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ABSTRACT

Time-Frequency Masking Performance for Improved Intelligibility with Microphone
Arrays

Time-Frequency (TF) masking is an audio processing technique useful for isolat-
ing an audio source from interfering sources. TF masking has been applied and
studied in monaural and binaural applications, but has only recently been applied
to distributed microphone arrays. This work focuses on evaluating the TF mask-
ing technique’s ability to isolate human speech and improve speech intelligibility in
an immersive “cocktail party” environment. In particular, an upper-bound on TF
masking performance is established and compared to the traditional delay-sum and
general sidelobe canceler (GSC) beamformers. Additionally, the novel technique of
combining the GSC with TF masking is investigated and its performance evaluated.
This work presents a resource-efficient method for studying the performance of these
isolation techniques and evaluates their performance using both virtually simulated
data and data recorded in a real-life acoustical environment. Further, methods are
presented to analyze speech intelligibility post-processing, and automated objective
intelligibility measurements are applied alongside informal subjective assessments to
evaluate the performance of these processing techniques. Finally, the causes for sub-
jective/objective intelligibility measurement disagreements are discussed, and it was
shown that TF masking did enhance intelligibility beyond delay-sum beamforming
and that the utilization of adaptive beamforming can be beneficial.

KEYWORDS: Distributed Microphones, Cocktail Party, Time-Frequency Masking,
Beamforming, Adaptive Beamforming, Intelligibility
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Chapter 1

Introduction and Literature
Review

1.1 History and Motivation for Study

The ability to isolate a single sound source from interfering noises has been a topic of
study for many years. The “source of interest” (SOI) is frequently a human speaker
in an environment with competing interfering sources such as ambient noise, musical
sources, and other human speakers. Techniques used to isolate a sound source (partic-
ularly human speech) to improve its clarity and intelligibility are useful in a variety
of applications: room surveillance, hearing aides, “smart rooms”, and more. Such
techniques have primarily been studied in binaural or monaural contexts which are
effective and useful for hearing aides and similar applications [1, 2, 3]. More recently,
however, the interest in other scenarios (surveillance, smart rooms, etc) have led to
the application/adaptation of these techniques to distributed microphone arrays.

Microphone array beamforming has been an active area of research, wherein an array
response is manipulated such that the array is “steered” to the source of interest,
improving its isolation and intelligibility. The simple delay-sum beamformer (DSB)
has been shown to be effective for this purpose and can be easily applied to the audio
response of the microphone array [4]. Adaptive beamforming techniques have been
developed and studied for microphone arrays and have been shown to further improve
speech intelligibility of a speech recording [5].

Time-Frequency (TF) masking is an analysis technique useful for isolating an audio
source of interest in the presence of other interfering sources. By considering a sig-
nal’s spectral properties compared to that of interefering sources, the isolation of the
target source can be improved significantly. TF masking has been studied at length
in binaural and monaural applications and has been shown to improve speech intelli-
gibility by both automated and subjective measurements [6, 7, 3, 8, 9]. TF Masking
has only been briefly studied as a technique for distributed microphone arrays, but
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has proven to be very useful in the separation of a target source from its interferers
[10].

Though TF Masking has shown success for use with microphone arrays, an in-depth
study has not yet been performed. This study aims to more fully describe the oper-
ational performance of TF masking and its dependence on a variety of parameters.
We will work primarily within the context of a “cocktail party problem”, wherein
we attempt to isolate a single human voice from amongst interfering sources, all dis-
tributed throughout an acoustical environment. Using virtual simulation techniques,
we will develop an understanding for the efficacy of the TF masking technique, and
we will further compare these results to those created from real recordings in a lab
environment. Finally, we will study TF Masking in conjunction with simple beam-
forming techniques, and also introduce the novel idea of combining TF Masking with
the more advanced adaptive beamforming techniques.

In the investigation of these techniques, a variety of performance metrics have been
utilized. Some studies have focused on subjective testing results [6], while others have
used objective automated metrics [11, 10]. Subjective testing can provide an accurate
understanding of human perception, but limits the scope and scale of an experimental
study. Objective measurements do not impose this limitation, but may not accurately
predict human intelligibility. For the present study, we use an objective intelligibility
measurement along with informal subjective assessments throughout.

1.2 Literature Review

Beamforming techniques have been extensively studied and utilized in many applica-
tions, including monaural, binaural, and distributed microphone arrays. In the 1970s,
[12] presented improvements to the traditional delay-sum beamformer by including
an adaptive component to the algorithm. This was further refined some ten years
later when [5] showed a simplified implementation of [12]’s work and its use with
microphone arrays. In recent years, [13] showed the stability requirements of this
adaptive beamformer and [11] studied potential enhancements to the adaptive beam-
forming technique. Studies such as [14] have verified that the adaptive beamforming
techniques are beneficial. [1] has recently presented developments in binaural beam-
forming performance by decreasing computational complexity, particularly of use in
hearing-aid applications. Other studies have investigated the use of machine learning
and neural network techniques and have shown further improvement as a result [15,
16]. Finally, existing work, such as [17], have shown a benefit to combining these
beamforming techniques with other isolation methods (such as TF masking).

TF masking has been successfully applied in monaural and binaural applications for
many years. [3] showed use of ideal TF masking, also referred to as Ideal Binary
Mask (IBM), in a monaural cocktail party environment and suggested IBM results as
a performance goal for other algorithms. In [6], the study of monaural TF masking
was extended to include reverberation effects and several methods of IBM creation
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were studied. It was shown in [8] that TF masking is likewise effective in binaural
scenarios and practical techniques were presented to estimate the ideal TF masking
results. Additionally, some studies have shown success in using machine learning
and neural networks to improve TF masking performance, particularly by using ideal
masking behavior to train the machine learning algorithms [7, 18, 19]. These studies
have primarily focused on estimating the IBM by identifying TF regions where the
SOI is active based on signal features and auditory cues.

Much of the work in this space has focused on emulating a human’s ability to isolate
target speech from interference in monaural/binaural scenarios. With the use of dis-
tributed microphones, an advantage not afforded to humans is gained: that is, the
ability to receive sound throughout an environment beyond binaural sensing. Addi-
tionally, it was shown in [20] and [21] that the microphone array arrangement (number
of microphones, distribution geometry, etc) has a measurable effect on the perfor-
mance of microphone array processing algorithms. [22] demonstrated integration of
beamforming and spectral mask-based noise estimation with microphone arrays to
isolate a target source, while [23] verified the benefits of TF masking using an IBM.
[10] first proposed the technique of estimating the IBM using beamformed reference
signals of each audio source, and that method is likewise used in the present study.
Though studies have been done to study beamforming and masking isolation meth-
ods individually, few have compared the performance of beamforming and masking
techniques in the context of distributed microphones. Further, while [10] estimated
the time-frequency IBM using delay-sum beamformed reference signals, no work has
yet studied IBM estimation using adaptive beamforming techniques. This work inves-
tigates mask creation using beamformed reference signals (delay-sum and adaptive
beamforming) and compares performance to ideal masking and beamforming-only
processing.

In the study of isolation performance, a variety of evaluation methods have been pro-
posed. Subjective testing is an effective measure of human intelligibility and has been
used in studies such as [6] and [24]. [25] presented a comparison of several objective
measures for speech intelligibility such as the Articulation Index (AI), Speech Intelli-
gibility Index (SII), Speech Transmisison Index (STI), and modified implementations
of these measures, and found that the SII (using modified weighting parameters for
their scenario) was moderately effective at predicting human intelligibility. The SII is
an objective intelligibility metric developed through extensive subjective testing [26].
[27] found that considering transients in the calculation of the STI metric was benefi-
cial over the baseline STI metric. Further, [28] showed that the Perceptual Evaluation
of Speech Quality (PESQ) measure is also useful for predicting the performance of
these techniques. Finally, [29] demonstrated the intelligibility effects of TF mask
sparseness and its relationship to target SNR, [30] presented a study of the impacts
on TF masking and mask accuracy due to room acoustics and reverberation effects,
and [31] investigated the relative importance of TF regions for speech intelligibility.
The study of speech intelligibility is still an evolving science and no current method
definitely predicts human intelligibility. For the purposes of this study, the SII met-
ric will be used to compare relative performance of the target isolation techniques
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alongside a limited subjective analysis to verify resulting trends.

1.3 Introduction to Beamforming

Beamforming is a filtering technique that can be used to help isolate a target audio
source from an environment with interfering noise sources. In our case, an array
of microphones is distributed in a near-field acoustical environment to record the
audio from various sources in the environment. The beamforming technique relies
on knowledge of microphone and source positions within the environment, and also
requires some level of incoherence between received signals from competing sources.
Additionally, a beamformer’s performance is a function of the actual distribution of
microphones within the space [21], but our study will only utilize a simple planar
array geometry; however, the simulation and evaluation techniques used in this work
can be applied to any near-field/immersive geometry. The following sections describe
the beamformer’s mathematical model and is agnostic of the specific array geometry
being used.

1.3.1 Basics of Beamforming

Consider a three dimensional acoustical environment with M microphones and Q
sound sources distributed throughout, and let u(t; rq) be the sound source signal
located at position rq. The microphone response for the mth microphone located at
position rm can be expressed as

xm(t) =

Q∑
q=1

u(t; rq) ∗ h(t; rm, rq) (1.1)

where h(·) is the impulse response of the sound propagation from source to micro-
phone, and rm, rq are the x,y,z coordinates of the mth microphone and qth sound
source, respectively. For a reverberant environment, this impulse response is given
by

h(t; rm, rq) =
∞∑
k=0

aqm,k(t− τqm,k) (1.2)

where aqm,k is the attenuation response from the kth propagation path of the source
signal, τqm,k is the corresponding time delay from source to microphone, and k = 0
represents the direct path from source to microphone. Transforming the received
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signal of Equation 1.1 into the frequency domain yields:

Xm(f) =

Q∑
q=1

∞∑
k=0

U(f ; rq) · Aqm,k(f)e−j2πf ·τqm,k (1.3)

Given the frequency domain representation of the microphone array response, X, the
generic beamformer output can be described in the frequency domain as

Y (f ; rp) =
M∑
m=1

wm(f) ·Xm(f) (1.4)

where rp is the beamformer focal point, wm(f) is a set of complex weights applied to
each individual microphone response, and the time-domain output signal y(t; rp) is
given as

y(t; rp) = F−1 {Y (f ; rp)} (1.5)

1.3.2 Delay-Sum Beamformer

Given the previous description of a beamformer, the Delay-Sum Beamformer (DSB)
is created if the complex weights wm(f) are selected to be purely phase terms with
unity amplitude such as

wm(f) = e−j2πα (1.6)

Then, the beamformer output becomes

Y (f ; rp) =
M∑
m=1

Xm(f)e−j2πα (1.7)

The frequency domain phase terms, wm(f), are equivalent to time delays in the time
domain. For the DSB, these delays, τpm, are chosen to be the time required for sound
to propagate distance dpm from the beamformer focal point (xp, yp, zp) to the mth
microphone at position (xm, ym, zm) through the direct path, which can be expressed
as

τpm =
dpm
c

=

√
(xp − xm)2 + (yp − ym)2 − (zp − zm)2

c
(1.8)
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where c is the propagation speed of sound. This yields the DSB response in the time
domain as

y(t; rp) =
M∑
m=1

xm(t− τpm) (1.9)

where xm(t) is the mth microphone response at time t. Finally, because we will work
exclusively with digital computer systems, the microphone response and beamformer
output signals must be discretely sampled with some sampling frequency fs. The
discrete representation of the beamformer output is given by

y(rp)[n] =
M∑
m=1

xm[n− τpm · fs] (1.10)

Although the delay-sum beamformer can be designed with the complex weights chosen
as described, the weights are traditionally selected having a magnitude of 1/M such
that the sum of all weights equals unity [5, 32] This gives:

y(rp)[n] =
1

M

M∑
m=1

xm[n− τpm · fs] (1.11)

Finally, these complex weights may, instead, be chosen with their magnitude as a
function of the distance between source and microphone dpm, which allows for adjust-
ing the influence of microphones based on their distance from the source. This can
be expressed as:

y(rp)[n] =
M∑
m=1

|wm| · xm[n− τpm · fs] (1.12)

For this study, however, the simple magnitude of 1/M is chosen for the complex
weights as shown in eq.(1.11). A visualization of the alignment, or “steering”, of the
beamformer is shown in Figure 1.1. It can be seen in the figure how the delay-sum
beamformer aligns the individual microphone responses such that the target source
becomes coherent post-alignment.
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Figure 1.1: Visualization of beamformer’s alignment of microphone signals: colored
lines indicate individual microphone responses, solid black line depicts sum of micro-
phone responses

1.4 Griffiths-Jim General Sidelobe Canceler

Although the simple delay-sum beamformer can perform effectively in many cases,
it does not consider the dynamic nature of an audio scene with multiple fluctuating
sources. The Frost algorithm [12] was one of the first methods proposed to dynami-
cally adapt a beamformer’s operation in response to the incoming signal. A simplified
implementation of the Frost algorithm was later proposed by Griffiths and Jim [5] as
the General Sidelobe Canceler (GSC) and is presented here for use in our study. An
overview of the GSC algorithm is shown in Figure 1.2 and is described below.

To begin, we modify our notation such that xm[n] represents the aligned response of
the mth microphone; that is, signals x1[n], . . . , xM [n] have already been aligned (the
“delay” portion of the delay-sum beamformer) for a chosen focal point, though these
signals have not yet been weighted. We refer to the collective vector of microphone
response signals as X[n] which is an O × M matrix with each of the M matrix
columns corresponding to the response from one of M microphones and contains O
total samples.
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Figure 1.2: Griffiths-Jim General Sidelobe Canceler (GSC) adaptive beamforming
algorithm

The top branch applies an individual weighting factor (w1, . . . , wM) to each of the M
microphone signals and is called a Fixed Beamformer because its behavior is constant
with time. The weighting factors may be chosen freely but are usually selected as 1/M ,
which makes this beamfomer equivalent to the traditional delay-sum beamformer [11].
The Fixed Beamformer yields the signal ys[n] which contains both the target signal
as well as interfering noise:

ys[n] =
M∑
m=1

wm · xm[n] =
1

M

M∑
m=1

xm[n] (1.13)

The bottom branch implements the adaptive nature of the GSC by first passing X[n]
through a Blocking Matrix, an algorithm designed to eliminate the target signal from
the incoming data to form a reference of the interfering noise. Griffiths-Jim selects the
blocking matrix to be the simple pair-wise difference of the M signal tracks, yielding
the O×M − 1 vector Z[n], which is computed as the matrix product of the blocking
matrix and input data vector:

Z[n] = X[n]Wb (1.14)
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where Wb is given as the M ×M − 1 matrix:

Wb =



1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · −1


(1.15)

Using the total output signal y[n] as a reference, the noise reference vector Z[n] passes
through adaptive filters using the Normalized Least Mean Square (NLMS) algorithm
and is summed to create the total noise reference signal yn[n]. The Fixed Beamformer
output ys[n] contains both the target signal and interfering noise, while the noise ref-
erence yn[n] ideally contains only interfering noise. By subtracting the noise reference
from the Fixed Beamformer output, the NLMS filters attempt to minimize the total
output power of y[n]. In an ideal case, this minimizes the interfering noise signature
in the output without any effects on the pure target signal. In practice, however,
some amount of the target signal will leak through the blocking matrix, causing a
decrease of target power in the final output, decreasing the performance of the GSC
beamformer from ideal. We can describe the total GSC beamformer output as:

y[n] = ys[n]−
M−1∑
k=1

wT
k [n]zk[n] (1.16)

where zk[n] is the kth Blocking Matrix output track of length O, and wk[n] is the kth
column of the NLMS filter tap weight matrix W of length O. The adaptive filters
are updated with the NLMS algorithm:

wk[n+ 1] = βwk[n] + µy[n]
zk[n]

||zk[n]||2
(1.17)

where β is the forgetting factor (0 < β < 1), || · ||2 is the squared Euclidean norm,
and µ is the step size parameter (µ > 0). The parameter µ determines how much the
filter tap changes with each iteration, with large values resulting in rapid convergence
toward a steady-state signal with large misadjustment, and small values resulting in
slower convergence but with small misadjustment. The forgetting factor β adjusts the
influence of the previously calculated tap weights on future weights [11]. The selection
of the β and µ parameters affect the stability of the NLMS filters as described in [13].
A full discussion of GSC stability is beyond the scope of this work, but the β and
µ parameters are chosen, as 0.9 and 0.1, respectively, throughout this study. These
values were selected to maintain stability, while providing sufficient dynamic filter
response to the output signal.
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1.5 Estimating TF Mask with Distributed Micro-

phones

Consider an environment with multiple stationary sound sources (eg. multiple human
speakers) distributed throughout. The beamforming technique can be used to improve
the SNR of the source/speaker of interest (SOI) and, thus, improve intelligibility.
Time-Frequency (TF) masking is a technique that can be used to further improve the
intelligibility of the SOI in the presence of interfering sources [10].

Given an environment with Q sound sources at distinct locations, we create Q beam-
formed signals, each having a unique source as its beamformer focal point. For each
beamformed signal, a short time window (order of 20-50ms) is selected and its fre-
quency spectrum calculated. The Time-Frequency representation, Y , of a beam-
formed signal can be estimated with the discrete function

Y [k, i, rp] =

Q∑
q=1

Gpq[k] ·X [k, i, rq] (1.18)

where i is the index of the selected time window, k is the discrete frequency index
(frequency bin), X[·] is the time-frequency representation of the audio source at po-
sition rq, and Gpq[k] is the discrete beamformer transfer function for the source at rq
with the beamformer focal point at rp.

Although the beamformer gain at its focal point is higher than for a source away
from the focal point, the power spectrum in each TF window can be dominated by
interfering speakers during periods of quiet speech from the SOI or loud speech from
interfering speakers. A spectral power ratio is used to determine TF windows where
the SOI is the dominant source and TF windows where interferers dominate:

Spq[k, i] =
|Y [k, i, rp]|2

|Y [k, i, rq]|2
(1.19)

for the SOI at beamformer focal point rp and single interfering source at rq. A binary
mask is then chosen as

Tpq =

{
1, if Spq[k, i] ≥ 1

0, if Spq[k, i] < 1
(1.20)

When multiple interfering sources are present, the mask is chosen as the multiplication
(or binary “AND” operation) of each mask corresponding to individual interferers:

Tp[k, i] =

Q∏
q=1,q 6=p

Tpq[k, i] (1.21)
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With these definitions, the output signal spectrum for a specific TF window is given
as

Y ′[k, i, rp] = Tp[k, i] · Y [k, i, rp] (1.22)

Finally, the time domain signal can be reconstructed through an inverse FFT pro-
cess. By masking Time-Frequency areas where the SOI is overpowered by interfering
sources, the intelligibility of the SOI can be improved.

As a demonstration of the TF masking operation, consider the case of a single target
at r1 and single interferer at r2; then, |Y [k, i, r1]|2 can be shown to equal

|G11[k]|2 · |X[k, i, r1] |2 + |G12[k]|2 · |X[k, i, r2]|2

+ 2 |< {(G11[k]G∗12[k]) (X[k, i, r1]X
∗[k, i, r2])}| (1.23)

and, similarly, |Y [k, i, r2]|2 equals

|G21[k]|2 · |X[k, i, r1] |2 + |G22[k]|2 · |X[k, i, r2]|2

+ 2 |< {(G22[k]G∗21[k]) (X[k, i, r2]X
∗[k, i, r1])}| (1.24)

where <{·} denotes the real part. If it is assumed that the target source is uncorre-
lated with the interfering source, the cross-spectra terms, 2|<{·}|, go to 0 under the
expected value operation. However, for a finite microphone implementation, these
terms form a zero-mean random walk scaled by small coefficients, which effectively
describe the noise floor generated by interfering speakers for the power spectrum es-
timates [10]. If the beamformer and number of microphones are sufficient to make
the cross-spectra terms small with respect to the first part of (1.23) and (1.24), then
(1.19) is approximately equal to:

S12[k, i] =
|G11[k]|2 · |X[k, i, r1] |2 + |G12[k]|2 · |X[k, i, r2]|2

|G21[k]|2 · |X[k, i, r1] |2 + |G22[k]|2 · |X[k, i, r2]|2
(1.25)

Note that G11 and G22 are high gain coefficients because they represent the beam-
former gain at focal points r1 and r2, respectively. For a typical beamfomer, these
are always greater than the off-focal beamformer gains G12 and G21.

Consider the case where the SOI (at position r1) becomes loud or dominates the
interferer for certain TF intervals. Then, (1.25) becomes:

lim
|X[k,i,r1]|2→∞

S12[k, i] =
G11[k]

G21[k]
> 1 (1.26)
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indicating that these frequency regions will not be masked and will pass through the
masker. Conversely, consider the case where the SOI becomes quiet or is dominated
by the interferer. In this case, (1.25) becomes:

lim
|X[k,i,r1]|2→0

S12[k, i] =
G12[k]

G22[k]
< 1 (1.27)

indicating a TF interval that will be masked and not passed to the masker output.

For the masker to be effective, the SOI must remain sufficiently unmasked in the
TF space, while the interference is blocked by the mask enough to enhance speech
intelligibility. The mask creation process is subject to errors which will degrade
performance. For example, when the beamformer quality is poor, such that the
ratios in (1.26) and (1.27) are close to unity, the cross-spectra terms can influence
the ratio and cause errors in the binary mask. Further, when there are correlations
between the target source and interferers, the cross-spectra terms again can create
errant mask values. Finally, there is the extreme case when interference is so dense
that, even though mask creation may be done perfectly, too many target-containing
TF regions are masked out such that an insufficient amount of target is present in
the final output.

1.6 Speech Intelligibility

It is useful to quantify the intelligibility of a speech signal; that is, how well a human
can perceive spoken words even when in the presence of interfering noise. While a
simple SNR measurement is useful for many tasks, it is not an ideal metric for speech
intelligibility. This is primarily because human perception is not only a function of
SNR, but also one of the structure of interfering noise. It may be easier for a human
to understand a low SNR speech signal when white noise is the primary interferer,
than a higher SNR signal in which the interfering noise is that of other spoken words.
For this reason, a more advanced technique is desired to quantify speech intelligibility
of a signal.

The Speech Intelligibility Index (“SII”) is an improvement over simple SNR for this
quantification [26]. The index is calculated by computing the SNR of multiple fre-
quency bands between the SOI and interfering sources. These frequency-band SNR
values are scaled nonlinearly and are weighted according to human perception based
on subjective testing. A plot of the frequency band weighting function can be seen
in Figure 1.3. The SII values range from 0 (completely unintelligible) to 1 (per-
fectly intelligible). The SII measurement is used in this study as a means to quantify
predicted human intelligibility of a signal with interfering noise.
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Figure 1.3: SII frequency band importance

1.7 Conclusion

The objective of this thesis is to more thoroughly study the TF masking technique
when used with distributed microphones. In particular, by demonstrating perfor-
mance of an ideal TF masker, we will evaluate and compare the performance of
practical TF masking techniques. Further we will compare TF masking to tradi-
tional and adaptive beamformers as well as the new technique of combining adaptive
beamforming with TF masking. We hypothesize that TF masking will show intelli-
gibility enhancement over beamforming-only processing and, further, that adaptive
beamforming combined with TF masking will be advantageous. Finally, we will utilize
objective intelligibility metrics along with informal subjective assessments to evaluate
and compare the speech intelligibility enhancements provided by these techniques.

1.8 Organization of Thesis

The organization of the remainder of this thesis is as follows. Chapter 2 introduces
the methods used to produce simulated and recorded data for use in this study, along
with discussing the techniques used to evaluate the performance of the target signal
isolation techniques. Chapter 3 provides a detailed explanation of the implementation
of the isolation techniques and the methods required to facilitate their evaluation.
Chapter 4 presents an experiment that establishes an upper-bound on TF masking
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performance, and Chapter 5 describes an experiment to determine the benefits of TF
masking over those of traditional beamforming. Chapter 6 presents an experiment to
determine the benefits of applying adaptive beamforming methods alongside the TF
masking technique. Finally, Chapter 7 summarizes the research and results of this
study and provides suggestions for future work on this topic.
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Chapter 2

Data Collection, Simulation, and
Evaluation Techniques

2.1 Introduction

The purpose of this study is to investigate the performance of the Time-Frequency
Masking analysis technique and how it compares to that of other sound source isola-
tion methods. Test data from a microphone array in a cocktail party scene is created
for analysis by means of both real microphone recordings and simulations. The real
microphone recordings are used to demonstrate the practical performance of these
analysis techniques, while the simulations are created to provide a wide variety of
testing parameters and allow for a more ideal setup in which to test these analyses.

In addition to these data creation methods, Monte Carlo techniques are utilized to
expand the range of data on which to test isolation performance. A description of
this process is provided in this chapter.

2.2 Real-World Data Collection Techniques

2.2.1 Microphone and Sound Source Placement

For the real data collected in this study, a microphone array was set up in a typi-
cal office-type environment. A total of 8 microphones were regularly distributed on
the ceiling of a support structure, and their positions were selected to represent a
typical “smart-room” environment. A photo of the microphone array can be seen
in Figure 2.1 while a 2D representation of their positions on the ceiling is shown in
Figure 2.2.

Additionally, 6 locations were chosen as source positions for data collection. A loud-
speaker was placed in each of these positions and an audio recording was played while
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Figure 2.1: Photo of research lab with microphone array on ceiling of support struc-
ture
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Figure 2.2: Distribution of microphone array on ceiling
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the microphone array response was recorded. The volume of the source was subjec-
tively set to approximately equal that of a human speaking at conversational volume.
A 2D representation of these 6 source locations is shown in Figure 2.3.
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Figure 2.3: Sound source placements within the recording environment

The microphone signals were amplified with RME Octamic-D preamplifiers, sampled
with RME HDSP9652 sound cards at 44.1 kHz, and downsampled to 16kHz for all
processing and analysis.

2.2.2 Sound Sources and Recording

A collection of 8 different audio recordings are used as the sound sources in this
study. Each recording contains a human voice speaking approximately 20 seconds of
sentences. Both men and women voices are included in the set of recordings, and
each recording contains a unique set of spoken words. For each of the 6 sound source
locations in the recording environment, every source recording is played individually
through the loudspeaker and the microphone array response is recorded. This yields
a total of 48 total microphone array response recordings (6 sound source locations ×
8 sound source recordings).

Because of the linear nature of the microphone response, these 48 recordings can
be combined to create a full cocktail party scene (where multiple sources are active
at once) as desired. For example, the microphone response to sound source # 1
at location #1 can be summed with the response to sound source #2 at location
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#2, yielding an overall response equivalent to that if a single microphone response
was recorded with both sound sources active simultaneously. Using this technique,
a cocktail party scene can be created with anywhere from 1 to 6 active speakers in
the scene. In addition, it provides a convenient way to parametrically diminish the
speaker of interest for studying performance at high and low SNRs.

2.3 Simulation Techniques

To understand the effects of the analysis methods over a wide range of scenarios, vir-
tual simulations are performed. A virtual environment can be defined to emulate that
of a real-life scenario (source and microphone positioning, room reverberation effects,
etc). A collection of MATLAB scripts (available online at the University of Kentucky
Vis Center website [33]) is used to create this virtual environment. Placing sound
sources at defined locations in the virtual environment allows for a simulation of one
or more speakers simultaneously speaking in a room. Additionally, microphone arrays
of varying geometries can be defined and simulated, and effects such as frequency-
dependent attenuation and room reverberation can be accurately simulated, creating
a realistic representation of a real-life scenario. Because there are no position mea-
surement errors (as there could be with real recordings), simulations can provide an
understanding of analysis performance in “ideal” scenarios, while also providing free-
dom from the requirements of a stationary and quiet lab space for recordings. Finally,
simulations allow for great flexibility in quickly changing an environment, reducing
time required to test various analysis techniques.

For this study, the simulated audio environment (microphone positions, source posi-
tions, and propagation speed of sound) were chosen to equal or closely match those
parameters from the real recordings. This allows for the most meaningful comparison
between results created from simulated and real microphone recordings. Similar to
the real recordings, the simulations are performed with only a single source active in
the scene. Using the same 8 source recordings (real voice recordings in a quiet room)
as with the real recordings, 48 total simulated microphone responses are created and
stored for future analysis.

2.4 SII Calculation

As described in Section 1.6, the Speech Intelligibility Index (SII) is used in this
study to quantify the intelligibility of a given speech audio signal. The SII metric
models nonlinear relationships to human intelligibility determined through extensive
subjective testing and is based on weighted SNR values across an audible frequency
range [26]. The SII calculation requires separation of the target source and interfering
sources, and the microphone response data must be designed to accommodate the
creation of signals which maintain target/interferer separation.

18



Because the simulation and real recordings were performed where only one source was
active at a time, it is possible to maintain this signal and noise separation required
for SII calculation. Consider an example cocktail party scene with 3 active sources
(source #1 at location #1, source #2 at location #2, and source #3 at location
#3). If we choose source #1 to be our Source Of Interest (SOI), meaning we want to
isolate source #1 from the two interfering sources, a microphone response containing
only the SOI, XS, can be taken as simply the microphone response simulated or
recorded with source #1 active. To create the microphone response containing only
the interfering sources (the “noise”), XN , the simulated or recorded response with
source #2 active is summed with the response with source #3 active. Together,
XS and XN fully represent the microphone response if it was simulated or recorded
with all three sources active simultaneously, XS+N , because XS + XN = XS+N .
This separability can be maintained throughout the isolation process (as described in
Chapter 3), which facilitates the calculation of the SII metric.

2.5 Monte Carlo Techniques

Monte Carlo techniques are applied throughout the experiments in this study to
survey a wide range of setup parameters. Though many parameters can be altered in
each simulation or recording, this study primarily investigates algorithm performance
for enhancing intelligibility in high levels of noise. The relative strengths of each
active source (target and interferers) is varied, providing a range of relative SNRs
between active sources. This allows for performance measurement of TF masking
and other isolation techniques across a variety of conditions ranging from “worst-
case” to “best-case” data.

As described in the previous sections, a cocktail party scene can be created at will by
the simple summation of simulated or recorded microphone responses. To change the
relative SNRs between source, we can simply pre-multiply the respective microphone
responses before summation, which is used to weight each source’s presence in the final
response. Weighting each contributing source by a unity gain results in each active
source having approximately the same power in the final microphone response, while
deviating from unity factors directly adjusts the SNR between the corresponding
sources. In this way, a small amount of simulated or recorded microphone array
responses (total of 48) can be used to create an extremely large number of unique
cocktail party scenes for analysis.

2.6 Overview

An overview of the complete process from data collection to performance evaluation
is shown in Figure 2.4. First, a single SOI and k interfering audio speech recordings
are selected for evaluation. Microphone and sound source locations are created in
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Figure 2.4: Overview of simulation, recording, and analysis process

a real audio environment, or virtually within a simulated environment. The micro-
phone array response to the real/simulated environments are recorded/simulated for
a single active source. Each of the array response vectors is weighted by its respective
weighting factor (w0 . . . wk) to adjust the relative SNRs. The interfering sources are
summed together into one overall noise response, XN . This noise response is used
along with the SOI microphone response, XS, by the various SOI isolation techniques
to create the final separate signal and noise outputs, YS and YN . Finally, these signal
and noise outputs are used to calculate the SII performance metric.

2.7 Subjective Evaluation

Beyond the automated intelligibility measurement of the SII, we recognize the need to
validate the speech intelligibility by a human listener. A formal subjective experiment
is beyond the scope of this work, but we have defined a scale by which to subjectively
rate a speech’s intelligibility, which is shown below in Table 2.1.

Table 2.1: Scale for subjectively rating speech intelligibility

Subjective
Rating

Description

No No words are discernible. May not even hear target’s presence.
Barely Target’s presence is detected, but words are only sparsely per-

ceived.
Moderately Multiple words are intelligible, but complete sentences or phrases

are not discerned.
Mostly Most words are accurately perceived, and sentences are sufficiently

complete to discern meaning.
Yes All words are accurately perceived with careful listening. Interfer-

ing noise may be present, but do not prevent complete intelligibility
of target.

This informal subjective scale will be used for discussion, to compare the performance
of the processing techniques, and to assess limitations and biases of the SII metric.
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Chapter 3

Analysis Techniques

3.1 Introduction

With microphone array response data created as described in Chapter 2, techniques to
isolate the SOI from interfering noise can be applied. The following sections describe
the implementation of these isolation techniques, especially as it relates to maintaining
the separability of signal and noise data for SII calculation.

3.2 Delay-Sum Beamformer Implementation

The delay-sum beamformer is not dependent on the nature of the signal itself, as it
only applies a constant time-delay (equal to propagation time from source to micro-
phone) to each sample in the signal. Because of this, the application and analysis of
the DSB effects are relatively simple.

Consider an environment with a single target source (SOI) at position rp and K
interfering sources at positions r1, . . . , rK . As described earlier, two microphone
responses are created (by simulation or recording) that either contain only the SOI
or only the interfering speakers: XS and XN , respectively. Beamforming is applied to
both of these signal vectors, selecting the beamformer focal point as rp. This results
in a beamformed signal YS with only the target present and another beamformed
signal YN (still beamformed at the target position rp) containing only the interferers,
which are the two signals required for SII calculation. Finally, both of the resulting
beamformed signals can be summed to give the overall beamformed result YS+N . An
overview of this process can be seen in Figure 3.1.
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Figure 3.1: Overview of DSB analysis technique for single SOI and K interfering
sources. Separate target and interfering signals are available for SII calculation.

3.3 Griffiths-Jim GSC Implementation

As described in Section 1.4, the GSC beamformer performs a simple delay-sum beam-
forming operation in conjunction with an adaptive blocking matrix branch. Because
of this adaptive process, the target and noise signals can not simply be superimposed
in the same manner as the DSB simulations, since the NLMS filters are based on past
and current values of both the signal and noise. Instead, a technique is used to create
maximal separability of target and noise signals, while maintaining the adaptive ad-
vantages of the GSC beamformer. This process is described below and an overview
is shown in Figure 3.2.

We first continue with the previous notation where XS, and XN represent data
vectors containing the microphone response due to only SOI and only interferers,
respectively. We also add XS+N being the combination of these such that XS+N =
XS+XN . However, we temporarily modify our notation such that these vectors have
already been aligned to the target source; that is, the “delay” portion of a delay-sum
beamformer has already been performed to steer the array response. These signals
are then weighted and summed which completes the delay-sum beamforming process
for these vectors. Each of these vectors is also converted to a blocking matrix: a
linear process consisting of pair-wise differences of vector columns. The adaptive
filter receives feedback from the total output YS+N and attempts to minimize the
noise signature in the total output. To ensure the accuracy of the signal and noise
outputs (YS and YN) such that YS + YN = YS+N , the signal and noise blocking
matrices are filtered by the same filter as that created from the total output YS+N .
This ensures that the nonlinear filtering process is applied equally to signal and noise
vectors, which allows for the separability required for SII calculation.
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Figure 3.2: Overview of GSC analysis technique with maintained target signal and
noise separation for SII calculation.

3.4 Time-Frequency Masking Implementation

In contrast to the DSB technique, the TF masker does not perform a constant opera-
tion across an entire audio signal. Instead, the TF binary mask dynamically updates
corresponding to the relative spectral power ratio between target and interferers in a
given TF window. For this reason, TF masking cannot be simply applied to target
and interferer signals separately (as with the DSB) but, rather, requires the input of
both the target and all individual interfering source signals.

Consider the example environment with a single target source (SOI) at positon rp
and K interfering sources at positions r1, . . . , rK , and with unaltered, un-steered,
microphone response vectors XS and XN . Beamforming is applied to the complete
microphone response XS+N at all source locations (rp, r1, . . . , rK), yielding K + 1
beamformed signals. TF masking is done on these signals as described in Section 1.5,
which gives the overall result of the TF masking process. However, to create separate
target and noise signals for SII calculation, the binary TF masks are saved at the time
of their calculation. These TF masks are then applied to two beamformed signals
(focal point rp), one containing only the target source, and the other containing only
the interfering sources, which are then used for SII calculation. This process allows
for realistic TF binary mask creation (by calculating binary masks in the context of
every source being active), while still maintaining separate target and noise signals
for intelligibility estimation. An overview of this process can be seen in Figure 3.3.
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Chapter 4

Ideal TF-Masking Performance

4.1 Introduction

To begin our study of TF masking performance with microphone arrays, we first inves-
tigate the ideal, or best-case, performance. Recall from the discussions in Section 1.5
and Section 3.4 that the TF masking algorithm operates by creating binary TF masks
through comparing the beamformed target TF signature to that of the interferers. In
a practical application, the microphone array response will contain the target signal
and the interfering noise together. To create reference signals for the TF comparisons,
the array response is beamformed on each source (target and interferers) to create
the best possible reference of each individual source for the mask creation process.
Because audio from each source will be present in the beamformed response of other
sources, the TF masking technique is unable to create perfect masks to block out in-
terfering noise. Recall from the discussion of Equation 1.25 in Section 1.5 that when
the target and noise energy occupy the same TF intervals, the masker performance
depends on the beamformer performance. In other words, because some amount of
the target signal is present in the beamformed response of a given interfering source,
the associated binary mask may allow the interfering noise signal to pass through
when it should not.

Although the target signal and interfering noise are not separable in a practical mi-
crophone array setup, our technique of maintaining signal/noise separability allows
for the TF masking performance to operate in an ideal sense. That is, if we provide
the mask creation algorithm signals containing only a single source (target or inter-
ferers), then the binary mask can be created in the best-case scenario, which is used
to understand the ideal or upper-bound performance of the TF masking technique.
Although the implementation of the TF masking is very similar to that described in
Section 3.4, a slight modification is required to facilitate the creation of ideal binary
masks. An overview of the modified implementation is shown in Figure 4.1.

It can be seen from the figure that the only modification to the TF masking imple-
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Figure 4.1: Overview of modified TF masking analysis technique for ideal performance
evaluation

mentation is that the signals used for mask creation are pure signals containing only
a single active source. This is used for the following experiment to determine ideal
masking performance.

4.2 Experimental Setup

For this experiment, the data created from both the virtual simulations and real
recordings are utilized, and the experiment is run separately on each set of data for
comparison. A total of 2, 3, or 4 sound sources are selected to be active in the
audio scene for each individual trial. For each trial setup, the individual sources are
randomly weighted to create varying SNRs between active sources, and the sources
are randomly selected from the set of 8 human speech recordings. In each trial, an
individual unique microphone response is created with only one active source. Delay-
sum beamforming is applied at each of the source locations and the results are passed
into the TF masking algorithm for analysis.
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4.3 Results and Discussion

4.3.1 Overall ideal TF masking performance

The speech intelligibility (SII metric) results from this experiment were plotted in
Figure 4.2. Both the DSB output intellgibility and the TF masking output intelli-
gibility were plotted against the raw intelligibility of the response from the closest
microphone (the best reference of the pre-processing target intelligibility). The simu-
lated data and the real recording data were included to show any differences between
the simulation technique and the real-data performance.

It can be seen from the figure that in every case, the TF masking technique outper-
formed the DSB in increasing the speech intelligibility from the unprocessed closest-
microphone signal. Although the DSB beamformer did slightly improve the SII from
that of the close mic (primarily in the simulated data), the TF masking was a great
improvement, especially in the range where close-mic SII was less than 0.25 (consid-
ered to be a threshold for human speech intelligibility).

The delay-sum beamformer is seen to not perform as well with the real data as that
of the simulated data. In fact, in the case of 4 active sources, the DSB actually
decreased the intelligibility from the unprocessed signal (though only slightly). This
is likely due to a combination of several reasons. First, the real recording data,
by nature, has a higher noise content than the corresponding simulation. Room
noise from computers, HVAC equipment and the like, along with equipment noise
and distortion effects, all help to create a higher noise floor than what is possible
in the simulation. Secondly, the DSB performance is dependent on the knowledge
of microphone and source positions in 3D space. These positions are precisely and
identically known in the simulation (because they are precisely defined); however,
measurement errors are certainly possible and even likely to occur in the real setup.
Finally, the propagation speed of sound is not a source of error in the simulation
because the processing algorithms assume the same propagation speed that the data
is simulated with. Although the propagation speed is calculated from measurements
of room humidity, pressure, and temperature for the real data, any error in this
calculation (for example, from measurement equipment inaccuracy) will be equivalent
to a positional error in the DSB algorithm. The DSB results do not match precisely
between the simulated and real data analyses, but the trends are very similar and are
within an acceptable range to lend credibility to the simulation results.

Although there are small differences between the simulated and real results, it is seen
that they do closely match overall. In each case, the TF masking and DSB results
have matching trends and differ on an absolute scale by only a few percent. The
close match between the simulation and real data results increases confidence in the
simulation’s ability to accurately predict real-life performance. Finally, it is noted that
the upper-bound of TF masking performance does not appear to depend on whether
the data is simulated or real, and may represent a true best-case performance goal
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Figure 4.2: Intelligibility improvement of DSB and ideal TF masking for 2,3,4 active
sources compared to closest microphone intelligibility (error bars depict depict one
standard deviation to each side of the mean)

for the TF masking algorithm.

Lastly, the results show that the TF masking algorithm is most beneficial in the
ranges of lower unprocessed intelligibility. First, the SII metric is bounded in [0, 1]
and, as such, the TF masking SII will approach the “unity line” (no improvement)
as the original unprocessed SII approaches 1.0. Additionally, in the cases where the
closest-mic SII is high (greater than approx. 0.6), the original unprocessed signal is
already completely intelligible and the TF masking is unable to greatly improve on the
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already-intelligible signal. Finally, there is a consequence of the ideal mask creation
process: because the TF masking algorithm is operating on signals containing only a
single target or interfering source, highly accurate binary masks can be created. These
masks, then, contain information regarding the target signal and actually shape the
interfering noise towards the target. In fact, subjective listening confirms that this
ideal mask creation process can, consequently, create artifacts of the target signal in
the noise signature used for SII calculation. Any amount of the target signal that
leaks into the noise reference signal decreases the resulting SII metric. In this case,
this effect is minimal, but may be cause for some artificial decrease in the TF masking
upper-bound performance.

4.3.2 Ideal TF masking improvement over DSB

To show the improvement of TF masking relative to the DSB, the intelligibility results
of both were plotted against each other in Figure 4.3. In this case, the SII of the
DSB result is on the x-axis and the y-axis is the SII of the signal after TF masking
processing. An SII of 0.25 is considered an approximate threshold where a speech
signal (less than 0.25) is unintelligible and a signal (above 0.25) is intelligible to a
human. The shaded areas of the figure denote where signals after only DSB processing
were unintelligible (SII less than 0.25) but became intelligible (SII above 0.25) after
TF masking.

These results show that the ideal TF masking technique offers significant improvement
over the DSB, especially in cases where the DSB output was unintelligible. In fact, in
every trial where the DSB output had an SII of less than 0.25, the ideal TF masking
output was above 0.25. This means that TF masking improved every unintelligible
DSB output to a result considered to be intelligible.

4.3.3 Subjective Performance

In addition to the SII performance metric, informal subjective listening was done by
the author in the case of 4 simulated active sources. The intelligibility results are
given in Table 4.1.

Table 4.1: Subjective listening assessment for 4 active sources in a simulated envi-
ronment

Close Mic SII Close Mic DSB Ideal TF Masking
0.1 No No Yes
0.2 No Barely Yes
0.6 Yes Yes Yes

The subjective assessment confirms that the ideal TF masking algorithm was able to
improve an unintelligible signal to a completely intelligible result. Because the binary
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Figure 4.3: Intelligibility improvement from DSB to TF masking. Shaded area in-
dicates where signal is unintelligible after DSB, but becomes intelligible after TF
masking (error bars depict depict one standard deviation to each side of the mean)

TF masks were created ideally, the interfering noise in the TF masking output is es-
sentially non-existent. Though there are some distortion artifacts in the TF masking
output due to the sharp transitions of the mask, the speech remains completely intelli-
gible and maintains the voice quality of the original speaker. The distortion artifacts
created by the TF masker can best be described as making the voice occasionally
“squeaky” with musical “blips” in the background.
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Figure 4.4: TF masking intelligibility improvement dependence on number of active
sources (error bars depict depict one standard deviation to each side of the mean)

4.3.4 Ideal TF masking with increasing active sources

Our final analysis of the ideal TF masking results is an investigation of the effects
of increasing active sources. We have performed experiments with 2, 3, and 4 active
sources in the audio scene for both real and simulated data. The TF masking output
SII is plotted against the DSB output SII for each quantity of active sources in
Figure 4.4. As before, the shaded areas indicate improvement from unintelligible
DSB output to intelligible TF masking output.

The results show that there is no clear dependence of the ideal TF masking perfor-
mance on the number of active sources (for 4 or less sources). For the higher values of
DSB SII, there is a slight direct relationship between increased active sources and in-
creased TF masking performance, while the low values of DSB SII show a slight inverse
relationship. The differences are not significant to draw any meaningful conclusions,
though it can be stated that in all trials where the DSB output was unintelligible,
the TF masking output was intelligible, regardless of the number of sources. This
implies that the ideal TF masking algorithm is effective at both low numbers of active
speakers, as well as increasing up to a full cocktail party scenario.
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4.4 Conclusions

In this chapter, an experiment was presented to determine the upper-bound (or best-
case) performance of the TF masking technique for 2, 3, and 4 active speakers. By
adjusting the input signals to the TF masking algorithm to contain only a single active
target or interfering source, the TF binary masks were created in an ideal fashion.
The traditional delay-sum beamformer was used to create the input signals to the TF
masking algorithm and its results were compared to the intelligibility improvement of
the TF masking technique. The processing techniques were applied to both simulated
data and real recorded data for comparison.

Through this experiment, it was determined that the ideal TF masking technique
provided significant benefit for improving the intelligibility of a speech signal, as
measured by both quantitative and subjective means. This was especially significant
in the cases where performing a DSB operation yielded an unintelligible signal that
was made intelligible by the TF masking processing. Though there were sources
of error in this experiment (target signal leaking into interfering noise, positional
errors with real recorded data, etc), these were determined to be negligible and the
results showed consistent and expected behavior. It was additionally shown that the
TF masking performance was not significantly affected by increasing the number of
active sources, and was able to consistently improve the speech intelligibility in all
cases. Further, we demonstrated a close match between the simulation results and
those from real data and will continue to use the simulation technique alongside real
recordings for the remainder of this study.

Finally, it should be restated that, because the TF masking algorithm was provided
with pure single-active-source signals on which to operate, the TF masking results in
this chapter represent an unrealistic best-case scenario and serve only to establish an
estimated upper-bound on the expected TF masking performance. In the following
chapter, we investigate the practical performance of the TF masking technique.
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Chapter 5

TF Masking Improvements over
Delay-Sum Beamforming

5.1 Introduction

Beamforming has been widely used to isolate a target source from amongst interfering
noise, particularly with use of the traditional delay-sum beamformer. As such, we
want to compare the practical performance of the delay-sum beamformer with that
of the TF masking processing to understand the benefits of the masking technique.
Unlike the previous experiment, we will be operating the TF masking script in a
practical manner, meaning that the input data will contain both target signal and
interfering noise which provides a realistic representation of what is possible in a real
application.

5.2 Experimental Setup

As with the previous experiment, the data created from both the virtual simulations
and real recordings are utilized, and the experiment is run separately on each set of
data for comparison. A total of 2, 3, or 4 sound sources are selected to be active in the
audio scene for each individual trial. For each trial setup, the individual sources are
randomly weighted to create varying SNRs between active sources, and the sources
are randomly selected from the set of 8 human speech recordings. For each trial, both
delay-sum beamforming and TF masking is performed on the microphone response
containing both target and noise to evaluate its practical performance. Note that
the delay-sum beamformer is used to create the input signals to the TF masking
algorithm, as described previously
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5.3 Results and Discussion

5.3.1 Overall DSB and TF masking practical performance

The intelligibility results of this experiment are displayed in Figure 5.1. The TF
masking output and DSB output SII values are plotted against the SII value of the
microphone’s signal closest to the target source. The results for 2, 3, and 4 sources
are shown for both the real and simulated data.

In these results, TF masking again shows a clear performance enhancement over
simple beamforming. The delay-sum beamformer was effective at increasing the SII
some amount from that of the close mic (primarily with the simulated data), but the
TF masking was able to further improve the intelligibility beyond the DSB.

In this experiment, the TF masking was provided input signals containing both the
target signal and interfering noise, which is a realistic setup. The results show a rather
significant decrease in TF masking performance from the upper-bound established in
the previous experiment. Recall from the discussion on the TF masking algorithm
that the beamformed response for each active source is used as the reference signal for
binary mask creation. Because these beamformed signals contain some of the other
active sources (recall eq.(1.25): beamformer gain at off-focal points is non-negligible),
the binary masks cannot be ideally created as in the ideal experiment. This has
a detrimental effect on the TF masking algorithm’s ability to block out interfering
noise, which is reflected in these results.

Finally, we again note a close match between the simulated and real data results in
the practical application of the TF masking algorithm. Note that there is a limited
test range for the case of 4 simulated sources: this is merely an artifact of the Monte
Carlo technique used to create the range of input data.

5.3.2 Practical TF masking vs DSB performance

To show the relative performance of the TF masking technique and its improvement
over the simple DSB analysis, the intelligibility results of both were plotted against
each other in Figure 5.2. As before, the shaded areas indicate improvement from
unintelligible to intelligible output as a result of applying TF masking after DSB
processing.

It can be seen in the figure that, as discussed, the TF masking regularly improves the
intelligibility of the signal past the DSB output. If compared to the corresponding
plot from the previous experiment (Figure 4.3), it is seen that there is a significant
decrease in the algorithm’s performance. This is, again, due to the practical nature
of the reference signals used for mask creation. Because the TF masking has as its
input the results of DSB operations, the TF masking performance is dependent on
the performance of the preceding beamformer.
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Figure 5.1: Intelligibility improvement of DSB and TF masking for 2,3,4 active sources
compared to closest microphone intelligibility (error bars depict predicted standard
deviation of results)

The primary results of interest are those that fall in the shaded area - scenarios where
TF masking enhanced the signal from unintelligible to intelligible. In the results of
this experiment, there are times when the TF masking did, in fact, improve the
signal from unintelligible to intelligible. However, it is shown that there is a range
of scenarios (DSB intelligibility values below approx 0.15) where TF masking did
not improve the SII value to a point considered intelligible. In these cases, the TF
masking did not improve the SII value above the estimated intelligibility threshold
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Figure 5.2: Intelligibility improvement from DSB to TF masking. Shaded area in-
dicates where signal is unintelligible after DSB, but becomes intelligible after TF
masking (error bars depict predicted standard deviation of results)
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of 0.25, but did, however, improve the SII by close to 100% in some cases. That is,
even in cases where the final result was not predicted to be intelligible, there was still
a measurable intelligibility benefit of applying TF masking.

5.3.3 Subjective Performance

As before, subjective listening was done by the authors and the results for a simulated
audio scene with 4 active sources are shown in Table 5.1.

Table 5.1: Subjective TF masking intelligibility improvement over DSB, with 4 active
sources in a simulated environment

Close Mic SII Close Mic DSB DSB-TF Masking
0.1 No No Barely
0.2 Barely Moderately Mostly
0.6 Yes Yes Yes

Although the SII predicted the inability of TF masking to improve an unintelligible
DSB-output signal to an intelligible signal, the authors’ subjective listening revealed
consistent improvement by applying TF masking. In this case, the TF masking
technique was not as effective as that in the ideal case, which is to be expected due
to the practical implementation used in this experiment. The TF masking results are
only shown for a single auditory scene (4 active sources, simulated data), but they are
consistent with subjective performance from the other audio scenes from this chapter.

Subjectively, the TF masker enhances the speech intelligibility by increasing the per-
ceived SNR of the target, and also by distorting the interference. While the inter-
ference of the simple DSB signal is clearly speech, the TF masking output contains
noise that, while reminiscent of human speech, is highly distorted. In fact, it is very
difficult to discern any words spoken by the interfering speakers (though the sug-
gestion of sentence/phrase structure is maintained to some degree). The noticeable
improvement in subjective speech intelligibility, in contrast with the marginal intel-
ligibility increase as predicted by the SII, demonstrates the inability of the SII to
predict human speech perception in all cases.

5.3.4 Practical dependence of TF masking on number of ac-
tive sources

We finally investigate the effects of the number of active sources on the TF masking
performance. The TF masking results (plotted against the DSB output SII level) are
plotted for 2, 3, and 4 sources in Figure 5.3.

It was shown in Chapter 4 that, for the ideal case, there is not a strong influence on
TF masking performance by the number of active sources in the audio scene. It is
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Figure 5.3: TF masking intelligibility improvement dependence on number of active
source (error bars depict predicted standard deviation of results)
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likewise seen here that in the practical case, no significant affects from the number
of active sources are seen in the results. Thus, we can conclude that TF masking is
practically effective with few active sources as well as “cocktail party” scenarios.

5.4 Conclusions

This chapter presented an experiment used to evaluate the practical performance of
Time-Frequency masking on simulated and real data. By performing the processing
in a way that is representative of a real-life setup, a realistic understanding of TF
masking performance (and how it relates to the delay-sum beamformer) was achieved.

It was found that, as expected, the practical performance of the TF masking technique
was reduced from that of the ideal case established in Chapter 4. Even so, TF masking
was shown to improve the intelligibility of an audio signal in every case from that
with only beamforming applied. Although there were cases where the TF masking
processing did not improve the speech intelligibility to an acceptable level as measured
by the SII metric, there were still regions where TF masking did subjectively improve
intelligibility from an unacceptable level to an acceptable one. Additionally, it was
found through informal subjective assessments that many of the cases the SII metric
identified as being unintelligible (while accurate for beamforming alone), were actually
intelligible by a human listener in the case of TF masking. Further, it was shown that,
as with the ideal case, the performance of TF masking was not strongly influence by
the number of active sources in the audio scene. Finally, the reliance of TF masking
on its beamformed inputs was discussed and how deficiencies in beamformer will
adversely affect the TF masking algorithm’s ability to create appropriate TF masks
and improve intelligibility. In the following chapter, we investigate the effects of using
an adaptive beamformer to create the requisite input signals for the TF masking
algorithm.
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Chapter 6

TF Masking with Adaptive
Beamforming

6.1 Introduction

The TF masking process compares the target signal and interfering noise data to
create the resulting binary masks. Up to this point, delay-sum beamforming has been
exclusively used to create the target and interferer reference signals for this process.
Recall from the discussion of Equation 1.25 that masker performance is dependent
on beamformer gains when target and interferers are active simultaneously. If, then,
the beamformer gain terms can be improved (increasing the ratio between focal point
and off-focal beamformer gains), we hypothesize that TF masking performance will be
enhanced. Because the Griffiths-Jim general sidelobe canceler (GSC) is a distinctly
different approach to removing interfering speech and has been shown to improve
speech intelligibility over that of the delay-sum beamformer [5], we attempt the novel
approach of using the GSC beamformer to create the TF masking input signals. The
improvement that the GSC provides over traditional DSB beamforming suggests that
TF masking will perform better with GSC-created input signals. This experiment is
designed to evaluate the improvement, if any, that GSC provides to the TF masking
process.

6.2 Experimental Setup

The experimental audio environment is setup identically to that of the previous exper-
iment (Section 5.2). For this experiment, however, not only is delay-sum beamforming
performed and TF masking performed with DSB input signals, but GSC beamform-
ing is also applied along with TF masking with GSC-beamformed input signals. This
allows for direct comparison between the DSB and GSC beamformers, as well as the
TF masking techniques with DSB or GSC inputs.
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6.3 Results and Discussion

6.3.1 Overall performance of TF masking with and without
adaptive beamforming

The intelligibility results from this experiment are shown in Figure 6.1. In this figure,
the SII value of each processing output is plotted against the SII value of the closest
microphone to the target source. As before, the DSB output and TF masking (using
DSB signals as the input signals to the TF masking algorithm) SII values are plotted.
However, the GSC adaptive beamforming output and TF masking (using GSC signals
as the input signals) are plotted as well for comparison.

These results show that, for low starting SII values (close mic SII less than approx-
imately 0.3), the GSC-TF masking algorithm matches or slightly outperforms the
DSB-TF masking performance. However, for starting SII values higher than this, the
DSB-TF masking outperforms the GSC-TF masking technique. This implies that for
low-intelligibility starting signals, the GSC-TF has negligible or slight improvement
from that of the DSB-TF masker. For higher values (where the close mic signal might
already be intelligible), the results imply that DSB-TF masking is preferred.

There is a clear dip in GSC beamformer and GSC-TF masking performance as the
starting SII value is increased. In particular, it can be seen that the GSC-TF masking
results closely follow the trends of the GSC beamformer. Recall that for the GSC-TF
masking algorithm, a GSC beamformer is first applied to all active sources and those
beamformed signals are used as input signals to the GSC-TF masking algorithm. It
follows, then, that a decrease in GSC beamformer performance (as we see for higher
SII starting values) would yield a decrease in GSC-TF masking performance as well.

We can also discern from these results that the GSC beamformer noticeably out-
performs the DSB beamformer at low starting SII values, particularly with increased
number of active sources and also with the real recording data. The GSC beamformer
has been shown to increase speech intelligibility over the delay-sum beamformer in
existing literature and these results agree.

Again, we note that the simulated data is a good representation of the real record-
ing data in these results. There is a noticeable exception, however, that the GSC
beamformer and GSC-TF masking algorithm for the real data under-perform their
corresponding performance with simulated data. This is partially due to the increased
noise floor of the real recording data. The GSC beamformer adapts to minimize the
power of its total output power, with the assumption that their is none of the tar-
get signal present in its noise reference signal. However, because some of the target
signal will certainly leak into the noise reference, it is likely that the GSC actually
attenuates some of the desired target signal in its output. This effect is primarily
seen for high (greater than 0.5) SII starting values. Because the signals in this range
are mostly intelligible to begin with, its effects may be negligible.
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Figure 6.1: Intelligibility of DSB, TF masking using DSB inputs, adaptive beamform-
ing (GSC), and TF masking using GSC inputs (error bars depict depict one standard
deviation to each side of the mean)

Lastly, there is a consequence of our analysis technique that will decrease the mea-
sured performance of the GSC beamformer and GSC-TF masking processes. In our
discussion in Section 3.3, we described a method for maintaining separability of target
and noise signals through the adaptive beamforming process. Because the adaptive
filters of the GSC use the total output signal as their reference signal, the actual
filtering process shapes the filtered signals corresponding to the output signal. When
the pure target and pure noise signals are passed through these adaptive filters, these
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signals are likewise shaped corresponding to the total output reference signal. This
is primarily noticed in the pure noise signal because the target signal is leaked in.
Because the SII calculation relies on relative SNRs between signal and noise, any tar-
get signal that is found in the interfering noise signature will decrease the SII value,
artificially lowering the SII metric. For cases where the target signal is stronger to
begin with (ie higher starting SII values), the filters will more strongly shape the
noise reference, exacerbating this effect. This is likely the primary cause for the dip
in performance for higher close-mic SII values that is not seen for low close-mic SII
values.

6.3.2 DSB-TF and GSC-TF performance vs DSB

We next look at the difference of TF masking with traditional delay-sum and adaptive
beamforming in Figure 6.2. We choose the SII value of a signal having only the
traditional DSB applied as a common reference for both the DSB-TF and GSC-TF
masking techniques. This allows for a consistent comparison of the two methods and
provides for an understanding of the benefits, if any, of using adaptive beamforming
in conjunction with TF masking.

We can see from this view of the results that the GSC-TF masking slightly outper-
forms the DSB-TF masking results in all cases where the DSB output was considered
unintelligible (DSB SII < 0.25). This is most noticeable in the real recording data
where the effect is more apparent. For values where the DSB output was considered
intelligible to begin with (DSB SII > 0.25), the GSC-TF masking performs less well
than the DSB-TF, though this is likely primarily an effect of SII calculation issues
as described in the previous section. Additionally, this range where the GSC-TF
under-performs the DSB-Tf has high initial intelligibility and, as such, the decrease
in performance does not significantly matter.

Lastly, the adaptive beamforming technique, along with the GSC-TF masking tech-
nique, introduce more distortion effects than the DSB and DSB-TF masking does.
This can cause a decrease in the SII measurement of intelligibility more so than
the actual human intelligibility decreases. This is another cause for potential mis-
measurements of the SII value. Formal subjective testing will help to clarify the
amount of this error, but is beyond the scope of this work.

6.3.3 Subjective Performance

Subjective testing by the authors was performed to validate the SII intelligibility
prediction of TF masking with adaptive beamforming. The subjective intelligibility
measurements are shown below in Table 6.1, where the GSC column is a measure of
the General Sidelobe Canceler (Griffiths-Jim) adaptive beamformer, and GSC-TF is
the TF masking results using adaptive beamforming.
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Figure 6.2: TF masking with DSB and adaptive beamforming inputs compared to
DSB only intelligibility (error bars depict depict one standard deviation to each side
of the mean)

It was determined that the adaptive beamforming TF masking technique did not no-
ticeably improve the speech intelligibility in the case of close-microphone SII equaling
0.1. However, we noted that the interfering noise was more distorted using adaptive
beamforming inputs, rather than simple DSB inputs; that is, it was more difficult
to pick out the interfering speakers using the adaptive beamforming inputs. When
using the DSB inputs, the interference is suggestive of human speech (though highly
distorted), while the GSC inputs cause the interference to be non-suggestive of any
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Table 6.1: Subjective TF masking intelligibility improvement (with and without adap-
tive beamforming), with 4 active sources in a simulated environment

Close
Mic SII

Close
Mic

DSB GSC DSB-TF
Masking

GSC-TF
Masking

0.1 No No No Barely Barely
0.2 Barely Moderately Moderately Mostly Yes
0.6 Yes Yes Yes Yes Yes

human speech.

Further, we found that when the close-microphone SII equaled 0.2, the simple beam-
forming TF masking inputs yielded a mostly intelligible signal, while the adaptive
beamforming inputs yielded a fully intelligible signal. Finally, in the case where even
the close-microphone was completely intelligible, the TF masking output using adap-
tive beamforming again contained interfering noise less perceivable than that of the
TF masking using the simple DSB.

Although, there are cases where the adaptive beamforming inputs did not subjectively
improve the speech intelligibility over that of the DSB beamforming inputs, the de-
crease in interferer intelligibility caused by adaptive beamforming suggests that, in
other cases beyond those tested here, the adaptive beamforming technique may be
beneficial in increasing target intelligibility.

6.3.4 TF masking with adaptive beamforming dependence
on number of active sources

Our final analysis of the TF masking technique with adaptive beamforming is to
investigate its dependence on the number of active sources. The performance results
for 2,3, and 4 sources are shown in Figure 6.3.

As with the previous analyses, the GSC-TF masking technique is not shown to be
significantly affected by the number of active sources in this study. We can again con-
clude that the TF masking with adaptive beamforming technique is equally effective
for few active sources up to a full cocktail party scenario.
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Figure 6.3: TF masking intelligibility using adaptive beamforming dependence on
number of active sources (error bars depict depict one standard deviation to each
side of the mean)
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6.4 Conclusions

In this chapter, we presented an experiment to investigate the novel technique of com-
bining Time-Frequency masking with established adaptive beamforming techniques.
The results of this experiment were compared to those of the TF masking technique
with traditional delay-sum beamforming. The experiment was performed using 2, 3,
and 4 active sources in the audio scene, and the target isolation methods were applied
to both the simulated and real recording data.

We found that for the important range of analysis (where the close-mic or traditional
DSB outputs were unintelligible), the adaptive beamforming TF masking technique
matched or outperformed the DSB-TF masking results. Additionally, it was shown
that, as expected, the GSC adaptive beamformer performed better than the simple
DSB beamformer for lower levels of initial intelligibility. Although the GSC and
GSC-TF masking results were less effective at higher levels of initial intelligibility (as
measured by SII), it was determined that this could be a consequence of non-perfect
SII calculation due to target/noise leakage and distortion effects.

By comparing the GSC-TF and DSB-TF masking process to a common reference
(DSB output intelligibility), we showed that the GSC-TF masking was beneficial
over the DSB-TF masking for low levels of initial intelligibility. Additionally, informal
assessment showed that the SII measurement was pessimistic in its evaluation of the
improvements to low initial intelligibility levels, especially when the nature of the
noise was highly distorted speech. Further, the effects of distortion and its effects on
quantifying intelligibility with the SII metric were presented and discussed. Finally, it
was determined that the TF masking used in conjunction with adaptive beamforming
was not significantly affected by increasing the number of active sources in the audio
scene which is consistent with the experimental results of the previous chapter.
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Chapter 7

Final Conclusions and Future Work

The goal of this thesis and research was to further develop the application of Time-
Frequency masking using distributed microphone arrays and to evaluate its perfor-
mance. By creating a large amount of test data through recording and simulation
techniques, overall trends were determined as to the improvement TF masking pro-
vides over other target isolation techniques. Using the automated Speech Intelligibil-
ity Index metric and informal subjective assessment allowed for the measurement of
improvement by the TF masking technique. A series of experiments were presented
and their results have led to the following:

• We developed an upper-bound for the intelligibility improvement caused by the
TF masking algorithm. This was done through operating the TF masking in
an ideal, yet unpractical, manner.

• TF masking was shown to improve speech intelligibility beyond that of delay-
sum beamforming, as measured by both the SII and subjective ratings.

• TF masking, when used in conjunction with adaptive beamforming can posi-
tively impact speech intelligibility over using simple non-adaptive beamforming.

• Our technique of simulating an audio scene is effective at creating a representa-
tive dataset on which to test the various target isolation techniques presented
in this work.

• The SII metric is useful for automated quantification of speech intelligibility,
but does not perfectly predict a human’s ability to discern speech from amongst
interfering noise.

• Our techniques for analyzing the data while still maintaining target/interferer
separation (as required for SII calculation) are effective and useful.

In this work, we have tested the performance of TF masking compared to other iso-
lation techniques over a large dataset. By using Monte Carlo methods, we tested
these techniques over an assortment of scenarios by varying relative source SNRs,
number of active sources, source positions, and audio speech recordings. However,
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our work did not include varying the physical environment (such as room reverbera-
tion), nor did we include a study of the dependence on microphone array positioning.
Because other work has determined a dependence on the physical distribution of the
microphones in the array [21], further work investigating its effects on TF masking
may be beneficial. Additionally, these experiments studied TF masking performance
exclusively with an array containing only 8 microphones; as such, future research of
this topic may find value in studying the relationship between array size and isolation
performance.

We determined in our experiments that the SII metric was valuable in predicting
speech intelligibility (especially for use in Monte Carlo experiments), but did not
perfectly predict human intelligibility. This issue was worsened particularly in cases
where we were unable to maintain perfect target/interfering isolation throughout
the TF masking or beamforming algorithms. The “leaking” of target or interfering
sources into each other lowers the SII value, while not necessarily lowering the human
intelligibility. Additionally, subjective assessments indicated that the SII metric was
pessimistic in its evaluation of TF masker intelligibility, primarily due to its incon-
sideration of the nature of interference. For low values of intelligibility, the nature
of interference became important wherein beamforming-only signals had speech-like
noise, while TF masked signals contained highly distorted speech noise. Though the
SII predicted similar intelligibility measures to these signals, the latter was subjec-
tively more intelligible. To better understand the intelligibility of a speech signal,
future work should include a formal subjective study or improved automated intelli-
gibility metric.

Overall, we have shown that TF masking is an effective technique for improving
speech intelligibility of a target source in a “cocktail party” environment, and that the
technique of combining TF masking with adaptive beamforming can further increase
intelligibility. Future study of this topic should investigate the effects of microphone
array and audio environment parameters that this study did not, further describing
the intelligibility benefits of Time-Frequency masking.
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