11-9-1999

Elicitin-Mediated Plant Resistance

Joseph Chappell
University of Kentucky, chappell@uky.edu

Shaohui Yin
University of Kentucky

Catherine Cornett
University of Kentucky

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the [Pharmacy and Pharmaceutical Sciences Commons](https://uknowledge.uky.edu/)

Recommended Citation
Chappell, Joseph; Yin, Shaohui; and Cornett, Catherine, "Elicitin-Mediated Plant Resistance" (1999). *Pharmaceutical Sciences Faculty Patents*. 105.
https://uknowledge.uky.edu/ps_patents/105

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
ELICITIN-MEDIATED PLANT RESISTANCE

Inventors: Joseph Chappell, Shaohui Yin, Catherine Cornett, all of Lexington, Ky.

Assignee: Board of Trustee of the University of Kentucky, Lexington, Ky.

Filed: May 18, 1995

Field of Search

References Cited

U.S. PATENT DOCUMENTS
5,550,228 8/1996 Godiard et al. 536/24.1

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

Saiki et al., “Primer–Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase.”

Primary Examiner—Lynette R. F. Smith
Assistant Examiner—Amy J. Nelson

ABSTRACT

Qualitative transcriptional regulatory sequences functional in plants, plant tissue and in plant cells for inducible gene expression and quantitative transcriptional regulatory sequences for increasing the transcriptional expression of downstream genetic information in plants, plant tissue and plant cells are disclosed. Also disclosed are methods and recombinant DNA molecules for improving the disease resistance of transgenic plants, especially wherein an inducible promoter controls the expression of a protein capable of evoking the hypersensitive response in a plant.

39 Claims, 4 Drawing Sheets
<table>
<thead>
<tr>
<th>GUS EXPRESSION</th>
<th>CONTROL</th>
<th>INDUCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUS Activity</td>
<td>234</td>
<td>1803</td>
</tr>
<tr>
<td>(fluorescence units/mg prot. hr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Determined</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>

Fig. 2A

GUS reporter gene

ATG

+1

EAS4

-567

-266

+67

-212

EAS4

-160

EAS4

EAS4
Fig. 2B
isolation of parA1 gene

- isolation of genomic DNA
- PCR primer design

PCR cloning

BamH1 | SstI

BamH1

Transformation and regeneration of transgenic tobaccos

Fig. 3
ELICITIN-MEDIATED PLANT RESISTANCE

This invention was made, at least in part, with funding from the National Science Foundation and the United States Department of Agriculture. Accordingly, the United States Government may have certain rights in this invention.

THE FIELD OF THE INVENTION

The field of this invention is the area of plant molecular biology, and it relates in particular to transcription regulatory elements: a qualitative regulatory sequence which positively regulates downstream gene expression in plant tissue in response to the stress of an invading microbial pathogen, an elicitor, or other inducing chemical signals and quantitative regulatory sequences which increase the transcriptional expression of associated sequences.

THE BACKGROUND OF THE INVENTION

In plants, disease resistance to fungal, bacterial and viral pathogens is associated with a plant response termed the hypersensitivity response (HR). In the HR, the site in the plant where the potential phytopathogen invades undergoes localized cell death, and it is postulated that this localized plant cell death aspect of the HR contains the invading microorganism or virus, thereby protecting the remainder of the plant. Other plant defenses include the production of phytoalexins (antibiotics) and/or lytic enzymes capable of averting pathogen ingress and/or cell wall modifications which strengthen the plant cell wall against physical and/or enzymatic attack.

The HR of plants, including tobacco, can include phytoalexin production as part of the response to invading microorganisms. One class of compounds made by tobacco (Nicotiana tabacum) in response to microbial invaders are the sesquiterpenes.

Cell suspension cultures have provided useful information regarding the regulation of terpene synthesis. Isoprenoids are ubiquitous in nature, and the early portions of the biosynthetic pathway are shared with the biosynthetic pathways for other isoprenoid compounds such as sterols, carotenoids, dolichol and ubiquinone and growth regulators (e.g., gibberellic acid), which are classified as primary metabolites. Isoprenoid compounds classified as secondary metabolites are not essential for growth, and include mono-, sesqui- and diterpenoids. These secondary metabolite isoprenoids are important mediators of interactions between the plant and its environment.

A variety of compositions can serve as elicitors of plant phytoalexin synthesis. These include, but are not limited to, one or more toxic ions, e.g., mercuric ions, other chemically defined compositions, metabolic inhibitors, cell wall glycans, certain glycoproteins, certain enzymes, fungal spores, chitosans, certain fatty acids and certain oligosaccharides derived from plant cell walls [See, e.g., Sequeira, I. (1983) Annu. Rev. Microbiol. 37:51–79 and references cited therein]. Epi-5-aristolochene synthase (EAS) activity in tobacco plants has been shown to be induced by cell wall fragments of certain Phytophthora species and by Trichoderma reesei cellulase but not Aspergillus japonicus pectolyase [Chappell et al. (1991) Plant Physiol. 97:693–698]. Attack by other plant pathogens or an avirulent related strain can also induce phytoalexin synthesis; for example, Pseudomonas luteoviridis induces sesquiterpenoid synthase in tobacco [Guedes et al. (1982) Phytochemistry 21:2987–2998].

Elicitins are proteins which are produced by plant pathogens and potential plant pathogens, which proteins induce the HR in tobacco plants. Amino acid and nucleotide coding sequences for an elicitor of Phytophthora parasitica have been published [Kamoun et al. (1993) Mol. Plant-Microbe Interactions 6:573–581]. Plant pathogenic viruses including, but not limited to, Tobacco Mosaic Virus (TMV) induce the HR in infected plants. Bacteria which infect plants also can induce HR and thereby disease resistance; representative bacteria eliciting HR include, but are not limited to, Agrobacterium species, Xanthomonas species and Pseudomonas syringae. Plant pathogenic fungi (and certain avirulent strains as well) also induce the HR response, where these include, but are not limited to, Phytophthora parasitica and Peronospora tabacii.

When tobacco cell suspension cultures are treated with an elicitor, squalene synthetase is suppressed, thus stopping the flow of common biosynthetic precursors into sterols. The concomitant induction of sesquiterpene cyclase gene expression causes the flow of precursors into sesquiterpenes. The first step in the pathway from farnesyl diphosphate to the sesquiterpene phytoalexin capsidiol is elicitor-induced tobacco tissue is catalyzed by 5-epi-aristolochene synthase (EAS), a sesquiterpene cyclase. The coding sequence and deduced amino acid sequence for one member of the EAS gene family of tobacco has been reported [Pacini and Chappell (1992) Proc. Natl. Acad. Sci. USA 89:11088–111092]. The transcriptional expression of one or more members of the EAS gene family is induced in response to elicitors.

There is a long felt need in the art for methods for protecting plants, particularly crop plants, from infection by plant pathogens, including but not limited to, phytopathogenic viruses, fungi and/or bacteria. Especially important from the standpoint of economics and environmental concerns are biological or “natural” methods rather than those which depend on the application of chemicals to crop plants. There is also a long felt need in the art for plant transcriptional regulatory sequences for use in controlling the expression of heterologous DNA sequences in transgenic plants.

SUMMARY OF THE INVENTION

The present invention provides qualitative transcriptional regulatory sequences which regulate downstream gene expression in plant tissue in response to one or more elicitors, other defined inducing compounds or in response to the stress of an invading phytopathogen (the inducible transcription regulatory sequence) and quantitative transcriptional regulatory sequences which increase the transcription of downstream sequences (the transcription-enhancing sequence). As specifically exemplified herein, these transcriptional regulatory sequences are found in nature upstream and operatively linked to the epi-5-aristolochene synthase gene (EAS4) of tobacco; when operatively linked to a coding sequence (and in the presence of an operatively linked promoter element, from the EAS4 gene or from a heterologous plant-expressible gene) these sequences mediate the inducible transcriptional expression of that coding sequence when the plant or plant tissue is invaded by a potential phytopathogen (virus, fungus or bacterium) or in response to elicitors such as Trichoderma viride cellulase or plant or fungal cell wall fragments for plants, plant tissue and/or plant suspension culture cells. That potential plant pathogen can be a virus including, but not limited to, tobacco mosaic virus or tobacco vein mottle virus, a bacterium including, but not limited to, Pseudomonas syringae, Xanthomonas campestris or Agrobacterium tumefaciens, or a fungus including, but not limited to, a species of Phytophthora (e.g., P. parasitica) or Peronospora (e.g., P. tabacii).
The EAS4 promoter comprising the inducible transcription regulatory element(s) and the transcription-enhancing sequence(s) are disclosed herein as SEQ ID NO:2. In SEQ ID NO:2, the CAAF-homologous sequence of the EAS4 promoter is located at nucleotides 513 to 516, and the TATA-sequence motif is located at nucleotides 540 to 543.

The minimal inducible transcriptional regulatory element within the N. tabacum EAS4 upstream sequence is from nucleotide 458 to nucleotide 473 of SEQ ID NO:2; optionally from 454 to 473; more preferably from nucleotide 413 to 473 in SEQ ID NO:2 provides the inducible transcriptional regulatory element sequences.

Another aspect of the present invention is the transcription-enhancing element derived from the EAS4 promoter and promoter-associated sequences. When operatively linked upstream of a promoter, particularly upstream of a minimal promoter, this element increases the transcriptional expression of the downstream sequences. Transcriptional enhancing activity is mediated by DNA sequence information in the region between nucleotides 571 and 463 in SEQ ID NO:2. Preferably, an EAS4-derived transcription-enhancing sequence comprises a nucleotide sequence as given in SEQ ID NO:2 from nucleotide 371 to nucleotide 463, more preferably from nucleotide 1 to nucleotide 463, and optionally from nucleotide 1 to about nucleotide 1040 of SEQ ID NO:7.

Also provided by the present invention is an expression cassette into which a coding sequence of interest can be cloned, and said coding sequence of interest can be expressed in plant tissue after the introduction of the unit into plant tissue. A preferred coding sequence of interest is that for the ParA1 elicitin protein of Phytophthora parasitica. The coding sequence and deduced amino acid sequence of the mature ParA1 protein, including the signal peptide, are given in SEQ ID NOS: 16 and 17, respectively. The coding sequence and deduced amino acid sequences of the mature ParA1 protein as amplified and described hereinbelow are given in SEQ ID NOS: 18 and 19, respectively. Transcription is regulated by the EAS4 promoter sequence and promoter-associated regulatory element or by at least one of the transcription regulatory elements (inducible and/or transcription-enhancing) operably linked to transcription initiation sequences and a heterologous DNA sequence to be expressed.

A further aspect of the present invention are transgenic plant cells, plant tissue and plants which have been genetically engineered to contain and express a nucleotide sequence of interest, preferably a coding sequence, an antisense sequence or other sequence, under the regulatory control of the inducible transcription regulatory element. It is an object of this invention to provide the nucleotide sequences which mediate the induction of the expression of a downstream coding sequence in response to elicitor exposure, potential phytopathogen invasion in a plant, or certain other exogenous inducing signals such as exposure to methyl jasmonate and ethylene. An exemplary elicitor inducible transcription regulatory element is that from the 5’ flanking region of the EAS4 gene of Nicotiana tabacum, as specifically exemplified herein, this sequence is presented in SEQ ID NO:2 from nucleotide 410 to nucleotide 473. Equivalents of the exemplified nucleotide sequence are those nucleotide sequences which similarly direct the induction of the expression of downstream nucleotide sequences. Preferably the inducible transcription regulatory element is associated with EAS4 promoter and promoter-associated sequences (e.g., the combination having the nucleotide sequence as given in SEQ ID NO:2 from nucleotide 410 to nucleotide 573 of SEQ ID NO:2, preferably from nucleotide 361 to 573 of SEQ ID NO:2, more preferably the sequence from 1 to 573 of SEQ ID NO:2).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 presents data for transient expression experiments for GUS regulated by the EAS3 and EAS4 promoter region sequences in comparison to a CaMV 35S-GUS construct (Cauliflower Mosaic Virus 35S promoter—β-glucuronidase reporter gene). These experiments were carried out in tobacco protoplasts into which the DNA constructs had been electroporated. “Uninduced” levels of expression for the EAS-GUS constructs were relatively high because fungal enzymes which digest plant cell walls were used in the preparation of the protoplasts. The y-axis shows units of GUS activity and the 5’ extents of the EAS upstream sequences are given below each bar on the graph. As above, the numbering is relative to the natural transcription start site of EAS4 (or the corresponding base of EAS3); in EAS4 (SEQ ID NO:2) the start site is at nucleotide 573; in EAS3 (SEQ ID NO:1) the potential transcription start site is at nucleotide 489.

FIGS. 2A–2B present information concerning the reporter gene expression directed by the inducible transcription regulatory element. FIG. 2A presents a schematic of experiments carried out with the EAS4 promoter region controlling the expression of the GUS reporter gene in stably transformed transgenic plants. FIG. 2B presents the results of “gain of function” assays for the EAS4 promoter-associated sequences regulating expression of the GUS reporter gene via the CaMV 35S minimal promoter. In both FIGS. 2A and 2B, numbering for the EAS4 upstream region reflect numbering relative to the natural transcription start site of the EAS4 gene (See also SEQ ID NO:2 wherein the transcription start site corresponds to nucleotide 573). In both FIGS. 2A and 2B, the GUS expression is measured in Fluorescence units per milligram protein.

FIG. 3 is a schematic of the genetic manipulations leading to generation of disease-resistant plants. The coding sequence for the ParA1 elicitin is isolated by PCR, so as to have BamHI and SstI ends. gEAS4sso-GUS-pBII101, which directs the expression of the GUS reporter gene under the regulatory control of the EAS promoter, is digested with BamHI and SstI to release the GUS reporter gene. Then the BamHI/SstI-digested ParA1 amplifier is ligated to the large fragment produced after digestion of gEAS4sso-GUS-pBII101 to produce gEAS4sso-ParA1-pBII101, from which the ParA1 elicitin in plant cells or plant tissue is synthesized after induction with a suitable elicitor.

DETIALLED DESCRIPTION OF THE INVENTION

5-epi-aristolochene synthase (EAS) is a key enzyme in the synthesis of sesquiterpenoid phytoalexins, for example, in solanaceous plants, including but not limited to Nicotiana species (e.g., tabacum), Capsicum annum and Hyoscyamus nasicus. EAS catalyzes the reaction of farnesyl diphosphate to (+) gamacerene A to eudesmane carboxylation to 5-epi-aristolochene. Other plants, such as the crucifers, also have sesquiterpene cyclase enzymes.

Treatments which induce host defensive responses in plant tissue or plant cells such as phytoalexin synthesis include cell wall fragments of Phytophthora species and Trichoderma viride cellulase. However, pectolyase from Aspergillus japonicum does not function as an elicitor in tobacco cell culture. Elicitors which induce sesquiterpenoid
Phytoalexin synthesis have been shown to function at the level of controlling transcription of key biosynthetic enzymes [Vogeli and Chappell (1990) *Plant Physiol.* 94:1860–1866]. Similar patterns have been observed in other plants, but no transcriptional control sequences which mediate gene induction in response to phytopathogen challenge have been described.

Tobacco (*N. tabacum*) contains an EAS gene family with some 12–15 members, the coding sequence of EAS4 has been published [Facchini and Chappell (1992) supra]. However, since that time, the present inventors have discovered that the EAS3 does not appear to be expressed in response to the elicitor treatment, and surprisingly, the nucleotide sequences upstream of EAS3 do not appear to mediate the induction of a reporter gene in a chimeric gene construct in elicitor-induced transgenic cell culture. It is noted that the translation start site was incorrectly identified in the 1992 Facchini and Chappell publication. The nucleotide sequence of a genomic clone of EAS4, as it appears in Facchini and Chappell (1992) supra is presented in SEQ ID NO:7, with the deduced amino acid sequence being given in SEQ ID NO:8.

Other aspects of a plant’s defenses against invasion and infection by a phytopathogenic microorganism include the hypersensitive response, which is characterized by necrosis, i.e., programmed cell death in the localized area of attack by the plant pathogen. Elicitor treatments as described above can also induce the necrotic response.

Elicitins are proteins produced by fungal plant pathogens, which proteins elicit a hypersensitive response in an infected plant. Generally, but not necessarily, localized cell death is the result of the elicitor-induced response in the infected (or challenged) plant tissue. These responses mediate full or partial resistance to destructive infection by the invading, potentially plant pathogenic microorganism. For the purposes of the present invention, a protein of a plant pathogen or potential plant pathogen which induces the hypersensitive response in plant tissue after invasion of that plant tissue or after expression of that coding sequence in the plant tissue is considered to fall within a broad definition of an elicitor.

It is understood that to be useful in the present invention as it applies to creating transgenic plants with improved disease resistance traits using an elicitin coding sequence expressed under the regulatory control of a pathogen-response transcription regulatory element (and with a minimal promoter functional in those plants) that elicitin protein must be capable of promoting expression of defense genes (including but not limited to those genes governing phytoalexin synthesis, the hypersensitive response and/or localized necrosis) in those plants. Many functional combinations of plant and phytopathogen are known to the art, and the skilled artisan knows how to test the function of a particular elicitin in a particular plant tissue (or cells) in the turning on of programmed cell death or phytoalexin synthesis or the like. It is also understood that treatment of plant cells or tissue with compositions such as certain fungal cellulases or certain plant polysaccharide fragments can also induce the host defensive (i.e., hypersensitive) response. Such treatments are used as models for actual plant pathogen attack or invasion.

A non-naturally occurring recombinant nucleic acid molecule, e.g., a recombinant DNA molecule, is one which does not occur in nature; i.e., it is produced either by natural processes using methods known to the art, but is directed by man to produce a desired result or it has been artificially produced from parts derived from heterologous sources, which parts may be naturally occurring or chemically synthesized molecules or portions thereof, and wherein those parts have been joined by ligation or other means known to the art.

A transgenic plant is one which has been genetically modified to contain and express heterologous DNA sequences, either as regulatory RNA molecules or as proteins. As specifically exemplified herein, a transgenic plant is genetically modified to contain and express a heterologous DNA sequence operably linked to and under the regulatory control of transcriptional control sequences by which it is; not normally regulated, i.e., under the regulatory control of the inducible transcriptional control sequences of the EAS4 gene of *Nicotiana tabacum*. As used herein, a transgenic plant also refers to those progeny of the initial transgenic plant which carry and are capable of expressing the heterologous coding sequence under the regulatory control of the qualitative and/or quantitative transcription control sequences described herein. Seeds containing transgenic embryos are encompassed within this definition.

When production of a heterologous gene or coding sequence of interest is desired under conditions of potential pathogen invasion or inducer (e.g., elicitor) treatment, that coding sequence is operably linked in the sense orientation to a suitable promoter and under the regulatory control of the inducible regulatory sequences, in the same orientation as the promoter, so that a sense (i.e., functional for translational expression) mRNA is produced. A transcription termination signal functional in a plant cell can be placed downstream of the coding sequence, and a selectable marker which can be expressed in a plant, can be covalently linked to the inducible expression unit so that after this DNA molecule is
introduced into a plant cell or tissue, its presence can be selected and plant cells or tissue not so transformed will be killed or prevented from growing. Similarly, a heterologous coding sequence can be expressed under the regulatory control of the inducible transcription regulatory element or the transcription-enhancing element in transgenic plant cell suspension culture, with induction occurring in response to the addition of an elicitor to the cell culture medium.

Where inhibition of gene expression is desired in a plant being invaded by a microbial pathogen, such as a phytopathogenic fungus, then either a portion or all of that coding sequence or cDNA sequence can be operably linked to a promoter functional in plant cells, but with the orientation of the coding sequence opposite to that of the promoter (i.e., in the antisense orientation) so that the transcribed RNA is complementary in sequence to the mRNA, and so that the expression of the antisense molecule is induced in response to pathogen invasion. In addition, there may be a transcriptional termination signal downstream of the nucleotides directing synthesis of the antisense RNA.

The present inventors have isolated a DNA sequence which mediates the inducible expression of a downstream gene in plant cells in response to invasion by a potential plant pathogen and/or treatment with an elicitor or other chemicals. For example, a combination of ethylene and methyl jasmonate serve to induce downstream gene expression via the qualitative transcription regulatory sequence. It is understood that there may be a multiplicity of sequence motifs within that regulatory sequence, where individual motifs each respond to one or more distinct environmental signal. As specifically exemplified, this transcription-regulating sequence is derived from the EAS4 locus of N. tabacum, and it is given in SEQ ID NO:7. The deduced amino acid sequence for the EAS protein is given in SEQ ID NO:8. The open reading frame of the EAS4 gene, which is interrupted by six introns, is provided in SEQ ID NO:7.

A computer search for nucleotide sequence homology in sequences in Genbank to the SEQ ID NO:2 sequence revealed no known nucleotide sequences with significant homology, except for the CAAT and TATA transcriptional control sequences.

Organization of the EAS genes in the N. tabacum genome was described in Facchini and Chappell (1992) supra using an EAS probe and Southern hybridization experiments. Under conditions of high stringency, multiple fragments hybridized with analysis indicating that there is a gene family with some 12-16 members in the tobacco genome. In these experiments, however, the probe included the EAS coding sequence rather than the promoter and promoter-associated regulatory sequences.

EAS homologous genes can be identified and isolated from plant species other than N. tabacum based on significant degrees of nucleotide sequence homology; i.e., DNA-DNA hybridization under conditions of moderate to high stringency with a tobacco EAS coding sequence probe allows the identification of the corresponding gene from other plant species. A discussion of hybridization conditions can be found for example, in Hames and Higgins (1985) Nucleic Acid Hybridization, IRL Press, Oxford, U.K. Generally sequences which have at least about 70% nucleotide sequence homology can be identified by hybridization under conditions of moderate stringency. Under such conditions, it is generally preferred that a probe of at least 100 bases be used. Most preferably, in the present case, the probe will be derived from the coding portion of the EAS4 coding sequence. Labels for hybridization probes can include, but are not limited to, radioactive groups, fluorescent groups and ligands such as biotin to which specific binding partners (which are in turn labeled) bind. It is the label which allows detection of the hybridization probe to the target nucleic acid molecule. Alternatively, well-known and widely accessible polymerase chain reaction (PCR) technology is advantageously used to amplify sequences with significant nucleotide sequence homology to a target sequence.

It is understood that nucleic acid sequences other than the EAS coding sequence disclosed in SEQ ID NO:7 will function as coding sequences synonymous with the exemplified EAS4 coding sequence. Nucleic acid sequences are synonymous if the amino acid sequences encoded by those nucleic acid sequences are the same. The degeneracy of the genetic code is well-known to the art; i.e., for many amino acids, there is more than one nucleotide triplet which serves as the codon for the amino acid. It is also well-known in the biological arts that certain amino acid substitutions can be made in protein sequences without affecting the function of the protein. Generally, conservative amino acid substitutions or substitutions of similar amino acids are tolerated without affecting protein function. Similar amino acids can be those that are similar in size and/or charge properties, for example, glycine and alanine, aspartate and glutamate and isoleucine and valine are both pairs of similar amino acids. Similarity between amino acid pairs has been assessed in the art in a number of ways. For example, Dayhoff et al. (1978) in Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3, pp. 345–352, which is incorporated by reference herein, provides frequency tables for amino acid substitutions which can be employed as a measure of amino acid similarity. Dayhoff et al.’s frequency tables are based on comparisons of amino acid sequences for proteins having the same function from a variety of evolutionarily different sources.

Tropene cyclase genes can be found in solanaceous plants, including N. tabacum and Hyoscyamus muticus, as disclosed herein, and in members of the mint family (Labiatae) and the Euphorbiaceae, including but not limited to those which have been demonstrated to contain sequences of significant homology, and in substantially all plants. Preferably, EAS4 homologs will be selected from the Solanaceae. Such sequences can be identified by nucleic acid hybridization experiments or when cloned in expression vectors, by cross reaction to tobacco EAS-specific antibody, or any other means known to the art, including the use of PCR technology carried out using oligonucleotides corresponding to portions of SEQ ID NO:7, preferably in the region encoding EAS. Antibody can be prepared after immunizing an experimental animal with EAS purified as described in Vogeli et al. (1990) Plant Physiology 93:182–187 or using a peptide conjugate, where the amino acid sequence of the peptide is taken from a hydrophilic portion of the EAS amino acid sequence (SEQ ID NO:8). Monoclonal and polyclonal antibody production techniques are readily accessible to the art (See, e.g., Campbell (1994) Monoclonal Antibody Technology. Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 13, Burdon and Knippenberg, eds, Elsevier, Amsterdam; Harlow and Lane (1988) Antibodies; A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).

Alternatively, a cDNA library (in an expression vector) can be screened with EAS-specific antibody, or EAS peptide-specific antibody can be prepared using peptide sequence(s) from hydrophilic portion(s) of the EAS protein (SEQ ID NO:8) and technology well-known in the art.

An inducible transcription regulatory sequence can be operably linked to any promoter sequence functional in
plants as understood by the skilled artisan; where a regulatory element is to be coupled to a promoter, generally a truncated (or minimal) promoter is used, for example, the truncated 35S promoter of Cauliflower Mosaic Virus, CaMV). Truncated versions of other constitutive promoters can also be used to provide CAAT and TATA-homologous regions; such promoter sequences can be derived from those of A. tumefaciens T-DNA genes such as nos, ocs and mas and plant virus genes such as the CaMV 19S gene. It will be understood that the goals of a skilled artisan will determine the choice of particular promoters used with the inducible transcription regulatory sequences. It is further understood that when a protein capable of generating a cell death response is to be expressed, then there is preferably no basal transcriptional (and translational) expression in the absence of inducer. The minimization of basal expression is less critical in applications for inducible gene expression where the gene product has no significant toxicity to the plant cells producing it.

A minimal promoter contains the DNA sequence signals necessary for RNA polymerase II binding and initiation of transcription. For RNA polymerase II promoters, the promoter is identified by a TATA-homologous sequence motif about 20 to 50 bp upstream of the transcription start site and a CAAT-homologous sequence motif about 50 to 120 bp upstream of the transcription start site. By convention, the skilled artisan often numbers the nucleotides upstream of the transcription start with increasingly large numbers extending upstream of (in the 5' direction) from the start site. Generally, transcription directed by a minimal promoter is low and does not respond either positively or negatively to environmental or developmental signals in plant tissue. An exemplary minimal promoter suitable for use in plants is the truncated CaMV 35S promoter, which contains the regions from -90 to +8 of the 35S gene.

The inducible transcription regulatory sequence (qualitative transcription regulatory sequence) is localized to the region between -167 and -100 relative to the EAS4 transcription initiation site (nucleotides 406 to 473, initiation at nucleotide 573 in SEQ ID NO:2). It is understood that there may be a plurality of sequence motifs which respond to particular stimuli. Optionally linking this sequence directly upstream of a minimal promoter functional in a plant cell confers inducible expression of a coding sequence operably fused just downstream of the promoter, e.g., a heterologous coding sequence, and the skilled artisan understands spacing requirements and other requirements for translational expression of the coding sequence. The heterologous coding sequence is preferably for an elicitor-like protein of a plant pathogenic microorganism (virus, bacterium or fungus), for example, the sequence encoding the parA1 gene product (elicitor) of Phytophthora parasitica where disease resistance via the hypersensitivity response to an invading potential plant pathogen is desirable. Harpin proteins of certain phytopathogenic bacteria also can serve as inducers of expression mediated by the EAS4-derived inducible transcriptional regulatory sequences. Inclusion of additional 5' flanking sequence from the EAS4 gene allows for increased levels of downstream gene expression. Preferred is the use of a sequence including the -266 to +1 region of EAS4 69-94 (nucleotides 307 to 573 of SEQ ID NO:2), and more preferred is the sequence including -567 to +1 (nucleotides 1 to 573 of SEQ ID NO:2).

An alternative to the use of the fusion of the EAS4 transcription regulatory sequence fused to a heterologous minimal promoter is the use of the promoter region of EAS4 in conjunction with the upstream promoter-associated regulatory elements. In such an application the use of nucleotides 307 to 463, or more preferably for greater levels of downstream expression, nucleotides 371 to 463, 311 to 462, and 10 to 573 of SEQ ID NO:2.

In a plant such as N. tabacum, the instant inducible transcription regulatory element directs the induction of downstream gene expression in response to invading plant pathogens and certain compositions such as some fungal cellulases and certain plant and fungal cell wall fragments. Plant pathogens which can trigger this expression include, but are not limited to, Xanthomonas, Pseudomonas syringae, Phytophthora species including parasitica, and Peronospora species (e.g., tabacii).

Coding sequences suitable for expression in a plant are operably linked downstream of the regulated promoter construct. Transgenic plants can be constructed using the chimeric gene consisting essentially of the regulated promoter, any additional transcription-enhancing sequences, and the desired coding sequence including the necessary sequence signals for its translation. Where disease resistance is to be advantageously induced in response to invasion of a transgenic plant tissue by a potential plant pathogen or in response to treatment with an elicitor or other chemical signal which induces EAS4 gene expression, the coding sequence is preferably for an elicitor of a plant pathogenic microorganism, e.g., the parA1 gene product of Phytophthora parasitica (as described in Kamoun et al. (1993) supra). Other elicitor-like proteins have been described in the readily available scientific literature, and include those from Phytophthora species, Peronospora species, and Xanthomonas species, among others.

Alternative coding sequences which can be expressed under the regulatory control of the present inducible transcription regulatory element for improvement of the resistance of a (transgenic) plant or plant tissue exposed to a viral, bacterial or fungal plant pathogen include, but are not limited to, chitinase, TMV coat protein or other plant virus coat protein, Nt virus gene and others.

Additionally, or alternatively, induction of the regulated construct can be induced, for example, by treating the transgenic plant tissue or with an elicitor or with a bacterium, virus or fungus (preferably not pathogenic for the host plant) capable of inducing expression via the inducible transcription regulatory element of a coding sequence not capable of turning on the HR, or disease resistance directly achieved. Coding sequences which may be advantageously expressed include an insecticidal protein, such as one of the Bacillus thuringiensis crystal proteins, which when expressed would protect the plant from insect pests.

Phytalexin synthesis from the native EAS4 gene, or induction of gene expression mediated by the present regulated EAS4 promoter or the inducible transcription regulatory element in combination with at least a heterologous minimal promoter, can be induced by treating the plant tissue or cells with a wide variety of defined chemicals, crude fungal culture filtrates, fungal cell wall extracts and oligosaccharides from plant or fungal cell walls[Albersheim and Valient (1978) J. Cell. Biol. 78:627-643]. Other compounds capable of inducing the HR include certain cellulases, for example, Trichoderma reesei or Trichoderma viride cellulases, and certain plant or fungal cell wall fragments, among others.

A transgenic plant can be produced by any means known to the art, including but not limited to Agrobacterium tumefaciens-mediated DNA transfer, preferably with a disarmed T-DNA vector, electroporation, direct DNA transfer,

Techniques and agents for introducing and selecting for the presence of heterologous DNA in plant cells and/or tissue are well-known. Genetic markers allowing for the selection of heterologous DNA in plant cells are well-known, e.g., genes carrying resistance to an antibiotic such as kanamycin, hygromycin, gentamycin, or bleomycin. The marker allows for selection of successfully transformed plant cells growing in the medium containing the appropriate antibiotic because they will carry the corresponding resistance gene.

Other techniques for genetically engineering plant cells and/or tissue with an expression cassette comprising an inducible promoter or chimeric promoter fused to a heterologous coding sequence and a transcription termination sequence are to be introduced into the plant cell or tissue by Agrobacterium-mediated transformation, electroporation, microinjection, particle bombardment or other techniques known to the art. The expression cassette advantageously further contains a marker allowing selection of the heterologous DNA in the plant cell, e.g., a gene carrying resistance to an antibiotic such as kanamycin, hygromycin, gentamycin, or bleomycin.

The transcription regulatory sequences, particularly the inducible transcription regulatory element (or the EAS4 promoter with the inducible and preferably the transcription-enhancing element) is useful in controlling gene expression in transgenic plant cells in suspension cell culture as an alternative to expression in transgenic plants. For example, the EAS4 promoter including the transcription initiation signals, the inducible transcription regulatory element and the transcription-enhancing element, can be used to mediate the inducible expression of one or more heterologous coding sequence(s) in transgenic plant cells in suspension cell culture. When desired, expression of the coding sequence of interest is induced by the addition of an elicitor or other inducing chemical signal to the culture. Suspension culture cells respond to elicitors readily in comparison to intact plants. The heterologous coding sequence(s) can encode proteins which mediate synthesis of pharmacological compounds, poly-β-hydroxybutyrate synthesis or other secondary metabolites, cellulose, starch, sugars, oils, or the heterologous sequences can encode pharmaceutical proteins, insecticidal toxin proteins, antifungal proteins, antiviral proteins such as coat proteins to mediate resistance to virus infection, the N1a protein, chitinases, glucanases, male sterility proteins or sequences, proteins to improve nutritional quality or content, or developmental and/or tissue-specific programs or patterns. It is understood that transgenic plants can be similarly used to express heterologous coding sequences as can transgenic plant cells.

Where transgenic plants are to be induced for phytoalexin synthesis or for the expression of a heterologous coding sequence under the regulatory control of the EAS4 promoter or the inducible transcription regulatory element derived therefrom and/or the transcription-enhancing sequence derived from the EAS4 promoter as well, the elicitor must penetrate the cuticle of the plant to have an inductive effect. Alternatively, the plant tissue can be wounded to facilitate or allow the uptake of the elicitor into the plant tissue, providing a variety of inducing compositions, including elicitors and other chemical signals, such as the combination of ethylene and methyl jasmonate, can be effectively introduced into the transgenic plant suspension cell cultures, where there is significantly less of a barrier to the uptake and/or sensing of the elicitors. Where ethylene and methyl jasmonate serve to induce gene expression, the ethylene is used at a concentration between about 1 and about 50 ppm and the methyl jasmonate is used at a concentration between about 0.1 mM and about 1 mM.

All references cited in the present application are expressly incorporated by reference herein.
5,981,843

The following examples are provided for illustrative purposes and are not intended to limit the scope of the invention as claimed herein. Any variations in the exemplified compositions and methods which occur to the skilled artisan are intended to fall within the scope of the present invention.

EXAMPLES

Example 1

EAS-specific Antibodies

Monoclonal and polyclonal antibodies specific for tobacco EAS were prepared as described by Vogeli et al. (1990) *Plant Physiology* 93:182–187. Additional antibody preparations could be made as polyclonal antibodies using purified EAS as antigen or using a peptide sequence conjugated to a carrier protein using well-known techniques. The amino acid sequence of a peptide for antibody production is selected from a particularly hydrophilic region of the protein (For antibody production techniques, see, for example, Campbell (1994) *Monoclonal Antibody Technology. Laboratory Techniques in Biochemistry and Molecular Biology*, Vol. 13, Burdon and Knippenberg, eds, Elsevier, Amsterdam; Harlow and Lane (1988) *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).

Example 2

DNA and Protein Sequence Determination

Sequence determinations of single-stranded and double-stranded DNAs were carried out by the dideoxynucleotide chain termination procedure [Sanger et al. (1977) *Proc. Natl. Acad. Sci. USA* 74:5463–5467], with a Sequenase kit from United States Biochemical Corp., Cleveland, Ohio) or an automated fluorescent-based system (Applied Biosystems, Foster City, Calif.).

Example 3

Construction of a Full-length EAS Clone

Nicotiana tabacum L., cv. KY14 cell suspension cultures were treated with *Trichoderma viride* cellulase (Type RS, Onozuka) at a final concentration 0.5 μg/ml during rapid growth phase to induce the expression of EAS. Parallel suspension cell cultures which did not receive cellulase served as controls. Cells were collected by gentle vacuum filtration 4 hrs after the addition of the cellulase elicitor to the induced culture.

A cDNA library was prepared in pcDNAII (Invitrogen, San Diego, Calif.) from polyA+ RNA extracted from the *N. tabacum* cells treated for 4 hrs with elicitor. The library was screened by differential hybridization using polyA+ RNA prepared from the induced and control cultures. Clones appearing to be positive were further screened by hybrid selection-in vitro translation-immunoprecipitation analysis as described by Awino et al. (1979) *Methods Enzymol.* 68:220–242.

A putative positive EAS cDNA clone was used as a hybridization probe for the isolation of additional cDNA and genomic clones. The genomic library thus screened was one constructed in λEMBL3 using MboI partially digested DNA prepared from *N. tabacum* L. cv. NK326 hypocotyl DNA (Clontech, Palo Alto, Calif.). This screening yielded 8 independent clones, each of which appeared to represent a different chromosomal locus. EAS4 and EAS3 genomic clones were described in Facchini and Chappell (1992) supra, but are now known to have been incomplete.

Facchini and Chappell (1992) supra had misidentified the translation start sites of the EAS3 and EAS4 coding sequences in the genomic clone described therein. The correct translation start site for the EAS3 and EAS4 coding sequences have been determined to be methionine codons 165 bp upstream of the ATG codons previously identified as start sites. The corrected start site for EAS4 was mapped using a combination of primer extension assays to identify the transcription start site and additional N-terminal amino acid sequencing data of purified enzyme as noted hereinabove.

An amplimer of 110 bp was prepared by a polymerase chain reaction to provide a DNA sequence corresponding to amino acids 56–92 of the EAS4 protein (SEQ ID NO:12) and Facchini and Chappell (1992) supra. This amplimer was used as a hybridization probe to screen a cDNA library in pcDNAII (Invitrogen, San Diego, Calif) prepared from polyA+ RNA from tobacco cell culture cells 4 hr after elicitor treatment (*Trichoderma reesei* cellulase). This amplimer was made using a sense primer (ATGCCTTAGCAACCGGAG; SEQ ID NO:5) and a reverse primer (ATCCAAATCTACGATTTGC; SEQ ID NO:6), and the genomic EAS4 template in a standard PCR reaction [Saiki et al. (1988) *Science* 239:487–491]. The 110 bp amplimer was isolated after gel electrophoresis using DE-51 paper (Whatman International, Inc., Clifton, N.J.). The isolated fragment was then radioiodolabeled with [α-32P]-dCTP using a random priming kit from Stratagene (La Jolla, Calif.) for use as a hybridization probe in colony lifts of the cDNA library as previously described [Hanahan and Meselson (1980) *Gene* 106:3–67]. The longest clone obtained in these experiments appeared to lack 80 bp of 5' coding sequence.

To obtain a full-length clone, a RT/PCR approach was used. First strand cDNA was prepared from polyA+ RNA prepared from tobacco cells after induction with elicitor as described [Facchini and Chappell (1992) supra] using reverse primer having the sequence ATGAGT CCTTACTAGTGTA (SEQ ID NO:5). This sequence corresponds to nucleotides 459–477 downstream of the translation start site. The reverse transcriptase reaction was carried out in a 10 μl reaction (1 μg polyA+ RNA, 25 pmol reverse primer, 10 mM DTT, 2.5 mM each dATP, dGTP, dCTP, dTTP, 8 units RNase Block I (Stratagene, La Jolla, Calif.), first strand synthesis buffer used according to the manufacturer's instructions (Stratagene) for 1 hr at 37°C. This reaction was terminated by heating at 99°C for 5 min. Then 40 μl of master PCR mix was added to the first strand reaction, PCR master mix contains 10 μM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.01% Tween-20, 0.01% (w/v) gelatin, 0.01% NP-40, 2.5 mM each deoxynucleotide triphosphate, 1 unit of Taq polymerase, and 25 pmol forward primer (GGGGCGTCTGAATTTCCATGCGCCGACGCGCA GTGTGCAACTAT, SEQ ID NO:6, EcoRI and NcoI recognition sites underlined and ATG translation start site in bold). PCR was carried out under standard conditions [Buck et al. (1994) *Arch. Biochem. Biophys.* 315:523–532]

The 492 bp reaction product was digested with EcoRI and HindIII and subcloned into similarly cut pBluescript SK (Stratagene). A HindIII/XhoI fragment from another partial cDNA clone was subsequently cloned into the corresponding sites of the S′-terminal sequence clone to generate a full-length cDNA clone named pBSK-TEAS. pBSK-TEAS DNA was transformed into Escherichia coli T1B using a CaCl2 protocol [Sambrook et al. (1989) supra]. Determination of the DNA sequence of the insert confirmed that this plasmid had the expected and desired structure (dideoxynucleotide chain termination procedure, United States Biochemical Corp., Cleveland, Ohio).
Example 4
Identification of EAS Homologous Sequences
Tobacco leaf genomic DNA was isolated as described in Murray and Thompson (1980) Nucleic Acids Research 8:4321–4325. After digestion of aliquots with desired restriction enzymes, the digested DNA samples were electrophoresed on 0.8% agarose gels and the size-separated DNAs were transferred to nylon membranes. DNA blots were hybridized with random primer radiolabeled cEAS1, which is truncated at the 5’ end of the coding region, (prepared as in Sambrook et al. (1989) supra) at 60°C in 0.25 M sodium phosphate buffer, pH 8.0, 0.7% SDS, 1% bovine serum albumin, 1 mM EDTA. The blot was then washed twice at 45°C. With 2x SSC, 0.1% SDS and twice with 0.2x SSC, 0.1% SDS (1x SSC is 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0). Relative hybridization levels were estimated from autoradiograms using a video densitometer (MilitGen/Biosearch, Ann Arbor, Mich.).

Facchinini and Chappell (1992) supra reported that Southern hybridization results indicated that there were 12–16 copies of EAS-homologs in the N. tabacum genome. To address the presence of significantly homologous sequences to tobacco EAS and apparent number of copies per genome of those sequences, Southern hybridization experiments are carried out using DNA isolated from other plant species.

Restriction endonuclease-digested genomic DNA is separated by agarose gel electrophoresis (0.8% agarose), and then transferred to a Hybond-N* membrane (Amersham Corp., Arlington Heights, Ill.). Radiolabeled probe comprising coding sequences of EAS, and hybridizations are carried out essentially as described in Sambrook et al. (1989) supra. Moderate stringency conditions are used (hybridization in 4x SSC, at 65°C; last wash in 1x SSC, at 65°C). Alternatively, PCR can be carried out using target DNA as a template and primers derived from the EAS4 coding sequence in highly conserved regions (see SEQ ID NO:7) using well-known techniques.

Example 5
Detection of EAS Protein

For detecting the presence of EAS cross-reacting protein material, total protein fractions are prepared from 100 μl aliquots of bacterial culture harvested and concentrated by centrifugation for 2 min in a microfuge. After discarding the culture supernatant, cell pellets are resuspended in 100 μl 50 mM Tris-HCl, pH 6.8, 10 mM dithiothreitol, 2% sodium dodecyl sulfate, 0.01% bromophenol blue, 10% glycerol. For immunological detection 15 μl aliquots are electrophoresed over 11.5% SDS-polyacrylamide gels, for Coomassie blue-staining of the proteins, 35 μl aliquots are similarly electrophoresed. For soluble protein samples, the cells are processed as in the procedure for determination of enzymatic activity (see Back et al. (1995) supra or Facchinini and Chappell (1992) supra). For immunological detection 10 μl aliquots are electrophoresed as above; for Coomassie blue-staining, 10–50 μl aliquots were electrophoresed.

After electrophoresis the proteins are stained with Coomassie blue, or the proteins are transferred to nitrocellulose membranes as described [Towbin and Gordon (1984) Journ of Immunological Methods 72:313–340] for immunodetection. After incubating for 30 minutes in 5% low-fat milk in 1x TBS (20 mM Tris-HCl, pH 7.5, 500 mM NaCl), the nitrocellulose blots were incubated overnight in the same solution containing monoclonal antibody specific for tobacco EAS (1:1000 dilution; Vogeli et al. (1990) Plant Physiology 93:182–187). Goat anti-mouse antibodies linked to alkaline phosphatase and the specific chromogenic dye were then incubated to visualize the binding of the EAS-specific antibody to the proteins immobilized on the nitrocellulose membranes [Leary et al. (1983) Proc. Natl. Acad. Sci. USA 80:4045–4049].

Example 6
Genomic EAS4 Clone
The 5’-truncated cDNA clone cEAS1 described in Facchinini and Chappell (1992) supra was used as a hybridization probe for screening a N. tabacum cv. NK326 genomic library in the λEMBL3 vector (Clontech, Palo Alto, Calif.). DNA sequences were determined using routine subcloning and DNA sequencing protocols.

The DNA and deduced amino acid sequences of the EAS4 genomic clone are presented in SEQ ID NO: 7–8.

Example 7
Generation of Transgenic Plants
For studies of the function of portions of the upstream untranslated region of the EAS4 gene, HindIII/BamHI- ended fragments of this upstream region were cloned into pBH101 (Clontech, Palo Alto, Calif.) such that expression of the β-glucuronidase (GUS) reporter gene could be monitored in transformed plant cells. The 5’-flanking sequence of the EAS3 gene is given in SEQ ID NO:1 and the 5’-flanking sequence of the EAS4 gene is given in SEQ ID NO:2. In each of these sequences, the translation start site (ATG) is the last three nucleotides. By primer extension techniques, the EAS4 transcription start site was estimated at nucleotide 573 in SEQ ID NO:2. CAAA and TATA boxes: motifs are identified at nucleotides 429 to 432 and at nucleotides 456 to 459 in SEQ ID NO:1 (EAS3) and at nucleotides 513 to 516 and at nucleotides 540 to 543 in SEQ ID NO:2 (EAS4).

The transformed plant cell lines were produced using a modified Agrobacterium tumefaciens transformation protocol. The recombinant plasmids containing the sequences to be introduced into plant tissue were transformed into A. tumefaciens strain GV3850, by triparental mating with E. coli TB1 (pRK2013). N. tabacum leaves at a variety of stages of growth were cut into 1 cm² pieces, and dipped in a suspension of agrobacterial cells (about 10⁷ to 10⁶ cells/ml). After 3 to 10 minutes, the leaf segments were then washed in sterile water to remove excess bacterial cells and to reduce problems with excess bacterial growth on the treated leaf segments. After a short drying time (30 to 60 seconds), the treated leaf segments are placed on the surface of Plant Tissue Culture Medium without antibiotics to promote tissue infection and DNA transfer from the bacteria to the plant tissue. Plant Tissue Culture Medium contains per liter: 4.31 g Murashige and Skoog Basal Salts Mixture (Sigma Chemical Company, St. Louis, Mo.), 2.5 mg benzylaminopurine (dissolved in 1 N NaOH), 10 ml of 0.1 mg/ml indoleacetic acid solution, 30 g sucrose, 2 ml Gamborg’s Vitamin Solution (Sigma Chemical Co., St. Louis, Mo.) and 8 g agar. The pH is adjusted between pH 5.5 and 5.9 with NaOH. After 2 days, the leaf segments were transferred to Plant Tissue Culture Medium containing 300 μg/ml kanamycin, 500 μg/ml mefoxin (Merck, Rahway, N.J.). The kanamycin selects for transformed plant tissue, and the mefoxin selects against the agrobacterial cells.

It is necessary to minimize the exposure of the explant tissue to agrobacterial cells during the transformation procedure in order to limit the possible induction of the regulated parA1 coding sequence during the production of the transgenic plant cells, which would cause a cell death.
response. Accordingly, the ballistic technique for the introduction of heterologous DNA containing cell suicide genes under the regulatory control of the inducible transcrip
tional regulatory element is a useful alternative transformation technique because it does not entail the use of agrobacterial cells or fungal cell wall digestive enzymes (as necessary for the generation of protoplasts for electroporation), both of which lead to induction of the coding sequences under the control of that regulatory element.

Transgenic plants were regenerated essentially as described by Horsch et al. (1985) Science 227:1229–1231.

The resulting transgenic plants were tested for the expression of the β-glucuronidase (GUS) reporter gene using 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid as described by Jefferson et al. (1987) EMBO Journal 6:3901–3907, using untreated (control) conditions and inducing conditions. An inducing condition is the intercellular application of T. viride cellulase to tobacco tissue in the transgenic plants (using a mechanical pipettor to apply 50–100 μl inducing composition to interstitial tissue); controls were mock-applied but not treated with cellulase elicitor. Tobacco tissue was wounded with a scalpel in some experiments to facilitate exposure to the inducing compounds.

Example 8
Deletion Analysis of Promoter and Promoter-Associated Region

In separate reactions, the EAS4-derived DNA sequence encompassed by –567 to +67 relative to the transcription start site (nucleotides 6 to 642, SEQ ID NO:2, EAS4) was substituted for the Cauliflower Mosaic Virus (CaMV) 35S promoter [Benfrey et al. (1990) EMBO Journal 9:1677–1684] in the GUS-reporter vector pBl221 (Clontech, Palo Alto, Calif.). Deletion mutants in the EAS4 upstream regions were then isolated after restriction endonuclease cutting and Bal31 digestion. Analysis of the cEAS promoter-GUS constructs was carried out in electroporated tobacco cell protoplasts and in stably transformed tobacco lines. Preliminary data for the transient expression demonstrated that SEQ ID NO:1 and SEQ ID NO:2 functioned in regulated gene expression.

The transient expression data obtained with the N. tabacum protoplasts into which various EAS3 and EAS4 promoter-GUS constructs were introduced are given in FIG. 1. Progressive deletions from the 5’ end of the EAS4 promoter regions lower the levels of expression, but inducibility is maintained for the –262, –202 and –110 constructs (relative to the transcription start site at nucleotide 573 of SEQ ID NO:2). The data indicate that only very low levels of GUS are expressed via either EAS3 promoter region construct. Similarly, the truncated CaMV 35S promoter alone is not induced by the elicitor treatment, which provides induction via the inducible transcription regulatory element of EAS4.

The data in FIGS. 2A–2B indicate that deletion of genetic material between –567 and –160 reduce the level of downstream gene expression but does not destroy the inducibility of expression. Therefore, the DNA sequences between –567 and –160 appear to contain transcription-enhancing activity. Most of the transcription-increasing activity appears to reside between –567 and –212, but additional enhancement appears to be mediated by sequence information between –212 and –160 relative to the transcription start site (transcription start site is nucleotide 573; –567 is nucleotide 1, –212 is nucleotide 561, and –160 is nucleotide 413, all in SEQ ID NO:2).

In the Gain of Function assay data in FIG. 2B, the DNA sequence information necessary to mediate induction in response to elicitor treatment is located between –160 and –87 relative to the EAS4 transcription start site (i.e., between nucleotides 413 and 486 of SEQ ID NO:2). In these experiments the EAS-derived sequences were placed in front of a truncated CaMV 35S promoter [Benfrey et al. (1990) EMBO J. 9:1677–1684]. This figure also demonstrates that the EAS4-derived transcription regulatory region functions when fused to a heterologous minimal promoter. In other experiments, either the entire –567 to +67 EAS4 upstream region or 5’ deletions thereof were inserted upstream of the GUS (β-glucuronidase) reporter gene in vector pBH101 (Clontech, Palo Alto, Calif.), and expression levels of the GUS reporter were assayed under inducing and noninducing conditions. 160 bp upstream of the transcription start site of EAS4 were sufficient to direct the regulated expression of the GUS reporter gene, although the presence of additional upstream sequences mediated increased expression.

Constructs containing a minimum of 167 bp upstream of the EAS4 transcription start site gave transient gene expression in electroporated protoplasts and confer elicitor-inducibility of GUS reporter gene expression (minimum of 2.5-fold increase in gene expression). By contrast, the EAS3 upstream region (SEQ ID NO:1) does not appear to support high levels of reporter gene expression in the transient expression system, nor does it appear to confer elicitor-inducibility to the downstream reporter gene.

In part, the elicitor-inducible GUS reporter gene expression was found to be a rearrangement in the protoplast system because those protoplasts were generated using fungal cell wall digestive enzymes, and those enzymes have been shown to elicit phytoalexin production and sesquiterpene cyclase gene expression in plants [Chappell et al. (1991) Plant Physiology 97:693–698]. A possible explanation is that the 6 hr time period before the experiment allows the cells to return to an elicitor-responsive state.

pBH101 is commercially available from Clontech (Palo Alto, Calif.). It contains the CaMV 35S promoter upstream of the GUS reporter gene in a pUC19 vector; thus it serves as a vector for transient expression experiments where the recombinant vector is introduced into plant protoplasts. The presence of this plasmid and its derivatives is selected by growth on kanamycin. A “promoter-less” GUS cassette in the Agrobacterium binary plasmid vector pBIN19 (Bevan, M. (1984) Nucl. Acids Res. 12:8711) similarly carries a plant-expressive kanamycin resistance determinant.

Example 9
Identification of Inducible Transcription Regulatory Element

The 5’ flanking domains of genomic EAS3 and EAS4 clones were mapped by S1 nuclease protection and primer extension experiments [Sambrook et al. (1989) supra]. Subclones comprising up to 1 kb 5’ to the translation start site were sequenced and fused to the β-glucuronidase (GUS) reporter gene in pBH101 for studies in transgenic plant tissue. The resulting recombinant plasmids were then electroporated into tobacco protoplasts. GUS activity was measured in transient expression assays, and stable transformed tobacco cell lines were also isolated for studies of GUS induction and expression.

 Constructs were prepared containing a minimum of about 200 bp of nucleotide sequence upstream of the EAS4 transcription start site in the modified pBH101 vector, and a β-glucuronidase (GUS) reporter gene was inserted and analyzed for ability to drive regulated GUS expression. 200 bp of flanking sequence appeared sufficient to drive transient gene expression in electroporated protoplasts and confer
elicitor inducibility to GUS expression (minimum of 2.5 fold induction). Similar experiments with the EAS3 flanking sequence indicated that 200 bp from the EAS3 locus did not support either high levels of GUS expression or elicitor responsiveness in transformed plant cells. Cellulase and elicitors from Phytophthora [Ricci et al. (1989) *Eur. J. Biochem.* 183:555–563] serve to induce gene expression mediated by the EAS4-derived regulatory sequences.

Further studies related to the identification of sequences important in mediating induced gene expression in response to pathogen invasion, as modeled using cellulase or eliciting, were carried out after oligonucleotide site-directed mutagenesis [Kunkel (1985) *Proc. Natl. Acad. Sci. USA* 82:488–492] of the putative regulatory region of EAS4L. Substitution of GT for the wild-type CA at -233 and -234 relative to the EAS4 transcription start site (nucleotides 334–335 of SEQ ID NO:2) did not appear to alter the expression of the GUS reporter gene as measured after incubation in the presence of elicitor (cellulase) for 20 hours.

Preliminary methylation interference and gel retardation studies carried out essentially as described [Sambrook et al. (1989) supra] indicated that an octamer sequence centered around -233 relative to the translation start site (centered around 334 of SEQ ID NO:2) binds proteins from plant cell nuclei. Methylation interference data suggested that the G at position -233 was preferentially protected against methylation by DMS (dimethyl sulfate) if first allowed to interact with nuclear extracts. The results of gel retardation studies were consistent with those obtained in the methylation protection experiments. When DNA fragments containing the -343 to -140 region (relative to the translation start site) (nucleotides 230 to 433 of SEQ ID NO:2) were examined after reaction to nuclear extracts, mobility in native acrylamide gel electrophoresis appeared retarded. Protein binding was abolished by the GT to CA substitution at positions -234 and -233. Similar results were observed in control and elicitor-induced cell extracts, and reporter gene expression was not changed by this 2 bp mutation. Thus, it is concluded that the region around -233 is not directly involved in the induction of gene expression in response to pathogen invasion or elicitor treatment.

Preliminary experiments indicate that EAS4 DNA sequences between -253 and -18 relative to the EAS4 transcription start site (between nucleotides 520 and 525 of SEQ ID NO:2) have qualitative and quantitative effects on downstream reporter gene expression. Sequences between -110 and -1 of EAS4 relative to the transcription start site of EAS4 (nucleotides 463 to 572 of SEQ ID NO:2) to mediate the inducible response, while sequences between -202 and -110 relative to the EAS4 transcription start site (nucleotides 371 to 463 of SEQ ID NO:2) enhance the levels of both induced and uninduced reporter gene expression.

Example 10

Disease-resistant Transgenic Plants

The parA1 coding sequence was isolated from *Phytophthora parasitica* race O as follows: Genomic DNA was isolated and used as template in PCR with a SIG forward primer (CTTTGGGTCCCACCTCATCAGAAAATGAC; SEQ ID NO:9; BamH1 site underlined; nucleotides 25–27 correspond to the translation start site and reverse primer (CCTTCGCTGTCCTGACGTCAGAGTCACCC; SEQ ID NO:10; Ssal site underlined) to amplify the coding region of the ParA1 elicitor including the signal peptide coding sequence. To isolate an amplifier corresponding to the coding sequence of the ParA1 elicitor, the MAT forward primer (CGCGGATCCCTGATAGGACCTTACCAACCA-CCGACGAACGT; SEQ ID NO:11; BamH1 site, GGAATC, and SpeI site, ACTAGT, underlined; translation start site at nucleotides 12–14) and the reverse primer as before (SEQ ID NO:10) were used with genomic DNA as template. The amplifier sequences of the elicitin-with-signal peptide and the mature elicitin are given in SEQ ID NO:15 and SEQ ID NO:17, respectively.

For subcloning into pBluescript (Stratagene, La Jolla, Calif.) or into pEAS4 constructs, the amplifier DNA was digested with BamH1 and SpeI. Where the mature protein’s coding sequence is used, the mature elicitin/pEAS4 construct can be digested with SpeI to insert a plant signal sequence at the 5’ end of the open reading frame. The pEAS4-GUS vector is digested with BamH1 and SpeI, with the large fragment of DNA being purified after agarose gel electrophoresis.

FIG. 3 illustrates the molecular manipulations leading to the generation of disease-resistant plants. The coding sequence for the ParA1 elicitor is isolated by PCR so as to have BamH1 and SpeI ends. gEAS4₁₀₀-GUS-pBI101, which directs the expression of the GUS reporter gene under the regulatory control of the EAS promoter, is digested with BamH1 and SpeI to release the GUS reporter gene. Then the BamH1/SpeI-digested parA1 amplifier is ligated to the large fragment produced after digestion of gEAS4₁₀₀-GUS-pBI101 to produce gEAS4₁₀₀-parA1-pBI101, from which the ParA1 elicitor is synthesized after induction with a suitable elicitor once plant cells or tissue have been transformed.

While various embodiments of the present invention have been described in detail, it is apparent that modifications, extensions, adaptations and optimizations may occur to those skilled in the art. It is to be expressly understood that such modifications and adaptations and so on are within the spirit and scope of the present invention, as set forth in the claims.
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Nicotiana tabacum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCGCAGTTGG AGAGATGTGT ACCTGCGATCT AACGCGACAAC GCCTTTAAATT TTACTCGGTC 60
ANGAAGGAC GGGGATGTTG GCTAAAGAAA CACGACGGCC CGAACATCAT CCTGCAACAC 120
CCGCCTTTCT GAAAGAGACT GCCTTTGGAA AGAGACTACA GCTGCTCTCCA CGCGATGC 180
GGATGGGCAC CGAAGCAGTT TCCGCGACCC CGGGCGCAGC CGGGTTTGTG 240
AAGACCAAGC CGACGGCAGG TAGCCTATCC GCTTGAAGGT GAGACGCGAT 300
CATCTCCTG CTTCCTGTCT CGAAGCTGGG ACCTTGCTTT CAGGCGGAGA CGGGATTATC 360
GCCGCGCACA AGCTGCGGCG GCCAACCGAC GGCGCGACT TTCCGAGAGA CTTCGAGCTG 420
CCACGGATCA ATTACTTTAA CTAAGCTCTC ACCAACATAT ATGCTGCTCC CTCTCTCTCC 480
ATTAGAGTAC GAGTCTCTCTT TTCTCTCTTT AA 512

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 642 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Nicotiana tabacum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TAGGTGATCT TCACGCTTTA TCCTCCAGAA TACTTTATCC TTACCAATAC ATTCGCGCTG 60
GGGACCTCT CAAAACCTTT TTTGTTGTTG AGAAMTTGCA ATTTGGAAC TCTACAATTT 120
CGACAAAACC TTGTTCTGTT AAAACTTTT ATTAACCTTT TAGAAGTTGAC AGTACTATTA 180
ACTCTAATAC GACCTAAATA ATACATCATG AGCAGTCTC TTACGCTCTG CAAACTGGGC 240
CTGGATTTAA TAAATCATG ATTAATCGCA ACAAGGATAC TAGGTTTATTT AATACGCTAA 300
ATAGGATATT GATACGGTCA GGAACACTAC CTGAGCGACT CTCTATTTT TGCGCTTTTT 360
AAATAATATT ATCCGGTGG CAGACCAAAAT AGGAAAGATA TTTGCGGAAAC TGGATCATTA 420
GACCCGAGA GCCAACAGCT AATCAAAGGG CTGCAGACTG GTGTAACAGC TAAGAAGGCA 480
ACTGCGAAAT TAAATAATG ATGCGTTTGT ATCAATATTCA TTAACACTAG TCTCCAGCCT 540
ATATAATCT GTGCCCTCTC TCCCATTTAA GTAGATCTCC TTCTTCTTT CCTAAAAGACT 600
TAAGAAGAACA AGTAAAAATA CACTCACTCT TAATTGCAAA TG 642

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotide primer for PCR"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATTTGTTGACAAACGGAAG

21

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotide primer for PCR"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ATCCAAAATCTCATCAATT

21

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotide primer for PCR"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGAGTCCCTATCATGGA

18

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 45 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotide primer for PCR"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GGGACGTGCAATCCATGCGCTCAGCAAGCA

45

(2) INFORMATION FOR SEQ ID NO: 7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4254 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) ORIGINAL SOURCE:
(A) ORGANISM: Nicotiana tabacum

(ix) SEQUENCE DESCRIPTION: SEQ ID NO:7:
AAGCTTTATG AATTAGATGT AAAAAGACGC AAAACTCTTA TATATATTAC CAAAGTAACT 60
TGAAAGTTTA AAXTTCACT TAAACTATA GTAGGTTAAA ACTGCTCTAT TAATATCATG 120
ATTTAAAAAG GCATGAGCGA AAGATGAGGC GCTTTATCTA ACACGAAAGG AGGTGTAAGC 180
CCGATGTTG TTTATTTTTA TATTTTATAT ACTATAAAAA TTATATATATA ATATATATATAT 240
ATATATATAT ATATATATAT ATATATATAT ATATATATAT ATATATATAT 300
ATATATATAATAT ATATATATAT ATATATATAT ATATATATAT ATATATATAT 360
GTGCTACATGC GCCGCGGACC ATGCAACTTT TTGCTCTTGA AAAATTTAAG GGCTGAAGAG 420
TACATTTAC CTAGTCTATC AAAACATAT AAAAATAAGA GCGATACCAA AAAAACATTTT 490
AAATCTAAA ACTAATCTGA AATATATAAT TTAAAAATT CATTATTTTT TTGCTGAGA 540
AAACAAAGCA TAAACATTTG CTGGTAAACA CTTTGCTCTG GTGAATTCGA GGCCTTTATGC 600
TCCAGTACAT TTATGCTCTG CGAGTACCCT TGGGGTGGGG ACTGCTGCAA AAAAGCTCTT 660
TTTGCTGACA AATTTGCTAT TTGAACTCTT ACAATTCGCA CAAACCTTGG GTGCTGGAAA 720
ACTTGGTGTAG ACCATCGAT CCTATTTATC TCAATGCTGAC TAAATTAAT 780
ACTACGTCACA CTAGTCTTTA AGTCACCCAAAA GTGCAACTCT GCAATTAATTTA TGGAAATTTA 840
TGGCTCAACA AGTATCAAGT TTGTTTATATA GAAATTATAATAA TAGTCTGAGA GATCTGCAAGA 900
AAAGATCTACAG GACATTCCCT TTATTTGTTG CTTTATTTAAA TTAATATATT CATTCTGACG 960
AAACAAATAAA TAAAATTTTT GGAAACTTGG ATCAATGAGC CCGACGCCC AACACTGTAAT 1020
CAAAAGCTCTG CTAGTCTCTG TAAATATCTAG TAAAATCTGA GGGAAAATAAG ATGATAGGT 1080
GCTTGTGAGC AATTCTATTCA ACTAGTCTCT CACCACTATA TATATGACGC CCTCTCTTC 1140
CATTATGATA AGATCTCTTT CTGAATCTCT TAAATCTAAA AAGAAACAGT AAAATACAC 1200
TCACCTATTAA ATGCC AGT GCC TCA GCA GCA GTT GCA AAG TAT GAA GAA 1249
Met Ala Ser Ala Ala Val Ala Tyr Glu Glu 1 5 10

GAG ATT GCT GCC CCC GTC GCC GCC TTC TTC CCT ATT TTC TTC GGT GTT 1297
Glu Ile Val Arg Pro Val Ala Asp Phe Ser Pro Ser Leu Trp Gly Asp 15 20 25

CAG TTC CTT TCA TTC TCC ATT GAT AAT CAG GTACCTTTAC TAAACTAGT 1347
Gln Phe Leu Ser Phe Ser Ile Asp Asn Gln 30 35

ATTCCTTAT TATAATTTATA GTTTTCTTCT CATTGAAAT CAGGAGATTG ATATATTGTG 1407
AACAACATTA ATTTTGCCCA TTTCAAGTTA ATTTTAGTAG TGT GCC GGA
Val Ala Glu
1463
40

AAG GAT AYA ATY ATG TGA CAA AGG ATT GAA GCA TGT AAG GAA CAA AGG AGG
Lys Tyr Ile Tyr Ala Gin Glu Ile Glu Ala Leu lyes Gin Thr Arg
45 50 55

AGT ATC CTG TTA GCA ACC GUA AGG AAA TGG GCC GAT ACA TGG AAT TGG
Ser Met Leu Leu Ala Thr Arg lys Leu Ala Asp Thr Leu Asn Leu
60 65 70

ATT GAC ATT ATT GAA CCA CCT GGT ATTA TCC TAC CAC TTG GGG AAA GCA
Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser Tyr His Phe Glu Lys Glu
75 80 85 90

ATT GAT GAG ATT TGG GAT CAG ATT TAC AAC CAA ACC TCA AAC TGC AAT
Ile Asp Glu Ile Leu Asp Gin Ile Tyr Arg Gin Gin Ser Gin Ser Cys Gin
90 95 100

GAT TGG TGC ACC TCT GCA CCT CAA TTT CCA TGG CTG ACC AGG CAA CAC GTP
Asp Leu Cys Thr Ser Ala Leu Gin Phe Arg Leu Arg Gin His Gin
105 110 115 120

TTC AAC ATC TCT CCT GTGAACTCA TCATAAGTT GAT AAATCA TTATCCATTT
Phe Asn Ile Ser Pro
125

ATGGGAAGAA GGTGATTTCA TCTTGAGTTT TCTTTCTGAA AATACACA GAA ATT TTC
Glu Ile Phe
1814

AGC AAA TTC CAA GAT GAA GAT GAT GAG GCC AAA TTC ARG AAC AAA TTC ARG AAC
Ser Lys Phe Gin Asp Glu Asp Glu Ser Leu Ala Ser
130 135 140

GAT GTC TTA GAA TTA TTA AAC TGG TAT GAA GCT TCA CAT GTA AGG ACT
Asp Val Leu Gly Leu Leu Ser Tyr Arg Gin Gin Ser His Val Arg Thr
145 150 155 160

CAT GAT GAC GAT ATC TTA GAA GAC GCC CCT GCT TTC TCC ACT ATC CAT
His Ala Asp Asp Ile Arg Leu Glu Asp Ala Leu Ala Asp Ser Thr His His
165 170 175

CTT GAA TCT GCA GCT CCA CAT TTG AAA CCT CCA CTT AGG GAG CAA TGT
Leu Glu Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Gin Gin Val
180 185 190

ACA CAT GCC CCT GAG CAA TGT TCG CAC AAG GUT GTT CCT AGA GTC GAG
Thr His Ala Leu Gin Cys Gin Gin Leu Gin Ser Gin Ser Gin Gin Val
195 200 205

ACC GCA TCC TTC ATC TCA TCA ATG GAT GAC AAG GAA CAA TGG AAG AAT
Thr Arg Phe Phe Ile Ser Ser Ile Tyr Asp Phe Gin Gin Ser Ser Cys Gin
210 215 220

AAT GTG TTA CCT CCA TTT GCC AAA TGG CAT TAC TGG TCT CAG ATG
Aan Val Leu Leu Leu Ala Tyr Leu Asp Phe Asn Leu Leu Leu Gin Met
225 230 235 240

TGG ACC AAA CAA GAA CCT GCA GAT GTA TCA AG GTGCAATA
Leu His Lys Gin Glu Leu Ala Gin Ser Arg
245 250

TAAAACAGAT GAACCCCTTG TTGACTCATCA TATCTCAAGT ATTCAGTTA ATTTCTTATG
2252

CTGCCG G TGG TGG AAA GAT TGG GAT TTT GTA ACA ACA CCT CCA TAT GCT
Trp Trp Lys Asp Leu Asp Phe Val Thr Thr Leu Pro Tyr Ala
2301

AGA GAT CGA GTA GGG TGC TAC TTT TGG GCA TTA GGA GTT TAT TTT
Arg Asp Arg Val Val Gin Cys Tyr Phe Trp Ala Leu Gly Val Tyr Phe
2349

GAG CTT CAA TAC TCT CAA GCT GCC GTC ATG CTC GGT AAG ACC ATN TCA
Glu Pro Gin Tyr Ser Gin Ala Arg Val Met Leu Val Lys Thr Ile Ser
2397
AAA CCT CAC ATT ATT AAC CTA CTT GTG GAC TCC ATC AAT TGA 3558
Lys Pro His Ile Ile Asn Leu Leu Val Asp Ser Ile Lys Ile 540 545 550

GCT GCG ATG TGC CAT TCAG AAAC ACC GCG AAG CAG TAT 3618
AAA AGC 3678

ACT GCT TAC TAG ATC CTG TGA AAG TAA AAT TGC GGG TGG TAG 3738

CTG CAT AAC TAT CAG AC TTT GCG GTC AG A 3798

AA CGC AGG ATG GCG CTG GAG TGG TGA AAT GCT 3858

AG AAT GAT TTT GCG AAC TTT TTTT TCG GCG 3918

AT NAA AGA CCT ATG ACA GCA TAT GAA CTG AAT GCT TAT GCC A 3978

CAG GAG AGA CTA GCT GAA CCA AGA CAC ATG GTT GCA 4038

CT TTA TTA AAA ACC CAA ATG AAT AAG CAA TAT GAA 4098

AAA AAT TAT GAA TAT TAT AAC GAA TAA TT GCT CTT GGG 4158

GAA CCA AGA GAA ACA GGA AAG GCT TCG GTC ACC ACA AGT 4218

TAC AAA AAA AAA GAT ATG TT AAT TTT TT TTT CT TCT 4254

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 550 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ala Ser Ala Ala Val Ala Tyr Glu Glu Glu Ile Val Arg Pro 1
5 10 15
Val Ala Asp Phe Ser Pro Ser Leu Trp Gly Asp Gln Phe Leu Ser Phe 20
25 30
Ser Ile Asp Asn Gin Val Ala Glu Tyr Ile Tyr Ala Gin Glu Ile 35
40 45
Glu Ala Leu Lys Gin Glu Thr Arg Ser Met Leu Ala Thr Gly Arg 50
55 60
Lys Leu Ala Asp Thr Leu Asn Leu Ile Asp Ile Glu Arg Leu Gly 65
70 75 80
Ile Ser Tyr His Phe Glu Lys Glu Ile Asp Leu Asp Gin Ile 85
90 95
Tyr Asn Gin Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gin 100
105 110
Phe Arg Leu Leu Arg Gin His Gly Phe Asn Ile Ser Pro Glu Ile Phe 115
120 125
Ser Lys Phe Gin Asp Glu Asn Gly Lys Phe Lys Gin Ser Leu Ala Ser 130
135 140
Asp Val Leu Gly Leu Leu Leu Tyr Glu Ala Ser His Val Arg Thr 145
150 155 160
His Ala Asp Ile Leu Gin Ile Leu Ala Phe Ser Thr Ile His 165
170 175
Leu Gin Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Gin Val 180
185 190
Thr His Ala Leu Gin Lys Gin Val His Lys Gly Pro Arg Val Glu 195
200 205
Thr Arg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gin Ser Lys Asn
210 215 220
Asn Val Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gin Met
225 230 235 240
Leu His Lys Gin Glu Leu Ala Gin Val Ser Arg Trp Trp Lys Asp Leu
245 250 255
Asp Phe Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys
260 265 270
Tyr Phe Trp Ala Leu Gly Val Tyr Phe Glu Pro Gin Tyr Ser Gin Ala
275 280 285
Arg Val Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp
290 295 300
Thr Phe Asp Ala Tyr Gly Thr Val Lys Glu.Leu Glu Ala Tyr Thr Asp
305 310 315 320
 Ala Ile Gin Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr
325 330 335
Met Lys Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu
340 345 350
Lys Glu Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile
355 360 365
Glu Arg Met Lys Glu Val Val Arg Asp Tyr Asp Val Glu Ser Thr Trp
370 375 380
Phe Ile Glu Gly Tyr Met Pro Val Ser Glu Gly Tyr Leu Ser Asn Ala
385 390 395 400
Leu Ala Thr Thr Thr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly
405 410 415
Met Lys Ser Ala Thr Glu Gin Asp Phe Glu Trp Leu Ser Lys Asn Pro
420 425 430
Lys Ile Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr
435 440 445
Ala Thr Tyr Glu Val Glu Lys Ser Arg Gin Ile Ala Thr Gly Ile
450 455 460
Glu Cys Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala
465 470 475 480
Lys Phe Gin Asn Met Ala Glu Thr Ala Trp Lys Asp Ile Asn Glu Gly
490 495
Leu Leu Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu
500 505 510
Asn Leu Ala Arg Ile Val Glu Val Thr Tyr His Asn Leu Asp Gly
515 520 525
Tyr Thr His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Leu
530 535 540
Val Asp Ser Ile Lys Ile
545 550

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = “Oligonucleotide primer for PCR.”
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
CATTGATCC CCACCTCAG CGAAATGAA

(2) INFORMATION FOR SEQ ID NO:10:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide primer for PCR."
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: YES
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
GCTGAGCTC CTGGACGCG AGATCAAACC

(2) INFORMATION FOR SEQ ID NO:11:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide primer for PCR (reverse)."
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: YES
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
GCCGAGATCT TATGACTG TGCCACCAAC GCACGCAAC TG

(2) INFORMATION FOR SEQ ID NO:12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 593 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Phytophthora parasitica
(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 207..563
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
GTGAGCGAAA GCCGAACTGC GTGGCAATGC TTGGCTTCTG AATTGTACGC GCCACGGCA
AACTACAGC GTACCAAGC TTCAAAATAA CTGTAATGCG AACCAGCAAC CCAACTTGCA
CTGATCAAGC CTGATTTGCG TOCAACTCGC ATATGCAAT TTGCTCTCAT CCACACCCAC

5,981,843
We claim:

1. A recombinant nucleic acid molecule comprising a pathogen-inducible transcription regulatory element, said element comprising the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 406 to nucleotide 486.

2. A recombinant nucleic acid molecule of claim 1, wherein said pathogen-inducible transcription regulatory element comprises the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 463 to nucleotide 473.

3. The recombinant nucleic acid molecule of claim 1, further comprising a sequence that directs transcription of a downstream nucleotide sequence, wherein said recombinant nucleic acid molecule comprises the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 463 to nucleotide 572.
4. The recombinant nucleic acid molecule of claim 3, further comprising, immediately upstream and operably linked to the pathogen-inducible transcription regulatory element, a transcription-enhancing DNA sequence element having the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 371 to nucleotide 463.

5. The recombinant nucleic acid molecule of claim 1, wherein a heterologous coding sequence is operably linked downstream of and under the regulatory control of said inducible transcription regulatory element.

6. The recombinant nucleic acid molecule of claim 5, wherein said heterologous coding sequence encodes an elicitor protein.

7. The recombinant nucleic acid of claim 5, wherein said heterologous coding sequence encodes a pharmaceutical protein.

8. The recombinant nucleic acid molecule of claim 6, wherein said elicitin is a fungal elicitin.

9. The recombinant nucleic acid molecule of claim 8, wherein said elicitin is a phytophthora elicitin.

10. The recombinant nucleic acid molecule of claim 9, wherein said phytophthora elicitin is a Phytophthora parasitica elicitin.

11. The recombinant nucleic acid molecule of claim 10, wherein said Phytophthora parasitica elicitin is the ParA1 elicitin protein.

12. A recombinant DNA molecule comprising a transcription-enhancing element having the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 371 to nucleotide 463.

13. A recombinant DNA molecule comprising a transcription-enhancing sequence comprising the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 1 to nucleotide 463.

14. A method of producing a transgenic plant with increased disease resistance, said method comprising the steps of:
 a) providing a pathogen- or elicitor-inducible expression construct comprising a nucleotide sequence encoding a phytophthora elicitin operably linked to a pathogen- or elicitor-inducible transcription regulatory element and a promoter functional in a plant cell;
 b) introducing said pathogen- or elicitor-inducible expression construct into a plant tissue to produce transgenic plant tissue; and
 c) regenerating said transgenic plant tissue to produce a transgenic plant, whereby said phytophthora elicitin is expressed in response to plant pathogen invasion or elicitor treatment of said transgenic plant, thereby inducing the hypersensitive response and increasing the resistance of said transgenic plant to disease.

15. The method of claim 14, wherein said pathogen- or elicitor-inducible transcription regulatory element comprises the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 458 to nucleotide 473.

16. The method of claim 15, wherein said pathogen- or elicitor-inducible transcription regulatory element comprises the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 406 to nucleotide 473.

17. The method of claim 15, wherein said pathogen- or elicitor-inducible transcription regulatory element comprises the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 371 to nucleotide 473.

18. The method of claim 15, wherein said transgenic plant is a dicotyledonous plant.

19. The method of claim 18, wherein said transgenic plant is a member of the Solanaceae.

20. The method of claim 19, wherein said transgenic plant is Nicotiana tabacum.

21. The method of claim 17, wherein said transgenic plant is a monocotyledonous plant.

22. The method of claim 15, wherein said transgenic plant is a gymnosperm.

23. The method of claim 22, wherein said transgenic plant is a member of the Coniferae.

24. The method of claim 14, wherein said phytophthora elicitin is the ParA1 elicitin protein.

25. A method of producing a transgenic plant having greater resistance to disease than a corresponding untransformed plant, said method comprising the steps of:
 a) introducing the recombinant nucleic acid molecule of claim 6 into a plant cell or plant tissue to produce a transgenic plant cell or transgenic plant tissue;
 b) regenerating a transgenic plant from said transgenic plant cell or said transgenic plant tissue; and
 c) growing said transgenic plant, wherein said transgenic plant is invaded by a plant pathogen capable of infecting a corresponding untransformed plant, said recombinant nucleic acid molecule is expressed to produce said elicitin protein whereby a resistance response is induced in said transgenic plant making it more resistant to disease than a corresponding untransformed plant.

26. A method of increasing the transcriptional expression of a downstream DNA sequence in a transgenic plant cell, said method comprising the steps of:
 a) operably linking a transcription-enhancing element comprising the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 371 to nucleotide 463 to a promoter functional in a plant cell, said promoter being operably linked to a downstream DNA sequence for which transcriptional expression is to be directed to produce an enhanced expression cassette; and
 b) introducing said enhance expression cassette into a plant cell to produce a transgenic plant cell, wherein expression of said downstream DNA sequence is increased as compared to a plant cell transformed with the same expression cassette which does not comprise said transcription-enhancing element.

27. The method of claim 26, wherein step (a) further comprises operably linking the nucleotide sequence shown in SEQ ID NO:2 from nucleotide 1 to nucleotide 370 immediately upstream of said transcription-enhancing element.

28. The method of claim 26, wherein said promoter functional in a plant cell is a minimal promoter of Cauliflower Mosaic Virus.

29. A transgenic plant comprising a sequence encoding a phytophthora elicitin, said coding sequence being operably linked to a pathogen- or elicitor-inducible transcriptional regulatory element and a promoter functional in a plant, wherein said plant expresses said phytophthora elicitin coding sequence in response to invasion of said plant by a potential plant pathogen or in response to treatment with an elicitor or other inducing chemical signal.

30. The transgenic plant of claim 29, wherein said phytophthora elicitin coding sequence is the parA1 coding sequence shown in SEQ ID NO:12 from nucleotide 207 to nucleotide 563 and encodes a functional elicitin protein.

31. The transgenic plant of claim 30, wherein said phytophthora elicitin coding sequence encodes a ParA1 protein having an amino acid sequence shown in SEQ ID NO: 13.

32. The transgenic plant of claim 29 wherein said plant is a dicotyledonous plant.
33. The transgenic plant of claim 30, wherein said plant is a member of the Solanaceae.
34. The transgenic plant of claim 33, wherein said plant is *Nicotiana tabacum*.
35. The transgenic plant of claim 29, wherein said plant is a monocotyledonous plant.
36. The transgenic plant of claim 29, wherein said plant is a gymnosperm.

37. The transgenic plant of claim 36, wherein said plant is a member of the Coniferae.
38. The transgenic plant of claim 29, wherein said phytophthonan elicitor is a *Phytophthora parasitica* elicitor.
39. A transgenic plant comprising the recombinant nucleic acid molecule of claim 1.

* * * * *