, DRD2 may be negatively coupled with the phospholipase responsible for PIP2 hydrolysis, involved in the phosphatidylinositol signal pathway. Activation of either isoform of DRD2 inhibits adenylyl cyclase. However, only the short isoform is coupled to the phospholipase signaling pathway negatively (Caccavelli et al., 1992; Senogles, 2000).

Ergot alkaloids ingested with consumption of endophyte-infested tall fescue structurally resemble various biogenic amines such as dopamine (Strickland et al., 2011). It is widely accepted that these ergot amines can bind to dopamine receptor DRD2, stimulate the receptors, and reduce basal level prolactin production and secretion through mechanisms described above.

#### 2.3.6 Prolactin short-loop feedback regulation

PRL controls its own secretion by regulating the dopaminergic neuron through a short loop feedback mechanism (Figure 2.6). By interaction with prolactin receptor (PRLR) localized on TIDA neurons, prolactin stimulates an increase in dopamine synthesis in a time- and concentration-dependent manner. Specifically, it is achieved by stimulating site-specific (ser-19, -31, and -40) phosphorylation of tyrosine hydroxylase which is the rating-limiting enzyme in dopamine synthesis (Ma et al., 2005). In addition,

prolactin also exhibits the ability to elevate tyrosine hydroxylase mRNA expression levels in the arcuate nucleus (Arbogast and Voogt, 1991).

#### 2.3.7 Thyrotropin-releasing hormone regulation of prolactin secretion

Thyrotropin-releasing hormone (TRH) is produced by the paraventricular nuclei in hypothalamus that is originally known to stimulate the release of thyroid-stimulating hormone from the anterior pituitary (Schally et al., 1966). Subsequently, it has been shown that TRH receptor is expressed on both thyrotrophs and lactotrophs (Pfleger et al., 2004), and TRH stimulates prolactin release from lactotrophs in a dose-dependent manner both in vitro and in vivo (Bowers et al., 1971; Blake, 1974). Although the specific mechanism has not been fully elucidated, TRH was found to induce prolactin mRNA levels via activation of ERK signaling pathway with synergistic increase in intracellular Ca<sup>2+</sup> (White and Bancroft, 1983; Kanasaki et al., 2002). In addition, TRH activates its G protein-coupled receptor and then membrane-bound phospholipase C signaling and calcium influx, which consecutively enhances Ca<sup>2+</sup>-dependent exocytosis of prolactin (Sikdar et al., 1989; Fomina and Levitan, 1995, 1997).

#### 2.3.8 Vasoactive intestinal peptide regulation of prolactin secretion

Besides TRH, another hypothalamic pro-secretory agent of lactotrophs is vasoactive intestinal peptide (VIP). It was originally found in porcine small intestine (Said and Mutt, 1970). Subsequently, VIP was found in hypothalamus and median eminence (Besson et al., 1979; Dalcik and Phelps, 1993). Similar to TRH, VIP has been reported to stimulate prolactin secretion both in vivo and in vitro (Kato et al., 1978; Ruberg et al., 1978; Shaar et al., 1979). But unlike TRH, VIP is also synthesized in the lactotrophs, and the autocrine function of local production of VIP is thought to maintain

elevated basal prolactin release (Gómez and Balsa, 2004). By binding to high-affinity receptor on lactotrophs, VIP induces intracellular cAMP accumulation and then PKA activation (Miyata et al., 1989; Shivers et al., 1991), with a delayed increased in calcium concentration observed in the process (Samson et al., 1980; Bjøro et al., 1987).

#### 2.3.9 Galanin regulation of prolactin secretion

Galanin is also known to stimulate prolactin release. Although galanin is also produced in arcuate nucleus of hypothalamus which projects to median eminence (Bedecs et al., 1995), it is primarily produced by the lactotrophs of the anterior pituitary (O'halloran et al., 1990). Specially, galanin peptide is found to be colocalized with prolactin in secretory granules of anterior pituitary cells (Hyde et al., 1991). Studies have shown that galanin secretion from cultured anterior pituitary cells is inhibited by somatostatin and dopamine, and stimulated by TRH and estrogen (Hyde and Keller, 1991; Hammond et al., 1997). Galanin exerts its function by binding its G proteincoupled receptor, which is present in the anterior lobe (Wynick et al., 1993). Although the mechanism has not been clearly defined, galanin is found to stimulate both basal and TRH-induced prolactin secretion in rats (Ottlecz et al., 1988). In addition, galanin may directly stimulate prolactin expression and act as a lactotroph growth factor, particularly when exposure to estrogen is high (Wynick et al., 1998).

#### 2.3.10 Autocrine autoregulation of prolactin secretion

As mentioned above, prolactin regulates its own secretion by interacting with dopaminergic neurons in the hypothalamus. It has been reported that prolactin receptor also exists on the membrane of lactotrophs in the pituitary gland (Chiu et al., 1992). In

addition, it has shown that prolactin can inhibit its own secretion in an autocrine manner in human and rat in vitro studies (Hosojima and Wyche, 1985; Bentley and Wallis, 1987).

Freeman et al. (2000) argued that since a great proportion of lactotrophs actively release VIP, galanin, and prolactin, it is very possible that VIP, galanin, and prolactin may also regulate prolactin secretion in a paracrine manner.

# 2.4 Biosynthesis of proopiomelanocortin, ACTH, and α-melanocyte-stimulating hormone

Previously, a study was conducted by our lab using an animal model of beef steers grazing high vs. low endophyte-infected tall fescue and consuming ad libitum amounts of inorganic selenium-containing vitamin mineral (VM) mix. We found that concentrations of prolactin in steers grazing high endophyte-infected tall fescue (HE) were only 10% of those of the steers grazing low endophyte-infected tall fescue (LE) (Brown et al., 2009). In addition, the liver tissues of the HE steers had increased amounts of mitochondrial mass, capacity for ATP synthesis, and amino acid-derived gluconeogenesis than those of the LE steers, and these processes have been implicated to be coordinated through the glucocorticoid receptor-mediated pathway (Liao et al., 2015). Since ACTH is the major hormone responsible for stimulation of the glucocorticoid biosynthesis and secretion by the cortex of adrenal glands (Simpson and Waterman, 1988; Stocco and Clark, 1996), the ACTH synthesis pathway might be affected in bovine pituitary by fescue toxicosis.

ACTH is synthesized within the anterior pituitary as part of a much larger precursor called proopiomelanocortin (POMC). POMC is mainly synthesized in the corticotrophs of the anterior pituitary and the melanotrophs of the intermediate pituitary,

respectively (Cawley et al., 2016). POMC in mammals consists of 3 exons, of which exons 2 and 3 are translated (Figure 2.7). It is post-translationally cleaved into smaller peptide hormones in a tissue-specific and cell-dependent manner by proprotein convertases. In the pituitary corticotrophs, proprotein convertase 1 (encoded by the PCSK1 gene) alone is expressed and cleaves POMC, producing the ACTH,  $\beta$ -endorphin,  $\beta$ -lipotrophin, amino-terminal peptide and joining peptide (Figure 2.7) (Millington, 2007).

ACTH also gives rise to a second peptide hormone,  $\alpha$ -melanocyte-stimulating hormone ( $\alpha$ -MSH) (Figure 2.7). Proprotein convertase 2 (encoded by the PCSK2) participates in production of  $\alpha$ -MSH. In the intermediate pituitary, proprotein convertase 2 cleaves peptide products initially produced by proprotein convertase 1 into small bioactive peptides (Seidah, 2013). After cleavage of ACTH<sub>1-39</sub> into ACTH<sub>1-17</sub> by proprotein convertase 2, carboxypeptidase E (encoded by the CPE) processes ACTH<sub>1-17</sub> to  $\alpha$ -MSH with the cooperation of peptidylglycine  $\alpha$ -amidating monooxygenase 2 (encoded by the PAM) and an N-acetyltransferase (Kumar et al., 2016).

#### 2.5 Selenium deficiency

The essential trace mineral selenium (Se) is of fundamental importance to animal health and performance. Bioavailable selenium in the forages affects animal health, depending on its deficiency or excess. Although it is harmful in excess, geographically, Se deficiency is a more severe problem to livestock production (Khanal and Knight, 2010). The Se content of forages is dependent on the Se type available and Se content in the soil of a certain region (Mehdi and Dufrasne, 2016). When soil Se content is smaller than 0.5 mg/kg (Hefnawy and Tórtora-Pérez, 2010) or plant Se content smaller than 0.1

mg/kg (National Academies of Sciences and Medicine, 2016), Se deficiency is considered. Unfortunately, besides fescue toxicosis, the other challenge faced by many south-eastern United States cattle producers is Se deficiency due to low soil and forage selenium content (Dargatz and Ross, 1996). Se deficiency causes a variety of negative effects on beef cattle production including increased incidence of early embryonic death, retained placentas, cystic ovaries and weak heat periods (Corah, 1996), reduced growth rate and immune responses (Cerny et al., 2016), white muscle disease, and diarrhea (National Academies of Sciences and Medicine, 2016).

#### 2.6 Supplemental Se

Se-deficient forages necessitate the need to provide supplemental Se. Some of the Se supplementations include direct injections, salt licks and drenches, addition in drinking water, implants (Khanal and Knight, 2010; Mehdi and Dufrasne, 2016). The nutritional requirement of Se for both growing and finishing beef cattle is around 0.1 ppm (100 µg/kg) dry matter (DM) per day (National Academies of Sciences and Medicine, 2016). Both inorganic and organic forms of Se are approved by FDA for beef cattle production. Inorganic/mineral form of Se supplementation includes sodium selenate (SeO4) and sodium selenite (SeO3), and the latter is the most common form of Se supplemented in cattle diet. Organic form of Se supplementation includes selenocysteine (Sec) and selenomethionine (SeMet), both of which are the most common Se source in plants (Läuchli, 1993). They can also be produced from specially cultivated yeast Saccharomyces cerevisiae. This Se yeast, in which SeMet is predominant, is also approved for beef cattle production by FDA (Juniper et al., 2008).
## 2.6.1 Inorganic Se

Most selenium supplementation adopts inorganic form of selenium. Selenate and selenite are taken by plant and then enter into food chain. Both dietary selenate and selenite can be absorbed efficiently. The absorption rate for selenite is above 50%, while the absorption rate for selenate is nearly 91% (Van Dael et al., 2001). Renal excretion of selenate is more rapid and higher compared with selenite. Hence, despite the large differences in absorption and renal excretion between selenate and selenite, when provided at dietary intake dose, both Se compounds result in roughly equivalent bioavailability of selenium (Van Dael et al., 2001). After absorption, selenate has to be reduced to selenite so it can be further metabolized. Selenite can be reduced by TrxR or by reacting with glutathione (GSH) to selenide (Ganther, 1971; Kumar et al., 1992).

# 2.6.2 SeMet

SeMet, a methionine analogue with a Se atom instead of a sulfur atom, is the major selenocompound in plants. It is synthesized and incorporated into protein in place of methionine since tRNA for methionine recognizes SeMet as methionine (Schrauzer, 2000). After absorption via intestinal methionine transporter, dietary SeMet is either metabolized directly to reactive forms (selenide, then Sec) of Se via the transsulfuration pathway, mostly in liver, or randomly inserted into proteins in place of methionine (McConnell and Cho, 1967; Esaki et al., 1981; Wolffram et al., 1989). After SeMet-containing proteins degrade, SeMet is released to free methionine pool again (Figure 2.8). It has been reported that availability of Se from both dietary SeMet and tissue SeMet can be modulated by dietary methionine level (Waschulewski and Sunde, 1988). SeMet-

containing proteins serve as Se pool, especially when animal is exposed to a lowselenium environment for a limited time (Burk and Hill, 2015).

## 2.6.3 Sec

Sec is considered to be the 21<sup>st</sup> amino acid, which is a cysteine analogue with a Se atom instead of a sulfur atom. Due to different chemical properties between Se and sulfur, the pKa of Sec is 5.2 while the pKa of Cys is 8.25 (Huber and Criddle, 1967). Hence, at physiological pH Sec is more reactive than Cys, because the selenol group of Sec is in its ionized form, while the thiol group of Cys is mainly protonated and less reactive (Johansson et al., 2005). Sec is considered as the most biologically active form of Se, and most selenoprotein enzymes are involved in redox reactions because of their active Sec residue (Papp et al., 2007). In plants, Sec is involved in the reverse transsulfuration pathway as an intermediate in which SeMet is made (Sors et al., 2005). Compared to SeMet, it is less abundant in plant proteins (Olson et al., 1970). Duo to its highly reactive properties, free Sec is methylated to Se-methylselenocysteine by some plants to detoxify it (Neuhierl et al., 1999). However, Se-methylselenocysteine is toxic to animals when they are exposed to it (Burk and Hill, 2015). In relation to absorption of dietary Sec, less is known compared to SeMet. However, studies have reported that selenocystine, oxidized form of Sec, can be taken up well by intestinal transporters for neutral and dibasic amino acids in cultured cells and competitively inhibit cystine absorption (Wolffram et al., 1989; Nickel et al., 2009).

## 2.7 Selenoprotein synthesis

Se exerts its biological function largely through the presence of Sec in selenoprotein. There are two unique features about selenoprotein mRNA than other

mRNA (Figure 2.9). One is a UGA codon in the open reading frame which encodes Sec. The UGA codon functions as both a codon for Sec biosynthesis and as a codon for protein synthesis termination in the nuclear genome (Leinfelder et al., 1988; Gladyshev and Hatfield, 1999). In mitochondrial, UGA also codes for tryptophan (Correa et al., 2014). The other feature is the presence of Sec insertion sequence (SECIS) element, a cisacting stem-loop secondary structure downstream of the UGA codon, which locates in the 3' untranslated region (Low and Berry, 1996). The SECIS element is necessary for recognition of in-frame UGA, as a signal for Sec insertion (Berry et al., 1993). Eukaryotic SECIS elements share several properties, consisting of two helices separated by an internal loop, a non-Watson-Crick GA quartet, and an apical loop or bulge (Walczak et al., 1996; Labunskyy et al., 2014). The differences among SECIS elements dictates translation efficiency by affecting binding of trans-acting factors (Low et al., 2000; Latrèche et al., 2012).

There are three unique trans-acting factors for selenoprotein synthesis (Figure 2.9). Unlike other amino acid in eukaryotes, one interesting feature of Sec is that its biosynthesis occurs on its own tRNA, designated tRNA<sup>[Ser]Sec</sup> (Lee et al., 1989; Hatfield et al., 1994). tRNA<sup>[Ser]Sec</sup> is first aminoacylated with serine. This reaction is catalyzed by seryl-tRNA synthetase, and the newly formed seryl- tRNA<sup>[Ser]Sec</sup> become the backbone for biosynthesis of Sec (Lee et al., 1989; Leinfelder et al., 1989). Then seryl- tRNA<sup>[Ser]Sec</sup> is phosphorylated by O-phosphoseryl- tRNA<sup>[Ser]Sec</sup> kinase (Carlson et al., 2004). The newly formed intermediate phosphoseryl-tRNA<sup>[Ser]Sec</sup> serves as a substrate for Sec synthase to synthesize Sec, using monoselenophosphate as the Se donor which is generated by selenophosphate synthase 2 from selenide and ATP (Xu et al., 2006). The

other two trans-acting factors essential for selenoprotein synthesis in eukaryotes are SECIS binding protein 2 (SBP2) and the specific elongation factor EFsec. SBP2 is stably associated with SECIS elements and the ribosomes (Copeland et al., 2001). In addition, SBP2 also binds to EFsec (Copeland and Driscoll, 1999) which recruits selenocysteyltRNA<sup>[Ser]Sec</sup> and facilitates insertion of Sec into newly synthesized polypeptide (Tujebajeva et al., 2000).

## **2.8** Twenty-five selenoproteins

In recent years, it has been widely accepted that Se exerts its physiological functions through selenoproteins (Kim et al., 2011). There are 25 mammalian selenoproteins identified, in all of which Sec residues are present in the primary structure (Kryukov et al., 2003). Nearly all functionally characterized selenoproteins are redox enzymes in that Sec residues confer their catalytic redox activities (Papp et al., 2007). Selenoproteins have been classified according to their biological functions (1) antioxidant enzymes; (2) redox signaling; (3) Thyroid hormone metabolism; (4) Sec synthesis; (5) Se transportation and storage; (6) protein folding (7) unknown function (Figure 2.10).

## **Glutathione peroxidases**

Glutathione peroxidase (GPx) was the first selenoprotein found (GPx1) in mammals (Flohe et al., 1973). There are eight known GPx homologs, five of which are selenoproteins (GPx1, GPx2, GPx3, GPx4, and GPx6). The other three GPx (GPx5, GPx7, and GPx8) homologs, and GPx6 homologs in some mammals (e.g. mouse), are not selenoenzymes because their active-sites contain Cys instead of Sec (Kryukov et al., 2003). The five GPx (selenoproteins) are present in different compartments of cell and have distinct characteristics (e.g. substrate specificity) (Brigelius-Flohé and Maiorino, 2013). Collectively, the antioxidant GPx family catalyzes hydrogen peroxide ( $H_2O_2$ ) or hydroperoxides reduction to affect signaling, to defend against oxidative damage, and to maintain cellular redox homeostasis (Margis et al., 2008).

GPx1 is called classical or cytosolic glutathione peroxidase (also known as cGPx), although it can also be found in mitochondria (Brigelius-Flohé and Maiorino, 2013). It is the most abundant mammalian selenoprotein, and also one of the most thoroughly characterized selenoproteins. GPx1 is expressed in all cell types and most abundant in the liver and kidney. Structurally, mammalian GPx1 forms a homotetramer (Flohe et al., 1971; Awasthi et al., 1975). This cytosolic enzyme scavenges  $H_2O_2$  and soluble organic hydroperoxides in a glutathione (GSH)-dependent manner (Rotruck et al., 1973; Gladyshev and Hatfield, 1999). It has been reported that H<sub>2</sub>O<sub>2</sub> serves as an important signaling molecule, which is involved in regulation of various biological processes such as stress response, cell proliferation, and apoptosis (D'Autréaux and Toledano, 2007). Therefore, these biological processes are indirectly modulated by GPx1. Together with catalase and superoxide dismutase, GPx1 has been considered as one of the major antioxidant enzymes, protecting cells by reduction of toxic  $H_2O_2$  (Lubos et al., 2011). GPx1 knockout mice are viable but more susceptible to oxidative stress (Fu et al., 1999). Hence, GPx1 seems to contribute to protection against oxidative stress, but is not indispensable. GPx1 is one of the most sensitive selenoproteins to Se deficiency. Dramatic decrease in GPx1 mRNA, protein, and activity has been observed in Sedeficient rats (Sunde et al., 1997), and it has been proposed that GPx1 may also functions as a Se buffer or storage protein (Sunde, 1994).

GPx2 is known as the gastrointestinal-specific enzyme (GI-GPx) as well.

Structurally and functionally, GPx2 highly resembles GPx1. It is a tetramer consisting of identical 22-kd subunits like GPx1, and GPx2 is also capable of reduce H<sub>2</sub>O<sub>2</sub> in cytosol using GSH. However, unlike ubiquitously expressed GPx1, GPx2 is preferentially expressed in the epithelium of gastrointestinal system although its mRNA can also be found in liver (Arthur, 2001; Brigelius-Flohé and Maiorino, 2013). About half of the total Se-containing GPx activity comes from GPx2 in gastrointestinal tract (Esworthy et al., 1998). Therefore, GPx2 plays an important role in defense against oxidative stress in this organ. In addition, it has been reported that GPx2 is important for protection of the gastrointestinal tract against inflammation and involved in cancer development, although the question that it is preventing or promoting carcinogenesis remains open (Chu et al., 2004; Naiki-Ito et al., 2007; Banning et al., 2011).

GPx3 is a glycosylated protein and the only extracellular Se-containing GPx (also known as pGPx). It is mainly secreted from kidney, but also present in adipose tissue, thyroid colloid lumen, etc (Maeda et al., 1997; Köhrle, 2005). Like GPx1 and GPx2, GPx3 is a tetramer, but its substrate specificity is broader. Even though GPx3 is capable of reducing H<sub>2</sub>O<sub>2</sub> in the presence of GSH, as an efficient antioxidant in plasma it utilizes thioredoxin or glutaredoxin as reductants when the concentration of plasma GSH is fairly low. In fact, it has been reported that thioredoxin and glutaredoxin are better electron donors for GPx3 (Björnstedt et al., 1994). The promoter of GPx3 is frequently hypermethylated in a variety of tumors, so epigenetic regulation of GPx3 appears to be important in development of these tumors (Lee et al., 2005; Lodygin et al., 2005). GPx3

is widely considered as an indicator of Se status because it accounts for over 20% of total plasma Se (Gandin et al., 2009).

GPx4, also known as PHGPx, is different from other Se-containing GPXs in that it can reduce phospholipid hydroperoxides that are associated with membrane function (Herbette et al., 2007). It utilizes protein thiols in addition to GSH as electron donors in mammalian cells (Ursini et al., 1999; Imai and Nakagawa, 2003). The lack of an internal loop in its monomeric structure enables GPx4 to interact with bulky phospholipid hydroperoxides (Sherrer et al., 2011). GPx4 is present in cytosolic (ubiquitously expressed), mitochondrial (testes), or nuclear form (testes) in a wide range of cell types and tissues, and is one of the most abundant selenoproteins (Brigelius-Flohe et al., 1994; Labunskyy et al., 2014). GPx4 is an essential antioxidant, and knockout of its gene is embryonic lethal (Yant et al., 2003). In addition, GPx4 plays a fundamental role in sperm maturation and male fertility. Disruption of mitochondrial GPx4 causes male infertility (Schneider et al., 2009). In contrast to GPx1, GPx4 levels are not sensitive to Se availability, and therefore it is considered as a housekeeping gene under Se deficiency condition (Bermano et al., 1995; Hara et al., 2001).

GPx6 is the last identified Sec-containing glutathione peroxidase, and its homologs in some mammals (e.g. mouse) are not selenoenzymes. It has been reported that its mRNA is only found in embryos and olfactory epithelium (Kryukov et al., 2003). So far, the knowledge about GPx6 is very limited. It is suggested that GPx6 may have a tetrameric structure and is capable of reducing H<sub>2</sub>O<sub>2</sub> and some soluble low-molecularweight hydroperoxides (Labunskyy et al., 2014).

# **Thioredoxin reductases**

Thioredoxin is a class of small, ubiquitous redox proteins present in all living cells, which protect cells against oxidative stress and facilitate redox signaling by catalyzing dithiol-disulfide exchange reactions of other proteins. The general description of enzymatic resections of thioredoxin system is presented in Figure 2.11. Oxidized thioredoxin need to be reduced by thioredoxin reductase (TrxR) to exert its functions again (Arnér, 2009). TrxR is a central component of the thioredoxin system because it is the only identified enzyme to catalyze the reduction of oxidized thioredoxin, in a NAPDH-dependent manner (Mustacich and Powis, 2000). There are three known TrxRs in mammals, all of which are homodimers and belong to the family of selenoproteins (Labunskyy et al., 2014). Unlike most of the selenoproteins containing Sec in the N-terminal, each TrxR contains a Sec residue in the C-terminal, which plays an essential role for the enzymatic activity of TrxR (Gladyshev et al., 1996).

TrxR1 is primarily present in cytosol, and is the major protein disulfide reductase in mammalian cells. TrxR1 reduces cytosolic thioredoxin as the major substrate (Arnér and Holmgren, 2000). Therefore, many thioredoxin-dependent physiological processes are reliant on TrxR1 including defense against oxidative stress, regulation of gene transcription, apoptosis and so on (Arnér and Holmgren, 2000; Nordberg and Arner, 2001; Rundlöf and Arnér, 2004). In addition, TrxR1 can also exerts its biological impart by reducing certain redox-active enzymes such as ribonucleotide reductases and methionine sulfoxide reductases (Stubbe and Riggs-Gelasco, 1998; Stadtman et al., 2002). Moreover, various non-disulfide compounds like hydroperoxides and selenite can be reduced by TrxR1. Selenite can be reduced by TrxR1 to hydrogen selenide, which serves as the Se donor for Sec biosynthesis (Ganther, 1999).

TrxR2, also named as TR3, is located in mitochondria and expressed in various cell types (Rundlöf et al., 2001; Lillig and Holmgren, 2007). It catalyzes the reduction of mitochondrial thioredoxin and hence plays a role in regulation of mitochondrial redox processes and scavenging reactive oxygen species in mitochondria (Nalvarte et al., 2004). Studies suggest that TrxR2 may also be involved in regulation of cell signaling (Prasad et al., 2014) and cell proliferation (Kim et al., 2003).

TrxR3, also known as thioredoxin glutathione reductase (TGR), exists primarily in testes (Arnér, 2009). Besides an FAD-binding domain, an NADPH-binding domain, and an interface domain like TrxR1 and TrxR2 (Biterova et al., 2005), it also contains an additional glutaredoxin domain in the N-terminal, which allows its glutathione and glutaredoxin reductase activity (Sun et al., 1999; Sun et al., 2001). Hence, this TrxR may be the bridge connecting thioredoxin and GSH systems. Due to its specific expression in testes, especially expressed at high level after puberty, TrxR3 is thought to play a role in sperm maturation (Su et al., 2005), although the most of its biological functions are still unknown.

## Iodothyronine deiodinase

Another important selenoprotein family is thyroid hormone deiodinases, also designated iodothyronine deiodinases (DIOs). DIOs regulate activation and inactivation of thyroid hormones, which are essential for regulation of growth and development, thermogenesis, and energy expenditure (Mullur et al., 2014). The major thyroid hormone secreted by the thyroid gland is thyroxine (T4), which exhibits little intrinsic bioactivity and can be converted to biologically active 3,3',5-triiodothyronine (T3) by reductive deiodination of T4 (Labunskyy et al., 2014). The metabolism of thyroid hormone by

DIOs is presented in Figure 2.12. There are three isoforms of DIOs, all of which form a homodimer structure and belong to Sec-containing membrane-bound enzymes (Lu and Holmgren, 2009). However, these DIOs occur in distinct subcellular locations and tissues. DIO1 and DIO3 are plasma membrane-bound enzymes, whereas DIO2 is located on the endoplasmic reticulum (Labunskyy et al., 2014). DIO1 is expressed primarily in liver, kidney, and thyroid; DIO2 in central nervous system, pituitary, thyroid, and brown adipose tissue; and DIO3 in vascular tissue, skin, and placenta (Mullur et al., 2014).

DIO1 converts the prohormone T<sub>4</sub> to active thyroid hormone T<sub>3</sub> by outer ring deiodination. In turn, DIO1 is also capable of converting T<sub>3</sub> and T<sub>4</sub> by inner ring deiodination to produce inactive T<sub>2</sub> and reverse T<sub>3</sub> (rT<sub>3</sub>) (Bianco et al., 2002). Due to its ability to regulate thyroid hormone level in both ways, DIO1 was originally thought to be responsible for maintaining and regulating circulating levels of T<sub>3</sub> (Gladyshev and Hatfield, 1999). In contrast, DIO2 and DIO3 were proposed to regulate local intracellular T<sub>3</sub> level in a tissue-specific manner (Gereben et al., 2008a). However, it has been reported that DIO1 is dispensable for T<sub>3</sub> action in DIO1 gene-knockout mice (Schneider et al., 2006). In addition, recent studies show that DIO1 may be important to regulate high T<sub>4</sub> levels in hyperthyroid patients, but not in euthyroid human (Maia et al., 2005).

Currently, DIO2 is considered as the major producer of circulating T<sub>3</sub> in human (Maia et al., 2005). The activity of DIO2 can be elevated by low levels of serum T<sub>4</sub> (Gereben et al., 2008b). In addition, the intracellularly generated T<sub>3</sub> by DIO2 rather than DIO1 is more effective in regulation of gene transcription (Sagar et al., 2007). DIO2 also plays an important role in regulation of intracellular T<sub>3</sub> level in specific tissues. For example, in response to cold exposure, DIO2 regulates thermogenesis in brown adipose

tissue by elevating its expression level then increasing active  $T_3$  level in this tissue without affecting circulating  $T_3$  (Silva, 1995).

DIO3 inactivates T3 and T4 by deiodination of their inner ring in a tissue-specific manner. It is highly expressed in fetal and neonatal tissues and considered as the first expressed DIO developmentally (Mullur et al., 2014). It is expressed in highest level in placenta to prevent the access of maternal level thyroid hormones to a developing fetal tissues (Forhead and Fowden, 2014).

## **Selenoprotein P**

Selenoprotein P (SelP) is an important selenoprotein in plasma of mammals. Unlike most other selenoproteins which usually contain one Sec residue, SelP contains 9-12 Sec residues per molecule in mammals (Read et al., 1990). For example, human SelP contains 10 Sec residues (Mangiapane et al., 2014). This unique property enables SelP to account for approximately 50% of the total Se in plasma (Burk and Hill, 2005). According to a Se supplementation study, SelP is a better maker for Se nutritional status than another important plasma selenoprotein GPX3 (Xia et al., 2005). Moreover, it has been suggested that the main role of SelP is in selenium transport, delivery, and storage (Burk et al., 1991; Saito and Takahashi, 2002). SelP is mainly synthesized in liver, although its mRNA can be found in all tissues (Labunskyy et al., 2014) and locally expressed SelP is proposed to play essential role in some tissues like brain (Schweizer et al., 2005). SelP is then secreted into plasma in a glycosylated form and delivered to remote tissues. After the degradation of SelP, its multiple Sec residues can be subsequently utilized to synthesize other selenoproteins (Richardson, 2005). In addition to selenium delivery and storage, studies have shown that SelP may also have heavy-

metal-chelator capacity (Seiler et al., 2008) and antioxidant functions (Takebe et al., 2002).

SelP is delivered to peripheral tissues through a receptor-mediated mechanism. There are two endocytic receptors from low-density lipoprotein receptor family, apolipoprotein E receptor-2 (apoER2) (Olson et al., 2007) and megalin (Olson et al., 2008). Both of these receptors have been identified as SelP receptors facilitating SelP entering into extrahepatic cells in a tissue-specific manner. ApoER2 is expressed highly in testis, bone marrow, placenta, brain, and muscle; moderately expressed in other tissues like thymus and spleen; and minimally expressed in liver and kidney (Burk and Hill, 2015). It is suggested the tissue hierarchy for Se in largely determined by SelP binding to apoER2 (Burk and Hill, 2015). The other SelP receptor megalin plays an essential role for uptake of plasma SelP in kidney, and the uptake is proposed to provide Se for GPx3 synthesis in kidney proximal tubules (Avissar et al., 1994). Megalin is also expressed in brain and reported to be involved in Se metabolism in brain (Chiu-Ugalde et al., 2010).

# Selenophosphate synthetase 2

Selenophosphate synthetase 2 (SPS2) is homologous to selenophosphate synthetase 1 (SPS1) in mammals. However, unlike SPS1 in which the putative active center Sec is replaced by threonine, SPS2 belongs to the selenoprotein family (Low et al., 1995). Selenophosphate synthetase 2 (SPS2) catalyzes the conversion of selenide to active Se donor selenophosphate, which is required for Sec biosynthesis (Xu et al., 2007). SPS2 is an interesting selenoprotein in that it possibly regulates its own biosynthesis (Guimarães et al., 1996) and therefore it is thought to plays an auto-regulatory role in

selenoprotein synthesis (Kim et al., 1997). Although it is a necessary component for the Sec synthesis machinery, other aspects of SPS2 biological function are still unclear.

# Selenoprotein W

Selenoprotein W (SelW) is one of the earliest identified selenoproteins in mammals. In addition, SelW is also one of the most abundant selenoproteins in mammals (Labunskyy et al., 2014). It is localized in mainly the cytosol and bound to the cell membrane in a small fraction (Yeh et al., 1995). SelW is ubiquitously expressed with the highest expression levels in muscles and brains (Gu et al., 2000). The expression of SelW is regulated by the availability of dietary Se (Howard et al., 2013). Its expression is downregulated in muscle, skin, prostate, heart, and intestine under Se deficiency while its expression in brain does not alter (Whanger, 2000). It has been proposed that SelW may play a role in redox-related process regulation because it binds GSH to form a complex with very high affinity (Beilstein et al., 1996). However, the molecular mechanisms involved remain to be elucidated.

#### **15-kDa selenoprotein (Selenoprotein F)**

The 15-kDa selenoprotein (Sep15) is one of the earliest identified selenoproteins. It is named by its molecular mass (Behne et al., 1997). A single Sec residue locates in the middle of the protein (Gladyshev et al., 1998). Sep15 is expressed in a wide range of tissues in mammals, with the highest levels in liver, kidney, prostate, and testis (Kumaraswamy et al., 2000). Its expression is sensitive to dietary Se intake (Ferguson et al., 2006). Sep15 has a thioredoxin-like domain, and N-terminal signal peptide, which is consistent with its location to the ER (Labunskyy et al., 2014). In addition, Sep15 interacts with the UDP-glucose: glycoprotein glycosyltransferases (UGGT) to form a

tight complex. UGGT is an ER-resident chaperone which is involved in N-linked glycoproteins folding in ER (Hebert et al., 1995; Molinari and Helenius, 1999). Hence, Sep15 is proposed to be involved in disulfide-bond formation and quality control of some glycoproteins in the ER (Labunskyy et al., 2007). Moreover, studies also suggest that Sep15 may be involved in cancer etiology in various types of tissues (Kumaraswamy et al., 2000; Hu et al., 2001; Apostolou et al., 2004; Nasr et al., 2004; Irons et al., 2010).

# Selenoprotein H

Like most of the selenoproteins, selenoprotein H (SelH) contains a Sec residue with the CXXU motif at the N-terminal (Barage et al., 2018). Uniquely, SelH is found to reside specifically in nucleoli (Novoselov et al., 2007). Its expression is regulated by dietary Se (Howard et al., 2013). It contains a motif of DNA-binding proteins, which is consistent with its subcellular localization (Labunskyy et al., 2014). Furthermore, SelH is found to possess GPx activity, so it is proposed that SelH may be play a nucleolar oxidoreductase role (Novoselov et al., 2007).

# Selenoprotein I

Selenoprotein I (SeII) can be only found in vertebrate and considered as a recently evolved selenoprotein (Kryukov et al., 2003). Structurally, SeII is similar to choline and choline/ethanolamine phosphotransferases except that SeII contains a Sec residue in the C-terminal region (Labunskyy et al., 2014). However, currently the function of SeII is still unknown.

## Selenoprotein K

In contrast to SelI, selenoprotein K (SelK) is one of the most widespread selenoproteins, which exists in nearly all Se-utilizing organisms (Labunskyy et al., 2014).

SelK contains a Sec residue at the C-terminal end. It is expressed in a variety of tissues, with the highest expression levels in heart and skeletal muscle (Papp et al., 2007). This protein is localized to the ER membrane (Lu et al., 2006) and implicated in degradation of misfolded proteins (Shchedrina et al., 2011). In addition, the possible role of SelK in antioxidant function (Lu et al., 2006), anti-inflammation (Vunta et al., 2007) and immune response has been proposed (Misu et al., 2010).

# Selenoprotein M

Selenoprotein M (SelM) is distantly related to Sep15 (31% sequence identity). Like Sep15, SelM is a thioredoxin-like protein, which is localized on ER (Labunskyy et al., 2014). The Sec residue locates in the N-terminal region as a part of a CXXU motif (Korotkov et al., 2002). SelM shows the highest level of expression in brain and thyroid, and moderate level in heart, kidney, lung, and placenta (Korotkov et al., 2002). The physiological function of SelM still remains unclear, but it is proposed to be involved in neuroprotection against oxidative damage by  $H_2O_2$  and regulation of  $Ca^{2+}$  release from ER in neurons (Reeves et al., 2010).

#### Selenoprotein N

Selenoprotein N (SelN) contains the Sec residue in the C-terminal region (Kryukov et al., 2003). SelN is a transmembrane glycoprotein, existing in the ER membrane. It is ubiquitously expressed in tissues, but highest expressed during embryonic development (Petit et al., 2003). In adult tissues, it is highly expressed in muscle; and it has been reported that SelN clearly plays a vital role in maintenance of muscle progenitor satellite cells and regeneration of impaired skeletal muscle (Castets et al., 2011).

# **Selenoprotein O**

Selenoprotein O (SelO) contains a Sec residue at the C-terminal (Kryukov et al., 2003). It is the largest mammalian selenoprotein and present in mitochondrial of various tissues (Han et al., 2014). Currently, information about structural and physiological characterization of selenoprotein O (SelO) is very limited, besides SelO is proposed to be involved in redox interaction through its CXXU motif (Han et al., 2014).

# Selenoprotein R

Selenoprotein R (SelR), also known as methionine sulfoxide reductase B1(MSRB1) or selenoprotein X, is a zinc-containing stereospecific methionine R sulfoxide reductase. It is predominantly localized in the nucleus and cytosol (Kim and Gladyshev, 2004). SelR is sensitive to dietary Se intake (Novoselov et al., 2005). It is the major mammalian methionine sulfoxide reductase B with the highest activity in liver and kidney (Kim and Gladyshev, 2004). SelR catalyzes the specific reduction of R-isomer of oxidized methionine in proteins. Therefore, it is required for repair of oxidative damaged proteins (Kryukov et al., 2002). In addition, it is reported that SelR is important for regulation of cellular functions by reduction of methionine residues of regulatory proteins (Lee et al., 2013).

# **Selenoprotein S**

Selenoprotein S (SelS) one of the most widespread selenoproteins. It contains a Sec residue at the C-terminal end (Kryukov et al., 2003). Like SelK, SelS is also localized to the ER membrane and implicated in degradation of misfolded proteins (Labunskyy et al., 2014). In addition, the possible roles of SelS includes regulation of inflammatory and immune response (Curran et al., 2005; Gao et al., 2006).

# Selenoprotein T

Selenoprotein T (SelT) is a thioredoxin-like protein with a Sec residue located in the N-terminal region (Kryukov et al., 2003). It is primarily localized to ER membrane (Shchedrina et al., 2010). SelT is a ubiquitously expressed selenoprotein (Dikiy et al., 2007). It is highly expressed in embryonic tissues. In adult tissues, SelT maintains a high expression level in endocrine organs like pituitary, thyroid, and pancreas (Tanguy et al., 2011; Prevost et al., 2013). The biochemical function of SelT remains unclear. The proposed roles that SelT is involved in include: endocrine homeostasis, brain development and function, and neuroprotection (Youssef et al., 2018).

# Selenoprotein V

Until now, selenoprotein V (SelV) is the least conserved mammalian and also the least characterized selenoproteins. It is only identified in testes of some placental mammals (Mariotti et al., 2012), and its function is still a mystery.

# 2.9 Effects of forms of dietary Se on circulating Se and prolactin concentrations, and gene expression profile in cattle

It has been reported that administration of organic Se leads to higher Se concentrations in biopsied liver tissue, jugular whole blood, and red blood cells compared to feeding the same doses of selenite in growing beef heifers (Liao et al., 2011). Later on, a 1:1 MIX (ISe:OSe) has been reported to be as potent as OSe in terms of elevating Se level of whole blood, red blood cells, serum, and liver in growing heifers, compared to dietary ISe (Brennan et al., 2011). In a beef cow/calf grazing study, cows supplemented with OSe had greater blood Se concentrations than cows consuming ISe or MIX. In addition, whole blood Se concentrations of OSe and MIX calves were greater than that of

ISe calves, and correlated to and affected by Se source from the dam (Patterson et al., 2013).

In agreement with previous studies, a most recent study shows that steers grazing endophyte-infected tall fescue with supplemental OSe and MIX in a basal vitaminmineral mix had greater whole blood Se than steers consuming ISe. In the same study, steers with MIX or OSe forms of Se was found to have greater serum prolactin concentrations than ISe-supplemented steers (Jia et al., 2018).

In addition, forms of Se have been reported to influence gene expression profiles in bovine tissues, like the liver and testis (Liao et al., 2011; Matthews et al., 2014; Cerny et al., 2016). Serendipitously, it was found that expression of several genes downregulated in the liver of steers grazing high vs. low endophyte-infected forages were upregulated in cattle by consumption of a 1:1 blend of ISe:OSe (MIX) in vitamin-mineral mixes (Matthews and Bridges, 2014; Matthews et al., 2014; Liao et al., 2015).

In contrast, to our knowledge, the effect of consumption of endophyte-infected tall fescue on pituitary transcriptome profiles has not been reported. In addition, little is known regarding the effect of Se form on transcriptome profiles in bovine pituitary. Moreover, effects of forms of Se on selenoprotein profile in specific bovine tissue have not been reported either.

| Plasma/Serum | Species | Prolactin levels  | Reference                     |
|--------------|---------|-------------------|-------------------------------|
| Serum        | Cow     | 99.6~129.3 ng/mL  | (Ghorbani et al., 1991)       |
| Plasma       | Cow     | 5.3~7.9 ng/mL     | (Browning et al., 1998)       |
| Plasma       | Heifer  | 2.78~3.37 ng/mL   | (Pandey et al., 2017)         |
| Serum        | Heifer  | 25 ng/mL          | (Jones et al., 2008)          |
| Serum        | Steer   | 50~750 ng/mL      | (Trout and Schanbacher, 1990) |
| Serum        | Cow     | 20 ng/mL          | (Ahmadzadeh et al., 2006)     |
| Serum        | Steer   | 138.5-146.6 ng/mL | (Aiken et al., 2006)          |
| Serum        | Steer   | 18-125 ng/mL      | (Fribourg et al., 1991)       |
| Plasma       | Cow     | 22-58 ng/mL       | (Do Amaral et al., 2009)      |
| Plasma       | Steer   | 5.3-11.8 ng/mL    | (Auchtung and Dahl, 2004)     |
| Plasma       | Cow     | 6-19 ng/mL        | (Anchtung et al., 2005)       |
| Plasma       | Cow     | 14.4-25.2 ng/mL   | (Bluett et al., 2003)         |
| Serum        | Steer   | 3.6-36 ng/mL      | (Brown et al., 2009)          |
| Plasma       | Steer   | 16-20 ng/mL       | (Browning et al., 1997)       |
| Plasma       | Cattle  | 145.9-156.2 ng/mL | (Browning et al., 1998)       |
| Plasma       | Steer   | 25-45 ng/mL       | (Browning, 2000)              |
| Serum        | Cattle  | 15-85 ng/mL       | (Campbell, 2014)              |
| Serum        | Steer   | 42.5-103.5 ng/mL  | (Carter et al., 2010)         |
| Serum        | Cattle  | 60-230 ng/mL      | (Drewnoski et al., 2009)      |
| Serum        | Cattle  | 1-13 ng/mL        | (Hill et al., 2000)           |
| Serum        | Steer   | 2-24 ng/mL        | (Kendall et al., 2003)        |
| Plasma       | Steer   | 8.83-18.03 ng/mL  | (Matthews et al. 2005)        |
| Serum        | Cattle  | 1.7-2.3  ng/mL    | (Merrill et al., 2007)        |

Table 2.1. Bovine prolactin concentration in plasma or serum.

Table 2.2. Biological functions of prolactin in mammals. Adapted from Kelly et al.

(1998) by removal of non-relevant data. For completeness, all the categories have been

included whereas the underlined organ/target are thought to be especially relevant to this project.

| Organ or Target               | Effect                                                                                        |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Water and electrolyte balance |                                                                                               |  |  |
| Kidney                        | $\downarrow$ Na <sup>+</sup> and K <sup>+</sup> excretion                                     |  |  |
| Sweat gland                   | $\downarrow$ Na <sup>+</sup> and Cl <sup>-</sup> in sweat                                     |  |  |
| Intestine                     | ↑ Water and salt absorption                                                                   |  |  |
| Uterus                        | $\uparrow$ Ca <sup>2+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Cl <sup>-</sup> in flushings |  |  |
| Placenta                      | ↓Fluid volume in amnion                                                                       |  |  |
|                               | Growth and development                                                                        |  |  |
| Body                          | ↑Postnatal body growth                                                                        |  |  |
| Skin                          | Proliferation of keratinocytes                                                                |  |  |
|                               | Hair loss for nest building                                                                   |  |  |
| Hair follicle                 | Hair growth                                                                                   |  |  |
| Fetal lung                    | Maturation, surfactant production                                                             |  |  |
| Heart                         | ↑Ornithine decarboxylase (ODC) activity                                                       |  |  |
| Liver                         | Hepatocyte proliferation                                                                      |  |  |
|                               | ↓Cytokine gene expression in Kupffer cells                                                    |  |  |
|                               | Induction of growth factors                                                                   |  |  |
| Liver, kidney                 | DNA hypomethylation                                                                           |  |  |
| Kidney                        | ↑ODC activity                                                                                 |  |  |
| Intestine                     | ↑Intestinal mucosa                                                                            |  |  |
|                               | Growth and changes in metabolism                                                              |  |  |
| Muscle                        | Proliferation of vascular smooth                                                              |  |  |
|                               | Induction of growth-related genes                                                             |  |  |
| Adipocytes                    | Preadipocyte differentiation                                                                  |  |  |
| Pancreas                      | Proliferation of $\beta$ -cell                                                                |  |  |
|                               | Increased $\beta$ -cell-to-cell communication                                                 |  |  |
| Adrenal                       | ↑ODC activity                                                                                 |  |  |
| <u>Pituitary</u>              | Proliferation of GH3 cells                                                                    |  |  |
| Germ cells                    | ↑Maturation                                                                                   |  |  |
| <u>Gonads</u>                 | ↑Weight                                                                                       |  |  |
|                               | ↑ODC activity                                                                                 |  |  |
| Prostate                      | Proliferation of human BPH epithelial cells                                                   |  |  |
|                               | ↑Growth                                                                                       |  |  |
|                               | $\uparrow$ ODC activity                                                                       |  |  |
| Seminal vesicle               | ↑Growth                                                                                       |  |  |
| Amnion                        | ↑DNA synthesis and creatine kinase activity                                                   |  |  |
| Brain                         | Astrocyte proliferation                                                                       |  |  |

| Table 2.2 (continued) |                                                 |
|-----------------------|-------------------------------------------------|
|                       | Tuberoinfundibular hypothalamic                 |
|                       | development                                     |
| Immune system         | ↑Thymus and spleen weights                      |
|                       | Proliferation of lymphocytes                    |
| Endo                  | crinology and metabolism                        |
| Brain                 | Tissue-specific modulation of ATPases           |
|                       | Modification of enzyme activities               |
| Fetal lung            | ↑Phospholipid synthesis                         |
| Liver                 | ↑Lipoprotein lipase activity                    |
|                       | ↑Bile secretion                                 |
|                       | ↑ Na <sup>+</sup> /taurocholate co-transport    |
|                       | ↑Glycogen phosphorylase a activity              |
|                       | $\uparrow$ Ca <sup>2+</sup> concentration       |
|                       | $\uparrow PGF_{2\alpha}$ and PGE                |
|                       | ↑IGF-I production                               |
| Pancreas              | ↑Insulin secretion                              |
|                       | ↓Glucose threshold for insulin secretion        |
|                       | ↑Glucokinase and glucose transporter 2          |
| <u>Adrenal</u>        | ↑Steroidogenesis                                |
|                       | ↑Adrenal androgens (DHEA, DHEA-S)               |
|                       | ↑Cortisol, altosterone                          |
|                       | ↑21-Hydroxylase activity                        |
| Skin                  | $\uparrow$ Steroidogenic enzyme (3 $\beta$ HSD) |
| Many tissues          | ↑PRLR number                                    |
|                       | Brain and behavior                              |
| Brain, CNS            | Maternal behavior                               |
|                       | Grooming behavior                               |
|                       | Hyperphagia                                     |
|                       | Adaptive stress responses                       |
|                       | Induced analgesia mimicking                     |
|                       | Psychosomatic reaction                          |
|                       | ↓Libido                                         |
|                       | ↑REM sleep                                      |
|                       | Sleep-wake cycle                                |
|                       | ↑Lordosis behavior                              |
| <u>Hypothalamus,</u>  | ↑Dopamine turnover                              |
| <u>striatum</u>       |                                                 |
| <u>Hypothalamus</u>   | Maturation of neonatal neuroendocrine           |
|                       | system                                          |
|                       | $\downarrow$ GnRH secretion                     |
|                       | Usatility of LH                                 |
|                       | Electrical activity of the VMH neurons          |
| Det                   | TPKC activity                                   |
| Ketina                | $\downarrow$ I HK receptors                     |
|                       | <sup>T</sup> Photoreceptor destruction          |

| Table 2.2 (continued) |                                                    |
|-----------------------|----------------------------------------------------|
|                       | Reproduction                                       |
| Mammary gland         | Lobuloalveolar growth                              |
|                       | ↑Milk protein synthesis                            |
|                       | α-Casein                                           |
|                       | β-Casein                                           |
|                       | Whey acidic protein                                |
|                       | β-lactoglobulin                                    |
|                       | Late lactation protein of marsupials               |
|                       | ↑Lactose synthesis                                 |
|                       | Lactose synthetase                                 |
|                       | ↑Lipid metabolism                                  |
|                       | Acetyl-CoA carboxylase                             |
|                       | Fatty acid synthase                                |
|                       | Malic enzyme                                       |
|                       | Lipoprotein lipase                                 |
|                       | TGF-1 binding protein<br>↑EGF                      |
|                       | ↑I20-kDa protein                                   |
|                       | ↑Muc 1 (glycosylated mucin)                        |
|                       | ↑PRL-inducible protein                             |
|                       | ↑Parathyroid-like peptide                          |
| Ovary                 | Luteotropic and luteolytic actions                 |
|                       | Ovum maturation                                    |
|                       | ↓Folliculogenesis                                  |
|                       | $\downarrow$ 3 $\beta$ -HSD                        |
|                       | ↓Aromatase                                         |
|                       | Potentiate effects of LH on $3\beta$ -HSD          |
|                       | ↓Ovulation                                         |
|                       | ↓Plasmin generation in preovulatory                |
|                       | follicles                                          |
| Granulosa cells       | ↓Estrogen production                               |
|                       | $\downarrow$ P450 aromatase                        |
|                       | ↑Use of extracellular lipoproteins                 |
|                       | ↑Progesterone production                           |
|                       | TLH receptors                                      |
|                       | 200-OH progesterone                                |
|                       |                                                    |
|                       | Luternization                                      |
|                       | Counteract morphological effects of LH             |
|                       | <sup>1</sup> Progesterone in cocultures of splenic |
|                       | macrophages removed at proestrus                   |
|                       | ADAG                                               |
|                       | ↑1012-Macroglobulin                                |
| Oocvtes               | <sup>†</sup> Development competence and maturation |
| <b>J</b>              | 1 1 1                                              |

| Table 2.2 (continued) |                                                                        |
|-----------------------|------------------------------------------------------------------------|
| Luteal cells          | Luteotropic action                                                     |
|                       | Luteolysis in pregnancy                                                |
|                       | Luteolysis during estrous cycle                                        |
|                       | ↓20α-HSD                                                               |
|                       | ↑Progesterone                                                          |
|                       | Control of delayed implantation and                                    |
|                       | steroidogenesis                                                        |
|                       | ↓37-kDa protein                                                        |
| Uterus                | ↑Progesterone receptors and progesterone effects                       |
|                       | ↑PGE2, phospholipase A2, prostaglandin                                 |
|                       | G/H synthase                                                           |
|                       | ↑Fluid loss                                                            |
|                       | ↓Progesterone metabolism                                               |
|                       | ↑Estrogen receptors                                                    |
|                       | ↓Myometrial contraction                                                |
|                       | ↑General secretory activity of endometrium                             |
|                       | ↑Leucine aminopeptidase activity                                       |
|                       | ↑Uteroglobin production                                                |
|                       | Promote blastocyst implantation                                        |
|                       | ↑Glucose amine synthetase activity                                     |
| Leydig cells          | Involved in maintenance of cell morphology                             |
|                       | ↑LH receptors                                                          |
|                       | ↑Aromatase activity                                                    |
|                       | ↑Steroidogenesis and androgen production                               |
| Sertoli cells         | ↑FSH receptors                                                         |
| Germ cells            | ↑Total lipids                                                          |
|                       | ↑Spermatocyte-spermatid conversion                                     |
| Spermatozoa           | $\uparrow$ Ca <sup>2+</sup> binding and/or transport of ejaculated     |
|                       | and epididymal spermatozoa                                             |
|                       | Energy metabolism                                                      |
|                       | TA I Pase activity                                                     |
|                       | Fructose rate                                                          |
|                       | Glucose oxidation $\sqrt{2\pi^{2+}}$ content                           |
|                       | $\downarrow$ ZII Collient<br>Maintanance of mobility and attachment to |
|                       |                                                                        |
|                       | Shortening optimal preincubation period to                             |
|                       | acquire capacitation                                                   |
| Epididymis            | <sup>↑</sup> Glycogenolysis and hexophosphate                          |
| Epicitayinis          | enzymes                                                                |
|                       | ^Sialic acid                                                           |
|                       | $\beta$ -galactosidase and $\alpha$ -mannosidase                       |
|                       | activities                                                             |
|                       | ↑Lipids                                                                |
|                       | 1-11-10                                                                |

| Table 2.2 (continued) |                                                   |
|-----------------------|---------------------------------------------------|
|                       | ↓Glycoprotein metabolism                          |
| Seminal vesicle       | ↓Sperm fertilizing and mobility capacity          |
|                       | Azoospermia                                       |
|                       | ↑Fluid lipids                                     |
|                       | †Lipogenesis                                      |
|                       | <sup>1</sup> Phosphomonoesterase and acid         |
|                       | phosphatase                                       |
|                       | Glycosylation                                     |
| Prostate              | ↑Weight                                           |
| 1105.000              | ↑Nuclear uptake of DHT                            |
|                       | Androgen receptor                                 |
|                       | Improvement in estrogen-induced                   |
|                       | inflammation                                      |
|                       | ↑Enithelia secretory function                     |
|                       | Monosaccharide formation                          |
|                       | Amino acid oxidation and transamination           |
|                       | <sup>↑</sup> Ornithine decarboxylase              |
|                       | <sup>↑</sup> Citric acid secretion                |
|                       | ^Mitochondrial aspartate                          |
|                       | Citrate oxidation and m-asconitase                |
|                       | <sup>^</sup> Pyruvate dehydrogenase F1g           |
|                       | $\uparrow$ A spartate transporter                 |
|                       | $\uparrow C3$ subunit of prostate in probasin RWB |
|                       | gene                                              |
|                       | ↑ IGE-I and IGE-I receptor                        |
| Immu                  | oregulation and protection                        |
| Spleen                | ↑Weight                                           |
| Thymus                | ↑ Weight                                          |
| 111911103             | Thymulin production                               |
| Submandibular gland   | ↑Immunostimulatory activity                       |
| Lymphocytes           | <sup>↑</sup> Hormonal immunity                    |
| Lymphoeytes           | $\uparrow$ Adiuvant arthritis response            |
|                       | Cellular immunity                                 |
|                       | Antibody formation to sheen RBC                   |
|                       | <sup>1</sup> IgG and IgM antibodies               |
|                       | Reverse hypophysectomy-induced anemia             |
|                       | leukopenia and thrombocytopenia                   |
|                       | ^Proliferation                                    |
|                       | 11 -2 receptors                                   |
|                       | TEPO receptors                                    |
|                       | ↑PRL receptors                                    |
|                       | Anoptosis                                         |
|                       | ↓ popuosis<br>↑IFN_v                              |
|                       | 1 Graft rejection                                 |
|                       | $\uparrow c-mvc$                                  |
|                       |                                                   |

Table 2.2 (continued) **†**DNA synthesis ↑T cell engraftment Nb2 cells **↑**Proliferation ↓ Apoptosis IRF-1 gene induced *c-myc* gene induced *c*-fos gene induced ODC gene induced Hsp 70 gene induced  $\beta$ -Actin gene induced pim-1 gene induced gif-1 gene induced *bcl*-2 gene induced bax gene induced T-cell receptor  $\gamma$ -chain gene induced Cyclins D2 and D3 gene induced Cyclin E, cdk2, cdk5, E2F-1 gene induced Clone 15, nuclear movement protein gene induced GnRH gene induced GnRH receptor gene induced Jak2 protein activated Fyn protein activated Stat proteins activated Ras protein activated Raf protein activated Vav protein activated Grb2 protein activated Sos protein activated Shc protein activated MAP kinase protein activated Stathmin protein activated **IRS-1** protein activated PTP-1D protein activated PKC protein activated Casein kinase II protein activated PTK protein activated PI3 kinase protein activated *cbl* protein activated S6 kinase protein activated G proteins activated PLC protein activated Amiloride-sensitive Na<sup>+</sup>/H<sup>+</sup> exchange system protein activated <sup>†</sup>Susceptibility of primary leukemia cells NK cell

| Table 2.2 (continued)   |                                                            |
|-------------------------|------------------------------------------------------------|
|                         | ↑Cytotoxic effects                                         |
|                         | ↑DNA synthesis                                             |
| Macrophages             | ↑Activation                                                |
|                         | ↑Cytokine gene expression in Kupffer cells                 |
|                         | following hemorrhage                                       |
|                         | $\downarrow$ Monoblastic growth-synergy with IFN- $\gamma$ |
|                         | ↑Superoxide anion responsible for killing                  |
|                         | pathogenic organisms                                       |
|                         | ↑Nitric oxide and protection against                       |
|                         | bacterial infection                                        |
| Polymorphonuclear cells | ↓Direct and spontaneous migration                          |
| Thymic nurse cell       | Regulation of lymphocyte/epithelial cell                   |
| complexes               | adhesive interactions                                      |
| Mammary gland           | ↑IgA-secreting plasma cells                                |
| Liver                   | Induction of coagulation factor XII                        |



Figure 2.1. (A) The tetracyclic ergoline ring common to all ergot alkaloids that is variously substituted on the C-8 which in this case has an amino acid ring system that varies at the R1 and R2 substituents to create the various ergopeptine alkaloids. (B) The structural similarities between the ergoline ring and the catecholamines norepinephrine, dopamine, and serotonin (in bold) (Klotz, 2015).



Figure 2.2 Chemical structures of the common ergoline ring structure, lysergic acid, and selected ergopeptines (Strickland et al., 2011).



Figure 2.3. Diagram of the human and rat PRL promoters, the PRL gene, and the human mRNA transcript (Ben-Jonathan et al., 2007). Arrows designate transcriptional start sites for the proximal pituitary promoter and the superdistal extrapituitary promoter. The superdistal promoter is unique to humans, and its start site is located 5.8 kb upstream of the pituitary start site. The human and rat proximal promoters differ in size and contain 13 and 8 Pit-1 binding sites, respectively. A functional ERE is present in the rat promoter, whereas its presence in the human proximal promoter is questionable. In both species, the coding region in the pituitary consists of five exons that span approximately 10 kb. Transcription from either promoter produces mRNAs with identical protein coding sequences but differing in the 5' UTR. Due to the presence of an additional codon in the human gene (1a), extrapituitary PRL mRNA is about 150 bp longer than the pituitary

transcript. A signal peptide coding for 28-30 residues lies downstream of the UTR, followed by the PRL transcript.



Figure 2.4. The predominant signal transduction pathway of prolactin (Fitzgerald and Dinan, 2008). Abbreviations: JAK, Janus kinase; Prl-R, prolactin receptor; STAT, signal transducer and transcription protein; TH, tyrosine hydroxylase.



Figure 2.5. Horizontal view of pituitary emphasizing distribution and percentage of anterior pituitary cell subtypes. Adapted from Ben-Shlomo and Melmed, 2010. Luteinizing hormone (LH) - and follicle-stimulating hormone (FSH)-secreting cells (gonadotrophs) are scattered throughout the anterior pituitary and constitute about 10% of cells. PRL, prolactin-secreting cells (lactotrophs, 15%); GH, growth hormone-secreting cells (somatotrophs, 50%); ACTH, adrenocorticotropin-secreting cells (corticotrophs, 15%); TSH, thyroid-stimulating hormone-secreting cells (thyrotrophs, 5%).



Figure 2.6. Short-loop feedback mechanism of prolactin regulation (Fitzgerald and Dinan, 2008). Abbreviations: DA, dopamine; TIDA, tuberoinfundibular dopaminergic neuron; Prl-R, prolactin receptor; D2R, dopamine2 receptor; PRL, prolactin.



Figure 2.7. Gene structure and post-translational processing of POMC (Millington, 2007). Prohormone convertases 1 and 2 (PC1/2) break the parent POMC peptide into successively smaller peptides by cleavage at paired dibasic amino acid residues consisting of lysine (K) and/or arginine (R). The final products are generated in a tissue specific manner, for example  $\alpha$ -MSH and ACTH are not produced by the same cells in the pituitary. They also involve additional enzymatic post translational modifications, such as the acetylation of  $\alpha$ -MSH. The final products include the melanocortins (MSHs and ACTH),  $\beta$ -endorphin ( $\beta$ -end) and corticotrophin-like intermediate peptide (CLIP). There are intermediate peptides whose biological function remains unclear, such as  $\beta$  and  $\gamma$  lipotrophins ( $\beta$ -LPH,  $\gamma$ -LPH).



Figure 2.8. Initial metabolism of the principal dietary forms of selenium (Burk and Hill, 2015). Abbreviations: met, methionine; Sec, Sec; Semet, SeMet.



**b** *trans*-Acting factors

Sec-tRNA<sup>[ser]sec</sup>: tRNA bearing the anticodon for UGA with selenocysteine attached EFsec: elongation factor specific for Sec-tRNA<sup>[ser]sec</sup> SBP2: SECIS-binding protein 2

Figure 2.9. Factors essential for selenoprotein synthesis (Burk and Hill, 2015).

Abbreviations: 3'UTR, 3' untranslated region; ORF, open reading frame; SECIS,

selenocysteine insertion sequence element.
| Antioxidant<br>enzymes       | Redox<br>signalling     | Thyroid<br>hormone<br>metabolism | Sec<br>synthesis                                             | Transport<br>and storage<br>of Se              | Protein<br>folding<br>(potential) | Unknown<br>function          |
|------------------------------|-------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------------------|------------------------------|
| GPx1<br>GPx2<br>GPx3<br>GPx4 | TrxR1<br>TrxR2<br>TrxR3 | DIO1<br>DIO2<br>DIO3             | SPS 2                                                        | Sel P                                          | Sep15<br>SelN<br>SelM<br>SelS     | SelH<br>SelI<br>SelO<br>SelT |
| GPx6<br>SelK<br>SelR<br>SelW |                         | -CXXU- m                         | otif<br>Sel<br>Sel<br>Sel<br>Sel<br>Sel<br>Sel<br>Sel<br>Sel | 015*<br> H<br> M<br> 0<br> P<br> T<br> V<br> W |                                   | SelV                         |

# The Human Selenoproteome

Figure 2.10. The human selenoproteome (Papp et al., 2007). The 25 human selenoproteins are outlined and classified by their determined or potential function. Selenoproteins with -CXXU- motifs are shown in the box. \*-CXU- motif.



Figure 2.11. Scheme of oxidoreductase activities of the thioredoxin system (Arnér and Holmgren, 2000). The figure schematically depicts the reduction of the active site disulfide in oxidized thioredoxin, Trx-S<sub>2</sub>, to a dithiol in reduced thioredoxin, Trx-(SH)<sub>2</sub>, by thioredoxin reductase (TrxR) and NADPH.



Figure 2.12. Metabolism of thyroid hormone thyroxine (T4) by the types 1, 2, and 3 deiodinases (DIO1, DIO2, DIO3) (Papp et al., 2007). DIO1 and DIO2 catalyze the reduction of  $T_4$  to yield the active form of hormone  $T_3$ , or, reverse  $T_3$ ,  $rT_3$ , to yield  $T_2$ . DIO1 and DIO3 catalyze the deiodination of  $T_4$  to  $rT_3$ , and of  $T_3$  to  $T_2$ .

#### **CHAPTER 3.** Dissertation Objectives

The goals of this dissertation were:

(1) to determine whether gene expression profiles differed between whole pituitaries of growing beef steers grazing pastures containing high (HE) or low (LE) amounts of toxic endophyte-infected tall fescue (Chapter 4).

(2) to determine whether the form of supplemental Se would alter pituitary transcriptome profiles of steers grazing endophyte-infected tall fescue (Chapter 5).

(3) to determine whether the form of supplemental Se would alter selenoprotein transcriptome profiles in pituitaries and livers of growing steers subjected to summerlong grazing of endophyte-infected pasture (Chapter 6).

The specific objectives of the dissertation were to answer the following questions:

- (1) Does consumption of endophyte-infected tall fescue alter bovine pituitary transcriptome profiles? What canonical pathways are the differentially expressed genes involved in? Are there key upstream regulators associated with the differentially expressed genes? Does consumption of endophyteinfected tall fescue affect prolactin gene (PRL)? Does consumption of endophyte-infected tall fescue affect pituitary genes responsible for production and/or secretion of prolactin and/or ACTH? (Chapter 4)
- (2) Does form of supplemental Se affect pituitary transcriptome of steers grazing endophyte-infected tall fescue? What canonical pathways are the differentially expressed genes involved in? Are there key upstream regulators associated with the differentially expressed genes? Does form of supplemental Se affect

prolactin gene (PRL)? Does form of supplemental Se affect pituitary genes responsible for production and/or secretion of prolactin and/or ACTH? Which form of supplemental Se could ameliorate the negative effect of consumption of endophyte-infected tall fescue in terms of elevating expression of genes associated with prolactin and ACTH production and/or secretion (Chapter 5)

(3) Does form of supplemental Se affect selenoprotein profiles in pituitaries and livers of steers grazing endophyte-infected tall fescue? Which tissue is more responsive? Are there selenoproteins tightly correlated with each other in terms of expression pattern, positively or negatively? Which form of supplemental Se benefits the steers the most based on their respective selenoprotein profile?

# **CHAPTER 4.** Pituitary Genomic Expression Profiles of Steers Are Altered by Grazing of High (HE) vs. Low (LE) Endophyte-infected Tall Fescue Forages<sup>1</sup>

#### 4.1 Abstract

Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746  $\mu$ g/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE;  $0.023 \ \mu g/g \text{ ergot alkaloids}; 5.7 \text{ ha}; n = 9; BW = 266 \pm 10.9 \text{ kg}).$  As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate  $\leq 4.8\%$ ), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of

*POMC* and *PCSK1*, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.

<sup>1</sup>Published by PloS one 12: e0184612. doi: 10.1371/journal.pone.0184612

**KEYWORDS:** ACTH, DRD2, ergot alkaloids, gene expression, bovine pituitary, prolactin

# **4.2 Introduction**

*Epichloe coenophialum* is an endophytic fungus that infects most tall fescue (*Lolium arundinaceum*) pastures commonly used in animal grazing systems in the eastern half of the United States (Aiken and Strickland, 2013). The interaction between *E. coenophialum* and tall fescue produces ergot alkaloids (Siegel and Bush, 1994). Consumption of ergot alkaloid-containing tall fescue impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis" (Strickland et al., 2011).

The anterior pituitary gland secretes hormones that affect control over several physiological processes altered by consumption of ergot alkaloid-containing forages, including hormones for metabolism (TSH), growth (GH), reproduction (LH, FSH), stress responses (ACTH), and lactation (prolactin) (Beardwell and Robertson, 1981). Despite these known relationships, we are unaware of reports that describe the effect of fescue toxicosis on pituitary genomic expression profiles.

The goal of the current research was to determine whether gene expression profiles differed between whole pituitaries of growing beef steers grazing pastures containing high (HE) or low (LE) amounts of toxic endophyte-infected tall fescue. We used transcriptome and targeted gene expression analyses to identify specific candidate molecules and signaling pathways responsible for the altered physiology of steers consuming HE forages. The global hypothesis tested was that consumption of endophyteinfected tall fescue would alter pituitary transcriptome profiles and that at least the pituitary genes responsible for the production and secretion of prolactin would be downregulated and those for POMC/ACTH would be up-regulated.

#### 4.3 Materials and methods

#### 4.3.1 Animal model

All procedures involving animals were approved by the University of Kentucky Institutional Animal Care and Use Committee. The animal management regimen and model for steers that yielded the pituitary tissue of the present experiment have been reported. As described in detail previously (Brown et al., 2009; Matthews and Bridges, 2014; Liao et al., 2015), 19 beef steers (predominately Angus) were denied access to feed and water for 14 h, weighed, and subdivided into 2 groups based on BW. The steers were randomly allotted (d0) within BW group to graze either a low-toxic endophyte tall fescue-mixed pasture (LE; 5.7 ha; 0.023  $\mu$ g ergot alkaloids/g; n = 9; BW = 267 ± 14.5 kg) or a high-toxic endophyte-infected tall fescue pasture (HE; 5.7 ha; 0.746 µg ergot alkaloids/g; n = 10; BW = 266 ± 10.9 kg) for an 89-d grazing period. Analysis of ergot alkaloid levels between the two pastures revealed that the HE steers were exposed to 25 and 21 times more ergovaline/ergovalinine and lysergic acid/isolysergic acid, respectively, than were the LE steers (Brown et al., 2009). After the common 89-d grazing period on pastures, steers were slaughtered in the University of Kentucky Meat Laboratory (Lexington, KY) over a 17-day period. Throughout the slaughter period, steers continued to graze their respective treatment pastures. Details of the slaughter period and process have been reported (Brown et al., 2009).

#### **4.3.2 Sample collection and RNA preparation**

Steers were stunned by captive bolt pistol and exsanguinated. Within 10 to 12 minutes of death, the whole pituitary was collected from each animal, placed in a foil pack, flash-frozen in liquid nitrogen, and stored at -80°C. Three pituitary glands (1 LE, 2

HE) were not used in the microarray analysis because of tissue damage incurred during the collection process. As a result, eight pituitaries (n = 8) for both LE and HE treatment groups were subjected to RNA analyses.

Total RNA was extracted from the whole frozen pituitary tissue using TRIzol Reagent (Invitrogen Corporation, Carlsbad, CA) following the manufacturer's instructions. The RNA concentrations were determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE), which revealed that all samples had an average concentration of 678 ng/µl and were of high purity with 260:280 nm absorbance ratios ranging from 1.71 to 1.91 and 260:230 nm absorbance ratios ranging from 2.08 to 2.55. The integrity of total RNA was examined by gel electrophoresis using an Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa Clara, CA) at the University of Kentucky Microarray Core Facility. All RNA samples had 28S:18S rRNA absorbance ratios greater than 1.7 and RNA integrity numbers greater than 8.7.

#### 4.3.3 Microarray analysis

The custom WT Btau 4.0 Array (version 1) GeneChip (Affymetrix, Inc., Santa Clara, CA) was used (Matthews et al., 2014) to investigate the effect of HE vs. LE consumption on bovine pituitary gene expression profiles. Microarray analysis was conducted according to the manufacturer's standard protocol at the University of Kentucky Microarray Core Facility. Briefly, 3 µg of RNA for each sample was first reverse-transcribed (RT) to cDNA and then from cDNA (double-stranded) to complementary RNA (cRNA; single-stranded), which was then labeled with biotin. The biotinylated cRNAs were further fragmented and used as probes to hybridize the gene chips in the GeneChip Hybridization Oven 640 (Affymetrix), using 1 chip per RNA

sample. After hybridization, the chips were washed and stained on a GeneChip Fluidics Station 450 (Affymetrix). The reaction image and signals were read with a GeneChip Scanner (GCS 3000, 7G; Affymetrix), and data were collected using the GeneChip Operating Software (GCOS, version 1.2; Affymetrix). The raw expression intensity values from the GCOS (i.e., 16 \*.cel files from the raw methylation measurements) were imported into Partek Genomics Suite software (PGS, version 6.6; Partek Inc., St. Louis, MO). For GeneChip background correction, the algorithm of Robust Multichip Averaging adjusted with probe length and GC oligo contents was implemented (Irizarry et al., 2003; Wu et al., 2004). The background-corrected data were further converted into expression values using quantile normalization across all the chips and median polish summarization of multiple probes for each probe set.

All the GeneChip transcripts were annotated using the NetAffx annotation database for Gene Expression on Bovine GeneChip Array ST 1.1, provided by the manufacturer (http://www.affymetrix.com/analysis/index.affx, last accessed in March 2016, annotation file last updated in April 2014). Quality control of the microarray hybridization and data presentation was performed by MA plot on all the gene expression values and by box plot on the control probe sets on the Affymetrix chips (data not shown). Pearson (Linear) Correlation generated the similarity matrix (last accessed in March 2016, Partek Genomics Suite 6.6 6.15.0422). The average correlation between any pair of the 16 GeneChips was 0.98, and all GeneChips were further analyzed. Principal component analysis (**PCA**) was performed to elucidate the quality of the microarray hybridization and visualize the general data variation among the chips (Partek, 2015). To assess treatment effects (HE vs. LE) on the relative expression of the pituitary gene

transcripts, qualified microarray data were subjected to one-way ANOVA using the same PGS software. To achieve a higher degree of confidence (i.e., a more conservative approach), transcripts showing treatment effects at the significance level of P < 0.001 (false discovery rate of  $\leq 4.8\%$ ) were defined as differentially expressed. These differentially expressed genes/gene transcripts (**DEGs**) were subjected to hierarchical clustering analysis using PGS software and to canonical, functional, and network pathway analyses using the Core Analysis program of Ingenuity Pathway Analysis online software (IPA, Build version 430059M, Content version 31813283; http://www.ingenuity.com [accessed in December, 2016]; Ingenuity Systems, Inc., Redwood City, CA).

All the microarray \*.cel files collected by GCOS plus the GC Robust Multichip Averaging-corrected data processed by PGS software of this manuscript have been deposited in the National Center for Biotechnology Information's Gene Expression Omnibus (**GEO**; http://www.ncbi.nlm.nih.gov/geo/) [released October 23, 2014]), are minimum information about a microarray experiment (**MIAME**) compliant (Brazma et al., 2001), and are accessible through GEO series accession number GSE62570.

#### 4.3.4 Real-time RT-PCR analysis

Primer sets for genes selected for real-time reverse transcription (RT) PCR analysis (Table 4.6) were designed using the NCBI Pick Primers online program against RefSeq sequences (accessed January to June 2016). Real-time RT-PCR was performed using an Eppendorf Mastercycler ep *realplex2* system (Eppendorf, Hamburg, Germany) with iQ SYBR Green Supermix (Bio-RAD, Hercules, CA), as described (Bridges et al., 2012). Briefly, cDNA was synthesized using the SuperScript III 1st Strand Synthesis System (Invitrogen), with 1 µg of RNA used for each reverse transcription reaction. Realtime RT-PCR was performed with a total volume of 25 µL per reaction, with each reaction containing 5 µL of cDNA, 1 µL of a 10 µM stock of each primer (forward and reverse), 12.5 µL of 2× SYBR Green PCR Master Mix, and 5.5 µL of nuclease-free water. Gene expression was analyzed by the  $2^{-\Delta\Delta CT}$  method (Livak and Schmittgen, 2001).

The resulting real-time RT-PCR products were purified using a PureLink Quick Gel Extraction Kit (Invitrogen) and sequenced at Eurofins Scientific (Eurofins, Louisville, KY). Sequences were compared with the corresponding RefSeq mRNA sequences used as the templates for primer set design. The sequences of the primers and the resulting sequence-validated real-time RT-PCR reaction amplicons for selected DEGs and the endogenous control genes *ACTB*, *PPIA*, and *UBC* are presented in Table 4.6 and Figure 4.2, respectively. Primers for *ACTB* were from Lisowski et al. (Lisowski et al., 2008), and primers for *s-PRLR* and *l-PRLR* were from Thompson et al. (Thompson et al., 2011). All sequenced amplicons had at least 98% identity with their template sequences. The raw CT values of *ACTB*, *PPIA*, and *UBC* in pituitary tissue of HE and LE steers did not differ (P = 0.57, 0.42, 0.82; respectively). Accordingly, the geometric mean expression of *ACTB*, *PPIA*, and *UBC* was used to normalize the relative quantities of the selected DEGs mRNA expression, and all RT-PCR reactions were conducted in triplicate.

# 4.3.5 Selected miRNA-target gene interactions

To identify (predict) microRNAs (miRNAs) that might regulate (Thompson et al., 2011; Agarwal et al., 2015) prolactin or POMC/ACTH production, microarray-identified

differentially expressed miRNAs (**DEMs**) were uploaded into TargetScan online software (Release 7.1, http://www.targetscan.org/), and the species-specific "Cow" filter applied. The resulting miRNA candidates were ranked based on cumulative weighted context++ scores (Agarwal et al., 2015) and then reduced to only those predicted to bind mRNA of genes involved in prolactin or POMC/ACTH production or to bind to mRNA coding known transcription factors of prolactin and POMC/ACTH pathway genes.

#### 4.3.6 Statistical analyses

To test for HE vs. LE treatment effects on the relative expression of the pituitary gene transcripts, microarray hybridization data were subjected to one-way ANOVA using the PGS software as described in the "Microarray Analysis" section above. To determine the effect of treatment, the relative expression levels of selected DEGs analyzed by real-time RT-PCR were subjected to one-way ANOVA using the GLM procedure of the SAS statistical software package (version 9.4; SAS Inst., Inc., Cary, NC), with the endophyte level as the fixed effect. For these data, significance was declared when  $P \le 0.05$ , and a tendency to differ was declared when  $0.10 \ge P > 0.05$ .

# 4.4 Results

# 4.4.1 Differentially expressed genes

Principal component analysis of all microarray data was performed to examine the correlation and variation among the chips, revealing a total variance of 30.9% (Figure 4.3). The first principal component (PC #1, x-axis) included genes with a median degree of variance (12.3%), whereas PC #2 (y-axis) and PC #3 (z-axis) encompassed genes that had low ranges of variance (9.84% and 8.75%, respectively). Overall, PCA clearly demonstrated that the chips within each treatment group were clustered closely together. Individual ANOVA was conducted to identify altered expression of RNA transcripts in the pituitary tissue of HE vs. LE steers. At the P < 0.01 level and a false discovery rate of < 16%, 1,715 gene transcripts were identified. To refine this analysis, genes with the criteria of a false discovery rate of less than 4.8% and P < 0.001 were considered to be DEGs (Table 4.7). Of these 542 DEGs, 227 (10 non-annotated) were up-regulated, 5.5% to 79.8%, and 315 (14 non-annotated) were down-regulated, 5.7% to 69.0%, in HE vs. LE steers.

Hierarchical cluster analysis of the 542 DEGs revealed that all steers were clearly separated into either the LE or HE treatment group (Figure 4.4). Relative to LE steers, approximately 40% of the genes in the HE steers were up-regulated and 60% down-regulated.

# 4.4.2 Functional, canonical pathway, and gene network analyses

To determine the physiological significance of HE-induced DEGs (Table 4.7), bioinformatic analysis of canonical, functional, and network pathway analyses was performed. Canonical pathway analysis revealed (P < 0.001) that the top 7 pathways were the following: axonal guidance signaling (26 genes), role of NFAT in cardiac hypertrophy (16 genes), P2Y purigenic receptor signaling pathway (13 genes), cardiac hypertrophy signaling (17 genes), Tec kinase signaling (14 genes), ErbB signaling (10 genes), and CXCR4 signaling (13 genes) (Table 4.1). Additionally, several affected pathways central to prolactin production, secretion, or signaling were identified (Table 4.2), including dopamine receptor signaling, G $\alpha$ i signaling, cAMP-mediated signaling, protein kinase A signaling, and prolactin signaling. Moreover, canonical pathway analysis also identified affected pathways involved in the signaling of other pituitary-

derived hormones (Table 4.3): corticotropin-releasing hormone signaling, melanocyte development and pigmentation signaling, growth hormone signaling, and GnRH signaling.

To refine this analysis to pituitary-specific metabolism, IPA analysis was re-run after applying the pituitary gland-specific filter. Diseases and Bio Function Analysis found ( $P \le 0.01$ ) putative changes in diseases and disorders, molecular and cellular functions, and physiological system development and function, resulting from the differential expression of 5 genes (*DRD2*, *PRL*, *ESR1*, *POMC*, and *TCF7L2*).

To gain insight into potentially interacting canonical pathways, pathway network analysis revealed one network that included 13 DEGs (*BTC*, *CPE*, *DRD2*, *ESR1*, *HAPLN1*, *IGF2*, *LAMA1*, *NCOA1*, *PCSK1*, *POMC*, *PRKCA*, *PRL*, and *REV3L*). Overlaying of canonical pathways revealed cross talk among several cell signaling pathways (Figure 4.1), including glucocorticoid receptor signaling (*ESR1*, *IL2*, *NCOA1*, *POMC*, *PRL*, *TGFB1*), GnRH signaling (*EGR1*, *FSHB*, *LHB*, *PRKCA*), growth hormone signaling (*CSHL1*, *IGF1*, *IGF2*, *PRKCA*), eNOS signaling (*ESR1*, *PRKCA*, *VEGFA*), dopamine receptor signaling (*DRD2*, *PRL*), and prolactin signaling (*PRKCA*, *PRL*).

# 4.4.3 Real-time reversed-transcribed PCR analysis of selected mRNA

Real-time RT-PCR analysis was used to corroborate the microarray analysisidentified altered expression of key genes responsible for prolactin synthesis and secretion and POMC/ACTH production in HE vs. LE steers (Table 4.4). The results of these two analyses were consistent for all the targeted genes, with the exception of *PRLR*, although the statistical significance (ANOVA P-value) and fold changes measured by the two analytical techniques differed for some genes. For *PRLR*, unlike the microarray analysis, RT-PCR analysis was designed to delineate the long form (*l-PRLR*) and short form (*s-PRLR*). In the microarray analysis, *PRLR* was down-regulated in HE steers (P < 0.001), whereas in RT-PCR analysis, expression of *s-PRLR* was not altered (P = 0.21) and expression of *l-PRLR* had a tendency to differ (P < 0.07) in HE vs. LE steers.

Although microarray analysis did not identify them as DEGs (Table 4.8), the expression of 3 genes was assessed by RT-PCR analyses because they are known targets of POU1F1 (*GH1*, *TSHB*) or are involved in CRH stimulation of ACTH production (*CRHR1*). RT-PCR analysis corroborated the microarray analysis that pituitary expression of these genes did not differ between HE and LE steers (Table 4.4).

# 4.4.4 Differentially expressed miRNAs (DEMs) and their predicted target genes associated with prolactin and POMC/ACTH production

The microarray chips used for this study detected 574 miRNAs. Of these, only 6 were differentially expressed (P < 0.001) in HE vs. LE steers (Table 4.7). Specifically, miR-380 (42%), miR-2318 (17%), miR-329B (36%), and miR-544A (38%) were downregulated in HE vs. LE steers, whereas miR-2356 (38%) and miR-2400 (8%) were upregulated. The target genes of these DEMs that were associated with prolactin or POMC/ACTH production are listed in Table 4.5. Although no miRNAs known to directly target mRNA for prolactin were differentially expressed, every DEM targeted multiple prolactin transcription factors, stimulators, and (or) inhibitors, including miR-544A that targeted all the *PRL*-associated genes. Overall, the mRNA for three transcription factors (*POULF1*, *ESR1*, *PREB*), two transcription stimulators (*EGF*, *IKZF1*), and one transcription inhibitor (*PKIA*) of *PRL* were predicted to be targets of the DEMs. With

specific regard to microarray-identified DEGs (Table 4.4) targeted by DEMs, *PRLR* was predicted to be the target of five DEMs and *ESR1* the target of four DEMs.

Analogously, for POMC/ACTH production genes, whereas no miRNAs were differentially expressed that targeted *POMC* per se, TargetScan predicted that DEMs would interact with the mRNA of three transcription factors (*TBX19*, *NEUROD1*, *JUN*), two transcription stimulators (*LEP*, *LIF*), and three transcription inhibitors (*NR3C1*, *SMARCA4*, *HDAC2*) of the POMC production pathway. With specific regard to microarray-identified DEGs targeted by DEMs, *PCSK1* was the target of a single miRNA (miR-380).

Because *POMC* expression was altered and miR-380 is predicted to target two *POMC* transcription factors (*NEUROD1*, *TBX19*), the expression of *NEUROD 1* and *TBX19* was evaluated by RT-PCR, although their expression was not altered as determined by microarray analysis (Table 4.8). However, consistent with the microarray analysis, the expression of *NEUROD 1* and *TBX19* based on RT-PCR analysis was not altered (Table 4.4).

Although the expression of *NR3C1* was not affected based on microarray analysis (Table 4.8), the expression was evaluated by RT-PCR because glucocorticoid receptor complex represses the *POMC* gene through a negative glucocorticoid response element of *POMC* promoter (Drouin et al., 1993). However, RT-PCR analysis found no difference in *NR3C1* abundance in the pituitaries of HE and LE steers (Table 4.4).

# 4.5 Discussion

The pituitary is an endocrine gland composed of anterior, intermediate, and posterior lobes, with the anterior lobe occupying approximately 80% of the entire gland.

The anterior lobe is composed of five tropic cell types, which together secrete six hormones: corticotrophs (ACTH), gonadotrophs (FSH and LH), lactotrophs (prolactin), somatotrophs (GH), and thyrotrophs (TSH). Previous studies show that hormone production by all five anterior pituitary cell types is affected by the consumption of ergot alkaloids in cattle (Browning et al., 1997; Browning et al., 1998), with decreased concentrations of serum prolactin one of the most common serological signs (Hurley et al., 1980; Lipham et al., 1989).

To our knowledge, the effect of ergot alkaloid consumption on pituitary transcriptomic profiles has not been reported. To obtain this information, we conducted transcriptome analysis of pituitaries collected from previously described (Brown et al., 2009) beef steers suffering from fescue toxicosis induced by summer-long grazing (89 to 105 d) of HE and LE pastures. Importantly, concentrations of prolactin in the serum of HE steers were only approximately 10% of those of the LE steers (Brown et al., 2009), and the glucocorticoid receptor-mediated pathway was implicated in observed changes in carbohydrate metabolism in HE steers (Liao et al., 2015). As noted in the Introduction, the goal of the current research was to determine whether gene expression profiles differed between whole pituitaries of HE and LE steers using transcriptome and targeted gene expression analysis and to identify specific candidate molecules and signaling pathways responsible for the altered physiology of steers consuming ergot alkaloidcontaining tall fescue. The global hypothesis tested was that consumption of endophyteinfected tall fescue would alter pituitary transcriptome profiles. At the P < 0.001 level, the microarray analysis approach revealed the differential expression of 542 RNA transcripts by the pituitary. Importantly, the pattern of altered gene expression was clearly

dependent on treatment according to hierarchical cluster analysis (Figure 4.4). Thus, the first salient finding of this study is that summer-long grazing of endophyte-infected tall fescue alters the pituitary transcriptome; thus, the global hypothesis is accepted.

More specifically, given that the serum prolactin concentrations of HE steers were only approximately 10% of those of the LE steers (Brown et al., 2009), and that the glucocorticoid receptor-mediated pathway was implicated in observed changes in carbohydrate metabolism in HE steers (Liao et al., 2015), the expectation was that the expression pattern for pituitary genes responsible for the production and secretion of prolactin would be consistent with a down-regulated capacity, whereas that for POMC/ACTH would be consistent with an up-regulated capacity. Conclusions reached about these hypotheses, as well as the possible roles of miRNA in these processes, are discussed below.

#### 4.5.1 Fescue toxicosis and prolactin synthesis and secretion

The effect of ergot alkaloid consumption on prolactin production and secretion is best understood through the interactive pathway of dopamine receptors located on the surface of lactotrophs. Dopamine is one of the most influential regulators of prolactin secretion. Activation of the dopamine receptor suppresses *PRL* gene expression via the inhibition of adenylyl cyclase and prolactin exocytosis through modification of several potassium and calcium channels (Fitzgerald and Dinan, 2008). One way by which ergot alkaloid consumption directly affects lactotrophs is through the binding and stimulation of dopamine type two receptors (*DRD2*) on the cell surface (Fitzgerald and Dinan, 2008). Ergot alkaloids ingested with consumption of endophyte-infested tall fescue structurally resemble various biogenic amines, such as dopamine (Strickland et al., 2011). These

ergot amines can bind to dopamine type two receptors, stimulate the receptors, and reduce basal level prolactin production and secretion as described above (Larson et al., 1999). Consistent with this understanding, the HE steers in this study had serum prolactin concentrations that were only 10% of those of the LE steers (Brown et al., 2009). The lower prolactin found in serum of steers exposed to HE pasture directly corresponded to the microarray and real-time RT-PCR results regarding the gene expression of *DRD2*, *POU1F1* (a.k.a. Pit1), *PRL* and *PRLR* genes (Table 4.4). Based on real-time RT-PCR results, the expression of these genes decreased by approximately 53%, 32%, 82%, and 22% (long isoform of prolactin receptor with tendency to differ), respectively, in HE vs. LE steers. *POU1F1* plays a pivotal role in *PRL* expression by binding to specific sites of promoter elements in the *PRL* gene (Fox et al., 1990). Therefore, decreased expression of *POU1F1* might explain reduced *PRL* mRNA expression in HE steers to a certain extent.

An apparently associated finding was the accompanying down regulation of both *DRD2* and *PRLR* genes. Although speculative, a decrease in the expression of *DRD2* may have been a preventive measure by the lactotrophic cells to counteract the suppression of prolactin production due to the activation of the dopamine receptors, whereas the down regulation of prolactin receptor mRNA in pituitary tissue may be the result of a decreased requirement for prolactin binding in a prolactin-poor environment. Additionally, expression of *GAL* (galanin/GMAP prepropeptide) and *VIP* (vasoactive intestinal peptide) also decreased in HE vs. LE steers according to both microarray and real-time RT-PCR results (Table 4.4). Galanin is known to stimulate prolactin release (Koshiyama et al., 1987; Wynick et al., 1998), although the mechanism has not been clearly defined. Additionally, galanin may directly stimulate prolactin expression and act as a lactotroph

growth factor, particularly when exposure to estrogen is high (Wynick et al., 1998). Vasoactive intestinal peptide also stimulates prolactin secretion in multiple species, with receptors found on lactotrophs (Gourdji et al., 1979; Frawley and Neill, 1981; Samson et al., 1981; Macnamee et al., 1986). Although the mechanism by which vasoactive intestinal peptide stimulates prolactin release is not well delineated, as for galanin, cAMP accumulation and a delayed increase in calcium concentration were observed in the process (Samson et al., 1981; Bjøro et al., 1987). Thus, our hypothesis that at least the pituitary genes responsible for the production and secretion of prolactin would be downregulated is also accepted.

In addition to prolactin, *POU1F1* activates growth hormone (*GH1*) promoter transcriptionally (Mangalam et al., 1989) and is involved in thyrotropin-releasing hormone (TRH) stimulation of the beta subunit of thyroid-stimulating hormone (*TSHB*) expression (Steinfelder et al., 1991). However, RT-PCR (Table 4.4) analysis corroborated the microarray (Table 4.8) findings that neither *GH1* nor *TSHB* was differentially expressed in HE vs. LE steers.

Although best known for the role in regulating lactation, prolactin affects a wide variety of biological functions (Lamberts and Macleod, 1990; Freeman et al., 2000), including reproduction, osmoregulation, antiangiogenic activity, regulation of immune responses, regulation of insulin release, and control of growth. With regard to growth, prolactin is associated with food intake and body weight and may interact with hypothalamic neurons responsible for appetite regulation (Ben-Jonathan et al., 2006; Naef and Woodside, 2007). Moreover, as described in detail previously (Brown et al., 2009), the average daily gain of HE steers was 31% less than that of LE steers (P < 0.05),

and the final body weight of HE steers was 7.4% less than that of LE steers (P < 0.05). Hence, reduced prolactin concentrations in HE steers might account for these observations to a certain degree.

# 4.5.2 Fescue toxicosis, POMC/ACTH synthesis, and gluconeogenesis

As noted in the Introduction, increased mitochondrial mass and capacity for ATP synthesis and amino acid-derived gluconeogenesis (Brown et al., 2009) are postulated to be coordinated through the glucocorticoid receptor-mediated pathway (Liao et al., 2015). Therefore, a reasonable hypothesis is that the capacity for glucocorticoid synthesis (POMC/ACTH production) would be elevated in the pituitaries of HE vs. LE steers. However, although we did not measure ACTH stimulation of cortisol release by the adrenal glands, canonical pathway analysis of pituitary DEGs indicated (z-score less than -2.00) the down-regulation of the corticotropin-releasing hormone (CRH) signaling pathway (BDNF, POMC, ADCY8, PRKCA, and PRKAR1A) in HE steers (Table 4.3). As part of the hypothalamic-pituitary-adrenal axis, the primary function of CRH is to stimulate ACTH production from the pituitary through interaction with CRHR1, the predominant pituitary-expressed CRH receptor. According to the microarray and RT-PCR analyses (Table 4.4, Table 4.8), CRHR1 mRNA expression level was not affected in HE vs. LE steers, whereas CRHR2 was not qualified for RT-PCR analysis because of the low expression level. These findings are consistent with the understanding that *CRHR1* is highly expressed by the pituitary, whereas *CRHR2* is predominately expressed by brain and peripheral tissues (Holsboer, 1999). ACTH is synthesized within the anterior pituitary as part of the much larger precursor molecule proopiomelanocortin (POMC), which is cleaved into smaller peptide hormones in a tissue-specific manner by proprotein

convertases. In pituitary corticotrophs, proprotein convertase 1 (encoded by the *PCSK1* gene) alone is expressed and cleaves POMC, producing ACTH,  $\beta$ -endorphin,  $\beta$ -lipotrophin, amino-terminal peptide, and joining peptide (Millington, 2007). According to the microarray and real-time RT-PCR analyses (Table 4.4), the abundance of both *POMC* and *PCSK1* mRNA was reduced in the pituitaries of HE vs. LE steers. Thus, the hypothesis that expression of pituitary genes responsible for the production of POMC/ACTH would be increased is rejected.

Despite the importance to adrenal steroidogenesis, research describing the effects of fescue toxicosis on blood ACTH is lacking. Moreover, although studies have been conducted to better understand the relationship between fescue toxicosis and circulating cortisol in cattle, their results are discordant (Aldrich et al., 1993; Schuenemann et al., 2005; Looper et al., 2010). To resolve the apparent enigma that HE steers displayed a reduced potential for pituitary synthesis of ACTH (this study), yet increased hepatic gluconeogenesis capacity (Brown et al., 2009; Liao et al., 2015), further research is required.

#### 4.5.3 Role of miRNAs in regulating prolactin and POMC/ACTH pathways

Messenger RNA abundance is regulated by a combination of pre-transcription and post-transcription events. Transcription factors contribute to mRNA abundance at the pre-transcription level by binding to DNA and either positively or negatively regulating gene transcription (Latchman, 1997). MicroRNAs regulate mRNA abundance at the posttranscriptional level through complementary binding of target mRNA transcripts, resulting in repressed translation or enhanced degradation of bound mRNA (Engels and Hutvagner, 2006). Thus, decreased expression of a given miRNA would result in

increased target mRNA abundance and vice versa. miR-544A, which putatively regulates multiple transcription factors and stimulators (*ESR1* (Waterman et al., 1988), *EGF* (Murdoch et al., 1982), *IKZF1* (Ezzat et al., 2005), *POU1F1* (Nelson et al., 1988), *PREB* (Fliss et al., 1999), *VIP* (Bredow et al., 1994)) of the prolactin gene (Table 4.5), was down-regulated 38% in HE vs. LE steers; however, expression of *PRL* decreased in HE vs. LE steers. Inconsistency between the abundance of miR-380 and its target gene was also found. Because miR-380 is predicted to target *PCSK1* and two *POMC* transcription factors, *NEUROD1* (Poulin et al., 1997) and *TBX19* (Lamonerie et al., 1996) (Table 4.5), we expected the decrease in expression of *POMC* and *PCSK1*. However, microarray (Table 4.8) and RT-PCR (Table 4.4) results showed no difference in expression level of *NEUROD1* and *TBX19* mRNA in pituitaries of HE vs. LE steers, whereas both *POMC* and *PCSK1* were down-regulated.

Although evidence shows that miRNAs can also up-regulate gene expression (Vasudevan et al., 2007), an alternative explanation to the above inconsistencies could be due to the stringency level of P-values that was applied to the microarray analysis. Any given gene is usually regulated by numerous miRNAs, and the complements of these miRNAs decide the fate of the transcription of the gene. Thus, a stringent significant cutoff criterion (P < 0.001) could filter out potential miRNAs targeting genes of interest. For example, one striking finding listed in Table 4.5 is that no DEMs were identified that targeted *DRD2*, *PRL*, or *POMC*. However, when the P-value was relaxed to 0.05, then multiple miRNAs predicted to target *DRD2* (miR-141, miR-214, miR-584, miR-631, miR-2316, miR-2350, miR-2373, miR-2382, miR-2418, miR-2464) were identified (data

not shown). Additionally, miR-2335 and miR-2399 (predicted to target both *VIP* and its transcription factor NURR1 (Luo et al., 2007) (encoded by *NR4A2*)) also became candidate regulators of *PRL* expression. Collectively, the evidence suggested that altered expression of miRNAs might have affected mRNA abundance by affecting both pre- and post-transcription events of genes regulating prolactin and POMC/ACTH pathways.

This experiment is part of a comprehensive study to understand the whole body and tissue-specific effects of ergot alkaloid consumption in cattle (Brown et al., 2009; Jackson et al., 2015; Liao et al., 2015). The unique pituitary-specific findings of this study are an important contribution to our understanding of how ergot alkaloids exert their deleterious effects on cattle production. In summary, the findings indicate that anterior pituitary functions were globally impaired in steers consuming high-toxic endophyte-infected tall fescue. In addition to inhibiting the abilities to synthesize and secrete prolactin (a function of lactotrophs), ACTH synthesis capacity (a function of corticotrophs) might have been reduced. Canonical pathway analysis also indicated that growth hormone signaling and GnRH signaling were altered in HE vs. LE steers (Table 4.3). A larger implication of this research may be that it allows for selective breeding for genotypes with a higher resistance to endophyte toxicosis, because the specific genes and networks of genes have now been identified that are susceptible to ergot alkaloids contained in endophyte-infected tall fescue. Likewise, with the identification of putative ergot alkaloid sensitive mechanisms within the pituitary gland, this new knowledge may help to develop dietary treatments that ameliorate the effects of ergot alkaloid ingestion (Matthews and Bridges, 2014).

Table 4.1. Top seven IPA-identified canonical pathways of genes differentially expressed

| Canonical<br>Pathway                                 | Number | Gene Symbol                                                                                                                                                                     | Ratio <sup>2</sup> | -log (P-<br>value) |
|------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Axonal<br>Guidance<br>Signaling                      | 26     | ITSN1,BDNF,PIK3R1,UNC5B,GNB5,<br>ABLIM1,SEMA4C,PLCD1,GNB4,SRG<br>AP2,ABLIM2,ACE,GNG12,PRKCA,E<br>PHA7,PLXNC1,PRKCQ,FES,PAK6,F<br>GFR1,ITGA2,GNG3,PLCL2,WIPF1,S<br>EMA3C,PRKAR1A | 0.06               | 5.38               |
| Role of<br>NFAT in<br>Cardiac<br>Hypertroph<br>y     | 16     | MAP2K6,PRKCQ,FGFR1,PIK3R1,SL<br>C8A3,GNB5,GNG3,PLCL2,PLCD1,G<br>NB4,MAPK10,RCAN3,ADCY8,GNG1<br>2,PRKAR1A,PRKCA                                                                  | 0.08               | 5.33               |
| P2Y<br>Purigenic<br>Receptor<br>Signaling<br>Pathway | 13     | <i>PRKCQ,FGFR1,PIK3R1,CREB3,GNB</i><br><i>5,GNG3,PLCL2,PLCD1,GNB4,ADCY</i><br><i>8,GNG12,PRKCA,PRKAR1A</i>                                                                      | 0.09               | 5.04               |
| Cardiac<br>Hypertroph<br>y Signaling                 | 17     | MAP2K6,DIRAS3,PIK3R1,FGFR1,IL6<br>R,GNB5,GNG3,MAP3K5,PLCL2,PLC<br>D1,GNB4,RHOQ,MAPK10,ADCY8,M<br>AP3K3,GNG12,PRKAR1A                                                            | 0.07               | 4.80               |
| Tec Kinase<br>Signaling                              | 14     | GNB4,PRKCQ,RHOQ,PAK6,DIRAS3,<br>PIK3R1,FGFR1,ITGA2,GNB5,MAPK1<br>0,GNG3,FRK,GNG12,PRKCA                                                                                         | 0.08               | 4.77               |
| ErbB<br>Signaling                                    | 10     | GNB4,PRKCQ,RHOQ,PAK6,DIRAS3,<br>PIK3R1,FGFR1,GNB5,MAPK10,GNG<br>3,ADCY8,GNG12,PRKCA                                                                                             | 0.10               | 4.41               |
| CXCR4<br>Signaling                                   | 13     | GNB4,PRKCQ,RHOQ,PAK6,DIRAS3,<br>PIK3R1,FGFR1,GNB5,MAPK10,GNG<br>3,ADCY8,GNG12,PRKCA                                                                                             | 0.08               | 4.14               |

by pituitary tissue of steers grazing high (HE) vs. low (LE) endophyte-infected forages.

<sup>1</sup>The number of genes (listed in the "Symbol" column) associated with the particular canonical pathway.

Table 4.1 (continued)

<sup>2</sup>The ratio is calculated as the number of genes in a given pathway that meet cutoff criteria (e.g., the ANOVA P-value for the differential expression between HE and LE groups is less than 0.001) divided by the total number of genes that make up that pathway.

Table 4.2. IPA-identified canonical pathways of genes central to prolactin production,

secretion, or signaling differentially-expressed by pituitary tissue of steers grazing high

| Canonical<br>Pathway              | Number | Gene Symbol                                                                                                                                                | Ratio <sup>2</sup> | -log (P-<br>value) |
|-----------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Dopamine<br>Receptor<br>Signaling | 4      | PRL,ADCY8,DRD2,PRKAR1A                                                                                                                                     | 0.04               | 0.91               |
| Gαi<br>Signaling                  | 9      | GABBR2,GNB4,GNB5,HTR1F,GNG3,<br>ADCY8,DRD2,GNG12,PRKAR1A                                                                                                   | 0.07               | 2.95               |
| cAMP-<br>mediated<br>Signaling    | 9      | <i>PDE8A,GABBR2,PKIB,CREB3,HTR1F</i><br>, <i>ADCY8,DRD2,CNGA3,PRKAR1A</i>                                                                                  | 0.04               | 1.31               |
| Protein<br>Kinase A<br>Signaling  | 20     | PRKCQ, PTPRD, CREB3, MYLK3, GNB5<br>, GNG3, PLCL2, CNGA3, PDE8A, PLCD1<br>, GNB4, DUSP10, ADCY8, PTPRN, EYA1,<br>KDELR2, GNG12, TCF7L2, PRKCA, PR<br>KAR1A | 0.05               | 3.45               |
| Prolactin<br>Signaling            | 6      | PRKCQ,PRL,PIK3R1,FGFR1,PRLR,P<br>RKCA                                                                                                                      | 0.07               | 2.04               |

(HE) vs. low (LE) endophyte-infected forages.

<sup>1</sup>The number of genes (listed in the "Symbol" column) associated with the particular canonical pathway.

<sup>2</sup>The ratio is calculated as the number of genes in a given pathway that meet cutoff criteria (e.g., the ANOVA P-value for the differential expression between HE and LE groups is < 0.001) divided by the total number of genes that make up that pathway.

Table 4.3. IPA-identified canonical pathways of genes involved in signaling of selected pituitary-derived hormones differentially-expressed by pituitary tissue of steers grazing high (HE) vs. low (LE) endophyte-infected forages.

| Canonical<br>Pathway                                            | Number | Gene Symbol                                                              | Ratio <sup>2</sup> | -log (P-<br>value) |
|-----------------------------------------------------------------|--------|--------------------------------------------------------------------------|--------------------|--------------------|
| Melanocyte<br>Developme<br>nt and<br>Pigmentatio<br>n Signaling | 7      | <i>PIK3R1,FGFR1,CREB3,POMC,RPS6</i><br><i>KA5,ADCY8,PRKAR1A</i>          | 0.07               | 2.38               |
| Corticotropi<br>n-releasing<br>Hormone<br>Signaling             | 7      | <i>PRKCQ,BDNF,CREB3,POMC,ADCY</i><br><i>8,PRKCA,PRKAR1A</i>              | 0.06               | 1.87               |
| Growth<br>Hormone<br>Signaling                                  | 6      | IGF2,PRKCQ,PIK3R1,FGFR1,RPS6K<br>A5,PRKCA                                | 0.07               | 2.06               |
| GnRH<br>Signaling                                               | 10     | MAP2K6,PRKCQ,PAK6,CREB3,MAP<br>K10,MAP3K5,ADCY8,MAP3K3,PRK<br>CA,PRKAR1A | 0.07               | 3.26               |

<sup>1</sup>The number of genes (listed in the "Symbol" column) associated with the particular canonical pathway.

<sup>2</sup>The ratio is calculated as the number of genes in a given pathway that meet cutoff criteria (e.g., the ANOVA P-value for the differential expression between HE and LE groups is less than 0.001) divided by the total number of genes that make up that pathway.

| Table 4.4. Comparison of microarray and real-time RT-PCR identification of selected   |
|---------------------------------------------------------------------------------------|
| genes by pituitary tissue of steers grazing high (HE) vs. low (LE) endophyte-infected |
| forages.                                                                              |

| Gene              | Gene Name                                              | Microarray              |                    | Real-time RT-PCR |                     |                    |         |
|-------------------|--------------------------------------------------------|-------------------------|--------------------|------------------|---------------------|--------------------|---------|
|                   |                                                        | Chang<br>e <sup>2</sup> | Ratio <sup>3</sup> | P-value          | Change <sup>2</sup> | Ratio <sup>3</sup> | P-value |
| ACTB <sup>1</sup> | Actin, beta                                            | 1.03                    | 1.03               | 0.084            | 1.01                | 1.01               | 0.568   |
| PPIA <sup>1</sup> | Peptidylprolyl<br>isomerase A                          | -1.07                   | 0.93               | 0.441            | 1.00                | 1.00               | 0.422   |
| $UBC^{1}$         | Ubiquitin C                                            | 1.00                    | 1.00               | 0.994            | 1.00                | 1.00               | 0.816   |
| DRD2              | Dopamine receptor<br>D2                                | -1.76                   | 0.57               | 0.001            | -2.14               | 0.47               | 0.001   |
| PRL               | Prolactin                                              | -1.23                   | 0.81               | 0.001            | -5.67               | 0.18               | 0.001   |
| PRLR              | Prolactin receptor                                     | -1.31                   | 0.76               | 0.001            | NA                  | NA                 | NA      |
| s-PRLR            | Prolactin receptor short isoform                       | NA                      | NA                 | NA               | -1.20               | 0.83               | 0.210   |
| l- PRLR           | Prolactin receptor long isoform                        | NA                      | NA                 | NA               | -1.29               | 0.78               | 0.062   |
| POU1F<br>1        | POU class 1<br>homeobox 1                              | -1.30                   | 0.77               | 0.003            | -1.47               | 0.68               | 0.038   |
| GAL               | Galanin/GMAP<br>prepropeptide                          | -1.34                   | 0.74               | 0.009            | -2.35               | 0.43               | 0.019   |
| VIP               | Vasoactive intestinal peptide                          | -1.76                   | 0.57               | 0.003            | -2.08               | 0.48               | 0.045   |
| POMC              | Proopiomelanocortin                                    | -1.25                   | 0.80               | 0.001            | -2.27               | 0.44               | 0.006   |
| PCSK1             | Proprotein<br>convertase<br>subtilisin/kexin type<br>1 | -1.72                   | 0.58               | 0.001            | -2.02               | 0.5                | 0.001   |
| GH1               | Growth Hormone 1                                       | 1.01                    | 1.01               | 0.728            | 1.20                | 1.20               | 0.436   |
| TSHB              | Thyroid stimulating hormone beta                       | 1.00                    | 1.00               | 0.999            | 1.14                | 1.14               | 0.418   |

| Table 4.4 (continued) |                                                     |       |      |       |       |      |       |
|-----------------------|-----------------------------------------------------|-------|------|-------|-------|------|-------|
| TBX19                 | T-Box 19                                            | -1.14 | 0.88 | 0.104 | -1.20 | 0.84 | 0.217 |
| NeuroD<br>1           | Neuronal differentiation 1                          | 1.19  | 1.19 | 0.178 | 1.18  | 1.18 | 0.415 |
| NR3C1                 | Nuclear receptor<br>subfamily 3 group C<br>member 1 | 1.14  | 1.14 | 0.112 | 1.33  | 1.33 | 0.270 |
| CRHR1                 | Corticotropin-<br>releasing hormone<br>receptor 1   | 1.19  | 1.19 | 0.106 | 1.39  | 1.39 | 0.192 |

<sup>1</sup>Expression reference genes.

<sup>2</sup>Data are expressed as fold change in HE relative to LE expression.

<sup>3</sup>Data are expressed as ratio of HE relative to LE expression.

Table 4.5. Predicted relationship between differentially-expressed mRNA of prolactin and ACTH pathway genes, including transcription factors (TF), transcription stimulators (TS), and transcription inhibitors (TI), known to be targets of microarray-identified differentially-expressed miRNAs (DEMs)<sup>1</sup>.

| Gene Symbol                        | Gene Description                        | DEM $(P < 0.001)^{2,3}$            |
|------------------------------------|-----------------------------------------|------------------------------------|
| PRL                                | Prolactin                               |                                    |
| PRLR                               | Prolactin Receptor                      | miR-329B, miR-380, miR-            |
|                                    |                                         | 544A, miR-2318, miR-2356           |
| DRD2                               | Dopamine Receptor D2                    |                                    |
| <i>POU1F1</i> (TF for <i>PRL</i> ) | POU Class 1 Homeobox 1                  | miR-544A                           |
| VIP                                | Vasoactive Intestinal Peptide           | miR-544A, miR-2400                 |
| ESR1 (TF for PRL)                  | Estrogen Receptor 1                     | miR-329B, miR-380, miR-            |
|                                    |                                         | 544A, miR-2356                     |
| PREB (TF for PRL)                  | Prolactin Regulatory Element<br>Binding | miR-544A, miR-2400                 |
| EGF (TS for PRL)                   | Epidermal Growth Factor                 | miR-380, miR-544A, miR-<br>2356    |
| <i>IKZF1</i> (TS for <i>PRL</i> )  | IKAROS Family Zinc Finger               | miR-380, miR-544A, miR-<br>2400    |
| PKIA (TI for PRL)                  | CAMP-Dependent Protein                  | miR-329B, miR-380, miR-            |
|                                    | Kinase Inhibitor Alpha                  | 544A, miR-2318, miR-2356, miR-2400 |
| РОМС                               | Proopiomelanocortin                     | 1111 Z 100                         |
| PCSK1                              | Proprotein Convertase                   | miR-380                            |
| 1 00111                            | Subtilisin/Kexin Type 1                 |                                    |
| TBX19 (TF for POMC)                | T-Box 19                                | miR-380                            |
| NEUROD1 (TF for                    | Neuronal Differentiation 1              | miR-380, miR-544A, miR-            |
| POMC)                              |                                         | 2318                               |
| JUN (TF for POMC)                  | Jun Proto-Oncogene, AP-1                | miR-2400                           |
|                                    | Transcription Factor Subunit            |                                    |
| LEP (TS for POMC)                  | Leptin                                  | miR-544A                           |
| <i>LIF</i> (TS for <i>POMC</i> )   | Leukemia Inhibitory Factor              | miR-2400                           |
| NR3C1 (TI for POMC)                | Nuclear Receptor Subfamily              | miR-380, miR-544A, miR-            |
|                                    | 3 Group C Member 1                      | 2318, miR-2356                     |
| SMARCA4 (TI for                    | SWI/SNF Related, Matrix                 | miR-329B                           |
| POMC)                              | Associated, Actin Dependent             |                                    |
|                                    | Regulator Of Chromatin,                 |                                    |
|                                    | Subfamily A, Member 4                   |                                    |
| HDAC2 (TI for                      | Histone Deacetylase 2                   | miR-380, miR-2356                  |
| POMC)                              |                                         |                                    |

Table 4.5 (continued)

<sup>1</sup>Putative gene targets of DEMs were identified using TargetScan (Release 7.1,

http://www.targetscan.org).

<sup>2</sup>miR-329B: GenBank accession number is NR\_031209 and is known as miR-329 by

TargetScan.

<sup>3</sup>miR-544A: GenBank accession number is NR\_031187 and is known as miR-544 by TargetScan.

Table 4.6. Primer sets used for quantitative real-time RT-PCR analysis of the selected differentially expressed genes and reference genes.

| Gene | Gene Name                  | Primer & Accession number <sup>1</sup> | Sequence (5' to 3' direction) | Amplicon<br>length<br>(bp) | Product<br>identity<br>(%) <sup>2</sup> |
|------|----------------------------|----------------------------------------|-------------------------------|----------------------------|-----------------------------------------|
| Actb | Actin, beta                | NM_173979.3                            |                               |                            |                                         |
|      |                            | Forward                                | GAGCGGGAAATCGTCCGTGAC         | 278                        | 99                                      |
|      |                            | Reverse                                | GTGTTGGCGTAGAGGTCCTTGC        |                            |                                         |
| Ppia | Peptidylprolyl isomerase A | NM_178320.2                            |                               |                            |                                         |
|      |                            | Forward                                | GGCAAGTCCATCTATGGCGA          | 239                        | 99                                      |
|      |                            | Reverse                                | TTGCTGGTCTTGCCATTCCT          |                            |                                         |
| Ubc  | Ubiquitin C                | NM_001206307.1                         |                               |                            |                                         |
|      |                            | Forward                                | TAGGGGTGGGTTAGAGTTCAAG        | 258                        | 100                                     |
|      |                            | Reverse                                | ACCACCTCCCTGCTGGTATT          |                            |                                         |
| Drd2 | Dopamine receptor D2       | NM_174043.2                            |                               |                            |                                         |
|      |                            | Forward                                | CGACCTTTCTCTGGGGGCTTT         | 234                        | 100                                     |
|      |                            | Reverse                                | TTGGGCTTCTGCTTCTCTGG          |                            |                                         |
| Prl  | Prolactin                  | NM_173953.2                            |                               |                            |                                         |
|      |                            | Forward                                | AGAACAAGCCCAACAGACCC          | 252                        | 99                                      |
|      |                            | Reverse                                | AGTCCTGACCACAGGGTA            |                            |                                         |

|  | Table 4.6 ( | (continued) |
|--|-------------|-------------|
|--|-------------|-------------|

| s-Prlr | Short Prolactin receptor      | NM_174155.3    |                         |     |     |
|--------|-------------------------------|----------------|-------------------------|-----|-----|
|        |                               | Forward        | GCCATCCTTTCTGCTGTCAT    | 151 | 99  |
|        |                               | Reverse        | AAGGCGAGAAGGCTGTGATA    |     |     |
| l-Prlr | Long Prolactin receptor       | NM_001039726.2 |                         |     |     |
|        |                               | Forward        | GCCATCCTTTCTGCTGTCAT    | 136 | 100 |
|        |                               | Reverse        | CCCTTCTCCAGCAGATGAAC    |     |     |
| Poulfl | POU class 1<br>homeobox 1     | AH012495.1     |                         |     |     |
|        |                               | Forward        | AAGCAAGAGGTTTGAAGTTTGGT | 401 | 99  |
|        |                               | Reverse        | TGCTCTTTAGCCAGCCTTGA    |     |     |
| Gal    | Galanin/GMAP<br>prepropeptide | NM_173914.2    |                         |     |     |
|        |                               | Forward        | CACCGGTGAAGGAGAAGAGAG   | 230 | 100 |
|        |                               | Reverse        | GGCGTCTTTGAGATGCAGGAA   |     |     |
| Vip    | Vasoactive intestinal peptide | NM_173970.3    |                         |     |     |
|        |                               | Forward        | CTGGTTCAGCTGTAAGGGCA    | 325 | 100 |
|        |                               | Reverse        | TCAGCCAGCGCATCTTGTAA    |     |     |
| Pomc   | Proopiomelanocortin           | NM_174151.1    |                         |     |     |
|        |                               | Forward        | AGCTTCCCCGTGACAGAGC     | 317 | 99  |
|       |                                                    | Reverse     | CTGCTACCATTCCGACGGC  |     |     |
|-------|----------------------------------------------------|-------------|----------------------|-----|-----|
| Pcsk1 | Proprotein<br>convertase<br>sutilisin/kexin type 1 | NM_174412.2 |                      |     |     |
|       |                                                    | Forward     | TGATCGTGTGATATGGGCGG | 277 | 100 |
|       |                                                    | Reverse     | GGCCTCCGGATCATAGTTGG |     |     |
|       |                                                    |             |                      |     |     |

<sup>1</sup>The contents in the parentheses associated with each gene symbol are the accession numbers of the sequences retrieved from

the NCBI RefSeq database and used as templates for designing primers and probes.

<sup>2</sup>All the real-time RT-PCR products were validated by sequencing. The identity values (%) presented are the base-pair ratios

between the number of identical base pairs and the total amplicon length.

Table 4.7. List of differentially expressed pituitary genes (P < 0.001, 542 genes) collected from steers grazing high- (HE, n = 8) or low- (LE, n = 8) endophyte-infected forages.

| Transcript<br>ID | Gene<br>Symbol | Gene assignment                                                 | p-value  | False<br>discovery<br>Rate | Ratio(HE<br>vs.LE) | Fold-<br>Change(HE vs.<br>LE) |
|------------------|----------------|-----------------------------------------------------------------|----------|----------------------------|--------------------|-------------------------------|
| 12876894         | GPX3           | glutathione peroxidase 3 (plasma)                               | 8.90E-10 | 2.37E-05                   | 0.479140<br>613    | -2.08707                      |
| 12851243         | ASB4           | ankyrin repeat and SOCS box containing 4                        | 1.73E-08 | 0.000230196                | 0.526931<br>467    | -1.89778                      |
| 12898500         | EPHA7          | EPH receptor A7                                                 | 2.67E-08 | 0.000237549                | 1.797668<br>783    | 1.79767                       |
| 12835339         | COPA           | coatomer protein complex, subunit alpha                         | 5.72E-08 | 0.000332512                | 0.906996<br>572    | -1.10254                      |
| 12798282         | CHL1           | cell adhesion molecule with homology to L1CAM (close homolog of | 6.23E-08 | 0.000332512                | 0.532076<br>215    | -1.87943                      |
| 12871398         | PLA2G<br>12A   | phospholipase A2, group XIIA                                    | 9.95E-08 | 0.000387737                | 0.761666<br>832    | -1.31291                      |
| 12776100         | CPS1           | carbamoyl-phosphate synthase 1, mitochondrial                   | 1.02E-07 | 0.000387737                | 0.425693<br>135    | -2.34911                      |
| 12721755         | MMP1<br>6      | matrix metallopeptidase 16 (membrane-inserted)                  | 2.29E-07 | 0.000764464                | 1.308422<br>71     | 1.30842                       |
| 12902267         | BHLH<br>B9     | basic helix-loop-helix domain containing, class B, 9            | 4.95E-07 | 0.00146659                 | 0.712230<br>421    | -1.40404                      |

92

| 12730735 | DRD2        | dopamine receptor D2                            | 5.55E-07 | 0.00148011 | 0.569216<br>758 | -1.7568  |
|----------|-------------|-------------------------------------------------|----------|------------|-----------------|----------|
| 12737221 | FAM16<br>3A | family with sequence similarity 163, member A   | 8.61E-07 | 0.00192236 | 0.532013<br>939 | -1.87965 |
| 12780430 | PTPRN       | protein tyrosine phosphatase, receptor type, N  | 9.71E-07 | 0.00192236 | 0.776578<br>396 | -1.2877  |
| 12866683 | SLC41<br>A2 | solute carrier family 41, member 2              | 1.12E-06 | 0.00192236 | 0.753801<br>042 | -1.32661 |
| 12722069 | CDH17       | cadherin 17, LI cadherin (liver-intestine)      | 1.15E-06 | 0.00192236 | 0.309513<br>198 | -3.23088 |
| 12826450 | UNC5<br>B   | unc-5 homolog B (C. elegans)                    | 1.15E-06 | 0.00192236 | 0.617078<br>258 | -1.62054 |
| 12767970 | NSF         | N-ethylmaleimide-sensitive factor               | 1.20E-06 | 0.00192236 | 0.856927<br>401 | -1.16696 |
| 12836423 | DIRAS<br>3  | DIRAS family, GTP-binding RAS-like 3            | 1.26E-06 | 0.00192236 | 0.731042<br>247 | -1.36791 |
| 12729629 | REXO<br>2   | REX2, RNA exonuclease 2 homolog (S. cerevisiae) | 1.30E-06 | 0.00192236 | 0.638740<br>914 | -1.56558 |
| 12890848 | RORB        | RAR-related orphan receptor B                   | 1.57E-06 | 0.00209906 | 1.373516<br>945 | 1.37352  |
| 12679305 | LNP1        | leukemia NUP98 fusion partner 1                 | 1.62E-06 | 0.00209906 | 0.838609<br>585 | -1.19245 |
| 12866960 | PLEK<br>HA5 | pleckstrin homology domain containing A5        | 1.65E-06 | 0.00209906 | 1.257116<br>853 | 1.25712  |

| 12765517 | RPRM<br>L   | reprimo-like                                                 | 1.81E-06 | 0.00219319 | 0.772260<br>406 | -1.2949  |
|----------|-------------|--------------------------------------------------------------|----------|------------|-----------------|----------|
| 12821658 | ABLI<br>M1  | actin binding LIM protein 1                                  | 2.06E-06 | 0.00230454 | 1.308681<br>268 | 1.30868  |
| 12909850 | SLITR<br>K2 | SLIT and NTRK-like family, member 2                          | 2.07E-06 | 0.00230454 | 1.349001<br>537 | 1.349    |
| 12876760 | PAM         | peptidylglycine alpha-amidating<br>monooxygenase             | 2.21E-06 | 0.0023559  | 0.516134<br>36  | -1.93748 |
| 12706637 | FAM98<br>A  | family with sequence similarity 98, member A                 | 2.85E-06 | 0.00292358 | 0.814730<br>324 | -1.2274  |
| 12731709 | ZW10        | ZW10, kinetochore associated, homolog (Drosophila)           | 3.33E-06 | 0.00326731 | 0.826111<br>74  | -1.21049 |
| 12722190 | MRPL<br>15  | mitochondrial ribosomal protein L15                          | 3.46E-06 | 0.00326731 | 0.746246<br>381 | -1.34004 |
| 12883237 | PCSK1       | proprotein convertase subtilisin                             | 3.55E-06 | 0.00326731 | 0.580548<br>154 | -1.72251 |
| 12901396 | PKIB        | protein kinase (cAMP-dependent, catalytic) inhibitor beta    | 3.92E-06 | 0.00348198 | 0.710292<br>854 | -1.40787 |
| 12844085 | PEA15       | phosphoprotein enriched in astrocytes 15                     | 4.07E-06 | 0.00350175 | 1.182574<br>062 | 1.18257  |
| 12725728 | EFR3A       | EFR3 homolog A (S. cerevisiae)                               | 4.33E-06 | 0.00350945 | 0.759999<br>696 | -1.31579 |
| 12796976 | SLC6A<br>11 | solute carrier family 6 (neurotransmitter transporter, GABA) | 4.34E-06 | 0.00350945 | 1.353280<br>691 | 1.35328  |

| Table 4.7 ( | (continued) |
|-------------|-------------|
|-------------|-------------|

| 12681884 | PLSCR<br>4  | phospholipid scramblase 4                                    | 4.85E-06 | 0.00380365 | 1.340186<br>152 | 1.34019  |
|----------|-------------|--------------------------------------------------------------|----------|------------|-----------------|----------|
| 12698445 | ODC1        | ornithine decarboxylase 1                                    | 5.00E-06 | 0.00381304 | 0.720964<br>939 | -1.38703 |
| 12738110 | APOB<br>EC4 | apolipoprotein B mRNA editing enzyme, catalytic polypeptide- | 5.77E-06 | 0.00411905 | 0.584337<br>42  | -1.71134 |
| 12690836 | RORA        | RAR-related orphan receptor A                                | 5.81E-06 | 0.00411905 | 1.179369<br>061 | 1.17937  |
| 12804415 | PRL         | prolactin                                                    | 6.12E-06 | 0.00411905 | 0.814617<br>496 | -1.22757 |
| 12884669 | DPYSL<br>3  | dihydropyrimidinase-like 3                                   | 6.12E-06 | 0.00411905 | 0.623526<br>918 | -1.60378 |
| 12820770 | TCF7L<br>2  | transcription factor 7-like 2 (T-cell specific, HMG-box      | 6.28E-06 | 0.00411905 | 1.215108<br>169 | 1.21511  |
| 12681044 | ADPR<br>H   | ADP-ribosylarginine hydrolase                                | 6.55E-06 | 0.00411905 | 0.792311<br>41  | -1.26213 |
| 12816646 | WBSC<br>R22 | Williams Beuren syndrome chromosome region 22                | 6.57E-06 | 0.00411905 | 0.832625<br>602 | -1.20102 |
| 12909727 | GPR10<br>1  | G protein-coupled receptor 101                               | 6.64E-06 | 0.00411905 | 0.372790<br>749 | -2.68247 |
| 12684305 | ITSN1       | intersectin 1 (SH3 domain protein)                           | 7.11E-06 | 0.00423958 | 1.169628<br>947 | 1.16963  |
| 12694513 | HEAT<br>R4  | HEAT repeat containing 4                                     | 7.15E-06 | 0.00423958 | 1.248296<br>076 | 1.2483   |

| 12854099 | ASNS       | asparagine synthetase (glutamine-hydrolyzing)            | 8.47E-06 | 0.00486962 | 0.823092<br>688 | -1.21493 |
|----------|------------|----------------------------------------------------------|----------|------------|-----------------|----------|
| 12835795 | CD247      | CD247 molecule                                           | 8.58E-06 | 0.00486962 | 1.181139<br>563 | 1.18114  |
| 12760666 | CLTC       | clathrin, heavy chain (Hc)                               | 8.86E-06 | 0.00492327 | 0.913567<br>389 | -1.09461 |
| 12891421 | NFIB       | nuclear factor I                                         | 9.41E-06 | 0.00512338 | 1.240334<br>692 | 1.24033  |
| 12796050 | EXOG       | endo                                                     | 9.64E-06 | 0.00514056 | 0.828665<br>186 | -1.20676 |
| 12744882 | CIT        | citron (rho-interacting, serine                          | 9.90E-06 | 0.00518005 | 0.789914<br>373 | -1.26596 |
| 12728901 | SORL1      | sortilin-related receptor, L(DLR class) A repeats contai | 1.03E-05 | 0.00529555 | 1.242348<br>685 | 1.24235  |
| 12863173 | IQSEC<br>3 | IQ motif and Sec7 domain 3                               | 1.09E-05 | 0.00549229 | 0.695574<br>753 | -1.43766 |
| 12754444 | CPNE2      | copine II                                                | 1.13E-05 | 0.00557045 | 0.668847<br>108 | -1.49511 |
| 12772434 | ENO3       | enolase 3 (beta, muscle)                                 | 1.19E-05 | 0.0057655  | 0.652213<br>613 | -1.53324 |
| 12849880 | RINT1      | RAD50 interactor 1                                       | 1.22E-05 | 0.00577337 | 0.844045<br>68  | -1.18477 |
| 12845993 | CADM<br>3  | cell adhesion molecule 3                                 | 1.24E-05 | 0.00577337 | 1.336918<br>056 | 1.33692  |

| 12862258 | RNF41      | ring finger protein 41                                  | 1.26E-05 | 0.00577337 | 0.848874<br>816 | -1.17803 |
|----------|------------|---------------------------------------------------------|----------|------------|-----------------|----------|
| 12760918 | TIMP2      | TIMP metallopeptidase inhibitor 2                       | 1.36E-05 | 0.00592615 | 0.828919<br>338 | -1.20639 |
| 12890327 | LPPR1      | lipid phosphate phosphatase-related protein type 1      | 1.36E-05 | 0.00592615 | 0.703650<br>539 | -1.42116 |
| 12721605 | FABP5      | fatty acid binding protein 5 (psoriasis-<br>associated) | 1.38E-05 | 0.00592615 | 0.630250<br>777 | -1.58667 |
| 12772567 | CDR2L      | cerebellar degeneration-related protein 2-like          | 1.39E-05 | 0.00592615 | 0.610884<br>744 | -1.63697 |
| 12818366 | VGF        | VGF nerve growth factor inducible                       | 1.40E-05 | 0.00592615 | 0.688477<br>638 | -1.45248 |
| 12909004 | KLHL1<br>3 | kelch-like 13 (Drosophila)                              | 1.42E-05 | 0.00592615 | 0.647261<br>759 | -1.54497 |
| 12681831 | BCL6       | B-cell CLL                                              | 1.45E-05 | 0.00594922 | 1.390644<br>578 | 1.39064  |
| 12887101 | CLINT<br>1 | clathrin interactor 1                                   | 1.51E-05 | 0.00611067 | 0.902535<br>221 | -1.10799 |
| 12822767 | GFRA1      | GDNF family receptor alpha 1                            | 1.57E-05 | 0.00625298 | 1.370279<br>729 | 1.37028  |
| 12825420 | ACSL1      | acyl-CoA synthetase long-chain family member<br>1       | 1.60E-05 | 0.00628789 | 1.263664<br>957 | 1.26366  |
| 12744620 | KSR2       | kinase suppressor of ras 2                              | 1.64E-05 | 0.00632783 | 0.776831<br>769 | -1.28728 |

97

| 12734598 | PRELP                | proline                                                        | 1.68E-05 | 0.00640273 | 1.297572<br>242 | 1.29757  |
|----------|----------------------|----------------------------------------------------------------|----------|------------|-----------------|----------|
| 12812405 | TPST1                | tyrosylprotein sulfotransferase 1                              | 1.70E-05 | 0.00640273 | 0.755635<br>149 | -1.32339 |
| 12780755 | RCAN<br>3            | RCAN family member 3                                           | 1.78E-05 | 0.00654189 | 0.616663<br>481 | -1.62163 |
| 12830994 | LRRC1<br>0B          | leucine rich repeat containing 10B                             | 1.79E-05 | 0.00654189 | 0.774521<br>346 | -1.29112 |
| 12717875 | LOC10<br>033586<br>7 | uncharacterized LOC100335867                                   | 1.87E-05 | 0.00672986 | 0.702864<br>171 | -1.42275 |
| 12852359 | CLEC2<br>L           | C-type lectin domain family 2, member L                        | 1.94E-05 | 0.00685045 | 0.511872<br>892 | -1.95361 |
| 12851732 | COBL                 | cordon-bleu homolog (mouse)                                    | 1.95E-05 | 0.00685045 | 1.226814<br>735 | 1.22681  |
| 12800654 | FAM19<br>A1          | family with sequence similarity 19 (chemokine (C-C motif)-li   | 2.03E-05 | 0.00698948 | 0.491956<br>511 | -2.0327  |
| 12791580 | SERPI<br>NA1         | serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, a | 2.04E-05 | 0.00698948 | 0.377025<br>57  | -2.65234 |
| 12914851 |                      |                                                                | 2.18E-05 | 0.00725635 | 0.338304<br>149 | -2.95592 |
| 12894663 | KANK<br>1            | KN motif and ankyrin repeat domains 1                          | 2.22E-05 | 0.00725635 | 1.228496<br>701 | 1.2285   |
| 12880336 | RHOB<br>TB3          | Rho-related BTB domain containing 3                            | 2.22E-05 | 0.00725635 | 0.778446<br>377 | -1.28461 |

86

| Table 4.7 | (continued) |
|-----------|-------------|
|-----------|-------------|

| 12690776 | C10H1<br>5orf61 | chromosome 10 open reading frame, human C15orf61                  | 2.25E-05 | 0.00725635 | 0.822206<br>144 | -1.21624 |
|----------|-----------------|-------------------------------------------------------------------|----------|------------|-----------------|----------|
| 12843689 | IL6R            | interleukin 6 receptor                                            | 2.26E-05 | 0.00725635 | 1.272669<br>424 | 1.27267  |
| 12785900 | SERF1<br>A      | small EDRK-rich factor 1A (telomeric)                             | 2.29E-05 | 0.00725635 | 0.793361<br>154 | -1.26046 |
| 12900382 | IPCEF<br>1      | interaction protein for cytohesin exchange factors 1              | 2.32E-05 | 0.00729635 | 0.665734<br>638 | -1.5021  |
| 12749473 | CLEC3<br>A      | C-type lectin domain family 3, member A                           | 2.40E-05 | 0.00744792 | 0.495554<br>873 | -2.01794 |
| 12904860 | TMEM<br>35      | transmembrane protein 35                                          | 2.56E-05 | 0.00786195 | 0.773108<br>204 | -1.29348 |
| 12786942 | SDHA            | succinate dehydrogenase complex, subunit A, flavoprotein (Fp)     | 2.60E-05 | 0.00788154 | 0.907218<br>74  | -1.10227 |
| 12901161 | FAM46<br>A      | family with sequence similarity 46, member A                      | 2.69E-05 | 0.00802629 | 0.648193<br>162 | -1.54275 |
| 12718471 | PCMT<br>D2      | protein-L-isoaspartate (D-aspartate) O-<br>methyltransferase doma | 2.71E-05 | 0.00802629 | 1.159134<br>034 | 1.15913  |
| 12743540 | GOLG<br>A3      | golgin A3                                                         | 2.92E-05 | 0.00856137 | 0.858288<br>059 | -1.16511 |
| 12914547 |                 |                                                                   | 3.08E-05 | 0.00876601 | 0.788867<br>502 | -1.26764 |
| 12694561 | SIX1            | SIX homeobox 1                                                    | 3.11E-05 | 0.00876601 | 0.862529<br>973 | -1.15938 |

| Table 4.7 | (continued) |
|-----------|-------------|
|-----------|-------------|

| 12845091 | GIPC2         | GIPC PDZ domain containing family, member 2                 | 3.11E-05 | 0.00876601 | 0.749198<br>358 | -1.33476 |
|----------|---------------|-------------------------------------------------------------|----------|------------|-----------------|----------|
| 12798897 | SPCS1         | signal peptidase complex subunit 1 homolog (S. cerevisiae)  | 3.12E-05 | 0.00876601 | 0.826063<br>97  | -1.21056 |
| 12705554 | KCNIP<br>3    | Kv channel interacting protein 3, calsenilin                | 3.19E-05 | 0.00885044 | 0.337708<br>915 | -2.96113 |
| 12900949 | CLVS2         | clavesin 2                                                  | 3.27E-05 | 0.00898575 | 0.460095<br>884 | -2.17346 |
| 12865096 | CPT1B         | carnitine palmitoyltransferase 1B (muscle)                  | 3.42E-05 | 0.00924483 | 0.766530<br>224 | -1.30458 |
| 12730077 | ART5          | ADP-ribosyltransferase 5                                    | 3.43E-05 | 0.00924483 | 0.702656<br>745 | -1.42317 |
| 12891381 | RFX3          | regulatory factor X, 3 (influences HLA class II expression) | 3.65E-05 | 0.00967033 | 1.154782<br>416 | 1.15478  |
| 12718040 | BLCA<br>P     | bladder cancer associated protein                           | 3.66E-05 | 0.00967033 | 1.149770<br>218 | 1.14977  |
| 12885917 | ZNF30<br>0    | zinc finger protein 300                                     | 3.75E-05 | 0.00979751 | 0.591800<br>019 | -1.68976 |
| 12724574 | DENN<br>D3    | DENN                                                        | 3.80E-05 | 0.00985362 | 0.761162<br>447 | -1.31378 |
| 12807840 | LOC51<br>0913 | nose resistant to fluoxetine protein 6-like                 | 3.97E-05 | 0.0101555  | 0.378382<br>264 | -2.64283 |
| 12722987 | AZIN1         | antizyme inhibitor 1                                        | 4.01E-05 | 0.0101555  | 0.893367<br>639 | -1.11936 |

| 12824358 | TNKS        | tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymera | 4.04E-05 | 0.0101555 | 0.860067<br>085 | -1.1627  |
|----------|-------------|-----------------------------------------------------------------|----------|-----------|-----------------|----------|
| 12772732 | PRKA<br>R1A | protein kinase, cAMP-dependent, regulatory, type I, alpha (t    | 4.26E-05 | 0.0105979 | 0.915038<br>66  | -1.09285 |
| 12786113 | FGF18       | fibroblast growth factor 18                                     | 4.33E-05 | 0.0105979 | 0.788562<br>687 | -1.26813 |
| 12815257 | STX1B       | syntaxin 1B                                                     | 4.33E-05 | 0.0105979 | 1.194260<br>86  | 1.19426  |
| 12782974 | MFSD<br>6   | major facilitator superfamily domain containing 6               | 4.39E-05 | 0.0106441 | 0.862009<br>517 | -1.16008 |
| 12703883 | GFPT1       | glutaminefructose-6-phosphate transaminase 1                    | 4.43E-05 | 0.0106441 | 0.882378<br>893 | -1.1333  |
| 12808014 | SLC39<br>A6 | solute carrier family 39 (zinc transporter),<br>member 6        | 4.48E-05 | 0.0106789 | 0.834675<br>77  | -1.19807 |
| 12709784 | GPC5        | glypican 5                                                      | 4.72E-05 | 0.0110629 | 0.715727<br>394 | -1.39718 |
| 12727699 | CREB3<br>L1 | cAMP responsive element binding protein 3-<br>like 1            | 4.74E-05 | 0.0110629 | 0.674427<br>074 | -1.48274 |
| 12681063 | GNB4        | guanine nucleotide binding protein (G protein), beta polypeptid | 4.77E-05 | 0.0110629 | 0.700461<br>604 | -1.42763 |
| 12733712 | BDNF        | brain-derived neurotrophic factor                               | 4.81E-05 | 0.0110629 | 0.659565<br>346 | -1.51615 |
| 12786160 | OXCT<br>1   | 3-oxoacid CoA transferase 1                                     | 4.89E-05 | 0.0111294 | 0.823512<br>942 | -1.21431 |

| 12867761 | COQ10<br>A     | coenzyme Q10 homolog A (S. cerevisiae)                         | 4.94E-05 | 0.0111294 | 0.879855<br>704 | -1.13655 |
|----------|----------------|----------------------------------------------------------------|----------|-----------|-----------------|----------|
| 12706846 | PREPL          | prolyl endopeptidase-like                                      | 4.98E-05 | 0.0111294 | 0.857581<br>449 | -1.16607 |
| 12816678 | TRAP1          | TNF receptor-associated protein 1                              | 5.01E-05 | 0.0111294 | 0.832729<br>604 | -1.20087 |
| 12771103 | TRPV3          | transient receptor potential cation channel, subfamily V, memb | 6.00E-05 | 0.0132377 | 0.691620<br>328 | -1.44588 |
| 12719676 | SLC17<br>A9    | solute carrier family 17, member 9                             | 6.24E-05 | 0.0136424 | 0.676823<br>532 | -1.47749 |
| 12767584 | MAP2<br>K6     | mitogen-activated protein kinase kinase 6                      | 6.36E-05 | 0.0137836 | 1.493379<br>847 | 1.49338  |
| 12887812 | SHRO<br>OM1    | shroom family member 1                                         | 6.41E-05 | 0.0137836 | 1.109131<br>927 | 1.10913  |
| 12791646 | WARS           | tryptophanyl-tRNA synthetase                                   | 6.57E-05 | 0.0140166 | 0.859195<br>106 | -1.16388 |
| 12706360 | SURF4          | surfeit 4                                                      | 6.81E-05 | 0.0143244 | 0.867611<br>206 | -1.15259 |
| 12707532 | COX7<br>A2L    | cytochrome c oxidase subunit VIIa polypeptide 2 like           | 6.88E-05 | 0.0143244 | 0.798607<br>229 | -1.25218 |
| 12861735 | C5H12<br>orf23 | chromosome 5 open reading frame, human C12orf23                | 6.89E-05 | 0.0143244 | 0.894958<br>698 | -1.11737 |
| 12677247 |                |                                                                | 6.93E-05 | 0.0143244 | 1.748212<br>016 | 1.74821  |

| Table 4.7 | (continued) |
|-----------|-------------|
|-----------|-------------|

| 12844481 | POU2F<br>1    | POU class 2 homeobox 1                                            | 7.08E-05 | 0.0144902 | 1.152076<br>387 | 1.15208  |
|----------|---------------|-------------------------------------------------------------------|----------|-----------|-----------------|----------|
| 12737098 | B3GA<br>LT2   | UDP-Gal:betaGlcNAc beta 1,3-<br>galactosyltransferase, polypepti  | 7.16E-05 | 0.0144902 | 0.626550<br>713 | -1.59604 |
| 12758081 | MYLK<br>3     | myosin light chain kinase 3                                       | 7.18E-05 | 0.0144902 | 0.704002<br>253 | -1.42045 |
| 12765456 | TOM1<br>L2    | target of myb1-like 2 (chicken)                                   | 7.22E-05 | 0.0144902 | 0.841078<br>262 | -1.18895 |
| 12690792 | GNB5          | guanine nucleotide binding protein (G protein), beta 5            | 7.90E-05 | 0.0157305 | 0.901989<br>789 | -1.10866 |
| 12898520 | SASH1         | SAM and SH3 domain containing 1                                   | 7.98E-05 | 0.0157582 | 1.279225<br>506 | 1.27923  |
| 12741946 | TCN2          | transcobalamin II                                                 | 8.15E-05 | 0.0159752 | 0.818618<br>663 | -1.22157 |
| 12904911 | HNRN<br>PH2   | heterogeneous nuclear ribonucleoprotein H2 (H')                   | 8.20E-05 | 0.0159752 | 0.831213<br>738 | -1.20306 |
| 12713066 | SLITR<br>K6   | SLIT and NTRK-like family, member 6                               | 8.42E-05 | 0.016277  | 0.526853<br>735 | -1.89806 |
| 12848963 | GNGT<br>1     | guanine nucleotide binding protein (G protein), gamma transducing | 8.57E-05 | 0.0163351 | 0.471211<br>343 | -2.12219 |
| 12801704 | LOC51<br>1316 | MEF2B neighbor pseudogene                                         | 8.58E-05 | 0.0163351 | 0.822341<br>37  | -1.21604 |
| 12780398 | TNS1          | tensin 1                                                          | 8.71E-05 | 0.0163351 | 1.279664<br>216 | 1.27966  |

| 12831896 | NRGN        | neurogranin (protein kinase C substrate, RC3)                | 8.72E-05 | 0.0163351 | 1.663730<br>183 | 1.66373  |
|----------|-------------|--------------------------------------------------------------|----------|-----------|-----------------|----------|
| 12830772 | SCYL1       | SCY1-like 1 (S. cerevisiae)                                  | 8.79E-05 | 0.0163351 | 0.873438<br>728 | -1.1449  |
| 12785083 | PRLR        | prolactin receptor                                           | 8.86E-05 | 0.0163351 | 0.762951<br>095 | -1.3107  |
| 12771233 | LRRC4<br>8  | leucine rich repeat containing 48                            | 8.88E-05 | 0.0163351 | 0.798103<br>706 | -1.25297 |
| 12778650 | FIGN        | fidgetin                                                     | 9.04E-05 | 0.0165243 | 1.271622<br>349 | 1.27162  |
| 12693799 | DIO2        | deiodinase, iodothyronine, type II                           | 9.17E-05 | 0.0166237 | 0.592364<br>423 | -1.68815 |
| 12708635 | AFF3        | AF4                                                          | 9.23E-05 | 0.0166237 | 1.181992<br>579 | 1.18199  |
| 12716197 | TM9SF<br>4  | transmembrane 9 superfamily protein member 4                 | 9.29E-05 | 0.0166237 | 0.880211<br>955 | -1.13609 |
| 12822603 | NRAP        | nebulin-related anchoring protein                            | 9.37E-05 | 0.0166607 | 0.664721<br>249 | -1.50439 |
| 12844104 | FAM19<br>A3 | family with sequence similarity 19 (chemokine (C-C motif)-li | 9.43E-05 | 0.0166607 | 0.766101<br>539 | -1.30531 |
| 12696210 | SLC27<br>A2 | solute carrier family 27 (fatty acid transporter), member 2  | 9.63E-05 | 0.0167793 | 0.653628<br>948 | -1.52992 |
| 12808788 | SETBP<br>1  | SET binding protein 1                                        | 9.69E-05 | 0.0167793 | 1.142543<br>759 | 1.14254  |

| 12891005 | PTPRD       | protein tyrosine phosphatase, receptor type, D     | 9.70E-05        | 0.0167793 | 1.365526<br>998 | 1.36553  |
|----------|-------------|----------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12855122 | TES         | testis derived transcript (3 LIM domains)          | 9.75E-05        | 0.0167793 | 0.898303<br>105 | -1.11321 |
| 12808491 | ZNF52<br>1  | zinc finger protein 521                            | 9.94E-05        | 0.0170016 | 1.332127<br>314 | 1.33213  |
| 12687743 | NEO1        | neogenin 1                                         | 0.00010<br>109  | 0.0171237 | 1.181993<br>977 | 1.18199  |
| 12886016 | MFSD<br>12  | major facilitator superfamily domain containing 12 | 0.00010<br>1426 | 0.0171237 | 0.867287<br>645 | -1.15302 |
| 12892540 | DMRT<br>1   | doublesex and mab-3 related transcription factor 1 | 0.00010<br>3381 | 0.0173439 | 0.851382<br>645 | -1.17456 |
| 12899957 | PERP        | PERP, TP53 apoptosis effector                      | 0.00010<br>5136 | 0.0174711 | 0.788774<br>166 | -1.26779 |
| 12908876 | MAGE<br>E2  | melanoma antigen family E, 2                       | 0.00010<br>5449 | 0.0174711 | 0.861898<br>072 | -1.16023 |
| 12681492 | CCDC<br>39  | coiled-coil domain containing 39                   | 0.00010<br>8466 | 0.0178258 | 1.283912<br>956 | 1.28391  |
| 12880093 | UNC13<br>A  | unc-13 homolog A (C. elegans)                      | 0.00010<br>8926 | 0.0178258 | 0.842268<br>397 | -1.18727 |
| 12705423 | ANGP<br>TL2 | angiopoietin-like 2                                | 0.00011<br>1958 | 0.0182103 | 0.557637<br>402 | -1.79328 |
| 12843233 | AMY2<br>B   | amylase, alpha 2B (pancreatic)                     | 0.00011<br>4346 | 0.0184009 | 1.275196<br>285 | 1.2752   |

| 12735060 | SRM        | spermidine synthase                                              | 0.00011<br>451  | 0.0184009 | 0.790713<br>856 | -1.26468 |
|----------|------------|------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12809293 | LAMA<br>1  | laminin, alpha 1                                                 | 0.00011<br>5227 | 0.0184053 | 1.402310<br>166 | 1.40231  |
| 12738701 | SEC16<br>B | SEC16 homolog B (S. cerevisiae)                                  | 0.00011<br>7318 | 0.0186278 | 0.694391<br>401 | -1.44011 |
| 12817661 | KDEL<br>R2 | KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retentio    | 0.00011<br>9433 | 0.0188194 | 0.880382<br>438 | -1.13587 |
| 12891796 | PALM<br>2  | paralemmin 2                                                     | 0.00012<br>0481 | 0.0188194 | 1.200413<br>903 | 1.20041  |
| 12782240 | CLASP<br>1 | cytoplasmic linker associated protein 1                          | 0.00012<br>1187 | 0.0188194 | 1.139714<br>137 | 1.13971  |
| 12908168 | MAGE<br>D1 | melanoma antigen family D, 1                                     | 0.00012<br>1347 | 0.0188194 | 0.901233<br>789 | -1.10959 |
| 12792677 | ITPK1      | inositol-tetrakisphosphate 1-kinase                              | 0.00012<br>2759 | 0.0189282 | 1.166775<br>371 | 1.16677  |
| 12779964 | 4-Mar      | membrane-associated ring finger (C3HC4) 4,<br>E3 ubiquitin prote | 0.00012<br>5636 | 0.0191841 | 0.672133<br>351 | -1.4878  |
| 12797483 | RBMS<br>3  | RNA binding motif, single stranded interacting protein 3         | 0.00012<br>5856 | 0.0191841 | 1.173052<br>176 | 1.17305  |
| 12895106 | ACER2      | alkaline ceramidase 2                                            | 0.00012<br>8917 | 0.0195389 | 0.770796<br>078 | -1.29736 |
| 12889108 | CREB3      | cAMP responsive element binding protein 3                        | 0.00013<br>0329 | 0.0196414 | 0.899029<br>947 | -1.11231 |

| 12758956 | CMTM<br>4        | CKLF-like MARVEL transmembrane domain containing 4                  | 0.00013<br>5053 | 0.020239  | 1.161127<br>315 | 1.16113  |
|----------|------------------|---------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12692964 | C10H1<br>4orf119 | chromosome 10 open reading frame, human C14orf119                   | 0.00013<br>6188 | 0.020295  | 0.865868<br>336 | -1.15491 |
| 12786958 | ITGA2            | integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)        | 0.00013<br>7653 | 0.0203994 | 0.660161<br>872 | -1.51478 |
| 12875311 | MAPK<br>10       | mitogen-activated protein kinase 10                                 | 0.00013<br>9985 | 0.0204027 | 0.876255<br>236 | -1.14122 |
| 12908904 | ZNF71<br>1       | zinc finger protein 711                                             | 0.00014<br>0058 | 0.0204027 | 1.102853<br>191 | 1.10285  |
| 12767689 | ATP5G<br>1       | ATP synthase, H+ transporting, mitochondrial<br>Fo complex, subunit | 0.00014<br>0519 | 0.0204027 | 0.823506<br>16  | -1.21432 |
| 12892113 | CNTN<br>AP3      | contactin associated protein-like 3                                 | 0.00014<br>0735 | 0.0204027 | 1.622823<br>388 | 1.62282  |
| 12849870 | TMEM<br>213      | transmembrane protein 213                                           | 0.00014<br>1848 | 0.0204286 | 1.513237<br>041 | 1.51324  |
| 12863307 | METT<br>L21B     | methyltransferase like 21B                                          | 0.00014<br>2445 | 0.0204286 | 0.848716<br>317 | -1.17825 |
| 12791435 | MIR38<br>0       | microRNA mir-380                                                    | 0.00014<br>3776 | 0.0205093 | 0.584730<br>352 | -1.71019 |
| 12678498 | APP              | amyloid beta (A4) precursor protein                                 | 0.00014<br>9384 | 0.0211959 | 1.122431<br>456 | 1.12243  |
| 12865092 | RPS26            | ribosomal protein S26                                               | 0.00015<br>0367 | 0.0212104 | 0.728162<br>409 | -1.37332 |

| 12689890 | MYO1<br>E     | myosin IE                                                | 0.00015<br>174  | 0.0212104 | 1.152660<br>687 | 1.15266  |
|----------|---------------|----------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12741977 | ADRB<br>K2    | adrenergic, beta, receptor kinase 2                      | 0.00015<br>2593 | 0.0212104 | 1.166377<br>988 | 1.16638  |
| 12851480 | C4H7o<br>rf25 | chromosome 4 open reading frame, human C7orf25           | 0.00015<br>2767 | 0.0212104 | 0.800646<br>923 | -1.24899 |
| 12710335 | LACC1         | laccase (multicopper oxidoreductase) domain containing 1 | 0.00015<br>3463 | 0.0212104 | 0.829689<br>613 | -1.20527 |
| 12772085 | GPR14<br>2    | G protein-coupled receptor 142                           | 0.00015<br>8547 | 0.0218002 | 0.815693<br>952 | -1.22595 |
| 12710070 | COG3          | component of oligomeric golgi complex 3                  | 0.00015<br>9708 | 0.0218472 | 0.919777<br>046 | -1.08722 |
| 12697991 | RHOQ          | ras homolog gene family, member Q                        | 0.00016<br>2447 | 0.0221085 | 0.790039<br>186 | -1.26576 |
| 12822932 | SLC25<br>A28  | solute carrier family 25, member 28                      | 0.00016<br>4111 | 0.0222217 | 1.133959<br>128 | 1.13396  |
| 12698264 | KCNIP<br>3    | Kv channel interacting protein 3, calsenilin             | 0.00016<br>7341 | 0.022473  | 0.548047<br>307 | -1.82466 |
| 12900780 | SLC17<br>A5   | solute carrier family 17 (anion                          | 0.00016<br>8625 | 0.022473  | 0.783293<br>908 | -1.27666 |
| 12792547 | CCDC<br>88C   | coiled-coil domain containing 88C                        | 0.00016<br>8772 | 0.022473  | 1.191649<br>398 | 1.19165  |
| 12679533 | TMEM<br>45A   | transmembrane protein 45A                                | 0.00016<br>9337 | 0.022473  | 0.721693<br>381 | -1.38563 |

| 12691139 | PAK6          | p21 protein (Cdc42                                            | 0.00017<br>4499 | 0.02303   | 0.722982<br>157 | -1.38316 |
|----------|---------------|---------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12760883 | PRKC<br>A     | protein kinase C, alpha                                       | 0.00017<br>5261 | 0.02303   | 0.768338<br>315 | -1.30151 |
| 12821009 | KAZA<br>LD1   | Kazal-type serine peptidase inhibitor domain 1                | 0.00017<br>6297 | 0.0230525 | 0.664442<br>997 | -1.50502 |
| 12782531 | PDK1          | pyruvate dehydrogenase kinase, isozyme 1                      | 0.00018<br>0959 | 0.023272  | 0.927342<br>699 | -1.07835 |
| 12892001 | KLHL9         | kelch-like 9 (Drosophila)                                     | 0.00018<br>1304 | 0.023272  | 0.864296<br>765 | -1.15701 |
| 12862551 | GXYL<br>T1    | glucoside xylosyltransferase 1                                | 0.00018<br>1488 | 0.023272  | 1.110395<br>523 | 1.1104   |
| 12901117 | HEY2          | hairy                                                         | 0.00018<br>3368 | 0.023272  | 1.285266<br>095 | 1.28527  |
| 12766850 | BT.624<br>30  | angiotensin I converting enzyme                               | 0.00018<br>3914 | 0.023272  | 0.877878<br>344 | -1.13911 |
| 12866811 | TAPBP<br>L    | TAP binding protein-like                                      | 0.00018<br>4045 | 0.023272  | 1.184940<br>824 | 1.18494  |
| 12755625 | HP            | haptoglobin                                                   | 0.00018<br>4395 | 0.023272  | 0.471413<br>486 | -2.12128 |
| 12847578 | LOC61<br>6625 | aquaporin 12B                                                 | 0.00018<br>6353 | 0.023272  | 0.745701<br>034 | -1.34102 |
| 12890151 | SHC3          | SHC (Src homology 2 domain containing) transforming protein 3 | 0.00018<br>6712 | 0.023272  | 0.509126<br>085 | -1.96415 |

| 12684272 | SLC25<br>A36 | solute carrier family 25, member 36                         | 0.00018<br>6931 | 0.023272  | 1.106474<br>981 | 1.10647  |
|----------|--------------|-------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12827916 | ZMYN<br>D17  | zinc finger, MYND-type containing 17                        | 0.00018<br>7572 | 0.023272  | 1.118304<br>293 | 1.1183   |
| 12915057 |              |                                                             | 0.00019<br>3642 | 0.023814  | 1.184233<br>588 | 1.18423  |
| 12841186 | SEC22<br>B   | SEC22 vesicle trafficking protein homolog B (S. cerevisiae) | 0.00019<br>4389 | 0.023814  | 0.904543<br>522 | -1.10553 |
| 12749545 | BCAM         | basal cell adhesion molecule (Lutheran blood group)         | 0.00019<br>4619 | 0.023814  | 1.243713<br>031 | 1.24371  |
| 12717993 | SVIL         | supervillin                                                 | 0.00019<br>8067 | 0.0241252 | 0.704816<br>008 | -1.41881 |
| 12910551 | ZBTB3<br>3   | zinc finger and BTB domain containing 33                    | 0.00019<br>9082 | 0.0241387 | 0.883080<br>184 | -1.1324  |
| 12874907 | CDKL<br>2    | cyclin-dependent kinase-like 2 (CDC2-related kinase)        | 0.00020<br>1696 | 0.0243449 | 0.804265<br>826 | -1.24337 |
| 12687032 | PTTG1<br>IP  | pituitary tumor-transforming 1 interacting protein          | 0.00020<br>402  | 0.0243844 | 1.055259<br>731 | 1.05526  |
| 12683071 | LSAM<br>P    | neuronal growth regulator 1-like                            | 0.00020<br>4208 | 0.0243844 | 1.356555<br>759 | 1.35656  |
| 12716574 | GPR15<br>8   | G protein-coupled receptor 158                              | 0.00020<br>4765 | 0.0243844 | 0.740126<br>71  | -1.35112 |
| 12810467 | GALR<br>1    | galanin receptor 1                                          | 0.00021<br>7049 | 0.0256058 | 0.630600<br>521 | -1.58579 |

| 12809257 | COLE<br>C12          | collectin sub-family member 12                                   | 0.00021<br>9757 | 0.0256058 | 1.294069<br>538 | 1.29407  |
|----------|----------------------|------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12749084 | LOC10<br>033650<br>2 | aTPase, H+                                                       | 0.00021<br>9966 | 0.0256058 | 1.365702<br>299 | 1.3657   |
| 12724853 | EYA1                 | eyes absent homolog 1 (Drosophila)                               | 0.00022<br>0297 | 0.0256058 | 1.265569<br>671 | 1.26557  |
| 12801442 | SLC17<br>A1          | solute carrier family 17 (sodium phosphate), member 1            | 0.00022<br>0419 | 0.0256058 | 0.595745<br>188 | -1.67857 |
| 12794552 | GTDC<br>2            | glycosyltransferase-like domain containing 2                     | 0.00022<br>0781 | 0.0256058 | 0.909057<br>852 | -1.10004 |
| 12865033 | BCL2L<br>14          | BCL2-like 14 (apoptosis facilitator)                             | 0.00022<br>5534 | 0.0257878 | 0.738312<br>513 | -1.35444 |
| 12773256 | LRRC4<br>6           | leucine rich repeat containing 46                                | 0.00022<br>5769 | 0.0257878 | 0.782981<br>122 | -1.27717 |
| 12771117 | PDK2                 | pyruvate dehydrogenase kinase, isozyme 2                         | 0.00022<br>6165 | 0.0257878 | 0.848968<br>503 | -1.1779  |
| 12824808 | FGFR1                | fibroblast growth factor receptor 1                              | 0.00022<br>6217 | 0.0257878 | 1.206971<br>467 | 1.20697  |
| 12887654 | LYSM<br>D3           | LysM, putative peptidoglycan-binding, domain containing 3        | 0.00023<br>0485 | 0.0261625 | 0.806659<br>783 | -1.23968 |
| 12706345 | SEMA<br>4C           | sema domain, immunoglobulin domain (Ig),<br>transmembrane domain | 0.00023<br>2746 | 0.0263072 | 1.191163<br>946 | 1.19116  |
| 12703330 | PAIP2<br>B           | poly(A) binding protein interacting protein 2B                   | 0.00023<br>5805 | 0.0265405 | 1.222718<br>102 | 1.22272  |

| 12853653 | YKT6        | YKT6 v-SNARE homolog (S. cerevisiae)                             | 0.00023<br>8511 | 0.0266211 | 0.846417<br>538 | -1.18145 |
|----------|-------------|------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12885519 | SAR1B       | SAR1 homolog B (S. cerevisiae)                                   | 0.00023<br>8517 | 0.0266211 | 0.860985<br>312 | -1.16146 |
| 12914859 |             |                                                                  | 0.00024<br>1756 | 0.0266288 | 0.864431<br>247 | -1.15683 |
| 12782451 | 4-Mar       | membrane-associated ring finger (C3HC4) 4,<br>E3 ubiquitin prote | 0.00024<br>2022 | 0.0266288 | 0.734694<br>477 | -1.36111 |
| 12742060 | SEC14<br>L2 | SEC14-like 2 (S. cerevisiae)                                     | 0.00024<br>2347 | 0.0266288 | 1.324896<br>393 | 1.3249   |
| 12770437 | AMZ2        | archaelysin family metallopeptidase 2                            | 0.00024<br>2579 | 0.0266288 | 0.894406<br>382 | -1.11806 |
| 12769323 | CAMK<br>K1  | calcium                                                          | 0.00024<br>3731 | 0.0266456 | 1.200349<br>062 | 1.20035  |
| 12829453 | TM7SF<br>2  | transmembrane 7 superfamily member 2                             | 0.00024<br>6126 | 0.0267976 | 0.732681<br>247 | -1.36485 |
| 12893064 | IL33        | interleukin 33                                                   | 0.00024<br>9169 | 0.0270186 | 0.537935<br>19  | -1.85896 |
| 12696484 | PNMA<br>1   | paraneoplastic antigen MA1                                       | 0.00025<br>0658 | 0.0270701 | 0.829999<br>502 | -1.20482 |
| 12682682 | LXN         | latexin                                                          | 0.00025<br>2328 | 0.0270924 | 0.561665<br>225 | -1.78042 |
| 12786382 | AMAC<br>R   | alpha-methylacyl-CoA racemase                                    | 0.00025<br>2896 | 0.0270924 | 0.772194<br>809 | -1.29501 |

| 12882320 | GALN<br>T10 | UDP-N-acetyl-alpha-D-<br>galactosamine:polypeptide N-acetylgalac | 0.00025<br>4175 | 0.0271204 | 1.232255<br>521 | 1.23226  |
|----------|-------------|------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12842993 | LMNA        | lamin A                                                          | 0.00025<br>5266 | 0.0271245 | 0.843106<br>341 | -1.18609 |
| 12771489 | SMTN<br>L2  | smoothelin-like 2                                                | 0.00025<br>6501 | 0.0271245 | 1.243123<br>971 | 1.24312  |
| 12816911 | GPRC5<br>B  | G protein-coupled receptor, family C, group 5, member B          | 0.00025<br>7662 | 0.0271245 | 1.295618<br>736 | 1.29562  |
| 12713584 | CHGB        | chromogranin B (secretogranin 1)                                 | 0.00026<br>1051 | 0.0271245 | 0.875013<br>125 | -1.14284 |
| 12713592 | NPBW<br>R2  | neuropeptides B                                                  | 0.00026<br>1347 | 0.0271245 | 0.822699<br>937 | -1.21551 |
| 12827434 | USP54       | ubiquitin specific peptidase 54-like                             | 0.00026<br>1364 | 0.0271245 | 1.139607<br>633 | 1.13961  |
| 12763243 | FLII        | flightless I homolog (Drosophila)                                | 0.00026<br>3057 | 0.0271245 | 0.854525<br>567 | -1.17024 |
| 12771261 | SGK49<br>4  | uncharacterized serine                                           | 0.00026<br>3231 | 0.0271245 | 1.282812<br>747 | 1.28281  |
| 12807700 | SEH1L       | SEH1-like (S. cerevisiae)                                        | 0.00026<br>3364 | 0.0271245 | 0.899871<br>318 | -1.11127 |
| 12914903 |             |                                                                  | 0.00026<br>9858 | 0.0276864 | 0.922347<br>559 | -1.08419 |
| 12857261 |             |                                                                  | 0.00027<br>2609 | 0.0278615 | 0.919793<br>966 | -1.0872  |

| 12797969 | PLCD1       | phospholipase C, delta 1                                        | 0.00027<br>3898 | 0.0278806 | 1.210662<br>547 | 1.21066  |
|----------|-------------|-----------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12850085 | SEMA<br>3C  | sema domain, immunoglobulin domain (Ig),<br>short basic domain, | 0.00027<br>7219 | 0.0278806 | 1.411187<br>613 | 1.41119  |
| 12773855 | SP140<br>L  | SP140 nuclear body protein-like                                 | 0.00027<br>7568 | 0.0278806 | 1.197123<br>074 | 1.19712  |
| 12914733 |             |                                                                 | 0.00027<br>7836 | 0.0278806 | 1.170401<br>026 | 1.1704   |
| 12782828 | PLEK<br>HM3 | pleckstrin homology domain containing, family M, member 3       | 0.00027<br>9063 | 0.0278806 | 1.208707<br>529 | 1.20871  |
| 12786990 | PIK3R<br>1  | phosphoinositide-3-kinase, regulatory subunit 1 (alpha)         | 0.00027<br>9067 | 0.0278806 | 1.153558<br>208 | 1.15356  |
| 12908260 | CA5B        | carbonic anhydrase VB, mitochondrial                            | 0.00028<br>2571 | 0.027969  | 1.219067<br>681 | 1.21907  |
| 12872493 | EMCN        | endomucin                                                       | 0.00028<br>2722 | 0.027969  | 1.359140<br>697 | 1.35914  |
| 12718182 | ATP5C<br>1  | ATP synthase, H+ transporting, mitochondrial F1 complex, gamm   | 0.00028<br>3098 | 0.027969  | 0.877446<br>98  | -1.13967 |
| 12829389 | IGF2        | insulin-like growth factor 2 (somatomedin A)                    | 0.00028<br>6834 | 0.0279962 | 1.144147<br>742 | 1.14415  |
| 12678652 | COPB2       | coatomer protein complex, subunit beta 2 (beta prime)           | 0.00028<br>7375 | 0.0279962 | 0.907490<br>426 | -1.10194 |
| 12734323 | DHRS3       | dehydrogenase                                                   | 0.00028<br>8108 | 0.0279962 | 1.212640<br>075 | 1.21264  |

| 12791056 | GABR<br>G3    | gamma-aminobutyric acid (GABA) A receptor, gamma 3                    | 0.00028<br>8477 | 0.0279962 | 1.644139<br>219 | 1.64414  |
|----------|---------------|-----------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12900549 | CITED<br>2    | Cbp                                                                   | 0.00028<br>8621 | 0.0279962 | 1.225541<br>26  | 1.22554  |
| 12755952 | GOT2          | glutamic-oxaloacetic transaminase 2,<br>mitochondrial (aspartate amin | 0.00029<br>1414 | 0.0281648 | 0.910158<br>277 | -1.09871 |
| 12814236 | PPP1R<br>35   | protein phosphatase 1, regulatory subunit 35                          | 0.00029<br>461  | 0.0283708 | 0.869860<br>213 | -1.14961 |
| 12708563 |               |                                                                       | 0.00030<br>118  | 0.0288992 | 0.782870<br>787 | -1.27735 |
| 12754277 | FAM65<br>A    | family with sequence similarity 65, member A                          | 0.00030<br>6254 | 0.02923   | 0.807591<br>359 | -1.23825 |
| 12833395 | CTSF          | cathepsin F                                                           | 0.00030<br>6819 | 0.02923   | 1.121600<br>569 | 1.1216   |
| 12730119 | MGC1<br>37098 | uncharacterized protein MGC137098                                     | 0.00031<br>3031 | 0.0297006 | 0.808106<br>929 | -1.23746 |
| 12759391 | MEIS3         | Meis homeobox 3                                                       | 0.00031<br>4998 | 0.0297006 | 0.752536<br>046 | -1.32884 |
| 12732959 | KIF18<br>A    | kinesin family member 18A                                             | 0.00031<br>5099 | 0.0297006 | 0.782013<br>685 | -1.27875 |
| 12888569 | CDC42<br>SE2  | CDC42 small effector 2                                                | 0.00031<br>7296 | 0.0298024 | 1.166652<br>861 | 1.16665  |
| 12893911 | APBA1         | amyloid beta (A4) precursor protein-binding, family A, member         | 0.00032<br>0335 | 0.0299822 | 1.184337<br>375 | 1.18434  |

| 12726480 | MIR23<br>18    | microRNA mir-2318                                            | 0.00032<br>3937 | 0.0301913 | 0.831234<br>466 | -1.20303 |
|----------|----------------|--------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12720297 | TRPC4<br>AP    | transient receptor potential cation channel, subfamily C, me | 0.00032<br>673  | 0.0301913 | 0.892618<br>049 | -1.1203  |
| 12800376 | PXK            | PX domain containing serine                                  | 0.00032<br>878  | 0.0301913 | 0.834898<br>769 | -1.19775 |
| 12893958 | GABB<br>R2     | gamma-aminobutyric acid (GABA) B receptor,<br>2              | 0.00032<br>8872 | 0.0301913 | 1.395340<br>4   | 1.39534  |
| 12897282 | REV3L          | REV3-like, catalytic subunit of DNA polymerase zeta (yeast)  | 0.00032<br>9791 | 0.0301913 | 1.147232<br>359 | 1.14723  |
| 12789006 | CHGA           | chromogranin A (parathyroid secretory protein 1)             | 0.00033<br>0485 | 0.0301913 | 1.318871<br>468 | 1.31887  |
| 12726663 | CD44           | CD44 molecule (Indian blood group)                           | 0.00033<br>1275 | 0.0301913 | 0.809742<br>826 | -1.23496 |
| 12682117 | C1H21<br>orf91 | chromosome 1 open reading frame, human C21orf91              | 0.00033<br>2146 | 0.0301913 | 0.734845<br>646 | -1.36083 |
| 12678864 | HTR1F          | 5-hydroxytryptamine (serotonin) receptor 1F                  | 0.00033<br>2755 | 0.0301913 | 0.352941<br>592 | -2.83333 |
| 12723978 | MRPL<br>33     | mitochondrial ribosomal protein L33                          | 0.00033<br>4872 | 0.0302245 | 0.864012<br>995 | -1.15739 |
| 12883172 | HAPL<br>N1     | hyaluronan and proteoglycan link protein 1                   | 0.00033<br>692  | 0.0302245 | 0.732842<br>329 | -1.36455 |
| 12888990 | BT.863<br>27   |                                                              | 0.00033<br>7588 | 0.0302245 | 1.589499<br>133 | 1.5895   |

| 12863567 | LOC10<br>029746<br>8 | cD24 molecule-like                              | 0.00033<br>7821 | 0.0302245 | 0.579344<br>067 | -1.72609 |
|----------|----------------------|-------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12793713 | SPTSS<br>A           | serine palmitoyltransferase, small subunit A    | 0.00033<br>9183 | 0.0302245 | 0.893335<br>716 | -1.1194  |
| 12725810 | CTHR<br>C1           | collagen triple helix repeat containing 1       | 0.00033<br>9919 | 0.0302245 | 0.732960<br>501 | -1.36433 |
| 12847281 | UQCR<br>H            | ubiquinol-cytochrome c reductase hinge protein  | 0.00034<br>2227 | 0.0303286 | 0.896772<br>516 | -1.11511 |
| 12828385 | OGDH<br>L            | oxoglutarate dehydrogenase-like                 | 0.00034<br>3961 | 0.030344  | 0.838033<br>303 | -1.19327 |
| 12890349 | ZNF46<br>2           | zinc finger protein 462                         | 0.00034<br>4676 | 0.030344  | 1.226116<br>778 | 1.22612  |
| 12900759 | SLC18<br>B1          | solute carrier family 18, subfamily B, member 1 | 0.00035<br>1444 | 0.030838  | 1.165346<br>329 | 1.16535  |
| 12709313 | IPO5                 | importin 5                                      | 0.00035<br>3896 | 0.0309374 | 0.884987<br>079 | -1.12996 |
| 12834259 | PANX<br>1            | pannexin 1                                      | 0.00035<br>5011 | 0.0309374 | 0.870450<br>806 | -1.14883 |
| 12793325 | FBLN5                | fibulin 5                                       | 0.00035<br>6055 | 0.0309374 | 1.266757<br>62  | 1.26676  |
| 12725994 | BAAL<br>C            | brain and acute leukemia, cytoplasmic           | 0.00035<br>8274 | 0.030978  | 0.833583<br>408 | -1.19964 |
| 12735935 | SRGA<br>P2           | SLIT-ROBO Rho GTPase activating protein 2       | 0.00035<br>9732 | 0.030978  | 1.136603<br>873 | 1.1366   |

| 12867984 | TENC1        | tensin like C1 domain containing phosphatase (tensin 2)     | 0.00036<br>111  | 0.030978  | 1.189908<br>151 | 1.18991  |
|----------|--------------|-------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12752761 | BT.303<br>26 |                                                             | 0.00036<br>1226 | 0.030978  | 0.883595<br>172 | -1.13174 |
| 12720820 | C1QL3        | complement component 1, q subcomponent-like 3               | 0.00036<br>2329 | 0.030978  | 0.642153<br>526 | -1.55726 |
| 12870236 | LPHN3        | latrophilin 3                                               | 0.00036<br>5286 | 0.031131  | 1.481084<br>331 | 1.48109  |
| 12850899 | CTTN<br>BP2  | cortactin binding protein 2                                 | 0.00036<br>9534 | 0.0311323 | 1.173783<br>315 | 1.17378  |
| 12782838 | FAM12<br>6B  | family with sequence similarity 126, member B               | 0.00037<br>0213 | 0.0311323 | 0.877531<br>679 | -1.13956 |
| 12720176 | FLRT3        | fibronectin leucine rich transmembrane protein 3            | 0.00037<br>0258 | 0.0311323 | 1.172379<br>673 | 1.17238  |
| 12794461 | COPG1        | coatomer protein complex, subunit gamma                     | 0.00037<br>049  | 0.0311323 | 0.887547<br>706 | -1.1267  |
| 12843700 | SLC44<br>A3  | solute carrier family 44, member 3                          | 0.00037<br>1137 | 0.0311323 | 1.231869<br>954 | 1.23187  |
| 12852942 | CFTR         | cystic fibrosis transmembrane conductance regulator (ATP-   | 0.00037<br>3023 | 0.0311924 | 0.702740<br>689 | -1.423   |
| 12728764 | SCUB<br>E2   | signal peptide, CUB domain and EGF like domain containing 2 | 0.00037<br>5739 | 0.0313214 | 1.255415<br>549 | 1.25542  |
| 12861868 | RERG         | RAS-like, estrogen-regulated, growth inhibitor              | 0.00037<br>8144 | 0.031359  | 0.717252<br>064 | -1.39421 |

| 12696911 | IGDCC<br>4   | immunoglobulin superfamily, DCC subclass, member 4           | 0.00037<br>8541 | 0.031359  | 1.283947<br>574 | 1.28395  |
|----------|--------------|--------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12843378 | ATP6V<br>0B  | ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b       | 0.00038<br>1171 | 0.0314791 | 0.865239<br>022 | -1.15575 |
| 12684999 | KCNJ6        | potassium inwardly-rectifying channel, subfamily J, member 6 | 0.00038<br>4105 | 0.0316235 | 0.671118<br>419 | -1.49005 |
| 12874253 | GAR1         | GAR1 ribonucleoprotein homolog (yeast)                       | 0.00038<br>7854 | 0.0317025 | 0.776614<br>582 | -1.28764 |
| 12827902 | MICU1        | mitochondrial calcium uptake 1                               | 0.00038<br>7935 | 0.0317025 | 0.922773<br>118 | -1.08369 |
| 12787557 | SH3PX<br>D2B | SH3 and PX domains 2B                                        | 0.00038<br>9192 | 0.0317025 | 1.181724<br>396 | 1.18172  |
| 12762367 | MAP3<br>K3   | mitogen-activated protein kinase kinase kinase 3             | 0.00038<br>9819 | 0.0317025 | 1.140518<br>754 | 1.14052  |
| 12860901 | TMTC<br>1    | transmembrane and tetratricopeptide repeat containing 1      | 0.00039<br>24   | 0.0318053 | 1.287070<br>858 | 1.28707  |
| 12706012 | EFR3B        | EFR3 homolog B (S. cerevisiae)                               | 0.00039<br>4475 | 0.0318053 | 0.716794<br>495 | -1.3951  |
| 12886767 | KXD1         | KxDL motif containing 1                                      | 0.00039<br>5284 | 0.0318053 | 0.882822<br>915 | -1.13273 |
| 12803164 | GNMT         | glycine N-methyltransferase                                  | 0.00039<br>5853 | 0.0318053 | 0.832015<br>975 | -1.2019  |
| 12693805 | RPS6K<br>A5  | ribosomal protein S6 kinase, 90kDa,<br>polypeptide 5         | 0.00039<br>9962 | 0.032039  | 1.180848<br>061 | 1.18085  |

| 12756690 |            |                                                               | 0.00040<br>5224 | 0.0323633 | 0.789540<br>172 | -1.26656 |
|----------|------------|---------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12681327 | DYRK<br>1A | dual-specificity tyrosine-(Y)-phosphorylation regulated kinas | 0.00040<br>7106 | 0.0324166 | 1.099331<br>167 | 1.09933  |
| 12748294 | ZNF60<br>5 | zinc finger protein 605                                       | 0.00040<br>9743 | 0.0325294 | 1.119083<br>963 | 1.11908  |
| 12861444 | SYT10      | synaptotagmin X                                               | 0.00041<br>2261 | 0.0326171 | 1.384230<br>569 | 1.38423  |
| 12867796 | ACVR<br>1B | activin A receptor, type IB                                   | 0.00041<br>3292 | 0.0326171 | 1.118209<br>255 | 1.11821  |
| 12911995 |            |                                                               | 0.00041<br>4571 | 0.0326215 | 1.171847<br>993 | 1.17185  |
| 12838286 | NOTC<br>H2 | notch 2                                                       | 0.00041<br>6917 | 0.0327096 | 1.201684<br>762 | 1.20169  |
| 12711493 | FRY        | furry homolog (Drosophila)                                    | 0.00041<br>9974 | 0.0328111 | 1.190640<br>612 | 1.19064  |
| 12885485 | GLRX       | glutaredoxin (thioltransferase)                               | 0.00042<br>1727 | 0.0328111 | 0.836120<br>401 | -1.196   |
| 12782135 | ERBB4      | erb-b2 receptor tyrosine kinase 4                             | 0.00042<br>1901 | 0.0328111 | 1.254325<br>856 | 1.25433  |
| 12868475 | ANKS<br>1B | ankyrin repeat and sterile alpha motif domain containing 1B   | 0.00042<br>4675 | 0.0329308 | 1.225704<br>995 | 1.2257   |
| 12873141 | BTC        | betacellulin                                                  | 0.00042<br>7725 | 0.0330202 | 1.418270<br>731 | 1.41827  |

| Table 4.7 (co | ontinued) |
|---------------|-----------|
|---------------|-----------|

| 12885399 | ERAP1       | endoplasmic reticulum aminopeptidase 1                 | 0.00042<br>8303 | 0.0330202 | 1.251945<br>21  | 1.25195  |
|----------|-------------|--------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12896756 | QKI         | QKI, KH domain containing, RNA binding                 | 0.00042<br>9992 | 0.0330549 | 1.141169<br>516 | 1.14117  |
| 12774157 | CNTN<br>AP5 | contactin associated protein-like 5                    | 0.00043<br>4841 | 0.0333316 | 1.387898<br>084 | 1.3879   |
| 12899842 | MOXD<br>1   | monooxygenase, DBH-like 1                              | 0.00043<br>675  | 0.0333433 | 0.625480<br>838 | -1.59877 |
| 12858199 | LRIG3       | leucine-rich repeats and immunoglobulin-like domains 3 | 0.00043<br>8412 | 0.0333433 | 1.294873<br>853 | 1.29487  |
| 12866171 | GOLT1<br>B  | golgi transport 1B                                     | 0.00043<br>8744 | 0.0333433 | 0.869482<br>05  | -1.15011 |
| 12812980 | RASA4       | RAS p21 protein activator 4                            | 0.00044<br>0354 | 0.0333706 | 1.145554<br>105 | 1.14555  |
| 12790698 | PPP4R<br>4  | protein phosphatase 4, regulatory subunit 4            | 0.00044<br>1766 | 0.0333827 | 1.247242<br>036 | 1.24724  |
| 12778629 | WIPF1       | WAS                                                    | 0.00044<br>4035 | 0.0334594 | 1.192497<br>758 | 1.1925   |
| 12706299 | NCOA<br>1   | nuclear receptor coactivator 1                         | 0.00044<br>6813 | 0.0335739 | 1.123350<br>64  | 1.12335  |
| 12867807 | CSRP2       | cysteine and glycine-rich protein 2                    | 0.00044<br>8135 | 0.0335786 | 1.178117<br>18  | 1.17812  |
| 12790124 | ALPK3       | alpha-kinase 3                                         | 0.00045<br>0127 | 0.0336334 | 0.798288<br>47  | -1.25268 |

|  | Table 4.7 | (continued) |
|--|-----------|-------------|
|--|-----------|-------------|

| 12815419 | COG7        | component of oligomeric golgi complex 7                           | 0.00045<br>5987 | 0.0339761 | 0.866310<br>902 | -1.15432 |
|----------|-------------|-------------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12900189 | DSE         | dermatan sulfate epimerase                                        | 0.00046<br>1485 | 0.03429   | 0.774077<br>686 | -1.29186 |
| 12911809 |             |                                                                   | 0.00046<br>7454 | 0.034637  | 1.240011<br>706 | 1.24001  |
| 12826094 | SEC24<br>C  | SEC24 family, member C (S. cerevisiae)                            | 0.00046<br>9176 | 0.0346683 | 0.891503<br>967 | -1.1217  |
| 12869248 | ERBB3       | v-erb-b2 erythroblastic leukemia viral oncogene<br>homolog 3 (avi | 0.00047<br>2712 | 0.0348331 | 1.190114<br>906 | 1.19011  |
| 12834682 | HTATI<br>P2 | HIV-1 Tat interactive protein 2, 30kDa                            | 0.00047<br>662  | 0.0350243 | 0.861690<br>119 | -1.16051 |
| 12859857 | PLXN<br>C1  | plexin C1                                                         | 0.00048<br>1822 | 0.0353093 | 1.259598<br>138 | 1.2596   |
| 12744300 | FBXW<br>7   | F-box and WD repeat domain containing 7                           | 0.00048<br>4596 | 0.0354153 | 0.870708<br>496 | -1.14849 |
| 12889697 | RUSC2       | RUN and SH3 domain containing 2                                   | 0.00048<br>6642 | 0.0354677 | 0.838391<br>629 | -1.19276 |
| 12865601 | MARS        | methionyl-tRNA synthetase                                         | 0.00049<br>0565 | 0.0354978 | 0.866626<br>224 | -1.1539  |
| 12850206 | AGK         | acylglycerol kinase                                               | 0.00049<br>0801 | 0.0354978 | 0.877454<br>679 | -1.13966 |
| 12907940 | PDK3        | pyruvate dehydrogenase kinase, isozyme 3                          | 0.00049<br>2327 | 0.0354978 | 0.863490<br>748 | -1.15809 |

| 12881048 | C7H50<br>rf30        | UNC119-binding protein C5orf30 homolog                  | 0.00049<br>2818 | 0.0354978 | 0.853890<br>753 | -1.17111 |
|----------|----------------------|---------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12875407 | RRH                  | retinal pigment epithelium-derived rhodopsin homolog    | 0.00049<br>4206 | 0.0354978 | 1.679247<br>026 | 1.67925  |
| 12804713 | RPS4Y<br>1           | ribosomal protein S4, Y-linked 1                        | 0.00049<br>504  | 0.0354978 | 0.830378<br>57  | -1.20427 |
| 12786020 | C1QT<br>NF3          | C1q and tumor necrosis factor related protein 3         | 0.00049<br>7789 | 0.0355992 | 0.548380<br>905 | -1.82355 |
| 12772050 | KIF19                | kinesin family member 19                                | 0.00050<br>1395 | 0.0357612 | 1.367467<br>136 | 1.36747  |
| 12862410 | PARV<br>B            | parvin, beta                                            | 0.00050<br>3447 | 0.035779  | 0.525041<br>872 | -1.90461 |
| 12712868 | MRP63                | mitochondrial ribosomal protein 63                      | 0.00050<br>4327 | 0.035779  | 0.850918<br>993 | -1.1752  |
| 12850925 | NACA<br>D            | NAC alpha domain containing                             | 0.00050<br>8742 | 0.0358703 | 0.843198<br>759 | -1.18596 |
| 12842417 | LOC10<br>029879<br>3 | cytochrome P450, family 2, subfamily J, polypeptide 2-1 | 0.00051<br>1358 | 0.0358703 | 1.419617<br>697 | 1.41962  |
| 12851927 | NME2                 | non-metastatic cells 2, protein (NM23B) expressed in    | 0.00051<br>1441 | 0.0358703 | 0.842829<br>209 | -1.18648 |
| 12711284 | GAS6                 | growth arrest-specific 6                                | 0.00051<br>2288 | 0.0358703 | 1.225511<br>222 | 1.22551  |
| 12894461 | CHRN<br>A2           | cholinergic receptor, nicotinic, alpha 2 (neuronal)     | 0.00051<br>2337 | 0.0358703 | 0.635849<br>177 | -1.5727  |

| 12914639 |                      |                                                             | 0.00051<br>4411 | 0.0359212 | 1.155110<br>556 | 1.15511  |
|----------|----------------------|-------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12892374 | LOC10<br>029526<br>3 | uncharacterized LOC100295263                                | 0.00051<br>6545 | 0.0359281 | 1.114031<br>11  | 1.11403  |
| 12746149 | SLC24<br>A6          | solute carrier family 24 (sodium                            | 0.00051<br>7204 | 0.0359281 | 1.179477<br>562 | 1.17948  |
| 12860410 | EFCA<br>B4B          | EF-hand calcium binding domain 4B                           | 0.00052<br>3419 | 0.0362076 | 1.277811<br>569 | 1.27781  |
| 12740926 | DUSP1<br>0           | dual specificity phosphatase 10                             | 0.00052<br>7983 | 0.0362076 | 1.221833<br>679 | 1.22183  |
| 12857795 | AGAP<br>2            | ArfGAP with GTPase domain, ankyrin repeat and PH domain 2   | 0.00052<br>8276 | 0.0362076 | 1.240577<br>812 | 1.24058  |
| 12771875 | SRCIN<br>1           | SRC kinase signaling inhibitor 1                            | 0.00052<br>8292 | 0.0362076 | 1.208958<br>869 | 1.20896  |
| 12898982 | MGC1<br>27538        | uncharacterized protein MGC127538                           | 0.00052<br>9202 | 0.0362076 | 0.669841<br>716 | -1.49289 |
| 12710496 | DCLK<br>1            | doublecortin-like kinase 1                                  | 0.00052<br>9371 | 0.0362076 | 0.753698<br>777 | -1.32679 |
| 12765386 | SLC39<br>A11         | solute carrier family 39 (metal ion transporter), member 11 | 0.00053<br>1096 | 0.0362327 | 0.822882<br>723 | -1.21524 |
| 12723165 | ADCY<br>8            | adenylate cyclase 8 (brain)                                 | 0.00053<br>4084 | 0.0363436 | 0.791114<br>205 | -1.26404 |
| 12901045 | MAP3<br>K5           | mitogen-activated protein kinase kinase kinase 5            | 0.00053<br>7613 | 0.0364217 | 1.298559<br>638 | 1.29856  |

| Table 4.7 (co | ontinued) |
|---------------|-----------|
|---------------|-----------|

| 12740562 | EPRS         | glutamyl-prolyl-tRNA synthetase                              | 0.00053<br>7963 | 0.0364217 | 0.890749<br>566 | -1.12265 |
|----------|--------------|--------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12822071 | MYOF         | myoferlin                                                    | 0.00054<br>2297 | 0.0366068 | 1.271674<br>095 | 1.27167  |
| 12698500 | CNGA<br>3    | cyclic nucleotide gated channel alpha 3                      | 0.00054<br>3441 | 0.0366068 | 0.750632<br>408 | -1.33221 |
| 12710994 | SERT<br>M1   | serine-rich and transmembrane domain containing 1            | 0.00054<br>8783 | 0.0367467 | 1.646334<br>436 | 1.64633  |
| 12822230 | ALDH<br>18A1 | aldehyde dehydrogenase 18 family, member A1                  | 0.00054<br>9551 | 0.0367467 | 0.890376<br>807 | -1.12312 |
| 12728517 | LDLR<br>AD3  | low density lipoprotein receptor class A domain containing 3 | 0.00055<br>2262 | 0.0367467 | 1.193025<br>573 | 1.19303  |
| 12850342 | TNS3         | tensin 3                                                     | 0.00055<br>2327 | 0.0367467 | 1.132020<br>793 | 1.13202  |
| 12767297 | ARRB<br>2    | arrestin, beta 2                                             | 0.00055<br>2406 | 0.0367467 | 1.205350<br>793 | 1.20535  |
| 12692077 | RAD51<br>B   | RAD51 homolog B (S. cerevisiae)                              | 0.00055<br>7082 | 0.0368933 | 1.175414<br>098 | 1.17541  |
| 12811667 | ACTL6<br>B   | actin-like 6B                                                | 0.00055<br>7477 | 0.0368933 | 0.885206<br>43  | -1.12968 |
| 12784195 | WDFY<br>1    | WD repeat and FYVE domain containing 1                       | 0.00055<br>8759 | 0.0368933 | 1.167194<br>822 | 1.16719  |
| 12856701 | CS           | citrate synthase                                             | 0.00056<br>2572 | 0.0370533 | 0.908694<br>388 | -1.10048 |

| 12695573 | LOC52<br>7711 | spectrin beta chain, erythrocyte-like                       | 0.00056<br>9403 | 0.0374109 | 0.835470<br>746 | -1.19693 |
|----------|---------------|-------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12721237 | JAG1          | jagged 1                                                    | 0.00057<br>1214 | 0.0374377 | 1.236745<br>183 | 1.23675  |
| 12699180 | CRIM1         | cysteine rich transmembrane BMP regulator 1 (chordin-like)  | 0.00057<br>5076 | 0.0375984 | 1.227322<br>155 | 1.22732  |
| 12755154 |               |                                                             | 0.00057<br>8463 | 0.037616  | 0.816526<br>496 | -1.2247  |
| 12883643 | SLCO4<br>C1   | solute carrier organic anion transporter family, member 4C1 | 0.00057<br>9234 | 0.037616  | 1.512333<br>076 | 1.51233  |
| 12786303 |               |                                                             | 0.00058<br>0875 | 0.037616  | 0.866130<br>82  | -1.15456 |
| 12857841 | AMDH<br>D1    | amidohydrolase domain containing 1                          | 0.00058<br>0986 | 0.037616  | 1.271539<br>886 | 1.27154  |
| 12692448 | B2M           | beta-2-microglobulin                                        | 0.00058<br>9776 | 0.0380545 | 1.232003<br>509 | 1.232    |
| 12753406 | SYT5          | synaptotagmin V                                             | 0.00059<br>0611 | 0.0380545 | 0.881694<br>264 | -1.13418 |
| 12896514 | ESR1          | estrogen receptor 1                                         | 0.00059<br>5193 | 0.0382573 | 1.235124<br>47  | 1.23512  |
| 12759210 | U2AF1<br>L4   | U2 small nuclear RNA auxiliary factor 1-like 4              | 0.00059<br>8874 | 0.0383285 | 1.111858<br>527 | 1.11186  |
| 12879784 | PRELI<br>D1   | PRELI domain containing 1                                   | 0.00059<br>9175 | 0.0383285 | 0.903481<br>113 | -1.10683 |
| 12788870 | MIR32<br>9B  | microRNA mir-329b                                 | 0.00060<br>4208 | 0.0384602 | 0.644932<br>443 | -1.55055 |
|----------|--------------|---------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12773652 | LEPRE<br>L4  | leprecan-like 4                                   | 0.00060<br>462  | 0.0384602 | 0.871528<br>05  | -1.14741 |
| 12899728 | PGM3         | phosphoglucomutase 3                              | 0.00060<br>5559 | 0.0384602 | 0.862887<br>221 | -1.1589  |
| 12875625 | SMIM1<br>4   | small integral membrane protein 14                | 0.00061<br>2085 | 0.0386216 | 0.895070<br>845 | -1.11723 |
| 12846438 | UAP1         | UDP-N-acteylglucosamine pyrophosphorylase         | 0.00061<br>3386 | 0.0386216 | 0.840830<br>741 | -1.1893  |
| 12880280 | BT.349<br>56 |                                                   | 0.00061<br>365  | 0.0386216 | 0.816173<br>29  | -1.22523 |
| 12854454 | RAPG<br>EF5  | Rap guanine nucleotide exchange factor (GEF)<br>5 | 0.00061<br>3892 | 0.0386216 | 1.301354<br>71  | 1.30136  |
| 12725367 | GRHL<br>2    | grainyhead-like 2 (Drosophila)                    | 0.00062<br>1379 | 0.0388747 | 1.251741<br>485 | 1.25174  |
| 12880370 | PCDH<br>GB4  | protocadherin gamma subfamily B, 4                | 0.00062<br>1625 | 0.0388747 | 1.152806<br>854 | 1.15281  |
| 12700679 | NBAS         | neuroblastoma amplified sequence                  | 0.00062<br>2945 | 0.0388747 | 0.882005<br>327 | -1.13378 |
| 12675621 |              |                                                   | 0.00062<br>4917 | 0.0388747 | 1.576764<br>794 | 1.57677  |
| 12696845 | SLC8A<br>3   | solute carrier family 8 (sodium                   | 0.00062<br>5201 | 0.0388747 | 0.655849<br>522 | -1.52474 |

| Table 4. | 7 (con | tinued) |
|----------|--------|---------|
|----------|--------|---------|

| 12807569 | ST8SI<br>A3 | ST8 alpha-N-acetyl-neuraminide alpha-2,8-<br>sialyltransfe      | 0.00062<br>9731 | 0.039007  | 1.140526<br>558 | 1.14053  |
|----------|-------------|-----------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12864912 | SHMT<br>2   | serine hydroxymethyltransferase 2 (mitochondrial)               | 0.00063<br>0253 | 0.039007  | 0.837527<br>952 | -1.19399 |
| 12752645 | SLC7A<br>6  | solute carrier family 7 (amino acid transporter light chain,    | 0.00063<br>368  | 0.0391193 | 0.845437<br>176 | -1.18282 |
| 12686282 | FAM43<br>A  | family with sequence similarity 43, member A                    | 0.00063<br>5002 | 0.0391193 | 1.310209<br>018 | 1.31021  |
| 12779984 | MIR23<br>56 | microRNA mir-2356                                               | 0.00064<br>1561 | 0.0394323 | 1.375402<br>305 | 1.3754   |
| 12831806 | SYTL2       | synaptotagmin-like 2                                            | 0.00064<br>4972 | 0.0395509 | 0.616614<br>049 | -1.62176 |
| 12857257 | SLC25<br>A3 | solute carrier family 25 (mitochondrial carrier; phosphate carr | 0.00064<br>8197 | 0.0395957 | 0.912508<br>669 | -1.09588 |
| 12714175 | PRKC<br>Q   | protein kinase C, theta                                         | 0.00064<br>9741 | 0.0395957 | 0.680804<br>711 | -1.46885 |
| 12834738 | ZBTB4<br>4  | zinc finger and BTB domain containing 44                        | 0.00065<br>0209 | 0.0395957 | 1.095670<br>676 | 1.09567  |
| 12898481 | EYA4        | eyes absent homolog 4 (Drosophila)                              | 0.00065<br>164  | 0.0395957 | 1.304958<br>32  | 1.30496  |
| 12824728 | MIR24<br>00 | microRNA mir-2400                                               | 0.00065<br>673  | 0.0397483 | 1.079059<br>449 | 1.07906  |
| 12683496 | ITGB5       | integrin, beta 5                                                | 0.00065<br>7132 | 0.0397483 | 1.246624<br>763 | 1.24662  |

| Table 4.7 | (continued) |
|-----------|-------------|
|-----------|-------------|

| 12709172 | MCF2<br>L            | MCF.2 cell line derived transforming sequence-<br>like  | 0.00065<br>9204 | 0.0397834 | 1.147817<br>024 | 1.14782  |
|----------|----------------------|---------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12789506 | PDE8A                | phosphodiesterase 8A                                    | 0.00066<br>136  | 0.0398234 | 0.855073<br>579 | -1.16949 |
| 12813668 | CALN<br>1            | calneuron 1                                             | 0.00066<br>3369 | 0.0398544 | 1.292863<br>265 | 1.29286  |
| 12874507 | NSG1                 | neuron specific gene family member 1                    | 0.00066<br>7118 | 0.0399896 | 1.246686<br>929 | 1.24669  |
| 12811457 | DNAS<br>E1           | deoxyribonuclease I                                     | 0.00066<br>9711 | 0.040055  | 1.104228<br>089 | 1.10423  |
| 12765442 | YPEL2                | yippee-like 2 (Drosophila)                              | 0.00067<br>5232 | 0.0402949 | 0.797384<br>579 | -1.2541  |
| 12705319 | CHST1<br>0           | carbohydrate sulfotransferase 10                        | 0.00067<br>6835 | 0.0403004 | 0.872965<br>989 | -1.14552 |
| 12906927 | TBC1D<br>8B          | TBC1 domain family, member 8B (with GRAM domain)        | 0.00067<br>9038 | 0.0403415 | 0.870958<br>751 | -1.14816 |
| 12803392 | SLC39<br>A7          | solute carrier family 39 (zinc transporter), member 7   | 0.00068<br>3522 | 0.0405177 | 0.878757<br>788 | -1.13797 |
| 12851829 | AMPH                 | amphiphysin                                             | 0.00068<br>7146 | 0.0405511 | 1.255626<br>777 | 1.25563  |
| 12841921 | LOC10<br>084878<br>6 | lipid phosphate phosphatase-related protein type 5-like | 0.00068<br>7415 | 0.0405511 | 1.290663<br>982 | 1.29066  |
| 12890580 | CNTR<br>L            | centriolin                                              | 0.00068<br>8646 | 0.0405511 | 1.162593<br>327 | 1.16259  |

| 12859128 | C1R          | complement component 1, r subcomponent                          | 0.00069<br>0455 | 0.040568  | 1.266630<br>863 | 1.26663  |
|----------|--------------|-----------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12863934 | BTG1         | B-cell translocation gene 1, anti-proliferative                 | 0.00069<br>5771 | 0.0407905 | 1.218942<br>86  | 1.21894  |
| 12879860 | RASG<br>RF2  | Ras protein-specific guanine nucleotide-<br>releasing factor 2  | 0.00070<br>411  | 0.0411889 | 1.155657<br>87  | 1.15566  |
| 12698459 | POMC         | proopiomelanocortin                                             | 0.00071<br>1262 | 0.0415162 | 0.797441<br>807 | -1.25401 |
| 12731200 | LGR4         | leucine-rich repeat containing G protein-<br>coupled receptor 4 | 0.00071<br>4431 | 0.0415858 | 1.135924<br>756 | 1.13593  |
| 12711615 | COG6         | component of oligomeric golgi complex 6                         | 0.00071<br>6027 | 0.0415858 | 0.909173<br>561 | -1.0999  |
| 12845308 | TCTE<br>X1D1 | Tctex1 domain containing 1                                      | 0.00071<br>7131 | 0.0415858 | 1.402495<br>039 | 1.4025   |
| 12884927 | PJA2         | praja ring finger 2                                             | 0.00072<br>1913 | 0.0416887 | 0.919438<br>775 | -1.08762 |
| 12750642 | TERF2<br>IP  | telomeric repeat binding factor 2, interacting protein          | 0.00072<br>2031 | 0.0416887 | 0.845408<br>586 | -1.18286 |
| 12803365 |              |                                                                 | 0.00073<br>0378 | 0.0420796 | 1.115262<br>365 | 1.11526  |
| 12676495 |              |                                                                 | 0.00073<br>4621 | 0.0422328 | 1.381036<br>164 | 1.38104  |
| 12691075 | SV2C         | synaptic vesicle glycoprotein 2C                                | 0.00074<br>0752 | 0.0424937 | 0.453570<br>278 | -2.20473 |

| 12900080 | TCP1          | t-complex 1                                                   | 0.00074<br>5803 | 0.0426916 | 0.857728<br>563 | -1.16587 |
|----------|---------------|---------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12780180 | PKP4          | plakophilin 4                                                 | 0.00075<br>7244 | 0.0431826 | 1.084579<br>877 | 1.08458  |
| 12715823 | ARMC<br>4     | armadillo repeat containing 4                                 | 0.00075<br>7617 | 0.0431826 | 1.168029<br>173 | 1.16803  |
| 12861001 | SOX5          | SRY (sex determining region Y)-box 5                          | 0.00075<br>9798 | 0.0432145 | 1.193276<br>128 | 1.19328  |
| 12746075 | RFC5          | replication factor C (activator 1) 5, 36.5kDa                 | 0.00076<br>2194 | 0.0432236 | 1.077600<br>141 | 1.0776   |
| 12801783 | LOC51<br>2672 | major histocompatibility complex, class I                     | 0.00076<br>3198 | 0.0432236 | 1.198532<br>038 | 1.19853  |
| 12812837 | ERCC4         | excision repair cross-complementing rodent repair deficiency, | 0.00076<br>984  | 0.0435074 | 1.096765<br>419 | 1.09677  |
| 12695501 | SCG3          | secretogranin III                                             | 0.00077<br>4345 | 0.0436695 | 0.776934<br>372 | -1.28711 |
| 12752141 | MTSS1<br>L    | metastasis suppressor 1-like                                  | 0.00077<br>7449 | 0.0437029 | 0.815281<br>639 | -1.22657 |
| 12826866 | LRRT<br>M3    | leucine rich repeat transmembrane neuronal 3                  | 0.00077<br>9829 | 0.0437029 | 1.573853<br>88  | 1.57385  |
| 12782645 | PADI6         | peptidyl arginine deiminase, type VI                          | 0.00077<br>9854 | 0.0437029 | 0.741383<br>273 | -1.34883 |
| 12688919 | LYSM<br>D2    | LysM, putative peptidoglycan-binding, domain containing 2     | 0.00078<br>5376 | 0.0437927 | 0.785040<br>273 | -1.27382 |

| 12904088 | ALG13          | asparagine-linked glycosylation 13 homolog (S. cerevisiae) | 0.00078<br>7521 | 0.0437927 | 1.221019<br>111 | 1.22102  |
|----------|----------------|------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12840703 | C3H1o<br>rf111 | chromosome 3 open reading frame, human C1orf111            | 0.00078<br>7783 | 0.0437927 | 0.766618<br>37  | -1.30443 |
| 12792023 | FES            | feline sarcoma oncogene                                    | 0.00079<br>0434 | 0.0437927 | 1.212207<br>903 | 1.21221  |
| 12722327 | TSTA3          | tissue specific transplantation antigen P35B               | 0.00079<br>4299 | 0.0437927 | 0.843355<br>204 | -1.18574 |
| 12835758 | SV2A           | synaptic vesicle glycoprotein 2A                           | 0.00079<br>551  | 0.0437927 | 1.194972<br>988 | 1.19497  |
| 12723553 | DEPT<br>OR     | DEP domain containing MTOR-interacting protein             | 0.00079<br>5644 | 0.0437927 | 1.159042<br>677 | 1.15904  |
| 12914751 |                |                                                            | 0.00079<br>6285 | 0.0437927 | 0.751738<br>395 | -1.33025 |
| 12908846 | GABR<br>E      | gamma-aminobutyric acid (GABA) A receptor, epsilon         | 0.00079<br>8033 | 0.0437927 | 1.281408<br>935 | 1.28141  |
| 12716263 | RPN2           | ribophorin II                                              | 0.00079<br>843  | 0.0437927 | 0.885927<br>921 | -1.12876 |
| 12911099 |                |                                                            | 0.00080<br>2964 | 0.0437927 | 1.160710<br>866 | 1.16071  |
| 12876698 | C3             | complement component 3                                     | 0.00080<br>3048 | 0.0437927 | 1.471232<br>982 | 1.47123  |
| 12740723 | LOC53<br>9953  | denticleless protein homolog                               | 0.00080<br>336  | 0.0437927 | 0.738029<br>167 | -1.35496 |

| 12849407 | MEST        | mesoderm specific transcript homolog (mouse)                   | 0.00080<br>444  | 0.0437927 | 0.843540<br>169 | -1.18548 |
|----------|-------------|----------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12715842 | TTPAL       | tocopherol (alpha) transfer protein-like                       | 0.00081<br>0652 | 0.0439839 | 0.888754<br>588 | -1.12517 |
| 12825112 | WHSC<br>1L1 | Wolf-Hirschhorn syndrome candidate 1-like 1                    | 0.00081<br>1249 | 0.0439839 | 1.069198<br>529 | 1.0692   |
| 12828947 | JMJD1<br>C  | jumonji domain containing 1C                                   | 0.00081<br>7653 | 0.0442412 | 1.109875<br>45  | 1.10988  |
| 12678271 | TMEM<br>207 | transmembrane protein 207                                      | 0.00083<br>4653 | 0.0448318 | 0.863490<br>748 | -1.15809 |
| 12902219 | GPRA<br>SP1 | G protein-coupled receptor associated sorting protein 1        | 0.00083<br>5727 | 0.0448318 | 0.837773<br>533 | -1.19364 |
| 12824828 | SFRP1       | secreted frizzled-related protein 1                            | 0.00083<br>9379 | 0.0448318 | 1.233955<br>494 | 1.23395  |
| 12818938 | GRK5        | G protein-coupled receptor kinase 5                            | 0.00084<br>0328 | 0.0448318 | 1.185206<br>256 | 1.18521  |
| 12873401 | BMPR<br>1B  | bone morphogenetic protein receptor, type IB                   | 0.00084<br>1157 | 0.0448318 | 1.246388<br>589 | 1.24639  |
| 12873854 | PLAC8       | placenta-specific 8                                            | 0.00084<br>1599 | 0.0448318 | 1.776075<br>902 | 1.77608  |
| 12808035 | CHST9       | carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 9    | 0.00084<br>1858 | 0.0448318 | 0.825157<br>399 | -1.21189 |
| 12790928 | LRFN5       | leucine rich repeat and fibronectin type III domain containing | 0.00084<br>2015 | 0.0448318 | 1.449519<br>05  | 1.44952  |

| Table 4 | 4.7 (co | ontinued) |
|---------|---------|-----------|
|---------|---------|-----------|

| 12875951 | C6H4o<br>rf32 | chromosome 6 open reading frame, human C4orf32          | 0.00084<br>5028 | 0.0449026 | 0.715358<br>752 | -1.3979  |
|----------|---------------|---------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12861802 | PARP1<br>1    | poly (ADP-ribose) polymerase family, member 11          | 0.00084<br>7815 | 0.0449612 | 1.109924<br>725 | 1.10992  |
| 12897014 | FRK           | fyn-related kinase                                      | 0.00084<br>9767 | 0.0449753 | 1.359885<br>552 | 1.35989  |
| 12896683 | BCKD<br>HB    | branched chain keto acid dehydrogenase E1, beta polypep | 0.00085<br>525  | 0.0449922 | 0.870246<br>28  | -1.1491  |
| 12786321 | ESM1          | endothelial cell-specific molecule 1                    | 0.00085<br>6092 | 0.0449922 | 0.556195<br>18  | -1.79793 |
| 12824753 | PLAT          | plasminogen activator, tissue                           | 0.00085<br>6745 | 0.0449922 | 1.266149<br>74  | 1.26615  |
| 12825144 | PPP1R<br>3B   | protein phosphatase 1, regulatory subunit 3B            | 0.00085<br>6834 | 0.0449922 | 0.775716<br>956 | -1.28913 |
| 12698660 | EPAS1         | endothelial PAS domain protein 1                        | 0.00085<br>9307 | 0.0450334 | 1.238233<br>684 | 1.23823  |
| 12842746 | ATP1A<br>1    | ATPase, Na+                                             | 0.00087<br>1202 | 0.0455673 | 0.890971<br>783 | -1.12237 |
| 12692159 | REEP5         | receptor accessory protein 5                            | 0.00087<br>3341 | 0.0455898 | 0.932392<br>239 | -1.07251 |
| 12787195 | SLC30<br>A5   | solute carrier family 30 (zinc transporter), member 5   | 0.00087<br>6799 | 0.0456334 | 0.911294<br>585 | -1.09734 |
| 12915041 |               |                                                         | 0.00087<br>7599 | 0.0456334 | 0.763918<br>597 | -1.30904 |

| Table 4.7 ( | (continued) |
|-------------|-------------|
|             |             |

| 12749816 | GAS8        | growth arrest-specific 8                                | 0.00089<br>2365 | 0.0462828 | 1.171628<br>317 | 1.17163  |
|----------|-------------|---------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12892286 | STOM        | stomatin                                                | 0.00089<br>4615 | 0.0462828 | 1.156473<br>127 | 1.15647  |
| 12832646 | SRPR        | signal recognition particle receptor (docking protein)  | 0.00089<br>5292 | 0.0462828 | 0.862522<br>533 | -1.15939 |
| 12875956 | PLAC8       | placenta-specific 8                                     | 0.00089<br>9949 | 0.0464335 | 1.357144<br>893 | 1.35714  |
| 12829383 | GNG3        | guanine nucleotide binding protein (G protein), gamma 3 | 0.00090<br>3666 | 0.0465251 | 0.726738<br>905 | -1.37601 |
| 12741898 | CPE         | carboxypeptidase E                                      | 0.00090<br>5212 | 0.0465251 | 0.905764<br>284 | -1.10404 |
| 12897969 | BAI3        | brain-specific angiogenesis inhibitor 3                 | 0.00090<br>769  | 0.0465627 | 1.217785<br>02  | 1.21778  |
| 12915157 |             |                                                         | 0.00091<br>4302 | 0.046758  | 0.823614<br>68  | -1.21416 |
| 12807710 | FAM59<br>A  | family with sequence similarity 59, member A            | 0.00091<br>5002 | 0.046758  | 1.113502<br>667 | 1.1135   |
| 12915155 |             |                                                         | 0.00091<br>9174 | 0.0468174 | 0.845129<br>939 | -1.18325 |
| 12788800 | MIR54<br>4A | microRNA mir-544a                                       | 0.00091<br>9675 | 0.0468174 | 0.616431<br>601 | -1.62224 |
| 12747065 | MSI1        | musashi homolog 1 (Drosophila)                          | 0.00092<br>6472 | 0.0469521 | 1.245961<br>527 | 1.24596  |

| Table 4 | 1.7 (cc | ontinued) |
|---------|---------|-----------|
|---------|---------|-----------|

| 12910177 | MID1I<br>P1   | MID1 interacting protein 1 (gastrulation specific G12 homolo    | 0.00093<br>1189 | 0.0469521 | 1.144915<br>374 | 1.14492  |
|----------|---------------|-----------------------------------------------------------------|-----------------|-----------|-----------------|----------|
| 12830490 | LOC51<br>2612 | histone H2B type 1-like                                         | 0.00093<br>122  | 0.0469521 | 1.153970<br>871 | 1.15397  |
| 12794684 | CSPG5         | chondroitin sulfate proteoglycan 5 (neuroglycan C)              | 0.00093<br>1634 | 0.0469521 | 1.378454<br>752 | 1.37846  |
| 12787836 | PELO          | pelota homolog (Drosophila)                                     | 0.00093<br>2739 | 0.0469521 | 0.887839<br>266 | -1.12633 |
| 12682282 | APOD          | apolipoprotein D                                                | 0.00093<br>4393 | 0.0469521 | 1.471865<br>295 | 1.47186  |
| 12836105 | GNG12         | guanine nucleotide binding protein (G protein), gamma 12        | 0.00093<br>4642 | 0.0469521 | 0.817795<br>224 | -1.2228  |
| 12834462 | PITPN<br>M1   | phosphatidylinositol transfer protein,<br>membrane-associated 1 | 0.00093<br>8923 | 0.0470785 | 0.827876<br>249 | -1.20791 |
| 12914259 |               |                                                                 | 0.00094<br>4074 | 0.0471625 | 0.793197<br>538 | -1.26072 |
| 12814004 | TMEM<br>204   | transmembrane protein 204                                       | 0.00094<br>4133 | 0.0471625 | 1.160667<br>755 | 1.16067  |
| 12679678 | PLCL2         | phospholipase C-like 2                                          | 0.00094<br>8677 | 0.0473009 | 1.155484<br>275 | 1.15548  |
| 12765359 | FAM10<br>4A   | family with sequence similarity 104, member A                   | 0.00095<br>2402 | 0.0473137 | 0.900495<br>272 | -1.1105  |
| 12691043 | TTLL5         | tubulin tyrosine ligase-like family, member 5                   | 0.00095<br>2481 | 0.0473137 | 1.133040<br>48  | 1.13304  |

| 12839347 | WLS         | wntless homolog (Drosophila)              | 0.00096<br>0055 | 0.0476013 | 1.161903<br>058 | 1.1619   |
|----------|-------------|-------------------------------------------|-----------------|-----------|-----------------|----------|
| 12761717 | MSI2        | musashi homolog 2 (Drosophila)            | 0.00096<br>8534 | 0.0479326 | 0.942871<br>421 | -1.06059 |
| 12729022 | MADD        | MAP-kinase activating death domain        | 0.00097<br>2831 | 0.0480561 | 0.872638<br>422 | -1.14595 |
| 12875914 | ABLI<br>M2  | actin binding LIM protein family member 2 | 0.00098<br>44   | 0.0485377 | 1.292654<br>362 | 1.29265  |
| 12700884 | CCDC<br>85A | coiled-coil domain containing 85A         | 0.00099<br>5188 | 0.048979  | 1.252536<br>386 | 1.25254  |

Table 4.8. List of selected genes involved in prolactin or POMC/ACTH expression expressed by pituitaries collected from steers grazing high- (HE, n = 8) or low- (LE, n = 8) endophyte-infected forages.

| Transcript | Gene   |                               |             | False Discovery | Ratio (HE   | Fold-Change |
|------------|--------|-------------------------------|-------------|-----------------|-------------|-------------|
| ID         | Symbol | Gene_assignment               | P-value     | Rate            | vs. LE)     | (HE vs. LE) |
| 12730735   | DRD2   | Dopamine receptor D2          | 5.55E-07    | 0.00148011      | 0.569216758 | -1.7568     |
| 12804415   | PRL    | Prolactin                     | 6.12E-06    | 0.00411905      | 0.814617496 | -1.22757    |
| 12785083   | PRLR   | Prolactin receptor            | 8.86E-05    | 0.0163351       | 0.762951095 | -1.3107     |
| 12683485   | POU1F1 | POU class 1 homeobox 1        | 0.00350045  | 0.0919041       | 0.769538585 | -1.29948    |
| 12829370   | GAL    | Galanin/GMAP prepropeptide    | 0.00857877  | 0.143484        | 0.745089858 | -1.34212    |
| 12896608   | VIP    | Vasoactive intestinal peptide | 0.00330761  | 0.0891485       | 0.568424044 | -1.75925    |
| 12698459   | POMC   | Proopiomelanocortin           | 0.000711262 | 0.0415162       | 0.797441807 | -1.25401    |
|            |        | Proprotein convertase         |             |                 |             |             |
| 12883237   | PCSK1  | subtilisin/kexin type 1       | 3.55E-06    | 0.00326731      | 0.580548154 | -1.72251    |

| 12766978 | GH1    | Growth Hormone 1                | 0.72773  | 0.91774  | 1.005162515 | 1.00516  |
|----------|--------|---------------------------------|----------|----------|-------------|----------|
|          |        | Thyroid stimulating hormone     |          |          |             |          |
| 12842660 | TSHB   | beta                            | 0.999161 | 0.999934 | 1.000078006 | 1.00008  |
| 12844718 | TBX19  | T-Box 19                        | 0.104204 | 0.458935 | 0.881026219 | -1.13504 |
|          | NEUROD |                                 |          |          |             |          |
| 12778522 | 1      | Neuronal differentiation 1      | 0.177765 | 0.56633  | 1.188588599 | 1.18859  |
|          |        | Nuclear receptor subfamily 3    |          |          |             |          |
| 12883226 | NR3C1  | group C member 1                | 0.112395 | 0.473489 | 1.137451971 | 1.13745  |
|          |        | Corticotropin releasing hormone |          |          |             |          |
| 12760857 | CRHR1  | receptor 1                      | 0.106139 | 0.461876 | 1.19399706  | 1.194    |
|          |        | Corticotropin releasing hormone |          |          |             |          |
| 12850526 | CRHR2  | receptor 2                      | 0.724778 | 0.916408 | 1.028423571 | 1.02842  |
|          |        |                                 |          |          |             |          |





© 2000-2017 QIAGEN. All rights reserved.

Figure 4.1. Canonical pathway network analysis. The red or green coloring represents down- or up-regulation, respectively, whereas no color indicates the molecule was added from the Ingenuity Knowledge Base (Ingenuity Pathway, Ingenuity Systems, Inc., Redwood City, CA). The intensity of the node color (light to dark) proportionally indicates the degree of differential expression. Straight lines represent binding only, whereas arrowheads symbolize action-on. A crosshead bar signifies inhibition. Labels of interaction or relationship: A = Activation, CP = Canonical Pathway, E = Expression (includes metabolism or synthesis for chemicals), I = Inhibition, LO = Localization. The number in parenthesis for each interaction indicates the number of published references in the Ingenuity Knowledge Base that support the particular interaction.

## ACTB:

<u>GAGCGGGAAATCGTCCGTGAC</u>ATCAAGGAGAAGCTCTGCTACGTGGCCCTGG ACTTCGAGCAGGAGATGGCCACCGCGGCCTCCAGCTCCTCCCTGGAGAAGAG CTACGAGCTTCCTGACGGGCAGGTCATCACCATCGGCAATGAGCGGTTCCGC TGCCCTGAGGCTCTCTTCCAGCCTTCCTTCCTGGGCATGGAATCCTGCGGCAT TCACGAAACTACCTTCAATTCCATCATGAAGTGTGACGTCGACATCC<u>GCAAG</u> <u>GACCTCTACACCAACAC</u>

## **PPIA:**

<u>GGCAAGTCCAATTATGGCGA</u>GAAATTTGATGATGAGAATTTCATTTTGAAGC ATACAGGTCCTGGCATCTTGTCCATGGCAAATGCTGGCCCCAACACAAATGG TTCCCAGTTTTTCATTTGCACTGCCAAGACTGAGTGGTTGGATGGCAAGCACG TGGTCTTTGGCAAGGTGAAAGAGGGCATGAATATTGTGGAAGCCATGGAGCG CTTTGGGTCC<u>AGGAATGGCAAGACCAGCAA</u>

## UBC:

TAGGGGTGGGTTAGAGTTCAAGGTTTTTGTTCTACCAGATGTTTTAGTAGTAA TCTGGAGGTAAGAAATGTCAAGAAAACATGGCCTTAATTAGAACTGTAGTGG GTGAGTATAAATAAAAAATTTGGAGGTTGTAGTTAGAATTCTCCATATGTAC ACTCATATGTAGATCTACTTATAAGCTACTGATTTTTAAAAGCACACGTTTGG GAGTTGTGCTTAAGAGTGGGAAAGTTTCTGG<u>AATACCAGCAGGGAGGT</u>

## DRD2:

<u>CGACCTTTCTCTGGGGCTTT</u>GGGGCTCTGCGGCGGGGCCAGTATCGAGGC TCGGAGGCCTGGTTTTCACAGGCCATGCCGGAGCTGGTGGGGGAGGAGTG GACAGTCACAGCCACCCAGGGCCCACACCTGAGAAGCCAGAGCTCTGGCCAC GACCCCAGGCAGTGTCAAGCCTGGGAGACCCGCGTACACCCCAGGTCTGGAT GGACC<u>CCAGAGAAGCAGAAGCCCAA</u>

## PRL:

## s-PRLR:

<u>GCCATCCTTTCTGCTGTCAT</u>CTGTTTGATTATGGTCTGGGCAGTGGCTTTGAG GGCTATAGCATGGTGACCTGCATCCTCCCACCAGTTCCAGGGCCAAAAATAA AAGGATTTGATGTTCATCTGCTGGAGA<u>TATCACAGCCTTCTCGCCT</u>

## *l-PRLR*:

<u>CCATCCTTTCTGCTGTCAT</u>CTGTTTGATTATGGTCTGGGCAGTGGCTTTGAAG GGCTATAGCATGGTGACCTGCATCCTCCCACCAGTTCCAGGGCCAAAAATAA AAGGATTTGAT<u>GTTCATCTGCTGGAGAAGGG</u>

## *POU1F1 (Pit-1)*:

## GAL:

<u>CACCGGTGAAGGAGAGAGAGAG</u>GCTGGACCCTGAACAGCGCTGGGTACCTTCT CGGACCACATGCGCTCGACAGCCACAGGTCATTTCAAGACAAGCATGGCCTC GCCGGCAAGCGGGAACTCGAGCCTGAAGACGAAGCCCGGCCAGGAAGCTTT GACAGACCACTGGCGGAGAACAACGTCGTGCGCACGATAATCGAGTTTCTGA CT<u>TTCCTGCATCTCAAAGACGCC</u>

## VIP:

<u>CTGGTTCAGCTGTAAGGGCA</u>AGAGAACTCGTGAAGACTGTCGACTCCCAGGA CTTCAACACCTGAGACAGCTCTCATAATCTCAACAGAAGCTCTCAAAGAAC ACTATTCGGCAAAGTCCTGCAATGGAAACAAGAAGTAAGCCCCAGCTTCTTG TGTTCCTGACGCTGTTCAGCGTGCTCTTCTCCCAGACCTTGGCGTGGCCTCTTT TTGGAGCACCTTCGGCTCTGAGGATGGGGGGACAGAATACCATTTGAAGGAGC GAATGAACCTGATCAAGTTTCGTTAAAAGCAGACACTGACATT<u>TTACAAGAT</u> <u>GCGCTGGCTGA</u>

## POMC:

## PCSK1:

<u>TGATCGTGTGATATGGGCGG</u>AACAACAGTATGAAAAAGAAAGAAGTAAACG TTCAGTTCTAAGAGACTCAGCACTAGATCTCTTCAATGATCCGATGTGGAATC AGCAGTGGTACTTGCAAGATACAAGGATGACTGCAACCCTGCCCAAGCTGGA TCTCCATGTGATACCTGTTTGGCAAAAAGGCATCACAGGCAAAGGTGTTGTT ATCACTGTATTGGATGATGGCTTGGAGTGGAATCACACAGACATCTATG<u>CCA</u> <u>ACTATGATCCGGAGGCC</u>

*GH1*:

<u>CCCAGCAGAAAANCAGACTGGA</u>GCTGCTTCGCATCTCaCTGCTCCTCATCCAG TCGTGGCTTGGGCCCCTGCAGTTCCTCAGCAGAGTCTTCACCAACAGCTTGGT GTTTGGCACCTCGGACCGTGTCTATGAGAAGCTGAAGGACCTGGAGGAAGGC ATCCTGGCCCTGATGCGGGAGCTGGAAGATGGCACCCCCCGGGCTGGGCAGA TCCTCAAGCAGACCTATGACAAATTTGACA<u>CAAACATGCNCAGTGACGA</u>

## TSHB:

TTTTTGGCCTTGCATGTGGACAAGCAATGTCTTTTTGTATtCcaACTGAGTATAT GATGCATGTCGAAAGGAAAGAATGTGCTTACTGCCTAACCATCAACACCACC GTCTGTGCTGGATATTGTATGACACGGGATGTCAACGGCAAGCTGTTTCTTCC CAAATATGCCCTGTCTCAGGATGTCTGTACATACAGAGACTTCATGTACAAG ACTGCAGAAATACCAGGATG<u>CCCACGCCTGGTTACTCCT</u>

## TBX19 (Tpit):

## **NEUROD1:**

## NR3C1 (Glucocorticoid receptor):

AAAGAGCAGTGGGAGGACAGCACAATTATCTTTGTGCTGGAAGAAATGATTG TATCATTGATAAAATTCGAAGAAAAAACTGCCCAGCATGCCGCTATAGAAAA TGCCTTCAAGCTGGAATGAACCTGGAAGCTCGAAAAACAAAGAAAAAGATA AAAGGAATTCAGCAGGCCACTACGAGGAGTCTCGCANAGAAAACATCTGAAA ATCCTGCTAACAAAACAATAGTTCCTGCAACATTACC<u>ACAACTCCCCGACGC</u> <u>T</u>

## CRHR1:

NNAGCAAGGNTCACTACCACATCGCTGTCATCATCAACTACCTAGGCCACTG CATCTCCCTGGCGCCCTCCTGGTGGCCTTTGTCCTCTTTCTGCGGCTCAGGA GCATCCGGTGCCTGAGAAACATCATCCACTGGAACCTCATCTCAGCCTTCATC CTGCGCAATGCCACGTGGTTCGTGGTCCAGCTCACCATGAGCCCCGAAGTCC ATCAGAGCAACGTGGGCTGGTGCAGGCTGGTGACAGCCGCCTACAACTACTT CCACGTGACCAACTTCTTCTGGATGTTCGGTGAGGGCTGCTACCTGCACACGG CCATCGT<u>GCTCACGTCTACCACAGACC</u> CRHR2:

<u>GCTGGTTTTGGAGGCTG</u>GGGGCTGCCCCTGCACCCCGAGGGTCCCTACTCCTA CTGCAACACGACCTTGGACCAGATCGGGACGTGCTGGCCCCGGAGCTCGGCC GGAGCCCTGGTGGAGAGGCCGTGCCCCGAGTACTTCAACGGTGTCAAGTACA ACACGACCCGGAATGCCTACCGAGAGTGCTTGGAGAATGGGACGTGGGCC<u>TC</u> <u>GCGGATCAACTACTCACA</u>

Figure 4.2. The sequences of the real-time RT-PCR products (5' to 3' orientation).

Within a sequence, underlined nucleotides indicate the forward and reverse primer

positions.



Figure 4.3. Principle component analysis of microarray transcriptome analysis of 16 pituitary samples from steers grazing high- (HE, n = 8, red dots) or low- (LE, n = 8, blue dots) endophyte-infected forages. The red and blue dots represent linear combinations of the relative expression data, including expression values and variances, of the 26,675 gene transcripts in each Bovine GeneChip.



Figure 4.4. Hierarchical cluster analysis of the 542 "focus" genes selected as differentially expressed (ANOVA P-values of < 0.001 and false discovery rates of  $\leq$  5%) by the pituitary of steers grazing high- (HE, n = 8) vs. low- (LE, n = 8) endophyte-infected forages. As indicated by the legend color box, white color in the middle represents the mean value, 0; red color represents gene expression levels above the mean expression; and blue color denotes expression below the mean. The intensity of the color reflects the relative intensity of the fold change.

## CHAPTER 5. Forms of Selenium in Vitamin-mineral Mixes Differentially Affect the Expression of Genes Responsible for Prolactin, ACTH, and α-MSH Synthesis and Mitochondrial Dysfunction in Pituitaries of Steers Grazing Endophyte-infected Tall Fescue<sup>1</sup>

#### 5.1 Abstract

The goal of this study was to test the hypothesis that sodium selenite (inorganic Se, ISe), SEL-PLEX (organic forms of Se, OSe), vs. a 1:1 blend (MIX) of ISe and OSe in a basal vitamin-mineral (VM) mix would differentially alter pituitary transcriptome profiles in growing beef steers grazing an endophyte-infected tall fescue (E+) pasture. Predominately Angus steers (BW =  $183 \pm 34$  kg) were randomly selected from fallcalving cows grazing E+ pasture and consuming VM mixes that contained 35 ppm Se as ISe, OSe, or MIX forms. Steers were weaned, depleted of Se for 98 d, and subjected to summer-long common grazing of a 10.1 ha E+ pasture containing 0.51 ppm ergot alkaloids. Steers were assigned (n = 8 per treatment) to the same Se-form treatments on which they were raised. Selenium treatments were administered by daily top-dressing 85 g of VM mix onto 0.23 kg soyhulls, using in-pasture Calan gates. As previously reported, serum prolactin was greater for MIX (52%) and OSe (59%) steers vs. ISe. Pituitaries were collected at slaughter and changes in global and selected mRNA expression patterns determined by microarray and real-time reverse transcription PCR analyses, respectively. The effects of Se treatment on relative gene expression were subjected to one-way ANOVA. The form of Se affected the expression of 542 annotated genes (P < 0.005). Integrated Pathway Analysis found a canonical pathway network between prolactin and pro-opiomelanocortin (POMC)/ACTH/  $\alpha$ -MSH synthesis-related proteins and that

mitochondrial dysfunction was a top-affected canonical pathway. Targeted reverse transcription-PCR analysis found that the relative abundance of mRNA encoding prolactin and POMC/ACTH/  $\alpha$ -MSH synthesis-related proteins was affected (*P* < 0.05) by the form of Se, as were (*P* ≤ 0.05) mitochondrial dysfunction-related proteins (CYB5A, FURIN, GPX4, PSENEN). OSe steers appeared to have a greater prolactin synthesis capacity (more PRL mRNA) vs. ISe steers through decreased dopamine type two receptor signaling (more DRD2 mRNA), whereas MIX steers had a greater prolactin synthesis capacity (more PRL mRNA) and release potential by increasing thyrotropin-releasing hormone concentrations (less TRH receptor mRNA) than ISe steers. OSe steers also had a greater ACTH and  $\alpha$ -MSH synthesis potential (more POMC, PCSK2, CPE, and PAM mRNA) than ISe steers. We conclude that form of Se in VM mixes altered expression of genes responsible for prolactin and POMC/ACTH/ $\alpha$ -MSH synthesis, and mitochondrial function, in pituitaries of growing beef steers subjected to summer-long grazing an E+ pasture.

<sup>1</sup>Published by Journal of animal science, 97: 631-643. doi: 10.1093/jas/sky438

**KEYWORDS:** ACTH, cattle, fescue toxicosis, mitochondria, prolactin, selenium supplementation

#### **5.2 Introduction**

Two simultaneous challenges faced by many south-eastern United States cattle producers are fescue toxicosis and Se deficiency. Fescue toxicosis results from consumption of ergot alkaloids found in *Epichloe coenophialum*-infected tall fescue (*Lolium arundinaceum*) pastures and is a clinical condition consisting of impaired metabolic, vascular, growth, and reproductive processes in cattle (Strickland et al., 2011). Reduced serum prolactin is a recognized marker of fescue toxicosis (Goetsch et al., 1987; Davenport et al., 1993). Selenium-poor soils in this same geographic region result in Sedeficient forages necessitating the need to provide supplemental Se (Dargatz and Ross, 1996). Inorganic Se (ISe, sodium selenite) is the most common form of Se supplemented in cattle diets, whereas organic forms of Se (OSe) derived from specially cultivated *Saccharomyces cerevisiae* also are available and approved for use in beef cattle diets.

Serendipitously, it was found that expression of several genes downregulated in the liver (Liao et al., 2015) and pituitary (Li et al., 2017) of steers grazing high vs. low endophyte-infected forages were upregulated in cattle by consumption of a 1:1 blend of ISe:OSe (MIX) in vitamin-mineral (VM) mixes (Matthews and Bridges, 2014; Matthews et al., 2014). Moreover, it was determined subsequently that steers subjected to summerlong grazing of endophyte-infected pasture and supplemented (3 mg/d) with MIX or OSe forms of Se had greater serum prolactin concentrations than ISe-supplemented steers (Jia et al., 2018). The first goal of the present study was to test the specific hypothesis that the amount of prolactin mRNA would be greater in the pituitary tissue of the same MIX and OSe vs. ISe steers, whereas the second goal was to test the general hypothesis that the form of supplemental Se would alter pituitary transcriptome profiles.

#### **5.3 Materials and methods**

All experimental procedures were approved by the University of Kentucky Institutional Animal Care and Use Committee.

#### 5.3.1 Animal model

The animal management regimen and model for steers that yielded the pituitary tissue of the present experiment have been reported (Jia et al., 2018). Briefly, twenty-four predominantly Angus beef steers (BW,  $182.6 \pm 33.9$  kg; age,  $165.5 \pm 14.2$  d) were randomly selected from three Se phenotypic herds (8 steers/herd), which were managed under a typical forage-based (predominately endophyte-infected tall fescue), fall-calving, cow-calf production regimen. The three Se phenotypic herds had free access to VM premixes (UK Beef IRM Cow-Calf Mineral, Burkmann Feeds, Danville, KY) containing 35 ppm of inorganic Se (ISe, sodium selenite, Prince Se Concentrate; Prince Agri Products, Inc., Quincy, IL, USA), organic Se (OSe, SEL-PLEX, Alltech Inc., Nicholasville, KY), and 1:1 mix of ISe:OSe (MIX). After depletion of Se and adaptation to consuming VM premixes from in-pasture Calan gate feeders, twenty-four steers with three Se phenotypes (n = 8) started (d 0) summer-long grazing of a 10.1-ha predominately endophyte-infected tall fescue-mixed pasture (0.51  $\mu$ g/g total ergot alkaloids) (Jia et al., 2018). Three Se form treatments were administered using in-pasture Calan gate feeders to steers with the same Se phenotypes. All three Se form treatments contained a common basal VM premix that also contained 35 ppm Se as either ISe, OSe, or MIX. After the common 86-d grazing period on pastures, steers were slaughtered in the University of Kentucky Meat Laboratory (Lexington, KY) over a 26-d period.

Throughout the slaughter period, steers continued on their respective Se treatment. Details of the slaughter period and process have been reported (Jia et al., 2018).

#### **5.3.2 Sample collection and RNA preparation**

Steers were stunned by captive bolt pistol and exsanguinated. Within 10 to 12 min of death, the whole pituitary was collected from each animal, placed in a foil pack, flashfrozen in liquid nitrogen, and stored at -80°C. Four pituitary glands (two ISe, one OSe, one MIX) were not used in the microarray analysis because of tissue damage incurred during the collection process. As a result, six pituitaries for ISe and seven pituitaries for both OSe and MIX treatment groups were subjected to RNA analyses.

Total RNA was extracted from the whole frozen pituitary tissue and its purity and integrity determined as described (Li et al., 2017). Extracted RNA samples had an average concentration of 706 ng/µl and were of high purity with 260:280 nm absorbance ratios ranging from 1.85 to 2.05 and 260:230 nm absorbance ratios ranging from 2.09 to 2.50. All RNA samples had 28S:18S rRNA absorbance ratios greater than 1.8 and RNA integrity numbers greater than 8.9.

#### **5.3.3 Microarray analysis**

The GeneChip Bovine Gene 1.0 ST Array (Affymetrix, Inc., Santa Clara, CA) was used to investigate the effect of Se treatment on bovine pituitary gene expression profiles. Microarray analysis was conducted according to the manufacturer's standard protocol at the University of Kentucky Microarray Core Facility as described (Li et al., 2017), using 3 µg of RNA per sample (chip). All the GeneChip transcripts were annotated using the NetAffx annotation database for gene expression on Bovine GeneChip Array ST 1.0, provided by the manufacturer

(http://www.affymetrix.com/analysis/index.affx, last accessed in January 2018, annotation file last updated in May 2016). Quality control of the microarray hybridization and data presentation was performed by MA plot on all the gene expression values and by box plot on the control probe sets on the Affymetrix chips (data not shown). Pearson (Linear) Correlation generated the similarity matrix (last accessed in January 2018, PGS) 7.17.0918). The average correlation between any pair of the 20 GeneChips was 0.96 (Supplementary Figure S1), and all GeneChips were further analyzed. Principal component analysis (PCA) was performed to elucidate the quality of the microarray hybridization and visualize the general data variation among the chips (Partek, 2009). To assess treatment effects (ISe vs. OSe vs. MIX) on the relative expression of the pituitary gene transcripts, qualified microarray data were subjected to one-way ANOVA using the same PGS software. To achieve a greater degree of confidence (i.e., a more conservative approach), transcripts showing treatment effects at the significance level of P < 0.005(false discovery rate of  $\leq 18.8\%$ ) were defined as differentially expressed. These differentially expressed genes/gene transcripts (**DEG**) were subjected to hierarchical clustering analysis using PGS software and to canonical, functional, and network pathway analyses using the Core Analysis program of Ingenuity Pathway Analysis online software (IPA, Build version 470319M, Content version 43605602; http://www.ingenuity.com [accessed in March, 2018]; Ingenuity Systems, Inc., Redwood City, CA).

All the microarray \*.cel files collected by Command Console plus the GC Robust Multichip Averaging-corrected data processed by PGS software of this manuscript have been deposited in the National Center for Biotechnology Information's Gene Expression Omnibus (**GEO**; http://www.ncbi.nlm.nih.gov/geo/) [released May 25, 2018]), are compliant with the minimum information about a microarray experiment (**MIAME**) guidelines (Brazma et al., 2001), and are accessible through GEO series accession number GSE114893.

#### **5.3.4 Real-time reverse transcription (RT)-PCR analysis**

Primer sets for genes selected for real-time RT-PCR analysis (Supplementary Table S1) were designed using the NCBI Pick Primers online program against RefSeq sequences (accessed March to November 2017), except for s-PRLR and l-PRLR, which have been reported (Thompson et al., 2011). Real-time RT-PCR was performed as described (Li et al., 2017) using 1  $\mu$ g of RNA used for each reverse transcription reaction. Gene expression was analyzed by the 2<sup>- $\Delta\Delta$ CT</sup> method (Livak and Schmittgen, 2001).

The resulting real-time RT-PCR products were purified using a PureLink Quick Gel Extraction Kit (Invitrogen) and sequenced at Eurofins Scientific (Eurofins, Louisville, KY). Sequences were compared with the corresponding RefSeq mRNA sequences used as the templates for primer set design. The sequences of the primers and the resulting sequence-validated real-time RT-PCR reaction amplicons for selected DEG and the endogenous control genes RPS11, TFRC, and UBC are presented in Supplementary Table S1 and Supplementary Figure S2, respectively. All sequenced amplicons had at least 98% identity with their template sequences. Three constitutively expressed genes (RPS11, TFRC, and UBC) were used and their CT values were not affected (P = 0.59, 0.51, 0.66; respectively) by Se-form treatments. Thus, the geometric mean expression of RPS11, TFRC, and UBC was used to normalize the relative

quantities of the selected DEG mRNA expression, and all RT-PCR reactions were conducted in triplicate.

#### **5.3.5 Statistical analysis**

Steers were the experimental units. To test for Se treatment effects on the relative expression of the pituitary gene transcripts, microarray hybridization data were subjected to one-way ANOVA using the PGS software as described in the "Microarray Analysis" section above. To determine the effects of treatment, the relative expression levels of selected DEG analyzed by real-time RT-PCR were subjected to one-way ANOVA using the GLM procedure of the SAS statistical software package (version 9.4; SAS Inst., Inc., Cary, NC), with the Se treatment as the fixed effect. For these data, significance was declared when  $P \le 0.05$ , and a tendency to differ was declared when 0.10 > P > 0.05. When P < 0.10, means were separated using Fisher's LSD procedure.

#### **5.4 Results**

#### **5.4.1 Differentially expressed genes**

Principal Component Analysis of all microarray data was performed to examine the correlation and variation among the chips, revealing a total variance of 25.53% (Supplementary Figure S3). The first principal component (PC #1, x-axis) explained a median degree of variance (10%), whereas PC #2 (y-axis) and PC #3 (z-axis) explained low degrees of variance (9.1% and 6.43%, respectively). Overall, PCA clearly demonstrated that the chips within each treatment group were clustered closely together.

Individual ANOVA was conducted to identify altered expression of RNA transcripts in the pituitary tissue across Se form treatments. At the P < 0.01 level and a false discovery rate of < 21.5%, 948 annotated gene transcripts were identified. To refine

this analysis, 542 genes with the criteria of a false discovery rate of less than 18.8% and P < 0.005 were considered to be differentially expressed (Supplementary Table S2).

Hierarchical cluster analysis of the 542 DEG revealed all steers segregated within their treatment group, except for one ISe steer, which displayed a DEG pattern similar to OSe and MIX steer groups (Supplementary Figure S4).

#### 5.4.2 Pathways and gene network analyses

To determine the physiological significance of Se treatment-induced DEG (Supplementary Table S2), bioinformatic analysis of canonical, functional, and network pathway analyses were performed. Canonical pathway analysis (Table 1) revealed (P < 0.005) that the top six pathways were ephrin receptor signaling (12 genes), Th1 and Th2 activation pathway (11 genes), Th1 pathway (nine genes), breast cancer regulation by stathmin1 (11 genes), ephrin B signaling (six genes), and mitochondrial dysfunction (10 genes).

To gain insight into potentially interacting canonical pathways, canonical pathway network analysis (Figure 1) revealed one network that included four DEG (CPE, CSHL1, TGFB1, TRH) and seven other affected (P < 0.10) genes (DRD2, PCSK1, PCSK2, POMC, PRL, VEGFA, TRHR), all of which are related to either prolactin or POMC/ACTH/ $\alpha$ -MSH synthesis or release.

#### 5.4.3 Real-time RT-PCR analysis of selected mRNA

Real-time RT-PCR analysis was used to corroborate the microarray analysisidentified DEG responsible for prolactin synthesis and secretion and POMC/ACTH production in Se treatment steers (Table 2). For the prolactin receptor (PRLR), unlike the microarray analysis, the RT-PCR analysis was designed to delineate the long (l-PRLR) and short (s-PRLR) forms. With the exception of VEGFA, the ANOVA *P*-values for Se treatment effect were consistent between the two analytical techniques. For VEGFA, microarray analysis indicated that MIX steer expression of VEGFA tended to be greater (P = 0.093), whereas RT-PCR analysis found no difference (P = 0.250). With regard to fold-changes, the direction of Se treatment-induced change was the same between microarray and RT-PCR analyses while the magnitude of the determined fold-changes typically was greater by RT-PCR analysis (Table 2).

The relative expression of the nine genes that constituted the Mitochondrial Dysfunction pathway was analyzed by RT-PCR to corroborate the microarray analysis (Table 3). The trend of the numeric values of the two analyses was consistent for eight of nine evaluated genes, and statistically different for five of nine genes. Specifically, both analyses revealed that the content of CYB5A, FURIN, GPX4, and PSENEN mRNA was greater ( $P \le 0.052$ ), or tended (P = 0.096) to be greater (COX7A2), in OSe vs. ISe steer pituitaries. In contrast, the contents of ATP5G1, LRRK2, NDUFA2, and SDHB mRNA did not differ (P > 0.130), as assessed by RT-PCR analysis.

Because it has been reported that mitochondrial dysfunction is highly correlated to increased oxidative stress (Prabakaran et al., 2004; Calabrese et al., 2005; Lin and Beal, 2006), to evaluate the antioxidant response to oxidative stress, even though they were not identified as DEG by microarray analysis (Supplementary Table 2), the content of catalase (CAT) and superoxide dismutase 1 (SOD1) mRNA was evaluated by RT-PCR (Table 3). The amount of SOD1 in OSe pituitaries was greater (P = 0.018) than in ISe steers, whereas the amount of CAT mRNA did not differ (P = 0.138).

#### **5.5 Discussion**

#### 5.5.1 Animal model

The reduction of serum prolactin by cattle consuming endophyte-infected tall fescue is a physiologic hallmark of fescue toxicosis. For example, the serum prolactin concentrations in growing beef steers subjected to summer-long grazing of high endophyte-infected tall fescue were decreased 85 to 90% relative to steers grazing low endophyte infected forage (Brown et al., 2009; Jackson et al., 2015). Unlike the welldescribed suppression of serum prolactin in cattle consuming ergot alkaloids, the potential effect of supplemental Se form on serum prolactin and other indicators of fescue toxicosis has not been well-characterized. For reasons (Matthews and Bridges, 2014; Matthews et al., 2014) outlined in the Introduction, we conducted a trial comparing the potential ability of the form of Se in VM mixes (35 ppm) to ameliorate some of the characteristic effects of fescue toxicosis on growing beef steers. The results (Jia et al., 2018) showed that OSe and MIX steers subjected to grazing of endophyte-infected pasture had 59% (P < 0.03) and 52% (P < 0.05) more serum prolactin than ISe steers, respectively. Using the pituitaries from the same animals, the overall goal of the present study was to determine the effect of the form of supplemental Se in VM mix on expression of pituitary targeted mRNA content transcriptome profiles to gain insight into mechanisms responsible for Se-form specific concentrations of serum prolactin.

#### 5.5.2 The content of prolactin mRNA is greater in OSe and MIX steer pituitaries

The first goal of the present study was to test the specific hypothesis that the amount of prolactin mRNA would be greater in the pituitary tissue of the same (Jia et al., 2018) MIX and OSe vs. ISe steers. As shown in Table 2, the content of prolactin mRNA

transcripts did not differ between MIX and ISe steers according to microarray analysis, whereas RT-PCR analysis found that MIX had 100% greater content of prolactin mRNA than ISe steers. In addition, OSe steers had 18% (microarray analysis) and 250% (RT-PCR analysis) greater content of prolactin mRNA than ISe steers (Table 2). Thus, we accept the original hypothesis that the amount of prolactin mRNA would be greater in the pituitary tissue of MIX and OSe vs. ISe steers.

To gain insight into the mechanisms by which MIX and OSe steers had greater amounts of serum prolactin, the second goal of this experiment was to identify candidate molecules and signaling pathways in pituitary tissue known to be associated with prolactin synthesis (Figure 2) using microarray and RT-PCR transcript analyses (Table 2).

#### 5.5.3 OSe form of Se supplementation had greater prolactin synthesis capacity

Dopamine is one of the most influential regulators of prolactin secretion. Activation of the dopamine type two receptor (DRD2) signaling by dopamine suppresses prolactin gene (PRL) expression via the inhibition of adenylyl cyclase and prolactin exocytosis through modification of several potassium and calcium channels (Fitzgerald and Dinan, 2008; Figure 2). Ergot alkaloids contained in endophyte-infected tall fescue resemble dopamine and trigger DRD2 signaling (Larson et al., 1999), resulting in decreased PRL transcription and serum prolactin concentrations (Strickland et al., 2011). In a previous summer-long grazing trial, the abundance of DRD2 mRNA was reduced in the pituitaries of steers that had decreased serum PRL as a result of grazing high versus low endophyte-infected tall fescue (Li et al., 2017). Consistent with this observation, consumption of endophyte-infected fescue seed reduced DRD2 mRNA and density in rat

brain (Larson et al., 1994). Moreover, DRD2 mRNA and protein levels were downregulated under constitutive hyperdopaminergia (Fauchey et al., 2000). Hence, agonists such as dopamine and ergot alkaloids negatively regulate DRD2 mRNA expression. Because OSe steers had more serum prolactin (Jia et al., 2018) and a greater pituitary content of PRL mRNA (Table 2) than ISe steers, we expected to find a greater pituitary DRD2 mRNA content in OSe steers. As expected, OSe steers did have greater pituitary DRD2 mRNA content than did ISe steers. Thus, it is possible that the serum prolactin difference between OSe and ISe steers (OSe > ISe) was caused by differential activation of DRD2 signaling (ISe > OSe) which was derived from different dopamine/ergot alkaloids concentrations (ISe > OSe) induced by different Se forms. This possibility also is consistent with the observation that consumption of ISe (selenite), but not OSe, resulted in increased dopamine concentrations in murine striatum (Tsunoda et al., 2000), where DRD2 mRNA is down-regulated by persistent stimulation of DRD2 (Chen et al., 1993).

Pituitary transcription factor Pit-1 (encoded by POU1F1) plays a pivotal role in PRL expression by binding to specific sites of promoter elements in the PRL gene and stimulating expression of prolactin mRNA (Fox et al., 1990). However, Pit-1 mRNA was not affected by Se treatment (Table 2, Figure 2). One explanation for the finding of no difference of Pit-1 mRNA but greater pituitary PRL mRNA in OSe vs. ISe steers could be that although Pit-1 is indispensable for prolactin production, an increase in Pit-1 mRNA is not necessary to promote PRL gene expression. For example, in estrogentreated rats, lactotroph proliferation and enhanced expression of PRL mRNA but not an increase in Pit-1 mRNA have been observed (Tsukahara et al., 1994).

During DRD2-dependent inhibition of PRL gene expression, rapid histone deacetylation of prolactin promoter occurs after activation of DRD2 signaling, followed by inhibition of ERK1/2 activity, and an unchanged association between Pit-1 and the prolactin promoter (Liu et al., 2005). Hence, a Pit-1-independent, epigenetic mechanism of DRD2 signaling also may be responsible for the difference between prolactin mRNA expression levels of OSe and ISe steers.

#### 5.5.4 MIX form increased prolactin synthesis and release potential

As found for OSe steers, MIX steers had a greater content of pituitary PRL mRNA (Table 2) and a greater serum prolactin concentration than ISe throughout the grazing period (Jia et al., 2018). However, in contrast to OSe steers, DRD2 mRNA content in MIX steers did not differ from ISe steers (Table 2), indicating the mechanisms by which both MIX and OSe steers had greater content of prolactin mRNA and serum prolactin levels likely differed. We have examined several other genes associated with prolactin secretion, and among them is thyrotropin-releasing hormone (TRH) the principle prolactin secretagogue, which has been reported to stimulate prolactin production in both rat pituitary cells and cow pituitary tissue (Kelly et al., 1973). TRH induces prolactin mRNA levels via activation of ERK signaling pathway with synergistic increase in intracellular Ca<sup>2+</sup> (White and Bancroft, 1983; Kanasaki et al., 2002) (Figure 2). TRH also was found to induce prolactin release from lactotrophs in a dose-dependent manner (Sheward et al., 1983; Lamberts and Macleod, 1990; Freeman et al., 2000). The way TRH stimulates prolactin release is via stimulation of Ca<sup>2+</sup>-dependent exocytosis in lactotrophs (Sikdar et al., 1989; Christian et al., 2007). It is known that TRHR mRNA expression is negatively regulated by TRH in rat pituitary (Oron et al., 1987; Narayanan

et al., 1992). Hence, we tested mRNA expression of TRH receptors (TRHR) which have been detected in rat lactotrophs (Hinkle and Tashjian, 1973) (Figure 2). Expression of TRHR decreased in MIX vs. ISe steers according to both microarray and real-time RT-PCR analyses (Table 2). Hence, the greater serum prolactin concentrations of MIX vs. ISe steers might be due to greater TRH concentrations available in pituitaries of MIX vs. ISe steers, which may have stimulated more prolactin synthesis and release in MIX vs. ISe steers.

Transforming growth factor- $\beta$ 1 (TGFB1) has been shown present in lactotrophs and is capable of inhibiting prolactin release and lactotroph proliferation (Minami and Sarkar, 1997). Selenite was reported to inhibit the expression of TGFB1 induced by LPS (Pei et al., 2010). In agreement with the above study, we found that both OSe and MIX steers had more TGFB1 mRNA than ISe steers (Table 2). This finding is contradictive to the observation that serum prolactin levels were greater in OSe and MIX vs. ISe steers. One explanation to the contradiction is that the low level of TGFB1 expression limited its inhibitory potential over prolactin release, as the magnitude of TGFB1 mRNA expression appears to be lower than other genes in this network (e.g. 64-fold less than POU1F1 mRNA based on raw CT value, data not shown).

As mentioned above, we conducted RT-PCR analysis of several other genes with regard to prolactin synthesis and release, including VIP, GAL, GHRHR, VEGFA, and CSH2 based on IPA network analysis (Figure 1) and a previous study (Li et al., 2017). We also evaluated PRLR mRNA expression of both short-form and long form. However, neither microarray nor RT-PCR showed mRNA expression of these genes above affected by Se treatment.

Besides synthesis and release, metabolic clearance of prolactin may contribute to the differences in serum prolactin concentrations. That is, the kidney has been reported to metabolize two-thirds of circulating prolactin (Emmanouel et al., 1981). Hence, future studies need to examine potential Se treatment-induced differences in prolactin clearance using the same steer model.

# 5.5.5 OSe form of Se supplementation increased POMC/ACTH/α-MSH synthesis potential

Pro-opiomelanocortin (POMC) is a precursor polypeptide encoded by gene POMC and is synthesized mainly by corticotrophs of the anterior pituitary. Adrenocorticotropic hormone and alpha-melanocyte-stimulating hormone ( $\alpha$ -MSH) are two important hormones derived from POMC and secreted by the anterior pituitary and intermediate lobe of the pituitary, respectively (Figure 3). Adrenocorticotropic hormone induces the adrenal cortex to secrete glucocorticoids (Schwyzer, 1977), whereas  $\alpha$ -MSH affects feeding behavior, energy homeostasis, and inflammation (Gantz and Fong, 2003). Previous research found that the liver tissue of beef steers grazing high vs. low endophyte-infected tall fescue and consuming ad libitum amounts of ISe-containing VM mix had increased amounts of mitochondrial mass, capacity for ATP synthesis, and amino acid-derived gluconeogenesis (Brown et al., 2009; Liao et al., 2015). These processes may have been coordinated through the glucocorticoid receptor-mediated pathway (Liao et al., 2015). A subsequent gene expression study of the pituitaries from these same steers (Li et al., 2017) found that the potential for pituitary POMC/ACTH synthesis was reduced in steers consuming forage with the high amounts of endophyteinfected tall fescue. This understanding, plus the finding that selenite inhibited
glucocorticoid receptor hormone binding (Tashima et al., 1989), led to the general hypothesis of the present study that the form of supplemental Se would differentially affect mRNA content of pituitary genes related to POMC/ACTH synthesis in steers grazing endophyte-infected tall fescue.

In pituitary corticotrophs, proprotein convertase 1 (encoded by the PCSK1 gene) is expressed and cleaves POMC, producing ACTH<sub>1-39</sub>,  $\beta$ -endorphin,  $\beta$ -lipotrophin, amino-terminal peptide, and joining peptide (Millington, 2007). That the abundance of both POMC and PCSK1 mRNA was increased in pituitaries of OSe vs. ISe steers (Table 2) indicates that OSe steers possessed a greater POMC/ACTH synthesis capacity in OSe steers. To complete the assessment of Se treatment effects on the POMC/ACTH/ $\alpha$ -MSH synthesis pathway (Figures 1 and 3) the expression of PCSK2, CPE, and PAM was evaluated (Table 2). Collectively, the results indicate that OSe steers possess greater POMC, ACTH, and  $\alpha$ -MSH synthesis potential than MIX steers. As for prolactin, the exact physiological consequences of Se form-altered expression of ACTH and  $\alpha$ -MSH remains to be determined.

## 5.5.6 Functional analysis of the genes involved in mitochondrial dysfunction and antioxidant defense

As noted above, gene expression profiling indicated that the liver of steers grazing high vs. low endophyte-infected tall fescue and consuming ISe as a Se source had increased mitochondrial mass and respiratory chain mediated ATP synthetic capacity (Liao et al., 2015). The role that Se plays in preserving mitochondrial function is controversial. Whereas Se induces apoptosis associated with ROS accumulation and

163

mitochondrial dysfunction (Guan et al., 2009), and selenite is detrimental to mitochondrial membrane potential by induction of mitochondrial permeability transition through thiol-oxidation (Kim et al., 2002), Se also is known to attenuate apoptosis (of at least damaged spinal cord tissue) through protection of mitochondrial function (Yeo et al., 2008) and shows a protective effect on cadmium-induced apoptosis in mice kidney (Wang et al., 2013). Because canonical pathway analysis of pituitary DEG identified "mitochondrial dysfunction" as one of the top pathways affected by Se treatment (Table 1), expression of DEG involved in mitochondrial dysfunction pathways was further examined by RT-PCR analysis, along with two genes (SOD1 and CAT) encoding key antioxidant enzymes.

Although microarray analysis showed that OSe steers expressed more NDUFA2, COX7A2, SDHB, and ATP5G1 mRNA content than ISe steers, RT-PCR analysis (Table 3) corroborated increased expression of NDUFA2 and COX7A2. Collectively, these data indicate that ISe had a reduced electron transport chain capacity than OSe steers, thereby likely less ATP generation and more damaging ROS in mitochondria (Bosetti et al., 2002; Musatov and Robinson, 2012; Saito et al., 2016;). In terms of mitigating oxidative stress, genes involved with control of ROS production (LRRK2, CYB5A, PSNENEN) and antioxidant production and use (FURIN, CAT, SOD1, GPx4) were evaluated. OSe pituitaries expressed greater levels of SOD1, GPx4, and PSENEN than ISe steers and CYB5A and FURIN than ISe and MIX steers. Collectively, these findings strongly indicate that the pituitaries of OSe steers had a greater capacity to manage oxidative stress vs. ISe steers (Mates et al., 1999; Zangar et al., 2004; Heo et al., 2010).

164

In summary, consumption of 3 mg Se/d in VM mixes as OSe, MIX, or ISe differentially affected the expression of genes responsible for the synthesis or release of prolactin and POMC/ACTH/ $\alpha$ -MSH, and for mitochondrial function, in the pituitaries of growing beef steers grazing an endophyte-infected tall fescue pasture. Consumption of OSe resulted in a greater prolactin synthesis capacity, whereas consumption of MIX resulted in increased prolactin synthesis and release potential, both of which resulted in greater serum prolactin concentrations in OSe and MIX steers vs. ISe steers, respectively. In addition, consumption of OSe resulted in greater POMC/ACTH/ $\alpha$ -MSH synthesis potential than consumption of ISe and MIX forms of Se, and a better capacity to manage against mitochondrial dysfunction and oxidative stress, than consumption of ISe. The implications from these findings are that the inclusion of an organic form of Se in freechoice vitamin-mineral mixes can partially ameliorate the negative impact of fescue toxicosis on growing beef steers by restoration of both prolactin and POMC/ACTH synthesis capacities. In addition, because the role of prolactin is best understood in regulating lactation (Lamberts and Macleod, 1990; Freeman et al., 2000), it may be of especial commercial importance to evaluate the potential effect of MIX and OSe forms of Se in VM mixes to ameliorate the negative effects of grazing endophyte-infected tall fescue in lactating/sucking cow/calf pairs.

Table 5.1. Top six IPA-identified canonical pathways of genes differentially expressed by pituitary tissue of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).

| Canonical<br>Pathway      | Number<br>1 | Gene Symbol                             | Ratio <sup>2</sup> | -log ( <i>P</i> -<br>value) |
|---------------------------|-------------|-----------------------------------------|--------------------|-----------------------------|
| Ephrin                    | 12          | ROCK2,EPHB6,ITGA3,SDC2,RACK             | 0.068              | 3.57                        |
| Receptor                  |             | I,LIMK2,EFNB3,STAT3,RAPIA,EP            |                    |                             |
| Signaling                 |             | HA2,GRINA,LIMK1                         |                    |                             |
| Th1 and Th2<br>Activation | 11          | PSENEN,TGFB1,IL1RL1,LTA,IL6R,<br>mir-   | 0.060              | 2.83                        |
| Pathway                   |             | 155,VAV1,IL27RA,STAT3,IFNAR1,IL         |                    |                             |
|                           |             | 18R1                                    |                    |                             |
| Th1 Pathway               | 9           | PSENEN,LTA,IL6R,mir-                    | 0.066              | 2.74                        |
|                           |             | 155,VAV1,IL2/RA,STAT3,IFNAR1,IL<br>18R1 |                    |                             |
| Breast Cancer             | 11          | ROCK2,TUBB4B,PPP2R3A,PPP1R1             | 0.053              | 2.43                        |
| Regulation by             |             | 4D,PRKCD,RACK1,ARHGEF1,LIM              |                    |                             |
| Stathmin1                 |             | K2,ARHGEF3,PPP1CA,LIMK1                 |                    |                             |
| Ephrin B                  | 6           | ROCK2,EPHB6,RACK1,VAV1,EFNB             | 0.080              | 2.38                        |
| Signaling                 |             | 3,LIMK1                                 |                    |                             |
| Mitochondria              | 10          | FURIN,SDHB,ATP5G1,PSENEN,CO             | 0.053              | 2.29                        |
| 1 Dysfunction             |             | X7A2,LRRK2,CYB5A,GPX4,NDUFA             |                    |                             |
|                           |             | BI,NDUFA2                               |                    |                             |

<sup>1</sup>The number of genes (listed in the "Symbol" column) associated with the particular canonical pathway.

<sup>2</sup>The ratio is calculated as the number of genes in a given pathway that meet cutoff criteria (e.g., the ANOVA *P*-value for the differential expression among Se groups is less than 0.005) divided by the total number of genes that make up that pathway.

Table 5.2. Comparison of microarray- and real-time RT-PCR (RT-PCR)-determined relative expression of prolactin and POMC/ACTH synthesis related genes in pituitary tissue of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).

|             |                                               | Microarray <sup>1</sup> |                    |                    |            | RT-PCR <sup>2</sup> |                    |                        |            |
|-------------|-----------------------------------------------|-------------------------|--------------------|--------------------|------------|---------------------|--------------------|------------------------|------------|
| Gene        | Gene Name                                     | Т                       | reatmen            | t <sup>3,4</sup>   | <i>P</i> - | T                   | reatment           | 3,4                    | <i>P</i> - |
|             |                                               | ISe                     | MIX                | OSe                | value      | ISe                 | MIX                | OSe                    | value      |
| Item        |                                               |                         |                    |                    |            |                     |                    |                        |            |
| Prolactin   | Synthesis                                     |                         |                    |                    |            |                     |                    |                        |            |
| Related (   | Genes                                         |                         |                    |                    |            |                     |                    |                        |            |
| DRD2        | Dopamine<br>receptor D2                       | 1.00 <sup>a</sup>       | 1.15 <sup>ab</sup> | 1.27 <sup>b</sup>  | 0.027      | 1.13 <sup>a</sup>   | 1.64 <sup>ab</sup> | 2.48 <sup>b</sup>      | 0.039      |
| POU1F<br>1  | POU class 1<br>homeobox 1                     | 1.00                    | 1.06               | 1.05               | 0.530      | 1.02                | 1.11               | 0.87                   | 0.277      |
| PRL<br>trhr | Prolactin<br>Thyrotropin                      | 1.00 <sup>a</sup>       | 1.12 <sup>ab</sup> | 1.18 <sup>b</sup>  | 0.022      | 1.02 <sup>a</sup>   | 2.08 <sup>b</sup>  | 3.67 <sup>b</sup>      | 0.007      |
| mint        | releasing<br>hormone                          | 1.00 <sup>a</sup>       | 0.76 <sup>b</sup>  | 0.83 <sup>ab</sup> | 0.045      | 1.00 <sup>a</sup>   | 0.71 <sup>b</sup>  | 0.81 <sup>a</sup><br>b | 0.039      |
| VIP         | Vasoactive<br>intestinal<br>peptide           | 1.00                    | 1.64               | 1.43               | 0.331      | 1.21                | 1.74               | 2.31                   | 0.311      |
| GAL         | Galanin/GM<br>AP<br>prepropeptid<br>e         | 1.00                    | 1.03               | 1.00               | 0.821      | 1.32                | 2.10               | 2.35                   | 0.182      |
| VEGF<br>A   | Vascular<br>endothelial<br>growth<br>factor A | 1.00 <sup>a</sup>       | 1.15 <sup>b</sup>  | 1.05 <sup>ab</sup> | 0.093      | 1.01                | 1.18               | 1.03                   | 0.250      |
| TGFB1       | Transformin<br>g growth<br>factor beta 1      | 1.00 <sup>a</sup>       | 1.46 <sup>b</sup>  | 1.30 <sup>b</sup>  | 0.001      | 1.02 <sup>a</sup>   | 1.78 <sup>b</sup>  | 2.06 <sup>c</sup>      | 0.005      |
| GHRH<br>R   | Growth<br>Hormone<br>Releasing<br>Hormone     | 1.00                    | 0.93               | 1.00               | 0.532      | 1.01                | 1.07               | 1.29                   | 0.166      |
| CSH2        | Receptor<br>Chorionic<br>Somatomam            | 1.00                    | 1.09               | 0.97               | 0.173      | 1.10                | 0.74               | 0.87                   | 0.279      |

167

|        | motropin                    |                   |                    |                   |       |                   |                    |                   |       |
|--------|-----------------------------|-------------------|--------------------|-------------------|-------|-------------------|--------------------|-------------------|-------|
|        | Hormone 2                   |                   |                    |                   |       |                   |                    |                   |       |
| PRLR   | Prolactin receptor          | 1.00              | 1.13               | 1.23              | 0.141 | NA                | NA                 | NA                | NA    |
| L-     | Prolactin                   |                   |                    |                   |       |                   |                    |                   |       |
| PRLR   | receptor                    | NA                | NA                 | NA                | NA    | 1.01              | 0.95               | 1.17              | 0.376 |
|        | long isoform                |                   |                    |                   |       |                   |                    |                   |       |
| S-     | Prolactin                   |                   |                    |                   |       |                   |                    |                   |       |
| PRLR   | receptor<br>short           | NA                | NA                 | NA                | NA    | 1.01              | 1.01               | 1.09              | 0.761 |
|        | isoform                     |                   |                    |                   |       |                   |                    |                   |       |
| POMC/A | CTH/α-MSH S                 | Synthes           | is Relate          | d Gene            |       |                   |                    |                   |       |
| POMC   | Proopiomela nocortin        | 1.00 <sup>a</sup> | 1.10 <sup>ab</sup> | 1.23 <sup>b</sup> | 0.045 | 1.14 <sup>a</sup> | 1.91 <sup>a</sup>  | 4.06 <sup>b</sup> | 0.002 |
|        | Proprotein                  |                   |                    |                   |       |                   |                    |                   |       |
| PCSK1  | convertase<br>subtilisin/ke | 1.00 <sup>a</sup> | 1.09 <sup>ab</sup> | 1.44 <sup>b</sup> | 0.059 | 1.03 <sup>a</sup> | 1.48 <sup>ab</sup> | 1.68 <sup>b</sup> | 0.076 |
|        | xin type 1                  |                   |                    |                   |       |                   |                    |                   |       |
| PCSK2  | Proprotein                  |                   |                    |                   |       |                   |                    |                   |       |
|        | convertase<br>subtilisin/ke | 1.00 <sup>a</sup> | 1.13 <sup>ab</sup> | 1.33 <sup>b</sup> | 0.074 | 1.03 <sup>a</sup> | 1.14 <sup>ab</sup> | 1.41 <sup>b</sup> | 0.048 |
|        | xin type 2                  |                   |                    |                   |       |                   |                    |                   |       |
| CPE    | Carboxypept<br>idase E      | 1.00 <sup>a</sup> | 0.98 <sup>a</sup>  | 1.04 <sup>b</sup> | 0.002 | 1.01 <sup>a</sup> | 1.01 <sup>a</sup>  | 1.31 <sup>b</sup> | 0.003 |
| PAM    | Peptidylglyc                |                   |                    |                   |       |                   |                    |                   |       |
|        | ine alpha-                  |                   |                    |                   |       |                   |                    |                   |       |
|        | amidating                   | 1.00 <sup>a</sup> | 1.04 <sup>a</sup>  | 1.29 <sup>b</sup> | 0.044 | 1.06 <sup>a</sup> | 1.28 <sup>a</sup>  | 1.96 <sup>b</sup> | 0.008 |
|        | monooxyge                   |                   |                    |                   |       |                   |                    |                   |       |
|        | nase                        |                   |                    |                   |       |                   |                    |                   |       |

<sup>1</sup>The abundance of gene transcripts are reported relative to the mean expression of the ISe treatment group and are expressed as fold-change of the untransformed intensity value.

<sup>2</sup>The abundance of gene transcripts are reported relative to the geometric mean

expression of the reference genes.

<sup>3</sup>Values are least squares means (n = 6 for ISe, n = 7 for OSe and MIX)

<sup>4</sup>Means within a row that lack a common letter differ (P < 0.05).

Table 5.3. Comparison of microarray and real-time RT-PCR (RT-PCR) identification of mitochondrial dysfunction related genes by pituitary tissue of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).

|            |                                                                                            | Micro     | barray <sup>1</sup> |                      |            | RT-PCR <sup>2</sup>      |                        |                      |                   |
|------------|--------------------------------------------------------------------------------------------|-----------|---------------------|----------------------|------------|--------------------------|------------------------|----------------------|-------------------|
| Cana       | Cono Nomo                                                                                  | Treat     | ment <sup>3,4</sup> |                      | <i>P</i> - | Treatment <sup>3,4</sup> |                        |                      | <i>P</i> -        |
| Gelle      | Gene Manie                                                                                 | ISe       | MI<br>X             | OSe                  | valu<br>e  | ISe                      | MIX                    | OSe                  | valu<br>e         |
| Item       |                                                                                            |           |                     |                      |            |                          |                        |                      |                   |
| Mitochon   | drial Dysfunction Re                                                                       | lated G   | lenes               |                      |            |                          |                        |                      |                   |
| ATP5G1     | ATP Synthase,<br>H+ Transporting,<br>Mitochondrial Fo<br>Complex Subunit<br>C1 (Subunit 9) | 1.00<br>a | 1.22<br>b           | 1.26<br>b            | 0.00<br>4  | 1.04                     | 1.24                   | 1.31                 | 0.26<br>6         |
| COX7A<br>2 | Cytochrome C<br>Oxidase Subunit<br>7A2                                                     | 1.00<br>a | 1.05<br>a           | 1.24<br>b            | 0.00<br>1  | 1.00<br>a                | 1.20 <sup>a</sup>      | 1.29<br>b            | 0.09<br>6         |
| CYB5A      | Cytochrome B5<br>Type A                                                                    | 1.00<br>a | 1.00<br>a           | 1.13<br>b            | 0.00<br>2  | 1.02<br>a                | 1.02 <sup>a</sup>      | 1.27<br>b            | 0.02<br>4         |
| FURIN      | Paired Basic<br>Amino Acid<br>Cleaving Enzyme                                              | 1.00<br>a | 1.04<br>a           | 1.12<br>b            | 0.00<br>2  | 1.04<br>a                | 1.33ª                  | 1.81<br><sup>b</sup> | 0.01<br>1         |
| GPX4       | Glutathione<br>peroxidase 4                                                                | 1.00<br>a | 1.21<br>b           | 1.23<br>b            | 0.00<br>4  | 1.03<br>a                | 1.32 <sup>a</sup><br>b | 1.56<br><sup>b</sup> | 0.05<br>2         |
| LRRK2      | Leucine Rich<br>Repeat Kinase 2                                                            | 1.00<br>a | 0.88<br>b           | 0.79<br>c            | 0.00<br>1  | 1.00                     | 0.88                   | 0.85                 | 0.13<br>0         |
| NDUFA<br>2 | NADH.Obiquillo<br>ne<br>Oxidoreductase<br>Subunit A2<br>Presenilin                         | 1.00<br>a | 1.18<br>b           | 1.16<br><sup>b</sup> | 0.00<br>3  | 1.01                     | 1.16                   | 1.23                 | 0.14<br>2         |
| PSENE<br>N | Enhancer<br>Gamma-Secretase<br>Subunit                                                     | 1.00<br>a | 1.13<br>b           | 1.24<br>c            | 0.00<br>1  | 1.01<br>a                | 1.17 <sup>a</sup><br>b | 1.32<br>b            | 0.03<br>2         |
| SDHB       | Dehydrogenase<br>Complex Iron<br>Sulfur Subunit B                                          | 1.00<br>a | 1.03<br>a           | 1.12<br>b            | 0.00<br>3  | 1.23                     | 1.71                   | 1.46                 | 0.57<br>3         |
| Antioxida  | nt Enzyme-encoding                                                                         | Genes     |                     |                      | 0.10       |                          |                        |                      | 0.12              |
| CAT        | Catalase                                                                                   | 1.00      | 1.00                | 1.04                 | 0.12<br>7  | 1.02                     | 1.05                   | 1.24                 | 0.1 <i>3</i><br>8 |

| Table 5.3 | (continued)               |      |      |      |           |           |                        |                      |           |
|-----------|---------------------------|------|------|------|-----------|-----------|------------------------|----------------------|-----------|
| SOD1      | Superoxide<br>Dismutase 1 | 1.00 | 1.06 | 1.04 | 0.11<br>5 | 1.05<br>a | 1.35 <sup>a</sup><br>b | 1.80<br><sup>b</sup> | 0.01<br>8 |

<sup>1</sup>The abundance of gene transcripts are reported relative to the mean expression of the ISe treatment group and are expressed as fold-change of the untransformed intensity value. <sup>2</sup>The abundance of gene transcripts are reported relative to the geometric mean

expression of the reference genes.

<sup>3</sup>Values are least squares means (n = 6 for ISe, n = 7 for OSe and MIX)

<sup>4</sup>Means within a row that lack a common letter differ (P < 0.05).

Table 5.4. Primer sets used for quantitative real-time RT-PCR analysis of the selected differentially expressed genes and reference genes.

| Gene   | Gene Name                 | Template Accession number <sup>1</sup> | Oligonucleotide Primer Design (5' to 3' direction)   | Amplicon length<br>(bp) | Product<br>identity<br>(%) <sup>2</sup> |
|--------|---------------------------|----------------------------------------|------------------------------------------------------|-------------------------|-----------------------------------------|
| RPS11  | Ribosomal<br>protein S11  | NM_001024568.2                         | F: AAGATGGCGGACATTCAGAC<br>R: GCCCTCGAATGGAGACATTA   | 214                     | 99%                                     |
| TFRC   | Transferrin<br>Receptor   | NM_001206577.1                         | F: CCAGGTTTAGTCTGGCTCGG<br>R: GGTCTGCCCAGAATATGCGA   | 339                     | 99%                                     |
| UBC    | Ubiquitin C               | NM_001206307.1                         | F: TAGGGGTGGGTTAGAGTTCAAG<br>R: ACCACCTCCCTGCTGGTATT | 258                     | 100%                                    |
| DRD2   | Dopamine<br>receptor D2   | NM_174043.2                            | F: CGACCTTTCTCTGGGGGCTTT<br>R: TTGGGCTTCTGCTTCTCTGG  | 234                     | 100%                                    |
| POU1F1 | POU class 1<br>homeobox 1 | NM_174579                              | F: AGCTGTGCATGGCTCTGAAT<br>R: AGGCTTGTCTTCACCCGTTT   | 354                     | 100%                                    |

| PRL   | Prolactin                                       | NM_173953.2    | F: AGAACAAGCCCAACAGACCC<br>R: AGTCCTGACCACACAGGGTA   | 252 | 99%  |
|-------|-------------------------------------------------|----------------|------------------------------------------------------|-----|------|
| TRHR  | Thyrotropin<br>releasing<br>hormone<br>receptor | M_174203.1     | F: GCGATCTGTCACCCCATCAA<br>R: ATCCGTAGAGGACAGTGGCT   | 262 | 100% |
| VIP   | Vasoactive<br>intestinal<br>peptide             | NM_173970.3    | F: CTGGTTCAGCTGTAAGGGCA<br>R: TCAGCCAGCGCATCTTGTAA   | 325 | 100% |
| GAL   | Galanin/GM<br>AP<br>prepropepti<br>de           | NM_173914.2    | F: CACCGGTGAAGGAGAAGAGAG<br>R: GGCGTCTTTGAGATGCAGGAA | 230 | 100% |
| VEGFA | Vascular<br>endothelial<br>growth<br>factor A   | NM_174216.2    | F: GCAAGAAAATCCCTGTGGGC<br>R: CGTCTGGTTCCCGAAACCCT   | 210 | 100% |
| TGFB1 | Transformin<br>g growth<br>factor beta 1        | NM_001166068.1 | F: GCGGCCAGATTTTGTCCAAG<br>R: GCTGTGCGAGCTAGACTTCA   | 242 | 98%  |

| GHRHR  | Growth<br>Hormone<br>Releasing<br>Hormone<br>Receptor   | NM_181020.3    | F: CTGTAACAGTCCTGTGTAAGGT<br>R: GTCTTCGAAGGCCAACTTGC     | 218 | 100% |
|--------|---------------------------------------------------------|----------------|----------------------------------------------------------|-----|------|
| CSH2   | Chorionic<br>Somatomam<br>motropin<br>Hormone 2         | NM_181007.2    | F: CCCCATGCTAAGCCCACAAT<br>R:TTTCTCTCAGAGGTAGGGATGG<br>A | 243 | 100% |
| L-PRLR | Prolactin<br>receptor<br>long<br>isoform                | NM_001039726.2 | F: GCCATCCTTTCTGCTGTCAT<br>R: CCCTTCTCCAGCAGATGAAC       | 136 | 100% |
| S-PRLR | Prolactin<br>receptor<br>short<br>isoform               | NM_174155.3    | F: GCCATCCTTTCTGCTGTCAT<br>R: AAGGCGAGAAGGCTGTGATA       | 151 | 99%  |
| POMC   | Proopiomel<br>anocortin                                 | NM_174151.1    | F: AGCTTCCCCGTGACAGAGC<br>R: CTGCTACCATTCCGACGGC         | 317 | 99%  |
| PCSK1  | Proprotein<br>convertase<br>subtilisin/ke<br>xin type 1 | NM_174412.2    | F: TGATCGTGTGATATGGGCGG<br>R: GGCCTCCGGATCATAGTTGG       | 277 | 99%  |

| PCSK2      | Proprotein<br>convertase<br>subtilisin/ke<br>xin type 2                                              | NM_174413.3 | F: TGGTTTTTGCATCTGCTGAG<br>R: CCTCTTTACCCTGGGGTCTC   | 233 | 97% |
|------------|------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|-----|-----|
| CPE        | Carboxypep<br>tidase E                                                                               | NM_173903.4 | F: GCTTAGCTCGGGCATACTCA<br>R: CACAGAGAGGGGTGGCGTTAG  | 347 | 99% |
| PAM        | Peptidylglyc<br>ine alpha-<br>amidating<br>monooxyge<br>nase<br>ATP                                  | NM_173948.2 | F: ACCAACACCGTGTGGGAAGTT<br>R: GTTCAGAATCTCCAAAGGCCC | 301 | 99% |
| ATP5G<br>1 | Synthase,<br>H+<br>Transportin<br>g,<br>Mitochondri<br>al Fo<br>Complex<br>Subunit C1<br>(Subunit 9) | NM_176649.3 | F: CACCGGGGGCACTACTCATTT<br>R: AAGAGCCCCATAGCCTCAGA  | 363 | 99% |
| COX7A<br>2 | Cytochrome<br>C Oxidase<br>Subunit 7A2                                                               | NM_175807.1 | F: ACTGAGCCAAGATGCTACGG<br>R: ACCCAACTGATTGCTGGGAG   | 295 | 99% |

| CYB5A      | Cytochrome<br>B5 Type A                                  | NM_174033.3    | F: AAGACTGCTTTGGTCCAGGG<br>R: GACAGCTCAGCATGGTGGTA | 263 | 99%  |
|------------|----------------------------------------------------------|----------------|----------------------------------------------------|-----|------|
| FURIN      | Paired Basic<br>Amino Acid<br>Cleaving<br>Enzyme         | NM_174136      | F: GCATCGAGAAGAACCACCCA<br>R: CTCCACGGCATCTGTCACTT | 245 | 100% |
| GPX4       | Glutathione<br>peroxidase 4                              | NM_174770.3    | F: GATCAAAGAGTTCGCCGCTG<br>R: CCATACCGCTTCACCACACA | 198 | 100% |
| LRRK2      | Leucine<br>Rich Repeat<br>Kinase 2                       | NM_001206086.2 | F: AGGAATCCGATGCTTTGGCA<br>R: ACTGCAATGCTGGGTCTTGA | 300 | 99%  |
| NDUFA<br>2 | Oxidoreduct<br>ase Subunit<br>A2                         | NM_175815.2    | F: CGTATCCATTTGTGCCAGCG<br>R: ACGTTCTCCAGGGCTCTAGT | 224 | 100% |
| PSENE<br>N | Presenilin<br>Enhancer<br>Gamma-<br>Secretase<br>Subunit | NM_001008669.1 | F: GCGTGGTTGTTTGTGATCCT<br>R: TTGATTTGGCTCTGCTCCGT | 251 | 100% |

| SDHB | Succinate<br>Dehydrogen<br>ase<br>Complex<br>Iron Sulfur<br>Subunit B | NM_001040483.1 | F: AGAGACGACTTCACGGAGGA<br>R: CTGAAGGAACTCAGGGGTGA | 238 | 99% |
|------|-----------------------------------------------------------------------|----------------|----------------------------------------------------|-----|-----|
| CAT  | Catalase                                                              | NM_001035386.2 | F: CTATCCTGACACTCACCGCC<br>R: GAAAGTCCGCACCTGAGTGA | 268 | 99% |
| SOD1 | Superoxide<br>Dismutase 1                                             | NM_174615.2    | F: TTGGAGACCTGGGCAATGTG<br>R: TTACACCACAGGCCAAACGG | 204 | 99% |

<sup>1</sup>The contents in the parentheses associated with each gene symbol are the accession numbers of the sequences retrieved from

the NCBI RefSeq database and used as templates for designing primers and probes.

<sup>2</sup>All the real-time RT-PCR products were validated by sequencing. The identity values (%) presented are the base-pair ratios between the number of identical base pairs and the total amplicon length.

Table 5.5. DEG list (P < 0.005, 542 annotated genes), expressed by pituitaries collected from steers grazing endophyteinfected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).

| Dietary Se treatment |             |                                                                     |                   |                    |                    |                     |  |  |  |
|----------------------|-------------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------------|--|--|--|
| Transcript ID        | Gene Symbol | Gene Description                                                    | ISe               | OSe                | MIX                | SEM <i>P</i> -value |  |  |  |
| 12815073             | ABCC6       | ATP-binding cassette, sub-<br>family C (CFTR                        | 1.00 <sup>a</sup> | -1.10 <sup>b</sup> | -1.19 <sup>c</sup> | 0.0240.003072       |  |  |  |
| 12812150             | ABHD11      | abhydrolase domain<br>containing 11                                 | 1.00 <sup>a</sup> | 1.31 <sup>b</sup>  | 1.20 <sup>c</sup>  | 0.0360.000158       |  |  |  |
| 12763396             | ABR         | active BCR-related gene                                             | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0230.002440       |  |  |  |
| 12681108             | ACAD11      | acyl-CoA dehydrogenase family, member 11                            | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.09 <sup>b</sup> | 0.0210.000701       |  |  |  |
| 12843399             | ACADM       | acyl-CoA dehydrogenase, C-<br>4 to C-12 straight chain              | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.03 <sup>a</sup> | 0.0210.001467       |  |  |  |
| 12714006             | ACOT8       | acyl-CoA thioesterase 8                                             | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.08 <sup>c</sup>  | 0.0320.003085       |  |  |  |
| 12860803             | ACSS3       | acyl-CoA synthetase short-<br>chain family member 3                 | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.09 <sup>c</sup> | 0.0270.003610       |  |  |  |
| 12811304             | ACTB        | actin, beta                                                         | 1.00 <sup>a</sup> | 1.06 <sup>b</sup>  | 1.13 <sup>c</sup>  | 0.0210.002141       |  |  |  |
| 12703348             | ACTR1B      | ARP1 actin-related protein 1<br>homolog B, centractin beta<br>(yeas | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.04 <sup>a</sup>  | 0.0180.000423       |  |  |  |
| 12700297             | ADAM17      | ADAM metallopeptidase domain 17                                     | 1.00 <sup>a</sup> | -1.20 <sup>b</sup> | -1.11 <sup>c</sup> | 0.0290.003166       |  |  |  |
| 12819148             | ADD3        | adducin 3 (gamma)                                                   | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.13 <sup>b</sup> | 0.0260.000332       |  |  |  |
| 12714706             | ADIG        | adipogenin                                                          | 1.00 <sup>a</sup> | -1.00 <sup>a</sup> | -1.16 <sup>b</sup> | 0.0290.004786       |  |  |  |
| 12823127             | AFAP1L2     | actin filament associated protein 1-like 2                          | 1.00 <sup>a</sup> | -1.05 <sup>a</sup> | -1.14 <sup>b</sup> | 0.0150.001903       |  |  |  |
| 12816222             | AGFG2       | ArfGAP with FG repeats 2                                            | $1.00^{a}$        | 1.10 <sup>b</sup>  | 1.03 <sup>a</sup>  | 0.0180.003134       |  |  |  |

| Table 5.5 ( | (continued)  |
|-------------|--------------|
| 1 4010 010  | contrine ca, |

| 12785796 | AGXT2    | alanineglyoxylate<br>aminotransferase 2                              | 1.00 <sup>a</sup> | 1.34 <sup>b</sup>  | -1.00 <sup>a</sup> | 0.0520.003621 |
|----------|----------|----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12701187 | AHSA2    | AHA1, activator of heat<br>shock 90kDa protein ATPase<br>homolog 2 ( | 1.00 <sup>a</sup> | -1.06 <sup>a</sup> | 1.22 <sup>b</sup>  | 0.0280.004122 |
| 12839104 | AMIGO1   | adhesion molecule with Ig-<br>like domain 1                          | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | -1.06 <sup>a</sup> | 0.0330.003137 |
| 12681779 | AMOTL2   | angiomotin like 2                                                    | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | -1.03 <sup>a</sup> | 0.0350.001440 |
| 12770437 | AMZ2     | archaelysin family<br>metallopeptidase 2                             | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0310.000537 |
| 12758448 | ANKRD11  | ankyrin repeat domain 11                                             | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | 1.06 <sup>a</sup>  | 0.0310.003210 |
| 12693457 | APEX1    | APEX nuclease<br>(multifunctional DNA repair<br>enzyme) 1            | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.16 <sup>b</sup>  | 0.0330.004432 |
| 12729444 | API5     | apoptosis inhibitor 5                                                | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0210.002289 |
| 12699389 | APLF     | aprataxin and PNKP like factor                                       | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0330.001334 |
| 12842977 | APOA1BP  | apolipoprotein A-I binding protein                                   | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0280.001339 |
| 12757598 | APRT     | adenine<br>phosphoribosyltransferase                                 | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.09 <sup>c</sup>  | 0.0330.002713 |
| 12696328 | AQR      | aquarius homolog (mouse)                                             | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0160.004085 |
| 12712642 | ARGLU1   | arginine and glutamate rich 1                                        | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0130.000477 |
| 12731455 | ARHGAP42 | Rho GTPase activating protein 42                                     | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0230.002245 |
| 12757115 | ARHGEF1  | Rho guanine nucleotide<br>exchange factor (GEF) 1                    | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0260.004440 |
| 12797402 | ARHGEF3  | Rho guanine nucleotide<br>exchange factor (GEF) 3                    | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.18 <sup>b</sup> | 0.0250.000387 |
| 12878680 | ARID3A   | AT rich interactive domain<br>3A (BRIGHT-like)                       | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.34 <sup>c</sup>  | 0.0420.002240 |

| Table 5.5 (continued) |
|-----------------------|
|-----------------------|

| Table 5.5 (conti | nued)    |                                                                        |                   |                    |                    |               |
|------------------|----------|------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12680069         | ARL13B   | ADP-ribosylation factor-like 13B                                       | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.07 <sup>c</sup> | 0.0240.001274 |
| 12818542         | ARL6IP1  | ADP-ribosylation factor-like 6 interacting protein 1                   | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0250.000310 |
| 12798781         | ARL6IP5  | ADP-ribosylation-like factor 6 interacting protein 5                   | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.00 <sup>a</sup>  | 0.0160.001479 |
| 12872066         | ARL9     | ADP-ribosylation factor-like<br>9                                      | 1.00 <sup>a</sup> | 1.33 <sup>b</sup>  | 1.44 <sup>b</sup>  | 0.0690.004465 |
| 12730790         | ARRB1    | arrestin, beta 1                                                       | 1.00 <sup>a</sup> | $1.18^{b}$         | 1.09 <sup>c</sup>  | 0.0320.003087 |
| 12885849         | ARRDC2   | arrestin domain containing 2                                           | 1.00 <sup>a</sup> | -1.31 <sup>b</sup> | -1.15 <sup>c</sup> | 0.0510.002569 |
| 12793470         | ARRDC4   | arrestin domain containing 4                                           | 1.00 <sup>a</sup> | -1.31 <sup>b</sup> | -1.17 <sup>c</sup> | 0.0410.000442 |
| 12857545         | ART4     | ADP-ribosyltransferase 4<br>(Dombrock blood group)                     | 1.00 <sup>a</sup> | -1.26 <sup>b</sup> | -1.36 <sup>b</sup> | 0.0560.003082 |
| 12861962         | ASCL1    | achaete-scute complex<br>homolog 1 (Drosophila)                        | 1.00 <sup>a</sup> | 1.38 <sup>b</sup>  | 1.25 <sup>b</sup>  | 0.0510.000848 |
| 12854099         | ASNS     | asparagine synthetase<br>(glutamine-hydrolyzing)                       | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.15 <sup>c</sup>  | 0.0210.000033 |
| 12810391         | ASXL3    | additional sex combs like 3<br>(Drosophila)                            | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.18 <sup>b</sup>  | 0.0220.000595 |
| 12871836         | ATP10D   | ATPase, class V, type 10D                                              | 1.00 <sup>a</sup> | 1.28 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0420.001896 |
| 12909023         | ATP11C   | ATPase, class VI, type 11C                                             | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0420.003799 |
| 12880589         | ATP13A1  | ATPase type 13A1                                                       | $1.00^{a}$        | 1.15 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0310.002721 |
| 12749501         | ATP1A3   | ATPase, Na+                                                            | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.07 <sup>c</sup>  | 0.0250.002322 |
| 12767689         | ATP5G1   | ATP synthase, H+<br>transporting, mitochondrial<br>Fo complex, subunit | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0510.003783 |
| 12761235         | ATP6V0A1 | ATPase, H+ transporting,<br>lysosomal V0 subunit a1                    | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.02 <sup>a</sup>  | 0.0170.003025 |
| 12848186         | ATP8B2   | ATPase, class I, type 8B, member 2                                     | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0340.000823 |

Table 5.5 (continued)

| 12862844 | ATXN7L3B         | ataxin 7-like 3B                                                   | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.10 <sup>b</sup>  | 0.0240.003916 |
|----------|------------------|--------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12700080 | B3GNT2           | UDP-GlcNAc:betaGal beta-<br>1,3-N-<br>acetylglucosaminyltransferas | 1.00 <sup>a</sup> | -1.33 <sup>b</sup> | -1.21 <sup>b</sup> | 0.0510.001367 |
|          |                  | e 2                                                                |                   |                    |                    |               |
| 12892724 | B4GALT1          | UDP-Gal:betaGlcNAc beta<br>1,4- galactosyltransferase,             | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0300.001027 |
|          |                  | polypeptide                                                        |                   |                    |                    |               |
| 12805572 | BAK1             | BCL2-antagonist                                                    | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0280.003007 |
| 12751423 | BANP             | BTG3 associated nuclear protein                                    | 1.00 <sup>a</sup> | -1.34 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0500.001295 |
| 12801533 | BAT3             | HLA-B associated transcript 3                                      | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.16 <sup>b</sup>  | 0.0370.004401 |
| 12858722 | BAZ2A            | bromodomain adjacent to zinc finger domain. 2A                     | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.21 <sup>b</sup>  | 0.0210.000476 |
| 12718315 | BCAS1            | breast carcinoma amplified<br>sequence 1                           | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.22 <sup>b</sup> | 0.0340.002844 |
| 12837242 | BCAS2            | breast carcinoma amplified<br>sequence 2                           | 1.00 <sup>a</sup> | -1.03 <sup>a</sup> | 1.05 <sup>b</sup>  | 0.0180.004750 |
| 12790583 | BDKRB1           | bradykinin receptor B1                                             | 1.00 <sup>a</sup> | -1.35 <sup>b</sup> | -1.14 <sup>c</sup> | 0.0430.002912 |
| 12798575 | BHLHE40          | basic helix-loop-helix family,<br>member e40                       | 1.00 <sup>a</sup> | 1.52 <sup>b</sup>  | 1.43 <sup>b</sup>  | 0.0430.000044 |
| 12801465 | BMP5             | bone morphogenetic protein 5                                       | 1.00 <sup>a</sup> | -1.31 <sup>b</sup> | -1.38 <sup>b</sup> | 0.0670.004115 |
| 12873825 | BOD1L            | biorientation of chromosomes<br>in cell division 1-like            | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0200.000800 |
| 12813925 | BOLA2B           | bolA homolog 2B (E. coli)                                          | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0290.003782 |
| 12754924 | BOSTAUV1R43<br>0 | vomeronasal 1 receptor<br>bosTauV1R430                             | 1.00 <sup>a</sup> | 1.34 <sup>b</sup>  | 1.04 <sup>a</sup>  | 0.0420.003031 |
| 12754921 | BOSTAUV1R43<br>1 | vomeronasal 1 receptor<br>bosTauV1R431                             | 1.00 <sup>a</sup> | 1.44 <sup>b</sup>  | 1.02 <sup>a</sup>  | 0.0580.001756 |

Table 5.5 (continued)

| 12714979 | BTBD3           | BTB (POZ) domain                                              | 1.00 <sup>a</sup> | -1.22 <sup>b</sup> | -1.13 <sup>b</sup> | 0.0320.001981 |
|----------|-----------------|---------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12604170 | C10U14 or $f27$ | containing 3                                                  | 1 008             | 1 028              | 1 15b              | 0.0200.001291 |
| 12694170 | C10H140f137     | frame 37 ortholog                                             | 1.00"             | 1.02*              | -1.15°             | 0.0200.001281 |
| 12698893 | C11H2orf56      | protein midA homolog,<br>mitochondrial                        | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.12 <sup>b</sup> | 0.0260.001585 |
| 12741467 | C16H1orf156     | chromosome 1 open reading<br>frame 156 ortholog               | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0280.004246 |
| 12740403 | C16H1ORF55      | chromosome 1 open reading<br>frame 55 ortholog                | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0250.000270 |
| 12828575 | C1orf124        | zinc finger RAD18 domain-<br>containing protein C1orf124      | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0180.000467 |
| 12806978 | C23H6orf130     | chromosome 6 open reading<br>frame 130 ortholog               | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.09 <sup>c</sup> | 0.0280.003790 |
| 12781409 | C2H1orf144      | chromosome 1 open reading<br>frame 144 ortholog               | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0270.001946 |
| 12776233 | CAB39           | calcium binding protein 39                                    | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0220.000792 |
| 12846417 | CAPZA1          | capping protein (actin<br>filament) muscle Z-line,<br>alpha 1 | 1.00 <sup>a</sup> | -1.04 <sup>a</sup> | 1.08 <sup>b</sup>  | 0.0200.001444 |
| 12753658 | CBFB            | core-binding factor, beta<br>subunit                          | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0350.000799 |
| 12868256 | CCDC53          | coiled-coil domain containing 53                              | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | -1.15 <sup>b</sup> | 0.0360.002356 |
| 12860511 | CCDC77          | coiled-coil domain containing<br>77                           | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0270.004501 |
| 12767023 | CCL2            | chemokine (C-C motif)<br>ligand 2                             | 1.00 <sup>a</sup> | 1.88 <sup>b</sup>  | 1.73 <sup>b</sup>  | 0.0980.000670 |
| 12774476 | CCL20           | chemokine (C-C motif)<br>ligand 20                            | 1.00 <sup>a</sup> | -1.08 <sup>a</sup> | -1.34 <sup>b</sup> | 0.0450.000806 |
| 12870891 | CCNG2           | cyclin G2                                                     | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.21 <sup>b</sup> | 0.0230.000890 |

| 12857478 | CD63     | CD63 molecule                                            | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0250.000494 |
|----------|----------|----------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12841117 | CDC42SE1 | CDC42 small effector 1                                   | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.28 <sup>c</sup>  | 0.0490.003235 |
| 12808806 | CDH19    | cadherin 19, type 2                                      | 1.00 <sup>a</sup> | -2.34 <sup>b</sup> | -1.49 <sup>c</sup> | 0.1420.002230 |
| 12683809 | CDV3     | CDV3 homolog (mouse)                                     | 1.00 <sup>a</sup> | -1.01 <sup>a</sup> | 1.09 <sup>b</sup>  | 0.0220.002642 |
| 12884966 | CDX1     | caudal type homeobox 1                                   | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | -1.08 <sup>a</sup> | 0.0380.004126 |
| 12698371 | CEL      | carboxyl ester lipase (bile salt-stimulated lipase)      | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | -1.10 <sup>c</sup> | 0.0380.002547 |
| 12741130 | CENPL    | centromere protein L                                     | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | 1.07 <sup>a</sup>  | 0.0370.004458 |
| 12690629 | CGRRF1   | cell growth regulator with ring finger domain 1          | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.11 <sup>c</sup>  | 0.0270.001127 |
| 12723011 | CHD7     | chromodomain helicase DNA binding protein 7              | 1.00 <sup>a</sup> | -1.02 <sup>a</sup> | 1.12 <sup>b</sup>  | 0.0200.002943 |
| 12791729 | CHRNA7   | cholinergic receptor,<br>nicotinic, alpha 7              | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.07 <sup>a</sup>  | 0.0390.002142 |
| 12705319 | CHST10   | carbohydrate sulfotransferase 10                         | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0340.002818 |
| 12681827 | CLRN1    | clarin 1                                                 | 1.00 <sup>a</sup> | 1.32 <sup>b</sup>  | 1.18 <sup>c</sup>  | 0.0380.000486 |
| 12694413 | CMTM5    | CKLF-like MARVEL<br>transmembrane domain<br>containing 5 | 1.00 <sup>a</sup> | -1.04ª             | -1.20 <sup>b</sup> | 0.0310.001544 |
| 12758174 | CNOT3    | CCR4-NOT transcription complex, subunit 3                | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0310.003299 |
| 12858172 | CNPY2    | canopy 2 homolog (zebrafish)                             | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0440.004584 |
| 12740915 | CNST     | consortin, connexin sorting protein                      | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | 1.00 <sup>a</sup>  | 0.0380.000705 |
| 12895030 | CNTFR    | ciliary neurotrophic factor receptor                     | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0360.004783 |
| 12894487 | CNTLN    | centlein, centrosomal protein                            | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.11 <sup>c</sup> | 0.0390.003100 |
| 12908781 | COL4A6   | collagen, type IV, alpha 6                               | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.19 <sup>b</sup> | 0.0440.004031 |

| Table 5.5 (conti | inued) |                                                            |                   |                    |                    |               |
|------------------|--------|------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12864037         | COPZ1  | coatomer protein complex, subunit zeta 1                   | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0270.002766 |
| 12867761         | COQ10A | coenzyme Q10 homolog A<br>(S. cerevisiae)                  | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0350.001360 |
| 12742723         | CORO1C | coronin, actin binding protein, 1C                         | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0260.000245 |
| 12756789         | COX4NB | COX4 neighbor                                              | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.26 <sup>b</sup>  | 0.0310.000128 |
| 12899530         | COX7A2 | cytochrome c oxidase subunit<br>VIIa polypeptide 2 (liver) | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.05 <sup>a</sup>  | 0.0310.000448 |
| 12741898         | CPE    | carboxypeptidase E                                         | 1.00 <sup>a</sup> | 1.04 <sup>b</sup>  | -1.02 <sup>a</sup> | 0.0120.002100 |
| 12678420         | CPNE4  | copine IV                                                  | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | -1.25 <sup>b</sup> | 0.0480.002398 |
| 12798341         | CRELD1 | cysteine-rich with EGF-like domains 1                      | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.28 <sup>b</sup>  | 0.0500.003031 |
| 12780237         | CRYGB  | crystallin, gamma B                                        | 1.00 <sup>a</sup> | 1.30 <sup>b</sup>  | 1.14 <sup>c</sup>  | 0.0440.004510 |
| 12807461         | CYB5A  | CYB5 protein                                               | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.00 <sup>a</sup>  | 0.0220.001616 |
| 12755641         | СҮВА   | cytochrome b-245, alpha polypeptide                        | 1.00 <sup>a</sup> | 1.29 <sup>b</sup>  | 1.05 <sup>a</sup>  | 0.0450.001481 |
| 12696721         | DCP2   | DCP2 decapping enzyme<br>homolog (S. cerevisiae)           | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0240.000526 |
| 12860523         | DCTN2  | dynactin 2 (p50)                                           | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.06 <sup>c</sup>  | 0.0240.003064 |
| 12826569         | DDIT4  | DNA-damage-inducible<br>transcript 4                       | 1.00 <sup>a</sup> | -1.41 <sup>b</sup> | -1.14 <sup>a</sup> | 0.0650.003211 |
| 12806211         | DDR1   | discoidin domain receptor tyrosine kinase 1                | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.04 <sup>a</sup>  | 0.0390.004325 |
| 12728696         | DDX10  | DEAD (Asp-Glu-Ala-Asp)<br>box polypeptide 10               | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0210.001767 |
| 12861406         | DDX23  | DEAD (Asp-Glu-Ala-Asp)<br>box polypeptide 23               | 1.00 <sup>a</sup> | -1.03 <sup>a</sup> | 1.14 <sup>b</sup>  | 0.0340.003180 |
| 12793017         | DDX24  | DEAD (Asp-Glu-Ala-Asp)<br>box polypeptide 24               | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.14 <sup>c</sup>  | 0.0180.000124 |

| 12721139 | DEFB122 | beta-defensin 122                                                     | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | -1.05 <sup>a</sup> | 0.0400.002239 |
|----------|---------|-----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12730301 | DENND5A | DENN                                                                  | 1.00 <sup>a</sup> | -1.02 <sup>a</sup> | 1.10 <sup>b</sup>  | 0.0240.004598 |
| 12719581 | DHTKD1  | dehydrogenase E1 and<br>transketolase domain<br>containing 1          | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0120.000218 |
| 12880985 | DNAJB1  | DnaJ (Hsp40) homolog,<br>subfamily B, member 1                        | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0370.002945 |
| 12813289 | DOC2A   | double C2-like domains, alpha                                         | 1.00 <sup>a</sup> | -1.03 <sup>a</sup> | -1.43 <sup>b</sup> | 0.0680.001517 |
| 12706234 | DPM2    | dolichyl-phosphate<br>mannosyltransferase<br>polypeptide 2, regulator | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0420.003130 |
| 12683999 | DSCR3   | Down syndrome critical region protein 3                               | 1.00 <sup>a</sup> | 1.27 <sup>b</sup>  | 1.29 <sup>b</sup>  | 0.0470.002664 |
| 12810528 | DTNA    | dystrobrevin, alpha                                                   | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.11 <sup>b</sup> | 0.0300.002934 |
| 12844671 | DUSP23  | dual specificity phosphatase 23                                       | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.08 <sup>b</sup>  | 0.0220.004302 |
| 12765609 | EFNB3   | ephrin-B3                                                             | 1.00 <sup>a</sup> | $1.02^{a}$         | -1.18 <sup>b</sup> | 0.0220.000204 |
| 12753121 | EGLN2   | egl nine homolog 2 (C.<br>elegans)                                    | 1.00 <sup>a</sup> | 1.08 <sup>b</sup>  | 1.07 <sup>b</sup>  | 0.0150.002486 |
| 12761624 | EIF4A1  | eukaryotic translation<br>initiation factor 4A1                       | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.27 <sup>b</sup>  | 0.0450.004284 |
| 12777883 | EIF4G3  | eukaryotic translation<br>initiation factor 4 gamma, 3                | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.03 <sup>a</sup>  | 0.0130.000365 |
| 12887939 | ELAVL1  | ELAV (embryonic lethal,<br>abnormal vision, Drosophila)-<br>like 1 (  | 1.00ª             | 1.03 <sup>a</sup>  | 1.13 <sup>b</sup>  | 0.0180.000510 |
| 12910733 | ELK1    | ELK1, member of ETS oncogene family                                   | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0240.000991 |
| 12740756 | ELK4    | ELK4, ETS-domain protein<br>(SRF accessory protein 1)                 | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.09 <sup>c</sup>  | 0.0300.001377 |

Table 5.5 (continued)

| 12894451 | ENTPD4   | ectonucleoside triphosphate<br>diphosphohydrolase 4       | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0270.000244 |
|----------|----------|-----------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12783685 | EPC2     | enhancer of polycomb<br>homolog 2 (Drosophila)            | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.14 <sup>b</sup> | 0.0200.000161 |
| 12776360 | EPHA2    | EPH receptor A2                                           | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0420.004164 |
| 12850821 | EPHB6    | EPH receptor B6                                           | 1.00 <sup>a</sup> | 1.30 <sup>b</sup>  | 1.16 <sup>c</sup>  | 0.0410.001008 |
| 12796560 | ERC2     | ELKS                                                      | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.21 <sup>b</sup> | 0.0420.001783 |
| 12789922 | ERICH1   | glutamate-rich 1                                          | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | 1.07 <sup>a</sup>  | 0.0400.003205 |
| 12735710 | ERRFI1   | ERBB receptor feedback inhibitor 1                        | 1.00 <sup>a</sup> | -1.39 <sup>b</sup> | -1.17 <sup>c</sup> | 0.0540.001031 |
| 12835715 | F3       | coagulation factor III<br>(thromboplastin, tissue factor) | 1.00 <sup>a</sup> | -1.45 <sup>b</sup> | -1.03 <sup>a</sup> | 0.0740.003769 |
| 12858708 | FAIM2    | Fas apoptotic inhibitory molecule 2                       | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.27 <sup>c</sup>  | 0.0370.001604 |
| 12905719 | FAM127A  | family with sequence similarity 127, member A             | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0240.001104 |
| 12904144 | FAM50A   | family with sequence similarity 50, member A              | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0320.002315 |
| 12855431 | FERD3L   | Fer3-like (Drosophila)                                    | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | -1.00 <sup>a</sup> | 0.0280.003052 |
| 12866953 | FGFR1OP2 | FGFR1 oncogene partner 2                                  | 1.00 <sup>a</sup> | -1.20 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0300.000464 |
| 12771502 | FOXK2    | forkhead box K2                                           | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0190.001962 |
| 12791616 | FURIN    | furin (paired basic amino acid cleaving enzyme)           | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.04 <sup>a</sup>  | 0.0210.001610 |
| 12761345 | G6PC3    | glucose 6 phosphatase,<br>catalytic, 3                    | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0170.004554 |
| 12767655 | GABARAP  | GABA(A) receptor-<br>associated protein                   | 1.00 <sup>a</sup> | 1.08 <sup>b</sup>  | 1.08 <sup>b</sup>  | 0.0170.002289 |
| 12893958 | GABBR2   | gamma-aminobutyric acid<br>(GABA) B receptor, 2           | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0360.003717 |

Table 5.5 (continued)

| 12834169 | GAL3ST3 | galactose-3-O-<br>sulfotransferase 3                                     | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0340.003248 |
|----------|---------|--------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12889125 | GCNT1   | glucosaminyl (N-acetyl)<br>transferase 1, core 2                         | 1.00 <sup>a</sup> | -1.38 <sup>b</sup> | -1.18 <sup>c</sup> | 0.0410.000080 |
| 12708565 | GEN1    | Gen homolog 1,<br>endonuclease (Drosophila)                              | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.21 <sup>b</sup> | 0.0460.004141 |
| 12885268 | GLT25D1 | glycosyltransferase 25<br>domain containing 1                            | 1.00 <sup>a</sup> | 1.05 <sup>a</sup>  | 1.18 <sup>b</sup>  | 0.0230.000582 |
| 12738803 | GLTPD1  | glycolipid transfer protein<br>domain containing 1                       | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0290.000196 |
| 12883393 | GNB2L1  | guanine nucleotide binding protein (G protein), beta po                  | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.05 <sup>a</sup>  | 0.0210.001275 |
| 12802708 | GNL1    | guanine nucleotide binding<br>protein-like 1                             | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.32 <sup>c</sup>  | 0.0470.002236 |
| 12803164 | GNMT    | glycine N-methyltransferase                                              | 1.00 <sup>a</sup> | 1.28 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0430.000946 |
| 12755952 | GOT2    | glutamic-oxaloacetic<br>transaminase 2, mitochondrial<br>(aspartate amin | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0270.003948 |
| 12877228 | GPX4    | glutathione peroxidase 4<br>(phospholipid<br>hydroperoxidase)            | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0460.003630 |
| 12873015 | GRID2   | glutamate receptor,<br>ionotropic, delta 2                               | 1.00 <sup>a</sup> | -1.38 <sup>b</sup> | -1.37 <sup>b</sup> | 0.0470.000396 |
| 12724789 | GRINA   | glutamate receptor,<br>ionotropic, N-methyl D-<br>aspartate-associate    | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0360.002192 |
| 12825077 | GTF2E2  | general transcription factor<br>IIE, polypeptide 2, beta<br>34kDa        | 1.00 <sup>a</sup> | -1.10 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0200.001706 |
| 12816165 | GTF3C1  | general transcription factor<br>IIIC, polypeptide 1, alpha<br>220kD      | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0250.003275 |

| ,        | ,        |                                                                     |                   |                    |                    |               |
|----------|----------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12703161 | GTF3C5   | general transcription factor<br>IIIC, polypeptide 5, 63kDa          | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.16 <sup>b</sup>  | 0.0280.001932 |
| 12862551 | GXYLT1   | glucoside xylosyltransferase<br>1                                   | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0310.003297 |
| 12812382 | HBA      | hemoglobin, alpha 2                                                 | 1.00 <sup>a</sup> | -1.02 <sup>a</sup> | -1.21 <sup>b</sup> | 0.0280.003829 |
| 12780512 | HDAC1    | histone deacetylase 1                                               | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0180.001750 |
| 12753593 | HERPUD1  | homocysteine-inducible,<br>endoplasmic reticulum stress-<br>inducib | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0210.000777 |
| 12881065 | HIST3H2A | histone cluster 3, H2a                                              | 1.00 <sup>a</sup> | -1.47 <sup>b</sup> | -1.34 <sup>b</sup> | 0.0520.000539 |
| 12714795 | HM13     | histocompatibility (minor) 13                                       | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0470.003844 |
| 12859274 | HMOX1    | heme oxygenase (decycling)<br>1                                     | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0380.002913 |
| 12707032 | HNRPLL   | heterogeneous nuclear<br>ribonucleoprotein L-like                   | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.03 <sup>a</sup> | 0.0210.002408 |
| 12848151 | HOOK1    | hook homolog 1 (Drosophila)                                         | 1.00 <sup>a</sup> | -1.22 <sup>b</sup> | -1.12 <sup>c</sup> | 0.0320.000791 |
| 12724458 | HSF1     | heat shock transcription factor 1                                   | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0290.002434 |
| 12900016 | HSF2     | heat shock transcription factor 2                                   | 1.00 <sup>a</sup> | -1.29 <sup>b</sup> | -1.14 <sup>c</sup> | 0.0430.001935 |
| 12793338 | IFI27L2  | family with sequence similarity 14, member A                        | 1.00 <sup>a</sup> | 1.35 <sup>b</sup>  | 1.34 <sup>b</sup>  | 0.0380.000062 |
| 12683438 | IFNAR1   | interferon (alpha, beta and omega) receptor 1                       | 1.00 <sup>a</sup> | -1.06 <sup>b</sup> | 1.06 <sup>c</sup>  | 0.0140.000244 |
| 12698826 | IL18R1   | interleukin 18 receptor 1                                           | 1.00 <sup>a</sup> | -1.29 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0440.004298 |
| 12700517 | IL1RL1   | interleukin 1 receptor-like 1                                       | 1.00 <sup>a</sup> | -1.68 <sup>b</sup> | -1.11 <sup>a</sup> | 0.0880.000887 |
| 12885382 | IL27RA   | interleukin 27 receptor, alpha                                      | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0270.001254 |
| 12843689 | IL6R     | interleukin 6 receptor                                              | 1.00 <sup>a</sup> | -1.27 <sup>b</sup> | -1.10 <sup>c</sup> | 0.0280.001777 |
| 12699444 | IMMT     | inner membrane protein,<br>mitochondrial                            | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0240.001104 |

| Table 5.5 (conti | nued)    |                                                                          |                   |                    |                    |               |
|------------------|----------|--------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12850129         | ING3     | inhibitor of growth family, member 3                                     | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0210.004107 |
| 12757444         | IRF3     | interferon regulatory factor 3                                           | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0320.000674 |
| 12691723         | ISCA2    | iron-sulfur cluster assembly 2<br>homolog (S. cerevisiae)                | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0330.002982 |
| 12768879         | ITGA3    | integrin, alpha 3 (antigen<br>CD49C, alpha 3 subunit of<br>VLA-3 recepto | 1.00 <sup>a</sup> | 1.09 <sup>a</sup>  | 1.24 <sup>b</sup>  | 0.0320.002297 |
| 12894663         | KANK1    | KN motif and ankyrin repeat domains 1                                    | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0290.002600 |
| 12826028         | KCNK1    | potassium channel, subfamily<br>K, member 1                              | 1.00 <sup>a</sup> | 1.33 <sup>b</sup>  | 1.42 <sup>b</sup>  | 0.0730.004316 |
| 12890299         | KIAA0020 | KIAA0020                                                                 | 1.00 <sup>a</sup> | 1.02 <sup>a</sup>  | 1.20 <sup>b</sup>  | 0.0300.002070 |
| 12893285         | KIAA1539 | btKIAA1539                                                               | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0230.002496 |
| 12687612         | KLHL33   | kelch-like 33 (Drosophila)                                               | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | -1.06 <sup>a</sup> | 0.0470.003897 |
| 12699829         | KLRAQ1   | KLRAQ motif containing 1                                                 | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.06 <sup>c</sup> | 0.0250.001191 |
| 12840822         | KRTCAP2  | keratinocyte associated protein 2                                        | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0420.004089 |
| 12872678         | LAP3     | leucine aminopeptidase 3                                                 | 1.00 <sup>a</sup> | -1.06 <sup>a</sup> | 1.14 <sup>b</sup>  | 0.0270.000199 |
| 12791099         | LASS3    | LAG1 homolog, ceramide synthase 3                                        | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.19 <sup>b</sup> | 0.0240.000248 |
| 12817910         | LIMK1    | LIM domain kinase 1                                                      | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.11 <sup>b</sup>  | 0.0250.001312 |
| 12742621         | LIMK2    | LIM domain kinase 2                                                      | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.31 <sup>b</sup>  | 0.0410.002188 |
| 12731643         | LIN7C    | lin-7 homolog C (C. elegans)                                             | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0280.004324 |
| 12842993         | LMNA     | lamin A                                                                  | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.23 <sup>b</sup>  | 0.0410.003505 |
| 12733478         | LMO2     | LIM domain only 2<br>(rhombotin-like 1)                                  | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.00 <sup>a</sup>  | 0.0300.001104 |
| 12709937         | LNX2     | ligand of numb-protein X 2                                               | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.18 <sup>b</sup>  | 0.0250.001035 |

| Table 5.5 (contin | nued)        |                                                               |                   |                    |                    |               |
|-------------------|--------------|---------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12876135          | LOC100124511 | hypothetical protein<br>LOC100124511                          | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.10 <sup>b</sup> | 0.0190.001463 |
| 12902720          | LOC100125231 | melanoma antigen family D,<br>4-like                          | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0370.004444 |
| 12682890          | LOC100139345 | similar to mCG67939                                           | $1.00^{a}$        | -1.16 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0330.003398 |
| 12766595          | LOC100139452 | similar to Ras-related protein<br>Rab-37                      | 1.00 <sup>a</sup> | 1.08 <sup>a</sup>  | -1.16 <sup>b</sup> | 0.0460.004560 |
| 12842284          | LOC100139518 | hypothetical protein<br>LOC100139518                          | 1.00 <sup>a</sup> | 1.09 <sup>a</sup>  | -1.13 <sup>b</sup> | 0.0390.004535 |
| 12692887          | LOC100140532 | similar to novel ankyrin<br>repeat domain containing<br>prote | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | -1.16 <sup>b</sup> | 0.0380.004864 |
| 12811041          | LOC100297063 | hypothetical protein<br>LOC100297063                          | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.06 <sup>a</sup>  | 0.0280.000464 |
| 12693130          | LOC100298870 | hypothetical protein<br>LOC100298870                          | 1.00 <sup>a</sup> | 1.15 <sup>a</sup>  | -1.40 <sup>b</sup> | 0.0910.002192 |
| 12856434          | LOC100300099 | hypothetical LOC100300099                                     | 1.00 <sup>a</sup> | 1.05 <sup>a</sup>  | -1.15 <sup>b</sup> | 0.0380.004210 |
| 12829208          | LOC100300295 | hypothetical protein<br>LOC100300295                          | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | 1.07 <sup>a</sup>  | 0.0240.004601 |
| 12755419          | LOC100300479 | similar to zinc finger protein 347                            | 1.00 <sup>a</sup> | -1.33 <sup>b</sup> | -1.08 <sup>a</sup> | 0.0400.003708 |
| 12902540          | LOC100302527 | hypothetical protein<br>LOC100302527                          | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | -1.13 <sup>a</sup> | 0.0480.001531 |
| 12713427          | LOC100335935 | hypothetical protein<br>LOC100335935                          | 1.00 <sup>a</sup> | -1.42 <sup>b</sup> | -1.54 <sup>b</sup> | 0.0930.003451 |
| 12774061          | LOC100336279 | hypothetical protein<br>LOC100336279                          | 1.00 <sup>a</sup> | 1.08 <sup>b</sup>  | 1.19 <sup>c</sup>  | 0.0240.002733 |
| 12906652          | LOC100336560 | Wiskott-Aldrich syndrome protein-like                         | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | -1.12 <sup>c</sup> | 0.0350.002516 |
| 12902777          | LOC100337433 | SRY-box containing gene 3-<br>like                            | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | -1.04 <sup>a</sup> | 0.0300.003986 |

| 12849524 | LOC504276 | similar to purine-rich element<br>binding protein B                 | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0220.002575 |
|----------|-----------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12761528 | LOC504773 | regakine 1                                                          | 1.00 <sup>a</sup> | 1.39 <sup>b</sup>  | 1.37 <sup>b</sup>  | 0.0660.003907 |
| 12884493 | LOC509184 | transmembrane emp24<br>protein transport domain<br>contain          | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.12 <sup>c</sup>  | 0.0260.000422 |
| 12735389 | LOC510860 | C4b-binding protein alpha-<br>like                                  | 1.00 <sup>a</sup> | 1.32 <sup>b</sup>  | 1.71 <sup>c</sup>  | 0.0810.000751 |
| 12705756 | LOC514980 | similar to Epididymal-<br>specific lipocalin-9 precursor            | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | -1.13 <sup>b</sup> | 0.0230.001007 |
| 12735655 | LOC515150 | similar to C4b-binding<br>protein alpha chain precursor<br>(C4bp) ( | 1.00 <sup>a</sup> | 1.12 <sup>a</sup>  | 1.32 <sup>b</sup>  | 0.0530.004827 |
| 12822330 | LOC518801 | similar to CG17687<br>CG17687-PA                                    | 1.00 <sup>a</sup> | -1.67 <sup>b</sup> | -1.42 <sup>b</sup> | 0.0830.000545 |
| 12892254 | LOC521877 | ADAM metallopeptidase domain 21                                     | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.23 <sup>b</sup> | 0.0330.001347 |
| 12879658 | LOC522449 | hypothetical LOC522449                                              | 1.00 <sup>a</sup> | -1.20 <sup>b</sup> | -1.08 <sup>a</sup> | 0.0320.003881 |
| 12685045 | LOC522736 | similar to aryl hydrocarbon receptor 2                              | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.02 <sup>a</sup>  | 0.0330.002377 |
| 12850554 | LOC523019 | similar to Sp4 transcription factor                                 | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.15 <sup>b</sup> | 0.0190.000531 |
| 12689874 | LOC523056 | similar to BCL2-like 10 (apoptosis facilitator)                     | 1.00 <sup>a</sup> | -1.26 <sup>b</sup> | -1.30 <sup>b</sup> | 0.0380.003795 |
| 12900759 | LOC529052 | similar to F55A4.8a                                                 | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.21 <sup>b</sup> | 0.0370.004408 |
| 12710062 | LOC532698 | hypothetical protein<br>LOC532698                                   | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0250.004882 |
| 12686282 | LOC539374 | similar to Family with sequence similarity 43, membe                | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.24 <sup>b</sup> | 0.0540.004346 |

Table 5.5 (continued)

| 12826933 | LOC540046 | similar to Protein GCAP14<br>homolog                              | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | -1.04 <sup>c</sup> | 0.0140.002327 |
|----------|-----------|-------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12700376 | LOC540073 | TER94-like                                                        | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0190.002229 |
| 12803402 | LOC540812 | hypothetical LOC540812                                            | 1.00 <sup>a</sup> | -1.30 <sup>b</sup> | -1.15 <sup>c</sup> | 0.0420.000947 |
| 12828800 | LOC540918 | hypothetical protein<br>LOC540918                                 | 1.00 <sup>a</sup> | -1.30 <sup>b</sup> | -1.16 <sup>c</sup> | 0.0340.000172 |
| 12834845 | LOC613830 | similar to C11orf61 protein                                       | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0170.001919 |
| 12707896 | LOC614219 | similar to ribosomal protein S23                                  | 1.00 <sup>a</sup> | -1.01 <sup>a</sup> | -1.28 <sup>b</sup> | 0.0320.002266 |
| 12823043 | LOC614416 | similar to Chondroitin sulfate proteoglycan 5 (neuroglycan        | 1.00 <sup>a</sup> | -1.27 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0310.000371 |
| 12905745 | LOC616201 | hypothetical protein                                              | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | -1.08 <sup>a</sup> | 0.0290.002123 |
| 12737570 | LOC617545 | similar to hCG19301                                               | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0310.004218 |
| 12910436 | LOC781486 | similar to melanoma antigen family B, 2                           | 1.00 <sup>a</sup> | 1.05 <sup>a</sup>  | -1.17 <sup>b</sup> | 0.0280.000853 |
| 12759762 | LOC783144 | similar to RPL13 protein-like                                     | 1.00 <sup>a</sup> | 1.28 <sup>b</sup>  | 1.09 <sup>a</sup>  | 0.0500.003017 |
| 12902133 | LOC783232 | similar to fertilin alpha                                         | 1.00 <sup>a</sup> | -1.04 <sup>a</sup> | -1.29 <sup>b</sup> | 0.0410.003357 |
| 12862952 | LOC783379 | KIAA1033-like                                                     | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.13 <sup>b</sup> | 0.0300.001896 |
| 12848053 | LOC784007 | similar to LOC496253 protein                                      | 1.00 <sup>a</sup> | -1.22 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0400.003430 |
| 12748325 | LOC784783 | similar to GTP-binding<br>nuclear protein Ran (GTPase<br>Ran) (R  | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0300.001113 |
| 12784693 | LOC786771 | similar to 40S ribosomal protein SA (p40) (34                     | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | -1.04 <sup>a</sup> | 0.0480.004530 |
| 12882396 | LOC787836 | similar to EGF-like module-<br>containing mucin-like<br>hormone r | 1.00 <sup>a</sup> | 1.52 <sup>b</sup>  | 1.14 <sup>a</sup>  | 0.0700.001167 |
| 12882506 | LOC789554 | similar to olfactory receptor, family 7, subfamily A, memb        | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | -1.07 <sup>a</sup> | 0.0260.003809 |

| Table  | 55     | (continued) |
|--------|--------|-------------|
| I GUIL | ~/ ~~/ | (COMMUNUCU) |

| Table 5.5 (continue | ued)     |                                                                           |                   |                    |                    |               |
|---------------------|----------|---------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12745320            | LRAT     | lecithin retinol<br>acyltransferase<br>(phosphatidylcholineretinol<br>O-a | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | 1.18 <sup>c</sup>  | 0.0340.000322 |
| 12831438            | LRP5     | low density lipoprotein<br>receptor-related protein 5                     | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.11 <sup>c</sup>  | 0.0290.003349 |
| 12861337            | LRP6     | low density lipoprotein<br>receptor-related protein 6                     | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0260.003775 |
| 12877145            | LRRC25   | leucine rich repeat containing 25                                         | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.10 <sup>a</sup>  | 0.0390.002285 |
| 12846866            | LRRC8D   | leucine rich repeat containing<br>8 family, member D                      | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.08 <sup>c</sup>  | 0.0220.002475 |
| 12867385            | LRRK2    | leucine-rich repeat kinase 2                                              | 1.00 <sup>a</sup> | -1.27 <sup>b</sup> | -1.14 <sup>c</sup> | 0.0380.001168 |
| 12804382            | LTA      | lymphotoxin alpha (TNF superfamily, member 1)                             | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | -1.07 <sup>a</sup> | 0.0390.003022 |
| 12784665            | LYPLA2   | lysophospholipase II                                                      | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.15 <sup>c</sup>  | 0.0260.000027 |
| 12688919            | LYSMD2   | LysM, putative<br>peptidoglycan-binding,<br>domain containing 2           | 1.00 <sup>a</sup> | 1.27 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0430.001660 |
| 12846097            | MAGI3    | membrane associated<br>guanylate kinase, WW and<br>PDZ domain contai      | 1.00 <sup>a</sup> | 1.06 <sup>a</sup>  | 1.19 <sup>b</sup>  | 0.0310.004709 |
| 12879542            | MAN2A1   | mannosidase, alpha, class 2A, member 1                                    | 1.00 <sup>a</sup> | -1.06 <sup>a</sup> | 1.07 <sup>b</sup>  | 0.0300.004885 |
| 12788277            | MARVELD2 | MARVEL domain containing 2                                                | 1.00 <sup>a</sup> | -1.07 <sup>a</sup> | 1.09 <sup>b</sup>  | 0.0270.002638 |
| 12886733            | MAST3    | microtubule associated serine                                             | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.09 <sup>c</sup>  | 0.0270.001472 |
| 12721094            | MAVS     | mitochondrial antiviral signaling protein                                 | 1.00 <sup>a</sup> | 1.07 <sup>b</sup>  | 1.13 <sup>c</sup>  | 0.0180.002325 |
| 12877798            | MCOLN1   | mucolipin 1                                                               | 1.00 <sup>a</sup> | 1.27 <sup>b</sup>  | 1.10 <sup>c</sup>  | 0.0290.000309 |

Table 5.5 (continued)

| 12705668 | MFSD9     | major facilitator superfamily                                   | 1.00 <sup>a</sup> | -1.33 <sup>b</sup> | -1.07 <sup>a</sup> | 0.0410.002199 |
|----------|-----------|-----------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12899003 | MGC137021 | hypothetical protein<br>MGC137021                               | 1.00 <sup>a</sup> | -1.41 <sup>b</sup> | -1.07 <sup>a</sup> | 0.0470.000875 |
| 12714218 | MGC138976 | hypothetical LOC506205                                          | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0350.002616 |
| 12891753 | MGC140340 | RMI1, RecQ mediated<br>genome instability 1,<br>homolog (S cere | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | 1.11 <sup>a</sup>  | 0.0500.004331 |
| 12707543 | MGC142792 | similar to Lims E protein                                       | 1.00 <sup>a</sup> | -1.10 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0250.003458 |
| 12694035 | MGC152585 | hypothetical LOC507035                                          | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0170.004624 |
| 12696838 | MGC159550 | hypothetical LOC540184                                          | 1.00 <sup>a</sup> | -1.32 <sup>b</sup> | -1.13 <sup>c</sup> | 0.0360.000227 |
| 12747213 | MGC165715 | hypothetical LOC530484                                          | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.25 <sup>b</sup> | 0.0390.001040 |
| 12711935 | MGC165939 | Uncharacterized protein<br>C13orf18 homolog                     | 1.00 <sup>a</sup> | -1.52 <sup>b</sup> | -1.15 <sup>a</sup> | 0.0420.000201 |
| 12688769 | MGC166084 | hypothetical LOC509393                                          | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0160.000579 |
| 12879792 | MIDN      | midnolin                                                        | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.32 <sup>b</sup>  | 0.0490.001746 |
| 12698235 | MIR1301   | microRNA mir-1301                                               | 1.00 <sup>a</sup> | -1.29 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0320.000028 |
| 12683006 | MIR155    | microRNA mir-155                                                | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.13 <sup>b</sup> | 0.0220.001071 |
| 12791562 | MIR211    | microRNA mir-211                                                | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | -1.14 <sup>b</sup> | 0.0330.002774 |
| 12708822 | MIR2303   | microRNA mir-2303                                               | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.10 <sup>b</sup> | 0.0230.001388 |
| 12794243 | MIR2372   | microRNA mir-2372                                               | 1.00 <sup>a</sup> | -1.09 <sup>a</sup> | 1.21 <sup>b</sup>  | 0.0470.001670 |
| 12842451 | MIR2416   | microRNA mir-2416                                               | 1.00 <sup>a</sup> | 1.06 <sup>a</sup>  | 1.29 <sup>b</sup>  | 0.0280.000081 |
| 12892478 | MIR2473   | microRNA mir-2473                                               | 1.00 <sup>a</sup> | -1.32 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0590.002304 |
| 12679724 | MIS18A    | protein Mis18-alpha                                             | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | -1.04 <sup>a</sup> | 0.0170.000292 |
| 12859364 | MLF2      | myeloid leukemia factor 2                                       | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0340.003484 |
| 12846912 | MLLT11    | myeloid                                                         | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.36 <sup>b</sup>  | 0.0550.004406 |
| 12721755 | MMP16     | matrix metallopeptidase 16<br>(membrane-inserted)               | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0250.000112 |

|          | ,       |                                                                      |                   |                    |                    |               |
|----------|---------|----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12732358 | MPZL3   | myelin protein zero-like 3                                           | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0220.004128 |
| 12818395 | MRPS34  | mitochondrial ribosomal protein S34                                  | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.12 <sup>c</sup>  | 0.0340.001237 |
| 12896461 | MTHFD1L | methylenetetrahydrofolate<br>dehydrogenase (NADP+<br>dependent) 1-   | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.33 <sup>b</sup>  | 0.0420.002110 |
| 12710450 | MTMR6   | myotubularin related protein<br>6                                    | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | -1.09 <sup>b</sup> | 0.0160.003962 |
| 12697268 | MTX3    | metaxin 3                                                            | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.19 <sup>b</sup> | 0.0370.000538 |
| 12745765 | MVK     | mevalonate kinase                                                    | 1.00 <sup>a</sup> | 1.04 <sup>b</sup>  | -1.04 <sup>c</sup> | 0.0150.001540 |
| 12896715 | MYB     | v-myb myeloblastosis viral<br>oncogene homolog (avian)               | 1.00 <sup>a</sup> | -1.29 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0470.001758 |
| 12686285 | MYNN    | myoneurin                                                            | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0270.003876 |
| 12710371 | NAA16   | N(alpha)-acetyltransferase<br>16, NatA auxiliary subunit             | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.08 <sup>b</sup> | 0.0260.002728 |
| 12830931 | NAA40   | N(alpha)-acetyltransferase<br>40, NatD catalytic subunit,<br>homolog | 1.00ª             | 1.19 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0390.002047 |
| 12781710 | NAB1    | NGFI-A binding protein 1<br>(EGR1 binding protein 1)                 | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | 1.06 <sup>a</sup>  | 0.0290.001415 |
| 12864496 | NAB2    | NGFI-A binding protein 2<br>(EGR1 binding protein 2)                 | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.42 <sup>b</sup>  | 0.0730.004579 |
| 12854527 | NAMPT   | nicotinamide<br>phosphoribosyltransferase                            | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0260.000542 |
| 12891577 | NANS    | N-acetylneuraminic acid<br>synthase                                  | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0340.004953 |
| 12883428 | NDUFA2  | NADH dehydrogenase<br>(ubiquinone) 1 alpha<br>subcomplex, 2, 8kDa    | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0310.003240 |
| 12815307 | NDUFAB1 | NADH dehydrogenase<br>(ubiquinone) 1, alpha                          | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.12 <sup>c</sup>  | 0.0270.001157 |

Table 5.5 (continued)

|          | ,         |                                                                     |                   |                    |                    |               |
|----------|-----------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12774890 | NEB       | nebulin                                                             | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.17 <sup>b</sup> | 0.0330.003038 |
| 12887575 | NFIC      | nuclear factor I                                                    | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0200.003140 |
| 12791746 | NFKBIA    | nuclear factor of kappa light<br>polypeptide gene enhancer in<br>B- | 1.00 <sup>a</sup> | -1.44 <sup>b</sup> | -1.24 <sup>b</sup> | 0.0650.004582 |
| 12803223 | NFYA      | nuclear transcription factor Y, alpha                               | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.10 <sup>b</sup>  | 0.0150.001019 |
| 12775945 | NINJ1     | ninjurin 1                                                          | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0320.003704 |
| 12815983 | NLRC3     | NLR family, CARD domain containing 3                                | 1.00 <sup>a</sup> | 1.04 <sup>a</sup>  | -1.17 <sup>b</sup> | 0.0340.000468 |
| 12851927 | NME1-NME2 | NME1-NME2 readthrough                                               | 1.00 <sup>a</sup> | 1.36 <sup>b</sup>  | 1.26 <sup>b</sup>  | 0.0500.000390 |
| 12910154 | NONO      | non-POU domain containing, octamer-binding                          | 1.00 <sup>a</sup> | 1.08 <sup>b</sup>  | 1.03 <sup>a</sup>  | 0.0110.003000 |
| 12718233 | NOP56     | NOP56 ribonucleoprotein<br>homolog (yeast)                          | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0220.004132 |
| 12752495 | NPAS1     | neuronal PAS domain protein<br>1                                    | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | -1.12 <sup>c</sup> | 0.0320.001194 |
| 12713592 | NPBWR2    | neuropeptides B                                                     | 1.00 <sup>a</sup> | 1.01 <sup>a</sup>  | -1.17 <sup>b</sup> | 0.0340.004519 |
| 12679345 | NPHP3     | nephronophthisis 3<br>(adolescent)                                  | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0250.003137 |
| 12821454 | NT5C2     | 5'-nucleotidase, cytosolic II                                       | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.16 <sup>b</sup> | 0.0340.004432 |
| 12791125 | NUBPL     | nucleotide binding protein-<br>like                                 | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.14 <sup>b</sup> | 0.0400.002994 |
| 12794079 | NUP210    | nucleoporin 210                                                     | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.01 <sup>a</sup>  | 0.0140.001641 |
| 12858331 | NUP50     | nucleoporin 50kDa                                                   | 1.00 <sup>a</sup> | -1.02 <sup>a</sup> | 1.16 <sup>b</sup>  | 0.0210.000159 |
| 12753711 | NUTF2     | nuclear transport factor 2                                          | 1.00 <sup>a</sup> | 1.07 <sup>b</sup>  | 1.10 <sup>b</sup>  | 0.0200.003096 |
| 12836937 | OMA1      | OMA1 homolog, zinc<br>metallopeptidase (S.<br>cerevisiae)           | 1.00 <sup>a</sup> | -1.37 <sup>b</sup> | -1.18 <sup>c</sup> | 0.0580.002711 |

| Table 5.5 (conti | nued)   |                                                           |                   |                    |                    |               |
|------------------|---------|-----------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12686108         | OSBPL11 | oxysterol binding protein-like 11                         | 1.00 <sup>a</sup> | -1.26 <sup>b</sup> | -1.10 <sup>c</sup> | 0.0200.000218 |
| 12851380         | OSBPL3  | oxysterol binding protein-like 3                          | 1.00 <sup>a</sup> | 1.09 <sup>a</sup>  | 1.38 <sup>b</sup>  | 0.0550.004536 |
| 12776601         | OSGEPL1 | O-sialoglycoprotein<br>endopeptidase-like 1               | 1.00 <sup>a</sup> | -1.31 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0320.000349 |
| 12731077         | P4HA3   | prolyl 4-hydroxylase, alpha<br>polypeptide III            | 1.00 <sup>a</sup> | -1.36 <sup>b</sup> | -1.08 <sup>a</sup> | 0.0570.003208 |
| 12832821         | PAG11   | pregnancy-associated<br>glycoprotein 11                   | 1.00 <sup>a</sup> | -1.34 <sup>b</sup> | -1.32 <sup>b</sup> | 0.0590.003888 |
| 12882286         | PALM    | paralemmin                                                | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | -1.02 <sup>a</sup> | 0.0350.004348 |
| 12787282         | PANK3   | pantothenate kinase 3                                     | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0340.001657 |
| 12884529         | PCDH1   | protocadherin 1                                           | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.08 <sup>b</sup>  | 0.0160.000485 |
| 12876146         | PCDHGC3 | protocadherin gamma<br>subfamily C, 3                     | 1.00 <sup>a</sup> | 1.27 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0410.000861 |
| 12693599         | PCK2    | phosphoenolpyruvate<br>carboxykinase 2<br>(mitochondrial) | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0270.003696 |
| 12825212         | PCM1    | pericentriolar material 1                                 | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.07 <sup>b</sup> | 0.0220.003172 |
| 12853639         | PDK4    | pyruvate dehydrogenase<br>kinase, isozyme 4               | 1.00 <sup>a</sup> | -1.76 <sup>b</sup> | -1.47 <sup>b</sup> | 0.1190.003779 |
| 12761334         | PEMT    | phosphatidylethanolamine N-<br>methyltransferase          | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.10 <sup>b</sup>  | 0.0280.004954 |
| 12682676         | PFN1    | profilin 1                                                | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.24 <sup>b</sup>  | 0.0460.002123 |
| 12732120         | PGM2L1  | phosphoglucomutase 2-like 1                               | 1.00 <sup>a</sup> | -1.40 <sup>b</sup> | -1.41 <sup>b</sup> | 0.0670.002707 |
| 12812393         | PHKG2   | phosphorylase kinase, gamma<br>2 (testis)                 | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0240.002756 |
| 12860985         | PICK1   | protein interacting with PRKCA 1                          | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.24 <sup>b</sup>  | 0.0330.000841 |
| 12772901         | PITPNA  | phosphatidylinositol transfer protein, alpha              | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0350.003281 |

| Table 5.5 (co | ontinued) |
|---------------|-----------|
|---------------|-----------|

|     | Table 5.5 (continu | ied)     |                                                                   |                   |                    |                    |               |
|-----|--------------------|----------|-------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
|     | 12771785           | PMP22    | peripheral myelin protein 22                                      | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.31 <sup>c</sup> | 0.0470.001497 |
|     | 12819454           | PNLIPRP2 | pancreatic lipase-related protein 2                               | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | -1.02 <sup>a</sup> | 0.0160.002468 |
|     | 12779481           | POLR2D   | polymerase (RNA) II (DNA<br>directed) polypeptide D               | 1.00 <sup>a</sup> | 1.05 <sup>a</sup>  | 1.24 <sup>b</sup>  | 0.0280.000124 |
|     | 12702934           | POMT1    | protein-O-<br>mannosyltransferase 1                               | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.11 <sup>b</sup>  | 0.0310.002608 |
|     | 12724871           | POP1     | processing of precursor 1, ribonuclease P                         | 1.00 <sup>a</sup> | 1.10 <sup>b</sup>  | 1.24 <sup>c</sup>  | 0.0340.002457 |
|     | 12813437           | POR      | P450 (cytochrome) oxidoreductase                                  | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0340.003956 |
|     | 12866906           | PPHLN1   | periphilin 1                                                      | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0280.004763 |
|     | 12844589           | PPIH     | peptidylprolyl isomerase H<br>(cyclophilin H)                     | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0340.003938 |
| 197 | 12833867           | PPP1CA   | protein phosphatase 1,<br>catalytic subunit, alpha<br>isozyme     | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0290.002950 |
|     | 12697381           | PPP1R14D | protein phosphatase 1,<br>regulatory (inhibitor) subunit<br>14D   | 1.00 <sup>a</sup> | 1.07 <sup>a</sup>  | 1.22 <sup>b</sup>  | 0.0270.000926 |
|     | 12687438           | PPP2R3A  | protein phosphatase 2<br>(formerly 2A), regulatory<br>subunit B", | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0250.002523 |
|     | 12809449           | PPP4R1   | protein phosphatase 4,<br>regulatory subunit 1                    | 1.00 <sup>a</sup> | 1.04 <sup>a</sup>  | 1.13 <sup>b</sup>  | 0.0140.002877 |
|     | 12798367           | PPP4R2   | protein phosphatase 4,<br>regulatory subunit 2                    | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0300.000689 |
|     | 12896699           | PREP     | prolyl endopeptidase                                              | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0310.003455 |
|     | 12798533           | PRKCD    | protein kinase C, delta                                           | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.25 <sup>b</sup>  | 0.0430.001261 |
|     | 12757145           | PRPF31   | PRP31 pre-mRNA processing factor 31 homolog (S. cerevis           | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.10 <sup>c</sup>  | 0.0300.000416 |

| Table 5.5  | (continued) |
|------------|-------------|
| 1 auto 5.5 | (commucu)   |

| 12843627 | PRPF38A | PRP38 pre-mRNA processing<br>factor 38 (yeast) domain<br>containin | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0330.004499 |
|----------|---------|--------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12805379 | PRPF4B  | PRP4 pre-mRNA processing<br>factor 4 homolog B (yeast)             | 1.00 <sup>a</sup> | -1.06 <sup>b</sup> | 1.03 <sup>a</sup>  | 0.0130.004034 |
| 12813522 | PRR14   | proline rich 14                                                    | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0280.003635 |
| 12817104 | PRSS27  | protease, serine 27                                                | 1.00 <sup>a</sup> | -1.00 <sup>a</sup> | -1.22 <sup>b</sup> | 0.0360.000775 |
| 12691536 | PRTG    | protogenin                                                         | 1.00 <sup>a</sup> | -1.38 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0560.000335 |
| 12749769 | PSENEN  | presenilin enhancer 2<br>homolog (C. elegans)                      | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.13 <sup>c</sup>  | 0.0260.000202 |
| 12751335 | PSMD8   | proteasome (prosome,<br>macropain) 26S subunit, non-<br>ATPase, 8  | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0360.001973 |
| 12808197 | PSMG2   | proteasome (prosome,<br>macropain) assembly<br>chaperone 2         | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.23 <sup>c</sup>  | 0.0390.002869 |
| 12819493 | PSTK    | phosphoseryl-tRNA kinase                                           | 1.00 <sup>a</sup> | -1.45 <sup>b</sup> | -1.18 <sup>c</sup> | 0.0510.000141 |
| 12809935 | PSTPIP2 | proline-serine-threonine<br>phosphatase interacting<br>protein 2   | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | 1.08 <sup>a</sup>  | 0.0480.004152 |
| 12698053 | PUM2    | pumilio homolog 2<br>(Drosophila)                                  | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0210.001237 |
| 12707977 | PUS10   | pseudouridylate synthase 10                                        | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.11 <sup>c</sup> | 0.0300.000513 |
| 12818183 | QPRT    | quinolinate<br>phosphoribosyltransferase                           | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0240.001686 |
| 12843452 | RAB25   | RAB25, member RAS<br>oncogene family                               | 1.00 <sup>a</sup> | 1.28 <sup>b</sup>  | 1.29 <sup>b</sup>  | 0.0510.002290 |
| 12748015 | RAB35   | RAB35, member RAS<br>oncogene family                               | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0310.002854 |
| 12882589 | RAB8A   | RAB8A, member RAS<br>oncogene family                               | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0300.002103 |
Table 5.5 (continued)

| 12705580 | RALGDS        | ral guanine nucleotide<br>dissociation stimulator                   | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0390.001348 |
|----------|---------------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12842709 | RAP1A         | RAP1A, member of RAS oncogene family                                | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0290.002002 |
| 12762096 | RASD1         | RAS, dexamethasone-<br>induced 1                                    | 1.00 <sup>a</sup> | -1.68 <sup>b</sup> | -1.34 <sup>c</sup> | 0.0840.001633 |
| 12893594 | RASEF         | RAS and EF-hand domain containing                                   | 1.00 <sup>a</sup> | -1.46 <sup>b</sup> | -1.13 <sup>a</sup> | 0.0430.002794 |
| 12873681 | RASGEF1B      | RasGEF domain family, member 1B                                     | 1.00 <sup>a</sup> | -1.37 <sup>b</sup> | -1.18 <sup>c</sup> | 0.0400.000074 |
| 12867519 | RASSF3        | Ras association (RalGDS                                             | $1.00^{a}$        | -1.30 <sup>b</sup> | -1.14 <sup>c</sup> | 0.0380.000443 |
| 12722010 | RBM12B        | RNA binding motif protein 12B                                       | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.07 <sup>c</sup> | 0.0250.004241 |
| 12849958 | RBM33         | RNA binding motif protein 33                                        | 1.00 <sup>a</sup> | 1.05 <sup>a</sup>  | -1.07 <sup>b</sup> | 0.0230.004934 |
| 12907794 | RBMX          | RNA binding motif protein,<br>X-linked                              | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | -1.05 <sup>c</sup> | 0.0210.002635 |
| 12875984 | RELL1         | RELT-like 1                                                         | 1.00 <sup>a</sup> | -1.01 <sup>a</sup> | 1.18 <sup>b</sup>  | 0.0330.001447 |
| 12901006 | REPS1         | RALBP1 associated Eps domain containing 1                           | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0230.001435 |
| 12693205 | RHEB          | Ras homolog enriched in brain                                       | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0190.003562 |
| 12839908 | RIT1          | Ras-like without CAAX 1                                             | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0220.000106 |
| 12879151 | RMND5B        | required for meiotic nuclear<br>division 5 homolog B (S.<br>cerevis | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.10 <sup>c</sup>  | 0.0240.000397 |
| 12841126 | RNF115        | ring finger protein 115                                             | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0130.002442 |
| 12705891 | <b>RNF181</b> | ring finger protein 181                                             | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0200.001115 |
| 12698562 | ROCK2         | Rho-associated, coiled-coil containing protein kinase 2             | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.03 <sup>a</sup> | 0.0260.004939 |
| 12757517 | RPGRIP1L      | RPGRIP1-like                                                        | 1.00 <sup>a</sup> | -1.22 <sup>b</sup> | -1.11 <sup>c</sup> | 0.0320.002587 |

| Table 5.5 ( | continued) |
|-------------|------------|
|-------------|------------|

| 12697019 | RPL36AL  | ribosomal protein L36a-like                                          | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.02 <sup>a</sup>  | 0.0170.003333 |
|----------|----------|----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12802388 | RPL7L1   | ribosomal protein L7-like 1                                          | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0230.001063 |
| 12743489 | RSRC2    | arginine                                                             | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0210.000678 |
| 12689648 | RTF1     | Rtf1, Paf1                                                           | 1.00 <sup>a</sup> | -1.06 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0140.003807 |
| 12765283 | RUNDC3A  | RUN domain containing 3A                                             | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.23 <sup>b</sup>  | 0.0410.001828 |
| 12825048 | RWDD4    | RWD domain containing 4                                              | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0240.002495 |
| 12695025 | SAV1     | salvador homolog 1<br>(Drosophila)                                   | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0380.004911 |
| 12843873 | SCP2     | sterol carrier protein 2                                             | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.25 <sup>b</sup> | 0.0460.004580 |
| 12726044 | SDC2     | syndecan 2                                                           | 1.00 <sup>a</sup> | 1.02 <sup>a</sup>  | 1.21 <sup>b</sup>  | 0.0390.003408 |
| 12774661 | SDHB     | succinate dehydrogenase<br>complex, subunit B, iron<br>sulfur (Ip)   | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.03 <sup>a</sup>  | 0.0250.003311 |
| 12782736 | SDPR     | serum deprivation response                                           | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.18 <sup>b</sup> | 0.0340.003571 |
| 12798942 | SEC13    | SEC13 homolog (S. cerevisiae)                                        | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0410.001450 |
| 12770064 | SEC14L1  | SEC14-like 1 (S. cerevisiae)                                         | 1.00 <sup>a</sup> | 1.09 <sup>a</sup>  | 1.26 <sup>b</sup>  | 0.0390.002855 |
| 12742060 | SEC14L2  | SEC14-like 2 (S. cerevisiae)                                         | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.32 <sup>b</sup>  | 0.0410.000822 |
| 12826094 | SEC24C   | SEC24 family, member C (S. cerevisiae)                               | 1.00 <sup>a</sup> | 1.08 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0160.002926 |
| 12870423 | SEC24D   | SEC24 family, member D (S. cerevisiae)                               | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.18 <sup>b</sup>  | 0.0340.001266 |
| 12798378 | SEC61A1  | Sec61 alpha 1 subunit (S. cerevisiae)                                | 1.00 <sup>a</sup> | 1.24 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0410.002461 |
| 12761154 | SERPINF2 | serpin peptidase inhibitor,<br>clade F (alpha-2 antiplasmin,<br>pigm | 1.00 <sup>a</sup> | -1.02 <sup>a</sup> | -1.21 <sup>b</sup> | 0.0220.000315 |

| Table  | 5.5 | (continued) | ) |
|--------|-----|-------------|---|
| I GOIC | 2.2 | continueu   | , |

| 12727477 | SERPINH1 | serpin peptidase inhibitor,<br>clade H (heat shock protein<br>47) | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.33 <sup>b</sup>  | 0.0400.000301 |
|----------|----------|-------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12779743 | SESTD1   | SEC14 and spectrin domains 1                                      | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0280.003866 |
| 12811815 | SEZ6L2   | seizure related 6 homolog<br>(mouse)-like 2                       | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.08 <sup>c</sup>  | 0.0320.004676 |
| 12795342 | SFMBT1   | Scm-like with four mbt domains 1                                  | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.09 <sup>c</sup>  | 0.0280.002702 |
| 12899008 | SFRS18   | splicing factor, arginine                                         | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0260.003542 |
| 12819502 | SFXN3    | sideroflexin 3                                                    | 1.00 <sup>a</sup> | 1.25 <sup>b</sup>  | 1.29 <sup>b</sup>  | 0.0420.000607 |
| 12761383 | SHBG     | sex hormone-binding<br>globulin                                   | 1.00 <sup>a</sup> | 1.16 <sup>b</sup>  | 1.11 <sup>b</sup>  | 0.0170.002561 |
| 12864912 | SHMT2    | serine<br>hydroxymethyltransferase 2<br>(mitochondrial)           | 1.00 <sup>a</sup> | 1.29 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0410.000848 |
| 12790177 | SIN3A    | SIN3 homolog A,<br>transcription regulator (yeast)                | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.11 <sup>b</sup>  | 0.0160.000442 |
| 12710363 | SLAIN1   | SLAIN motif family, member 1                                      | 1.00 <sup>a</sup> | -1.26 <sup>b</sup> | -1.07 <sup>a</sup> | 0.0360.000341 |
| 12769217 | SLC25A39 | solute carrier family 25, member 39                               | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.20 <sup>b</sup>  | 0.0370.001891 |
| 12696210 | SLC27A2  | solute carrier family 27 (fatty acid transporter), member 2       | 1.00 <sup>a</sup> | 1.08 <sup>a</sup>  | -1.15 <sup>b</sup> | 0.0390.002407 |
| 12758460 | SLC27A5  | solute carrier family 27 (fatty acid transporter), member 5       | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.00 <sup>a</sup>  | 0.0270.004638 |
| 12729666 | SLC35C1  | solute carrier family 35,<br>member C1                            | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.42 <sup>b</sup>  | 0.0500.000826 |
| 12900723 | SLC35F1  | solute carrier family 35, member F1                               | 1.00 <sup>a</sup> | -1.52 <sup>b</sup> | -1.26 <sup>c</sup> | 0.0540.003264 |
| 12691151 | SLC39A9  | solute carrier family 39 (zinc transporter), member 9             | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.17 <sup>b</sup>  | 0.0270.004127 |

| Table 5.5 (continued) |
|-----------------------|
|-----------------------|

| 12739370 | SLC45A1 | solute carrier family 45, member 1                                    | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0260.004130 |
|----------|---------|-----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12722615 | SLC45A4 | solute carrier family 45, member 4                                    | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | -1.01 <sup>a</sup> | 0.0170.000066 |
| 12777931 | SLC4A3  | solute carrier family 4, anion exchanger, member 3                    | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | 1.16 <sup>b</sup>  | 0.0360.002173 |
| 12798802 | SLC4A7  | solute carrier family 4,<br>sodium bicarbonate<br>cotransporter, me   | 1.00 <sup>a</sup> | -1.23 <sup>b</sup> | -1.09 <sup>c</sup> | 0.0310.000333 |
| 12867619 | SLC4A8  | solute carrier family 4,<br>sodium bicarbonate<br>cotransport         | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0300.001077 |
| 12683494 | SLC5A3  | solute carrier family 5<br>(inositol transporters),<br>member 3       | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | 1.00 <sup>a</sup>  | 0.0240.004110 |
| 12883870 | SLC5A5  | solute carrier family 5<br>(sodium iodide symporter),<br>memb         | 1.00 <sup>a</sup> | 1.04 <sup>a</sup>  | -1.18 <sup>b</sup> | 0.0370.002054 |
| 12864073 | SLC6A15 | solute carrier family 6<br>(neutral amino acid<br>transporter), membe | 1.00 <sup>a</sup> | 1.21 <sup>b</sup>  | -1.16 <sup>a</sup> | 0.0520.003426 |
| 12843025 | SLC6A17 | solute carrier family 6,<br>member 17                                 | 1.00 <sup>a</sup> | 1.32 <sup>b</sup>  | 1.11 <sup>c</sup>  | 0.0370.001031 |
| 12700968 | SLC9A2  | solute carrier family 9<br>(sodium                                    | 1.00 <sup>a</sup> | -1.30 <sup>b</sup> | 1.05 <sup>a</sup>  | 0.0390.000107 |
| 12820519 | SLK     | STE20-like kinase                                                     | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.06 <sup>c</sup> | 0.0220.000793 |
| 12822402 | SMNDC1  | survival motor neuron domain containing 1                             | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0310.003826 |
| 12895130 | SMU1    | smu-1 suppressor of mec-8<br>and unc-52 homolog (C.<br>elegans)       | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.05 <sup>c</sup> | 0.0160.002719 |

| 12761769 | SNF8       | SNF8, ESCRT-II complex<br>subunit, homolog (S.                        | 1.00 <sup>a</sup> | 1.12 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0250.001929 |
|----------|------------|-----------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12705102 | SNRNP200   | small nuclear<br>ribonucleoprotein 200kDa<br>(U5)                     | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.16 <sup>b</sup>  | 0.0240.001534 |
| 12681751 | SPATA16    | spermatogenesis associated                                            | 1.00 <sup>a</sup> | -1.51 <sup>b</sup> | -1.59 <sup>b</sup> | 0.1040.003659 |
| 12880047 | SPINK5     | serine peptidase inhibitor,<br>Kazal type 5                           | 1.00 <sup>a</sup> | -1.07 <sup>a</sup> | -1.20 <sup>b</sup> | 0.0300.001911 |
| 12690591 | SPINT1     | serine peptidase inhibitor,<br>Kunitz type 1                          | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0300.004018 |
| 12809817 | SPIRE1     | spire homolog 1 (Drosophila)                                          | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | 1.06 <sup>c</sup>  | 0.0160.000004 |
| 12781179 | SPOPL      | speckle-type POZ protein-<br>like                                     | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.09 <sup>c</sup> | 0.0270.002507 |
| 12738745 | SPSB1      | splA                                                                  | 1.00 <sup>a</sup> | 1.08 <sup>a</sup>  | 1.25 <sup>b</sup>  | 0.0440.004244 |
| 12736354 | SRP9       | signal recognition particle<br>9kDa                                   | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0370.002371 |
| 12861559 | SRSF2IP    | serine                                                                | 1.00 <sup>a</sup> | -1.14 <sup>b</sup> | -1.04 <sup>a</sup> | 0.0170.000956 |
| 12716125 | SRXN1      | sulfiredoxin 1                                                        | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.51 <sup>c</sup>  | 0.0720.003800 |
| 12837024 | SSR2       | signal sequence receptor, beta<br>(translocon-associated protein<br>b | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.14 <sup>b</sup>  | 0.0260.001949 |
| 12903267 | SSR4       | signal sequence receptor,<br>delta (translocon-associated<br>protein  | 1.00 <sup>a</sup> | 1.20 <sup>b</sup>  | 1.10 <sup>c</sup>  | 0.0280.002520 |
| 12704183 | ST6GALNAC2 | ST6 (alpha-N-acetyl-<br>neuraminyl-2,3-beta-<br>galactosyl-1 3)-N-ac  | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.19 <sup>b</sup>  | 0.0340.002065 |
| 12852887 | ST7        | suppression of tumorigenicity                                         | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.13 <sup>b</sup>  | 0.0290.004896 |

| 12809232 | ST8SIA5 | ST8 alpha-N-acetyl-<br>neuraminide alpha-2,8-                                               | 1.00 <sup>a</sup> | 1.22 <sup>b</sup>  | 1.22 <sup>b</sup>  | 0.0420.003404 |
|----------|---------|---------------------------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12718263 | ST8SIA6 | stalyltransferase 5<br>ST8 alpha-N-acetyl-<br>neuraminide alpha-2,8-<br>sialyltransferase 6 | 1.00 <sup>a</sup> | -1.39 <sup>b</sup> | -1.25 <sup>b</sup> | 0.0670.004024 |
| 12768925 | STAT3   | signal transducer and<br>activator of transcription 3                                       | 1.00 <sup>a</sup> | 1.05ª              | 1.19 <sup>b</sup>  | 0.0320.003168 |
| 12719219 | STAU1   | staufen, RNA binding<br>protein, homolog 1                                                  | 1.00 <sup>a</sup> | -1.03ª             | 1.08 <sup>b</sup>  | 0.0150.001211 |
| 12831915 | STIP1   | (Drosophila)<br>stress-induced-<br>phosphoprotein 1 (Hsp70                                  | 1.00 <sup>a</sup> | 1.10 <sup>b</sup>  | 1.18 <sup>c</sup>  | 0.0350.003472 |
| 12776910 | STK16   | serine                                                                                      | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0320.002165 |
| 12838532 | STK40   | serine                                                                                      | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.21 <sup>c</sup>  | 0.0280.002233 |
| 12719749 | STX16   | syntaxin 16                                                                                 | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.11 <sup>c</sup> | 0.0270.001370 |
| 12891106 | STX17   | syntaxin 17                                                                                 | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0230.003178 |
| 12898392 | STXBP5  | syntaxin binding protein 5<br>(tomosyn)                                                     | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0180.003925 |
| 12746819 | SUHW2   | suppressor of hairy wing<br>homolog 2                                                       | 1.00 <sup>a</sup> | 1.10 <sup>a</sup>  | 1.87 <sup>b</sup>  | 0.1020.002525 |
| 12678716 | SYNJ1   | synaptojanin 1                                                                              | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.07 <sup>c</sup> | 0.0120.000062 |
| 12695481 | SYNJ2BP | synaptojanin 2 binding protein                                                              | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0110.003501 |
| 12875470 | SYNPO2  | synaptopodin 2                                                                              | 1.00 <sup>a</sup> | -1.46 <sup>b</sup> | -1.38 <sup>b</sup> | 0.0680.003691 |
| 12831287 | TAF6L   | TAF6-like RNA polymerase<br>II, p300                                                        | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.17 <sup>b</sup>  | 0.0220.000169 |
| 12764103 | TANC2   | tetratricopeptide repeat,<br>ankyrin repeat and coiled-coil<br>conta                        | 1.00 <sup>a</sup> | 1.17 <sup>b</sup>  | 1.11 <sup>b</sup>  | 0.0250.001075 |

| 12806911 | TAP2           | transporter 2, ATP-binding cassette, sub-family B (MDR | 1.00 <sup>a</sup> | -1.35 <sup>b</sup> | -1.38 <sup>b</sup> | 0.0560.003005 |
|----------|----------------|--------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12845308 | TCTEX1D1       | Tctex1 domain containing 1                             | 1.00 <sup>a</sup> | -1.40 <sup>b</sup> | -1.11 <sup>a</sup> | 0.0640.004251 |
| 12827943 | TFAM           | transcription factor A, mitochondrial                  | 1.00 <sup>a</sup> | -1.20 <sup>b</sup> | -1.09 <sup>c</sup> | 0.0300.002470 |
| 12755803 | TGFB1          | transforming growth factor, beta 1                     | 1.00 <sup>a</sup> | 1.30 <sup>b</sup>  | 1.46 <sup>b</sup>  | 0.0480.000291 |
| 12825460 | THAP1          | THAP domain containing, apoptosis associated protein 1 | 1.00 <sup>a</sup> | -1.26 <sup>b</sup> | -1.10 <sup>c</sup> | 0.0310.000187 |
| 12780012 | THSD7B         | thrombospondin, type I,<br>domain containing 7B-like   | 1.00 <sup>a</sup> | -1.52 <sup>b</sup> | -1.26 <sup>c</sup> | 0.0510.000539 |
| 12686567 | TIPARP         | TCDD-inducible poly(ADP-<br>ribose) polymerase         | 1.00 <sup>a</sup> | -1.63 <sup>b</sup> | -1.24 <sup>c</sup> | 0.0780.000537 |
| 12709691 | TM9SF2         | transmembrane 9 superfamily<br>member 2                | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | 1.07 <sup>b</sup>  | 0.0170.002635 |
| 12818583 | TMC7           | transmembrane channel-like<br>7                        | 1.00 <sup>a</sup> | -1.48 <sup>b</sup> | -1.10 <sup>a</sup> | 0.0610.000428 |
| 12770490 | <b>TMEM101</b> | transmembrane protein 101                              | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.09 <sup>b</sup>  | 0.0260.004874 |
| 12830423 | TMEM179B       | transmembrane protein 179B                             | 1.00 <sup>a</sup> | 1.14 <sup>b</sup>  | 1.03 <sup>a</sup>  | 0.0210.000600 |
| 12737891 | TMEM9          | transmembrane protein 9                                | 1.00 <sup>a</sup> | 1.23 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0300.001120 |
| 12690496 | TMOD3          | tropomodulin 3 (ubiquitous)                            | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.02 <sup>a</sup> | 0.0210.000091 |
| 12885622 | TMPRSS9        | transmembrane protease,<br>serine 9                    | 1.00 <sup>a</sup> | 1.02 <sup>a</sup>  | -1.20 <sup>b</sup> | 0.0430.002912 |
| 12833169 | TNNI2          | troponin I type 2 (skeletal, fast)                     | 1.00 <sup>a</sup> | 1.11 <sup>b</sup>  | -1.13 <sup>c</sup> | 0.0360.002979 |
| 12856205 | TPK1           | thiamin pyrophosphokinase 1                            | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.13 <sup>b</sup> | 0.0270.001791 |
| 12682407 | TRA2B          | transformer 2 beta homolog<br>(Drosophila)             | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | 1.00 <sup>a</sup>  | 0.0140.000534 |
| 12800251 | TRH            | thyrotropin-releasing<br>hormone                       | 1.00 <sup>a</sup> | -1.19 <sup>b</sup> | -1.07 <sup>a</sup> | 0.0310.001559 |

| Table 5.5 | (continued) |  |
|-----------|-------------|--|
|           |             |  |

| 12696584 | TRIM36  | tripartite motif-containing 36                                 | 1.00 <sup>a</sup> | -1.22 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0280.000671 |
|----------|---------|----------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12730210 | TRIM44  | tripartite motif-containing 44                                 | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0190.001088 |
| 12706838 | TSC1    | tuberous sclerosis 1                                           | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | -1.10 <sup>b</sup> | 0.0170.000680 |
| 12786004 | TTC33   | tetratricopeptide repeat<br>domain 33                          | 1.00 <sup>a</sup> | -1.24 <sup>b</sup> | -1.29 <sup>b</sup> | 0.0510.001320 |
| 12707414 | TUBB2C  | tubulin, beta 2C                                               | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.27 <sup>b</sup>  | 0.0470.003575 |
| 12679811 | TXLNA   | taxilin alpha                                                  | 1.00 <sup>a</sup> | 1.03 <sup>a</sup>  | 1.16 <sup>b</sup>  | 0.0350.003683 |
| 12837120 | TXNDC12 | thioredoxin domain<br>containing 12 (endoplasmic<br>reticulum) | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | 1.10 <sup>b</sup>  | 0.0200.002815 |
| 12801023 | TXNDC5  | thioredoxin domain<br>containing 5 (endoplasmic<br>reticulum)  | 1.00 <sup>a</sup> | 1.26 <sup>b</sup>  | 1.34 <sup>b</sup>  | 0.0500.001771 |
| 12837074 | TXNIP   | thioredoxin interacting protein                                | 1.00 <sup>a</sup> | -1.48 <sup>b</sup> | -1.35 <sup>b</sup> | 0.0560.000389 |
| 12857179 | TXNRD1  | thioredoxin reductase 1                                        | 1.00 <sup>a</sup> | -1.04 <sup>a</sup> | 1.12 <sup>b</sup>  | 0.0240.000666 |
| 12748228 | UBE2L3  | ubiquitin-conjugating enzyme<br>E2L 3                          | 1.00 <sup>a</sup> | 1.07 <sup>b</sup>  | 1.12 <sup>b</sup>  | 0.0160.002914 |
| 12759033 | UBE2M   | ubiquitin-conjugating enzyme<br>E2M (UBC12 homolog,<br>yeast)  | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.21 <sup>b</sup>  | 0.0320.001375 |
| 12849657 | UBE3C   | ubiquitin protein ligase E3C                                   | 1.00 <sup>a</sup> | -1.18 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0250.000117 |
| 12767886 | UBTF    | upstream binding<br>transcription factor, RNA<br>polymerase I  | 1.00 <sup>a</sup> | 1.02 <sup>a</sup>  | 1.10 <sup>b</sup>  | 0.0140.003852 |
| 12846641 | UFC1    | ubiquitin-fold modifier<br>conjugating enzyme 1                | 1.00 <sup>a</sup> | 1.13 <sup>b</sup>  | 1.08 <sup>b</sup>  | 0.0230.003688 |
| 12884383 | UIMC1   | ubiquitin interaction motif containing 1                       | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | 1.03 <sup>a</sup>  | 0.0220.002515 |
| 12732418 | USP2    | ubiquitin specific peptidase 2                                 | 1.00 <sup>a</sup> | -1.43 <sup>b</sup> | -1.11 <sup>a</sup> | 0.0520.000622 |

| Table 5.5 (conti | inued)  |                                                                     |                   |                    |                    |               |
|------------------|---------|---------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12764643         | USP32   | ubiquitin specific peptidase 32                                     | 1.00 <sup>a</sup> | -1.09 <sup>b</sup> | 1.04 <sup>a</sup>  | 0.0210.000580 |
| 12874296         | USP46   | ubiquitin specific peptidase<br>46                                  | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | 1.00 <sup>a</sup>  | 0.0290.001474 |
| 12789378         | UTP14A  | UTP14, U3 small nucleolar<br>ribonucleoprotein, homolog<br>A (yeast | 1.00 <sup>a</sup> | -1.25 <sup>b</sup> | -1.16 <sup>b</sup> | 0.0450.003745 |
| 12876570         | VAV1    | vav 1 guanine nucleotide<br>exchange factor                         | 1.00 <sup>a</sup> | 1.15 <sup>b</sup>  | -1.01 <sup>a</sup> | 0.0350.003709 |
| 12861191         | VEZT    | vezatin, adherens junctions transmembrane protein                   | 1.00 <sup>a</sup> | -1.16 <sup>b</sup> | -1.05 <sup>a</sup> | 0.0210.000873 |
| 12818366         | VGF     | VGF nerve growth factor inducible                                   | 1.00 <sup>a</sup> | 1.48 <sup>b</sup>  | 1.17 <sup>a</sup>  | 0.0680.001709 |
| 12800230         | VHL     | von Hippel-Lindau tumor suppressor                                  | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.00 <sup>a</sup> | 0.0210.001920 |
| 12797505         | VPRBP   | Vpr (HIV-1) binding protein                                         | 1.00 <sup>a</sup> | 1.00 <sup>a</sup>  | 1.14 <sup>b</sup>  | 0.0190.000268 |
| 12759936         | VSIG10L | V-set and immunoglobulin domain containing 10 like                  | 1.00 <sup>a</sup> | 1.00 <sup>a</sup>  | -1.20 <sup>b</sup> | 0.0320.002217 |
| 12828515         | WAPAL   | wings apart-like homolog<br>(Drosophila)                            | 1.00 <sup>a</sup> | -1.05 <sup>b</sup> | 1.07 <sup>c</sup>  | 0.0150.000234 |
| 12797242         | WDR48   | WD repeat domain 48                                                 | 1.00 <sup>a</sup> | -1.11 <sup>b</sup> | -1.12 <sup>b</sup> | 0.0230.002130 |
| 12845185         | WDR63   | WD repeat domain 63                                                 | 1.00 <sup>a</sup> | -1.32 <sup>b</sup> | -1.22 <sup>c</sup> | 0.0260.000016 |
| 12788246         | WDR70   | WD repeat domain 70                                                 | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.06 <sup>c</sup>  | 0.0200.000388 |
| 12699220         | WDR85   | WD repeat domain 85                                                 | 1.00 <sup>a</sup> | 1.19 <sup>b</sup>  | 1.23 <sup>b</sup>  | 0.0290.000525 |
| 12718416         | WFDC3   | WAP four-disulfide core domain 3                                    | 1.00 <sup>a</sup> | 1.09 <sup>b</sup>  | -1.07 <sup>a</sup> | 0.0280.004584 |
| 12747918         | XBP1    | X-box binding protein 1                                             | 1.00 <sup>a</sup> | 1.08 <sup>a</sup>  | 1.25 <sup>b</sup>  | 0.0440.004947 |
| 12822034         | XPNPEP1 | X-prolyl aminopeptidase<br>(aminopeptidase P) 1, soluble            | 1.00 <sup>a</sup> | 1.07 <sup>a</sup>  | 1.25 <sup>b</sup>  | 0.0400.000931 |

| led) |
|------|
|      |

| Table 5.5 (conti | inued)  |                                                              |                   |                    |                    |               |
|------------------|---------|--------------------------------------------------------------|-------------------|--------------------|--------------------|---------------|
| 12903280         | XPNPEP2 | X-prolyl aminopeptidase<br>(aminopeptidase P) 2,<br>membrane | 1.00 <sup>a</sup> | -1.07 <sup>a</sup> | -1.16 <sup>b</sup> | 0.0300.004889 |
| 12872296         | YTHDC1  | YTH domain containing 1                                      | 1.00 <sup>a</sup> | -1.13 <sup>b</sup> | -1.07 <sup>c</sup> | 0.0220.002949 |
| 12783927         | YTHDF2  | YTH domain family, member 2                                  | 1.00 <sup>a</sup> | -1.05 <sup>b</sup> | 1.08 <sup>c</sup>  | 0.0150.000152 |
| 12713839         | YWHAB   | tyrosine 3-monooxygenase                                     | 1.00 <sup>a</sup> | 1.04 <sup>b</sup>  | 1.08 <sup>c</sup>  | 0.0140.003731 |
| 12712681         | ZC3H13  | zinc finger CCCH-type containing 13                          | 1.00 <sup>a</sup> | -1.08 <sup>b</sup> | 1.02 <sup>a</sup>  | 0.0140.000542 |
| 12704370         | ZC3H6   | zinc finger CCCH-type containing 6                           | 1.00 <sup>a</sup> | -1.28 <sup>b</sup> | -1.31 <sup>b</sup> | 0.0570.004386 |
| 12773866         | ZDBF2   | zinc finger, DBF-type containing 2                           | 1.00 <sup>a</sup> | -1.93 <sup>b</sup> | -1.20 <sup>a</sup> | 0.0920.000044 |
| 12891224         | ZDHHC21 | zinc finger, DHHC-type containing 21                         | 1.00 <sup>a</sup> | -1.28 <sup>b</sup> | -1.09 <sup>a</sup> | 0.0530.004585 |
| 12720538         | ZEB1    | zinc finger E-box binding<br>homeobox 1                      | 1.00 <sup>a</sup> | -1.15 <sup>b</sup> | 1.01 <sup>a</sup>  | 0.0280.000738 |
| 12892852         | ZFAND5  | zinc finger, AN1-type domain 5                               | 1.00 <sup>a</sup> | -1.34 <sup>b</sup> | -1.26 <sup>b</sup> | 0.0550.002168 |
| 12881969         | ZFR2    | zinc finger RNA binding protein 2                            | 1.00 <sup>a</sup> | 1.06 <sup>a</sup>  | -1.07 <sup>b</sup> | 0.0220.003757 |
| 12907005         | ZFX     | zinc finger protein, X-linked                                | 1.00 <sup>a</sup> | -1.17 <sup>b</sup> | -1.08 <sup>c</sup> | 0.0300.004194 |
| 12827158         | ZMIZ1   | zinc finger, MIZ-type containing 1                           | 1.00 <sup>a</sup> | 1.18 <sup>b</sup>  | 1.15 <sup>b</sup>  | 0.0330.003687 |
| 12891595         | ZNF189  | zinc finger protein 189                                      | 1.00 <sup>a</sup> | -1.20 <sup>b</sup> | -1.06 <sup>a</sup> | 0.0340.001038 |
| 12753490         | ZNF45   | zinc finger protein 45                                       | 1.00 <sup>a</sup> | -1.27 <sup>b</sup> | -1.16 <sup>c</sup> | 0.0340.001503 |
| 12706050         | ZNF638  | zinc finger protein 638                                      | 1.00 <sup>a</sup> | -1.07 <sup>b</sup> | 1.05 <sup>a</sup>  | 0.0210.004503 |
| 12861600         | ZNF641  | zinc finger protein 641                                      | 1.00 <sup>a</sup> | -1.21 <sup>b</sup> | -1.01 <sup>a</sup> | 0.0440.003618 |
| 12840762         | ZNF644  | zinc finger protein 644                                      | 1.00 <sup>a</sup> | -1.12 <sup>b</sup> | -1.05 <sup>c</sup> | 0.0250.004517 |
| 12750954         | ZNF773  | zinc finger protein 773                                      | 1.00 <sup>a</sup> | 1.02 <sup>a</sup>  | 1.16 <sup>b</sup>  | 0.0310.002895 |

12702562ZNF79zinc finger protein 79 $1.00^{a}$  $-1.06^{b}$  $1.11^{c}$ 0.0230.000293Se supplement treatments that contained 3 mg Se/day in the form of sodium selenite (ISe), Sel-Plex (OSe), or a 1:1 mix of ISeand OSe (MIX) were top-dressed onto enough of a common cottonseed hull/soybean hull/cracked corn-based dietThe abundance of gene transcripts is reported relative to the mean expression of the ISe group and are expressed as the foldchange of non-transformed dataP-values were obtained from one-way ANOVA F testMeans with different superscripted letters differ (P < 0.1)The presented SEM values were pooled (averaged) from that of ISe (n = 6), OSe (n = 7), and MIX (n = 7) treatment group



Figure 5.1. Canonical pathway network analysis. Shaded color indicates differentially expressed genes (P < 0.005). Non-shaded color indicates genes added from the Ingenuity Knowledge Base (Ingenuity Pathway, Ingenuity Systems, Inc., Redwood City, CA). Arrowheads symbolize action-on. Labels of interaction or relationship: A = Activation, E = Expression (includes metabolism or synthesis for chemicals), I = Inhibition, L = Molecular Cleavage, LO = Localization, T= Transcription. The number in parenthesis for each interaction indicates the number of published references in the Ingenuity Knowledge Base that support the particular interaction.



Figure 5.2. Mechanisms, and mRNA expression responses to Se form treatments, by which dopamine and TRH affect prolactin synthesis and release. AC, adenylyl cyclase; CRE, cAMP response element; CREB, cAMP response element binding protein; DAG, diacylglycerol; DRD2, dopamine receptor D2; EA, ergot alkaloid; ERK, extracellular signal-regulated kinase; IP3, inositol trisphosphate; ISe, sodium selenite; MEK, mitogenactivated protein kinase kinase; MIX, 1:1 mix of ISe and OSe; OSe, SEL-PLEX; Pit-1, pituitary-specific positive transcription factor 1; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PRL, prolactin; TRH, thyrotropin-releasing hormone; TRHR, thyrotropin-releasing hormone receptor. A line with arrowhead signifies interaction. A crosshead bar signifies inhibition. A dash line with arrowhead signifies transportation between cellular organelles. Adapted from Ben-Jonathan and Hnasko (2001) and Kanasaki et al. (2015). Sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX).



Figure 5.3. Regional biosynthesis of ACTH and  $\alpha$ -MSH from POMC in the pituitary. CPE, carboxypeptidase E; MSH, melanocyte-stimulating hormone; N-AT, Nacetyltransferase; PAM, peptidylglycine  $\alpha$ -amidating monooxygenase; PCSK: proprotein convertase subtilisin/kexin. Adapted from Getting (2006) and Cawley et al. (2016).



Figure 5.4. Correlation between microarray chips based on intensity values.

### *RPS11*:

AAGATGGCGGACATTCAGACAGAACGTGCGTACCAAAAGCAACCGACCATC TTTCAAAATAAAAAGAGGGTCCTGCTTGGAGAAACTGGCAAAGAAAAGCTCC CTCGATACTACAAGAACATTGGTCTGGGCTTCAAGACTCCAAAGGAGGCCAT CGAGGGCACCTACATTGACAAGAAATGCCCTTTTACGGG<u>TAATGTCTCATTCG</u> AGGGC

### TFRC:

<u>CCAGGTTTAGTCTGGCTCGG</u>CAAGTAGATGGTGATAACAGTCATGTGGAGAT GAAATTAGCTGCAGATGAAGAAGAAGAANAATGTTGACAGTAACATGAGGGGGCA ACCAAACCAGTATCGCAAAACCGAAAAGGTTAAATGGATATGTCTGCTACGG GATCATTGCTGTAATCGTCTTTTTCTTGATTGGATTTAGATTGGCTACTTGGG CTATTGTAGACGTGTGGAATCACAAGATTGTGGGAAAGAGGCAGGAACACA GCCTTCGTGCCCAGGAGGAGACAGAAACTTTCGAATCAGAAGAGCAACTCCC TGGAGTACC<u>TCGCATATTCTGGGCAGACC</u>

### UBC:

TAGGGGTGGGTTAGAGTTCAAGGTTTTTGTTCTACCAGATGTTTTAGTAGTAA TCTGGAGGTAAGAAATGTCAAGAAAACATGGCCTTAATTAGAACTGTAGTGG GTGAGTATAAATAAAAAATTTGGAGGTTGTAGTTAGAATTCTCCATATGTAC ACTCATATGTAGATCTACTTATAAGCTACTGATTTTTAAAAGCACACGTTTGG GAGTTGTGCTTAAGAGTGGGAAAGTTTCTGG<u>AATACCAGCAGGGAGGT</u>

# DRD2:

<u>CGACCTTTCTCTGGGGCTTT</u>GGGGCTCTGCGGGCTGCGGGGCCAGTATCGAGGC TCGGAGGCCTGGTTTTCACAGGCCATGCCGGAGCTGGTGGGGGAGGAGGG GACAGTCACAGCCACCCAGGGCCCACACCTGAGAAGCCAGAGCTCTGGCCAC GACCCCAGGCAGTGTCAAGCCTGGGAGACCCGCGTACACCCCAGGTCTGGAT GGACC<u>CCAGAGAAGCAGAAGCCCAA</u>

# *POU1F1 (Pit-1)*:

### PRL:

<u>AGAACAAGCCCAACAGACCC</u>ACCATGAAGTCCTTATGAGCTTGATTCTTGGG TTGCTGCGCTCCTGGAATGACCCTCTGTATCACCTAGTCACCGAGGTGCGGGG</u> TATGAAAGGAGCCCCAGATGCTATCCTATCGAGGGCCATAGAGATTGAGGAA GAAAACAAACGACTTCTGGAAGGCATGGAGATGATATTTGGCCAGGTTATTC CGAGCGCCAAAGAGACTGAGCCC<u>TACCCTGTGTGGTCAGGACT</u>

## TRHR:

<u>GCGATCTGTCACCCCATCAA</u>AGCCCAGTTTCTCTGCACATTTTCCAGAGCCAA AAAGATAATCATCTTTGTCTGGGCTTTCACATCCATTTACTGTATGCTCTGGTT CTTCTTGCTGGATCTCAATATTAGCACCTATAAAGATGCTATTGTAGTGTCCT GTGGCTACAAGATCTCCAGGAATTACTACTCACCTATTTACCTAATGGACTTT GGTGTCTTTTATGTTGTGCCAATGATCCT<u>AGCCACTGTCCTCTACGGAT</u>

### VIP:

<u>CTGGTTCAGCTGTAAGGGCA</u>AGAGAACTCGTGAAGACTGTCGACTCCCAGGA CTTCAACACCTGAGACAGCTCTCATAATCTCAACAGAAGCTCTCAAAGAAC ACTATTCGGCAAAGTCCTGCAATGGAAACAAGAAGTAAGCCCCAGCTTCTTG TGTTCCTGACGCTGTTCAGCGTGCTCTTCTCCCAGACCTTGGCGTGGCCTCTTT TTGGAGCACCTTCGGCTCTGAGGATGGGGGGACAGAATACCATTTGAAGGAGC GAATGAACCTGATCAAGTTTCGTTAAAAGCAGACACTGACATT<u>TTACAAGAT</u> <u>GCGCTGGCTGA</u>

# GAL:

<u>CACCGGTGAAGGAGAAGAGAG</u>GCTGGACCCTGAACAGCGCTGGGTACCTTCT CGGACCACATGCGCTCGACAGCCACAGGTCATTTCAAGACAAGCATGGCCTC GCCGGCAAGCGGGAACTCGAGCCTGAAGACGAAGCCCGGCCAGGAAGCTTT GACAGACCACTGGCGGAGAACAACGTCGTGCGCACGATAATCGAGTTTCTGA CT<u>TTCCTGCATCTCAAAGACGCC</u>

# VEGFA:

<u>GCAAGAAAATCCCTGTGGGC</u>CTTGCTCAGAGCGGAGAAAGCATTTGTTTGTA CAAGATCCGCAGACGTGTAAATGTTCCTGCAAAAACACAGACTCGCGTTGCA AGGCGAGGCAGCTTGAGTTAAACGAACGTACTTGCAGATGTGACAAGCCGAG GCGGTGAGCCGGGCTGGAGGAAGGAGCCTCCCTC<u>AGGGTTTCGGGAACCAG</u> <u>ACG</u>

### TGFB1:

<u>GCGGCCAGATTTGTCCAAG</u>CTTCGGCTCGCCAGCCCCGAGCCAGGGGGAT GTGCCACCCGGCCCGCTGCCCGAGGCCATACTGGCCCTTTACAACAGTACCC GCGACCGGGTGGCCGGGGAAAGTGCCGAAACGGAGCCTGAGCCAGAGGCGG ACTACTACGCCAAGGGAGGTCACCCGCGTGCTAAWGGTGGAATACGGCAAC AAAATCTATGACAAAA<u>TGAAGTCTAGCCTCGCACAGC</u>

### GHRHR:

<u>CTGTAACAGTCCTGTGTAAGGT</u>TTCTGTGGCCACTTCCCATTTCGCTACCATG ACCAACTTCAGCTGGCTGCTGGCAGAAGCTGTGTACCTGACCTGCCTCTTAGT CTCCACATTGCCCAGCACAAGGAGGGTCTTCTGGTGGCTGGTTCTCGCTGCCT GGGGGCTTCCTCTGCTCTTTACCGGCATGTGGGTGGGTT<u>GCAAGTTGGCCTTC</u> <u>GAAGAC</u>

CSH2:

# L-PRLR:

<u>CCATCCTTTCTGCTGTCAT</u>CTGTTTGATTATGGTCTGGGCAGTGGCTTTGAAG GGCTATAGCATGGTGACCTGCATCCTCCCACCAGTTCCAGGGCCAAAAATAA AAGGATTTGAT<u>GTTCATCTGCTGGAGAAGGG</u>

# S-PRLR:

<u>GCCATCCTTTCTGCTGTCAT</u>CTGTTTGATTATGGTCTGGGCAGTGGCTTTGAG GGCTATAGCATGGTGACCTGCATCCTCCCACCAGTTCCAGGGCCAAAAATAA AAGGATTTGATGTTCATCTGCTGGAGA<u>TATCACAGCCTTCTCGCCT</u>

# POMC:

# PCSK1:

PCSK2:

CPE:

<u>GCTTAGCTCGGCATACTCA</u>TCCTTCAACCCCCAATGTCGGACCCAGATCGGC CCCCATGTCGCAAGAATGATGATGACAGCAGCTTTGTAGAAGGAACGACCAA TGGYGCTGCATGGTACAGCGTGCCTGGAGGAATGCAAGATTTCAATTACCTC AGCAGCAACTGCTTTGAGATTACTGTGGAGCTTAGCTGTGAAAAGTTTCCACC TGAAGAGACTTTGAAGAACTAYTGGGAGGATAACAAAAACTCCCTCATTAGC TACATTCAGCAGATACACCGAGGAGTAAAGGATTTGTCCGAGATCTTCAGGG TAACCCAATTG<u>CTAACGCCCCCTCTCTGTG</u>

# PAM:

<u>ACCAACACCGTGTGGAAGTT</u>CACCTCGACCGAAAAAATGGAACATCGATCAG TTAAGAAGGCTGGCATTGAGGTTCAGGAAATCAAAGAATCCGAGGCAGTTGT TGAAACCAAAATGGAGAACAAGCCCGCCTCCTCAGAATTtGCAGAAGATACA AGAGAAACAGAAGCTGGTCAAAGAGCCGGGCTCCGGAGTGCCGGCTGTTCTC ATTACAACCCTTCTGGTTATTCCTGTGGTTGTCCTGCTGGCCATTGCCTTATTT ATTCGGTGGAAAAAATCAA<u>GGGCCTTTGGAGATTCTGAAC</u>

# ATP5G1:

<u>CACCGGGGCACTACTCATTT</u>CTCCTGCTCTGATCCGTTCTTGTACCAGGGGTC TGATCAGGCCTGTGTCTGCCTCCTTCCTGAGTAGGCCAGAGATCCAATCTGTA CAGCCTTCCTACAGCAGTGGCCCACTGCAGGTGGCCCGGCGGGAATTCCAGA CCAGTGTTGTCTCCCGGGACATTGACACAGCGGCCAAGTTTATTGGCGCTGG GGCTGCCACAGTTGGTGTGGCGGGTTCAGGGGCTGGTATTGGAACAGTGTTT GGCAGCTTGATCATTGGCTATGCCAGGAACCCGTCTCTGAAGCAGCAGCTCT CTCCTATGCCATTCTGGGCTTTGCCCTG<u>TCTGAGGCTATGGGGCTCTT</u>

# *COX7A2:*

<u>ACTGAGCCAAGATGCTACGG</u>AATCTTCTGGCTCTCCGTCAGATTGCTAAGAG GACCATAAGTACTTCTTCACGCAGGCAGGTTTGAAAAATAAGGTTCCAGAGAAA CAAAAGCTGTTTCAGGAGGATAATGGAATTCCAGTGCATCTGAAGGGTGGGA TAGCTGATGCCCTCCTGTATAGAGCCACCMTGATTCTTACAGTTGGTGGAAC GGCATATGCCATGTATGAACTGGCTGTGGCTTCATTCCCAAGAAGCAGGATT GACTTGAGTTTATC<u>CTCCCAGCAATCAGTTGGGT</u>

# CYB5A:

<u>AAGACTGCTTTGGTCCAGGG</u>AGAAAGAAGCCACCACTCTTAACTTCAACTGA CAACCCTTCACCTGAAAATAATCTGAATACACCTATTTTCCTTTCCTCCTACAT

# TAGACACAAAACAAACCATAACTGTTCCATTCTTTGGACTATTGAACTTCTAA AGTGTGCCTTCTTATTCACCAACTTTGTTTTGCTGTTCCATCACTACATCATTT GCTTATTGTGGACATGATCTTTTAAAACA<u>TACCACCATGCTGAGCTGTC</u>

# FURIN:

<u>GCATCGAGAAGAACCACCCA</u>GACTTGGCAGGCAATTATGATCCTGGGGCCAG CTTCGATGTCAATGATCAGGACCCTGACCCCCAGCCCCGGTACACACAGATG AATGACAACAGGCATGGCACACGGTGTGCAGGAGAGGTGGCTGCGGTGGCC AACAATGGTGTCTGTGGCGTAGGCGTGGCCTACAATGCCCGAATTGGAGGGG TGCGCATGCTGGATGGCG<u>AAGTGACAGATGCCGTGGAG</u>

# *GPX4:*

<u>GATCAAAGAGTTCGCCGCTG</u>GCTATAACGTCAAATTCGATTTGTTCAGCAAG ATCTGTGTAAATGGGGACGACGCCCACCCTCTGTGGAAATGGATGAAAGTCC AGCCCAAGGGGAGAGGCATGCTGGGAAACGCCATCAAATGGAACTTCACCA AGTTCCTCATTGACAAGAACGGC<u>TGTGTGGTGAAGCGGTATGG</u>

# LRRK2:

<u>AGGAATCCGATGCTTTGGCA</u>AAACTTCGGAAAACCATCATCAATGAGAGCCT TAATTTCAAGATCCGAGATCAGCCTGTTGTTGGGGGCAGCTGATTCCAGACTGC TACGTAGAACTTGAGAAAATCATTTTATCAGAGCGTAAAAATGTGCCAATTG AATTTCCTGTAATTGACCGGAAACGATTATTACAACTTGTGAGAGAAAATGA GCTGCAGTTAGATGAAAATGAGCTTCCTCATGCAGTTCACTTTCTAAATGAAT CAGGGGTCCTTCTTCATTT<u>TCAAGACCCAGCATTGCAGT</u>

# NDUFA2:

<u>CGTATCCATTTGTGCCAGCG</u>CTCGCCCGGCAGCCAGGGCGTCAGGGACTTCA TTGAGAAACGCTATGTGGAGCTGAAGAAAGCGAATCCCGACCTGCCCATCCT AATCCGCGAGTGCTCGGATGTGCAGCCCAAGCTCTGGGCCCGCTACGCATTT GGCCAAGAGAAGAATGTCTCTCTGAACAATTTCAGTGCTGATCAGGTA<u>ACTA</u> <u>GAGCCCTGGAGAACGT</u>

# **PSENEN:**

# SDHB:

<u>AGAGACGACTTCACGGAGGA</u>GCGCCTGGCCAAGCTGCAGGACMCCTTCTCTC TCTACCGCTGCCACACCATCATGAACTGCACGCAGACCTGCCCCAAGGGGGCT GAATCCTGGGAAAGCTATTGCTGAAATCAAGAAGATGATGGCAACCTATAAA

### GAGAAGCAGGCTTCTGCTTAACTGCCGTGCTCAGCCTGACTGGAGCCGGCTC AGAATGCAGT<u>TCACCCCTGAGTTCCTTCAG</u>

# CAT:

<u>CTATCCTGACACTCACCGCC</u>ACCGCCTGGGACCCAACTATCTCCAGATACCTG TGAACTGTCCCTACCGTGCTCGAGTGGCCAACTACCAGCGTGACGGCCCCAT GTGCATGATGGACAATCAGGGTGGGGGCTCCAAATTACTACCCCCAATAGCTTT AGTGCTCCCGAGCATCAGCCTTCTGCCCTGGAACACAGGACCCACTTCTCGG GGATGTACAGCGCTCAACAGTGCCAACGATGACAATG<u>TCACTCAGGTGCGGA</u> <u>CTTTC</u>

### SOD1:

<u>TTGGAGACCTGGGCAATGTG</u>ACAGCTGACAAAAACGGTGTTGCCATCGTGGA TATTGTAGATCCTCTGATTTCACTCTCAGGAGAATATTCCATCATTGGCCGCA CGATGGTGGTCCATGAAAAACCAGATGACTTGGGCAGAGGTGGAAATGAAG AAAGTACAAAGACTGGAAACGCTGGAAG<u>CCGTTTGGCCTGTGGTGTAA</u>

Figure 5.5. The sequences of the real-time RT-PCR products (5' to 3' orientation).

Within a sequence, underlined nucleotides indicate the forward and reverse primer

positions.

#### PCA (25.5%)



Figure 5.6. Principle component analysis of microarray transcriptome analysis of 20 pituitary samples from steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe, n = 6, red dots), SEL-PLEX (OSe, n = 7, blue dots), or a 1:1 mix of ISe and OSe (MIX, n = 7, green dots). The red, blue, and green dots represent linear combinations of the relative expression data, including expression values and variances, of the 26,773 gene transcripts in each Bovine Chip.



Figure 5.7. Hierarchical cluster analysis of the 542 "focus" genes selected as differentially expressed (ANOVA P-values of < 0.005 and false discovery rates of  $\leq$  18.8%) by the pituitary of steers grazing endophyte-infected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe, n = 6), SEL-PLEX (OSe, n = 7), or a 1:1 mix of ISe and OSe (MIX, n = 7). As indicated by the legend color box, black color in the middle represents the mean value, 0; red color represents gene expression levels above the mean expression; and blue color denotes expression below the mean. The intensity of the color reflects the relative intensity of the fold change.

# CHAPTER 6. Selenoprotein Gene Expression Profiles in the Pituitary and Liver of Growing Steers Grazing Endophyte-Infected Tall Fescue Are Sensitive to Different Forms of Supplemental Selenium

#### 6.1 Abstract

The goal of this study was to test the hypothesis that the gene expression profiles of 25 selenoproteins in the pituitaries and livers of growing beef steers commonly grazing an endophyte-infected tall fescue (HE) pasture would differ after consuming different forms of selenium (sodium selenite (ISe), SEL-PLEX (OSe), vs. a 1:1 blend (MIX) of ISe and OSe) in a basal vitamin-mineral (VM) mix. Predominately-Angus steers (BW =  $183 \pm 34$ kg) were randomly selected from herds of fall-calving cows grazing HE pasture and consuming VM mixes that contained 35 ppm Se as ISe, OSe, or MIX forms. Steers were weaned, depleted of Se for 98 d, and subjected to summer-long common grazing of a 10.1 ha HE pasture containing 0.51 ppm ergot alkaloids. Steers were assigned (n = 8 per treatment) to the same Se-form treatments on which they were raised. Selenium treatments were administered by daily top-dressing 85 g of VM mix onto 0.23 kg soyhulls, using in-pasture Calan gates. As previously reported, whole blood Se was higher for OSe (11%) and MIX (7.5%) steers vs. ISe. Pituitaries and livers were collected at slaughter and changes in selenoprotein mRNA expression patterns determined by microarray and real-time reverse-transcription PCR analyses, respectively. The effects of Se treatment on relative gene expression were subjected to one-way ANOVA. In the pituitary, mRNA contents of 7 selenoproteins and two selenoprotein P receptors differed among Se treatments, whereas two selenoproteins were affected in liver. OSe steers may have a greater capacity to manage against oxidative damage, maintain cellular redox

balance, and have a better quality control of protein-folding in their pituitaries than ISe steers. In contrast, the liver tissue of MIX steers may have a greater capacity for redox signaling and a greater ability to manage oxidative stress than ISe steers. We conclude that the form of Se in vitamin-mineral mixes alters the selenoprotein transcriptome of both the pituitary and liver of growing steers consuming HE forage, in an ostensibly positive manner.

**KEYWORDS**: cattle, fescue toxicosis, liver, pituitary, selenium supplementation, selenoprotein profile

### **6.2 Introduction**

Selenium (Se) is an important trace element for many southeastern United States cattle producers due to low-Se soils (Dargatz and Ross, 1996). Selenium deficiency causes a variety of negative effects on beef cattle production including increased incidence of early embryonic death, retained placentas, cystic ovaries and weak heat periods (Corah, 1996), and reduced growth rate and immune responses (Cerny et al., 2016). Se-poor soils result in Se-deficient forages necessitating the need to provide supplemental Se (Dargatz and Ross, 1996). Inorganic Se (ISe, sodium selenite) is the most common form of Se supplemented in cattle diets, whereas organic forms of Se (OSe) derived from specially cultivated *Saccharomyces cerevisiae* also are available and approved for beef cattle production (Juniper et al., 2008).

The other challenge faced by many southeastern United States cattle producers is fescue toxicosis, which results from consumption of ergot alkaloids found in *Epichloe coenophialum*-infected tall fescue (*Lolium arundinaceum*) pastures and is a clinical condition consisting of impaired metabolic, vascular, growth, and reproductive processes in cattle (Strickland et al., 2011). Serendipitously, it was found that expression of several genes downregulated in the liver (Liao et al., 2015) and pituitary (Li et al., 2017) of steers grazing high vs. low endophyte-infected forages were upregulated in cattle by consumption of a 1:1 blend of ISe:OSe (MIX) in vitamin-mineral (VM) mixes (Matthews and Bridges, 2014; Matthews et al., 2014).

It is widely believed that Se exerts its biological functions through selenoproteins, most of which are redox enzymes. There are 25 identified mammalian selenoprotein genes (Kryukov et al., 2003). The goal of the present study was to test the hypothesis that

the form of supplemental Se would alter selenoprotein transcriptome profiles in pituitaries and livers of growing steers subjected to summer-long grazing of endophyteinfected pasture.

### 6.3 Materials and methods

All experimental procedures were approved by the University of Kentucky Institutional Animal Care and Use Committee.

### 6.3.1 Animals model

The animal management regimen and model for steers that yielded the pituitary and liver tissues of the present experiment have been reported (Jia et al., 2018). Briefly, twenty-four predominantly Angus beef steers (BW,  $182.6 \pm 33.9$  kg; age,  $165.5 \pm 14.2$ d) were randomly selected from 3 Se phenotypic herds (8 steers/herd), which were managed under a typical forage-based (predominately endophyte-infected tall fescue), fall-calving, cow-calf production regimen. The 3 Se phenotypic herds had free access to VM premixes (UK Beef IRM Cow-Calf Mineral, Burkmann Feeds, Danville, KY) containing 35 ppm of inorganic Se (ISe, sodium selenite, Prince Se Concentrate; Prince Agri Products, Inc., Quincy, IL, USA), organic Se (OSe, SEL-PLEX, Alltech Inc., Nicholasville, KY), and 1:1 mix of ISe:OSe (MIX). After adapted to consuming VM premixes from in-pasture Calan gate feeders, twenty-four steers with 3 Se phenotypes (n = 8) started (d 0) summer-long grazing (86 d) of a 10.1-ha predominately endophyteinfected tall fescue-mixed pasture (0.51  $\mu$ g/g total ergot alkaloids) (Jia et al., 2018). The 3 Se form treatments were administered using in-pasture Calan gate feeders to steers with the same Se phenotypes. All 3 Se form treatments contained a common basal VM premix with added 35 ppm Se as either ISe, OSe, or MIX. During this 86-d period, two ISe steers

were removed from the trial due to a bad hoof and failure to consume their mineral treatment. After the common 86-d grazing period on pastures, steers were slaughtered in the University of Kentucky Meat Laboratory (Lexington, KY) over a 26-d period (from day 93 to 119, 8 slaughter d, 1 steer from each treatment/d). Throughout the slaughter period, steers continued to maintain their respective Se treatment. Details of the slaughter period and process have been reported (Jia et al., 2018).

### **6.3.2 Sample collection and RNA preparation**

Steers were stunned by captive bolt pistol and exsanguinated. Within 15 to 20 minutes of death, the whole pituitary and liver samples collected from mid-lower right lobe were collected from each animal, placed in a foil pack, flash-frozen in liquid nitrogen, and stored at -80°C. Two pituitary glands (1 OSe and 1 MIX) were not used because of tissue damage incurred during the collection process. As a result, six pituitaries (n = 6) and six liver samples (n = 6) for ISe, and seven pituitaries (n = 7) and eight liver samples (n = 8) for both OSe and MIX treatment groups were subjected to RNA analyses.

Total RNA was extracted from the whole frozen pituitary and liver tissue using TRIzol Reagent (Invitrogen Corporation, Carlsbad, CA) following the manufacturer's instructions. The RNA concentrations were determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE), which revealed that all samples had an average concentration of 706 ng/ $\mu$ L for pituitary and 1.05  $\mu$ g/ $\mu$ L for liver samples, and were of high purity with 260:280 nm absorbance ratios ranging from 1.85 to 2.05 and 260:230 nm absorbance ratios ranging from 1.89 to 2.50. The integrity of total RNA was examined by gel electrophoresis using an Agilent 2100 Bioanalyzer System

(Agilent Technologies, Santa Clara, CA) at the University of Kentucky Microarray Core Facility. All RNA samples had 28S:18S rRNA absorbance ratios greater than 1.8 and RNA integrity numbers greater than 8.7.

### 6.3.3 Microarray analysis

The GeneChip Bovine Gene 1.0 ST Array (Affymetrix, Inc., Santa Clara, CA) was used to investigate the effect of Se treatment on bovine pituitary and liver gene expression profiles. Microarray analysis was conducted according to the manufacturer's standard protocol at the University of Kentucky Microarray Core Facility. Briefly, 3 µg of RNA for each sample was first reverse-transcribed (RT) to cDNA and then from cDNA (double-stranded) to complementary RNA (cRNA; single-stranded), which was then labeled with biotin. The biotinylated cRNAs were further fragmented and used as probes to hybridize the gene chips in the GeneChip Hybridization Oven 640 (Affymetrix), using 1 chip per RNA sample. After hybridization, the chips were washed and stained on a GeneChip Fluidics Station 450 (Affymetrix). The reaction image and signals were read with a GeneChip Scanner (GCS 3000, 7G; Affymetrix), and data were collected using the Command Console. The raw expression intensity values from the Command Console (i.e., 20 \*.cel files from the raw methylation measurements) were imported into Partek Genomics Suite software (PGS 7.17.0918; Partek Inc., St. Louis, MO). For GeneChip background correction, the algorithm of Robust Multichip Averaging adjusted with probe length and GC oligo contents was implemented (Irizarry et al., 2003; Wu et al., 2004). The background-corrected data were further converted into expression values using quantile normalization across all the chips and median polish summarization of multiple probes for each probe set.

All the GeneChip transcripts were annotated using the NetAffx annotation database for gene expression on Bovine GeneChip Array ST 1.0, provided by the manufacturer (http://www.affymetrix.com/analysis/index.affx, last accessed in January 2018, annotation file last updated in May 2016). Quality control of the microarray hybridization and data presentation was performed by MA plot on all the gene expression values and by box plot on the control probe sets on the Affymetrix chips (data not shown). To assess treatment effects (ISe vs. OSe vs. MIX) on the relative expression of the pituitary and liver gene transcripts, qualified microarray data were subjected to oneway ANOVA using the same PGS software.

All the microarray \*.cel files collected by Command Console plus the GC Robust Multichip Averaging-corrected data processed by PGS software of this manuscript have been deposited in the National Center for Biotechnology Information's Gene Expression Omnibus (**GEO**; http://www.ncbi.nlm.nih.gov/geo/) [released May 25, 2018]), are minimum information about a microarray experiment (**MIAME**) compliant (Brazma et al., 2001), and are accessible through GEO series accession number GSE114893 (pituitary) and GSE115802 (liver).

### 6.3.4 Real-time RT-PCR analysis

Primer sets for genes selected for real-time reverse transcription (RT) PCR analysis (Table 6.3) were designed using the NCBI Pick Primers online program against RefSeq sequences. Real-time RT-PCR was performed using an Eppendorf Mastercycler ep *realplex2* system (Eppendorf, Hamburg, Germany) with iQ SYBR Green Supermix (Bio-RAD, Hercules, CA), as described (Bridges et al., 2012). Briefly, cDNA was synthesized using the SuperScript III 1st Strand Synthesis System (Invitrogen), with 1 µg of RNA used for each reverse transcription reaction. Real-time RT-PCR was performed with a total volume of 25  $\mu$ L per reaction, with each reaction containing 5  $\mu$ L of cDNA, 1  $\mu$ L of a 10  $\mu$ M stock of each primer (forward and reverse), 12.5  $\mu$ L of 2× SYBR Green PCR Master Mix, and 5.5  $\mu$ L of nuclease-free water. Gene expression was analyzed by the 2<sup>- $\Delta\Delta$ CT</sup> method (Livak and Schmittgen, 2001).

The resulting real-time RT-PCR products were purified using a PureLink Quick Gel Extraction Kit (Invitrogen) and sequenced at Eurofins Scientific (Eurofins, Louisville, KY). Sequences were compared with the corresponding RefSeq mRNA sequences used as the templates for primer set design. The sequences of the primers and the resulting sequence-validated real-time RT-PCR reaction amplicons for selected DEG and the endogenous control genes (RPS11, TFRC, and UBC for pituitary; GAPDH, PCK2, and SDHA for liver) are presented in Table 6.3 and Figure 6.3, respectively. All sequenced amplicons had at least 98% identity with their template sequences. Three constitutively expressed housekeeping genes for pituitary (RPS11, TFRC, and UBC; P = 0.59, 0.51, 0.66; respectively) and liver (GAPDH, PCK2, and SDHA; P = 0.60, 0.78, 0.75; respectively) were used and their CT values were not affected by Se-form treatments. Thus, the geometric mean expression of 3 housekeeping genes was used to normalize the relative quantities of the selenoprotein mRNA expression, and all RT-PCR reactions were conducted in triplicate.

#### **6.3.5 Statistical analysis**

Steers were the experimental units. To test for Se treatment effects on the relative expression of the selenoprotein gene transcripts analyzed by microarray hybridization, data were subjected to one-way ANOVA using the PGS software as described in the

"Microarray Analysis" section above. To determine the effects of treatment on the relative expression levels of selenoprotein gene analyzed by real-time RT-PCR, data were subjected to one-way ANOVA using the GLM procedure of the SAS statistical software package (version 9.4; SAS Inst., Inc., Cary, NC), with the Se treatment as the fixed effect. For these data, significance was declared when  $P \le 0.05$ , and a tendency to differ was declared when 0.10 > P > 0.05. When P < 0.10, means were separated using Fisher's LSD procedure. Principal component analysis (PCA) was performed using JMP Pro software (version 14; SAS Inst. Inc.). As appropriate, Se concentration, glutathione (GSH) content, glutamine synthetase (GS) activity, and relative mRNA abundance of selenoproteins in liver were used as input variables for PCA.

### 6.4 Results

#### 6.4.1 Microarray and real-time RT-PCR analyses of selenoprotein mRNA

In the pituitary, real-time RT-PCR analysis corroborated the microarray analysis that the relative expression of GPX3, LRP2, LRP8, SELENON, SEPHS2, TXNRD1 differed (P < 0.05) among Se treatment steers (Table 6.1). In addition, both techniques showed that the relative expressions of DIO1, DIO2, DIO3, GPX1, GPX2, SELENOI, SELENOK, SELENOP, SELENOT, SELENOV, SELENOW, SEPHS1, and TXNRD3 were not affected by Se treatment (Table 6.1). The relative expression of GPX4, MSRB1, and TXNRD2 differed (P < 0.05) based on microarray analysis, whereas RT-PCR results showed their tendency to differ (P < 0.1). In contrast, RT-PCR showed SELENOM mRNA affected by Se treatment (P < 0.05), but according to microarray, SELENOM mRNA had the tendency to change (P < 0.1). There was inconsistency between microarray and RT-PCR results for 4 genes. The relative expression of GPX6, SELENOF, and SELENOS differed or tended to differ by RT-PCR analysis, but not by microarray analysis. In addition, RT-PCR found that SELENOO was affected by Se treatment, but this gene is not included in the microarray chip design. With regard to fold-changes, the direction of Se treatment-induced change was the same between microarray and RT-PCR analyses whereas the magnitude of the determined fold-changes typically was greater by RT-PCR analysis.

In liver, real-time RT-PCR analysis corroborated the microarray analysis finding that the relative expression of SELENOT differed (P < 0.05) and that of GPX4 tended to differ (P < 0.1) among Se treatment steers (Table 6.2). In addition, both techniques showed that the relative expression of DIO1, GPX1, GPX2, GPX3, LRP2, LRP8, MSRB1, SELENOF, SELENOI, SELENOK, SELENON, SELENOV, SELENOW, SEPHS1, and TXNRD3 was not affected by Se treatment (Table 6.2). The relative expressions of SELENOS and TXNRD1 tended to differ (P < 0.1) based on microarray analysis, whereas RT-PCR results showed that they do differ (P < 0.05) among Se treatment steers. As for the pituitary, inconsistencies existed between results of microarray and RT-PCR analyses. The relative expressions of DIO3, SELENOP, SEPHS2, and TXNRD2 differed or tended to differ by RT-PCR analysis, but not by microarray. Whereas microarray analysis showed that relative expressions of DIO2, GPX6, and SELENOM were affected by Se treatment (P < 0.1), but RT-PCR analysis did not. RT-PCR also found that SELENOO was affected by Se treatment but, as noted above, this gene is lacking in the GeneChip Bovine Gene 1.0 ST Array.

#### **6.4.2 Principal component analysis**

Principal component analysis of the potential correlation between mRNA contents of selenoproteins and other analytes (Se concentration, glutathione content, and glutamine synthetase activity) in liver indicated that PC1 and PC2 explained 37.7% of the variation (Figure 6.1 and 6.2). All steers with ISe supplementation segregated within the negative quadrants of PC2, whereas three steers from both OSe and MIX groups segregated into the negative quadrants of PC2 (Figure 6.1). Relative mRNA expression of GPX2, SELENOP and SELENOV, GSH content, and Se concentration clustered in the PC1-positive and PC2-negative quadrant (Figure 6.2). They were either weakly or not correlated with PC1 and PC2.

### **6.5 Discussion**

It is widely accepted that Se exerts its biological function mainly through selenoproteins. However, most studies focusing on effect of supplemental Se on selenoprotein expression or activity used the Se deficiency vs. Se supplementation model. Using a Se-adequate model, our laboratory has shown that forms of supplemental dietary Se affected the expression of certain genes in the livers of maturing beef heifers (Matthews et al., 2014), neonatal testes (Cerny et al., 2016), and pituitaries of growing beef steers (Chapter 5). We also have shown that consumption of HE forage decreases the expression of at least 7 selenoproteins by the liver or pituitaries of growing steers (Matthews and Bridges, 2014; Liao et al., 2015; Li et al., 2017) that are upregulated by MIX or OSe forms of supplemental Se. However, to our knowledge, the potential effects of forms of supplemental Se on the selenoprotein transcriptome of the pituitary and liver of cattle grazing HE forages has not been reported. To obtain this information and

elaborate the findings of Chapter 5, we conducted microarray and RT-PCR analyses of 25 selenoprotein genes in both pituitary and liver tissues collected from previously described (Chapter 5) beef steers, which had consumed VM mixes that contained 35 ppm Se as ISe, OSe, or MIX forms while subjected to summer-long grazing of high endophyte-infected tall fescue (Jia et al., 2018). That OSe and MIX steers had 11% and 7.5% more whole blood Se than ISe steers, respectively, and did not differ from each other, as expected, validated the successful administration of the Se treatments.

In pituitary tissue, the expression of 5 selenoproteins (GPX3, GPX4, MSRB1, SELENON, TXNRD1) were increased ( $P \le 0.05$ ) and one (SEPHS2) decreased ( $P \le$ 0.04) by Se treatments, based on both microarray and RT-PCR analyses. In addition, one selenoprotein (SELENOO), solely evaluated by RT-PCR, was increased (P = 0.03). Also, the expression of the two receptors for selenoprotein P (LPR2, LPR8) was affected (P  $\leq$ 0.04) in the pituitary. In the liver, the expression of only two selenoproteins (SELENOO, SELENOT) was affected (increased,  $P \leq 0.04$ ), according to both microarray and RT-PCR, or only RT-PCR. Inconsistencies existed between the results of the microarray and RT-PCR analyses, especially in liver. Possible explanations for these inconsistencies include differences in the sites and number of nucleotides measured for a given transcript, gene normalization procedures, and inherent technique-specific pitfalls (Bustin, 2002; Chuaqui et al., 2002; Morey et al., 2006). Because RT-PCR often is considered the more accurate technique for quantification of gene expression, due to its greater sensitivity and specificity (Schmittgen et al., 2008; Derveaux et al., 2010), when there was a conflict between microarray and RT-PCR results, we used the RT-PCR finding as the definitive finding.

### **Glutathione peroxidases**

The family of glutathione peroxidases (GPx) catalyze the reduction of hydrogen peroxide  $(H_2O_2)$  or hydroperoxides to water (at the expense of oxidizing 2 GSH to GSSG) to maintain cellular redox homeostasis (Margis et al., 2008). The five known mammalian GPx are all selenoproteins. Cytosolic glutathione peroxidase (GPx1) is the first identified mammalian selenoprotein, which scavenges toxic H<sub>2</sub>O<sub>2</sub> and soluble organic peroxides (Rotruck et al., 1973). GPx1 is expressed in all cell types and is most abundant in the liver and kidney. Functionally, GPx2 highly resembles GPx1. However, unlike GPx1 which is a ubiquitously expressed, GPx2 is expressed mainly in the epithelium of gastrointestinal tract and somewhat in liver (Arthur, 2001). Glutathione peroxidase 3 and GPx4 are expressed by a wide range of cell types and tissues. GPx3 is the only extracellular GPx isoform and is secreted mainly by the kidney. Importantly, as the concentration of plasma GSH is fairly low, GPx3 can utilize thioredoxin or glutaredoxin as reductants in addition to GSH (Björnstedt et al., 1994). Unlike GPx1, GPx2, and GPx3, which are all homotetramers, GPx4 is ubiquitously present in the cytosol as a monomer, which enables its unique reduction function of complex phospholipid hydroperoxides in membranes (Herbette et al., 2007; Labunskyy et al., 2014). Glutathione peroxidase 4 also uses protein thiols as alternate substrates besides GSH (Ursini et al., 1999). Glutathione peroxidase 6 is the last identified Sec-containing glutathione peroxidase, and its mRNA has been reported to be only found in embryos and olfactory epithelium (Kryukov et al., 2003).

In the pituitary, RT-PCR analysis found that OSe steers had more GPx3 (180%) and GPx4 (51%) mRNA than ISe and MIX steers, whereas MIX steers had less GPx6
(54%) than ISe steers. In the liver, GPx4 mRNA content was greater (55%) in MIX vs. ISe steers (Table 6.2). Collectively, these findings suggest that OSe and MIX steers had a greater capacity to prevent oxidative damage and to maintain cellular redox balance better in their pituitaries and livers, respectively.

In liver, PCA indicated that GSH content was closely associated with Se concentration (Figure 6.2). The mRNA content of GPx2 was closely associated with hepatic GSH content in the PC1-positive and PC2-negative quadrant. In addition, the mRNA content of GPx1 (the most abundant mammalian selenoprotein), also existed in that quadrant and closely associated with GPx2. In contrast, GPx4 (another abundant liver glutathione reductase) and other GSH-interacting selenoproteins TXNRD2 and SELENOW were not closely associated with hepatic GSH content (Figure 6.2). Hence, it is possible that hepatic Se concentration affected hepatic GSH content by regulating the expression of GPx1 and GPx2. Interestingly, PCA also indicated that glutamine synthetase activity was present in the opposite quadrant of GSH. This finding seems to support a previous suggestion that the GSH synthesis enzyme  $\gamma$ -glutamylcysteine ligase and glutamine synthetase may directly compete for hepatic Glu (Huang et al., 2018).

#### **Thioredoxin reductases**

Thioredoxins (TXNRD) are a class of small, ubiquitously-expressed redox proteins present in all living cells, protecting cells from oxidative stress and facilitating redox signaling by catalyzing the dithiol-disulfide exchange reactions of other proteins. Oxidized thioredoxins need to be reduced to exert their functions again, and the NADPHdependent reduction is catalyzed by the flavoenzyme thioredoxin reductases (Arnér, 2009). There are three known thioredoxin reductases in mammals, all of which are

selenoproteins (Labunskyy et al., 2014). Thioredoxin reductase 1 is primarily present in cytosol, and is the major protein disulfide reductase in mammalian cells (Arnér and Holmgren, 2000). Thioredoxin reductase 2 is localized to mitochondria and expressed in various cell types (Rundlöf et al., 2001; Lillig and Holmgren, 2007), and thioredoxin reductase 3 exists primarily in testes (Arnér, 2009).

In the pituitary, the abundance of TXNRD1 and TXNRD2 mRNA was greater in MIX steers than both ISe and OSe steers. (Table 6.1). In liver, that MIX and OSe steers had more TXNRD1 mRNA than ISe steers and that ISe, and MIX steers had more TXNRD2 mRNA than OSe steers (Table 6.2), suggests that MIX steers may have had better thioredoxin-thioredoxin reductase system in both pituitary and liver tissues.

#### **Selenoprotein P and its receptors**

Unlike most other selenoproteins which usually contain one Sec residue, selenoprotein P (SeIP) contains 9-12 Sec residues per protein molecule in mammals (Read et al., 1990). Bovine SeIP contains 12 Sec residues (Mostert, 2000). This unique property enables SeIP to account for approximately 50% of the total Se in plasma (Burk and Hill, 2005). It has been suggested that the main role of SeIP is in selenium transport, delivery, and storage (Burk et al., 1991; Saito and Takahashi, 2002). Selenoprotein P is mainly synthesized in liver, although its mRNA can be found in all tissues (Labunskyy et al., 2014). There are two endocytic receptors for SeIP from low-density lipoprotein receptor family facilitating SeIP entering into extrahepatic cells in a tissue-specific manner, the major receptor apolipoprotein E receptor-2 (apoER2) (Olson et al., 2007) and the minor receptor megalin (Olson et al., 2008). ApoER2 is expressed highly in testis, bone marrow, placenta, brain, and muscle; moderately in other tissues like thymus and

spleen; and minimally in liver and kidney (Burk and Hill, 2015). It is suggested the tissue hierarchy for Se in largely determined by SelP binding to apoER2 (Burk and Hill, 2015). The other SelP receptor megalin plays an essential role for uptake of plasma SelP in kidney, and the uptake is proposed to provide Se for GPx3 synthesis in kidney proximal tubules (Avissar et al., 1994).

The SELENOP mRNA content in the pituitary was not affected by Se treatment. However, MIX steers had more apoER2 mRNA and less megalin mRNA than ISe steers, suggesting that MIX steers may have had more Se uptake in their pituitaries than ISe steers. In the liver, OSe (19%) and MIX (16%) steers tended to have less SELENOP mRNA than ISe steers, whereas the concentration of hepatic Se did not differ among OSe, ISe, and MIX steers (data not shown). PCA showed that mRNA of SELENOP and hepatic Se concentration were present in the same quadrant but not associated with each other very closely (Figure 6.2). These findings above indicated that SelP synthesis may not be a direct reflection of hepatic Se content.

#### Methionine sulfoxide reductase B1 (Selenoprotein R)

Selenoprotein R (SelR), also known as methionine sulfoxide reductase B1 (MSRB1) or selenoprotein X, is a zinc-containing stereospecific methionine R sulfoxide reductase. It is predominantly localized in the nucleus and cytosol (Kim and Gladyshev, 2004). SelR is sensitive to dietary Se intake (Novoselov et al., 2005). It is the major mammalian methionine sulfoxide reductase B with the highest activity in liver and kidney (Kim and Gladyshev, 2004). SelR catalyzes the specific reduction of R-isomer of oxidized methionine in proteins. Therefore, it is required for repair of oxidative damaged proteins (Kryukov et al., 2002). In addition, it is reported that SelR is important for

regulation of cellular functions by reduction of methionine residues of regulatory proteins (Lee et al., 2013). That both OSe and MIX steers had more MSRB1 than ISe steers (Table 6.1) suggests that OSe and MIX steers may handle oxidative-damaged proteins better than ISe steers in pituitary.

#### 15-kDa selenoprotein (Selenoprotein F)

The 15-kDa selenoprotein (Sep15) is one of the earliest identified selenoproteins. It is named for its molecular mass (Behne et al., 1997). A single Sec residue is located in the middle of the protein (Gladyshev et al., 1998). Sep15 is expressed in a wide range of tissues in mammals, with the highest levels in liver, kidney, prostate, and testis (Kumaraswamy et al., 2000). Its expression is sensitive to dietary Se intake (Ferguson et al., 2006). Sep15 has a thioredoxin-like domain, and N-terminal signal peptide, which is consistent with its location to the ER (Labunskyy et al., 2014). In addition, Sep15 interacts with the UDP-glucose: glycoprotein glycosyltransferases (UGGT) to form a tight complex. UGGT is an ER-resident chaperone which is involved in N-linked glycoproteins folding in the ER (Hebert et al., 1995; Molinari and Helenius, 1999). Hence, Sep15 is involved in disulfide-bond formation and quality control of some glycoproteins in the ER (Labunskyy et al., 2007). Moreover, studies also suggest that Sep15 may be involved in cancer etiology in various types of tissues (Kumaraswamy et al., 2000; Hu et al., 2001; Apostolou et al., 2004; Nasr et al., 2004; Irons et al., 2010). That the pituitaries of OSe steers tended to possess more SEP15 mRNA than ISe steers (Table 6.1) suggests that OSe steers may have had a better quality control of proteinfolding than ISe steers.

#### Selenophosphate synthetase 2

Selenophosphate synthetase 2 (SPS2, encoded by SEPHS2) is homologous to selenophosphate synthetase 1 (SPS1) in mammals. However, unlike SPS1 in which the putative active center Sec is replaced by threonine, SPS2 belongs to the selenoprotein family (Low et al., 1995). Selenophosphate synthetase 2 (SPS2) catalyzes the conversion of selenide to active Se donor selenophosphate, which is required for Sec biosynthesis (Xu et al., 2007). SPS2 is an interesting selenoprotein in that it possibly regulates its own biosynthesis (Guimarães et al., 1996), thereby playing an auto-regulatory role in selenoprotein synthesis (Kim et al., 1997). The significance of a reduced content of SEPHS2 mRNA in OSe and MIX steers (Table 6.1) is unclear. Although it is a necessary component for the Sec synthesis machinery, whether SPS2 regulates expression of other selenoproteins and other aspects of SPS2 biological function remains to be determined.

#### **Other selenoproteins**

The mRNA content of selenoprotein M, N, O, and S were differentially expressed in pituitaries (Table 6.1), as were selenoproteins O, S, T in livers (Table 6.2), of Se treatment groups. However, their biochemical functions of these proteins have not been definitively determined. Selenoprotein M is proposed to be involved in neuroprotection against oxidative damage by H<sub>2</sub>O<sub>2</sub> and regulation of Ca<sup>2+</sup> release from ER in neurons (Reeves et al., 2010). Selenoprotein N plays a role in maintenance of muscle progenitor satellite cells and regeneration of impaired skeletal muscle (Castets et al., 2011), but its role in other tissues is still in a mystery. Selenoprotein S is localized to the ER membrane and proposed to be involved in degradation of misfolded proteins (Labunskyy et al., 2014) and regulation of inflammatory and immune response (Curran et al., 2005; Gao et

al., 2006). The proposed roles that selenoprotein T is involved in include: endocrine homeostasis, brain development and function, and neuroprotection (Youssef et al., 2018).

Both microarray and RT-PCR analyses revealed no difference in mRNA expression of selenoprotein I, K, V, and W, in both pituitary and liver tissues among Se treatment groups. In addition, microarray analysis found selenoprotein H mRNA unchanged in both pituitary and liver (Table 6.1 and 6.2). SelW may play a role in redoxrelated process regulation because it binds GSH to form a complex with very high affinity (Beilstein et al., 1996). Although the expression of SelW is reported to be regulated by the availability of dietary Se (Howard et al., 2013) and by form of Se (Matthews et al., 2015), in this study the form of Se did not affect expression of SELENOW in either pituitary of liver tissue.

In summary, consumption of 3 mg Se/d in VM mixes as OSe, MIX, or ISe differentially affected the expression of selenoprotein profiles in both pituitaries and livers of growing beef steers commonly grazing an endophyte-infected tall fescue pasture. Most of the affected selenoproteins were either up-regulated by OSe or MIX supplementation relative to ISe supplementation. The change in selenoprotein gene expression in pituitaries indicates that OSe steers have a greater potential capacity to manage against oxidative damage, maintain cellular redox balance, and have a better quality control of protein-folding in their pituitaries than ISe steers. The change in selenoprotein gene expression by the liver indicates that MIX steers have a greater redox signaling capacity and capacity to manage oxidative damage than ISe steers.

Table 6.1. Microarray and real-time RT-PCR (RT-PCR) analyses of the effect of consuming 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX) during summer-long grazing of endophyte-infected tall fescue on pituitary selenoprotein gene expression by growing beef steers.

|           |               | Microarray <sup>1</sup> |                   |                   |            | RT-PCR <sup>2</sup> |                   |                   |            |
|-----------|---------------|-------------------------|-------------------|-------------------|------------|---------------------|-------------------|-------------------|------------|
| Gono      | Gono Nomo     | T                       | reatmen           | $t^{3,4}$         | <i>P</i> - | Т                   | reatmen           | 1t <sup>3,4</sup> | <i>P</i> - |
| Gene      | Gene Maine    | ISe                     | MIX               | OSe               | valu       | ISe                 | MIX               | OSe               | valu       |
|           |               | 156                     | WIIA              | 056               | e          | 156                 | WIIA              | 056               | e          |
| DIO1      | Iodothyronine | 1.00                    | 1.04              | 1.07              | 0.52       | 1.17                | 1.37              | 0.93              | 0.40       |
|           | Deiodinase 1  |                         |                   |                   | 3          |                     |                   |                   | 4          |
| DIO2      | Iodothyronine | 1.00                    | 1.15              | 1.13              | 0.45       | 1.09                | 1.42              | 1.42              | 0.39       |
|           | Deiodinase 2  |                         |                   |                   | 6          |                     |                   |                   | 3          |
| DIO3      | Iodothyronine | 1.00                    | 0.84              | 0.95              | 0.11       | 1.08                | 1.17              | 1.47              | 0.21       |
|           | Deiodinase 3  |                         |                   |                   | 8          |                     |                   |                   | 9          |
| GPX1      | Glutathione   | 1.00                    | 1.11              | 1.06              | 0.47       | 1.06                | 1.09              | 1.04              | 0.95       |
|           | Peroxidase 1  |                         |                   |                   | 4          |                     |                   |                   | 5          |
| GPX2      | Glutathione   | 1.00                    | 0.96              | 0.89              | 0.48       | 1.03                | 0.91              | 0.85              | 0.35       |
|           | Peroxidase 2  |                         |                   |                   | 3          |                     |                   |                   | 1          |
| GPX3      | Glutathione   | 1.00                    | 1.46 <sup>b</sup> | 1.57 <sup>b</sup> | 0.02       | 1.17                | 1.86 <sup>a</sup> | 3.28 <sup>b</sup> | 0.01       |
|           | Peroxidase 3  | а                       |                   |                   | 0          | а                   |                   |                   | 0          |
| GPX4      | Glutathione   | 1.00                    | 1.21 <sup>b</sup> | 1.23 <sup>b</sup> | 0.00       | 1.03                | 1.32 <sup>a</sup> | 1.56 <sup>b</sup> | 0.05       |
|           | Peroxidase 4  | a                       |                   |                   | 4          | а                   | b                 |                   | 2          |
| GPX6      | Glutathione   | 1.00                    | 0.95              | 0.95              | 0.78       | 1.14                | 0.53 <sup>b</sup> | $0.79^{a}$        | 0.02       |
|           | Peroxidase 6  |                         |                   |                   | 0          | а                   |                   | b                 | 8          |
| LRP2      | LDL Receptor  | 1.00                    | 0.92 <sup>b</sup> | 0.99 <sup>a</sup> | 0.03       | 1.08                | 0.53 <sup>b</sup> | 0.74 <sup>a</sup> | 0.01       |
| (Megalin) | Related       | а                       |                   |                   | 8          | а                   |                   | b                 | 6          |
|           | Protein 2     |                         |                   |                   |            |                     |                   |                   |            |
| LRP8      | LDL Receptor  | 1.00                    | 1.26 <sup>b</sup> | 1.14 <sup>a</sup> | 0.02       | 1.01                | 1.67 <sup>b</sup> | 1.34 <sup>a</sup> | 0.02       |
| (APOER2   | Related       | а                       |                   | b                 | 0          | а                   |                   | b                 | 8          |
| )         | Protein 8     |                         |                   |                   |            |                     |                   |                   |            |
| MSRB1     | Methionine    | 1.00                    | 1.23 <sup>b</sup> | 1.19 <sup>b</sup> | 0.01       | 1.05                | 1.81 <sup>b</sup> | 1.92 <sup>b</sup> | 0.05       |
| (SEPX1)   | Sulfoxide     | а                       |                   |                   | 1          | а                   |                   |                   | 3          |
|           | Reductase B1  |                         |                   |                   |            |                     |                   |                   |            |
| SELENO    | Selenoprotein | 1.00                    | 0.99              | 0.96              | 0.40       | 1.02                | 1.24 <sup>a</sup> | 1.37 <sup>b</sup> | 0.08       |
| F (SEP15) | F             |                         |                   |                   | 9          | а                   | b                 |                   | 2          |
| SELENO    | Selenoprotein | 1.00                    | 1.16              | 1.06              | 0.19       | NA                  | NA                | NA                | NA         |
| Н         | Н             |                         |                   |                   | 2          |                     |                   |                   |            |
| SELENOI   | Selenoprotein | 1.00                    | 1.10              | 0.96              | 0.13       | 1.06                | 1.41              | 1.07              | 0.19       |
| (EPT1)    | Ι             |                         |                   |                   | 5          |                     |                   |                   | 2          |

| Table 6.1 (c | continued)      |      |                   |                   |      |      |                   |                   |      |
|--------------|-----------------|------|-------------------|-------------------|------|------|-------------------|-------------------|------|
| SELENO       | Selenoprotein   | 1.00 | 1.10              | 1.12              | 0.16 | 1.19 | 1.57              | 1.70              | 0.55 |
| Κ            | Κ               |      |                   |                   | 5    |      |                   |                   | 0    |
| SELENO       | Selenoprotein   | 1.00 | 1.13 <sup>a</sup> | 1.26 <sup>b</sup> | 0.07 | 3.19 | 7.57 <sup>a</sup> | 11.69             | 0.00 |
| Μ            | М               | a    | b                 |                   | 7    | а    | b                 | b                 | 5    |
| SELENO       | Selenoprotein   | 1.00 | 1.13 <sup>b</sup> | 1.06 <sup>a</sup> | 0.01 | 1.10 | 2.20 <sup>b</sup> | 1.77 <sup>a</sup> | 0.01 |
| Ν            | Ν               | a    |                   | b                 | 3    | а    |                   | b                 | 5    |
| SELENO       | Selenoprotein   | NA   | NA                | NA                | NA   | 1.01 | 1.29 <sup>a</sup> | 1.64 <sup>b</sup> | 0.03 |
| 0            | 0               |      |                   |                   |      | а    | b                 |                   | 3    |
| SELENO       | Selenoprotein   | 1.00 | 1.00              | 1.00              | 0.98 | 1.01 | 1.11              | 1.10              | 0.56 |
| Р            | Р               |      |                   |                   | 2    |      |                   |                   | 5    |
| SELENO       | Selenoprotein   | 1.00 | 1.08              | 1.02              | 0.27 | 1.02 | 1.25 <sup>a</sup> | 1.41 <sup>b</sup> | 0.06 |
| S            | S               |      |                   |                   | 7    | а    | b                 |                   | 7    |
| SELENO       | Selenoprotein   | 1.00 | 1.03              | 1.00              | 0.48 | 1.01 | 1.08              | 1.17              | 0.46 |
| Т            | Т               |      |                   |                   | 9    |      |                   |                   | 1    |
| SELENO       | Selenoprotein   | 1.00 | 1.01              | 1.05              | 0.85 | 1.04 | 1.12              | 1.12              | 0.81 |
| V            | V               |      |                   |                   | 0    |      |                   |                   | 0    |
| SELENO       | Selenoprotein   | 1.00 | 1.03              | 1.01              | 0.91 | 1.02 | 1.10              | 1.03              | 0.83 |
| W            | W               |      |                   |                   | 0    |      |                   |                   | 0    |
| SEPHS1       | Selenophospha   | 1.00 | 1.03              | 0.99              | 0.54 | 1.07 | 1.03              | 1.03              | 0.96 |
|              | te Synthetase 1 |      |                   |                   | 8    |      |                   |                   | 5    |
| SEPHS2       | Selenophospha   | 1.00 | 0.93 <sup>a</sup> | $0.88^{b}$        | 0.04 | 1.01 | 0.74 <sup>b</sup> | 0.81 <sup>b</sup> | 0.01 |
|              | te Synthetase 2 | а    | b                 |                   | 5    | а    |                   |                   | 9    |
| TXNRD1       | Thioredoxin     | 1.00 | 1.12 <sup>b</sup> | $0.97^{a}$        | 0.00 | 1.00 | 1.42 <sup>b</sup> | 0.98 <sup>a</sup> | 0.00 |
|              | Reductase 1     | а    |                   |                   | 1    | а    |                   |                   | 5    |
| TXNRD2       | Thioredoxin     | 1.00 | 1.15 <sup>b</sup> | 1.03 <sup>a</sup> | 0.03 | 1.05 | 1.82 <sup>b</sup> | 1.66 <sup>a</sup> | 0.08 |
|              | Reductase 2     | а    |                   |                   | 6    | а    |                   | b                 | 4    |
| TXNRD3       | Thioredoxin     | 1.00 | 0.92              | 0.95              | 0.28 | 1.02 | 1.35              | 1.49              | 0.13 |
|              | Reductase 3     |      |                   |                   | 6    |      |                   |                   | 0    |

<sup>1</sup>The abundance of gene transcripts are reported relative to the mean expression of the ISe treatment group (untransformed microarray data).

<sup>2</sup>The abundance of gene transcripts are reported relative to the geometric mean

expression of the reference genes.

<sup>3</sup>Values are least squares means (n = 6 for ISe, n = 7 for OSe and MIX)

<sup>4</sup>Means within a row that lack a common letter differ (P < 0.1).

Table 6.2. Microarray and real-time RT-PCR (RT-PCR) analyses of the effect on liver selenoprotein gene expression by growing beef steers consuming 3 mg Se/d in vitaminmineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX) during summer-long grazing of endophyte-infected tall fescue.

|           |                        | Microarray <sup>1</sup> |        |                   | RT-PCR <sup>2</sup> |                   |        |                   |            |
|-----------|------------------------|-------------------------|--------|-------------------|---------------------|-------------------|--------|-------------------|------------|
| Cono      | Cono Nomo              | Tı                      | eatmer | $nt^{3,4}$        | <i>P</i> -          | Tr                | eatmen | t <sup>3,4</sup>  | <i>P</i> - |
| Gene      | Gene Manie             | ISo                     | MI     | 050               | valu                | ISa               | MI     | 050               | valu       |
|           |                        | 156                     | Х      | 036               | e                   | 156               | Х      | 036               | e          |
| DIO1      | Iodothyronine          | 1.00                    | 1.32   | 1.57              | 0.23                | 1.22              | 1.89   | 1.87              | 0.38       |
|           | Deiodinase 1           |                         |        |                   | 9                   |                   |        |                   | 2          |
| DIO2      | Iodothyronine          | 1.00                    | 1.11   | 1.03 <sup>a</sup> | 0.07                | 1.22              | 1.13   | 1.12              | 0.90       |
|           | Deiodinase 2           | a                       | b      | b                 | 5                   |                   |        |                   | 0          |
| DIO3      | Iodothyronine          | 1.00                    | 1.04   | 0.93              | 0.35                | 1.04 <sup>a</sup> | 0.67   | 0.81 <sup>a</sup> | 0.09       |
|           | Deiodinase 3           |                         |        |                   | 5                   |                   | b      | b                 | 2          |
| GPX1      | Glutathione            | 1.00                    | 0.93   | 0.91              | 0.28                | 1.02              | 0.96   | 0.91              | 0.73       |
|           | Peroxidase 1           |                         |        |                   | 0                   |                   |        |                   | 0          |
| GPX2      | Glutathione            | 1.00                    | 0.99   | 1.03              | 0.72                | 1.04              | 0.77   | 1.09              | 0.13       |
|           | Peroxidase 2           |                         |        |                   | 4                   |                   |        |                   | 3          |
| GPX3      | Glutathione            | 1.00                    | 0.68   | 1.16              | 0.22                | 1.35              | 0.55   | 0.87              | 0.21       |
|           | Peroxidase 3           |                         |        |                   | 1                   |                   |        |                   | 0          |
| GPX4      | Glutathione            | 1.00                    | 1.22   | 1.08              | 0.09                | 1.01 <sup>a</sup> | 1.57   | 1.32 <sup>a</sup> | 0.06       |
|           | Peroxidase 4           |                         |        |                   | 6                   |                   | b      | b                 | 7          |
| GPX6      | Glutathione            | 1.00                    | 1.21   | 1.17 <sup>b</sup> | 0.02                | 1.79              | 0.66   | 0.98              | 0.27       |
|           | Peroxidase 6           | а                       | b      |                   | 0                   |                   |        |                   | 5          |
| LRP2      | LDL Receptor           | 1.00                    | 0.90   | 0.85              | 0.31                | 1.81              | 1.61   | 0.74              | 0.19       |
| (Megalin) | <b>Related Protein</b> |                         |        |                   | 2                   |                   |        |                   | 5          |
|           | 2                      |                         |        |                   |                     |                   |        |                   |            |
| LRP8      | LDL Receptor           | 1.00                    | 1.02   | 1.03              | 0.87                | 1.04              | 0.81   | 1.15              | 0.28       |
| (APOER2   | <b>Related Protein</b> |                         |        |                   | 7                   |                   |        |                   | 2          |
| )         | 8                      |                         |        |                   |                     |                   |        |                   |            |
| MSRB1     | Methionine             | 1.00                    | 1.05   | 0.98              | 0.50                | 1.01              | 1.00   | 0.87              | 0.47       |
| (SEPX1)   | Sulfoxide              |                         |        |                   | 5                   |                   |        |                   | 2          |
|           | Reductase B1           |                         |        |                   |                     |                   |        |                   |            |
| SELENO    | Selenoprotein          | 1.00                    | 1.07   | 1.06              | 0.25                | 1.01              | 0.94   | 0.85              | 0.18       |
| F (SEP15) | F                      |                         |        |                   | 7                   |                   |        |                   | 7          |
| SELENO    | Selenoprotein          | 1.00                    | 0.92   | 0.94              | 0.39                | NA                | NA     | NA                | NA         |
| Н         | Н                      |                         |        |                   | 4                   |                   |        |                   |            |
| SELENOI   | Selenoprotein I        | 1.00                    | 1.00   | 1.00              | 1.00                | 1.02              | 1.07   | 1.01              | 0.87       |
| (EPT1)    | -                      |                         |        |                   | 0                   |                   |        |                   | 3          |
| SELENO    | Selenoprotein          | 1.00                    | 1.03   | 1.03              | 0.91                | 1.14              | 1.17   | 1.19              | 0.99       |
| Κ         | Κ                      |                         |        |                   | 9                   |                   |        |                   | 0          |

| Table 6.2 (continued) |                 |      |      |                   |      |                   |      |                   |      |
|-----------------------|-----------------|------|------|-------------------|------|-------------------|------|-------------------|------|
| SELENO                | Selenoprotein   | 1.00 | 0.89 | 0.98 <sup>a</sup> | 0.08 | 3.44              | 3.03 | 3.28              | 0.93 |
| Μ                     | Μ               | a    | b    | b                 | 0    |                   |      |                   | 9    |
| SELENO                | Selenoprotein   | 1.00 | 0.96 | 1.03              | 0.15 | 1.00              | 1.12 | 1.16              | 0.38 |
| Ν                     | Ν               |      |      |                   | 0    |                   |      |                   | 8    |
| SELENO                | Selenoprotein   | NA   | NA   | NA                | NA   | 1.01 <sup>a</sup> | 1.21 | 1.01 <sup>a</sup> | 0.04 |
| 0                     | 0               |      |      |                   |      |                   | b    |                   | 0    |
| SELENO                | Selenoprotein   | 1.00 | 0.93 | 0.96              | 0.12 | 1.01 <sup>a</sup> | 0.85 | 0.82 <sup>b</sup> | 0.05 |
| Р                     | Р               |      |      |                   | 7    |                   | b    |                   | 8    |
| SELENO                | Selenoprotein   | 1.00 | 1.19 | 1.05 <sup>a</sup> | 0.07 | 1.02 <sup>a</sup> | 1.47 | 1.13 <sup>a</sup> | 0.00 |
| S                     | S               | a    | b    | b                 | 9    |                   | b    |                   | 1    |
| SELENO                | Selenoprotein   | 1.00 | 1.09 | 1.09 <sup>b</sup> | 0.02 | 1.00 <sup>a</sup> | 1.35 | 1.40 <sup>b</sup> | 0.00 |
| Т                     | Т               | a    | b    |                   | 1    |                   | b    |                   | 5    |
| SELENO                | Selenoprotein   | 1.00 | 0.92 | 1.01              | 0.51 | 1.17              | 1.20 | 1.01              | 0.76 |
| V                     | V               |      |      |                   | 1    |                   |      |                   | 9    |
| SELENO                | Selenoprotein   | 1.00 | 0.91 | 0.91              | 0.18 | 1.01              | 0.86 | 0.85              | 0.44 |
| W                     | W               |      |      |                   | 6    |                   |      |                   | 5    |
| SEPHS1                | Selenophospha   | 1.00 | 1.06 | 1.01              | 0.65 | 1.01              | 1.24 | 1.10              | 0.16 |
|                       | te Synthetase 1 |      |      |                   | 8    |                   |      |                   | 1    |
| SEPHS2                | Selenophospha   | 1.00 | 1.02 | 1.03              | 0.89 | 1.02 <sup>a</sup> | 1.18 | 0.96 <sup>b</sup> | 0.09 |
|                       | te Synthetase 2 |      |      |                   | 0    | b                 | a    |                   | 2    |
| TXNRD1                | Thioredoxin     | 1.00 | 1.15 | 1.13 <sup>a</sup> | 0.08 | 1.01 <sup>a</sup> | 1.36 | 1.37 <sup>b</sup> | 0.04 |
|                       | Reductase 1     | а    | b    | b                 | 1    |                   | b    |                   | 9    |
| TXNRD2                | Thioredoxin     | 1.00 | 0.98 | 0.97              | 0.90 | 1.01 <sup>a</sup> | 0.95 | $0.80^{b}$        | 0.02 |
|                       | Reductase 2     |      |      |                   | 2    |                   | a    |                   | 1    |
| TXNRD3                | Thioredoxin     | 1.00 | 1.05 | 1.05              | 0.44 | 1.02              | 1.04 | 0.98              | 0.88 |
|                       | Reductase 3     |      |      |                   | 6    |                   |      |                   | 6    |

<sup>1</sup>The abundance of gene transcripts are reported relative to the mean expression of the ISe

treatment group (untransformed microarray data).

<sup>2</sup>The abundance of gene transcripts are reported relative to the geometric mean

expression of the reference genes.

<sup>3</sup>Values are least squares means (n = 6 for ISe, n = 8 for OSe and MIX)

<sup>4</sup>Means within a row that lack a common letter differ (P < 0.1).

Table 6.3. Primer sets used for quantitative real-time RT-PCR analysis of the selected differentially expressed genes and

reference genes.

| Gene  | Gene Name                                                          | Template<br>Accession<br>number <sup>1</sup> | Oligonucleotide Primer Design (5' to 3' direction)  | Amplicon<br>length (bp) | Product<br>identity<br>(%) <sup>2</sup> |
|-------|--------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------|
| GAPDH | Glyceraldehyde<br>-3-phosphate<br>dehydrogenase                    | NM_001034034.2                               | F: ACATCAAGTGGGGGTGATGCT<br>R: GGCATTGCTGACAATCTTGA | 201                     | 99%                                     |
| PCK2  | Phosphoenolpyr<br>uvate<br>carboxykinase 2                         | NM_001205594.1                               | F: GCAAGCTGTGGATGAGAGGT<br>R: TGACAAAGTCGCCATCTCCC  | 203                     | 99%                                     |
| RPS11 | Ribosomal<br>protein S11                                           | NM_001024568.2                               | F: AAGATGGCGGACATTCAGAC<br>R: GCCCTCGAATGGAGACATTA  | 214                     | 99%                                     |
| SDHA  | Succinate<br>dehydrogenase<br>complex<br>flavoprotein<br>subunit A | NM_174178.2                                  | F: GCAGAACCTGATGCTTTGTG<br>R: CGTAGGAGAGCGTGTGCTT   | 185                     | 99%                                     |
| TFRC  | Transferrin receptor                                               | NM_001206577.1                               | F: CCAGGTTTAGTCTGGCTCGG<br>R: GGTCTGCCCAGAATATGCGA  | 339                     | 99%                                     |

Table 6.3 (continued)

| UBC  | Ubiquitin C                   | NM_001206307.1 | F: TAGGGGTGGGTTAGAGTTCAAG<br>R: ACCACCTCCCTGCTGGTATT | 258 | 100% |
|------|-------------------------------|----------------|------------------------------------------------------|-----|------|
| DIO1 | Iodothyronine<br>deiodinase 1 | NM_001122593.2 | F: ATTGCCCAGTTCTAGGTGCC<br>R: CAGAAGGAAATGCAGCGTGT   | 273 | 100% |
| DIO2 | Iodothyronine<br>deiodinase 2 | NM_001010992.4 | F: GATGGGCATCCTCAGCGTAG<br>R: TTCTCCTGGGCACCATTTCC   | 315 | 100% |
| DIO3 | Iodothyronine<br>deiodinase 3 | NM_001010993.3 | F: AAGTGGAGCTCAACAGCGAT<br>R: AGTCGAGGATGTGCTGGTTC   | 213 | 100% |
| GPX1 | Glutathione<br>peroxidase 1   | NM_174076.3    | F: AAACGCCAAGAACGAGGAGA<br>R: GTCGGTCATGAGAGCAGTGG   | 184 | 99%  |
| GPX2 | Glutathione<br>peroxidase 2   | NM_001163139.2 | F: AACAGCCTCAAGTACGTCCG<br>R: TCGGTCATGAGGGAAAACGG   | 158 | 100% |

# Table 6.3 (continued)

| GPX3  | Glutathione<br>peroxidase 3             | NM_174077.4    | F: AGGAGAAGTCGAAGACGGACT<br>R: CTCAGTAGCTGGCCACGTTGA | 147 | 100% |
|-------|-----------------------------------------|----------------|------------------------------------------------------|-----|------|
| GPX4  | Glutathione<br>peroxidase 4             | NM_174770.3    | F: GATCAAAGAGTTCGCCGCTG<br>R: CCATACCGCTTCACCACACA   | 198 | 100% |
| GPX6  | Glutathione<br>peroxidase 6             | NM_001163142.1 | F: CACTGTTCCTGGTCGGCTTA<br>R: CCCAGCACAACTACACCGAA   | 259 | 99%  |
| LRP2  | LDL receptor<br>related protein 2       | XM_015462263.1 | F: GTGGTTTGGGTTACCGTTGC<br>R: GGCACCCTGTTAGCTGTGAT   | 304 | 98%  |
| LRP8  | LDL receptor<br>related protein 8       | NM_001097565.1 | F: AGCCACCCTTTTGGGATAGC<br>R: AAGGCACAGGTACTCACAGC   | 231 | 98%  |
| MSRB1 | Methionine<br>sulfoxide<br>reductase B1 | NM_001034810.2 | F: GAACCACTTTGAGCCGGGTA<br>R: GGCCATCGTTCAGGAACTCA   | 221 | 100% |

| SELENOF | Selenoprotein F    | NM_001034759.2 | F: GGGAGATGCCTGATGTGAGT<br>R: TCCAGTGCCTGATCCAAAGC | 174 | 100% |
|---------|--------------------|----------------|----------------------------------------------------|-----|------|
| SELENOH | Selenoprotein H    | NM_001321327.1 | F: CACGAGCTGACGAGTCTACG<br>R: CTTCTTCAGCTCCTCCAGCA | 235 | 100% |
| SELENOI | Selenoprotein I    | NM_001075257.2 | F: TACCTGACGTGTTGGCAGAC<br>R: CACTTGTGAAAAAGGCCGCA | 341 | 100% |
| SELENOK | Selenoprotein K    | NM_001037489.3 | F: CCGTTTTGTCGATTCACGGC<br>R: CAGATGAGCTTCCGTAGCCT | 278 | 100% |
| SELENOM | Selenoprotein<br>M | NM_001163171.2 | F: CCCACTCTACCACAACCTGG<br>R: ACCTAAAGGTCTGCGTGGTC | 249 | 100% |
| SELENON | Selenoprotein N    | NM_001114976.2 | F: GTGGCCATGTACCCCTTCAA<br>R: GGGATGGGTTCTCCTGGTTG | 265 | 100% |

| SELENOO     | Selenoprotein O    | NM_001163193.2 | F: TGGACAGGTATGACCCCGAT<br>R: ATCTTCTGCAGGTAGTGCCG | 202 | 100% |
|-------------|--------------------|----------------|----------------------------------------------------|-----|------|
| SELENOP     | Selenoprotein P    | NM_174459.3    | F: TCAGGTCTTCATCACCACCA<br>R: GTGGCAACAGCAGCTACTCA | 201 | 100% |
| SELENOS     | Selenoprotein S    | NM_001046114.3 | F: CCCACCCTCGAGACCGA<br>R: GCCCAGGACTGTCTTCTTCC    | 394 | 100% |
| SELENOT     | Selenoprotein T    | NM_001103103.2 | F: TGGTCACCTTCCATCCATGC<br>R: AAGAGGTACAACGAGCCTGC | 240 | 100% |
| SELENOV     | Selenoprotein V    | NM_001163244.2 | F: ACTCCATTGGCCACCGATTT<br>R: AGGCCACAGTAAACCACTCG | 224 | 100% |
| SELENO<br>W | Selenoprotein<br>W | NM_001163225.1 | F: AGTGTTCGTAGCGGGAAAGC<br>R: CGCGAGAACATCAGGGAAGG | 233 | 98%  |

Table 6.3 (continued)

| SEPHS1 | Selenophosphat<br>e synthetase 1 | NM_001075316.1 | F: CAAAGCGAACCGGTGGATCT<br>R: GAGGTCACTGAGGACGTTGG  | 422 | 99%  |
|--------|----------------------------------|----------------|-----------------------------------------------------|-----|------|
| SEPHS2 | Selenophosphat<br>e synthetase 2 | NM_001114732.2 | F: GATCCCTACATGATGGGGGCG<br>R: GTTTACCACCGTTTGCCCAC | 219 | 100% |
| TXNRD1 | Thioredoxin<br>reductase 1       | NM_174625.3    | F: AAGGCCGCGTTATTTGGGTA<br>R: CCTGGTGTCCCTGCTTCAAT  | 306 | 98%  |
| TXNRD2 | Thioredoxin reductase 2          | NM_174626.2    | F: CAAATGGCTTCGCTGGTCAC<br>R: TTCGTATGCACACCAGCCTT  | 230 | 100% |
| TXNRD3 | Thioredoxin reductase 3          | XM_015468824.1 | F: CGGCGTATGACTACGACCTC<br>R: GACTGTACTCCCAGCCGAAC  | 249 | 99%  |

<sup>1</sup>The contents in the parentheses associated with each gene symbol are the accession numbers of the sequences retrieved from

the NCBI RefSeq database and used as templates for designing primers and probes.

<sup>2</sup>All the real-time RT-PCR products were validated by sequencing. The identity values (%) presented are the base-pair ratios between the number of identical base pairs and the total amplicon length.



Figure 6.1. Score plot from principal component analysis of steer (ISe, OSe, and MIX) parameters showing the correlation of the first two principal components (Components 1 and 2) among Se concentration, glutathione (GSH) content, glutamine synthetase (GS) activity, and relative mRNA abundance of selenoproteins in liver.



Figure 6.2. Loading plot from principal component analysis of steer (ISe, OSe, and MIX) parameters showing the correlation of the first two principal components (Components 1 and 2) among Se concentration, glutathione (GSH) content, glutamine synthetase (GS) activity, and relative mRNA abundance of selenoproteins in liver.

### GAPDH:

<u>ACATCAATGGGGTGATGCT</u>GGTGCTGAGTATGTGGTGGAGTCCACTGGGGTC TTCACTACCATGGAGAAGGCTGGGGGCTCACTTGAAGGGTGGCGCCAAGAGGG TCATCATCTCTGCACCTTCTGCCGATGCCCCCATGTTGTGATGGGCGTGAACC ACGAGAAGTATAACAACACCC<u>TCAAGATTGTCAGCAATGCC</u>

#### *PCK2*:

<u>GCAAGCTGTGGATGAGAGGT</u>TTCCAGGCTGCATGCTGKGCCSAACATGTACG TGATTCCGTTCAGCATGGGTCCCGTGGGCTCCCCGCTGTCCCGCATCGGAGTG CAGCTCACGGACTCTGCCTACGTGGTGGCAAGCATGCGGATTATGACTCGGT TGGGGACACCTGTGCTTCAGGCCCT<u>GGGAGATGGCGACTTTGTCA</u>

### *RPS11*:

AAGATGGCGGACATTCAGACAGAACGTGCGTACCAAAAGCAACCGACCATC TTTCAAAATAAAAAGAGGGTCCTGCTTGGAGAAACTGGCAAAGAAAAGCTCC CTCGATACTACAAGAACATTGGTCTGGGCTTCAAGACTCCAAAGGAGGCCAT CGAGGGCACCTACATTGACAAGAAATGCCCTTTTACGGG<u>TAATGTCTCATTCG</u> AGGGC

### SDHA:

 $\frac{CGTAGGAGAGCGTGTGCTT}{CCTCCAGTGCTGCTCAAAGGGCTTCTTCTGCTGC}\\CCCTGGATGGGCTTGGAGTAATCGTACTCGTCAACCCTCTCCTTGAAGTCCTC\\CCTGGCGTGGGCGCCGCGCGCGACTCCTtCCGGGCCTCCGCTAGATGGTCT\\GCAGAGCACAAAGCATCAGGTTCTGC$ 

# TFRC:

<u>CCAGGTTTAGTCTGGCTCGG</u>CAAGTAGATGGTGATAACAGTCATGTGGAGAT GAAATTAGCTGCAGATGAAGAAGAAGAANAATGTTGACAGTAACATGAGGGGCA ACCAAACCAGTATCGCAAAACCGAAAAGGTTAAATGGATATGTCTGCTACGG GATCATTGCTGTAATCGTCTTTTTCTTGATTGGATTTGGATTGGCTACTTGGG CTATTGTAGACGTGTGGAATCACAAGATTGTGGGAAAGAGGCAGGAACACA GCCTTCGTGCCCAGGAGGAGACAGAAACTTTCGAATCAGAAGAGCAACTCCC TGGAGTACC<u>TCGCATATTCTGGGCAGACC</u>

## UBC:

TAGGGGTGGGTTAGAGTTCAAGGTTTTTGTTCTACCAGATGTTTTAGTAGTAA TCTGGAGGTAAGAAATGTCAAGAAAACATGGCCTTAATTAGAACTGTAGTGG GTGAGTATAAATAAAAAATTTGGAGGTTGTAGTTAGAATTCTCCATATGTAC ACTCATATGTAGATCTACTTATAAGCTACTGATTTTTAAAAGCACACGTTTGG GAGTTGTGCTTAAGAGTGGGAAAGTTTCTGG<u>AATACCAGCAGGGAGGT</u>

## *DI01:*

<u>ATTGCCCAGTTCTAGGTGCC</u>CAACCTGAGGGCCCCTTAAGGCTTGGTTTGACC CCCATCCCAGCTGACATTACCTCTTGACCTGTGTTCCCAGTTGAATCACTAG CCTGGATTTTTCTGATCCAAGCAAACAATTGTTGCAATGAGAAAATGAAGCC ACAAGTAAGCTGAGTATTAAAGAAGGTATAATTTCGTACTGCTCCTACCATG GAGACTGTGTTCATTGCACAGCATTCTAAGAATGAGAGCAGGT<u>ACACGCTGC</u> <u>ATTTCCTTCTG</u>

# *DI02:*

GATGGGCATCCTCAGCGTAGACTTGCTGATCACACTGCAGATTCTGCCAGTTT TTTTCTCCAACTGCCTCTTCCTGGCGCTCTATGACTCGGTCATTCTCCTCAAGC ACGTGGTGCTGCTGCTGAGCCGCTCCAAGTCCACTCGCGGGCAGTGGAGGGCG CATGCTGACCTCAGAAGGAATGCGCTGCATCTGGAAAAAGCTTCCTCCTCGAC GCCTACAAACAGGTGAAACTGGGTGAAGATGCCCCCAATTCCAGCGTGGTGC ATGTCTCCAGTCCGGAAGGAGGTGACACCAGT<u>GGAAATGGTGCCCAGGAGA</u> <u>A</u>

DI03:

# GPX1:

AAACGCCAAGAACGAGGAGATCCTGAATTGCCTGAAGTACGTCCGACCAGG CGGCGGGTTCGAGCCCAACTTTATGCTCTTCGAAAAGTGCGAGGTGAATGGC GAGAAGGCGCATCCGCTCTTCGCCTCCTTCGGGAGGTTCTGCCCACGCCAAG TGACGACG<u>CCACTGCTCTCATGACCGAC</u>

# GPX2:

# *GPX3:*

<u>AGGAGAAGTCGAAGACGGACT</u>GCCACGCTGGTGTGGGTGGCACCATCTATGA GTACGGGGCCCTCACCATCGATGGGGAGGAGTACATCCCCTTTAAGCAGTAC GCTGGCAAATACATCCTCTTCG<u>TCAACGTGGCCAGCTACTGAG</u>

# *GPX4:*

<u>GATCAAAGAGTTCGCCGCTG</u>GCTATAACGTCAAATTCGATTTGTTCAGCAAG ATCTGTGTAAATGGGGACGACGCCCACCCTCTGTGGAAATGGATGAAAGTCC

### AGCCCAAGGGGAGAGGCATGCTGGGGAAACGCCATCAAATGGAACTTCACCA AGTTCCTCATTGACAAGAACGGC<u>TGTGTGGTGAAGCGGTATGG</u>

## *GPX6:*

<u>CACTGTTCCTGGTCGCTTA</u>GCTCAGCTGACTCCGAAGCAGCAACAGATGAAG GTGGATTGCTATAAGGGGGTGACAGGCACCATCTATGAGTATGGAGCCCTCA CCCTCAATGGTGAGGAGTATATCCAGTTCAAGCAGTATGTGGGCAAGCATGT CCTGTTTGTCAATGTGGCCACCTATTGAGGCTTGACAGCTCAGTTCCAGAACT GAATGCACTACAGGAGGAGCTGAAGCCT<u>TTCGGTGTAGTTGTGCTGGG</u>

# LRP2:

<u>GTGGTTTGGGTTACCGTTGC</u>AAGTGTAGGCTTTGCGAACTTCGGATTGGGATG ACTATCACTGTGTTGCTGCTGAGCGGTTTCTGCTCTTTCATCTACATCTGGCT GTTCGTGGCATCCCACTCACCCTCTCTCACCAGACGGAGGTCATCCTTCCAGT GACAGGATCTTCTTCCATCTTCCTTGGGATCGATTTTGATGCCCGCGAGAAGG CTATCTTTTTTCAGATACAAAGAAAAACATTATTTATAGACAAAAGCTCGAT GGTACAGGAAGAAAATT<u>ATCACAGCTAACAGGGTGCC</u>

# LRP8:

<u>AGCCACCCTTTTGGGATAGC</u>TGTGTTTGAGGACAAVGTGTTCTGGACGGACCT GGAGAATGAGGCCATTTTCAGTGCAAATCGGCTCAATGGCCTGGAAATCTCC GTCCTAGCTGAGAACCTCAACAACCCGCATGATATAGTCATCTTCCATGAGCT GAAGCAGCCAAGAGCTGCAGATGCCTGAGCGAGGCCCAGCCCAATGGAG<u>GC</u> <u>TGTGAGTACCTGTGCCTT</u>

# MSRB1:

<u>GAACCACTTTGAGCCGGGTA</u>TCTACGTGTGTGCCAAGTGTGGCTATGAGCTCT TCTCCAGCCGCTCCAAGTACGCACACTCATCCCCATGGCCGGCGTTCACTGAG ACCATCCATGCTGACAGTGTGGCCAAGCGGCCAGAGCACAATCGGCCTGGAG CCATAAAGGTATCCTGTGGCAGGTGTGGCAACGGGCTGGGCCA<u>TGAGTTCCT</u> <u>GAACGATGGCC</u>

# SELENOF:

<u>GGGAGATGCCTGATGTGAGT</u>TATCGAAAGGACCCAGTGACTTCATATTTACA TCAAGTGTAAAGTTTTTGCTCACCTTTAAGCTTACATATGCCCGTAGTTAATG CCCGTCTCCTCAGAATAAGAGACTTGATGGCAGCGGCCTTTAGCAGCCT<u>GCTT</u> <u>TGGATCAGGCACTGGA</u>

# SELENOH:

<u>CACGAGCTGACGAGTCTACG</u>GGCGCAACGCCGCGGCCCTGAGCCAGGCGCtG CGCCTGCAGGCCCCCGAGCTGACGTGAAGGTGAACCCCGCCAGGCCGCGG AGGGGCAGCTTCGAGGTGACGTTGCTGCGCGCCGACGGCAGCAGCGCGGAG

#### CTCTGGACGGGTCTTAAGAAGGGGCCCCCACGCAAACTCAAGTTTCCGGAGC CTCACGTGG<u>TGCTGGAGGAGCTGAAGAAG</u>

### SELENOI:

### SELENOK:

### **SELENOM:**

<u>CCCACTCTACCACAACCTGG</u>TGATGAAACACCTGCCGGGGGCCGACCCAGAG CTCGTGTTGCTCGGCCACCGCTTTGAGGAACTGGAGCGAATTCCACTCAGCG ACATGACCCGCGAGGAGATCAACGCGCTGGTGCAGGAGCTCGGCTTCTACCG CAAGGCGTCGCCCGACGAGCCTGTGCCCCCGGAGTACCTTCGGGCGCCCGCT AGGCCCGCCGGAGACGCTCCT<u>GACCACGCAGACCTTTAGGT</u>

## SELENON:

#### SELENOO:

<u>TGGACAGGTATGACCCCGAT</u>CACGTGTGCAACGCCTCCGACACCGCCGGGCG CTACTCGTACAGCAAGCAGCCCGAGGTGTGCAAGTGGAACCTGCAGAAGCTG GCCGAGGCCCTGGACCCCGCGCTGCCCCTCGAGCTGGCCGAGGCCATCCTGG CAGAGGAGTTCGACGCCGAGTTCGGC<u>CGGCACTACCTGCAGAAGAT</u>

## **SELENOP:**

<u>TCAGGTCTTCATCACCACCA</u>CCACAGGCACAAGGGTCCCCAAAGACAGGGTC ACTCAGATAACTGTGATACACCAGTAGGAAGTGAAAGTTTACAACCTTCTCTT CCACAAAAGAAGCTCTGACGAAAGAGATGCATAAATCAGTTACTCTGACAGT TTCCCAAAGATTCAGAATCTGCTT<u>TGAGTAGCTGCTGTTGCCAC</u>

## **SELENOS:**

## **SELENOT:**

#### **SELENOV:**

<u>ACTCCATTGGCCACCGATTT</u>ACGGTCCCCATCCCTCGGGTCCCCTCTGAGGAC AGACACATCGACCACCAATTTGATAGCTTCTTCTTGGACATGTCCCAGGGA CGCCCATCCTAGGGGGCCATCCAGGCCATCTTACCGGTTCCTGCCACCGCATTA GCTTCCATCAGTGGGAACCTCAAAGAGGAAAACAAGATCATGATT<u>CGAGTGG</u> <u>TTTACTGTGGCCT</u>

#### **SELENOW:**

<u>AGTGTTTGTAGCGGGAAAGC</u>TGGTTCACTCCAAGAAGGGAGGCGATGGCTAC GTGGACACGGAGAGCAAGTTTCTGAAGCTGGTGGCCGCCATCAAAGCCGCTT TGGCTCAGGCCTGATGTGGCCTGAAGGCAGAGACCAGTAATCGTGGCCCAGC CCCTCTCGGCAGACGCTTCATGACAGGAAGGACGAAAGTCTCTTGGACGCCT GGT<u>CCTTCCCTGATGTTCTCGCG</u>

## SEPHS1:

### CTGAGGCACGGCGGCCTTTCCTTGGTTCAAACCACAGATTACATTTATCCCAT CGTCGATGACCCNTACATGATGGGCAGGATAGCCTGTG<u>CCAACGTCCTCAGT</u> <u>GACCTC</u>

## SEPHS2:

GATCCCTACATGATGGGGGCGCATCGCATGTGCCAACGTGCTGAGTGACCTTT ACGCGATGGGCATTACTGAGTGTGACAACATGTTGATGCTACTCAGCGTCAG CCAGAGTATGCCTGAGGAGGAGGAGCGAGAAAAGATAACACCACTCATGATCAA AGGCTTTCGAGATGCTGCCGAGGAAGGAAGGAGGGACTGCAGTGACTG<u>GTGGGCA</u> <u>AACGGTGGTAAAC</u>

# TXNRD1:

<u>AAGGCCGCGTTATTTGGGTA</u>TCCCCGGTGACAAAGAATACTGTAtYMGCAGT GATGATCTTTTCTCTCTACCTTATTGCCCGGGTAAGACCCTGGTGGTTGGAGC ATCCTATGTTGCTTTGGAATGTGCTGGATTTCTTGCTGGTATTGGTTAGACGT CACTGTTATGGTACGATCCATTCTCCTAAGAGGGATTTGACCAGGACATGGCCA ACAAAATTGGTGAACATATGCAAGAACATGGTATCAAGTTCATAAGACAGTG ACAATAAAAGTTGAACAA<u>ATTGAAGCAGGGACACCAGG</u>

# TXNRD2:

# TXNRD3:

Figure 6.3. The sequences of the real-time RT-PCR products (5' to 3' orientation).

Within a sequence, underlined nucleotides indicate the forward and reverse primer

positions.

#### **CHAPTER 7. Summary and Conclusions**

Improvement of growth performance of growing beef steers grazing endophyteinfected tall fescue has been hindered by a lack of fundamental knowledge about how ergot alkaloids exert their deleterious effects on bovine pituitary function. In addition, knowledge regarding the effects of forms of supplemental Se on pituitary function of growing beef steers grazing endophyte-infected tall fescue has not been reported. The overall objective of this dissertation was to determine whether transcriptome profiles differed between whole pituitaries of growing beef steers grazing pastures containing HE or LE amounts of toxic endophyte-infected tall fescue, and to test whether ISe, OSe, vs. MIX in a basal VM mix would differentially alter pituitary transcriptome profiles in growing beef steers grazing endophyte-infected tall fescue.

In the first experiment of the current study (Chapter 4), the findings indicate that anterior pituitary functions were globally impaired in steers consuming high-toxic endophyte-infected tall fescue. In addition to inhibiting the abilities to synthesize and secrete prolactin (a function of lactotrophs), ACTH synthesis capacity (a function of corticotrophs) might have been reduced. Canonical pathway analysis also indicated that growth hormone signaling and GnRH signaling were altered in HE vs. LE steers. With the identification of putative ergot alkaloid sensitive mechanisms within the pituitary gland, this new knowledge may help to develop dietary treatments that ameliorate the effects of ergot alkaloid ingestion. To our knowledge, this is the first report to describe the impart of consumption of toxic tall fescue on bovine pituitary transcriptome.

In the second experiment of the current study (Chapter 5), the findings indicate that consumption of 3 mg Se/d in VM mixes as OSe, MIX, or ISe differentially affected

the expression of genes responsible for the synthesis or release of prolactin and POMC/ACTH/ $\alpha$ -MSH, and for mitochondrial function, in the pituitaries of growing beef steers commonly grazing an endophyte-infected tall fescue pasture. Consumption of OSe resulted in greater prolactin synthesis capacity, whereas consumption of MIX resulted in increased prolactin synthesis and release potential, both of which resulted in greater serum prolactin concentrations in OSe and MIX steers vs. ISe steers, respectively. In addition, consumption of OSe resulted in greater POMC/ACTH/ $\alpha$ -MSH synthesis potential, and a better capacity to manage against mitochondrial dysfunction and oxidative stress, than did consumption of MIX or ISe forms of Se. To our knowledge, this is the first report to evaluate the impact of forms of supplemental Se on bovine pituitary transcriptome.

In the third experiment of the current study (Chapter 6), the findings indicate that consumption of 3 mg Se/d in VM mixes as OSe, MIX, or ISe differentially affected the expression of selenoprotein profiles in both pituitaries and livers of growing beef steers commonly grazing an endophyte-infected tall fescue pasture. Compared with liver, the pituitary is more responsive to Se treatment in terms of change in expressions of selenoprotein. For most of the affected selenoproteins, they were either up-regulated by OSe or MIX supplementation when compared to ISe supplementation. Generally, OSe steers may manage against oxidative damage, maintain cellular redox balance, and have a better quality control of protein-folding in their pituitaries than ISe steers. Meanwhile, MIX steers may have more thyroid hormone T3 and better redox signaling, and handle oxidative damage better in livers than ISe steers. This is the first time to describe the

effects on forms of supplemental Se on bovine selenoprotein expression profile in pituitary and liver.

In conclusion, these findings above suggest that consumption of endophyteinfected tall fescue negatively impact bovine pituitary function (e.g. prolactin and ACTH synthesis), and inclusion of the organic form of Se in free-choice vitamin-mineral mixes can ameliorate the negative impact of fescue toxicosis on beef cattle by restoration of both prolactin and POMC/ACTH synthesis capacities to a certain extent. In addition, by identification of genes that are susceptible to ergot alkaloids contained in endophyteinfected tall fescue, a larger implication of this research may be that it allows for selective breeding for genotypes with a higher resistance to endophyte toxicosis.

#### **APPENDIX. Example of SAS Analysis**

Analysis of mRNA expression of UBC in pituitary tissue of steers grazing endophyteinfected tall fescue and supplemented with 3 mg Se/d in vitamin-mineral mixes as either sodium selenite (ISe), SEL-PLEX (OSe), or a 1:1 mix of ISe and OSe (MIX) (Chapter 5)

1. Representative of SAS editor programming language using PROC GLM

procedure

proc means data=SCApituitary MEAN MIN MAX STD STDERR; class trt; proc glm data=SCApituitary plots=diagnostics;; class trt; model UBC=trt; lsmeans trt/diff; run;quit;

2. SAS output

3. The SAS System

The MEANS Procedure

#### Analysis Variable : UBC UBC

| trt N O | bs            | Mean   | Minimum    | Maximum    | Std Dev   | Std Error |
|---------|---------------|--------|------------|------------|-----------|-----------|
| B       | 7 23.8        | 142857 | 23.0600000 | 24.2800000 | 0.3923798 | 0.1483056 |
| G       | <b>7</b> 23.7 | 642857 | 23.5150000 | 23.9350000 | 0.1665440 | 0.0629477 |
| R       | 6 23.9        | 116667 | 23.4200000 | 24.1400000 | 0.2583344 | 0.1054646 |

The SAS System

The GLM Procedure

**Class Level Information** 

Class Levels Values

trt 3 B G R

Number of Observations Read 20

Number of Observations Used 20

The SAS System

The GLM Procedure

Dependent Variable: UBC UBC

| Source                 | DF Su | m of Squares <b>N</b> | Mean Square | F Value Pr > F |
|------------------------|-------|-----------------------|-------------|----------------|
| Model                  | 2     | 0.07165381            | 0.03582690  | 0.43 0.6588    |
| Error                  | 17    | 1.42387619            | 0.08375742  |                |
| <b>Corrected Total</b> | 19    | 1.49553000            |             |                |

#### **R-Square Coeff Var Root MSE UBC Mean**

 $0.047912 \quad 1.214676 \quad 0.289409 \quad 23.82600$ 

#### Source DF Type I SS Mean Square F Value Pr > F

trt 2 0.07165381 0.03582690 0.43 0.6588



#### Source DF Type III SS Mean Square F Value Pr > F

trt 2 0.07165381 0.03582690 0.43 0.6588



#### The SAS System

#### The GLM Procedure

#### Least Squares Means

### trt UBC LSMEAN LSMEAN Number

| B | 23.8142857 | 1 |
|---|------------|---|
| G | 23.7642857 | 2 |
| R | 23.9116667 | 3 |

#### Least Squares Means for effect trt Pr > |t| for H0: LSMean(i)=LSMean(j) Dependent Variable: UBC

| i/j | 1      | 2      | 3      |
|-----|--------|--------|--------|
| 1   |        | 0.7505 | 0.5533 |
| 2   | 0.7505 |        | 0.3728 |
| 3   | 0.5533 | 0.3728 |        |





#### REFERENCES

- Adashi, E. Y., and C. E. Resnick. 1987. Prolactin as an inhibitor of granulosa cell luteinization: implications for hyperprolactinemia-associated luteal phase dysfunction. Fertil. Steril. 48: 131-139.
- Agarwal, V., G. W. Bell, J. W. Nam, and D. P. Bartel. 2015. Predicting effective microRNA target sites in mammalian mRNAs. elife. 4: e05005.
- Ahmadzadeh, A., M. A. Barnes, F. C. Gwazdauskas, and R. M. Akers. 2006. Dopamine antagonist alters serum cortisol and prolactin secretion in lactating Holstein cows.J. Dairy Sci. 89: 2051-2055.
- Aiken, G., and J. Strickland. 2013. Forages and pastures symposium: managing the tall fescue-fungal endophyte symbiosis for optimum forage-animal production. J. Anim. Sci. 91: 2369-2378.
- Aiken, G., M. L. Looper, S. F. Tabler, D. K. Brauer, J. R. Strickland, and F. N. Schrick. 2006. Influence of stocking rate and steroidal implants on growth rate of steers grazing toxic tall fescue and subsequent physiological responses. J. Anim. Sci. 84: 1626-1632.
- Albarracin, C. T., and G. Gibori. 1991. Prolactin action on luteal protein expression in the corpus luteum. Endocrinology. 129: 1821-1830.
- Albertson, B. D., M. L. Sienkiewicz, D. Kimball, A. K. Munabi, F. Cassorla, and D. L. Loriaux. 1987. New evidence for a direct effect of prolactin on rat adrenal steroidogenesis. Endocr. Res. 13: 317-333.

- Aldrich, C. G., J. A. Paterson, J. L. Tate, and M. S. Kerley. 1993. The effects of endophyte-infected tall fescue consumption on diet utilization and thermal regulation in cattle. J. Anim. Sci. 71: 164-170.
- Ali, S., Z. Chen, J. Lebrun, W. Vogel, A. Kharitonenkov, P. Kelly, and A. Ullrich. 1996. PTP1D is a positive regulator of the prolactin signal leading to beta-case in promoter activation. EMBO J. 15: 135-142.
- Alston, C. L., J. E. Davison, F. Meloni, F. H. van der Westhuizen, L. He, H. T. Hornig-Do, A. C. Peet, P. Gissen, P. Goffrini, I. Ferrero, E. Wassmer, R. McFarland, and R. W. Taylor. 2012. Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J. Med. Genet. 49: 569-577.
- Andrews, G. K., S. Varma, and K. E. Ebner. 1987. Regulation of expression of c-fos and c-myc in rat lymphoma Nb-2 cells. Biochim. Biophys. Acta, Gene Struct. Expr. 909: 231-236.
- Apostolou, S., J. O. Klein, Y. Mitsuuchi, J. N. Shetler, P. I. Poulikakos, S. C. Jhanwar,
  W. D. Kruger, and J. R. Testa. 2004. Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype. Oncogene. 23: 5032-5040.
- Arachevaleta, M., C. Bacon, C. Hoveland, and D. Radcliffe. 1989. Effect of the tall fescue endophyte on plant response to environmental stress. Agron J. 81: 83-90.
- Arbogast, L. A., and J. L. Voogt. 1991. Hyperprolactinemia increases and hypoprolactinemia decreases tyrosine hydroxylase messenger ribonucleic acid
levels in the arcuate nuclei, but not the substantia nigra or zona incerta. Endocrinology. 128: 997-1005.

- Arita, J., Y. Kojima, and F. Kimura. 1991. Identification by the sequential cell immunoblot assay of a subpopulation of rat dopamine-unresponsive lactotrophs. Endocrinology. 128: 1887-1894.
- Armstrong, D. T., and E. R. King. 1971. Uterine progesterone metabolism and progestational response: effects of estrogens and prolactin. Endocrinology. 89: 191-197.
- Armstrong, D. T., K. A. Knudsen, and L. S. Miller. 1970. Effects of prolactin upon cholesterol metabolism and progesterone biosynthesis in corpora lutea of rats hypophysectomized during pseudopregnancy. Endocrinology. 86: 634-641.
- Arnér, E. S. 2009. Focus on mammalian thioredoxin reductases-important selenoproteins with versatile functions. Biochim. Biophys. Acta Gen. Subj. 1790: 495-526.
- Arnér, E. S., and A. Holmgren. 2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109.
- Arthur, J. 2001. The glutathione peroxidases. Cell. Mol. Life. Sci. 57: 1825-1835.
- Arunakaran, J., M. M. Aruldhas, and P. Govindarajulu. 1988a. Interactions of androgens and prolactin in the seminal vesicles of mature bonnet monkeys, Macaca radiata:I. Nucleic acids and phosphatases. J. Androl. 9: 121-125.
- Arunakaran, J., K. Balasubramanian, N. Srinivasan, M. Aruldhas, and P. Govindarajulu. 1988b. Effects of androgens, prolactin and bromocriptine on seminal vesicular enzymes of the pyruvate malate cycle involved in lipogenesis in castrated mature monkeys, Macaca radiata. Int. J. Androl. 11: 133-139.

- Arunakaran, J., K. Balasubramanian, N. Srinivasan, M. Aruldhas, and P. Govindarajulu. 1989. Effects of prolactin and androgens on seminal vesicular lipids of castrated mature bonnet monkeys Macaca radiata. Indian J. Exp. Biol. 27: 329-333.
- Asa, S. L., L. A. Puy, A. M. Lew, V. C. Sundmark, and H. P. Elsholtz. 1993. Cell typespecific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. J. Clin. Endocrinol. Metab. 77: 1275-1280.
- Auchtung, T. L., A. G. Rius, P. E. Kendall, T. B. McFadden, and G. E. Dahl. 2005. Effects of photoperiod during the dry period on prolactin, prolactin receptor, and milk production of dairy cows. J. Dairy Sci. 88: 121-127.
- Auchtung, T. L., and G. E. Dahl. 2004. Prolactin mediates photoperiodic immune enhancement: effects of administration of exogenous prolactin on circulating concentrations, receptor expression, and immune function in steers. Biol. Reprod. 71: 1913-1918.
- Autelitano, D. J., L. Snyder, S. C. Sealfon, and J. L. Roberts. 1989. Dopamine D2receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol. Cell. Endocrinol. 67: 101-105.
- Avissar, N., D. B. Ornt, Y. Yagil, S. Horowitz, R. H. Watkins, E. A. Kerl, K. Takahashi,I. S. Palmer, and H. J. Cohen. 1994. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Physiol. 266: 367-375.
- Awasthi, Y. C., E. Beutler, and S. K. Srivastava. 1975. Purification and properties of human erythrocyte glutathione peroxidase. J. Biol. Chem. 250: 5144-5149.
- Axtell, S. M., T. M. Truong, K. D. O'neal, and L. Yu-Lee. 1995. Characterization of a prolactin-inducible gene, clone 15, in T cells. Mol. Endocrinol. 9: 312-318.

- Bakowska, J. C., and J. I. Morrell. 1997. Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J. Comp. Neurol. 386: 161-177.
- Ball, D. M., G. Lacefield, and C. S. Hoveland. 1987. The fescue endophyte story. Special publication of the Oregon Tall Fescue Commission, Salem, OR.
- Ball, R. K., R. R. Friis, C. A. Schoenenberger, W. Doppler, and B. Groner. 1988.Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 7: 2089-2095.
- Banning, A., A. Kipp, and R. Brigelius-Flohé. 2011. Glutathione peroxidase 2 and its role in cancer Selenium. Springer, New York, NY. p. 271-282.
- Barage, S. H., D. D. Deobagkar, and V. B. Baladhye. 2018. Characterization of structural and functional role of selenocysteine in selenoprotein H and its impact on DNA binding. Amino Acids. 50: 593-607.
- Barber, M. C., R. Clegg, E. Finley, R. Vernon, and D. Flint. 1992a. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J. Endocrinol. 135: 195-202.
- Barber, M. C., M. T. Travers, E. Finley, D. J. Flint, and R. G. Vernon. 1992b. Growthhormone-prolactin interactions in the regulation of mammary and adipose-tissue acetyl-CoA carboxylase activity and gene expression in lactating rats. Biochem. J. 285: 469-475.
- Bates, R. W., R. A. Miller, and M. M. Garrison. 1962. Evidence in the hypophysectomized pigeon of a synergism among prolactin, growth hormone,

thyroxine and prednisone upon weight of the body, digestive tract, kidney and fat stores. Endocrinology. 71: 345-360.

- Bazan, J. F. 1990a. Haemopoietic receptors and helical cytokines. Immunol. Today. 11: 350-354.
- Bazan, J. F. 1990b. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. 87: 6934-6938.
- Beardwell, C., and G. L. Robertson. 1981. The pituitary. Butterworths, London, United Kingdom.
- Bedecs, K., M. Berthold, and T. Bartfai. 1995. Galanin-10 years with a neuroendocrine peptide. Int. J. Biochem. Cell Biol. 27: 337-349.
- Behne, D., A. Kyriakopoulos, M. Kalcklösch, C. Weiss-Nowak, H. Pfeifer, H. Gessner, and C. Hammel. 1997. Two new selenoproteins found in the prostatic glandular epithelium and in the spermatid nuclei. Biomed. Environ. Sci. 10: 340-345.
- Beilstein, M. A., S. C. Vendeland, E. Barofsky, O. N. Jensen, and P. D. Whanger. 1996. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem. 61: 117-124.
- Bellone, G., M. Geuna, A. Carbone, S. Silvestri, R. Foa, G. Emanuelli, and L. Matera. 1995. Regulatory action of prolactin on the in vitro growth of CD34+ ve human hemopoietic progenitor cells. J. Cell. Physiol. 163: 221-231.
- Ben-Jonathan, N. 1985. Dopamine: a prolactin-inhibiting hormone. Endocr. Rev. 6: 564-589.
- Ben-Jonathan, N., and R. Hnasko. 2001. Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev. 22: 724-763.

- Ben-Jonathan, N., E. R. Hugo, T. D. Brandebourg, and C. R. Lapensee. 2006. Focus on prolactin as a metabolic hormone. Trends Endocrinol. Metab. 17: 110-116.
- Ben-Jonathan, N., C. R. Lapensee, and E. W. Lapensee. 2007. What can we learn from rodents about prolactin in humans? Endocr. Rev. 29: 1-41.
- Ben-Jonathan, N., J. L. Mershon, D. L. Allen, and R. W. Steinmetz. 1996. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr. Rev. 17: 639-669.
- Bentley, A., and M. Wallis. 1987. In-vitro evidence for the autoregulation of prolactin secretion at the level of the pituitary gland in the rat. J. Endocrinol. 115: 13-18.
- Berczi, I., and E. Nagy. 1982. A possible role of prolactin in adjuvant arthritis. Arthritis Rheumatol. 25: 591-594.
- Berczi, I., E. Nagy, S. De Toledo, R. Matusik, and H. Friesen. 1991. Pituitary hormones regulate c-myc and DNA synthesis in lymphoid tissue. J. Immunol. 146: 2201-2206.
- Berde, B. 1980. Ergot compounds: a synopsis. Adv. Biochem. Psychopharmacol. 23: 3-23.
- Berde, B., and O. Schild. 1978. Handbook of experimental pharmacology. Springer, New York, NY. p. 1-28.
- Berde, B., and E. Stürmer. 1978. Introduction to the pharmacology of ergot alkaloids and related compounds as a basis of their therapeutic application Ergot alkaloids and related compounds. Springer, Berlin, Germany. p. 1-28.

- Berlanga, J. J., O. Gualillo, H. Buteau, M. Applanat, P. A. Kelly, and M. Edery. 1997.
  Prolactin activates tyrosyl phosphorylation of insulin receptor substrate 1 and phosphatidylinositol-3-OH kinase. J. Biol. Chem. 272: 2050-2052.
- Bermano, G., F. Nicol, J. A. Dyer, R. A. Sunde, G. J. Beckett, J. R. Arthur, and J. E. Hesketh. 1995. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J. 311: 425-430.
- Bernard, R., and C. Bojarski. 1994. Effects of prolactin and hCG treatment on luteal activity and the conceptus during delayed implantation in Schreibers' long-fingered bat (Miniopterus schreibersii). J. Reprod. Fertil. 100: 359-365.
- Bernard, V., C. Le Moine, and B. Bloch. 1991. Striatal neurons express increased level of dopamine D2 receptor mRNA in response to haloperidol treatment: a quantitative in situ hybridization study. Neuroscience. 45: 117-126.
- Bernichtein, S., P. Touraine, and V. Goffin. 2010. New concepts in prolactin biology. J. Endocrinol. 206: 1-11.
- Bernton, E. W., M. S. Meltzer, and J. W. Holaday. 1988. Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science. 239: 401-404.
- Berry, M. J., L. Banu, J. W. Harney, and P. R. Larsen. 1993. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 12: 3315-3322.
- Berwaer, M., J. A. Martial, and J. R. Davis. 1994. Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol. Endocrinol. 8: 635-642.

- Berwaer, M., P. Monget, B. Peers, M. Mathy-Hartert, E. Bellefroid, J. R. Davis, A.
  Belayew, and J. A. Martial. 1991. Multihormonal regulation of the human prolactin gene expression from 5000 bp of its upstream sequence. Mol. Cell.
  Endocrinol. 80: 53-64.
- Besson, J., W. Rotsztejn, M. Laburthe, J. Epelbaum, A. Beaudet, C. Kordon, and G.
  Rosselin. 1979. Vasoactive intestinal peptide (VIP): brain distribution, subcellular localization and effect of deafferentation of the hypothalamus in male rats. Brain.
  Res. 165: 79-85.
- Bianco, A. C., D. Salvatore, B. Gereben, M. J. Berry, and P. R. Larsen. 2002.Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23: 38-89.
- Biterova, E. I., A. A. Turanov, V. N. Gladyshev, and J. J. Barycki. 2005. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc. Natl. Acad. Sci. 102: 15018-15023.
- Björnstedt, M., J. Xue, W. Huang, B. Akesson, and A. Holmgren. 1994. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J. Biol. Chem. 269: 29382-29384.

Bjøro, T., B. Østberg, O. Sand, J. Gordeladze, J. G. Iversen, P. Torjesen, K. Gautvik, and E. Haug. 1987. Vasoactive intestinal peptide and peptide with N-terminal histidine and C-terminal isoleucine increase prolactin secretion in cultured rat pituitary cells (GE4C1) via a cAMP-dependent mechanism which involves transient elevation of intracellular Ca<sup>2+</sup>. Mol. Cell. Endocrinol. 49: 119-128.

- Blake, C. A. 1974. Stimulation of pituitary prolactin and TSH release in lactating and proestrous rats. Endocrinology. 94: 503-508.
- Blanchette, F., R. Day, W. Dong, M. H. Laprise, and C. M. Dubois. 1997. TGFbeta1 regulates gene expression of its own converting enzyme furin. J. Clin. Invest. 99: 1974-1983.
- Bluett, S. J., E. S. Kolver, M. J. Auldist, E. R. Thom, S. R. Davis, V. C. Farr, and B. A. Tapper. 2003. Perennial ryegrass endophyte effects on plasma prolactin concentration in dairy cows. New Zeal. J. Agr. Res. 46: 9-14.
- Bole-Feysot, C., V. Goffin, M. Edery, N. Binart, and P. A. Kelly. 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268.
- Bonora, M., A. Bononi, E. De Marchi, C. Giorgi, M. Lebiedzinska, S. Marchi, S.
  Patergnani, A. Rimessi, J. M. Suski, A. Wojtala, M.R. Wieckowski, G. Kroemer,
  L. Galluzzi, and P. Pinton. 2013. Role of the c subunit of the FO ATP synthase in
  mitochondrial permeability transition. Cell Cycle. 12: 674-683.
- Boockfor, F., and L. S. Frawley. 1987. Functional variations among prolactin cells from different pituitary regions. Endocrinology. 120: 874-879.
- Bosetti, F., F. Brizzi, S. Barogi, M. Mancuso, G. Siciliano, E.A. Tendi, L. Murri, S.I.
  Rapoport, and G. Solaini. 2002. Cytochrome c oxidase and mitochondrial F1F0ATPase (ATP synthase) activities in platelets and brain from patients with
  Alzheimer's disease. Neurobiol. Aging. 23: 371-376.

- Bowers, C. Y., H. G. Friesen, P. Hwang, H. J. Guyda, and K. Folkers. 1971. Prolactin and thyrotropin release in man by synthetic pyroglutamyl-histidyl-prolinamide. Biochem. Biophys. Res. Commun. 45: 1033-1041.
- Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C.A. Ball, and H.C. Causton. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365-371.
- Bredow, S., B. Kacsoh, F. Obal, Jr., J. Fang, and J. M. Krueger. 1994. Increase of prolactin mRNA in the rat hypothalamus after intracerebroventricular injection of VIP or PACAP. Brain Res. 660: 301-308.
- Brennan, K. M., W. R. Burris, J. A. Boling, and J. C. Matthews. 2011. Selenium content in blood fractions and liver of beef heifers is greater with a mix of inorganic/organic or organic versus inorganic supplemental selenium but the time required for maximal assimilation is tissue-specific. Biol. Trace Elem. Res. 144: 504-516.
- Bridges, P. J., M. Jeoung, S. Shim, J. Y. Park, J. E. Lee, L. A. Sapsford, K. Trudgen, C.
  Ko, M. C. Gye, and M. Jo. 2012. Hematopoetic prostaglandin D synthase: an
  ESR1-dependent oviductal epithelial cell synthase. Endocrinology. 153: 1925-1935.
- Bridges, R. S., M. C. Robertson, R. P. Shiu, J. D. Sturgis, B. M. Henriquez, and P. E. Mann. 1997. Central lactogenic regulation of maternal behavior in rats: steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen I. Endocrinology. 138: 756-763.

- Brigelius-Flohe, R., K. D. Aumann, H. Blocker, G. Gross, M. Kiess, K. D. Kloppel, M. Maiorino, A. Roveri, R. Schuckelt, F. Usani, and Et Al. 1994. Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J. Biol. Chem. 269: 7342-7348.
- Brigelius-Flohé, R., and M. Maiorino. 2013. Glutathione peroxidases. Biochim. Biophys. Acta Gen. Subj. 1830: 3289-3303.
- Brown, K. R., G. A. Anderson, K. Son, G. Rentfrow, L. P. Bush, J. L. Klotz, J. R. Strickland, J. A. Boling, and J. C. Matthews. 2009. Growing steers grazing high versus low endophyte (Neotyphodium coenophialum)-infected tall fescue have reduced serum enzymes, increased hepatic glucogenic enzymes, and reduced liver and carcass mass. J. Anim. Sci. 87: 748-760.
- Browning, R. Physiological responses of Brahman and Hereford steers to an acute ergotamine challenge. 2000. J. Anim. Sci. 78: 124-130.
- Browning, R., F. Schrick, F. Thompson, and T. Wakefield. 1998. Reproductive hormonal responses to ergotamine and ergonovine in cows during the luteal phase of the estrous cycle. J. Anim. Sci. 76: 1448-1454.
- Browning, R., F. Thompson, J. Sartin, and M. Leite-Browning. 1997. Plasma concentrations of prolactin, growth hormone, and luteinizing hormone in steers administered ergotamine or ergonovine. J. Anim. Sci. 75: 796-802.
- Brym, P., S. Kaminski, and E. Wójcik. 2005. Polymorphism within the bovine prolactin receptor gene (PRLR). Anim. Sci. Pap. Rep. 23: 61-66.

- Buckland, P. R., M. C. O'Donovan, and P. McGuffin. 1992. Changes in dopamine D1,D2 and D3 receptor mRNA levels in rat brain following antipsychotic treatment.Psychopharmacology. 106: 479-483.
- Buckley, A. R., D. J. Buckley, M. Leff, D. S. Hoover, and N. S. Magnuson. 1995. Rapid induction of pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells. Endocrinology. 136: 5252-5259.
- Buckner, R. C., J. B. Powell, and R. V. Frakes. 1979. Historical development. Tall fescue: 1-8.
- Burk, R. F., and K. E. Hill. 2005. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25: 215-235.
- Burk, R. F., and K. E. Hill. 2015. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 35: 109-134.
- Burk, R. F., K. E. Hill, R. Read, and T. Bellew. 1991. Response of rat selenoprotein P to selenium administration and fate of its selenium. Am. J. Physiol. 261: E26-30.
- Bush, L., and R. Buckner. 1973. Tall fescue toxicity. Anti-quality components of forages: 99-112.
- Bush, L., and F. Fannin. 2009. Alkaloids. Tall fescue for the twenty-first century: 229-249.
- Bustin, S. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29: 23-39.

- Caccavelli, L., D. Cussac, I. Pellegrini, V. Audinot, P. Jaquet, and A. Enjalbert. 1992. D2 dopaminergic receptors: normal and abnormal transduction mechanisms. Horm. Res. Paediatr. 38: 78-83.
- Calabrese, V., R. Lodi, C. Tonon, V. D'Agata, M. Sapienza, G. Scapagnini, A. Mangiameli, G. Pennisi, A. M. Stella, and D. A. Butterfield. 2005. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J. Neurol. Sci. 233: 145-162.
- Campbell, B. T., C. J. Kojima, T. A. Cooper, B. C. Bastin, L. Wojakiewicz, R. L.
  Kallenbach, F. N. Schrick, and J. C. Waller. 2014. A single nucleotide
  polymorphism in the dopamine receptor D2 gene may be informative for
  resistance to fescue toxicosis in Angus-based cattle. Anim. Biotechnol. 25: 1-12.
- Carey, G. B., and J. Liberti. 1995. Stimulation of receptor-associated kinase, tyrosine kinase, and MAP kinase is required for prolactin-mediated macromolecular biosynthesis and mitogenesis in Nb2 lymphoma. Arch. Biochem. Biophys. 316: 179-189.
- Carlson, B. A., X. M. Xu, G. V. Kryukov, M. Rao, M. J. Berry, V. N. Gladyshev, and D. L. Hatfield. 2004. Identification and characterization of phosphoseryl-tRNA<sup>[Ser]Sec</sup> kinase. Proc. Natl. Acad. Sci. 101: 12848-12853.
- Caron, M. G., M. Beaulieu, V. Raymond, B. Gagne, J. Drouin, R. J. Lefkowitz, and F. Labrie. 1978. Dopaminergic receptors in the anterior pituitary gland. Correlation of [<sup>3</sup>H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J. Biol. Chem. 253: 2244-2253.

- Carter, J. M., G. E. Aiken, C. T. Dougherty, and F. N. Schrick. 2010. Steer responses to feeding soybean hulls and steroid hormone implantation on toxic tall fescue pasture. J. Anim. Sci. 88: 3759-3766.
- Casper, R. F., and G. F. Erickson. 1981. In vitro heteroregulation of LH receptors by prolactin and FSH in rat granulosa cells. Mol. Cell. Endocrinol. 23: 161-171.
- Castets, P., A. T. Bertrand, M. Beuvin, A. Ferry, F. Le Grand, M. Castets, G. Chazot, M. Rederstorff, A. Krol, A. Lescure, N. B. Romero, P. Guicheney, and V. Allamand.
  2011. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum. Mol. Genet. 20: 694-704.
- Cawley, N. X., Z. Li, and Y. P. Loh. 2016. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J. Mol. Endocrinol. 56: T77-97.
- Cecim, M., J. Kerr, and A. Bartke. 1995. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency.Biol. Reprod. 52: 1162-1166.
- Cerny, K., S. Garbacik, C. Skees, W. Burris, J. Matthews, and P. Bridges. 2016. Gestational form of selenium in free-choice mineral mixes affects transcriptome profiles of the neonatal calf testis, including those of steroidogenic and spermatogenic pathways. Biol. Trace Elem. Res. 169: 56-68.
- Cesano, A., E. Oberholtzer, M. Contarini, M. Geuna, G. Bellone, and L. Matera. 1994. Independent and synergistic effect of interleukin-2 and prolactin on development of T-and NK-derived LAK effectors. Immunopharmacology. 28: 67-75.

- Cesario, T. C., S. Yousefi, G. Carandang, N. Sadati, J. Le, and N. Vaziri. 1994. Enhanced yields of gamma interferon in prolactin treated human peripheral blood mononuclear cells. Proc. Soc. Exp. Biol. Med. 205: 89-95.
- Chan, A., C. A. Dudley, and R. L. Moss. 1983. Action of prolactin, dopamine and LHRH on ventromedial hypothalamic neurons as a function of ovarian hormones. Neuroendocrinology. 36: 397-403.
- Chan, S., L. Tang, P. Chan, G. Tang, and H. Ma. 1984. Relationships of seminal plasma prolactin with spermatozoal characteristics and fertilizing capacity in vitro. Arch. Androl. 12: 17-24.
- Chedrese, P. J., K. Rajkumar, H. Ly, and B. D. Murphy. 1988. Dose response of luteinized porcine granulosa cells in vitro to prolactin: dependency on preexposure to human chorionic gonadotrophin. Can. J. Physiol. Pharmacol. 66: 1337-1340.
- Chen, J. C., and V. D. Ramirez. 1989. Effects of prolactin on tyrosine hydroxylase activity of central dopaminergic neurons of male rats. Eur. J. Pharmacol. 166: 473-479.
- Chen, J. F., V. J. Aloyo, and B. Weiss. 1993. Continuous treatment with the D2
  dopamine receptor agonist quinpirole decreases D2 dopamine receptors, D2
  dopamine receptor messenger RNA and proenkephalin messenger RNA, and
  increases mu opioid receptors in mouse striatum. Neuroscience. 54: 669-680.
- Chiu-Ugalde, J., F. Theilig, T. Behrends, J. Drebes, C. Sieland, P. Subbarayal, J. Kohrle,A. Hammes, L. Schomburg, and U. Schweizer. 2010. Mutation of megalin leads

to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem. J. 431: 103-111.

- Chiu, S., R. D. Koos, and P. M. Wise. 1992. Detection of prolactin receptor (PRL-R) mRNA in the rat hypothalamus and pituitary gland. Endocrinology. 130: 1747-1749.
- Chu, F. F., R. S. Esworthy, P. G. Chu, J. A. Longmate, M. M. Huycke, S. Wilczynski, and J. H. Doroshow. 2004. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64: 962-968.
- Chuaqui, R. F., R. F. Bonner, C. J. Best, J. W. Gillespie, M. J. Flaig, S. M. Hewitt, J. L.Phillips, D. B. Krizman, M. A. Tangrea, and M. Ahram. 2002. Post-analysisfollow-up and validation of microarray experiments. Nature Genet. 32: 509.
- Christian, H. C., L. P. Chapman, and J. F. Morris. 2007. Thyrotrophin-releasing hormone, vasoactive intestinal peptide, prolactin-releasing peptide and dopamine regulation of prolactin secretion by different lactotroph morphological subtypes in the rat. J. Neuroendocrinol. 19: 605-613.
- Clay, K. 1990. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21: 275-297.
- Clevenger, C. V., P. A. Furth, S. E. Hankinson, and L. A. Schuler. 2003. The role of prolactin in mammary carcinoma. Endocr. Rev. 24: 1-27.
- Clevenger, C. V., and M. V. Medaglia. 1994. The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol. Endocrinol. 8: 674-681.

- Clevenger, C. V., W. Ngo, D. L. Sokol, S. M. Luger, and A. M. Gewirtz. 1995. Vav is necessary for prolactin-stimulated proliferation and is translocated into the nucleus of a T-cell line. J. Biol. Chem. 270: 13246-13253.
- Clevenger, C. V., T. Torigoe, and J. C. Reed. 1994. Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J. Biol. Chem. 269: 5559-5565.
- Cohen-Becker, I. R., M. Selmanoff, and P. M. Wise. 1986. Hyperprolactinemia alters the frequency and amplitude of pulsatile luteinizing hormone secretion in the ovariectomized rat. Neuroendocrinology. 42: 328-333.
- Collet, C., R. Joseph, and K. Nicholas. 1991. A marsupial β-lactoglobulin gene: characterization and prolactin-dependent expression. J. Mol. Endocrinol. 6: 9-16.
- Comsa, J., H. Leonhardt, and J. Schwarz. 1975. Influence of the thymus-corticotropingrowth hormone interaction on the rejection of skin allografts in the rat. Ann. N. Y. Acad. Sci. 249: 387-401.
- Cooke, N. E., D. Coit, J. Shine, J. D. Baxter, and J. A. Martial. 1981. Human prolactin. cDNA structural analysis and evolutionary comparisons. J. Biol. Chem. 256: 4007-4016.
- Copeland, P. R., and D. M. Driscoll. 1999. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274: 25447-25454.
- Copeland, P. R., V. A. Stepanik, and D. M. Driscoll. 2001. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol. Cell. Biol. 21: 1491-1498.

- Corah, L. 1996. Trace mineral requirements of grazing cattle. Anim. Feed Sci. Technol. 59: 61-70.
- Correa, L., L. D. Rea, R. Bentzen, and T. M. O'hara. 2014. Assessment of mercury and selenium tissular concentrations and total mercury body burden in 6 Steller sea lion pups from the Aleutian Islands. Mar. Pollut. Bull. 82: 175-182.
- Costello, L., and R. B. Franklin. 1994. Effect of prolactin on the prostate. The Prostate. 24: 162-166.
- Costello, L., Y. Liu, and R. Franklin. 1995. Prolactin specifically increases pyruvate dehydrogenase Elα in rat lateral prostate epithelial cells. The Prostate. 26: 189-193.
- Couet, J., C. Martel, Y. Labrie, S. Luo, J. Simard, and F. Labrie. 1994. Opposite effects of prolactin and corticosterone on the expression and activity of 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase in rat skin. J. Investig.
  Dermatol. 103: 60-64.
- Cristina, C., I. García-Tornadú, G. Díaz-Torga, M. Rubinstein, M. J. Low, and D. Becú-Villalobos. 2006. Dopaminergic D2 receptor knockout mouse: an animal model of prolactinoma. Pituitary Today: Molecular, Physiological and Clinical Aspects.
  No. 35. Karger. p. 50-63.
- Curran, J. E., J. B. Jowett, K. S. Elliott, Y. Gao, K. Gluschenko, J. Wang, D. M. Abel Azim, G. Cai, M. C. Mahaney, A. G. Comuzzie, T. D. Dyer, K. R. Walder, P. Zimmet, J. W. Maccluer, G. R. Collier, A. H. Kissebah, and J. Blangero. 2005. Genetic variation in selenoprotein S influences inflammatory response. Nat. Genet. 37: 1234-1241.

- Cutie, E., and N. Andino. 1988. Prolactin inhibits the steroidogenesis in midfollicular phase human granulosa cells cultured in a chemically defined medium. Fertil. Steril. 49: 632-637.
- D'autréaux, B., and M. B. Toledano. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8: 813.
- Dajee, M., A. V. Kazansky, B. Raught, G. M. Hocke, G. H. Fey, and J. Richards. 1996.
  Prolactin induction of the alpha 2-Macroglobulin gene in rat ovarian granulosa cells: stat 5 activation and binding to the interleukin-6 response element. Mol. Endocrinol. 10: 171-184.
- Dalcik, H., and C. J. Phelps. 1993. Median eminence-afferent vasoactive intestinal peptide (VIP) neurons in the hypothalamus: localization by simultaneous tract tracing and immunocytochemistry. Peptides. 14: 1059-1066.
- Daniel, J., A. E. Jetton, and B. S. Chilton. 1984. Prolactin as a factor in the uterine response to progesterone in rabbits. J. Reprod. Fertil. 72: 443-452.
- Daniel, J., S. Juneja, S. Taylor, P. Lonergan, P. Sullivan, and B. Chilton. 1988.Variability in the response of the rabbit uterus to progesterone as influenced by prolactin. J. Reprod. Fertil. 84: 13-21.
- Dardenne, M., W. Savino, M. C. Gagnerault, T. Itoh, and J. F. Bach. 1989.
  Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology. 125: 3-12.
- Dargatz, D., and P. Ross. 1996. Blood selenium concentrations in cows and heifers on 253 cow-calf operations in 18 states. J. Anim. Sci. 74: 2891-2895.

- Dave, J., N. Brown, and R. Knazek. 1982. Prolactin modifies the prostaglandin synthesis, prolactin binding and fluidity of mouse liver membranes. Biochem. Biophys. Res. Commun. 108: 193-199.
- Davenport, G. M., J. A. Boling, and C. H. Rahe. 1993. Growth and endocrine responses of cattle to implantation of estradiol-17 beta during continuous or discontinuous grazing of high- and low-endophyte-infected tall fescue. J. Anim. Sci. 71: 757-764.
- David, M., E. F. Petricoin, K. Igarashi, G. M. Feldman, D. S. Finbloom, and A. C. Larner. 1994. Prolactin activates the interferon-regulated p91 transcription factor and the Jak2 kinase by tyrosine phosphorylation. Proc. Natl. Acad. Sci. 91: 7174-7178.
- Derveaux, S., J. Vandesompele, and J. Hellemans. 2010. How to do successful gene expression analysis using real-time PCR. Methods. 50: 227-230.
- De Strooper, B. 2003. Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron. 38:9-12.
- Detoledo, S. M., L. J. Murphy, T. H. Hatton, and H. G. Friesen. 1987. Regulation of 70kilodalton heat-shock-like messenger ribonucleic acid in vitro and in vivo by prolactin. Mol. Endocrinol. 1: 430-434.
- Devito, W. J., W. C. Okulicz, S. Stone, and C. Avakian. 1992. Prolactin-stimulated mitogenesis of cultured astrocytes. Endocrinology. 130: 2549-2556.
- Devito, W. J., S. Stone, and C. Avakian. 1991. Prolactin stimulation of protein kinase C activity in the rat hypothalamus. Biochem. Biophys. Res. Commun. 176: 660-667.

Diakonova, M. 2014. Recent Advances in Prolactin Research. Springer.

- Dikiy, A., S. V. Novoselov, D. E. Fomenko, A. Sengupta, B. A. Carlson, R. L. Cerny, K. Ginalski, N. V. Grishin, D. L. Hatfield, and V. N. Gladyshev. 2007. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 46: 6871-6882.
- Do Amaral, B. C., E. E. Connor, S. Tao, J. Hayen, J. Bubolz, and G. E. Dahl. 2009. Heatstress abatement during the dry period: Does cooling improve transition into lactation? J. Dairy Sci. 92: 5988-5999.
- Dombrowicz, D., B. Sente, J. Closset, and G. Hennen. 1992. Dose-dependent effects of human prolactin on the immature hypophysectomized rat testis. Endocrinology. 130: 695-700.
- Drago, F., V. D'agata, T. Iacona, F. Spadaro, M. Grassi, C. Valerio, C. Astuto, N. Lauria,R. Raffaele, and M. Vitetta. 1989. Prolactin as a protective factor in stressinduced biological changes. J. Clin. Lab. Anal. 3: 340-344.
- Drewnoski, M. E., E. J. Oliphant, B. T. Marshall, M. H. Poore, J. T. Green, and M. E. Hockett. 2009. Performance of growing cattle grazing stockpiled Jesup tall fescue with varying endophyte status. J. Anim. Sci. 87: 1034-1041.
- Drouin, J., Y. Sun, M. Chamberland, Y. Gauthier, A. De Lean, M. Nemer, and T. Schmidt. 1993. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 12: 145.
- Dunaif, A. E., E. A. Zimmerman, H. G. Friesen, and A. G. Frantz. 1982. Intracellular localization of prolactin receptor and prolactin in the rat ovary by immunocytochemistry. Endocrinology. 110: 1465-1471.

- Elsholtz, H. P., A. M. Lew, P. R. Albert, and V. C. Sundmark. 1991. Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. Dual signaling pathways required for D2 receptor-regulated expression of the prolactin gene. J. Biol. Chem. 266: 22919-22925.
- Emmanouel, D. S., V. S. Fang, and A. I. Katz. 1981. Prolactin metabolism in the rat: role of the kidney in degradation of the hormone. Am. J. Physiol. Renal Physiol. 240: 437-445.
- Engels, B. M., and G. Hutvagner. 2006. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 25: 6163-6169.
- English, D. E., S. M. Russell, L. S. Katz, and C. S. Nicoll. 1990. Evidence for a role of the liver in the mammotrophic action of prolactin. Endocrinology. 126: 2252-2256.
- Enjalbert, A., and J. Bockaert. 1983. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol. 23: 576-584.
- Enjalbert, A., G. Guillon, B. Mouillac, V. Audinot, R. Rasolonjanahary, C. Kordon, and J. Bockaert. 1990. Dual mechanisms of inhibition by dopamine of basal and thyrotropin-releasing hormone-stimulated inositol phosphate production in anterior pituitary cells. Evidence for an inhibition not mediated by voltagedependent Ca<sup>2+</sup> channels. J. Biol. Chem. 265: 18816-18822.
- Erwin, R. A., R. A. Kirken, M. G. Malabarba, W. Farrar, and H. Rui. 1995. Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology. 136: 3512-3518.

- Esaki, N., T. Nakamura, H. Tanaka, T. Suzuki, Y. Morino, and K. Soda. 1981. Enzymic synthesis of selenocysteine in rat liver. Biochemistry. 20: 4492-4496.
- Esworthy, R. S., K. M. Swiderek, Y. S. Ho, and F. F. Chu. 1998. Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine1. Biochim. Biophys. Acta Gen. Subj. 1381: 213-226.
- Ezzat, S., S. Yu, and S. L. Asa. 2005. The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol. Endocrinol. 19: 1004-1011.
- Fanjul, L. F., I. Marrero, J. González, J. Quintana, P. Santana, F. Estévez, J. M. Mato, and C. M. Ruiz De Galarreta. 1993. Does oligosaccharide-phosphatidylinositol (glycosyl-phosphatidylinositol) hydrolysis mediate prolactin signal transduction in granulosa cells? Eur. J. Biochem. 216: 747-755.
- Fauchey, V., M. Jaber, M. G. Caron, B. Bloch, and C. Le Moine. 2000. Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur. J. Neurosci. 12: 19-26.
- Fenton, S. E., and L. G. Sheffield. 1991. Lactogenic hormones increase epidermal growth factor messenger RNA content of mouse mammary glands. Biochem. Biophys. Res. Commun. 181: 1063-1069.
- Ferguson, A. D., V. M. Labunskyy, D. E. Fomenko, D. Arac, Y. Chelliah, C. A. Amezcua, J. Rizo, V. N. Gladyshev, and J. Deisenhofer. 2006. NMR structures of

the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J. Biol. Chem. 281: 3536-3543.

- Fielder, P. J., G. Thordarson, A. English, R. G. Rosenfeld, and F. Talamantes. 1992.
  Expression of a lactogen-dependent insulin-like growth factor-binding protein in cultured mouse mammary epithelial cells. Endocrinology. 131: 261-267.
- Fitzgerald, P., and T. G. Dinan. 2008. Prolactin and dopamine: what is the connection? A review article. J. Psychopharmacol. 22: 12-19.
- Flieger, M., M. Wurst, and R. Shelby. 1997. Ergot alkaloids-sources, structures and analytical methods. Folia. Microbiol. 42: 3-30.
- Fliss, M. S., P. M. Hinkle, and C. Bancroft. 1999. Expression cloning and characterization of PREB (prolactin regulatory element binding), a novel WD motif DNA-binding protein with a capacity to regulate prolactin promoter activity. Mol. Endocrinol. 13: 644-657.
- Flohe, L., B. Eisele, and A. Wendel. 1971. Glutathion peroxidase. I. Isolation and determinations of molecular weight. Hoppe Seyler's Z. Physiol. Chem. 352: 151-158.
- Flohe, L., W. A. Gunzler, and H. H. Schock. 1973. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32: 132-134.
- Fomina, A. F., and E. S. Levitan. 1995. Three phases of TRH-induced facilitation of exocytosis by single lactotrophs. J. Neurosci. 15: 4982-4991.
- Fomina, A. F., and E. S. Levitan. 1997. Control of Ca<sup>2+</sup> channel current and exocytosis in rat lactotrophs by basally active protein kinase C and calcineurin. Neuroscience. 78: 523-531.

- Forhead, A. J., and A. L. Fowden. 2014. Thyroid hormones in fetal growth and prepartum maruration. J. Endocrinol. 221: R87-103.
- Fornari, M. C., M. F. Palacios, R. A. Diez, and A. D. Intebi. 1994. Decreased chemotaxis of neutrophils in acromegaly and hyperprolactinemia. Eur. J. Endocrinol. 130: 463-468.
- Fornuskova, D., L. Stiburek, L. Wenchich, K. Vinsova, H. Hansikova, and J. Zeman. 2010. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 428: 363-374.
- Fortune, J., R. Wissler, and S. Vincent. 1986. Prolactin modulates steroidogenesis by rat granulosa cells: II. Effects on estradiol. Biol. Reprod. 35: 92-99.
- Fox, S. R., M. T. Jong, J. Casanova, Z. S. Ye, F. Stanley, and H. H. Samuels. 1990. The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cellspecific elements of both the growth hormone and prolactin gene promoters. Mol. Endocrinol. 4: 1069-1080.
- Franklin, R., and L. Costello. 1990. Prolactin directly stimulates citrate production and mitochondrial aspartate aminotransferase of prostate epithelial cells. Prostate 17: 13-18.
- Frawley, L. S., and J. D. Neill. 1981. Stimulation of prolactin secretion in rhesus monkeys by vasoactive intestinal polypeptide. Neuroendocrinology. 33: 79-83.
- Freeman, M. E., B. Kanyicska, A. Lerant, and G. Nagy. 2000. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80: 1523-1631.

- Fribourg, H. A., A. B. Chestnut, R. W. Thompson, J. B. McLaren, R. J. Carlisle, K. D. Gwinn, M. C. Dixon, and M. C. Smith. 1991. Steer performance in fescue-clover pastures with different levels of endophyte infestation. Agron. J. 83: 777-781.
- Fu, Y. K., S. Arkins, G. Fuh, B. Cunningham, J. Wells, S. Fong, M. Cronin, R. Dantzer, and K. Kelley. 1992. Growth hormone augments superoxide anion secretion of human neutrophils by binding to the prolactin receptor. J. Clin. Invest. 89: 451-457.
- Fu, Y., W. H. Cheng, J. M. Porres, D. A. Ross, and X. G. Lei. 1999. Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic. Biol. Med. 27: 605-611.
- Fukuda, A., C. Mori, H. Hashimoto, Y. Noda, T. Mori, and K. Hoshino. 1989. Effects of prolactin during preincubation of mouse spermatozoa on fertilizing capacity in vitro. J. In Vitro Fert. Embryo Transf. 6: 92-97.
- Gagnerault, M., P. Touraine, W. Savino, P. Kelly, and M. Dardenne. 1993. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J. Immunol. 150: 5673-5681.
- Gandin, V., C. Nyström, A. K. Rundlöf, K. Jönsson-Videsäter, F. Schönlau, J. Hörkkö,
  M. Björnstedt, and A. P. Fernandes. 2009. Effects of the antioxidant
  Pycnogenol® on cellular redox systems in U1285 human lung carcinoma cells.
  FEBS J. 276: 532-540.
- Ganguli, S., L. Hu, P. Menke, R. J. Collier, and A. Gertler. 1996. Nuclear accumulation of multiple protein kinases during prolactin-induced proliferation of Nb2 rat lymphoma cells. J. Cell. Physiol. 167: 251-260.

- Ganther, H. E. 1971. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by gluthathione reductase. Biochemistry. 10: 4089-4098.
- Ganther, H. E. 1999. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis. 20: 1657-1666.
- Gantz, I., and T. . Fong. 2003. The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 284: E468-474.
- Gao, Y., N. R. Hannan, S. Wanyonyi, N. Konstantopolous, J. Pagnon, H. C. Feng, J. B. Jowett, K. H. Kim, K. Walder, and G. R. Collier. 2006. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine. 33: 246-251.
- Gautam, R., and B. M, Pereira. 1993. Modulation in activity of some epididymal glycosidases by prolactin. Indian J. Exp. Biol. 31: 410-413.
- Gautam, R., and B. M. Pereira. 1992. The effect of ovine prolactin on the epididymal sialic acid concentration in male rats. Clin. Exp. Pharmacol. Physiol. 19: 495-501.
- Gellersen, B., R. Kempf, R. Telgmann, and G. E. Dimattia. 1994. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol. Endocrinol. 8: 356-373.
- Gereben, B., A. M. Zavacki, S. Ribich, B. W. Kim, S. A. Huang, W. S. Simonides, A. Zeold, and A. C. Bianco. 2008a. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29: 898-938.

- Gereben, B., A. Zeold, M. Dentice, D. Salvatore, and A. C. Bianco. 2008b. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell. Mol. Life Sci. 65: 570-590.
- Getting, S. 2006. Targeting melanocortin receptors as potential novel therapeutics. Pharmacol. Ther. 111: 1-15.
- Ghorbani, G. R., J. A. Jackson, R. W. Hemken, L. P. Bush, and M. R. Siegel.Performance of lactating dairy cows fed varieties of endophyte-free tall fescue. J.Prod. Agric. 4: 9-13.
- Gilks, C., S. Porter, C. Barker, P. Tsichlis, and P. Gout. 1995. Prolactin (PRL)-dependent expression of a zinc finger protein-encoding gene, Gfi-1, in Nb2 lymphoma cells: constitutive expression in autonomous sublines. Endocrinology. 136: 1805-1808.
- Girolomoni, G., J. T. Phillips, and P. R. Bergstresser. 1993. Prolactin stimulates proliferation of cultured human keratinocytes. J. Investig. Dermatol. 101: 275-279.
- Gitay-Goren, H., Z. Kraiem, and E. Lindenbaum. 1988. Effects of prolactin on the morphology of cultured rat granulosa cells. Cytobios. 56: 89-99.
- Gitay-Goren, H., E. S. Lindenbaum, and Z. Kraiem. 1989. Prolactin inhibits hCG-stimulated steroidogenesis and cAMP accumulation, possibly by increasing phosphodiesterase activity, in rat granulosa cell cultures. Mol. Cell. Endocrinol. 61: 69-76.
- Gladyshev, V. N., and D. L. Hatfield. 1999. Selenocysteine-containing proteins in mammals. J. Biomed. Sci. 6: 151-160.

- Gladyshev, V. N., K. T. Jeang, and T. C. Stadtman. 1996. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Natl. Acad. Sci. 93: 6146-6151.
- Gladyshev, V. N., K. T. Jeang, J. C. Wootton, and D. L. Hatfield. 1998. A new human selenium-containing protein. Purification, characterization, and cDNA sequence.J. Biol. Chem. 273: 8910-8915.
- Glasow, A., M. Breidert, A. Haidan, U. Anderegg, P. A. Kelly, and S. R. Bornstein.
  1996. Functional aspects of the effect of prolactin (PRL) on adrenal
  steroidogenesis and distribution of the PRL receptor in the human adrenal gland.
  J. Clin. Endocrinol. Metab. 81: 3103-3111.
- Glenn, A. E., C. W. Bacon, R. Price, and R. T. Hanlin. 1996. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia: 369-383.
- Goddard III, W. A., and R. Abrol. 2007. 3-Dimensional structures of G protein-coupled receptors and binding sites of agonists and antagonists. J. Nutr. 137: 1528S-1538S.
- Goetsch, A. L., A. L. Jones, S. R. Stokes, K. W. Beers, and E. L. Piper. 1987. Intake, digestion, passage rate and serum prolactin in growing dairy steers fed endophyteinfected fescue with noninfected fescue, clover or wheat straw. J. Anim. Sci. 64: 1759-1768.
- Golander, A., Y. Weisman, Z. Spirer, I. Binderman, A. Kaye, and D. Sömjen. 1988. Prolactin stimulates creatine kinase activity and DNA synthesis in explants of human amnion. Acta Endocrinol. 119: 223-227.

- Gómez, O., and J. A. Balsa. 2004. Implication of pituitary vasoactive intestinal peptide in dopaminergic inhibition of estrogen-induced pituitary hyperplasia and vascular endothelial growth factor expression. Neuroendocrinology. 80: 324-331.
- Gordon, E. M., T. R. Johnson, L. P. Ramos, and K. T. Schmeidler-Sapiro. 1991. Enhanced expression of factor XII (Hageman factor) in isolated livers of estrogen-and prolactin-treated rats. J. Lab. Clin. Med. 117: 353-358.
- Gourdji, D., D. Bataille, N. Vauclin, D. Grouselle, G. Rosselin, and A. Tixier-Vidal.
  1979. Vasoactive intestinal peptide (VIP) stimulates prolactin (PRL) release and cAMP production in a rat pituitary cell line (GH3/B6). Additive effects of VIP and TRH on PRL release. FEBS Lett. 104: 165-168.
- Gourdji, D., and J. N. Laverriere. 1994. The rat prolactin gene: a target for tissue-specific and hormone-dependent transcription factors. Mol. Cell. Endocrinol. 100: 133-142.
- Gout, P. W., C. T. Beer, and R. L. Noble. 1980. Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Cancer Res. 40: 2433-2436.
- Gu, Q. P., Y. Sun, L. W. Ream, and P. D. Whanger. 2000. Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol. Cell. Biochem. 204: 49-56.
- Guan, L., B. Han, Z. Li, F. Hua, F. Huang, W. Wei, Y. Yang, and C. Xu. 2009. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis. 14: 218-225.

- Guerre, P. 2015. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins. 7: 773-790.
- Guillaumot, P., E. Tabone, and M. Benahmed. 1996. Sertoli cells as potential targets of prolactin action in the testis. Mol. Cell. Endocrinol. 122: 199-206.
- Guimarães, M. J., D. Peterson, A. Vicari, B. G. Cocks, N. G. Copeland, D. J. Gilbert, N.
  A. Jenkins, D. A. Ferrick, R. A. Kastelein, and J. F. Bazan. 1996. Identification of a novel selD homolog from Eukaryotes, Bacteria, and Archaea: Is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. 93: 15086-15091.
- Guivarc'h, D., P. Vernier, and J. D. Vincent. 1995. Sex steroid hormones change the differential distribution of the isoforms of the D2 dopamine receptor messenger RNA in the rat brain. Neuroscience. 69: 159-166.
- Gunasekar, P., B. Kumaran, and P. Govindarajulu. 1988. Prolactin and Leydig cell steroidogenic enzymes in the bonnet monkey (Macaca radiata). Int. J. Androl. 11: 53-59.
- Gunasekar, P., B. Kumaran, and P. Govindarajulu. 1991. Role of prolactin on Leydig, Sertoli and germ cellular neutral lipids in bonnet monkeys, Macaca radiata. Endocrinol. Jpn. 38: 1-8.
- Guyette, W. A., R. J. Matusik, and J. M. Rosen. 1979. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 17: 1013-1023.
- Guzy, R., B. Sharma, E. Bell, N. S. Chandel, and P. T. Schumacker. 2008. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-

dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 28: 718-731.

- Hafez, M. M., and M. E. Costlow. 1989. Phosphatidylethanolamine turnover is an early event in the response of NB2 lymphoma cells to prolactin. Exp. Cell Res. 184: 37-43.
- Hammond, P. J., N. Khandan-Nia, D. J. Withers, P. M. Jones, M. A. Ghatei, and S. R.Bloom. 1997. Regulation of anterior pituitary galanin and vasoactive intestinal peptide by oestrogen and prolactin status. J. Endocrinol. 152: 211-219.
- Hamosh, M., and P. Hamosh. 1977. The effect of prolactin on the lecithin content of fetal rabbit lung. J. Clin. Invest. 59: 1002-1005.
- Han, S. J., B. C. Lee, S. H. Yim, V. N. Gladyshev, and S. R. Lee. 2014. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein. PLoS One. 9: e95518.
- Hara, S., Y. Shoji, A. Sakurai, K. Yuasa, S. Himeno, and N. Imura. 2001. Effects of selenium deficiency on expression of selenoproteins in bovine arterial endothelial cells. Biol. Pharm. Bull. 24: 754-759.
- Harlan, R. E., B. D. Shivers, and D. W. Pfaff. 1983. Midbrain microinfusions of prolactin increase the estrogen-dependent behavior, lordosis. Science. 219: 1451-1453.

Hatfield, D. L., I. S. Choi, T. Ohama, J. E. Jung, and A. M. Diamond. 1994.
 Selenocysteine tRNA<sup>[Ser] Sec</sup> isoacceptors as central components in selenoprotein biosynthesis in eukaryotes Selenium in Biology and Human Health. Springer, New York, NY. p. 25-44.

- Hebert, D. N., B. Foellmer, and A. Helenius. 1995. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 81: 425-433.
- Hefnawy, A. E. G., and J. Tórtora-Pérez. 2010. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 89: 185-192.
- Hemken, R. W., J. A. Jackson, Jr., and J. A. Boling. 1984. Toxic factors in tall fescue. J. Anim. Sci. 58: 1011-1016.
- Hennighausen, L., C. Westphal, L. Sankaran, and C. Pittius. 1991. Regulation of expression of genes for milk proteins. Biotechnology. 16: 65-74.
- Heo, H. Y., J. M. Park, C. H. Kim, B. S. Han, K. S. Kim, and W. Seol. 2010. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp. Cell Res. 316:649-656.
- Herbette, S., P. Roeckel-Drevet, and J. R. Drevet. 2007. Seleno-independent glutathione peroxidases: More than simple antioxidant scavengers. FEBS J. 274: 2163-2180.
- Higuchi, K., H. Nawata, T. Maki, M. Higashizima, K. I. Kato, and H. Ibayashi. 1984.Prolactin has a direct effect on adrenal androgen secretion. J. Clin. Endocrinol.Metab. 59: 714-718.
- Hill, N. S., F. N. Thompson, J. A. Stuedemann, D. L. Dawe, and E. E. Hiatt III. 2000.Urinary alkaloid excretion as a diagnostic tool for fescue toxicosis in cattle. J.Vet. Diagn. Invest. 12: 210-217.
- Hinkle, P. M., and A. H. Tashjian, Jr. 1973. Receptors for thyrotropin-releasing hormone in prolactin producing rat pituitary cells in culture. J. Biol. Chem. 248: 6180-6186.

- Hoefs, S. J., C. E. Dieteren, F. Distelmaier, R. J. Janssen, A. Epplen, H. G. Swarts, M.
  Forkink, R. J. Rodenburg, L. G. Nijtmans, P. H. Willems, J. A. Smeitink, and L.
  P. van den Heuvel. 2008. NDUFA2 complex I mutation leads to Leigh disease.
  Am. J. Hum. Genet. 82: 1306-1315.
- Holsboer, F. 1999. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 33: 181-214.
- Horseman, N. D., and L. Y. Yu-Lee. 1994. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr. Rev. 15: 627-649.
- Hosojima, H., and J. H. Wyche. 1985. Prolactin control of growth and prolactin autoregulation in cultured human pituitary cells. Horm. Res. 21: 240-245.
- Hosokawa, Y., T. Onga, and K. Nakashima. 1994. Induction of D2 and D3 cyclinencoding genes during promotion of the G1/S transition by prolactin in rat Nb2 cells. Gene. 147: 249-252.
- Hosokawa, Y., M. Yang, S. Kaneko, M. Tanaka, and K. Nakashima. 1995. Synergistic gene expressions of cyclin E, cdk2, cdk5 and E2F-1 during the prolactin-induced G1/S transition in rat Nb2 pre-T lymphoma cells. Biochem. Mol. Biol. Int. 37: 393-399.
- Hosokawa, Y., M. Yang, S. Kaneko, M. Tanaka, and K. Nakashima. 1996. Prolactin
   Induces Switching of T-Cell Receptor Gene Expression from α to γ in Rat Nb2
   Pre-T Lymphoma Cells. Biochem. Biophys. Res. Commun. 220: 958-962.

Hoveland, C. S. 2009. Origin and history. Tall fescue for the twenty-first century: 3-10.

303

- Howard, M. T., B. A. Carlson, C. B. Anderson, and D. L. Hatfield. 2013. Translational redefinition of UGA codons is regulated by selenium availability. J. Biol. Chem. 288: 19401-19413.
- Hu, Y. J., K. V. Korotkov, R. Mehta, D. L. Hatfield, C. N. Rotimi, A. Luke, T. E. Prewitt,
  R. S. Cooper, W. Stock, E. E. Vokes, M. E. Dolan, V. N. Gladyshev, and A. M.
  Diamond. 2001. Distribution and functional consequences of nucleotide
  polymorphisms in the 3'-untranslated region of the human Sep15 gene. Cancer
  Res. 61: 2307-2310.
- Huang, J., Y. Jia, Q. Li, K. Son, C. Hamilton, W. R. Burris, P. J. Bridges, A. J.
  Stromberg, and J. C. Matthews. 2018. Glutathione content and expression of proteins involved with glutathione metabolism differs in longissimus dorsi, subcutaneous adipose, and liver tissues of finished vs. growing beef steers. J. Anim. Sci. 96: 5152-5165.
- Huber, R., and R. Criddle. 1967. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch. Biochem. Biophys. 122: 164-173.
- Hunter, S., B. L. Koch, and S. M. Anderson. 1997. Phosphorylation of cbl after stimulation of Nb2 cells with prolactin and its association with phosphatidylinositol 3-kinase. Mol. Endocrinol. 11: 1213-1222.
- Hurley, W., E. Convey, K. Leung, L. Edgerton, and R. Hemken. 1980. Bovine Prolactin, TSH, T 4 and T 3 Concentrations as Affected by Tall Fescue Summer Toxicosis and Temperature 1. J. Anim. Sci. 51: 374-379.

- Hyde, J. F., M. G. Engel, and B. E. Maley. 1991. Colocalization of galanin and prolactin within secretory granules of anterior pituitary cells in estrogen-treated Fischer 344 rats. Endocrinology. 129: 270-276.
- Hyde, J. F., and B. K. Keller. 1991. Galanin secretion from anterior pituitary cells in vitro is regulated by dopamine, somatostatin, and thyrotropin-releasing hormone. Endocrinology. 128: 917-922.
- Ibraheem, M., H. Galbraith, J. Scaife, and S. Ewen. 1994. Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin. J. Anat. 185: 135.
- Imai, H., and Y. Nakagawa. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34: 145-169.
- Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4: 249-264.
- Irons, R., P. A. Tsuji, B. A. Carlson, P. Ouyang, M. H. Yoo, X. M. Xu, D. L. Hatfield, V. N. Gladyshev, and C. D. Davis. 2010. Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev. Res. 3: 630-639.
- Israel, J. M., C. Kirk, and J. D. Vincent. 1987. Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J. Physiol. 390: 1-22.

- Jackson, J. J., M. D. Lindemann, J. A. Boling, and J. C. Matthews. 2015. Summer-Long Grazing of High vs. Low Endophyte (Neotyphodium coenophialum)-Infected Tall Fescue by Growing Beef Steers Results in Distinct Temporal Blood Analyte Response Patterns, with Poor Correlation to Serum Prolactin Levels. Front. Vet. Sci. 2: 77.
- Jagouda, C., and J. Rillema. 1991. Temporal effect of prolactin on the activities of lactose synthetase, α-lactalbumin, and galactosyl transferase in mouse mammary gland explants. Proc. Soc. Exp. Biol. Med. 197: 431-434.
- Jayakumar, P., J. Arunakaran, M. Aruldhas, and P. Govindarajulu. 1992. Role of prolactin on epididymal glycoprotein metabolism in matured monkeys, Macaca radiata: specific activities of glycosyltransferases and glycosidases. Indian J. Exp. Biol. 30: 1075-1078.
- Jia, Y., Q. Li, W. Burris, G. E. Aiken, P. J. Bridges, and J. C. Matthews. 2018. Forms of selenium in vitamin-mineral mixes differentially affect serum prolactin concentration and hepatic glutamine synthetase activity of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 96: 715-727.
- Johansson, L., G. Gafvelin, and E. S. Arnér. 2005. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta Gen. Subj. 1726: 1-13.
- Johnson, J. W., J. E. Tyson, W. Mitzner, J. C. Beck, B. Andreassen, W. T. London, and J. Villar. 1985. Amniotic fluid prolactin and fetal lung maturation. Am. J. Obstet. Gynecol. 153: 372-380.
- Jones, K. L., J. L. Schulze, J. R. Strickland, D. L. Cross, P. Burns, R. M. Gilley, E. Bassoo, K. B. Hart, D. L. Thompson Jr, and S. S. King. 2008. Evaluation of
domperidone dosages and delivery methods for the treatment of fescue toxicosis in beef heifers. PAS. 24: 342-348.

- Josimovich, J. B., K. Merisko, and L. Boccella. 1977. Amniotic prolactin control over amniotic and fetal extracellular fluid water and electrolytes in the rhesus monkey. Endocrinology. 100: 564-570.
- Juniper, D. T., R. H. Phipps, E. Ramos-Morales, and G. Bertin. 2008. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J. Anim. Sci. 86: 3100-3109.
- Kanasaki, H., T. Yonehara, H. Yamamoto, Y. Takeuchi, K. Fukunaga, K. Takahashi, K. Miyazaki, and E. Miyamoto. 2002. Differential regulation of pituitary hormone secretion and gene expression by thyrotropin-releasing hormone. A role for mitogen-activated protein kinase signaling cascade in rat pituitary GH3 cells. Biol. Reprod. 67: 107-113.
- Kanasaki, H., A. Oride, T. Mijiddorj, and S. Kyo. 2015. Role of thyrotropin-releasing hormone in prolactin-producing cell models. Neuropeptides. 54: 73-77.
- Kato, Y., Y. Iwasaki, J. Iwasaki, H. Abe, N. Yanaihara, and H. Imura. 1978. Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology. 103: 554-558.
- Kawano, H., and S. Daikoku. 1987. Functional topography of the rat hypothalamic dopamine neuron systems: retrograde tracing and immunohistochemical study. J. Comp. Neurol. 265: 242-253.
- Kelly, P.A., K.N. Bedirian, R.D. Baker, and H.G. Friesen. 1973. Effect of synthetic TRH on serum prolactin, TSH and milk production in the cow. Endocrinology. 92: 1289-1293.

- Kelly, P. A., J. Djiane, M. C. Postel-Vinay, and M. Edery. 1991. The prolactin/growth hormone receptor family. Endocr. Rev. 12: 235-251.
- Kendall, P. E., T. L. Auchtung, K. S. Swanson, R. P. Radcliff, M. C. Lucy, J. K. Drackley, and G. E. Dahl. 2003. Effect of photoperiod on hepatic growth hormone receptor 1A expression in steer calves. J. Anim. Sci. 81: 1440-1446.
- Kennedy, T., and D. Armstrong. 1972. Extra-ovarian effect of prolactin on vaginal mucification in the rat. Endocrinology. 90: 815-822.
- Khanal, D. R., and A. P. Knight. 2010. Selenium: its role in livestock health and productivity. J Agric. Environ. 11: 101-106.
- Kim, H. Y., and V. N. Gladyshev. 2004. Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell. 15: 1055-1064.
- Kim, I. Y., M. J. Guimarães, A. Zlotnik, J. F. Bazan, and T. C. Stadtman. 1997. Fetal mouse selenophosphate synthetase 2 (SPS2): Characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proc. Natl. Acad. Sci. 94: 418-421.
- Kim, J. Y., B. A. Carlson, X. M. Xu, Y. Zeng, S. Chen, V. N. Gladyshev, B. J. Lee, and D. L. Hatfield. 2011. Inhibition of selenocysteine tRNA<sup>[Ser]Sec</sup> aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA. Biochem. Biophys. Res. Commun. 409: 814-819.
- Kim, M. R., H. S. Chang, B. H. Kim, S. Kim, S. H. Baek, J. H. Kim, S. R. Lee, and J. R. Kim. 2003. Involvements of mitochondrial thioredoxin reductase (TrxR2) in cell proliferation. Biochem. Biophys. Res. Commun. 304: 119-124.

- Kim, T. S., D. W. Jeong, B. Y. Yun, and I. Y. Kim. 2002. Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochem. Biophys. Res. Commun. 294: 1130-1137.
- Klotz, J. L. 2015. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins. 7: 2801-2821.
- Köhrle, J. 2005. Selenium and the control of thyroid hormone metabolism. Thyroid. 15: 841-853.
- Korotkov, K. V., S. V. Novoselov, D. L. Hatfield, and V. N. Gladyshev. 2002.
  Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22: 1402-1411.
- Koshiyama, H., Y. Kato, T. Inoue, Y. Murakami, Y. Ishikawa, N. Yanaihara, and H.
  Imura. 1987. Central galanin stimulates pituitary prolactin secretion in rats:
  possible involvement of hypothalamic vasoactive intestinal polypeptide.
  Neurosci. Lett. 75: 49-54.
- Krasnow, J. S., G. J. Hickey, and J. S. Richards. 1990. Regulation of aromatase mRNA and estradiol biosynthesis in rat ovarian granulosa and luteal cells by prolactin. Mol. Endocrinol. 4: 13-21.
- Krown, K., Y. Wang, T. Ho, P. Kelly, and A. Walker. 1992. Prolactin isoform 2 as an autocrine growth factor for GH3 cells. Endocrinology. 131: 595-602.
- Kryukov, G. V., S. Castellano, S. V. Novoselov, A. V. Lobanov, O. Zehtab, R. Guigo, and V. N. Gladyshev. 2003. Characterization of mammalian selenoproteomes. Science. 300: 1439-1443.

- Kryukov, G. V., R. A. Kumar, A. Koc, Z. Sun, and V. N. Gladyshev. 2002. SelenoproteinR is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl.Acad. Sci. 99: 4245-4250.
- Kumar, D., R. E. Mains, and B. A. Eipper. 2016. 60 YEARS OF POMC: From POMC and alpha-MSH to PAM, molecular oxygen, copper, and vitamin C. J. Mol. Endocrinol. 56: T63-76.
- Kumar, S., M. Björnstedt, and A. Holmgren. 1992. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur. J. Biochem. 207: 435-439.
- Kumaran, B., P. Gunasekar, M. Aruldhas, and P. Govindarajulu. 1988. Role of prolactin on neural and glial cellular enzymes involved in carbohydrate metabolism. I.
  Studies on immature male bonnet monkeys. Brain Res. 450: 325-333.
- Kumaran, B., P. Gunasekar, M. Aruldhas, and P. Govindarajulu. 1989. Influence of prolactin on neural and glial cellular adenosine triphosphatases in immature male bonnet monkeys (Macaca radiata, Geoffroy). Indian J. Exp. Biol. 27: 17-19.
- Kumaraswamy, E., A. Malykh, K. V. Korotkov, S. Kozyavkin, Y. Hu, S. Y. Kwon, M. E. Moustafa, B. A. Carlson, M. J. Berry, B. J. Lee, D. L. Hatfield, A. M. Diamond, and V. N. Gladyshev. 2000. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J. Biol. Chem. 275: 35540-35547.
- Labunskyy, V. M., D. L. Hatfield, and V. N. Gladyshev. 2007. The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB life. 59: 1-5.

- Labunskyy, V. M., D. L. Hatfield, and V. N. Gladyshev. 2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94: 739-777.
- Lahat, N., A. Miller, R. Shtiller, and E. Touby. 1993. Differential effects of proclatic upon activation and differentiation of human B lymphocytes. J. Neuroimmunol. 47: 35-40.
- Lamberts, S., and R. Macleod. 1990. Regulation of prolactin secretion at the level of the lactotroph. Physiol. Rev. 70: 279-318.
- Lamonerie, T., J. J. Tremblay, C. Lanctot, M. Therrien, Y. Gauthier, and J. Drouin. 1996. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 10: 1284-1295.
- Larsen, J., A. Bhanu, and W. Odell. 1990. Prolactin inhibition of pregnant mare's serum stimulated follicle development in the rat ovary. Endocr. Res. 16: 449-459.
- Larson, B. T., D. L. Harmon, E. L. Piper, L. M. Griffis, and L. P. Bush. 1999. Alkaloid binding and activation of D2 dopamine receptors in cell culture. J. Anim. Sci. 77: 942-947.
- Larson, B. T., D. M. Sullivan, M. D. Samford, M. S. Kerley, J. A. Paterson, and J. T. Turner. 1994. D2 dopamine receptor response to endophyte-infected tall fescue and an antagonist in the rat. J. Anim. Sci. 72: 2905-2910.
- Latchman, D. S. 1997. Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29: 1305-1312.
- Latrèche, L., S. Duhieu, Z. Touat-Hamici, O. Jean-Jean, and L. Chavatte. 2012. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element. RNA Biol. 9: 681-690.

- Läuchli, A. 1993. Selenium in plants: uptake, functions, and environmental toxicity. Bot. Acta. 106: 455-468.
- Lavoie, H. A., and R. J. Witorsch. 1995. Investigation of intracellular signals mediating the anti-apoptotic action of prolactin in Nb2 lymphoma cells. Proc. Soc. Exp. Biol. Med. 209: 257-269.
- Lee, B. C., Z. Peterfi, F. W. Hoffmann, R. E. Moore, A. Kaya, A. Avanesov, L. Tarrago, Y. Zhou, E. Weerapana, D. E. Fomenko, P. R. Hoffmann, and V. N. Gladyshev.
  2013. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell. 51: 397-404.
- Lee, B. J., P. J. Worland, J. N. Davis, T. C. Stadtman, and D. L. Hatfield. 1989.Identification of a selenocysteyl-tRNA (Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264: 9724-9727.
- Lee, O. J., R. Schneider-Stock, P. A. Mcchesney, D. Kuester, A. Roessner, M. Vieth, C.A. Moskaluk, and W. El-Rifai. 2005. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis. Neoplasia. 7: 854-861.
- Lee, M.R., C. Mantel, S.A. Lee, S.H. Moon, and H.E. Broxmeyer. 2016. MiR-31/SDHA axis regulates reprogramming efficiency through mitochondrial metabolism. Stem Cell Reports. 7: 1-10.
- Leff, M. A., D. J. Buckley, J. S. Krumenacker, J. C. Reed, T. Miyashita, and A. R.Buckley. 1996. Rapid modulation of the apoptosis regulatory genes, bcl-2 and bax by prolactin in rat Nb2 lymphoma cells. Endocrinology. 137: 5456-5462.

- Leinfelder, W., T. C. Stadtman, and A. Bock. 1989. Occurrence in vivo of selenocysteyltRNA(SERUCA) in Escherichia coli. Effect of sel mutations. J. Biol. Chem. 264: 9720-9723.
- Leinfelder, W., E. Zehelein, M. Mandrandberthelot, and A. Bock. 1988. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 331: 723.
- Leong, D. A., L. S. Frawley, and J. D. Neill. 1983. Neuroendocrine control of prolactin secretion. Annu. Rev. Physiol. 45: 109-127.
- Li, Q., R. Hegge, P. J. Bridges, and J. C. Matthews. 2017. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages. PLoS One. 12: e0184612.
- Li, Q., Y. Jia, W. R. Burris, P. J. Bridges, and J. C. Matthews. 2018. Forms of selenium in vitamin–mineral mixes differentially affect the expression of genes responsible for prolactin, ACTH, and α-MSH synthesis and mitochondrial dysfunction in pituitaries of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 97: 631-643.
- Liao, S., J. Boling, and J. Matthews. 2015. Gene expression profiling indicates an increased capacity for proline, serine, and ATP synthesis and mitochondrial mass by the liver of steers grazing high vs. low endophyte-infected tall fescue. J. Anim. Sci. 93: 5659-5671.
- Liao, S. F., K. R. Brown, A. J. Stromberg, W. R. Burris, J. A. Boling, and J. C.Matthews. 2011. Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations

and liver gene expression profiles of growing beef heifers. Biol. Trace Elem. Res. 140: 151-169.

- Liby, K., B. Neltner, L. Mohamet, L. Menchen, and N. Ben-Jonathan. 2003. Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res. Treat. 79: 241-252.
- Lillig, C. H., and A. Holmgren. 2007. Thioredoxin and related molecules-from biology to health and disease. Antioxid. Redox Signal. 9: 25-47.
- Lin, M. T., and M. F. Beal. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443: 787-795.
- Ling, C., G. Hellgren, M. Gebre-Medhin, K. Dillner, H. Wennbo, B. Carlsson, and H. Billig. 2000. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology. 141: 3564-3572.
- Lipham, L. B., F. N. Thompson, J. A. Stuedemann, and J. L. Sartin. 1989. Effects of metoclopramide on steers grazing endophyte-infected fescue. J. Anim. Sci. 67: 1090-1097.
- Lisowski, P., M. Pierzchala, J. Goscik, C. S. Pareek, and L. Zwierzchowski. 2008.Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49: 367-372.
- Liu, J.C., R.E. Baker, W. Chow, C.K. Sun, and H.P. Elsholtz. 2005. Epigenetic mechanisms in the dopamine D2 receptor-dependent inhibition of the prolactin gene. Mol. Endocrinol. 19: 1904-1917.

- Liu, Y., L. Costello, and R. Franklin. 1996. Prolactin specifically regulates citrate oxidation and m-aconitase of rat prostate epithelial cells. Metabolism. 45: 442-449.
- Liu, Y., T. Ganguly, J. F. Hyde, and M. Vore. 1995. Prolactin increases mRNA encoding Na (+)-TC cotransport polypeptide and hepatic Na (+)-TC cotransport. Am. J.
   Physiol. Gastrointest. Liver Physiol. 268: G11-17.
- Liu, Y., J. F. Hyde, and M. Vore. 1992. Prolactin regulates maternal bile secretory function post partum. J. Pharmacol. Exp. Ther. 261: 560-566.
- Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the  $2-\Delta\Delta$ CT method. Methods. 25: 402-408.
- Lledo, P. M., J. M. Israel, and J. D. Vincent. 1991. Chronic stimulation of D2 dopamine receptors specifically inhibits calcium but not potassium currents in rat lactotrophs. Brain Res. 558: 231-238.
- Lledo, P. M., V. Homburger, J. Bockaert, and J. D. Vincent. 1992. Differential G proteinmediated coupling of D2 dopamine receptors to K<sup>+</sup> and Ca<sup>2+</sup> currents in rat anterior pituitary cells. Neuron. 8: 455-463.
- Lodygin, D., A. Epanchintsev, A. Menssen, J. Diebold, and H. Hermeking. 2005. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65: 4218-4227.
- Looper, M. L., S. T. Reiter, B. C. Williamson, M. A. Sales, D. M. Hallford, and C. F. Rosenkrans, Jr. 2010. Effects of body condition on measures of intramuscular and rump fat, endocrine factors, and calving rate of beef cows grazing common bermudagrass or endophyte-infected tall fescue. J. Anim. Sci. 88: 4133-4141.

- Loudon, A., B. Brinklow, F. Gulland, J. Boyle, and A. Flint. 1990. Roles of prolactin and the uterus in the control of luteal regression in the Bennett's wallaby (Macropus rufogriseus rufogriseus). Reprod. Fertil. Dev. 2: 71-78.
- Low, S. C., and M. J. Berry. 1996. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem. Sci. 21: 203-208.
- Low, S. C., E. Grundner-Culemann, J. W. Harney, and M. J. Berry. 2000. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J. 19: 6882-6890.
- Low, S. C., J. W. Harney, and M. J. Berry. 1995. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J. Biol. Chem. 270: 21659-21664.
- Lu, C., F. Qiu, H. Zhou, Y. Peng, W. Hao, J. Xu, J. Yuan, S. Wang, B. Qiang, C. Xu, and X. Peng. 2006. Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett. 580: 5189-5197.
- Lu, J., and A. Holmgren. 2009. Selenoproteins. J. Biol. Chem. 284: 723-727.
- Lubos, E., J. Loscalzo, and D. E. Handy. 2011. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 15: 1957-1997.
- Luo, Y., L. A. Henricksen, R. E. Giuliano, L. Prifti, L. M. Callahan, and H. J. Federoff.
  2007. VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp. Neurol.
  203: 221-232.
- Lyons, P. C., R. D. Plattner, and C. W. Bacon. 1986. Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science. 232: 487-489.

- Ma, F. Y., D. R. Grattan, V. Goffin, and S. J. Bunn. 2005. Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology. 146: 93-102.
- Machida, T., M. Taga, and H. Minaguchi. 1990. Effect of prolactin (PRL) on lipoprotein lipase (LPL) activity in the rat fetal liver. Asia Oceania J. Obstet. Gynaecol. 16: 261-265.
- Macleod, R. 1976. Regulation of prolactin secretion. Front. Neuroendocrinol. 4: 169-194.
- Macleod, R. M. 1969. Influence of norepinephrine and catecholamine-depleting agents on the synthesis and release of prolactin and growth hormone. Endocrinology. 85: 916-923.
- Macleod, R. M., E. H. Fontham, and J. E. Lehmeyer. 1970. Prolactin and growth hormone production as influenced by catecholamines and agents that affect brain catecholamines. Neuroendocrinology. 6: 283-294.
- Macnamee, M., P. Sharp, R. Lea, R. Sterling, and S. Harvey. 1986. Evidence that vasoactive intestinal polypeptide is a physiological prolactin-releasing factor in the bantam hen. Gen. Comp. Endocrinol. 62: 470-478.
- Maeda, K., K. Okubo, I. Shimomura, K. Mizuno, Y. Matsuzawa, and K. Matsubara. 1997. Analysis of an expression profile of genes in the human adipose tissue. Gene. 190: 227-235.
- Maia, A. L., B. W. Kim, S. A. Huang, J. W. Harney, and P. R. Larsen. 2005. Type 2 iodothyronine deiodinase is the major source of plasma T 3 in euthyroid humans.J. Clin. Invest. 115: 2524-2533.

- Mainoya, J., H. Bern, and J. Regan. 1974. Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gall bladder. J. Endocrinol. 63: 311-317.
- Mangalam, H. J., V. R. Albert, H. A. Ingraham, M. Kapiloff, L. Wilson, C. Nelson, H. Elsholtz, and M. G. Rosenfeld. 1989. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 3: 946-958.
- Mangiapane, E., A. Pessione, and E. Pessione. 2014. Selenium and selenoproteins: an overview on different biological systems. Curr. Protein Pept. Sci. 15: 598-607.
- Margis, R., C. Dunand, F. K. Teixeira, and M. Margis-Pinheiro. 2008. Glutathione peroxidase family-an evolutionary overview. FEBS J. 275: 3959-3970.
- Mariotti, M., P. G. Ridge, Y. Zhang, A. V. Lobanov, T. H. Pringle, R. Guigo, D. L. Hatfield, and V. N. Gladyshev. 2012. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 7: e33066.
- Markoff, E., G. M. Beattie, A. Hayek, and U. Lewis. 1990. Effects of prolactin and glycosylated prolactin on (pro) insulin synthesis and insulin release from cultured rat pancreatic islets. Pancreas. 5: 99-103.
- Martel, C., C. Labrie, J. Couët, E. Dupont, C. Trudel, V. Luu-The, M. Takahashi, G.
  Pelletier, and F. Labrie. 1990a. Effects of human chorionic gonadotropin (hCG) and prolactin (PRL) on 3β-hydroxy-5-ene-steroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) expression and activity in the rat ovary. Mol. Cell.
  Endocrinol. 72: R7-13.

- Martel, C., C. Labrie, E. Dupont, J. Couet, C. Trudel, E. Rheaume, J. Simard, V. Luu-The, G. Pelletier, and F. Labrie. 1990b. Regulation of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase expression and activity in the hypophysectomized rat ovary: interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin. Endocrinology. 127: 2726-2737.
- Martinet, L., M. Mondain-Monval, and R. Monnerie. 1992. Endogenous circannual rhythms and photorefractoriness of testis activity, moult and prolactin concentrations in mink (Mustela vison). J. Reprod. Fertil. 95: 325-338.
- Matera, L., A. Cesano, G. Bellone, and E. Oberholtzer. 1992. Modulatory effect of prolactin on the resting and mitogen-induced activity of T, B, and NK lymphocytes. Brain Behav. Immun. 6: 409-417.
- Mates, J.M., C. Perez-Gomez, and I. Nunez de Castro. 1999. Antioxidant enzymes and human diseases. Clin. Biochem. 32: 595-603.
- Mati, J., M. Mugambi, P. Muriuki, and K. Thairu. 1974. Effect of prolactin on isolated rabbit myometrium. J. Endocrinol. 60: 379-380.
- Matsuyama, S., K. Shiota, and M. Takahashi. 1990. Possible role of transforming growth factor-β as a mediator of luteotropic action of prolactin in rat luteal cell cultures.
   Endocrinology. 127: 1561-1567.
- Matthews, J. C., and P. J. Bridges. 2014. NutriPhysioGenomics applications to identify adaptations of cattle to consumption of ergot alkaloids and inorganic versus organic forms of selenium: altered nutritional, physiological and health states? Anim. Prod. Sci. 54: 1594-1604.

- Matthews, J. C., Z. Zhang, J. D. Patterson, P. J. Bridges, A. J. Stromberg, and J. Boling.
  2014. Hepatic transcriptome profiles differ among maturing beef heifers
  supplemented with inorganic, organic, or mixed (50% inorganic: 50% organic)
  forms of dietary selenium. Biol. Trace Elem. Res. 160: 321-339.
- Mcaveney, K. M., J. Gimble, and L. Y. Yu-Lee. 1996. Prolactin receptor expression during adipocyte differentiation of bone marrow stroma. Endocrinology. 137: 5723-5726.
- Mcchesney, R., S. C. Sealfon, M. Tsutsumi, K. Dong, J. L. Roberts, and C. Bancroft.
  1991. Either isoform of the dopamine D2 receptor can mediate dopaminergic repression of the rat prolactin promoter. Mol. Cell. Endocrinol. 79: R1-7.
- Mcconnell, K. P., and G. J. Cho. 1967. Active transport of L-selenomethionine in the intestine. Am. J. Physiol. 213: 150-156.
- Mcculley, R. L., L. P. Bush, A. E. Carlisle, H. Ji, and J. A. Nelson. 2015. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the US. Front. Chem. 2: 88
- Meador-Woodruff, J. H., A. Mansour, J. R. Bunzow, H. H. Van Tol, S. J. Watson, Jr., and O. Civelli. 1989. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. 86: 7625-7628.

Mehdi, Y., and I. Dufrasne. 2016. Selenium in Cattle: A Review. Molecules. 21: 545.

Meli, R., G. M. Raso, C. Bentivoglio, I. Nuzzo, M. Galdiero, and R. Di Carlo. 1996.
Recombinant human prolactin induces protection against Salmonella typhimurium infection in the mouse: role of nitric oxide. Immunopharmacology. 34: 1-7.

- Merrill, M. L., D. W. Bohnert, D. L. Harmon, A. M. Craig, and F. N. Schrick. 2007. The ability of a yeast-derived cell wall preparation to minimize the toxic effects of high-ergot alkaloid tall fescue straw in beef cattle. J. Anim. Sci. 85: 2596-2605.
- Millington, G. W. 2007. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. 4: 18.
- Minami, S., and D. Sarkar. 1997. Transforming growth factor-β1 inhibits prolactin secretion and lactotropic cell proliferation in the pituitary of oestrogen-treated Fischer 344 rats. Neurochem. Int. 30: 499-506.
- Misu, H., T. Takamura, H. Takayama, H. Hayashi, N. Matsuzawa-Nagata, S. Kurita, K.
  Ishikura, H. Ando, Y. Takeshita, T. Ota, M. Sakurai, T. Yamashita, E. Mizukoshi,
  T. Yamashita, M. Honda, K. Miyamoto, T. Kubota, N. Kubota, T. Kadowaki, H.
  J. Kim, I. K. Lee, Y. Minokoshi, Y. Saito, K. Takahashi, Y. Yamada, N.
  Takakura, and S. Kaneko. 2010. A liver-derived secretory protein, selenoprotein
  P, causes insulin resistance. Cell Metab. 12: 483-495.
- Mitev, V., M. Bayat-Sarmadi, M. Lemnaouar, C. Puissant, and L. M. Houdebine. 1996.The effect of prolactin on casein kinase II, MAP kinase and PKC in rabbit mammary cells and Nb2 rat lymphoid cells. Biochem. Pharmacol. 52: 1719-1727.
- Miyata, A., A. Arimura, R. R. Dahl, N. Minamino, A. Uehara, L. Jiang, M. D. Culler, and D. H. Coy. 1989. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164: 567-574.
- Molinari, M., and A. Helenius. 1999. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature. 402: 90-93.

- Morey, J. S., J. C. Ryan, and F. M. Dolah. 2006. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR.
   Biol. Proced. Online. 8: 175.
- Mostert, V. 2000. Selenoprotein P: properties, functions, and regulation. Arch. Biochem. Biophys. 376: 433-438.
- Mukherjee, P., A. M. Mastro, and W. Hymer. 1990. Prolactin induction of interleukin-2 receptors on rat splenic lymphocytes. Endocrinology. 126: 88-94.
- Muller, E., and R. Dowling. 1981. Prolactin and the small intestine. Effect of hyperprolactinaemia on mucosal structure in the rat. Gut. 22: 558-565.
- Mullur, R., Y. Y. Liu, and G. A. Brent. 2014. Thyroid hormone regulation of metabolism. Physiol. Rev. 94: 355-382.
- Murdoch, G. H., E. Potter, A. K. Nicolaisen, R. M. Evans, and M. G. Rosenfeld. 1982.Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature.300: 192-194.
- Murphy, L. J., K. Tachibana, and H. G. Friesen. 1988. Stimulation of hepatic insulin-like growth factor-I gene expression by ovine prolactin: evidence for intrinsic somatogenic activity in the rat. Endocrinology. 122: 2027-2033.
- Musatov, A., and N.C. Robinson. 2012. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic. Res. 46: 1313-1326.
- Mustacich, D., and G. Powis. 2000. Thioredoxin reductase. Biochem. J. 346: 1-8.
- Naef, L., and B. Woodside. 2007. Prolactin/leptin interactions in the control of food intake in rats. Endocrinology. 148: 5977-5983.

- Nag, S., S. Sanyal, K. Ghosh, and N. Biswas. 1981. Prolactin suppression and spermatogenic developments in maturing rats. A quantitative study. Horm. Res. Paediatr. 15: 72-77.
- Nagano, M., and P. A. Kelly. 1994. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J. Biol. Chem. 269: 13337-13345.
- Nagy, E., and I. Berczi. 1981. Prolactin and contact sensitivity. Allergy. 36: 429-431.
- Nagy, E., and I. Berczi. 1989. Pituitary dependence of bone marrow function. Br. J. Haematol. 71: 457-462.
- Nagy, E., I. Berczi, and H. G. Friesen. 1983. Regulation of immunity in rats by lactogenic and growth hormones. Acta Endocrinol. 102: 351-357.
- Nagy, E., I. Berczi, and E. Sabbadini. 1992. Endocrine control of the immunosuppressive activity of the submandibular gland. Brain Behav. Immun. 6: 418-428.
- Naiki-Ito, A., M. Asamoto, N. Hokaiwado, S. Takahashi, H. Yamashita, H. Tsuda, K. Ogawa, and T. Shirai. 2007. Gpx2 is an overexpressed gene in rat breast cancers induced by three different chemical carcinogens. Cancer Res. 67: 11353-11358.
- Nalvarte, I., A. E. Damdimopoulos, and G. Spyrou. 2004. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic. Biol. Med. 36: 1270-1278.
- Narayanan, C.S., J. Fujimoto, E. Geras-Raaka, and M.C. Gershengorn. 1992. Regulation by thyrotropin-releasing hormone (TRH) of TRH receptor mRNA degradation in rat pituitary GH3 cells. J. Biol. Chem. 267: 17296-17303.

- Nasr, M., Y. Hu, and A. Diamond. 2004. Allelic loss at the Sep15 locus in breast cancer. Cancer Ther. 1: 293-298.
- National Academies of Sciences, E., and Medicine. 2016. Nutrient requirements of beef cattle. National Academies Press.
- Negro-Vilar, A., W. Saad, and S. Mccann. 1977. Evidence for a role of prolactin in prostate and seminal vesicle growth in immature male rats. Endocrinology. 100: 729-737.
- Nelson, C., V. R. Albert, H. P. Elsholtz, L. I. W. Lu, and M. G. Rosenfeld. 1988. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science. 239: 1400-1405.
- Neuhierl, B., M. Thanbichler, F. Lottspeich, and A. Bock. 1999. A family of Smethylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J. Biol. Chem. 274: 5407-5414.
- Neville, M. C., and C. W. Daniel. 1987. The mammary gland: development, regulation, and function. Springer, New York, NY.
- Niall, H. D., M. L. Hogan, R. Sauer, I. Y. Rosenblum, and F. C. Greenwood. 1971. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proc. Natl. Acad. Sci. 68: 866-870.
- Nickel, A., G. Kottra, G. Schmidt, J. Danier, T. Hofmann, and H. Daniel. 2009. Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chem. Biol. Interact. 177: 234-241.

Nicoll, C. S. 1974. Physiological actions of prolactin. Handbook of physiology.

- Nielsen, J. H. 1982. Effects of growth hormone, prolactin, and placental lactogen on insulin content and release, and deoxyribonucleic acid synthesis in cultured pancreatic islets. Endocrinology. 110: 600-606.
- Nielsen, J. H., A. Møldrup, N. Billestrup, E. D. Petersen, G. Allevato, and M. Stahl.
  1992. The role of growth hormone and prolactin in beta cell growth and
  regeneration Pancreatic Islet Cell Regeneration and Growth. Springer, Boston,
  MA. p. 9-20.
- Niu, J., M. Yu, C. Wang, and Z. Xu. 2012. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J. Neurochem. 122 :650-658.
- Noel, M. B., and B. Woodside. 1993. Effects of systemic and central prolactin injections on food intake, weight gain, and estrous cyclicity in female rats. Physiol. Behav. 54: 151-154.
- Nordberg, J., and E. S. Arner. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radic. Biol. Med. 31: 1287-1312.
- Novoselov, S. V., D. F. Calvisi, V. M. Labunskyy, V. M. Factor, B. A. Carlson, D. E.
  Fomenko, M. E. Moustafa, D. L. Hatfield, and V. N. Gladyshev. 2005.
  Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice. Oncogene. 24: 8003.
- Novoselov, S. V., G. V. Kryukov, X. M. Xu, B. A. Carlson, D. L. Hatfield, and V. N. Gladyshev. 2007. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 282: 11960-11968.

- O'steen, W. K., and S. L. Kraeer. 1977. Effects of hypophysectomy, pituitary gland homogenates and transplants, and prolactin on photoreceptor destruction. Invest. Ophthalmol. Vis. Sci. 16: 940-946.
- O'halloran, D. J., P. M. Jones, J. H. Steel, G. Gon, A. Giaid, M. A. Ghatei, J. M. Polak, and S. R. Bloom. 1990. Effect of endocrine manipulation on anterior pituitary galanin in the rat. Endocrinology. 127: 467-475.
- Oberholtzer, E., M. Contarini, F. Veglia, A. Cossarizza, C. Franceschi, M. Geuna, M. Provinciali, G. Di Stefano, J. Sissom, and M. Brizzi. 1996. Prolactin increases the susceptibility of primary leukemia cells to NK and LAK effectors. Adv. Neuroimmunol. 6: 233-247.
- Oliver, J. W. 1997. Physiological manifestations of endophyte toxicosis in ruminant and laboratory species Neotyphodium/grass interactions. Springer, Boston, MA. p. 311-346.
- Olson, G. E., V. P. Winfrey, K. E. Hill, and R. F. Burk. 2008. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem. 283: 6854-6860.
- Olson, G. E., V. P. Winfrey, S. K. Nagdas, K. E. Hill, and R. F. Burk. 2007.Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem. 282: 12290-12297.
- Olson, O., E. Novacek, E. Whitehead, and I. Palmer. 1970. Investigations on selenium in wheat. Phytochemistry. 9: 1181-1188.

- Ono, M., and T. Oka. 1980. The differential actions of cortisol on the accumulation of αlactalbumin and casein in midpregnant mouse mammary gland in culture. Cell. 19: 473-480.
- Oppat, C., and J. Rillema. 1988. Characteristics of the early effect of prolactin on lactose biosynthesis in mouse mammary gland explants. Proc. Soc. Exp. Biol. Med. 188: 342-345.
- Oron, Y., R. E. Straub, P. Traktman, and M. C. Gershengorn. 1987. Decreased TRH receptor mRNA activity precedes homologous downregulation: assay in oocytes. Science. 238: 1406-1408.
- Ota, H., A. Wakizaka, M. Fukushima, and M. Maki. 1982. Dual regulation of rat ovarian LH-receptor by the administration of prolactin or sulpiride. IRCS Med. Sci. Biochem. 10: 859-860.
- Ottlecz, A., G. D. Snyder, and S. M. Mccann. 1988. Regulatory role of galanin in control of hypothalamic-anterior pituitary function. Proc. Natl. Acad. Sci. 85: 9861-9865.
- Pandey, P., O. K. Hooda, and S. Kumar. 2017. Effect of elevated temperature and increased CO 2 levels on biochemical and hormonal parameters in Tharparkar and Karan Fries heifers. Int. J. Curr. Microbiol. Appl. Sci. 6 : 1985-1992.
- Papadopoulos, V., M. Drosdowsky, and S. Carreau. 1986. In vitro effects of prolactin and dexamethasone on rat Leydig cell aromatase activity. Andrologia. 18: 79-83.
- Papp, L. V., J. Lu, A. Holmgren, and K. K. Khanna. 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal. 9: 775-806.

- Partek, D. 2009. Partek documentation: turning data into discovery. Partek Incorporated, St. Louis, MO.
- Parry, G., J. Li, J. Stubbs, M. J. Bissell, C. Schmidhauser, A. P. Spicer, and S. J. Gendler. 1992. Studies of Muc-1 mucin expression and polarity in the mouse mammary gland demonstrate developmental regulation of Muc-1 glycosylation and establish the hormonal basis for mRNA expression. J. Cell Sci. 101: 191-199.
- Paterson, J., C. Forcherio, B. Larson, M. Samford, and M. Kerley. 1995. The effects of fescue toxicosis on beef cattle productivity. J. Anim. Sci. 73: 889-898.
- Patterson, J. D., W. R. Burris, J. A. Boling, and J. C. Matthews. 2013. Individual intake of free-choice mineral mix by grazing beef cows may be less than typical formulation assumptions and form of selenium in mineral mix affects blood Se concentrations of cows and their suckling calves. Biol. Trace Elem. Res. 155: 38-48.
- Pedrón, N., and J. Giner. 1978. Effect of prolactin on the glycolytic metabolism of spermatozoa from infertile subjects. Fertil. Steril. 29: 428-430.
- Pei, Z., H. Li, Y. Guo, Y. Jin, and D. Lin. 2010. Sodium selenite inhibits the expression of VEGF, TGFβ1 and IL-6 induced by LPS in human PC3 cells via TLR4-NF-KB signaling blockage. Int. Immunopharmacol. 10: 50-56.
- Pellegrini-Bouiller, I., I. Morange-Ramos, A. Barlier, G. Gunz, D. Figarella-Branger, C. Cortet-Rudelli, F. Grisoli, P. Jaquet, and A. Enjalbert. 1996. Pit-1 gene expression in human lactotroph and somatotroph pituitary adenomas is correlated to D2 receptor gene expression. J. Clin. Endocrinol. Metab. 81: 3390-3396.

- Perez-Villamil, B., E. Bordiu, and M. Puente-Cueva. 1992. Involvement of physiological prolactin levels in growth and prolactin receptor content of prostate glands and testes in developing male rats. J. Endocrinol. 132: 449-459.
- Pertz, H., and E. Eich. 1999. Ergot alkaloids and their derivatives as ligands for serotoninergic, dopaminergic, and adrenergic receptors. Ergot: The Genus Claviceps. Harwood Academic Publishers, Amsterdam, The Netherlands. p. 411-440.
- Petit, N., A. Lescure, M. Rederstorff, A. Krol, B. Moghadaszadeh, U. M. Wewer, and P. Guicheney. 2003. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 12: 1045-1053.
- Pfleger, K. D. G., K. M. Kroeger, and K. A. Eidne. 2004. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Cell Dev. Biol. 15: 269-280.
- Polan, M. L., N. Laufer, A. M. Dlugi, B. C. Tarlatzis, F. P. Haseltine, A. H. Decherney, and H. R. Behrman. 1984. Human chorionic gonadotropin and prolactin modulation of early luteal function and luteinizing hormone receptor-binding activity in cultured human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 59: 773-779.
- Porter, J. K., and F. N. Thompson, Jr. 1992. Effects of fescue toxicosis on reproduction in livestock. J. Anim. Sci. 70: 1594-1603.
- Poulin, G., B. Turgeon, and J. Drouin. 1997. NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol. Cell. Biol. 17: 6673-6682.

- Prabakaran, S., J. E. Swatton, M. M. Ryan, S. J. Huffaker, J. T. Huang, J. L. Griffin, M. Wayland, T. Freeman, F. Dudbridge, K. S. Lilley, N. A. Karp, S. Hester, D. Tkachev, M. L. Mimmack, R. H. Yolken, M. J. Webster, E. F. Torrey, and S. Bahn. 2004. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry. 9: 684-697, 643.
- Prasad, R., L. F. Chan, C. R. Hughes, J. P. Kaski, J. C. Kowalczyk, M. O. Savage, C. J.
  Peters, N. Nathwani, A. J. Clark, H. L. Storr, and L. A. Metherell. 2014.
  Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial
  glucocorticoid deficiency (FGD). J. Clin. Endocrinol. Metab. 99: E1556-1563.
- Prevost, G., A. Arabo, L. Jian, E. Quelennec, D. Cartier, S. Hassan, A. Falluel-Morel, Y. Tanguy, S. Gargani, and I. Lihrmann. 2013. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology. 154: 3796-3806.
- Prigent-Tessier, A., J. Pageaux, J. Fayard, M. Lagarde, C. Laugier, and H. Cohen. 1996. Prolactin up-regulates prostaglandin E2 production through increased expression of pancreatic-type phospholipase A2 (type I) and prostaglandin GH synthase 2 in uterine cells. Mol. Cell. Endocrinol. 122: 101-108.
- Prins, G., and C. Lee. 1982. Influence of prolactin-producing pituitary grafts on the in vivo uptake, distribution, and disappearance of [<sup>3</sup>H] testosterone and [<sup>3</sup>H] dihydrotestosterone by the rat prostate lobes. Endocrinology. 110: 920-925.

- Puissant, C., V. Mitev, M. Lemnaouar, V. Manceau, A. Sobel, and L. M. Houdebine.
  1995. Stathmin gene expression in mammary gland and in Nb2 cells. Biol. Cell.
  85: 109-115.
- Ramaswamy, S., and J. Bapna. 1987. Effect of prolactin on tolerance and dependence to acute administration of morphine. Neuropharmacology. 26: 111-113.
- Randall, G., J. Daniel, and B. Chilton. 1991. Prolactin enhances uteroglobin gene expression by uteri of immature rabbits. J. Reprod. Fertil. 91: 249-257.
- Rao, Y. P., D. J. Buckley, and A. R. Buckley. 1995. Rapid activation of mitogenactivated protein kinase and p21<sup>^</sup> r<sup>^</sup> a<sup>^</sup> s by prolactin and interleukin 2 in rat Nb2 node lymphoma cells. Cell Growth Differ. 6: 1235-1244.
- Ray, B., R. Gautam, M. Gaur, N. Srivastava, and B. Pereira. 1994. Impact of prolactin on epididymal lipid profile in castrated rats. Indian J. Exp. Biol. 32: 299-303.
- Read, R., T. Bellew, J. G. Yang, K. E. Hill, I. S. Palmer, and R. F. Burk. 1990. Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum. J. Biol. Chem. 265: 17899-17905.
- Reddy, P., and P. Reddy. 1990. Effect of prolactin on DNA methylation in the liver and kidney of rat. Mol. Cell. Biochem. 95: 43-47.
- Reddy, Y., K. Reddy, and S. Govindappa. 1985. Effect of prolactin and bromocriptine administration on epididymal function-a biochemical study in rats. Indian J. Physiol. Pharmacol. 29: 234-238.
- Reddy, Y. D., K. V. Reddy, and S. Govindappa. 1984. Metabolic profiles of prostate gland after the administration of prolactin and bromocriptine. Arch. Int. Physiol. Biochim. 92: 125-130.

- Reeves, M. A., F. P. Bellinger, and M. J. Berry. 2010. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid. Redox Signal. 12: 809-818.
- Reiter, E., P. Bonnet, B. Sente, D. Dombrowicz, J. De Leval, J. Closset, and G. Hennen.
  1992. Growth hormone and prolactin stimulate androgen receptor, insulin-like
  growth factor-I (IGF-I) and IGF-I receptor levels in the prostate of immature rats.
  Mol. Cell. Endocrinol. 88: 77-87.
- Reiter, E., S. Lardinois, M. Llug, B. Sente, B. Hennuy, M. Bruyninx, J. Closset, and G. Hennen. 1995. Androgen-independent effects of prolactin on the different lobes of the immature rat prostate. Mol. Cell. Endocrinol. 112: 113-122.
- Reyes, A., A. Parra, M. E. Chavarria, B. Goicoechea, and A. Rosado. 1979. Effect of prolactin on the calcium binding and/or transport of ejaculated and epididymal human spermatozoa. Fertil. Steril. 31: 669-672.
- Richards, J. 1975. Ornithine decarboxylase activity in tissues of prolactin-treated rats. Biochem. Biophys. Res. Commun. 63: 292-299.
- Richards, J. F., C. T. Beer, C. Bourgeault, K. Chen, and P. W. Gout. 1982. Biochemical response of lymphoma cells to mitogenic stimulation by prolactin. Mol. Cell. Endocrinol. 26: 41-49.
- Richardson, B. 1973. Evidence for a physiological role of prolactin in osmoregulation in the rat after its inhibition by 2-bromo--ergokryptine. Br. J. Pharmacol. 47: 623.
- Richardson, D. R. 2005. More roles for selenoprotein P: local selenium storage and recycling protein in the brain. Biochem. J. 386: E5-7.

- Riddle, O., R. W. Bates, and S. W. Dykshorn. 1933. The preparation, identification and assay of prolactin-a hormone of the anterior pituitary. Am. J. Physiol. 105: 191-216.
- Roberts, C. A., G. D. Lacefield, D. Ball, and G. Bates. 2009. Management to optimize grazing performance in the northern hemisphere. Tall fescue for the twenty-first century: 85-99.
- Robertson, M. T., M. J. Boyajian, K. Patterson, and W. V. Robertson. 1986. Modulation of the chloride concentration of human sweat by prolactin. Endocrinology. 119: 2439-2444.
- Roky, R., F. Obál Jr, J. L. Valatx, S. Bredow, J. Fang, L. P. Pagano, and J. M. Krueger. 1995. Prolactin and rapid eye movement sleep regulation. Sleep. 18: 536-542.
- Roky, R., J. L. Valatx, L. Paut-Pagano, and M. Jouvet. 1994. Hypothalamic injection of prolactin or its antibody alters the rat sleep-wake cycle. Physiol. Behav. 55: 1015-1019.
- Rosen, J., J. Rodgers, C. Couch, C. Bisbee, Y. David-Inouye, S. Campbell, and L. Y. Yu-Lee. 1986. Multihormonal regulation of milk protein gene expression. Ann. N. Y. Acad. Sci. 478: 63-76.
- Rotruck, J. T., A. L. Pope, H. E. Ganther, A. Swanson, D. G. Hafeman, and W. Hoekstra.1973. Selenium: biochemical role as a component of glutathione peroxidase.Science. 179: 588-590.
- Rottinghaus, G. E., G. B. Garner, C. N. Cornell, and J. L. Ellis. 1991. HPLC method for quantitating ergovaline in endophyte-infested tall fescue: seasonal variation of

ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J. Agric. Food Chem. 39: 112-115.

- Ruberg, M., W. H. Rotsztejn, S. Arancibia, J. Besson, and A. Enjalbert. 1978.Stimulation of prolactin release by vasoactive intestinal peptide (VIP). Eur. J.Pharmacol. 51: 319-320.
- Rui, H., and K. Punis. 1987. Prolactin selectively stimulates ornithine decarboxylase in the lateral lobe of the rat prostate. Mol. Cell. Endocrinol. 50: 89-97.
- Rundlöf, A. K., and E. S. Arnér. 2004. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid. Redox Signal. 6: 41-52.
- Rundlöf, A. K., M. Carlsten, and E. S. Arnér. 2001. The core promoter of human thioredoxin reductase 1: cloning, transcriptional activity and Oct-1, Sp1 and Sp3 binding reveal a housekeeping-type promoter for the ARE-regulated gene. J. Biol. Chem. 276: 30542-30551.
- Ryníková, A., J. Koppel, S. Kuchár, Š. Čikoš, and Š. Mozeš. 1988. Effects of ovine prolactin in infant rats. Exp. Clin. Endocrinol. Diabetes. 92: 241-244.
- Sagar, G. V., B. Gereben, I. Callebaut, J. P. Mornon, A. Zeöld, W. S. Da Silva, C. Luongo, M. Dentice, S. M. Tente, and B. C. Freitas. 2007. Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol. Cell. Biol. 27: 4774-4783.
- Said, S. I., and V. Mutt. 1970. Polypeptide with broad biological activity: isolation from small intestine. Science. 169: 1217-1218.

- Saiduddin, S., and H. Zassenhaus. 1977. Effect of prolactin on specific oestradiol receptors in the rat uterus. J. Endocrinol. 72: 101-102.
- Saito, Y., and K. Takahashi. 2002. Characterization of selenoprotein P as a selenium supply protein. Eur. J. Biochem. 269: 5746-5751.
- Saito, Y., K. A. Ishii, Y. Aita, T. Ikeda, Y. Kawakami, H. Shimano, H. Hara, and K. Takekoshi. 2016. Loss of SDHB Elevates Catecholamine Synthesis and Secretion Depending on ROS Production and HIF Stabilization. Neurochem. Res. 41: 696-706.
- Samson, W. K., S. I. Said, G. Snyder, and S. M. Mccann. 1980. In vitro stimulation of prolactin release by vasoactive intestinal peptide. Peptides. 1: 325-332.
- Sauro, M. D., B. Bing, and N. E. Zorn. 1992. Prolactin induces growth-related gene expression in rat aortic smooth muscle in vivo. Eur. J. Pharmacol. 225: 351-354.
- Sauro, M. D., and N. E. Zorn. 1991. Prolactin induces proliferation of vascular smooth muscle cells through a protein kinase C-dependent mechanism. J. Cell. Physiol. 148: 133-138.
- Schally, A. V., C. Y. Bowers, T. W. Redding, and J. F. Barrett. 1966. Isolation of thyrotropin releasing factor (TRF) from porcine hypothalamus. Biochem. Biophys. Res. Commun. 25: 165-169.
- Schardl, C. L., A. Leuchtmann, and M. J. Spiering. 2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55: 315-340.
- Schillo, K. K., L. S. Leshin, J. A. Boling, and N. Gay. 1988. Effects of endophyteinfected fescue on concentrations of prolactin in blood sera and the anterior

pituitary and concentrations of dopamine and dopamine metabolites in brains of steers. J. Anim. Sci. 66: 713-718.

- Schmidt, S., and T. Osborn. 1993. Effects of endophyte-infected tall fescue on animal performance. Agric. Ecosyst. Environ. 44: 233-262.
- Schmittgen, T. D., E. J. Lee, J. Jiang, A. Sarkar, L. Yang, T. S. Elton, and C. Chen. 2008. Real-time PCR quantification of precursor and mature microRNA. Methods. 44: 31-38.
- Schneider, M., H. Forster, A. Boersma, A. Seiler, H. Wehnes, F. Sinowatz, C. Neumuller,
  M. J. Deutsch, A. Walch, M. Hrabe De Angelis, W. Wurst, F. Ursini, A. Roveri,
  M. Maleszewski, M. Maiorino, and M. Conrad. 2009. Mitochondrial glutathione
  peroxidase 4 disruption causes male infertility. FASEB J. 23: 3233-3242.
- Schneider, M. J., S. N. Fiering, B. Thai, S. Y. Wu, E. St Germain, A. F. Parlow, D. L. St Germain, and V. A. Galton. 2006. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology. 147: 580-589.
- Schrauzer, G. N. 2000. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653-1656.
- Schuenemann, G. M., M. E. Hockett, J. L. Edwards, N. R. Rohrbach, K. F. Breuel, and F.
   N. Schrick. 2005. Embryo development and survival in beef cattle administered ergotamine tartrate to simulate fescue toxicosis. Reprod. Biol 5: 137-150.
- Schweizer, U., F. Streckfu, P. Paco, B. A. Carlson, D. L. Hatfield, J. Köhrle, and L. Schomburg. 2005. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem. J. 386: 221-226.

Schwyzer, R. 1977. ACTH: a short introductory review. Ann. N. Y. Acad. Sci. 297: 3-26.

- Sedo, A., J. Van Weyenbergh, D. Rouillard, and B. Bauvois. 1996. Synergistic effect of prolactin on IFN-γ-mediated growth arrest in human monoblastic cells: correlation with the up-regulation of IFN-γ receptor gene expression. Immunol. Lett. 53: 125-130.
- Seidah, N. G. 2013. Proprotein convertase 2. Handbook of proteolytic enzymes (third edition). Academic Press. p. 3290-3295.
- Seiler, A., M. Schneider, H. Förster, S. Roth, E. K. Wirth, C. Culmsee, N. Plesnila, E. Kremmer, O. Rådmark, and W. Wurst. 2008. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metab. 8: 237-248.
- Senogles, S. E. 2000. The D2s dopamine receptor stimulates phospholipase D activity: a novel signaling pathway for dopamine. Mol. Pharmacol. 58: 455-462.
- Shaar, C., J. Clemens, and N. Dininger. 1979. Effect of vasoactive intestinal polypertide on prolactin release in vitro. Life Sci. 25: 2071-2074.
- Shah, G., A. Gunjikar, A. Sheth, and S. Raut. 1980. Effect of prolactin and spermine on the zinc content of human spermatozoa. Andrologia. 12: 207-210.
- Shah, G. V., R. B. Desai, and A. R. Sheth. 1976. Effect of prolactin on metabolism of human spermatozoa. Fertil. Steril. 27: 1292-1294.
- Sharif, N. 1988. Chronic prolactin, gonadal and thyroid hormone treatments in vivo alter levels of TRH and muscarinic receptors in male and female rat tissues. Brain Res. 449: 364-368.

- Shchedrina, V. A., R. A. Everley, Y. Zhang, S. P. Gygi, D. L. Hatfield, and V. N. Gladyshev. 2011. Selenoprotein K binds multi-protein complexes and is involved in the regulation of ER homeostasis. J. Biol. Chem. 286: 42937-42948
- Shchedrina, V. A., Y. Zhang, V. M. Labunskyy, D. L. Hatfield, and V. N. Gladyshev.
  2010. Structure-function relations, physiological roles, and evolution of
  mammalian ER-resident selenoproteins. Antioxid. Redox Signal. 12: 839-849.
- Sheng, B., K. Gong, Y. Niu, L. Liu, Y. Yan, G. Lu, L. Zhang, M. Hu, N. Zhao, X. Zhang, P. Tang, and Y. Gong. 2009. Inhibition of γ-secretase activity reduces Aβ production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: Implications for the treatment of Alzheimer's disease. Free Radic. Biol. Med. 46: 1362-1375.
- Sherrer, R. L., Y. Araiso, C. Aldag, R. Ishitani, J. M. Ho, D. Soll, and O. Nureki. 2011. C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNA<sup>Sec</sup>. Nucleic Acids Res. 39: 1034-1041.
- Sheth, A., A. Gunjikar, and G. Shah. 1979. Effect of LH, prolactin and spermine on ATPase activity of human spermatozoa. Andrologia. 11: 11-14.
- Sheward, W.J., A.J. Harmar, H.M. Fraser, and G. Fink. 1983. Thyrotropin-releasing hormone in rat pituitary stalk blood and hypothalamus: studies with high performance liquid chromatography. Endocrinology. 113: 1865-1869.
- Shiu, R., and B. Iwasiow. 1985. Prolactin-inducible proteins in human breast cancer cells.J. Biol. Chem. 260: 11307-11313.

- Shivers, B. D., T. J. Görcs, P. E. Gottschall, and A. Arimura. 1991. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology. 128: 3055-3065.
- Shyr, S., W. Crowley, and C. Grosvenor. 1986. Effect of neonatal prolactin deficiency on prepubertal tuberinfundibular and tuberohypophyseal dopaminergic neuronal activity. Endocrinology. 119: 1217-1221.
- Siegel, M. R., and L. P. Bush. 1994. Importance of endophytes in forage grasses, a statement of problems and selection of endophytes. Biotechnology of endophytic fungi of grasses: 135-150.
- Sikdar, S. K., R. Zorec, D. Brown, and W. T. Mason. 1989. Dual effects of G-protein activation on Ca-dependent exocytosis in bovine lactotrophs. FEBS Lett. 253: 88-92.
- Silva, J. E. 1995. Thyroid hormone control of thermogenesis and energy balance. Thyroid. 5: 481-492.
- Simmonds, S. H., and P. G. Strange. 1985. Inhibition of inositol phospholipid breakdown by D2 dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett. 60: 267-272.
- Simmons, D. M., J. W. Voss, H. A. Ingraham, J. M. Holloway, R. S. Broide, M. G. Rosenfeld, and L. W. Swanson. 1990. Pituitary cell phenotypes involve cellspecific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 4:695-711.
- Simpson, E. R., and M. R. Waterman. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu. Rev. Physiol. 50: 427-440.

- Smith, W. W., Z. Pei, H. Jiang, D. J. Moore, Y. Liang, A. B. West, V. L. Dawson, T. M. Dawson, and C. A. Ross. 2005. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. 102: 18676-18681.
- Sobrinho, L. 1993. The psychogenic effects of prolactin. Acta Endocrinol. 129: 38-40.
- Sorenson, R., M. Johnson, J. Parsons, and J. Sheridan. 1987. Decreased glucose stimulation threshold, enhanced insulin secretion, and increased beta cell coupling in islets of prolactin-treated rats. Pancreas. 2: 283-288.
- Sors, T. G., D. R. Ellis, and D. E. Salt. 2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86: 373-389.
- Srinivasan, N., M. M. Aruldhas, and P. Govindarajulu. 1987. Interaction of sex steroids and prolactin on phosphatases, transaminases, and citric acid in the ventral prostate of male albino rats. Prostate. 11: 23-31.
- Stadtman, E. R., J. Moskovitz, B. S. Berlett, and R. L. Levine. 2002. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism.
  Oxygen/Nitrogen Radicals: Cell Injury and Disease. Springer, Boston, MA. p. 3-9.
- Steiner, H., E. Winkler, D. Edbauer, S. Prokop, G. Basset, A. Yamasaki, M. Kostka, and C. Haass. 2002. PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. 277: 39062-39065.
- Steinfelder, H. J., P. Hauser, Y. Nakayama, S. Radovick, J. H. Mcclaskey, T. Taylor, B.D. Weintraub, and F. E. Wondisford. 1991. Thyrotropin-releasing hormone

regulation of human TSHB expression: role of a pituitary-specific transcription factor (Pit-1/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc. Natl. Acad. Sci. 88: 3130-3134.

- Stevens, A. M., Y. F. Wang, K. A. Sieger, H. F. Lu, and L. Y. Yu-Lee. 1995. Biphasic transcriptional regulation of the interferon regulatory factor-1 gene by prolactin: involvement of gamma-interferon-activated sequence and Stat-related proteins. Mol. Endocrinol. 9: 513-525.
- Stocco, D. M., and B. J. Clark. 1996. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17: 221-244.
- Strickland, J., M. Looper, J. Matthews, C. Rosenkrans, M. Flythe, and K. Brown. 2011. Board-invited review: St. Anthony's Fire in livestock: causes, mechanisms, and potential solutions. J. Anim. Sci. 89: 1603-1626.
- Strickland, J. R., J. W. Oliver, and D. L. Cross. 1993. Fescue toxicosis and its impact on animal agriculture. Vet. Hum. Toxicol. 35: 454-464.
- Stubbe, J., and P. Riggs-Gelasco. 1998. Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends Biochem. Sci. 23: 438-443.
- Stuedemann, J. A., and C. S. Hoveland. 1988. Fescue endophyte: History and impact on animal agriculture. J. Prod. Agricult. 1: 39-44.
- Su, D., S. V. Novoselov, Q. A. Sun, M. E. Moustafa, Y. Zhou, R. Oko, D. L. Hatfield, and V. N. Gladyshev. 2005. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 280: 26491-26498.

- Sueldo, C. E., T. Berger, O. Kletzky, and R. P. Marrs. 1985. Seminal prolactin concentration and sperm reproductive capacity. Fertil. Steril. 43: 632-635.
- Sun, Q. A., L. Kirnarsky, S. Sherman, and V. N. Gladyshev. 2001. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. 98: 3673-3678.
- Sun, Q. A., Y. Wu, F. Zappacosta, K. T. Jeang, B. J. Lee, D. L. Hatfield, and V. N. Gladyshev. 1999. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J. Biol. Chem. 274: 24522-24530.
- Sunde, R. A. 1994. Intracellular glutathione peroxidases-structure, regulation, and function. Selenium in biology and human health. Springer, New York, NY. p. 45-77.
- Sunde, R. A., B. M. Thompson, M. D. Palm, S. L. Weiss, K. M. Thompson, and J. K. Evenson. 1997. Selenium regulation of selenium-dependent glutathione peroxidases in animals and transfected CHO cells. Biomed. Environ. Sci. 10: 346-355.
- Syms, A., M. Harper, and K. Griffiths. 1985. The effect of prolactin on human BPH epithelial cell proliferation. Prostate. 6: 145-153.
- Takebe, G., J. Yarimizu, Y. Saito, T. Hayashi, H. Nakamura, J. Yodoi, S. Nagasawa, and
  K. Takahashi. 2002. A comparative study on the hydroperoxide and thiol
  specificity of the glutathione peroxidase family and selenoprotein P. J. Biol.
  Chem. 277: 41254-41258.
- Tam, C., Y. Wong, and F. Tang. 1992. Ultrastructural and cytochemical studies of the effects of prolactin on the lateral prostate and the seminal vesicle of the castrated guinea pig. Cell Tissue Res. 270: 105-112.
- Tangbanluekal, L., and C. Robinette. 1993. Prolactin mediates estradiol-induced inflammation in the lateral prostate of Wistar rats. Endocrinology. 132: 2407-2416.
- Tanguy, Y., A. Falluel-Morel, S. Arthaud, L. Boukhzar, D. L. Manecka, A. Chagraoui, G. Prevost, S. Elias, I. Dorval-Coiffec, and J. Lesage. 2011. The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology. 152: 4322-4335.
- Tashima, Y., M. Terui, H. Itoh, H. Mizunuma, R. Kobayashi, and F. Marumo. 1989.Effect of selenite on glucocorticoid receptor. J. Biochem. 105: 358-361.
- Taub, D. D., G. Tsarfaty, A. R. Lloyd, S. K. Durum, D. L. Longo, and W. J. Murphy. 1994. Growth hormone promotes human T cell adhesion and migration to both human and murine matrix proteins in vitro and directly promotes xenogeneic engraftment. J. Clin. Invest. 94: 293-300.
- Thiede, M. A., and G. A. Rodan. 1988. Expression of a calcium-mobilizing parathyroid hormone-like peptide in lactating mammary tissue. Science. 242: 278-280.
- Thomas, J., M. Manandhar, E. Keenan, W. Edwards, and P. Klase. 1976. Effects of prolactin and dihydrotestosterone upon the rat prostate gland. Urol. Int. 31: 265-271.

- Thompson, D. L., Jr., C. L. DePew, A. Ortiz, L. S. Sticker, and M. S. Rahmanian. 1994. Growth hormone and prolactin concentrations in plasma of horses: sex differences and the effects of acute exercise and administration of growth hormone-releasing hormone. J. Anim. Sci. 72: 2911-2918.
- Thompson, F., and J. Stuedemann. 1993. Pathophysiology of fescue toxicosis. Agric. Ecosyst. Environ. 44: 263-281.
- Thompson, I., M. Ozawa, J. Bubolz, Q. Yang, and G. Dahl. 2011. Bovine luteal prolactin receptor expression: potential involvement in regulation of progesterone during the estrous cycle and pregnancy. J. Anim. Sci. 89: 1338-1346.
- Too, C. K., E. J. Cragoe Jr, and H. G. Friesen. 1987. Amiloride-sensitive Na<sup>+</sup>/H<sup>+</sup> exchange in rat NB2 node lymphoma cells. Stimulation by prolactin and other mitogens. Endocrinology. 121: 1512-1520.
- Too, C. K. L., P. R. Murphy, and H. G. Friesen. 1989. G-proteins modulate prolactin-and interleukin-2-stimulated mitogenesis in rat Nb2 lymphoma cells. Endocrinology. 124: 2185-2192.
- Tortonese, D. J., J. Brooks, P. M. Ingleton, and A. S. McNeilly. 1998. Detection of prolactin receptor gene expression in the sheep pituitary gland and visualization of the specific translation of the signal in gonadotrophs. Endocrinology. 139: 5215-5223.
- Tretter, L., I. Sipos, and V. Adam-Vizi. 2004. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease. Neurochem. Res. 29: 569-577.

- Trott, J. F., B. K. Vonderhaar, and R. C. Hovey. 2008. Historical perspectives of prolactin and growth hormone as mammogens, lactogens and galactagogues-agog for the future. J. Mammary Gland Biol. Neoplasia. 13: 3-11.
- Trout, W. E., and B. D. Schanbacher. 1990. Growth hormone and insulin-like growth factor-I responses in steers actively immunized against somatostatin or growth hormone-releasing factor. J. Endocrinol. 125: 123-129.
- Tsai-Morris, C. H., M. Ghosh, A. Hirshfield, P. Wise, and A. Brodie. 1983. Inhibition of ovarian aromatase by prolactin in vivo. Biol. Reprod. 29: 342-346.
- Tsukahara, S., F. Kambe, N. Suganuma, Y. Tomoda, and H. Seo. 1994. Increase in Pit-1 mRNA is not required for the estrogen-induced expression of prolactin gene and lactotroph proliferation. Endocr. J. 41: 579-584.
- Tsunoda, M., V. Johnson, and R. Sharma. 2000. Increase in dopamine metabolites in murine striatum after oral exposure to inorganic but not organic form of selenium. Arch. Environ. Contam. Toxicol. 39: 32-37.
- Tujebajeva, R. M., P. R. Copeland, X. M. Xu, B. A. Carlson, J. W. Harney, D. M. Driscoll, D. L. Hatfield, and M. J. Berry. 2000. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO. Rep. 1: 158-163.
- Ursini, F., S. Heim, M. Kiess, M. Maiorino, A. Roveri, J. Wissing, and L. Flohe. 1999.Dual function of the selenoprotein PHGPx during sperm maturation. Science.285: 1393-1396.
- Van Dael, P., L. Davidsson, R. Muñoz-Box, L. B. Fay, and D. Barclay. 2001. Selenium absorption and retention from a selenite-or selenate-fortified milk-based formula in men measured by a stable-isotope technique. Br. J. Nutr. 85: 157-163.

- Vasudevan, S., Y. Tong, and J. A. Steitz. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science. 318: 1931-1934.
- Vergani, G., A. Mayerhofer, and A. Bartke. 1994. Acute effects of rat growth hormone (GH), human GH and prolactin on proliferating rat liver cells in vitro: a study of mitotic behaviour and ultrastructural alterations. Tissue Cell 26: 457-465.
- Vijayan, E., and J. Jayashree. 1993. Prolactin suppression during pre and postimplantation periods on rat uterine glucosamine synthase activity. Indian J. Exp. Biol. 31: 386-388.
- Villa-Verde, D., V. Mello-Coelho, J. Lagrota-Candido, R. Chammas, and W. Savino. 1995. The thymic nurse cell complex: an in vitro model for extracellular matrixmediated intrathymic T cell migration. Braz. J. Med. Biol. Res. 28: 907-912.
- Villalba, M., M. T. Zabala, A. Martinez-Serrano, R. D. L. Colina, J. Satrústegui, and J. P. Garcia-Ruiz. 1991. Prolactin increases cytosolic free calcium concentration in hepatocytes of lactating rats. Endocrinology. 129: 2857-2861.
- Voogt, J. L., W. J. De Greef, T. J. Visser, J. De Koning, J. T. Vreeburg, and R. F. Weber. 1987. In vivo release of dopamine, luteinizing hormone-releasing hormone and thyrotropin-releasing hormone in male rats bearing a prolactin-secreting tumor. Neuroendocrinology. 46: 110-116.
- Vunta, H., F. Davis, U. Palempalli, D. Bhat, R. Arner, J. Thompson, D. Peterson, C. Reddy, and K. Prabhu. 2007. The anti-inflammatory effects of selenium are mediated through 15-Deoxy-Δ12,14-prostaglandin J2 in macrophages. J. Biol. Chem. 282: 17964-17973

- Walczak, R., E. Westhof, P. Carbon, and A. Krol. 1996. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA. 2: 367-379.
- Wallis, M. 1974. The primary structure of bovine prolactin. FEBS Lett. 44: 205-208.
- Wang, Y., Y. Wu, K. Luo, Y. Liu, M. Zhou, S. Yan, H. Shi, and Y. Cai. 2013. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem. Toxicol. 58: 61-67.
- Waschulewski, I. H., and R. A. Sunde. 1988. Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J. Nutr. 118: 367-374.
- Waterman, M. L., S. Adlerf, C. Nelson, G. L. Greene, R. M. Evans, and M. G. Rosenfeld.
  1988. A single domain of the estrogen receptor confers deoxyribonucleic acid
  binding and transcriptional activation of the rat prolactin gene. Mol. Endocrinol.
  2: 14-21.
- Waters, S., and J. Rillema. 1988. Effect of prolactin on enzymes of lipid biosynthesis in mammary gland explants. Am. J. Physiol. 255: E567-571.
- Weinhaus, A., L. Stout, and R. Sorenson. 1996. Glucokinase, hexokinase, glucose transporter 2, and glucose metabolism in islets during pregnancy and prolactin-treated islets in vitro: mechanisms for long term up-regulation of islets.
  Endocrinology. 137: 1640-1649.
- Weisz-Carrington, P., M. E. Roux, M. Mcwilliams, J. M. Phillips-Quagliata, and M. E. Lamm. 1978. Hormonal induction of the secretory immune system in the mammary gland. Proc. Natl. Acad. Sci. 75: 2928-2932.

Whanger, P. D. 2000. Selenoprotein W: a review. Cell. Mol. Life Sci. 57: 1846-1852.

- White, B. A., and F. C. Bancroft. 1983. Epidermal growth factor and thyrotropinreleasing hormone interact synergistically with calcium to regulate prolactin mRNA levels. J. Biol. Chem. 258: 4618-4622.
- Williams, S.L., I. Valnot, P. Rustin, and J.W. Taanman. 2004. Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J. Biol. Chem. 279: 7462-7469.
- Wilson, T. M., L. Y. Yu-Lee, and M. R. Kelley. 1995. Coordinate gene expression of luteinizing hormone-releasing hormone (LHRH) and the LHRH-receptor after prolactin stimulation in the rat Nb2 T-cell line: implications for a role in immunomodulation and cell cycle gene expression. Mol. Endocrinol. 9: 44-53.
- Wolffram, S., B. Berger, B. Grenacher, and E. Scharrer. 1989. Transport of selenoamino acids and their sulfur analogues across the intestinal brush border membrane of pigs. J. Nutr. 119: 706-712.
- Wu, Z., R. A. Irizarry, R. Gentleman, F. Martinez-Murillo, and F. Spencer. 2004. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99: 909-917.
- Wuttke, W., and J. Meites. 1971. Luteolytic role of prolactin during the estrous cycle of the rat. Proc. Soc. Exp. Biol. Med. 137: 988-991.
- Wynick, D., C. J. Small, A. Bacon, F. E. Holmes, M. Norman, C. J. Ormandy, E. Kilic,
  N. C. Kerr, M. Ghatei, F. Talamantes, S. R. Bloom, and V. Pachnis. 1998.
  Galanin regulates prolactin release and lactotroph proliferation. Proc. Natl. Acad.
  Sci. 95: 12671-12676.

- Wynick, D., D. M. Smith, M. Ghatei, K. Akinsanya, R. Bhogal, P. Purkiss, P. Byfield, N. Yanaihara, and S. R. Bloom. 1993. Characterization of a high-affinity galanin receptor in the rat anterior pituitary: absence of biological effect and reduced membrane binding of the antagonist M15 differentiate it from the brain/gut receptor. Proc. Natl. Acad. Sci. 90: 4231-4235.
- Xia, Y., K. E. Hill, D. W. Byrne, J. Xu, and R. F. Burk. 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81: 829-834.
- Xu, X. M., B. A. Carlson, R. Irons, H. Mix, N. Zhong, V. N. Gladyshev, and D. L. Hatfield. 2007. Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem. J. 404: 115-120.
- Xu, X. M., B. A. Carlson, H. Mix, Y. Zhang, K. Saira, R. S. Glass, M. J. Berry, V. N. Gladyshev, and D. L. Hatfield. 2006. Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol. 5: e4.
- Yamanouchi, K., S. Matsuyama, M. Nishihara, K. Shiota, C. Tachi, and M. Takahashi. 1992. Splenic macrophages enhance prolactin-induced progestin secretion from mature rat granulosa cells in vitro. Biol. Reprod. 46: 1109-1113.
- Yant, L. J., Q. Ran, L. Rao, H. Van Remmen, T. Shibatani, J. G. Belter, L. Motta, A. Richardson, and T. A. Prolla. 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34: 496-502.
- Yeh, J. Y., M. A. Beilstein, J. S. Andrews, and P. D. Whanger. 1995. Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J. 9: 392-396.

- Yeo, J. E., J. H. Kim, and S. K. Kang. 2008. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cell. Physiol. Biochem. 21:225-238.
- Yoshimura, Y., Y. Hosoi, A. Iritani, Y. Nakamura, S. Atlas, and E. Wallach. 1989a.Developmental potential of rabbit oocyte matured in vitro: the possible contribution of prolactin. Biol. Reprod. 41: 26-33.
- Yoshimura, Y., Y. Nakamura, T. Oda, M. Ando, Y. Ubukata, N. Koyama, M. Karube, and H. Yamada. 1992. Effects of prolactin on ovarian plasmin generation in the process of ovulation. Biol. Reprod. 46: 322-327.
- Yoshimura, Y., S. Tada, T. Oda, Y. Nakamura, K. Maruyama, F. Ichikawa, T. Ebihara,
  Y. Hirota, T. Sawada, and S. Kawakami. 1989b. Direct inhibitory ovarian effects
  of prolactin in the process of ovulation. Nihon Sanka Fujinka Gakkai Zasshi. 41:
  83-89.
- Young, K., R. Kraeling, and F. Bazer. 1989. Effects of prolactin on conceptus survival and uterine secretory activity in pigs. J. Reprod. Fertil. 86: 713-722.
- Youssef, A., I. Lihrmann, A. Falluel-Morel, and L. Boukhzar. 2018. Selenoprotein T is a key player in ER proteostasis, endocrine homoeostasis and neuroprotection. Free Radic. Biol. Med. 127: 145-152.
- Yu-Lee, L. Y. 1988. Prolactin: role in T-cell proliferation. Ann. N. Y. Acad. Sci. 546: 245-247.
- Zangar, R. C., D. R. Davydov, and S. Verma. 2004. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. 199: 316-331.

Zhu, X. H., R. Zellweger, A. Ayala, and I. H. Chaudry. 1996. Prolactin inhibits the increased cytokine gene expression in Kupffer cells following haemorrhage.Cytokine. 8: 134-140.

## VITA

## Qing Li

## Education

M. S. in Integrated Plant and Soil Sciences (IPSS), 2012-2014. University of Kentucky,

Lexington, KY

M. S. in Forest Protection, 2006-2009. Northeast Forestry University, Harbin, China

B. S. in Bioengineering, 2002-2006. Northeast Forestry University, Harbin, China

## **Publications**

Wang, Z.B., Q. Li, and Z. Huang. 2007. A review of Sphaeropsis tip blight of Pinus sylvestris var. Mongolica Litvin and control measures. China Forestry Science and Technology. 21: 12-14.

Yan, S.C., L. Wang, Q. Li, and Y. Fu. 2009. Anti-senile effects of water extraction of Martianus demestoides (Coleoptera: Tenebrionidae) feeding different foods on aging mice. Acta Entomologica Sinica. 52: 820-824.

Murphree, C.A., Q. Li, E.P. Heist, and L.A. Moe. 2014. A multiple antibiotic-resistant Enterobacter cloacae strain isolated from a bioethanol fermentation facility. Microbes Environ. 29: 322-325. doi: 10.1264/jsme2.ME13162

Li, Q., E.P. Heist, and L.A. Moe. 2016. Bacterial community structure and dynamics during corn-based bioethanol fermentation. Microb. Ecol. 71: 409-421. doi: 10.1007/s00248-015-0673-9

Li, Q., R. Hegge, P.J. Bridges, and J.C. Matthews. 2017. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected forages. PLoS One 12: e0184612. doi: 10.1371/journal.pone.0184612

Cerny, K.L., R.A. Ribeiro, Q. Li, J.C. Matthews, and P.J. Bridges. 2018. Effect of lipopolysaccharide on the expression of inflammatory mRNAs and microRNAs in the mouse oviduct. Reprod. Fertil. Dev. 30: 600-608. doi: 10.1071/RD17241

Huang, J., Y. Jia, Q. Li, W.R. Burris, P.J. Bridges, and J.C. Matthews. 2018. Hepatic glutamate transport and glutamine synthesis capacities are decreased in finished vs. growing beef steers, concomitant with increased GTRAP3-18 content. Amino acids. 50: 513-525. doi: 10.1007/s00726-018-2540-8

Jia, Y., Q. Li, G.E. Aiken, P.J. Bridges, J.C. Matthews. 2018. Forms of selenium in vitamin-mineral mixes differentially affect serum prolactin concentration and hepatic

glutamine synthetase activity of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 96: 715-727. doi: 10.1093/jas/skx068

Huang, J., Y. Jia, Q. Li, K. Son, C. Hamilton, W.R. Burris, P.J. Bridges, A.J. Stromberg, and J.C. Matthews. 2018. Glutathione content and expression of proteins involved with glutathione metabolism differs in longissimus dorsi, subcutaneous adipose, and liver tissues of finished vs. growing beef steers. J. Anim. Sci. 96: 5152-5165. doi: 10.1093/jas/sky362

Li, Q., Y. Jia, W.R. Burris, P.J. Bridges, and J.C. Matthews. 2018. Forms of selenium in vitamin–mineral mixes differentially affect the expression of genes responsible for prolactin, ACTH, and  $\alpha$ -MSH synthesis and mitochondrial dysfunction in pituitaries of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 97: 631-643. doi: 10.1093/jas/sky438