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Abstract of Dissertation 

RELATIONSHIPS BETWEEN ANIMAL TEMPERAMENT AND SYSTEMIC 
IMMUNE RESPONSES IN BEEF CATTLE EXPOSED TO CONDITIONS 

ASSOCIATED WITH CONVENTIONAL MANAGEMENT 

Measures of temperament have been shown to influence physiological responses. 
Exit velocity (EV) has been identified as an objective, robust measure of temperament 
that can be used to predict subsequent performance of cattle. Additionally, previous 
studies from our lab indicate this measure of temperament may be related to production 
of interferon-γ (IFN-γ), a cytokine associated with cell-mediated immunity (CMI). 
Whereas research has investigated effects of EV upon immune responses, the overall goal 
of these studies was to examine this relationship under a variety of scenarios including 
human handling, transportation, and exposure to endophyte-infected tall fescue (E+) for 
determination of its ability to influence CMI in cattle. 

In each of 5 experiments, calves were classified as either high or low EV animals, 
based upon measurements obtained prior to initiation of experimental periods. The 
hypothesis for these studies was that calves with high exit velocities would have lower 
systemic immune responses to applied treatments. Two experiments were designed to 
examine the relationship between exit velocity and lymphocyte IFN-γ production during 
and following a period of exposure to E+ seed and increased temperature humidity index 
conditions. Preliminary measures of this cytokine indicated a positive relationship with 
EV. During application of heat and E+ treatment application, no differences in IFN-γ 
production were detected between EV or endophyte treatment groups. However, in both 
experiments, after temperatures were returned to thermoneutral and E+ heifers were 
placed on the endophyte-free treatment, the positive relationship between exit velocity 
and total lymphocyte production of IFN-γ observed in baseline samples was 
reestablished. Similarly, during an experiment examining IFN-γ production by 
lymphocytes in steers during the 4 weeks following a 10h, 805 km transport study, 
average lymphocyte production of IFN-γ was higher and lymphocyte proportions 
producing IFN-γ lower in low EV steers, but total lymphocyte production of this cytokine 
did not differ between exit velocity treatments. In a grazing and finishing study, cattle 
were placed on E+ or novel endophyte pastures, with balanced representation of low and 
high EV treatments within each pasture. During the subsequent finishing period, blood 
samples for lymphocyte IFN-γ production were collected from a single high EV calf from 
each pasture group. Neither endophyte nor exit velocity was detected to be related with 
lymphocyte production of IFN-γ. In an experiment examining changes in cytokine gene 
expression changes during acclimation to human handling, IFN-γ, Il-6, IL-10, and IL-12 
were observed to increase linearly over the experimental period in all calves, irrespective 



 
 

of exit velocity designation. In the same experiment, whole period pro-inflammatory 
tumor necrosis factor-α expression was higher for high EV calves, but interferon-γ (IFN-
γ) was lower in this same treatment group. These studies, cumulatively, indicate EV may 
be related to systemic production of IFN-γ, but abrupt changes to an animal’s 
environment may serve to mask this relationship. 
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Chapter 1: Literature Review 
 

Introduction 

 Regardless of the production scenario, calves will experience some form of stress, 

or a disruption to homeostasis following perceived endangerment that induces an 

adaptive response (Holsboer and Ising, 2010), within their lifetime. Common stressors 

experienced by beef calves may involve exposure to novel situations such as weaning, 

transport, and introduction to new herd mates (Chen et al., 2015), but may also include 

environmental factors, such as extreme ambient conditions (Hahn, 1999). Physiological 

responses to these stimuli may depend on a variety of factors including the duration of 

the stressor (Chappell et al., 1986; Dhabhar and Mcewen, 1997), previous exposure to the 

stimuli (Cordero et al., 2003), and current immune status of the animal (Von Borell et al., 

2007). Additionally, these physiological responses may have further implications on 

growth performance and immune system responses (Duff and Galyean, 2007). 

Human presence may be perceived by the calf as a threat, and as such may be 

considered a stressor. An animal’s ability to identify and properly respond to a threat is 

vital to ensure its survival (Taylor et al., 2000). One visible mechanism through which 

this response proceeds is the fight-or-flight response, which is dependent upon acute 

changes in the adrenal gland (Cannon, 1929; Taylor et al., 2000; Goldstein and Kopin, 

2007). Controlled by the sympathetic-adrenal-medullary axis (SAM), fight-or-flight 

responses occur very rapidly after perception of the stimulus by the animal, resulting in a 

cascade of neurological signals, from the cerebral cortex to the hypothalamus, which 

activate the autonomic nervous system (Lynch, 2010). This activation results in the 

production of catecholamines through 2 related, yet very distinct, pathways: 1) a direct 
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response is the production of norepinephrine by peripheral sympathetic nerve endings 

and 2) indirectly, epinephrine and a small amount of norepinephrine are produced by the 

innervated adrenal medulla (Griffin, 1989; Chen et al., 2015). These are the compounds 

directly responsible for the behavioral modifications associated with fight-or-flight 

responses (Chen et al., 2015). 

In addition to activation of the SAM axis, exposure to a stressor also activates the 

hypothalamic-pituitary-adrenal (HPA) axis. When stimuli are perceived by the calf, the 

neuropeptides vasopressin and corticotropin-releasing hormone are released by the 

paraventricular nucleus of the hypothalamus, stimulating the anterior pituitary to 

synthesize and release adrenal corticotropin hormone (ACTH; Maier and Watkins, 1998; 

Burdick et al., 2011). This hormone then interacts with the adrenal cortex to induce 

production and release of glucocorticoids (Maier and Watkins, 1998).  However, it is 

important to note that these two axes are intimately related. Glucocorticoid production by 

the HPA axis can be used to further enhance fight-or-flight responses by enhancing SAM 

axis catecholamine production, and catecholamines regulate hormone release from the 

hypothalamus, pituitary, and adrenal cortex (Carroll and Forsberg, 2007). 

Although early models of stress suggested commonality in the neural and 

endocrine responses to various stressors (Selye, 1950), recent models have evolved to 

account for evidence that different stressors have unique mechanistic ‘fingerprints’ 

(Goldstein and Kopin, 2007).  That evidence includes work which has shown that both 

the type and duration of stress can result in not only different endocrinological responses, 

but also different immunological responses (Dhabhar and McEwen, 1997; Bowers et al., 

2008).  Generally, acute stress responses are considered adaptive, whereas chronic 
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exposure to stress is typically associated with maladaptive, or pathological responses 

(McEwen, 2004).  

 

Temperament 

There is considerable variation among individual animals in how potent responses 

are following exposure to stressors. ‘Temperament’ is a descriptive term commonly used 

for characterizing differing animal responses to particular, common stressors (Friedrich et 

al., 2015). However, temperament is an aggregate of responses encompassing multiple 

traits that are both expressed and unobserved, making it exceedingly difficult to achieve a 

true measure of this behavioral complex (Kilgour et al., 2006; Réale et al., 2007; 

Friedrich et al., 2015). The concept of temperament generally implies an element of 

stability over time and the presence of intra-animal variation within a given species 

(Réale et al., 2007). Because temperament is considered to represent consistent 

differences in individual sensitivity to stressors over the long-term, it would seem that 

temperament-related influences on the SMA and HPA axes and their sequalae would 

align with those associated with chronic, as opposed to acute stress.  

‘Measures of temperament’ do not directly assess differences in temperament 

among a group of animals, per se, but instead measure differences in various behavioral 

traits associated with temperament. With domesticated animals like cattle, many of the 

temperament-related measures of interest are those that involve amenability to 

interactions with humans. For example, measures such as chute scores, exit velocities, 

and pen scores are often considered to be measures of variation in animal response to 

interaction with humans (Adamczyk et al., 2013).  
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There are several reasons for measuring temperament-related behaviors, such as 

explaining differences in mating success and social status within a group of animals 

(Réale et al., 2007), or in gaining an understanding of how a particular response variable 

might be related to production characteristics of importance, e.g., growth and 

immunological function. Such relationships between outward, behavioral signs of 

differences (i.e. temperament-related measures) and physiological outcomes have been 

described. For example, withcattle, the HPA-derived hormone cortisol has been reported 

to be positively correlated with exit velocity (Fell et al., 1999; Curley Jr et al., 2006). So, 

in some ways, measures of temperament can be considered relatively easily monitored, 

behaviorally exhibited proxies of the tolerance of animals to stress-inducing conditions. 

However, because the common measures of cattle temperament are designed to assess 

animal reactions to human presence and/or activity, it remains unclear how such 

measures might relate to other commonly encountered stress-inducing scenarios which 

may or may not directly involve human interaction. Furthermore, given that different 

stressors result in different stress response patterns in a variety of animal models 

(Goldstein and Kopin, 2007; Bowers et al., 2008), and that the relationship of specific 

temperament-related measures to specific stressors is ill-defined and likely complex, the 

challenges associated with attempting to relate physiological outcomes to specific 

temperament-related measures should be apparent.  With the current state of knowledge, 

it would be premature to attempt to develop comprehensive models to predict 

physiological outcomes associated with specific temperament-related measures for 

domestic livestock. What is currently needed is empirical data demonstrating such 

relationships. To be useful, such determinations need to be conducted using specific 
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temperament-related measures under specific management scenarios, with care taken not 

to confound interpretations by attempting to relate responses to broadly-defined concepts 

such as ‘stress’ and ‘temperament’, per se.  With beef cattle production, one potentially 

useful temperament-related measure is chute exit velocity. 

 

Exit Velocity 

As a commonly used measure of animal behavior, exit velocity serves as a 

reliable, objective measure of temperament-related responses that is relatively 

inexpensive and does not interfere with the duration or efficiency of typical cattle 

processing practices. Exit velocity is calculated as the amount of time it takes an animal 

to traverse a set distance after release from the head gate, and can be easily applied to any 

production system (Burrow et al., 1988), as it only requires two set points and a timer. 

This moderately heritable (Burrow and Corbet, 2000) measure has been reported to be 

highly repeatable over time, (Petherick et al., 2002; Curley Jr et al., 2006; Bruno et al., 

2016), with the first measure of exit velocity on cattle reported as a good predictor of 

subsequent measures, indicating only a few measurements may be needed to obtain a 

reliable assessment of a given animal’s temperament using this methodology (Petherick 

et al., 2003). 

Despite its popularity as a measure of temperament, there is some debate 

regarding what aspect of behavior exit velocity measures in cattle. Although it is often 

assumed that measures of temperament are indications of the variability between 

individual animals in fear responses (Petherick et al., 2002; Adamczyk et al., 2013), it has 

been suggested exit velocity and other measures of temperament may be measuring 
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multiple behavioral traits (Réale et al., 2007; Friedrich et al., 2015). Kilgour et al. (2006) 

used principle component analyses to examine which of their applied behavioral tests (i.e. 

fear of human, flight time after restraint, flight distance, etc.) explained the greatest 

amount of variation between animals in terms of behavior and ability to cope with 

various situations. The behavioral tests were initially assessed for variation within each 

test, repeatability of a given measure among animals, relationships between each of the 

tests, and the frequency of responses for each test. The behavioral tests that best 

accounted for the variation observed during the initial tests included flight time (similar 

to exit velocity, but without dividing time by distance), open-field test (i.e. visual 

isolation from herd mates), restraint test (time to catch the animal in the head gate), and a 

“following” test (how much area the animal covers when a human approaches from 

behind). Collectively, the authors described these behaviors as a measure of general 

agitation, as it is unknown what the combination of these tests describes. In particular, the 

tests which made up this first principle component did not involve the same level of 

human interaction, with two of them including no human presence at all. As these tests 

were determined to be related, this may indicate that exit velocity is measuring something 

in addition to fear of humans (Kilgour et al., 2006; Petherick et al., 2009b), but these 

factors remain unknown at this time. Petherick et al. (2009a) distinguished between the 

temperament-related facets of  “general agitation” and “fear of people”. In their work, by 

establishing a testing scenario in which exit velocity (or “flight speed”) was assessed with 

animals blinded to the presence of humans, they concluded that exit velocity was 

associated with general agitation, whereas tests determining how closely cattle 

approached humans were more definitively associated with fear of people. Thus, the 
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complexity of exit velocity may provide an element of stability, making it resistant to the 

influences of variation in human handling and other environmental stimuli (Petherick et 

al., 2002; Petherick et al., 2003; Petherick et al., 2009a). 

Due to this relative stability and repeatability across serial measurements, exit 

velocity may serve as a useful sorting factor for finishing cattle, as several studies have 

noted this measure of temperament is related to calf feedlot growth performance. Cattle 

with high exit velocities upon entry to the feedlot have been found to have decreased feed 

intake (Nkrumah et al., 2007; Cafe et al., 2011; Bruno et al., 2016) and average daily gain 

(Burrow and Dillon, 1997; Falkenberg et al., 2005; Bruno et al., 2016). However, there 

are mixed accounts of the relationship between exit velocity and gain efficiency, with 

reports of both no relationship (Cafe et al., 2011, Brahman Cattle; Bruno et al., 2016; 

Bruno et al., 2017) and both increased (Café et al., 2011, Angus cattle) or decreased 

efficiency in high exit velocity calves (Petherick et al., 2002). Cafe et al. (2011) asserted 

any relationship between this measure of temperament and growth performance is largely 

due to behavioral, rather than metabolic, influences on intake. This interpretation appears 

to assume that decreased intake is a consequence of decreased feeding time rather than 

the converse.  It would seem that a more parsimonious explanation is that DMI is reduced 

in high exit velocity animals as a consequence of direct appetite suppressive effects of the 

endocrine changes associated with stress responses. 

 

Handling 

Increased handling of young calves has been demonstrated to decrease measured 

exit velocities (Burrow, 1991), possibly as a consequence of instilling a sense of trust, 
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rather than fear, of humans in calves at an early age. This effect was deemed more 

effective if the intensified handling period lasted longer than 3 months (Burrow, 1991). 

Interestingly, Petherick et al. (2009a) reported that cattle exposed to poor handling 

practices (i.e. increased noise, confined for extended periods in the working chute, 

slapping with open hands, handling of heads, etc) during backgrounding had a more rapid 

decrease in exit velocity over time than did calves minimally exposed to human contact, 

indicating that this measure of temperament is an innate trait that is not necessarily 

reflective of previous handling experiences. Others (Petherick et al., 2002; Curley Jr et 

al., 2006; Bruno et al., 2016) have also noted decreasing exit velocities in cattle following 

repeated exposure to human handling. 

 

Transportation 

Transport and handling are interlinked in the beef industry and may pose as 

predominant stressors that lead to immunosuppression as animals are introduced to new 

environments and social structures while interacting over a short period of time with new 

human handlers (Trunkfield and Broom, 1990; Chen et al., 2015; Brown and Vosloo, 

2017). Transportation, in particular, has been described as one of the most stressful 

events in a calf’s life (Mormede et al., 1982; Riondato et al., 2008). Periods of transport 

are associated with increases in cortisol and epinephrine concentrations noted in cattle 

following this activity (Burdick et al., 2010; Hulbert et al., 2011), with a positive 

relationship occurring between these hormones and exit velocity (Burdick et al., 2010). 

Effects of exit velocity on other variables in response to transportation have been noted in 
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cattle but are primarily immunology related and will be explored further in the next 

section. 

 

Immunology 

The immune system is a highly developed system whose purpose is seek out and 

eradicate any foreign material it encounters (Farmer et al., 1986). These responses can be 

broadly classified as either local or systemic based on extent the of the immune response. 

Local immune responses are contained within a certain area or tissue, whereas systemic 

immune responses affect multiple areas or tissues (Merriam-Webster, 2001). In either 

case, an effective immune response is the one that utilizes effector cells in an efficient 

manner to eradicate the insulting material from the body. 

To facilitate this purpose, diverse signaling molecules known as cytokines 

(Janssen et al., 2010) are synthesized and secreted by several cells within the body 

including macrophages, monocytes, dendritic cells, and T cells (Fiorentino et al., 1991; 

Fadok et al., 1998; Geissmann et al., 2010) to regulate both innate and adaptive immune 

systems (Vilček and Feldmann, 2004). These molecules, as will be evidenced below, are 

involved in all aspects of immunity, and are key in directing the entire system toward an 

appropriate response.  

The immune system is separated into two major branches: innate and adaptive 

(Murphy et al., 2012). The innate system is present at birth and is the generalized 

response to any foreign body (Lynch, 2010), and can be used to direct the adaptive 

immune response (Iwasaki and Medzhitov, 2010). This system is comprised of multiple 

first responders that serve as sentries for foreign material, recruiters for other immune 
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system components needed to remove the insulting material from the body, and antigen 

presenting cells (Medzhitov and Janeway, 1997). 

Despite the distinction between innate and adaptive immunity, it is important to 

note that many of the members of the innate branch required for initiating the immune 

response are also critical for sustaining the adaptive response. For example, to combat 

rapidly replicating pathogens, components of innate immunity, such as macrophages and 

dendritic cells, may be utilized at sites of infection to activate and support B and T cell 

responses (LeGrand and Alcock, 2012; LeGrand and Day, 2016). Macrophages and 

dendritic cells are immune system mediators which serve as antigen presenting cells, or 

cells which phagocytize foreign material and present it to B and T cells to activate the 

adaptive immune system (Hamilos, 1989), and are primarily resident (macrophages) or 

circulatory (dendritic cells) in nature (Geissmann et al., 2010). However, these two cell 

types are also responsible for production of many of the effector molecules, or cytokines 

and chemokines, produced in the body. This synthesis is required during the innate 

response to assist in recruiting the correct cells to the site of inflammation, and in the 

adaptive response for differentiation, recruitment, and suppression of B and T cells 

(Geissmann et al., 2010). 

 

Adaptive Immunity 

The primary goal of an immune response is to eradicate the pathogen with 

minimal damage to host, which is accomplished through development of increased 

specificity to both recognize and eliminate the pathogen (LeGrand and Day, 2016). The 

adaptive branch of the immune system is developed throughout the course of an animal’s 
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life, is heavily influenced by the pathogens encountered, and represents the level of 

specificity to which the immune system combats a given pathogen (Schenten and 

Medzhitov, 2011). Although this system is generally discussed separately from the innate 

system, and its effects are slower to appear, it is important to recognize that these two 

systems are intertwined and dependent upon one another for effectively combating a 

pathogen. Cell surface receptor expression of B and T cells, as determined by random 

chain pairing and rearrangement of somatic DNA, dictates the efficacy and efficiency of 

any adaptive immune response (Germain, 2002). An example of establishing adaptive 

immunity is through vaccination, which typically utilizes attenuated-live or killed 

pathogens administered to a subject to facilitate host development of antibodies and T 

cells specific to the pathogen(s) present in the vaccine (Murphy et al., 2012). This 

establishment of primary immunity is desirable to impede replication and promote 

eradication of the pathogen once it has been encountered, thereby reducing and/or 

preventing bodily harm (LeGrand and Day, 2016). 

 Adaptive immunity can be further broken down into humoral and cell-mediated 

responses. The simplest description to differentiate between these two responses is how 

the encountered antigens are processed: humoral responses address extracellular bacterial 

pathogens, whereas cell-mediated responses are used in eradication of intracellular 

bacterial and viral pathogens (Murphy et al., 2012). 

 

T cells 

T cells are developed in the thymus and divided into CD4+ and CD8+ lineages 

based upon the antigen recognition proteins on their surfaces (MHC class-II and MHC 
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class-I, respectively; Germain, 2002). CD4+ T cells, commonly referred to as T helper 

cells, are involved in B cell activation, macrophage activation, neutrophil recruitment, 

and immune suppressive activity, in addition to other crucial roles within the immune 

system including production of a wide array of cytokines (Kumar et al., 2014; Zhao et al., 

2018). This class of T cells is further divided into 5 subsets (TH1, TH2, TReg, TH17, and 

TFH) based upon effector functionality (Murphy et al., 2012). However, this review will 

focus on TH1 and TH2 subsets. These two subsets are equally important to host health, but 

act in support of different responses. The TH1 subset assists with the detection and 

removal of intracellular pathogens (i.e. cell-mediated responses), whereas the TH2 subset 

serves as a mediator of allergic, extracellular pathogen, and antibody production 

responses (i.e. humoral immunity; Scott, 1993; Romagnani, 1999; Dimitrov et al., 2004). 

The balance between these two subsets is crucial to initiating and maintaining the 

appropriate immune response for a given invading pathogen and is dependent upon the 

cytokines to which undifferentiated CD4+ T cells are exposed (Vukmanovic-Stejic et al., 

2000). TH2 T cells are activated by monocyte-derived interleukin-10 (Murphy et al., 

2012). Upon activation, TH2 T cells produce interleukin-4, which functions as the cell 

survival and growth factor for this CD4+ subset (Minshall et al., 1997). Both interleukin-4 

and interleukin-10, individually and in synergism, have been reported to suppress 

dendritic cell production of interleukin-12 and, by extension, cell-mediated responses 

(Koch et al., 1996). 

In contrast to TH2 cells, TH1 T cells require interleukin-12 and interleukin-2 for 

activation and survival. Interleukin-12, which is secreted by activated dendritic cells and 

macrophages, is the cytokine responsible for TH1 differentiation (Hsieh et al., 1993) and 
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inhibition of interleukin-4 production by TH2 T cells (Manetti et al., 1993). Binding of 

this cytokine to TH1 T cells and natural killer cells stimulates production of IFN-γ by this 

subset and CD8+ T cells (Kobayashi et al., 1989; Hsieh et al., 1993). In addition to IFN-γ, 

TH1 T cells also produce interleukin-2, which is used to stimulate proliferation and 

survival of these T cells (Duke and Cohen, 1986), sustaining and potentially prolonging 

the cell-mediated response. However, T cells activated in the presence of this cytokine 

also have enhanced expression of pro-apoptotic FasL and suppressed expression of the 

anti-apoptotic FLIP, indicating IL-2 may also assist in activating a feedback control 

mechanism to control T cell proliferation (Refaeli et al., 1998). 

 

Interferon-γ  

Upon recognition of an antigen or mitogen, activated CD8+ and CD4+ TH1 T cells 

and natural killer cells produce IFN-γ (Emery et al., 1988; Fisher et al., 1997). Once 

released, this potent cytokine is used to activate macrophages (Nathan et al., 1983) and 

natural killer cells (Glaser et al., 1986). Activation of macrophages induces production of 

IL-12, which, as mentioned above, is used to differentiate CD4+
 T cells to the TH1 subset, 

thereby potentially increasing the cell-mediated response. Increased production of IFN-γ 

has also been associated with increased Ig class switching in B cells, suppressed TH2 

differentiation, and increased expression of MHC class I on T cells (Murphy et al., 2012). 

Collectively, this indicates IFN-γ production assays are useful measurements of cell-

mediated immune response capabilities in cattle (Fisher et al., 1997). 

However, the immune system, much like other systems in the body, relies on 

balance to maintain homestasis. For example, increased concentrations of IFN-γ have 
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been associated with increased mortality in cattle after exposure to a viral pathogen alone 

(Van Wyk et al., 2016), and a secondary bacterial infection following primary infection 

with a virus (Hodgson et al., 2012). These experiments were designed to mimic bovine 

respiratory disease, a debilitating complex that plagues the beef industry with lost 

revenue in the form of high morbidity and mortality rates. It is currently unknown what 

constitutes the ‘ideal’ range of IFN-γ in cattle, making it necessary to investigate 

production of this cytokine as it relates to other measurable parameters. A possible 

explanation for the variation in concentrations of this cytokine in cattle may relate to 

measures of temperament. 

 

Temperament and the immune system 

Literature examining the relationship between temperament and the immune 

system in humans indicates a strong relationship between the HPA axis and cytokine 

production, such as pro-inflammatory cytokines such as interleukin-1β and tumor 

necrosis factor-α (Beishuizen and Thijs, 2003). Interleukin-1β, classically identified only 

as IL-1, has been of primary interest of researchers examining the behavior-immunology 

relationship, as this cytokine has been shown in multiple species to increase production of 

glucocorticoids by the HPA axis (Besedovsky et al., 1986; Dunn, 2000), with lesser 

responses also observed for IL-6 and TNF-α (Dunn, 2000). Collectively, these studies 

indicate an interlinking of temperament and immunity. Evaluation of these relationships 

may further assist in explaining some of the variation associated with vaccination 

efficacy, morbidity incidence, and mortality rates in cattle.  
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Interleukin-1β, interleukin-6, and tumor necrosis factor-α 

In addition to being sensitive to cytokines, hormone production by the HPA and 

SAM axes (glucocorticoids, norepinephrine, and epinephrine) can influence the TH1/TH2 

ratio thereby influencing cytokine production. For example, binding of glucocorticoids to 

receptors expressed on immune cells suppresses TH1 cytokine production and stimulates 

production of TH2 cytokines, such as IL-10 and IL-6, through β2 adrenergic receptors 

(Elenkov et al., 1999; Komori, 2017). Conversely, binding of the hormone serotonin 

increases production of TH1 cytokines IL-1β, IFN-γ, and TNF-α (Komori, 2017). Cortisol 

and norepinephrine have been demonstrated, in vitro, to suppress peripheral blood 

mononuclear cell (PBMC) production of lymphocyte growth hormone, which is 

necessary for lymphocyte proliferation, leading to a subsequent decrease of IFN-γ and a 

lower TH1/TH2 ratio (Malarkey et al., 2002). Maintenance of this balance is crucial to 

initiating the appropriate immune response since, as mentioned above, the two subtypes 

are suppressive toward one another. 

Reports of the effects of HPA axis products on TNF-α production are 

inconsistent. Administration of glucocorticoids has been reported to suppress TNF-α 

production, with alleviation of this suppression occurring following administration of 

glucocorticoid receptor blockade (Barnes, 1998; Roggero et al., 2006). In Bos indicus 

cattle, injection of corticotropin releasing hormone stimulated an increase of IL-6 plasma 

concentrations relative to baseline, but similar increases were not observed in IL-1β, IFN-

γ, or TNF-α concentrations (Cooke and Bohnert, 2011). However, in a follow-up study 

examining the influence of increasing concentrations of this hormone (i.e. 0, 0.1, and 0.5 

μg CRH/kgBW) on these 4 cytokines, only TNF-α concentrations were influenced by 

treatment, with increased concentrations of this cytokine detected for the 0.1 μg 
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CRH/kgBW treatment compared with the other two levels (Cooke et al., 2012). 

Collectively, these studies indicate a mechanism other than the HPA axis may influence 

synthesis of TNF-α. 

One such mechanism may be temperament, as measures of this behavioral trait 

have been associated with cytokine production. Rats with higher locomotion scores, 

which was used as an indication of temperament, produced lower TNF-α levels following 

a tail nicking stressor, with increased corticosterone production observed in the same 

group (Cavigelli et al., 2008). Attenuation of TNF-α production was observed in patients 

infused with epinephrine, as compared with non-infused patients, following 

administration of an LPS injection, indicating that catecholamines also serve as a 

suppressing agent to this pro-inflammatory cytokine (van der Poll et al., 1996). 

Deficiencies in IL-6 production have been associated with increased fearfulness in mice 

subjected to a maze with various obstacles (Armario et al., 1998). These mice were less 

exploratory and curious, but more cautious, as they moved about the maze. 

Contrasting with elevated levels of IL-6, increased genetic expression of IFN-γ 

(as determined through SNP- genotyping using Allele Specific-Polymerase Chain 

Reaction) has been associated with inhibitive behaviors such as harm avoidance, 

introversion, decreased exploratory excitability, anticipatory worry, fear of uncertainty, 

and fatigability and asthenia in humans (MacMurray et al., 2014). Similarly, aggressive 

and dominant behavior in mice following suppression of IFN-γ has been reported (Hardy 

et al., 1990; de Groot et al., 1999; Bartolomucci et al., 2001) and may be related to an 

overall shift in responses to favor TH2 over TH1 (Bartolomucci et al., 2001). In addition, 

IFN-γ may also play a critical role in enhancing HPA axis suppression of pro-
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inflammatory cytokine production. Treatment of murine macrophages with this cytokine 

induced an increased expression of glucocorticoid receptors by the macrophages, thereby 

increasing the sensitivity of these cells to the inhibitory actions of HPA products on 

proinflammatory cytokine production (i.e. TNF-α, IL-6, IL-12, etc.; Salkowski and 

Vogel, 1992). Collectively, these studies demonstrate the integrated nature of 

temperament with the immune system and indicate that future research investigating 

these relationships may better facilitate understanding of morbidity differences among 

cattle under similar conditions. 

 

Transportation, temperament, and immune function 

 Following a period of transport, cattle may have altered cell-mediated immune 

responses, potentially making them more susceptible to disease (Simensen et al., 1980; 

Earley et al., 2017). Riondato et al. (2008) examined changes in leukocyte, neutrophil, 

and lymphocyte numbers in 24 male Blonde d’Aquitaine calves using a transportation 

model. Immediately following transportation, leukocyte numbers increased without any 

change in the other two cell types. However, neutrophil and leukocyte numbers were 

decreased 24 hours and 7 days after transport relative to pre-transport values. 

Interestingly, despite an overall increase in the number of lymphocytes present, the 

proportion of T cells were decreased immediately after transport. Similarly, Stanger et al. 

(2005) reported decreased leukocyte and eosinophil numbers and decreased proliferation 

of PHA-stimulated lymphocytes in Bos indicus steers, relative to pre-transport levels, 

subsequent to a 72-hour transport period. However, samples obtained from Brahman 

steers prior to and following a 16-hour transport period and stimulated with bovine viral 
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diarrhea virus had higher IL-4 and IFN-γ in CD8+, CD4+ TH1, and γδ+ T cells in 

transported, as compared with non-transported, steers (Van Engen et al., 2016). The 

discrepancy between these two studies may be attributable to differences in temperament, 

which were not accounted for in either study. 

Temperament, as determined by averaging exit velocity and pen score, has also 

been reported to have a positive relationship with neutrophil counts and the 

neutrophil:mononuclear cell ratio, but a negative relationship was observed with adhesion 

molecules and neutrophil activity following a 24-hour transport period, indicating higher 

neutrophil numbers may be needed in temperamental cattle to overcome the deficiency in 

neutrophil function (Hulbert et al., 2011). However, other studies have reported no 

change in rectal temperatures following transport (Tarrant et al., 1992; Behrends et al., 

2009; Burdick et al., 2010), although temperamental bulls have been reported to maintain 

higher rectal temperatures during transport in comparison to calmer counterparts 

(Burdick et al., 2010). Thus, temperament may assist in explaining some of the variation 

in immunity observed among beef calves following exposure to sudden changes in their 

environment. Another contributing factor to the observed variability in immune responses 

among animals may be due to nutritional differences, such as the debilitating effects 

associated with consumption of endophyte-infected tall fescue. 

 

Fescue 

Established by settlers and pioneers after its arrival from western Europe, tall 

fescue (Festuca arundinacea) has remained a popular choice due to its adaptability, ease 

of establishment, resilience, productivity, and appearance (Stuedemann and Hoveland, 
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1988). This cool season perennial is prevalent in the southeast United States, accounting 

for greater than 20 million hectares of pasture and hayfields (Bacetty et al., 2009). This 

area, known as “the fescue belt” (Campbell, 2012), is home to approximately 20% of the 

beef cows in the United States (West et al., 2007; Waller, 2009).  

Many tall fescue varieties maintain a symbiotic relationship with the endophytic 

fungus Epichloë coenophiala, which provides the plant with many desirable traits to 

increase persistence against insects, drought, grazing tolerance, and poor soil conditions 

(Stuedemann and Hoveland, 1988). However, cattle grazing tall fescue pastures can 

experience a syndrome known as “fescue toxicosis”, which has been associated with 

adverse growth, reproductive, and immunological issues (Hoveland, 1993; Allen and 

Segarra, 2001). 

Currently, the mechanism(s) underlying the observed symptoms, including 

potential synergistic effects of the compounds produced by the endophytic fungi, how 

these compounds are metabolized in the rumen, and how metabolites of these compounds 

may further instigate these observed signs and symptoms of endophyte-infected (E+) 

fescue ingestion, have yet to be fully elucidated. This paucity of knowledge stems partly 

from the lack of a reproductive stage in the endophytic fungus (Latch, 1997), leading to a 

discrepancy in infection rate of this fungus in tall fescue progeny, causing variability in 

toxin production across pastures and years (Bacon et al., 1977; Welty et al., 1994). In 

addition, exposure of E+ seeds to ammoniation (Simeone et al., 1998a; Simeone et al., 

1998b), heat, fungicides, the combination of increased temperatures with low moisture 

during storage (Siegel et al., 1987), and light and air (Garner et al., 1993) can adversely 

affect the viability and potency of this endophytic fungus. 

19



Tall Fescue Alkaloids 

One major unknown factor regarding animal consumption of E+ tall fescue is how 

each of the alkaloids synthesized by the endophytic fungus affect physiological responses 

in livestock. The main three compound groups produced are loline alkaloids, 

pyrrolopyrazine alkaloids, and ergot alkaloids, with the ergot alkaloids noted to be the 

most prevalent group of the three (Yates et al., 1985; Bush and Burrus, 1988; Jones et al., 

2003). There have been several studies in cattle examining effects of these compounds on 

various responses including changes in vasculature (Oliver et al., 1993; Klotz et al., 

2008), daily gains (Hoveland et al., 1983; Camp, 1986; Schmidt and Osborn, 1993), 

respiration (Jackson et al., 1984), and immunity (Filipov et al., 1999; Saker et al., 2001), 

but the differing concentrations of both fungi and toxins between tall fescue plants make 

it difficult to investigate these physiological responses effectively, particularly since 

some of these compounds are controlled substances. 

Ergovaline, either individually or in synergism with other compounds, is believed 

to be at least one of the causative agents for many of the observed negative effects of 

fescue toxicosis, accounting for up to 80% of the observed decrease in average daily gain 

(Lyons et al., 1986; Peters et al., 1992; Porter, 1995; Liebe and White, 2018), with 

average seed concentrations of this alkaloid ranging from 0.1 and 6.0 μg/g (Belesky et al., 

1988; Porter, 1995). To reduce the potentially high levels of ergovaline associated with 

E+ fescue, it is recommended these pastures be managed through mowing or continuous, 

heavy grazing to prevent seed head formation, as animals will selectively graze seed 

heads (Schmidt and Osborn, 1993). Similarly, dilution of E+ pastures with a non-infected 

forage, such as clover, has been demonstrated to mitigate several of the observed signs of 

E+ ingestion (Roberts and Andrae, 2004). 
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The negative effects associated with consumption of E+ tall fescue are commonly 

divided into four main categories: fescue foot, fat necrosis, reproductive problems, and 

summer slump. 

 

Fescue Foot 

Fescue foot was first reported in New Zealand (Cunningham, 1949). This disorder 

is attributable to a constriction of peripheral blood vessels in response to consumption of 

E+ tall fescue (Garner and Cornell, 1978). Appearing as quickly as 3 to 7 days after 

initial exposure to infected fescue, early clinical signs include an arched back, weight loss 

or reduced weight gain, and hyperemia at the coronary band of the rear leg (Bush et al., 

1979) The onset of fescue foot is more commonly observed in cooler environments, as 

the colder weather causes vasoconstriction, which when induced in already constricted 

blood vessels due to alkaloid consumption (Ball, 1997), results in severe blood flow 

restriction to, and occurrence of gangrene in, the feet, ears, and tail tip, and, in severe 

cases, may lead to sloughing of the hoof (Garner and Cornell, 1978). 

 

Fat Necrosis 

Characterized by hard fat nodules, fat necrosis is another condition observed in 

cattle consuming E+ tall fescue (Thompson and Stuedemann, 1993). These nodules are 

typically found in the mesenteric adipose tissue along the entire intestinal tract, deeper 

yellow streaked with white and orange compared with the pale yellow observed in 

normal fat (Bush et al., 1979), and irregularly shaped small to large sized masses 

embedded within normal fat deposits (Townsend et al., 1991). Higher levels of nitrogen 
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fertilizer use in E+ pastures are believed to exacerbate development of fat necrosis 

(Stuedemann et al., 1985). Formation of the necrotic hard-fat in luminal spaces within the 

abdominal cavity has been reported to cause constriction of the intestines and subsequent 

restriction of digesta flow in the intestines (Williams et al., 1969; Wilkinson et al., 1983; 

Schmidt and Osborn, 1993; Thompson and Stuedemann, 1993). 

 

Reproductive Performance 

Consumption of E+ fescue by beef cattle has also been attributed to reproductive 

problems in females (Campbell, 2012), including a reduction in pregnancy (Schmidt and 

Osborn, 1993) and calving rates (Porter and Thompson Jr, 1992). Conception may also be 

delayed with exposure to E+, with an estimated conception rate decrease of 3.5% for 

every 10% increase in fungal infection of tall fescue (Schmidt et al., 1986; Schmidt and 

Osborn, 1993). A study by Burke et al. (2001) examined the difference between 

environmental conditions (heat stress vs thermoneutral) and endophyte treatment (E+ vs 

E-) on follicular and luteal dynamics and serum concentrations of estradiol and 

progesterone. Corpus luteum size was not affected by endophyte treatment, but 

consumption of E+ reduced serum estradiol concentrations at thermoneutral temperatures 

and serum progesterone during heat stress. Additionally, shorter luteal phases of the 

estrous cycle have been reported in E+ heifers (Jones et al., 2003). Estrogen, which has 

been reported to influence population proportions (Paavonen et al., 1981; Sthoeger et al., 

1988; Jenkins et al., 2001), has been shown to influence noted to vary throughout the 

estrous cycle (Lyimo et al., 2000). Collectively, this may indicate that consumption of E+ 
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feeds influence endocrine responses associated with normal reproductive function in 

female cattle. 

 

Summer Slump 

The most extensively studied of the four categories, summer slump, more 

commonly called fescue toxicosis, refers to the decreased growth performance, increased 

body temperatures and endocrine imbalances of cattle grazing E+ tall fescue during hot 

summer months (Schmidt and Osborn, 1993). Across the spring and summer grazing 

season, average daily gain for cattle on E+ pasture is estimated to decrease approximately 

45 g/d for every 10% increase in the number of toxic endophyte-infected tillers present in 

the pasture (Williams et al., 1984; Crawford et al., 1989). It’s possible these poor gains 

are a result of depressed intakes. The observed decreased intake may be related to an 

inability to dissipate heat properly (Aldrich et al., 1993), as consumption of fescue is 

associated with increased vasoconstriction (Solomons et al., 1989; Rhodes et al., 1991), 

possibly related to decreased concentrations of nitric oxide, a biochemical used by the 

body to dilate blood vessels (Al-Tamimi, 2002). Compared with cattle grazing E- 

pastures, those on E+ pastures during the summer spend more time grazing at night than 

the heat of the day (Bond et al., 1984b). Cattle exposed to a cyclic heat stress model 

(22°C to 33°C) while consuming E+ seed were found to have lower dry matter intakes 

than E- cattle in the same environment (Aldrich et al., 1993). 

Residual influences of E+ consumption during grazing on subsequent feedlot 

growth performance has also been postulated in cattle. However, these growth 

performances have been reported to be, relative to E- cattle, both increased (Cole et al., 
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2001; Duckett et al., 2001) and not different (Parish et al., 2013) during finishing. The 

apparent discrepancy in these studies may be attributable to differences in severity of 

nutrient restriction during grazing. Compensation for slowed growth due to restricted 

nutrition may be observed in ruminants once the restriction has been alleviated, with the 

degree to which these compensatory responses are manifested relating to the severity of 

the restriction experienced by the animal (Ryan et al., 1993). Interestingly, these 

compensatory responses are initially observed as increased efficiencies in gain and later 

apparent as increased dry matter intakes (Ryan et al., 1993). These differences in 

efficiency may relate to the observed reduced liver and gastrointestinal weights in 

animals on lower planes of nutrition (Murray et al., 1977; Johnson et al., 1987; Carstens 

et al., 1991). Following removal of the nutrient restriction, these relatively smaller organs 

may be responsible for increased protein deposition, making the animal more growth 

efficient (Carstens et al., 1991). 

The decreased performance of cattle during hot summer months may also 

influence the immune system. Summer slump has been suggested to negatively impact 

beef cattle immunity (Saker et al., 1998; Allen and Segarra, 2001), with decreased 

leukocyte counts, MHC class II cell surface expression, and monocyte phagocytic 

activity reported in cattle following ingestion of E+ feeds (Saker et al., 1998). However, 

increases in humoral immunity have been consistently observed in cattle grazing E+, as 

compared with E-, pastures (Dawe et al., 1997; Rice et al., 1997), indicating a potential 

increase in responsiveness to vaccination in these cattle. But, rather than resulting as a 

direct effect of alkaloid consumption, this mechanism may also relate to the severity of 

nutrient restriction experienced by the animal rather than a direct effect of toxic 
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endophyte consumption. Dew (1989) reported that steers feed an E+ seed diet had similar 

titers to sheep red blood cell as those observed for steers on an E- seed diet, indicating 

that humoral responses are not influenced by endophyte treatment when cattle are on the 

same plane of nutrition. 

 

Prolactin 

Originally investigated for its involvement with mammary growth and lactation 

(Trott et al., 2008), prolactin has become the benchmark serum metabolite for studying 

fescue toxicosis in cattle, as consumption of toxic endophyte results in decreased 

prolactin synthesis in the anterior pituitary (Schillo et al., 1988). Synthesis of this 

hormone is positively correlated with daylength, resulting in a seasonal change in 

prolactin levels throughout the year (Bourne and Allen Tucker, 1975; Lincoln et al., 

1978). Circulating serum prolactin concentrations are also controlled through the D2 

dopamine receptor, as stimulation of this receptor can suppress secretion of this hormone 

(Ben-Jonathan, 1985; Lamberts and Macleod, 1990). The decrease in prolactin during E+ 

exposure is through this receptor pathway, as ergovaline is a known dopamine agonist 

(Strickland et al., 1992; Strickland et al., 1994). 

Prolactin is synthesized in the anterior pituitary (primary secretion site), 

hypothalamus, cerebral cortex, hippocampus, amygdala, septum, caudate putamen, brain 

stem, cerebellum, spinal cord, choroid plexi, circumventricular organs, placenta, amnion, 

decidua, uterus, mammary gland, and several lymphocytes (Freeman et al., 2000). This 

hormone is noted to be an active component of the immune system, as it can be secreted 

by immune tissues and has been reported as stimulatory, inhibitory, or ineffectual upon 
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immune cells (Yu-Lee, 1997; Marketon and Glaser, 2008). This apparent discrepancy 

among studies may reflect a dose-dependent nature of this hormone on immune cells, 

with a stimulatory effect observed at low concentrations and inhibitory effect at 

concentrations outside the physiological range (Yu-Lee, 1997). However, several studies 

using prolactin receptor knock-out mice have demonstrated that under normal conditions, 

healthy mice do not need prolactin for T and B cell and macrophage function, despite the 

appearance of this receptor on many of these cells (Dorshkind and Horseman, 2000).  

 Whereas prolactin is ineffectual on immune cell function under normal 

conditions, the application of stress may provide insight into the role of this hormone 

within the immune system. Mice under stressful conditions exhibit increased lymph node 

cellularity and antigen-specific proliferative responses, which may be due to prolactin 

counteracting the apoptotic effects of glucocorticoids (Dorshkind and Horseman, 2000). 

In vivo and in vitro apoptosis of T cells in rodents has been observed following 

administration of dexamethasone (Wyllie, 1980; Compton and Cidlowski, 1986; 

Krishnan et al., 2003), but is reversed when prolactin is administered (Krishnan et al., 

2003). Thus, the decreased prolactin commonly associated with cattle grazing tall fescue 

may compromise the ability of these animals to mount a proper immune response, with 

high exit velocity cattle potentially further inhibited due to the increased glucocorticoids 

commonly associated with that subset of animals. Disease progression may also impact 

how much prolactin influences immune responses. A systemic lupus erythematosus 

(SLE) study in humans corroborates this theory, as incubation of PBMC cell cultures 

with prolactin has been observed to induce spontaneous production of IgG (Jacobi et al., 

2001). 
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Hypothesis and Specific Aims 

 Collectively, the literature discussed in this review indicate the immune system 

maintains a strong relationship with animal temperament. Additionally, these studies 

indicated that exposure to stimuli deemed negative for cattle performance, such as tall 

fescue and transportation, are generally associated with negative effects on immune 

function. Therefore, the overall hypothesis for this dissertation was that animal 

temperament, as measured by exit velocity, would be related to variation in systemic 

immune responses of cattle, with exposure to negative stimuli (i.e. transportation, 

endophyte-infected tall fescue, and human handling) suppressing immune function to a 

greater extent in calves with high exit velocities. 

 

Specific aims were as follows: 

1. To determine if there is relationship between animal temperament, as measured 

by exit velocity, and cell-mediated immunity, as measured by production of 

interferon-γ, in the absence of other treatments. 

2. To determine if consumption of endophyte-infected tall fescue exacerbates the 

effects of animal temperament on cell-mediated immune responses. 

3. To determine if previous exposure to endophyte-infected tall fescue pastures 

influences subsequent feedlot growth performance, cell-mediated immune 

responses, titer response to vaccination, and carcass quality. 

4. To determine if human handling induces different cytokine gene expression 

profiles in high and low exit velocity calves. 
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5. To determine if cell-mediated immunity is impacted differentially in low and high 

exit velocity animals during periods of transportation.  
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Chapter 2: Interactions between animal temperament and exposure to 
endophytic tall fescue: effects on cells of the innate and humoral immune 

systems in beef heifers 
 

Abstract 

 Two experiments (n=12 Angus heifers/experiment) were performed to investigate 

the influence of exit velocity (evaluated at weaning) and consumption of endophyte-

infected tall fescue seed on peripheral lymphocyte production of interferon-γ (IFN-γ). 

Heifers in both studies were selected from calves born on the University of Kentucky’s 

Little Research Center, with selection in both studies based on weaning exit velocity 

measurement. In experiment 1, calves were randomly selected from, and representative 

of, all measured exit velocities within calf crop for that year. In experiment 2, calves were 

selected from those with the 9 fastest and 9 slowest exit velocities in the following year’s 

calf crop. In both experiments, heifers were assigned to either high or low exit velocity 

treatments based on relative ranking, and endophyte treatments (endophyte-infected or 

endophyte-free fescue seed in ration; E+/E-), and treatment combinations were balanced 

by body weight. Rations (restricted to 1.8 x NEm) consisted of cottonseed hulls, cracked 

corn, soybean meal, and molasses, were balanced to meet vitamin and mineral 

requirements of growing heifers, and top-dressed with fescue seed each morning. Estrous 

was controlled using melangestrol acetate. Experiment 1 was divided into four phases 

(baseline, increased THI conditions, increased THI/endophyte treatment, and 

thermoneutral phases) and experiment 2 into two phases (increased THI/endophyte 

treatment, thermoneutral phases). During endophyte treatment phases, heifers were fed 

their respective E+/E- seed as part of their diet. During all other phases, all heifers were 

fed E- seed. In the first experiment, the proportion of lymphocytes producing IFN-γ was 
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decreased during the heat/endophyte phase in E+ heifers (P=0.03) and increased in E+ 

high exit velocity animals during the thermoneutral period (P=0.07). Average lymphocyte 

production of IFN-γ was higher in E+, and total lymphocyte production of IFN-γ was 

increased in high exit velocity heifers (P=0.10). In experiment 2, average lymphocyte 

production of IFN-γ was greater in E+ (P<0.01) and high exit velocity (P=0.05) heifers, 

and total IFN-γ lymphocyte production was lower in E- low exit velocity heifers (P=0.08) 

during the thermoneutral period. No differences in proportions of lymphocytes producing 

IFN-γ were detected during any period. These results indicate peripheral lymphocyte 

production of IFN-γ is influenced by both exit velocity and endophyte treatments 

following periods of increased THI. 

Keywords: endophyte, lymphocyte, cattle, IFN-γ, heat 

 

Introduction 

Tall fescue (Festuca arundinacea) is the most prevalent forage produced in the 

Southeastern United States (Pendlum et al., 1980). Thus, many of the beef cattle raised in 

this region are exposed to tall fescue and its endophytic alkaloids from an early age. This 

grass has been found to contain an endophytic fungus (Epichloë coenophiala), which 

provides the plant with characteristics that allow for increased hardiness and drought 

resistance (Hill et al., 1991). The same fungus providing benefits to the plant is also 

detrimental to grazing animals, resulting in decreased gains and overall poor performance 

by the animal (Stuedemann and Hoveland, 1988). The negative effects of the alkaloids 

produced by this fungus upon the animal are compounded during times of heat stress 

(Spiers et al., 2012). Relatively little is known about the immunological implications of 
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endophyte exposure in cattle. Filipov et al. (1999) reported modulation of acute phase 

responses to ergovaline exposure. Similarly, steers grazing endophyte-infected tall fescue 

pastures and exhibiting characteristic signs of fescue toxicosis maintained lower major 

histocompatibility class II expression and phagocytic monocyte activity compared with 

steers grazing endophyte-free pastures (Saker et al., 1998; Saker et al., 2001). However, 

in all three of these studies, the authors were unable to separate direct effects due to 

ergovaline from potential effects of alkaloid consumption on DM intake. Thus, whether 

alkaloids per se directly influence immunological responses in cattle remains unknown. 

One important immunological effector protein, or cytokine, that is crucial for 

combating viruses and intracellular bacteria is interferon-γ (IFN-γ). This cytokine is 

produced by natural killer cells, natural killer T cells, CD8+ T cells, and CD4+ TH1 T 

cells. Interferon-γ is utilized by the immune system to upregulate differentiation of CD4+ 

T cells to the TH1 subset, which further enhances defenses against viruses and 

intracellular bacteria (Schoenborn and Wilson, 2007). Additionally, IFN-γ stimulates 

production of other pro-inflammatory cytokines through activation of macrophages 

(Boehm et al., 1997). Furthermore, recent studies indicated IFN-γ may differ among 

animals with different temperament rankings. Work from our laboratory has 

demonstrated that heifers with higher exit velocities had depressed systemic IFN-γ 

concentrations (Altman, 2015) and increased rectal temperatures (Altman et al., 2016) 

during an acute phase response to LPS injection. 

A wide range of studies have demonstrated that temperament is correlated with 

growth rates in growing and finishing cattle, and that chute exit velocity has been the 

temperament-related measure most consistently related to growth. In addition to 
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relationships with growth, researchers have generally found that immunological function 

is compromised in so-called ‘temperamental’ cattle (Oliphint, 2006; Burdick et al., 2011). 

Oliphint (2006) reported that cattle with poor temperament scores had lower in vitro 

lymphocyte proliferative responses. Higher cortisol release, which has been correlated 

with poor temperament scores (Fell et al., 1999), may be associated with a decrease in 

lymphocyte proliferation in cattle (Blecha and Baker, 1986), and has been shown to 

reduce IL-12 and IFN-γ production in humans (de Jong et al., 1999). Combined, these 

studies suggest that temperament effects may be particularly important during the feedlot 

receiving phase, especially when considering the implications of suppressed 

immunological function coinciding with a period of high stress and exposure to novel 

pathogens. Periods of adjustment, such as during weaning and feedlot receiving, are 

stressful events for the calf which may compromise the immune system (Blecha et al., 

1984; Duff and Galyean, 2007). An animal’s instinctive response to stimuli, or 

temperament, may further compound any negative effects of a new environment. 

Potential interactions between temperament and endophyte exposure on immunological 

function might help explain phenotypic variation among individual animals in health 

responses during the feedlot receiving phase subsequent to fescue grazing.  

The hypothesis for these experiments was that calves with higher exit velocities 

would maintain lower lymphocyte IFN-γ production and consumption of endophytic 

alkaloids would further decrease this response in an additive fashion (i.e. that exit 

velocity and alkaloid consumption do not interact). Experiment 2 (EXP 2) was developed 

to refine the model used in EXP 1, specifically by focusing on calves selected from the 

two extremes of the measured exit velocity range to enhance the ability to detect potential 
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effects of this factor upon lymphocyte IFN-γ production Furthermore, we hypothesized 

that these responses would be particularly evident while animals were consuming 

alkaloids and that they would return to baseline levels after alkaloids were removed from 

the ration. Thus, our objective was to determine whether animal temperament (as 

measured by exit velocity) and endophytic alkaloid consumption interact in their effects 

on the humoral and cell-mediated immune responses of healthy cattle, and to describe the 

general nature of the effects of both factors. 

 

Materials and Methods 

All methods were approved by the University of Kentucky Institutional Animal 

Care and Use Committee. 

Each experiment used a completely randomized design with repeated measures. 

There were two dietary treatments (endophyte-infected (E+) and endophyte-free (E-) 

fescue seed) and heifers were categorized within one of two flight response designations 

(high/low), as determined by exit velocity (see below). Endophyte treatment assignments 

were balanced for weight and exit velocities. Heifers were placed in individual pens (3.0 

x 3.7 m) inside an environmentally controlled research building for the duration of the 

experiments.  

 

Experiment 1 

Cattle and Processing 

Twelve Angus heifers (277 ± 29.3 kg BW; 248 ± 21 d of age) out of 8 sires, born 

on the University of Kentucky Oran C. Little Research farm, were utilized in this 
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experiment. At weaning, heifers were vaccinated against bacterial and viral pathogens 

(Bovi-Shield Gold 5, Zoetis, Florham Park, NJ; Once PMH, Merck Animal Health, 

Summit, NJ; Somubac, Zoetis; Ultrachoice 7, Zoetis; Autogenous Pinkeye, Central KY 

Vet Center), and given an injection of anthelmintic (Dectomax, Zoetis). Exit velocity, a 

measure of temperament, was also recorded at this time, and was calculated as the time it 

took for a heifer to transverse 1.68m upon release from the headgate, as measured using 

an infrared trip-wire system (Bruno et al., 2016). These measures were used to designate 

calves as either high or low exit velocity, based upon relative position in the exit velocity 

spectrum for these 12 heifers (1.20 to 3.06 m/s, mean = median = 1.96 m/s). Although 

exit velocity measures vary over time, and it may seem natural that averages of serial 

measures might produce estimates with lower variance, studies from our lab and others 

indicate that initial measures of exit velocity appear to be more valuable predictors of 

future performance and carcass characteristics due to the naivety of the animal (Behrends 

et al., 2009; Bruno et al., 2016; Bruno et al., 2017). Following the weaning period, heifers 

were halter broken for adaptation to human handling. 

The experiment consisted of 4 periods: thermoneutral and all calves on E- diet 

(d1-21; P1), increased temperature-humidity index conditions (THI) and all calves on E- 

diet (d22-28; P2), increased THI and calves on respective E+ and E- diets (d29-50; P3), 

thermoneutral and all calves on E- diet (d51-78; P4). Body weights were recorded at the 

start of the experiment (d1), during weekly blood collections (d8, 15, 22, 29, 36, 43, 50, 

57, 64, 71), and at the end of the experiment (d78). All calves were naïve to endophyte 

infected fescue, thereby preventing any potential effects of prior exposure from 
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influencing results. Daily feed and water consumption were recorded throughout the 

experimental period. 

The basal diet (Tables 2.1 and 2.2) was prepared prior to initiation of the 

experiment, without inclusion of fescue (E+ and E-) seed. This was to ensure only the 

presence of ergovaline (10μg/kg BW) differed between treatment diets. Rations were 

restricted to 1.8 x NEm, and initially provided based upon starting weights, then 

increased to match current body weight at the start of the fescue exposure period to 

ensure heifers received the targeted ergovaline dose. Pens were cleaned prior to feeding 

and heifers were fed once daily, at 0700 a.m., Heifers were randomly assigned to 

treatment diets, with groups balanced for weight and weaning exit velocity. All feed 

offered to heifers was consumed throughout the duration of the study. 

Melangesterol acetate (MGA; 0.5 mg/hd/d) was provided to control for the effects 

of estrous and offered prior to the basal diet each day to ensure all heifers consumed the 

daily dosage. Whereas this medicated feed additive has been reported to negatively 

influence immunological responses (Corrigan et al., 2007), the noted differences in that 

study were to agents of the innate immune system involved with oxidative burst, with no 

differences observed in lymphocyte and monocyte concentrations due to MGA inclusion. 

Conversely, several studies have demonstrated an influence of estrogens, whose synthesis 

is inhibited by MGA, on lymphocyte populations (Paavonen et al., 1981; Sthoeger et al., 

1988; Jenkins et al., 2001). Estrogen concentrations will vary over time as a result of 

estrous cycling (Lyimo et al., 2000). Thus, as both experiments within the current study 

were specifically interested in production of interferon-γ by lymphocytes, and experiment 
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2 additionally examined humoral responses to an extracellular bacterial challenge, 

inclusion of MGA to control for these potential fluctuations was deemed necessary. 

Fescue seed (E+/E-) was top-dressed on the basal diet and mixed by hand each 

morning to ensure appropriate seed inclusion for each heifer. Endophyte-infected seed 

was only provided to E+ cattle during P3 of the study, with E- seed included in place of 

E+ seed during P1, P2, and P4. All heifers, regardless of diet and phase, consumed all 

offered rations each day. 

Environmental temperatures were monitored using a Hobo environmental 

temperature logger set to record ambient temperature and humidity every 5 minutes (Fig. 

1.1). On d1, heifers were randomly assigned to individual pens (3.0 x 3.7 m) inside an 

environmentally controlled barn, where they remained for the duration of the study. 

Ambient temperature was set at 22.2°C and remained at this level during P1of the 

experiment. Calves were fed E- fescue seed with the basal diet during this time to 

establish baseline levels of lymphocyte IFN-γ production. At the start of P2, ambient 

temperatures were set to cycle between 33.3°C during the day and 22.2°C at night. This 

was to simulate average temperature fluctuations experienced by cattle in Kentucky 

during July and August, when effects of fescue toxicosis are at their most severe 

(Hemken et al., 1981) and has been previously shown to be sufficient for inducing signs 

of fescue toxicosis in cattle during periods of tall fescue consumption (Spiers et al., 

2012). Temperature humidity index (THI) was calculated as described by Hahn (1999): 

 

THI = Dry Bulb Temperature + (0.36 * Dew Point Temperature) + 41.2 
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Increased THI conditions continued through P3, when heifers were started on 

their respective endophyte seed treatments and remained on these diets until the end of 

this period (d50). At the start of P4, ambient temperatures returned to continuous 

thermoneutral conditions, and all heifers returned to the E- diet until the conclusion of the 

study on d78.  

 

Blood Sampling 

Heifers were placed in a headgate once a week, pre-prandial, for collection of 

blood samples (d1, d8, 15, 22, 29, 36, 43, 50, 57, 64, 71, and 78). A total of 45 mL of 

blood was collected from every heifer via jugular venipuncture into 3-15 mL Na-heparin 

tubes (i.e. “red top tubes” with 1 drop of 1,000 usp·mL-1 heparin added) to isolate 

peripheral blood mononuclear cells (PBMCs). These isolated PBMCs were then utilized 

for in vitro analysis of IFN-γ production by lymphocytes. 

 

PBMC Isolation 

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized 

blood samples following a modified protocol of Breathnach et al. (2006) and . Briefly, 

samples were centrifuged at 800 x g for 30 minutes with a slow brake. The buffy coat 

was removed, added to 10 mL phosphate buffer solution (PBS), layered over 10 mL 

Ficoll-Paque PlusTM solution (Amersham Biosciences, Piscataway, NJ), and spun at 500 

x g for 30 minutes with a slow brake. Cells were harvested, added to 20 mL PBS, and 

centrifuged at 500 x g for 10 minutes with a fast brake. All subsequent centrifugation was 

performed at 300 x g for 10 minutes with a fast brake. Supernatant was removed and cell 
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pellets resuspended in 5 mL PBS. To this suspension, 10 mL D2O and 10 mL RPMI were 

added, with suspension diluted to a final volume of 45 mL with PBS, after which the 

suspension was centrifuged. Cells were then washed in PBS again, recentrifuged, and 

resuspended in 10 mL of PBS. From this 10 mL suspension, 100 μL were mixed with 900 

μL of PBS to be counted using a Vicell Counter-XR (Beckman Coulter, Miami, FL). 

Resulting data was used to calculate volume needed from 10 mL suspension to plate at 4 

x 106 cells/mL. Desired volume was transferred to a 15 mL tube and centrifuged. 

Supernatant was removed and cells resuspended in 4 mL cRPMI (consisting of 10% fetal 

bovine serum, 1% penicillin-streptomycin-glutamine, 0.1% 2-mercaptoethanol, and 

88.9% RPMI, and plated in 4 wells of a 24 well plate at 1 x 106 cells/mL. 

 

Stimulation of samples 

PBMC samples were arranged in duplicate in a 24-well plate with each sample 

type having a control well and stimulated well. Two μL of brefeldin A (BFA) were added 

to each well to prevent protein secretion (i.e. IFN-γ; Fujiwara et al., 1988) and allow for 

measurement of IFN-γ production in control and stimulated cells. The control sample 

wells additionally received 10 μL of phorbol 12-myristate 13-acetate (PMA)/ionomycin 

(Breathnach et al., 2006) to preferentially activate and maximize IFN-γ production by 

TH1 lymphocytes (Baran et al., 2001). Following inoculation, well-plates were incubated 

in 5% CO2 for 4 hours at 37°C (Breathnach et al., 2006). At the completion of the 4-hour 

incubation period, 200 μL were transferred from each sample well to a 96 well plate and 

centrifuged at 500 x g for 5 minutes. Supernatant was removed from the wells, and cells 
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were fixed in 100 μL of 2% paraformaldehyde, and the plates were placed in a 4°C 

refrigerator overnight (Breathnach et al., 2006). 

 

Intracellular staining and flow cytometry 

Following overnight incubation in the refrigerator, cells were centrifuged at 500 x 

g and resuspended in 150 μL saponin buffer (1% FBS, 0.1% saponin, and 0.1% sodium 

azide). Prior to flow cytometry analysis, cells were stained with mouse IgG1 anti-bovine 

IFN-γ FITC conjugated antibody (Thermo-Fisher, Waltham, MA) at a concentration of 

10 μg antibody/mL saponin buffer. Suspended cells were incubated on ice for 30 minutes, 

then centrifuged at 500 x g for 5 minutes twice, with intermediary resuspension in 

saponin buffer. After the second centrifugation, cells were resuspended in FACS buffer in 

preparation for analysis. Using a FACSCalibur flow cytometer (Becton Dickinson, San 

Jose, CA), PBMC samples were gated around lymphocyte populations using forward and 

side scatter parameters. Thirty thousand gated events per sample were acquired for this 

analysis. Control samples were gated at 1%, with stimulated samples compared to the 

control sample to determine treatment responses. Samples were analyzed for percent of 

gated samples expressing IFN-γ and the mean expression of IFN-γ per cell within the 

gated population (MFI). Post-analysis, these two parameters were multiplied together to 

obtain an approximate measure of total IFN-γ production by the gated lymphocyte 

population (Darrah et al., 2007). 

 

Experiment 2 
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The following year, twelve Angus heifers out of 8 sires (247 ± 28.2 kg BW; 219 ± 

15.2 days of age), born on the University of Kentucky Oran C. Little Research farm, were 

split into high (n = 6; weaning exit velocity = 3.15 ± 0.496 m/s) and low (n = 6; weaning 

exit velocity = 1.42 ± 0.338 m/s) exit velocity treatments and placed on either a 

endophyte-infected (E+) or endophyte-free (E-) diet, so that a 2 x 2 factorial treatment 

structure was created. Calves were weaned, weighed, and evaluated for weaning exit 

velocity (EV) 50 days prior to the start of the experiment. Exit velocity, obtained at 

weaning, was used as a measure of temperament, and calculated as the time it took calves 

to transverse 1.68m upon release from the headgate. From these measures, calves with 

the highest (n = 6) and lowest (n = 6) exit velocities measured for heifers in that calf crop 

(n = 47) were selected, as we believed differences in IFN-γ production by lymphocytes 

would be more evident between the extremes of the flight response spectrum. Subsequent 

to the weaning period, heifers were halter broken for adaptation to human handling. 

During this time, heifers were vaccinated against bacterial and viral pathogens (Bovi-

Shield Gold 5, Zoetis, Florham Park, NJ; Once PMH, Merck Animal Health, Summit, 

NJ; Somubac, Zoetis; Ultrachoice 7, Zoetis). 

The basal diet was similar to and prepared as described for EXP 1 (Tables 2.3 and 

2.4). Feed was again offered at 1.8 x NEm, based on initial BW, and remained constant 

throughout the experimental period, with melangesterol acetate provided at 0.5 mg·hd-

1·d-1 to prevent estrous cycling during the study. Endophyte treatments were applied 

during P1 (d1 to 28) of the experiment, with the appropriate seed (E+/E-) provided for 

each heifer. Calves on the E+ treatment received endophyte-free seed in place of 

endophyte-infected seed during P2 (d29 to 57) to observe residual effects of endophyte 
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exposure upon immune responses. Heifers consumed all offered feed each day, ensuring 

all calves consumed targeted amounts of ergovaline. Water intake for each heifer was 

also recorded each morning. Pens were sprayed clean daily to remove any fecal material 

and urine present in the pen to maintain a clean area for the calves 

 

Body Weights 

Calf body weights were recorded at the start (d1) and conclusion of the 

experiment (d57). To reduce the risk of exposing heifers to outside pathogens, blood 

samples were collected in the animal pen rather than the head chute as in EXP. 1. 

Therefore, we were did not collect interim body weight data in EXP 2. Thus, average 

daily gain (ADG) and gain to feed (G:F) were determined using only experiment start and 

ending weights. 

 

Room and Rumen Temperature 

At the start of the experiment, pen room temperatures were programmed to follow 

the cyclical temperature pattern to establish an increased THI environment during P1, as 

described for EXP 1. Room THI was also calculated as described in EXP 1. 

Environmental conditions in the pen room were monitored using a Hobo environmental 

temperature logger set to record ambient temperature and relative humidity every 5 

minutes. Temperatures were lowered to continuous thermoneutral (22°C) following the 

E+ consumption period (d29) and remained there for the duration of the study. 

On day 15 of the study, a temperature-monitoring rumen bolus (SSL001-CT, 

SmartStock, Pawnee, OK) was placed in each heifer. Boluses were set to record 
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temperature every 15 minutes, and wirelessly transmitted this data to a computer in the 

next room. Boluses continued recording data through d 48. 

 

Blood Sampling 

Methods for collection of blood samples for in vitro lymphocyte analysis were as 

described for EXP 1, with the exception that samples were collected in the pen rather 

than in a head gate. This change in methodology was an attempt to minimize stress 

associated with collections and the chance of exposure to any pathogens existing outside 

the pen room. Additionally, as the experiment was shorter in duration, samples were only 

collected on d8, 15, 29, 36, 43, and 57. Samples were collected on d1, but due to a 

malfunction of the flow cytometer, those results were excluded from analysis. Following 

this incident, sample analysis was performed using an Attune NxT flow cytometer 

(Thermo Fisher Scientific, Waltham, MA). An additional 10 mL of blood was collected 

via jugular venipuncture into 10 mL additive-free Vacutainer (Becton Dickinson, 

Franklin Lakes, NJ) tubes for serum analysis of humoral immunity on d57. 

 

Humoral Immunity 

Treatment effects on humoral immunity were assessed by serum antibody titer 

responses following a vaccination protocol timed to produce a peak response on the last 

day of the experiment.  To accomplish this, animals received a primary vaccination 

against Leptospirosis pomona (L5 SQ, Merck) on d29, and a booster vaccination on d43. 

Serum blood samples were collected on d57 and subjected to a microscopic agglutination 

test for detection of Leptospirosis pomona antibodies as described by Bruno et al. (2018). 
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Statistics 

Experiment 1 

Measures of total lymphocyte population and average lymphocyte production of 

IFN-γ, in addition to proportions of lymphocytes producing this cytokine, from d1, 8, 15, 

and d22 (i.e. pre-heat and pre-endophyte treatment measurements) were averaged 

separately to obtain a representative value for each animal’s baseline IFN-γ production. 

As part of our assessment of the potential validity of using these values to assess exit 

velocity as a predictor of a calf’s vulnerability to intracellular pathogens, these baseline 

values were regressed against weaning exit velocity to ascertain if a relationship between 

baseline cell-mediated immunity and exit velocity existed. In addition, the responses 

from d1 of EXP 2 (obtained using the same flow cytometer as EXP 1) were included in 

this regression analysis. One heifer in EXP 2 was excluded in this regression due to low 

cell count numbers. Proc Reg of SAS (9.4; Cary, N.C.) was utilized to perform this 

analysis, with weaning exit velocity (as a continuous variable) and experiment (EXP 

1/EXP 2) included in the model statement.  

Weekly peripheral blood mononuclear cell data from d8 through d78 were 

analyzed using the mixed procedure of SAS (9.4; Cary, N.C.), with endophyte treatment 

(E+ and E-), weaning exit velocity designation (high and low), and sampling date as the 

main effects, and Kenward-Roger selected as the denominator degrees of freedom 

method. Average lymphocyte production of IFN-γ production and the proportion of 

lymphocytes producing this cytokine obtained from the flow cytometer analysis were 

analyzed independently and multiplied together to approximate the total lymphocyte 
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population production of IFN-γ (Darrah et al., 2007), which was subsequently natural log 

transformed to obtain a normalized data set for the assumptions of ANOVA. Data was 

analyzed separately within the 4 periods, as described above: d8, 15, 22 (P1; no 

endophyte or heat); d 29 (P2; heat but no endophyte); d36, 43, 50 (P3; heat and 

endophyte); d57, 64, 71, 78 (P4; no heat or endophyte). Data from P1, 3, and 4 were 

analyzed using the repeated measures option with a first-order autoregressive covariance 

structure, with sampling date included as the repeated effect in the model. An average of 

the three sampling points from P1 was included as a covariate in the model statement for 

each of the three IFN-γ measurement parameters to account for variability among 

samples, as the covariate was parallel among treatments across time. 

Water consumption was averaged by week and divided by the animal’s body 

weight to standardize values as a percentage of body weight, and natural log transformed 

to meet the assumptions of ANOVA. Water consumption data from before day 15 was 

excluded to allow for heifer familiarization to waterer usage. Main effects included in the 

model were endophyte, exit velocity, and their interaction, with denominator degrees of 

freedom calculated using the Kenward-Roger method. Data was analyzed within period. 

Average daily gain was analyzed using the GLM procedure of SAS (9.4) and 

calculated as daily gains within 3 periods: d 1 to 29 (P1 and P2), 29 to 57 (P3), and 57 to 

78 (P4), as well as for the whole experiment. Main effects were endophyte, exit velocity 

treatment, and their interaction. 

 

Experiment 2 
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Leptospirosis pomona titer responses, ADG, and G:F were analyzed using the 

GLM procedure of SAS (9.4, Cary, N.C.). Prior to analysis, titer responses were natural 

log transformed to provide a normalized data set, thereby meeting the assumptions of 

ANOVA. The models for these three variables included endophyte treatment, exit 

velocity, and their interaction. The interaction terms endophyte x week and exit velocity 

x week were pooled with the error term for ADG and G:F models after initial analysis (P 

≥ 0.58). Water intake was analyzed by period (P1 and P2), whereas ADG and G:F were 

analyzed for the entire experimental period (d1 to 57). 

 Lymphocyte production of IFN-γ measures were natural log transformed to 

provide a normalized data set, and water intake data was averaged by week. Water intake, 

humoral, and PBMC data were divided into two phases, which corresponded with the 

experimental timeline. Data was analyzed using the mixed procedure of SAS (9.4) using 

the repeated option with a first-order autoregressive covariance structure and heifer 

specified as the subject. The Kenward Roger method was used to calculate denominator 

degrees of freedom, and the model included endophyte, exit velocity, their interaction, 

week, endophyte x week, and exit velocity x week. After initial analysis, endophyte x 

week and exit velocity x week were pooled with the error term for the PBMC model in 

both periods, as no interactions with week were detected (P ≥ 0.37). 

Ruminal temperature was analyzed for amplitude, acrophase, and mesor 

parameters for each heifer using MATLAB Release 2013b (The MathWorks, Inc., 

Natick, MA). The three variables were then analyzed using the mixed procedure of SAS 

(9.4) with repeated options using the first-order autoregressive covariance structure and 

heifer specified as the subject. Denominator degrees of freedom were calculated using the 
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Kenward Roger method, and the model included endophyte, exit velocity, their 

interaction, and week. 

For all analyses, significance was set a P < 0.10, and trends considered at 0.10 < P 

< 0.15. 
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Results 

Experiment 1 

Room Temperature 

Room temperature humidity index (Fig. 2.1) fluctuated on d 22 through d 50 as 

designed, creating an environment noted to decrease steer growth performance (Hahn, 

1999) during the day and allowing for cooling in the evening to simulate mid-summer 

ambient conditions in central Kentucky. Similarly, temperatures remained constant 

during the designated thermoneutral periods, allowing for a THI conducive to optimal 

steer growth performance (Hahn, 1999), thus providing an appropriate climate for 

collection of baseline measurements and to determine the time required for animals to 

return to baseline levels after removal of the increased THI and E+ treatment. 

 

Peripheral blood mononuclear cells 

Results from the analysis of harvested PBMCs are presented in Table 2.5 and 

Figures 2.2, 2.3, and 2.4. A weak correlation was observed between weaning exit velocity 

and baseline (P1 of EXP 1 and d1 of EXP 2) total lymphocyte IFN-γ production (R2 = 

0.09; P = 0.05; Fig. 2.2) and the proportion of lymphocytes producing IFN-γ (R2 = 0.22; 

P = 0.03; Fig. 2.3). The average amount of IFN-γ produced by lymphocytes during the 

baseline periods was not related to weaning exit velocity (P = 0.062; Fig. 2.4). 

There were no effects of exit velocity, endophyte, or their interaction on 

lymphocyte proportions, average production, or total production of IFN-γ during P1 or P2 

(P ≥ 0.18). The proportion of lymphocytes producing IFN-γ was approximately 45% 

higher in heifers on the E- diet during P3 (P = 0.03). In P4, this proportion was 

approximately 40% greater in high exit velocity heifers in the E- treatment group (P = 
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0.07) compared with the other treatments and total production of IFN-γ was 

approximately 41% lower in low exit velocity heifers (P = 0.10). Also during this period, 

average lymphocyte production was 24% higher in E+ heifers (P < 0.01) and tended to be 

greater in high exit velocity heifers (P = 0.12). Interactions between endophyte and exit 

velocity treatments were not detected during any period for total or average lymphocyte 

production of IFN-γ (P ≥ 0.15). 

 

Water Intake 

Average daily water consumption (Table 2.6) was not affected by exit velocity or 

endophyte treatments, or their interaction. Across all treatments, average water intake 

increased numerically during P3 and returned to baseline levels during P4 (Fig. 2.5). 

 

Body Weight 

 There were no differences detected for average daily gain between treatments 

during any period. Results for this measure of growth performance gain are presented in 

Table 2.7. 

 

Experiment 2 

Environmental thermal heat index 

Data on environmental conditions within the pen room are present in Fig. 2.6. 

Due to data logger failure, temperature and humidity was recorded by a primary 

monitoring system on only 39 days of the 56-d experimental period. Data were collected 

during this time with a secondary back-up system with less resolution, but sufficient to 

ensure that temperatures were within control limits. During the study, on d1 through d20, 
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mechanical failure occurred with the air handling system, allowing ambient conditions to 

deviate from the designed protocol. However, as is evident in Fig. 2.6, the temperature 

humidity index (THI) during the heat and endophyte period (P1) was above that ascribed 

by Hahn (1999) to cause perturbations to homeostasis in cattle. Similarly, most of the 

days during the thermoneutral period (P2) were below this THI level. The last two days 

on the graph, as well as d 52 (data not shown due to data logger failure), are above this 

threshold due to mechanical failure and a county-wide power failure, respectively, 

resulting in the air handler to be temporarily offline. With the exception of these 3 days, 

temperatures during P2 were constant and remained below the THI threshold as intended. 

 

Ruminal temperature 

 Ruminal temperature data are presented in Table 2.8. Differences in ruminal 

amplitude and mesor, or average, temperatures were not detected during P1 (P ≥ 0.20), 

but an endophyte x exit velocity interaction was observed for both responses during P2 (P 

= 0.08 and 0.06, respectively). The differences were confined to the E+ group, with low 

exit velocity heifers experiencing approximately 0.19°C lower mesor, whereas high exit 

velocity heifers coming off of the E+ diet experienced approximately 80% greater 

amplitudes in diurnal ruminal temperature cycles. Conversely, no differences in 

acrophase were observed for either period, although a trend was detected for exit velocity 

effects in P1 (P = 0.12), with high exit velocity heifers on the E+ diet experiencing peak 

circadian body temperature approximately 2.24 hours after the other three groups. 
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Cell-mediated and humoral immunity 

 All three measures of cell-mediated immunity (proportion of gated cells 

producing IFN-γ, average and total lymphocyte production of IFN-γ), as measured by 

flow cytometry, differed by week in P1 and P2, apart from average lymphocyte 

production of IFN-γ in P1 (Table 2.9). Baseline and P1 measures of IFN-γ did not differ 

due to endophyte and exit velocity treatments or their interaction (P ≥ 0.18). Similarly, no 

treatment effects were observed in the proportion of lymphocytes producing IFN-γ in 

either period. During P2, average lymphocyte production of IFN-γ was 15% and 17% 

greater in E+ (P < 0.01) and high exit velocity (P = 0.05) heifers, respectively, in this 

period as well. Total lymphocyte production of IFN-γ by E- low exit velocity heifers was 

approximately 40% of observed production by the other three treatment groups (P = 

0.08). 

 Titer responses (Table 2.10) were not affected by either treatment or their 

interaction (P ≥ 0.52). As this was a one-time measurement, no time effects were 

analyzed. 

 

Average daily gain and gain:feed 

 Despite restricted intake, measures of animal growth performance (Table 2.10) 

were not influenced by endophyte or exit velocity treatments (P ≥ 0.11). 

 

Water intake 

 In both periods, water intake was affected by day (P < 0.01; Table 2.11) and a 

trend (P = 0.16) was detected in P2 for an interaction between endophyte treatment and 

day (Fig. 2.7). Exit velocity x day effects are shown in Fig. 2.8. Similarly, main effects of 

50



endophyte and exit velocity treatments affected consumption throughout the entire study 

(P < 0.01). In both periods, heifers on the E- treatment diet and heifers designated as high 

exit velocity consumed less water than the other respective treatments. However, an 

interaction of the two treatments was not observed in either period.  

 

Discussion 

An animal’s ranking within the exit velocity spectrum remains relatively constant 

over time (Curley Jr et al., 2006; Bruno et al., 2016). Thus, the first measurement of exit 

velocity should provide a reliable indication of how temperamental a calf is relative to its 

herdmates. Therefore, collection of exit velocities at weaning and allocating calves as 

either high or low exit velocity provided a base from which to test the effects of this 

measure of temperament on the various responses measured in these experiments.  

 

Cell-mediated Immunity 

Examination of the relationship between weaning exit velocity and baseline 

proportion of lymphocytes producing IFN-γ, average lymphocyte production of IFN-γ, 

and total lymphocyte production of IFN-γ in cattle is, to our knowledge, unreported in the 

literature.  Our results indicate the presence of a weak correlation between total 

lymphocyte production of IFN-γ and weaning exit velocity driven primarily by a 

relationship between proportion of IFN-γ producing lymphocytes and weaning exit 

velocity. A relationship between exit velocity and average lymphocyte production of 

IFN-γ was not apparent. Overall, this relationship suggests a linkage between high exit 

velocity and differentiation of naïve CD4+ T cells to the TH1 subtype. This further 
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suggests that higher exit velocity animals are potentially better ‘poised’ for defense 

against viral and/or intracellular pathogens.  

During P2 of EXP 1, when increased THI was applied in the absence of 

endophyte treatments, heifer total lymphocyte IFN-γ production did not differ between 

exit velocity treatments. Others (Minton and Blecha, 1990; Coppinger et al., 1991; 

Lacetera et al., 2002) have reported similar observations of increased ambient 

temperature failing to induce changes in cell-mediated immunity.  

Average lymphocyte production of IFN-γ responses to endophyte and exit 

velocity treatments remained consistent between the two experiments, although in 

Experiment 1 this parameter only tended to differ between exit velocity treatments. In 

both experiments, heifers on the E+ treatment had greater average lymphocyte production 

of IFN-γ compared with E- heifers following the endophyte treatment period.  Because 

ergovaline, the major ergot alkaloid produced by the endophytic fungus in tall fescue 

(Lyons et al., 1986), is a dopamine agonist (Ben-Jonathan, 1985; Lamberts and Macleod, 

1990) and D2-like dopamine receptors have been reported on peripheral lymphocytes and 

natural killer cells (McKenna et al., 2002) one could hypothesize a direct effect of 

alkaloids on lymphocyte IFN-γ response. However, increased concentrations of 

dopamine has been shown to increase IL-10 production (Besser et al., 2005; Sarkar et al., 

2010), and to down-regulate expression of non-receptor tyrosine kinases lck and fyn, 

resulting in decreased secretions of IFN-γ (Ghosh et al., 2003; Sarkar et al., 2010). 

Additionally, in the present studies, differences were detected subsequent to, rather than 

consequent with exposure, suggesting a mechanism that is more complicated than a direct 

agonist effect on lymphocytes.  
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Total lymphocyte production of IFN-γ was also similar between experiments in 

the period following endophyte treatment exposure. In EXP 1, differences were relegated 

to the exit velocity treatment only, with relatively greater total production observed in the 

high exit velocity treatment. However, in EXP 2, exit velocity effects on total lymphocyte 

production of IFN-γ were only observed in the E- treatment, with greater total production 

again observed in high exit velocity heifers within this endophyte treatment. Although 

not statistically different, total production of this cytokine was numerically higher in the 

E+ treatment as well during this period. Together, the exit velocity effects in both 

experiments followed a similar pattern to that observed during the baseline period for this 

measure of lymphocyte production of IFN-γ. 

The tendency of EXP 1 heifers on the E+ endophyte treatment to have lower total 

lymphocyte IFN-γ production during the endophyte exposure period appears to be largely 

driven by a decrease in the proportion of lymphocytes producing this cytokine, indicating 

a negative effect of E+ seed on lymphocyte differentiation. One possible mechanism for 

this is attributable to the presence of the dopamine agonist ergovaline that was present 

only in the E+ fescue seed, as dopamine has been noted to increase TH2 differentiation 

and decrease proliferation and cytotoxicity in humans (Nakano et al., 2009; Sarkar et al., 

2010), which would attribute to a lower amount of IFN-γ production, such as that 

observed in the E+ heifers.  

During P4 of the current experiment, the baseline exit velocity pattern was re-

established, with high exit velocity heifers maintaining greater proportions of IFN-γ 

producing lymphocytes than low exit velocity heifers, although a statistical difference 
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was only detected among E-, as compared with E+, heifers. A similar trend was observed 

in EXP 2 during the period following endophyte exposure, but only among E- heifers. 

Future research exploring these relationships is needed, but a different mitogen 

may need to be incorporated to clarify the observed endophyte and exit velocity 

interactions. PMA + ionomycin preferentially activates TH1 responses and maximizes the 

amount of IFN-γ produced by cells in vitro, but down-regulates production of IL-10 and 

produces a greater number of dead cells compared with PHA, potentially increasing the 

variability observed with subsequent responses (Baran et al., 2001). For exploratory 

research investigating the potential effects of endophyte on IFN-γ production, as well as 

examining relationships between exit velocity and this cytokine, the use of a mitogen 

which maximizes the production of the cytokine of interest provides an indication of the 

effect of a given treatment. However, it does not necessarily provide the most accurate 

measure of the treatments effect on cytokine production due to the increased variability 

associated with this mitogen compared with others. Thus, the current two experiments 

indicated a potential relationship between exit velocity and lymphocyte production of 

IFN-γ as well as an influence of endophyte upon this relationship. In order to home in on 

a more accurate measure of these effects, future research may need to include the use of 

another mitogen that does not preferentially stimulate IFN-γ production, thereby 

potentially decreasing the variability of the measurements and allowing for a more 

accurate examination of the influence of exit velocity and endophyte on lymphocyte 

differentiation and production patterns. 
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Humoral Immunity 

Unlike lymphocyte production parameters, humoral immunity, as measured by 

vaccination titers to Lepto. pomona, did not differ between endophyte treatments during 

P2 of EXP 2. This finding is inconsistent with previous observations of influences on the 

humoral response of E+ on grazing steers in Chapter 3 and by others (Dawe et al., 1997; 

Rice et al., 1997), but is consistent with a prior study using a seed-fed model with steers 

to examine this response (Dew, 1989). To our knowledge, the present study was the first 

to investigate the influence of E+ consumption on vaccination titer responses in heifers. 

Thus, one possibility for the difference in observed effects of E+ consumption on 

subsequent titer antibody concentrations between the current study and others may be due 

to a gender effect, as male and female sex hormones have been previously demonstrated 

to differentially affect B cell differentiation during mitogen stimulation (Sthoeger et al., 

1988). However, this potential gender effect may not be the only contributing factor to 

the differences between experiments observed. 

In each of the aforementioned studies (i.e. Dawe et al., 1997; Rice et al., 1997, 

Chapter 3), steers were grazed on either E+ or E- pastures, which did not allow for 

measurements of total intake. In the present study intakes were similar between 

treatments. Additionally, this study was shorter in duration than the three grazing studies 

mentioned and utilized heifers in place of steers. As mentioned previously, decreased 

intakes are commonly associated with cattle consuming E+ feedstuffs (Schmidt et al., 

1982; Paterson et al., 1995; Spiers et al., 2012). Increased titer responses to vaccination 

against horse red blood cell and keyhole limpet haemocyanin have been reported to be 

greater in calves fed on a lower plane of nutrition (Pollock et al., 1994). As intake was 

controlled in the present study with no observed effects of endophyte treatment on 
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humoral immunity, and the other studies did not control for intake, it is possible the 

observed endophyte effects on humoral immunity in those three studies were a result of 

differences in plane of nutrition between treatments rather than an alkaloid effect per se. 

 

Water Intake and Ruminal Temperature 

Hyperthermia in cattle has been reported following exposure to endophyte-

infected feeds (Spiers et al., 1995). As the ergopeptine alkaloids target vascular 

endothelium (Thompson et al., 1950; Strickland et al., 1996; Oliver, 1997; Al-Tamimi, 

2002), it has been suggested the hyperthermia experienced by cattle consuming E+ diets 

is a result of vasoconstriction, leading to shifts in heat dissipation mechanisms (Dyer, 

1993; Oliver et al., 1993; Browning Jr and Leite-Browning, 1997; Al-Tamimi, 2002). In 

Experiment 2, water intake was greatest in the E+ low exit velocity group during both 

periods. Ruminal temperatures were numerically lower in this group in both periods 

although statistical differences were only detected in P2, when the SEM were about 40% 

lower than in P1. Thus, it appears that differences in H2O consumption may explain the 

small differences in mean ruminal temperatures among treatments and that the 

combination of alkaloid consumption and heat exposure may increase variation in mean 

temperature measurements. 

Treatment differences evident in Experiment 2 were not detected in Experiment 1. 

Reasons for differing effects of treatment on water consumption the two experiments are 

unclear. Environmental conditions were controlled within similar levels in both 

experiments and diets were of similar composition.   
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The highest ruminal temperature amplitudes were observed in the high exit 

velocity heifers that received the E+ diet. Recognizing that these were ruminal, and not 

core body temperatures, it’s possible these responses were related to differences in water 

intake, as consumption was greater in low exit velocity heifers on the E+ diet for both 

periods. However, the difference did not manifest itself until after the increased THI 

period. The increased average and peak ruminal temperatures observed during the 

thermoneutral period in E+ high exit velocity heifers may reflect a change in the ruminal 

environment that extended beyond the exposure period. One potential mechanism that 

may explain the increased water consumption in E+ calves is an increased liquid passage 

rate. In sheep, liquid passage rate has been demonstrated to increase with increasing 

levels of ergovaline supplementation, and was accompanied by increased water intake 

(Hannah et al., 1990). Increased osmolality, which is a contributing factor to increased 

passage rates, has been observed in mice consuming an E+, compared with an E-, diet 

(Barger and Tannenbaum, 1998). In cattle, increased dry matter content in the rumen has 

been reported for steers consuming an E+ diet, indicating a potential increase in liquid 

passage rates (Foote et al., 2013). However, passage rates were not examined in either of 

these experiments and are mentioned here only as a potential explanation for the 

increased water intake among E+ heifers. Thus, to ascertain if these differences are 

present in cattle consuming toxic endophyte diets, future research is warranted. 

 

Average Daily Gain 

It is well recognized that consumption of endophytic alkaloids can decrease dry 

matter intake (Schmidt et al., 1982; Paterson et al., 1995; Spiers et al., 2012). Daily 

57



rations offered in both experiments were restricted based upon metabolic body weight, 

allowing for evaluation of endophyte effects on performance without the potentially 

confounding effects of intake. Interestingly, during EXP 2, both the trend observed in 

feed efficiency and the difference in average daily gain between endophyte treatments 

indicate increased performance of E+ heifers over the whole experimental period. 

However, in EXP 1, no differences in ADG due to endophyte treatment were observed 

during any part of, or over the entire, experiment. One explanation for the numerical 

differences in gain between endophyte treatments in EXP 2 may be that water 

consumption was greater in E+ cattle throughout the experiment. The difference in daily 

water consumption more than accounts for the 0.10 kg/d difference in “growth” between 

treatments. 

 

Conclusion 

These experiments demonstrated that a positive relationship may exist between 

total lymphocyte production of IFN-γ and the proportion of lymphocytes producing IFN-

γ with weaning exit velocity in the absence of treatment effects, indicating that the rate of 

CD4+ differentiation to a TH1 subtype may be greater in high exit velocity heifers as 

compared with low exit velocity animals.  In opposition to our original hypothesis of 

additive effects, these data provide evidence that certain immunological responses to 

alkaloid consumption, coupled with heat exposure, can be modified by animal 

temperament. Additionally, it was of interest that lymphocyte responses were most 

prominent subsequent to removal of alkaloid/heat-exposure treatments. This in turn has 
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potential implications for health responses during the early feedlot phase for cattle 

previously grazing endophyte-infected pastures. 
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Table 2. 1. Experiment 1 feedstuff composition of dieta 

Feedstuff % DM 

Fescue Seedb 12.50 

Cottonseed Hulls 31.10 

Cracked Corn 39.00 

Soybean Meal 11.00 

Molasses 4.00 

Vitamin and TM Supplementsc 0.88 
Melangesterol Acetated 1.52 

aHeifers were fed at 1.8 x NEm 
bEndophyte-infected seed was supplemented to provide 10μg ergovaline/ergovalinine per 
kg BW 
cInclusion of supplement ensured adequate levels of Ca (0.41%) and P (0.28%), vitamins 
A (0.74 IU/kg), D (0.11 IU/kg), E (4.73 IU/kg), and trace amounts of Mg (0.25%), Cl 
(0.44%), K (0.87%), Na (0.20%), S (0.15%), Co (0.43 ppm), Cu (19.67 ppm), I (0.68 
ppm), Fe (164.02 ppm), Mn (72.07 ppm), Se (0.10 ppm), and Zn (53.53 ppm) to meet 
dietary mineral and vitamin requirements for growing heifers (NRC, 2016). 
dMGA was provided in a proprietary medicated supplement at a rate of 0.50 lb▪hd-1▪d-1 
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Table 2. 2. Experiment 1 chemical composition of endophyte-infected and endophyte-free 
seeda 

 E- Seed E+ Seed 

Dry Matter (%) 91.60 90.60 

Crude Protein (%) 15.00 14.30 

Neutral Detergent Fiber (%) 31.30 26.70 

Acid Detergent Fiber (%) 22.10 13.20 

NEm (Mcal/kg) 1.90 1.93 

NEg (Mcal/kg) 1.26 1.29 

Ergovaline + Ergovalinine (ppm) 0.00 3.59 
aValues are presented on a dry matter basis 
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Table 2. 3. Experiment 2 feedstuff composition of dieta 

Feedstuff % DM 

Fescue Seedb 8.11 

Cottonseed Hulls 32.0 

Cracked Corn 38.9 

Soybean Meal 11.9 

Molasses 4.0 

Vitamin and TM Supplementc 1.6 

MGA Supplementd 3.6 
aHeifers were fed at 1.8 x NEm 
bEndophyte-infected seed was supplemented to provide 10μg ergovaline/ergovalinine per 
kg BW 
cInclusion of supplement ensured adequate levels of Ca (0.43%) and P (0.28%), vitamins 
A (0.73 IU/kg), D (0.11 IU/kg), E (4.47 IU/kg), and trace amounts of Mg (0.27%), Cl 
(0.47%), K (0.95%), Na (0.22%), S (0.16%), Co (0.46 ppm), Cu (21.46 ppm), I (0.74 
ppm), Fe (181.62 ppm), Mn (84.14 ppm), Se (0.10 ppm), and Zn (54.85 ppm) to meet 
dietary mineral and vitamin requirements for growing heifers (NRC, 2016) 
dMGA incorporated into ground corn 
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Table 2. 4 Experiment 2 chemical composition of endophyte-free and endophyte-infected 
seeda 

 E- Seed E+ Seed 

Dry Matter (%) 91.0 89.9 

Crude Protein (%) 14.3 14.10 

Neutral Detergent Fiber (%) 27.3 24.10 

Acid Detergent Fiber (%) 11.2 11.2 

NEm (Mcal/kg) 1.52 1.55 

NEg (Mcal/kg) 0.92 0.95 

Ergovaline + Ergovalinine (ppm) 0.01 5.51 
aValues are presented on a dry matter basis 

63



Table 2. 5 Experiment 1 lymphocyte intracellular production of IFN-γ in response to endophyte and exit velocity treatments 

  E- E+  P-Values 
 

 Low High Low High SEM Endophyte 
Exit 

Velocity 
Endo x 

EV Covariatea Day 
Endo 
x Day 

EV x 
Day 

Proportion 
Producing 
IFN-γb          

 

 

  

 P1e 2.57 2.51 2.53 2.57 0.176 0.97 0.96 0.80 <0.01 0.18 0.16 0.01 
 P2f 4.60 5.95 4.41 3.68 0.786 0.22 0.68 0.28 0.38 - - - 
 P3g 3.32 4.27 2.49 2.74 0.392 0.03 0.13 0.44 0.87 0.86 0.66 0.74 
 P4h 2.70i 4.73k 2.68i 3.21i 0.338 0.07 <0.01 0.07 0.31 <0.01 0.89 0.65 
Avg. IFN-γ 
Producedc,d              
 P1e 2.77 2.74 2.74 2.80 0.050 0.76 0.70 0.42 <0.01 <0.01 0.58 0.04 
 P2f 2.52 2.40 2.49 2.30 0.106 0.54 0.18 0.75 0.08 - - - 
 P3g 2.46 2.36 2.36 2.17 0.110 0.22 0.23 0.69 0.01 0.02 0.80 0.89 
 P4h 1.96 2.16 2.28 2.28 0.062 <0.01 0.12 0.15 <0.01 0.29 0.32 0.73 
Total IFN-γ 
Producedc,d              
 P1e 3.63 3.61 3.56 3.62 0.075 0.74 0.78 0.61 <0.01 <0.01 0.20 <0.01 
 P2f 4.09 3.99 3.98 3.71 0.245 0.48 0.47 0.74 0.86 - - - 
 P3g 3.66 3.54 3.29 3.34 0.166 0.14 0.80 0.62 0.04 0.21 0.59 0.83 
 P4h 2.97 3.36 3.32 3.62 0.194 0.18 0.10 0.82 0.06 0.37 0.37 0.69 

aAverage of P1 values included as a covariate in the statistical model 
bUnits expressed as a percentage of total lymphocytes analyzed 
c Interferon-γ measured is produced by lymphocytes isolated from whole blood 
dMeans are natural log transformed, untransformed values were expressed in arbitrary units 

eBaseline data collection period, thermoneutral and endophyte treatments not applied, d1 to 21. n = 12 heifers 
fIncreased temperature humidity index (THI) period, endophyte treatments not applied, d22 to 28. n = 12 heifers 
gIncreased THI and endophyte treatment period, d29 to 50. n = 12 heifers 
hThermoneutral and Post-endophyte period, d51 to 78. n = 12 heifers 
i,kMeans with different superscripts are different  
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Table 2. 6 Experiment 1 water consumption as a proportion of body weight in response to endophyte and exit velocity treatmentsa 

 E- E+  P-Values 
 Low High Low High SEM Week Endo EV Endo x EV 
P1b 4.19 4.30 4.24 4.23 0.135 - 0.92 0.73 0.69 
P2c 4.49 4.72 4.45 4.38 0.139 - 0.22 0.60 0.34 
P3d 4.57 4.69 4.43 4.50 0.173 0.33 0.39 0.59 0.88 
P4e 4.36 4.52 4.26 4.26 0.233 0.16 0.48 0.74 0.75 

aMeans are natural log transformed. Original units were mL/kgBW. n = 12 heifers 
bBaseline period, thermoneutral and no endophyte treatment, d15 to 21 only 
cIncreased temperature humidity index (THI) period, no endophyte treatment applied, d22 to 28 
dIncreased THI and endophyte exposure period, d29 to 50 
eThermoneutral and post-endophyte exposure period, d51 to 78 
 

 

Table 2. 7 Experiment 1 heifer average daily gain in response to endophyte and exit velocity treatment 

 E- E+  P-Values 
 Low High Low High SEM Endo EV Endo x EV 
d1 to 28a 1.57 1.17 1.79 1.07 0.398 0.88 0.20 0.71 
d29 to 50b 2.01 2.31 2.27 2.07 0.164 0.94 0.78 0.17 
d51 to 78c 1.79 1.79 1.73 1.59 0.213 0.54 0.75 0.75 
Totald 1.66 1.70 1.79 1.52 0.151 0.88 0.47 0.34 

aBaseline thermoneutral period and first week of increased temperature humidity index (THI), no endophyte treatment. n = 12 heifers 
bEndophyte and increased THI period. n = 12 heifers 
cPost-endophyte and post-increased THI period. n = 12 heifers 
dAverage gains across the entire experimental period. n = 12 heifers 
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Table 2. 8 Experiment 2 ruminal temperature responses to endophyte and exit velocity treatments in heifers by perioda 

  E- E+  P-Values 
  

Low High Low High 
 

SEM 
 

Endophyte Exit Velocity 
 

Endo*EV 
 

Hour 
Amplitudeb           

 P1d 0.17 0.15 0.15 0.17 0.026 0.92 0.91 0.51 <0.01 
 P2e 0.16f 0.17f 0.15f 0.27g 0.029 0.10 0.03 0.08 <0.01 

Acrophasec           
 P1d 6.57 4.95 4.67 7.64 1.429 0.79 0.64 0.12 0.61 
 P2e 7.33 6.26 7.01 5.01 1.096 0.48 0.17 0.68 <0.01 

Mesorb           
 P1d 38.52 38.58 38.48 38.62 0.077 0.97 0.20 0.61 <0.01 
 P2e 38.45f 38.45f 38.32g 38.51f 0.046 0.48 0.07 0.06 <0.01 

an = 12 heifers 
bMeans are presented as °C 
cMeans are presented as hour 
dP1 = Heat stress period, endophyte treatments applied, d1 to 28 
eP2 = Thermoneutral period, no endophyte treatment applied, d29 to 57 
f,gMeans within the same row that are different are different 
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Table 2. 9 Experiment 2 heifer lymphocyte production of IFN-γ in response to endophyte and exit velocity treatments, by period 

  E- E+  P-Valuesi 

  Low High Low High SEM Endophyte Exit Velocity Endo*EV Day 
Proportion 
Producing IFN-γa,b           

 Baselined 0.800 1.232 0.787 0.907 0.3117 0.61 0.41 0.63 - 
 P1e 0.767 1.246 1.204 1.043 0.2168 0.60 0.48 0.18 <0.01 

 P2f 0.884 1.429 1.470 1.335 0.1915 0.24 0.32 0.12 0.02 
Average Production 
IFN-γa,c           
 Baselined 1.520 1.894 2.025 1.646 0.2633 0.64 0.99 0.20 - 
 P1e 1.515 1.707 1.602 1.683 0.1735 0.86 0.45 0.76 0.16 

 P2f 1.301 1.575 1.684 1.796 0.0871 <0.01 0.05 0.37 <0.01 
Total Production 
IFN-γa,c           
 Baselined 2.320 3.130 2.810 2.550 0.4699 0.93 0.58 0.30 - 
 P1e 2.281 2.953 2.805 2.726 0.3140 0.65 0.37 0.27 <0.01 

 P2f 2.195g 3.001h 3.146h 3.132h 0.2015 0.03 0.09 0.08 <0.01 
aMeans are natural log transformed. Interferon-γ produced by lymphocytes isolated from whole blood. 
bMeans are expressed as percentages 
cMeans are presented as arbitrary units 
dd1 baseline lymphocyte measurements. n = 11 heifers 
eP1 = Heat stress period, endophyte treatments applied, d1 to 28. n = 12 heifers 
fP2 = Thermoneutral period, no endophyte treatment applied, d29 to 57. n = 12 heifers 
g,hMeans with different superscripts within the same row are different 

iInteractions of day with endophyte and exit velocity were dropped from model after initial analysis (P ≥ 0.43) 
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Table 2. 10 Experiment 2 Lepto. pomona titer, average daily gain, and gain:feed ratio responses to endophyte and exit velocity 
treatment in heifersa 

 Endophyte Exit Velocity  P-Values 
 E- E+ Low High SEM Endophyte Exit Velocity Endo*EV 
L. pomonab 7.49 7.38 7.26 7.61 0.365 0.83 0.52 0.52 
ADGc 0.40 0.50 0.41 0.49 0.037 0.11 0.19 0.58 

G:F 0.072 0.090 0.073 0.088 0.0079 0.16 0.24 0.68 

an = 12 heifers 
bMeans are natural log transformed 
cMeans are in kg/day 
 
 

 

 

Table 2. 11 Experiment 2 average weekly water consumption in response to endophyte and exit velocity treatments by period 

 E- E+  P-Values  
 Low High Low High SEM Endo Exit Velocity Endo*EV Week Endo*Week EV*Week 

P1ab 0.091 0.076 0.104 0.093 0.0055 0.02 0.06 0.75 0.42 0.56 0.67 
P2ac 0.082 0.066 0.093 0.076 0.0040 0.02 <0.01 0.90 0.04 0.40 0.53 

aMeans are liters consumed/kgBW. n = 12 heifers 
bHeat stress period, endophyte treatments applied, d1 to 28 
cThermoneutral period, no endophyte treatment applied, d29 to 57
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Figure 2. 1 Experiment 1 temperature humidity index within the animal room. This graph depicts the fluctuations in the temperature 
humidity index (solid line) across time, beginning on d 22, when the heat stress period began, and continuing until the last day of the 
experiment (d78). Data logger was installed at the beginning of the heat stress period as a secondary system to ensure the air 
handling system was following the designated heat cycle. Prior to this installation, room temperature was set to a constant 22°C, as is 
depicted above for days 51 to 78. Also depicted are the three levels of heat stress, as described by Hahn (1999): Alert = red line, 
Danger = blue line, Emergency = yellow line. Shaded area represents the heat stress period.  
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Figure 2. 2 Regression of weaning exit velocity against total lymphocyte production of interferon-γ during 2 experiments utilizing 
heifer calves. Experiment 1 (n = 12 heifers) data is a three-week baseline average of total lymphocyte production of IFN-γ beginning 
one week after calves were placed in barn. Experiment 2 (n = 11 heifers) data was from a single collection on the day calves were 
placed in the barn. One data point was removed from experiment 2 data due to an insufficient number of cells harvested from the 
sample. PBMCs were isolated from whole blood collected weekly via jugular venipuncture, treated with transport inhibitor brefeldin 
A, and stimulated with phorbol 12-myristate 13-acetate + ionomycin. Experiment 1 (■). Experiment 2 (▲). 
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Figure 2. 3 Regression of weaning exit velocity against the proportion of lymphocytes producing interferon-γ during 2 experiments 
utilizing heifer calves. Experiment 1 (n = 12 heifers) data is a three-week baseline average of the proportion lymphocytes producing 
interferon-γ values beginning one week after calves were placed in barn. Experiment 2 (n = 11 heifers) data was from a single 
collection on the day calves were placed in the barn. One data point was removed from experiment 2 data due to an insufficient 
number of cells harvested from the sample. PBMCs were isolated from whole blood collected weekly via jugular venipuncture, treated 
with transport inhibitor brefeldin A, and stimulated with phorbol 12-myristate 13-acetate + ionomycin. Experiment 1 (■). Experiment 
2 (▲). 
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Figure 2. 4 Regression of weaning exit velocity against average lymphocyte production of interferon-γ during 2 experiments utilizing 
heifer calves. Experiment 1 data (n = 12 heifers) is a three-week baseline average of the average lymphocyte IFN-γ production 
beginning one week after calves were placed in barn. Experiment 2 (n = 11 heifers) data was from a single collection on the day 
calves were placed in the barn. One data point was removed from experiment 2 data due to an insufficient number of cells harvested 
from the sample. PBMCs were isolated from whole blood collected weekly via jugular venipuncture, treated with transport inhibitor 
brefeldin A, and stimulated with phorbol 12-myristate 13-acetate + ionomycin. Experiment 1 (■). Experiment 2 (▲).  
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Figure 2. 5 Experiment 1 water intake, as a percentage of body weight, over time. Consumption was calculated as liters/kg of body 
weight, and natural log transformed to meet the assumptions of ANOVA. Week 3 was part of the baseline period, in which all heifers 
(n = 12) were fed E- seed in daily rations, and room temperature remained at thermoneutral (22.2°C). Week 4 included only the 
application of heat stress (33.3°C during day, 22.2°C at night), with all heifers remaining on E- seed as part of their daily rations. 
Week 5 to 7 included half of the heifer receiving E- seed, and the other half E+ seed, with heat stress treatment still in place. Weeks 8 
to 11 all heifers were returned to the E- seed, with room temperatures returning to thermoneutral. Intakes did not differ between 
treatments.  
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Figure 2. 6 Experiment 2 temperature humidity index of pen rooms during an experiment examining cell mediated immune responses 
to endophyte and exit velocity treatments. Heifers were subjected in the first 28 d of the experiment to heat stress and endophyte 
treatment. The heat stress component (d0 to d29; represented by shaded portion) was removed on d29 and rooms remained at 
thermoneutral for the duration of the study. Due to logger failure, only 39 of 56 days within the experimental period are available for 
graphical representation. Additionally, mechanical failure throughout the experiment caused a deviation from the designed THI 
protocol. However, during the heat stress period (d0 to d29), temperatures cycled above the danger and below the alert heat stress 
thresholds described by Hahn (1999). Alert = red line, Danger = blue line, Emergency = yellow line. 
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Figure 2. 7 Experiment 2 heifer water consumption, as a percentage of body weight, by exit velocity designation. The experiment was 
divided into 2 periods of 28 days each. Period 1 consisted of a cyclic heat stress model (22°C to 33°C) and application of endophyte 
treatment diets. Period 2 was removal of toxic endophyte from E+ group and constant thermoneutral temperatures (22°C). Heifers (n 
= 12) were evaluated at weaning for exit velocity measures, and heifers from the high and low extremes were selected for this 
experiment. Differences were observed in both periods for endophyte (P < 0.01) and exit velocity (P < 0.01) treatments. High exit 
velocity = ▲. Low exit velocity = ● 
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Figure 2. 8 Experiment 2 heifer water consumption, as a percentage of body weight, by endophyte treatments. The experiment was 
divided into 2 periods of 28 days each and utilized 12 heifers separated into 2 endophyte (E+/E-) and 2 exit velocity (low/high) 
treatments. Period 1 consisted of a cyclic heat stress model (22°C to 33°C) and application of endophyte treatment diets. Period 2 was 
removal of toxic endophyte from E+ group and constant thermoneutral temperatures (22°C). Differences were observed in both 
periods for endophyte (P < 0.01) and exit velocity (P < 0.01) treatments. E+ = ▲. E- = ●.
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Chapter 3: Influence of temperament and fescue toxicosis on steer 
grazing and finishing growth, immune responses, and carcass 

characteristics 
 

Abstract 

Mixed breed steers (n=120) from 3 sources were weighed and evaluated for exit 

velocity (EV).  Steers were assigned an EV treatment (high/low; based on relative 

ranking in measured exit velocities within source), blocked by source, and assigned to 

either endophyte-infected (E+) or endophyte-free (E-) tall fescue pastures (n=20 pastures; 

6 animals/pasture) blocked by source with equal representation of EV treatments in each 

pasture. Pasture groups were randomly assigned to a control or glucomannan supplement. 

Following grazing, steers were transitioned to drylot pens (n=40 pens) for finishing after 

110d on pasture and harvested at approximately 681 kg. Drylot pen assignment was 

established by placing steers of the same EV treatment within each pasture in the same 

pen, and steers were fed a corn-based diet finishing diet. Blood was collected on d110, 

124, and 138 for evaluation of peripheral lymphocyte interferon-γ (IFN-γ) production, 

with additional blood collected on d138 to measure Leptospirosis pomona titer response. 

Finishing and carcass data was analyzed as a 2x2 factorial (endophyte and EV 

treatments). E+ steers had lower grazing (P<0.01) and higher finishing (P=0.07) average 

daily gains and finishing gain:feed ratios. Low EV steers consumed more dry matter 

(P=0.06) but had lower gain:feed ratios (P<0.01) over the finishing period. E+ steers had 

higher titer responses to Lepto. pomona (P=0.09), but no differences between endophyte 

or EV treatments were observed for peripheral lymphocyte IFN-γ production (P≥0.25). 

Analysis of carcass data detected higher KPH for E+ steers (P=0.05), whereas low EV 

steers had higher final yield grades (P=0.10). No other carcass differences were detected. 
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These data indicate previous exposure to E+ tall fescue may increase growth performance 

of steers in the feedlot setting and exit velocity may be a useful tool to predict feedlot 

eating and growth behavior. 

Keywords: endophyte, steer, exit velocity, lymphocyte, vaccination 

 

Introduction 

Exit velocity has been considered one of the most practical and objective 

measures of temperament in cattle (Ferguson et al., 2006). This behavioral measure has 

been found to be related to both immunological function (Altman, 2015; Bruno et al., 

2018) and feedlot growth performance (Burrow and Dillon, 1997; Voisinet et al., 1997; 

Petherick et al., 2002). However, less is known about relationships between exit velocity 

and performance during grazing (Ferguson et al., 2006), especially with pastures 

containing toxic fescue. 

Cattle grazed on toxic endophyte (Epichloë coenophiala)-infected tall fescue 

pastures experience a syndrome known as fescue toxicosis. Animals suffering from this 

syndrome can exhibit several symptoms including decreased feed intake and average 

daily gain (ADG), elevated respiration rate and body temperature, rough hair coat, and 

loss of circulation to extremities (Stuedemann et al., 1985; Aldrich et al., 1993). 

However, prior exposure to tall fescue pastures has been reported to improve (Cole et al., 

2001; Duckett et al., 2016) or have no effect (Parish et al., 2013) upon subsequent feedlot 

growth performance, whereas research examining feedlot cell-mediated and humoral 

immunity during post-fescue grazing periods is limited, especially when considering 

potential modulating effects related to temperament measures like exit velocity. 
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Therefore, the objective of this experiment was to evaluate the relationship of exit 

velocity on average daily gain and immune function during and following a period of 

grazing either endophyte-infected or non-toxic tall fescue. 

 

Materials and Methods 

 

All methods were approved by the University of Kentucky Institutional Animal Care and 

Use Committee. 

 

Animal Background 

Mixed-breed beef steers (n=120; BW = 304 ± 33 kg) were purchased by order 

buyer from three sources. Upon arrival at the University of Kentucky’s Oran C. Little 

Research Unit, cattle were weighed and evaluated for exit velocity using previously 

published methods (Bruno et al., 2016). Prior to the beginning of the grazing period, 

steers were backgrounded for 28 days on grass hay and mineral supplement. During this 

time, bacterial and viral vaccinations (Bovi-Shield Gold 5, Zoetis, Florham Park, NJ; 

Once PMH, Merck Animal Health, Summit, NJ; Somubac, Zoetis; Ultrachoice 7, Zoetis; 

Autogenous Pinkeye, Central KY Vet Center), and an injection of anthelmintic 

(Dectomax, Zoetis), were administered. 

 

Treatment Assignment 

Treatments were arranged in a 2 x 2 x 2 factorial arrangement in a split plot 

design with two whole-plot factors and one sub-plot factor. Whole plot factors included 
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fescue/endophyte association (non-toxic vs toxic; E- and E+, respectively) and 

supplement type (control vs glucomannan) and were assigned to pasture groups (n = 6 

steers/pasture). Supplements were identical in composition (Table 3.1), with the 

glucomannan supplement additionally including a proprietary glucomannan additive. The 

subplot factor (experimental unit = individual animals) was exit velocity, which was 

assigned using the measurements obtained from steers upon arrival at the research unit. 

Source groups were stratified by exit velocities and split into two equal halves to form 

high and low exit velocity (EV) treatment groups. These exit velocity treatment 

designations were used to balance pastures for potential temperament effects so that each 

pasture had 3 low EV steers and 3 high EV steers. There were no main effects or 

interactions involving supplement type for any response variable. Thus, supplement type 

was removed from the statistical model for all results, such that the final model was a 

split plot design without the originally modeled 2 x 2 factorial arrangement in the whole 

plot. 

Cattle were assigned to either novel endophyte (Lacefield MaxQ II; Phillips, 

2016) or endophyte-infected pastures. Animal groups were balanced for body weight, 

blocked by source, randomly assigned to pastures, and grazed for 110 days. Pastures used 

in this study were 1.52 hectares in area. Supplement treatments were randomly assigned 

within pasture pairs. Stocking density was set at 1200 kg initial BW/hectare (6 

animals/pasture), a moderate to low stocking rate for this location (Sollenberger and 

Vanzant, 2011).  

Following the grazing period, steers were moved to a dry lot and housed in 2.4 x 

14.6 m pens, with 3 animals per pen. Steers were placed in pens, grouped by exit velocity 
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designation from the same grazing pasture, and remained until completion of the 

finishing period (167d), at which point they were removed for slaughter. Thus, the 

experimental unit was pen (3 steers), which maintained the integrity of the design 

structure from the grazing phase. Data from the receiving period were a focal point in this 

study, as we hypothesized prior exposure to E+ fescue may exacerbate potential changes 

in cell-mediated immunity associated with the sudden change in environment and diet. 

Steers were started on a typical receiving ration (Table 3.2) and transitioned to a finishing 

diet over the 28d receiving period. Due to decreased consumption during the first week, 

steers remained on the initial diet for 2 weeks. Following this two-week period, dietary 

energy concentrations were increased weekly over the next three weeks by decreasing the 

proportion of corn silage while increasing proportions of cracked corn and distiller’s 

dried grains. Feed bunks were checked once daily and managed to ensure steers had ad 

libitum access to rations, which were prepared each morning. 

 

Pasture analysis 

One week prior to the grazing period, 5 subsamples per pasture were collected 

using an X pattern across each pasture, with sampling sites chosen at random and 

subsamples combined to form one pasture sample. After collection, samples were frozen 

at -20°C, freeze dried in a Botanique Model 18DX48SA freeze drier (Botanique 

Preservation Co., Peoria, AZ), ground through a 1-mm screen on a Wiley Mill Model 4 

(Thomas Scientific, Swedesboro, NJ) and analyzed using a high-performance liquid 

chromatograph with a florescence detector to quantify ergovaline and ergovalinine 

concentrations, as developed by Yates and Powell (1988) and modified as in Aiken et al. 
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(2009). Ergovaline and ergovalinine were identified by excitation at 310 and detection at 

420 nm. Samples were specifically for analyzed ergovaline and its isomer, ergovalinine, 

as these alkaloids are believed to be the causative agents of fescue toxicosis and have 

been utilized in several studies investigating this phenomenon (Thompson and 

Stuedemann, 1993). 

 

Body Weight Measurement 

Body weight was measured at approximate 4-week intervals throughout the 

grazing season (d0, 32, 61, 89, 110), 14-day intervals during the first 28d of the finishing 

period (d 110, 124, and 138), and on approximately 28d intervals throughout the rest of 

the finishing period (d166, 194, 235, 256, 277). Potential error associated with gut fill 

differences was diminished during the grazing season by removing steers from pasture 

the night before each weigh day and placing them in dry lot pens without access to feed 

or water for approximately 16 hours prior to weighing. During the receiving and finishing 

periods, steers did not receive daily rations until after body weight had been collected, 

although access to water was not restricted during these periods. Steers were finished to 

an average body weight of 680 kg. Due to differences in growth rates, and to ensure all 

carcasses were similar in size, steers were harvested in 3 groups balanced across 

treatments over a 7-week period. 

 

Blood Collection and Analysis 

Blood was collected via jugular venipuncture for all analyses of blood parameters. 

During the grazing period, 10 mL serum samples were collected from each steer into 
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spray-coated silica Vacutainer® tubes (Becton Dickinson, Franklin Lakes, NJ) on d32 

and d110 for prolactin analysis, which was conducted by the Schrick laboratory at the 

University of Tennessee. Serum samples were also collected utilizing the same 

methodology on d110 and d138 (d0 and d28 of the finishing period) to evaluate baseline 

and titer responses against an administered Leptospirosis pomona vaccine (L5 SQ, 

Merck). 

In addition, during the receiving period, samples were collected from a subset of 

high exit velocity steers (n = 20; 1 from each pasture) on days 0, 14, and 28, to evaluate 

lymphocyte interferon-gamma (IFN-γ) production. Because the number of samples that 

could be simultaneously processed was limited, blood samples for lymphocyte analysis 

were restricted to only high exit velocity animals, in an effort to delineate effects due to 

supplement type, none of which were ultimately significant. Although our subsetting 

strategy greatly reduced the likelihood of detecting potential exit velocity effects, these 

effects were evaluated within the tested subgroup by using exit velocity as a continuous, 

rather than categorical, variable. 

 

PBMC Isolation and Stimulation 

Peripheral blood mononuclear cells (PBMC) were isolated and stimulated from 

the heparinized whole blood samples using a modified protocol adapted from the 

methods of Breathnach et al. (2006). Briefly, the three tubes collected from each sample 

were combined in 1-50mL centrifuge tube and spun at 800 x g for 30 minutes using a 

slow brake, with the resulting buffy coat transferred to a new tube and rinsed with 10 mL 

of warm PBS. This cell solution was layered over 10 mL Ficoll-Paque PlusTM solution 
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(Amersham Biosciences, Piscataway, NJ), and spun at 500 x g for 30 minutes using a 

slow brake. Cells were harvested, placed in a new tube containing 20 mL PBS, and 

centrifuged at 500 x g for 10 minutes using a fast brake. Cells were resuspended in 5 mL 

PBS, and to this suspension 10 mL D2O and 10 mL RPMI were added, with tubes topped 

off with PBS to achieve a final volume of 45 mL. These tubes were centrifuged at 300 x 

g for 10 minutes using a fast brake, and all subsequent spins were performed using these 

specifications. Supernatant was dumped from tubes, and tubes were again topped off to 

45 mL using PBS to resuspend and wash cells. Tubes were centrifuged, supernatant 

dumped, and 10 mL of PBS was used to resuspended cells. A subsample of 100 μL was 

obtained from each sample and mixed with 900 μL of PBS for quantifying PBMC 

concentration in each sample using a Vicell Counter-XR (Beckman Coulter, Miami, FL) 

for use in determining the volume necessary for plating samples in duplicate at 1 x 106 

cells/mL. The appropriate volume from each tube was transferred to a 15 mL tube and 

centrifuged. Resulting supernatant was dumped from each tube, and cells were 

resuspended with 4 mL cRPMI (10% fetal bovine serum, 1% penicillin-streptomyciin-

glutamine, 0.1% 2-mercaptaethanol, and 88.9% RPMI). Cells were plated in 2 wells of a 

24 well plate at 1 x 106 cells/mL. 

Samples were arranged on a 24 well plate so that duplicate samples were adjacent 

to each other in the same row, which served as control and stimulated samples. All wells 

were supplemented with 2 μL of brefeldin A (BFA), and 10 μL of phorbol 12-myristate 

13-acetate (PMA)/ionomycin was added only to stimulated sample wells. Sample plates 

were placed in an 5% CO2 incubator for 4 hours at 37°C. 200 μL was removed from each 

incubated well, transferred to a 96 well plate, and spun at 500 x g for 5 minutes, with 
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resulting supernatant dumped. 100 μL of 2% paraformaldehyde was added to each well, 

and plates were wrapped in aluminum foil and placed in a 4°C refrigerator overnight. 

 

Intracellular staining and flow cytometry 

Staining of PBMCs for IFN-γ and flow cytometer protocols were as described by 

Breathnach et al. (2006). Briefly, the morning after cells were fixed in paraformaldehyde, 

plates were centrifuged at 500 x g for 5 minutes and supernatant dumped. Cells were 

rinsed with 150 μL saponin buffer (1% fetal bovine serum, 0.1% saponin, and 0.1% 

sodium azide), and plate was centrifuged at 500 x g for 5 minutes, with resulting 

supernatant dumped. Intracellular staining was performed by reconstituting mouse IgG1 

anti-bovine IFN-gamma FITC conjugated antibody in saponin buffer using a 10 μg/mL 

formulation. After addition of the antibody, plates were incubated on ice for 30 minutes. 

Plates were centrifuged at 500 x g for 5 minutes and saponin buffer was used to 

resuspend PBMCs. Plates were centrifuged, supernatant dumped, and each well received 

200 μL FACS buffer. An Attune NxT flow cytometer (Thermo Fisher Scientific, 

Waltham, MA) was used to identify and analyze the lymphocyte population subset of 

isolated PBMCs, with forward and side scatter parameters limited to 30,000 gated events. 

Stimulated samples were compared to control samples, which were gated at 1%, for 

determination of the proportion lymphocytes producing IFN-γ and the average production 

of IFN-γ by the lymphocyte population. These two parameters were multiplied together 

to approximate the total IFN-γ produced by the analyzed lymphocyte population (Darrah 

et al., 2007). 
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Prolactin Analysis 

Plasma samples collected on d32 and d110 of the grazing period were analyzed 

for prolactin concentrations by radioimmunoassay (Bernard et al., 1993) in the Schrick 

laboratory at the University of Tennessee. The intra- and inter-assay CVs for samples 

were 7.73% and 3.23%, respectively. 

 

Leptospirosis pomona 

Serum blood samples were subjected to a microscopic agglutination test for 

detection of Leptospirosis pomona antibodies (Bruno et al., 2017). Animals without 

seronegative baseline titers on d110 were excluded from further humoral response 

analyses (n=12). 

 

Fescue Tolerance Genetic SNP Analysis 

On d110, whole blood from each animal was applied to individual sample cards 

and sent to AgBotanica, LLC (Columbia, MO) for T-SnipTM score analysis, which is a 

proprietary test purported to be a predictor of animals’ growth performance when grazed 

on endophyte-infected pastures. T-SnipTM analyzes bovine DNA to determine tolerance 

to endophyte-infected tall fescue based on multiple genetic markers. Higher score values 

are associated with higher fescue tolerance. 

 

Receiving and Finishing Dry Matter Intake 

Dry matter intake was determined on a per-pen basis by subtracting the weekly 

dry matter weight of refused feed from the total dry matter offered for the week. Ration 
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ingredients were sampled weekly, and refused feed was pooled within block and 

subsampled in triplicate each week into previously weighed trays, weighed, and placed in 

a forced air-drying oven at 55°C for 24 hours for DM determination. 

 

Statistical Analysis 

Data collected during the grazing period were analyzed as a split plot with 

endophyte pasture type (E-/E+) as the whole plot treatment and exit velocity (high/low) 

as the subplot treatment. When a RCBD whole plot structure was used with the split plot 

design, variance estimates for the subplot (residual) error for most of the ADG responses 

were not different from zero, resulting in non-positive definite covariance matrix 

estimates. Ultimately, the issues stemmed from the fact that the blocking factor accounted 

for a trivial portion of the variance. Thus, block was removed from the whole plot in 

these instances. Data were analyzed using the mixed procedure of SAS (9.4, Cary, N.C.). 

The Kenward-Roger method was used to calculate the denominator degrees of freedom, 

and block was included as a random effect. Response variables investigated included 

average daily gain (interval and whole period; ADG) and prolactin concentrations. 

Receiving and finishing period data were also analyzed as a randomized complete 

block design using the mixed procedure of SAS, with the denominator degrees of 

freedom calculated using the Kenward-Roger method. Unlike with the grazing period, 

there was no sub-plot for these two periods as pens comprised the experimental unit for 

all treatment factors. Main effects were endophyte pasture type (E+/E-) and exit velocity 

(high/low). Response variables for both periods included ADG, dry matter intake (DMI), 

and gain to feed ratio (G:F), with two steers removed from analyses of these variables 
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due to poor growth (consistent outlier across first 3 weigh periods; n = 1) and morbidity 

(death due to anaplasmosis; n = 1). The receiving period additionally included 

Leptospirosis pomona titer responses and measures of lymphocyte proportions and 

production of IFN-γ. Antibody titer data were analyzed as described for ADG, DMI, and 

G:F, but included all 120 steers in the analysis because no sign of poor growth or 

morbidity were observed for any steer during the 28-d vaccination period. The 

lymphocyte data included observations for a total of 20 steers (as previously described) 

and exit velocity was incorporated as a covariate rather than a treatment. 

Carcass data was analyzed as a randomized complete block design using the 

mixed procedure of SAS, and the Kenward-Roger denominator degrees of freedom 

method. Response variables included hot carcass weight, dressing percentage, marbling 

score, yield grade, backfat thickness, kidney pelvic heart fat percentage, and ribeye area. 

Due to differences in growth rates between the blocks, three shipment dates were 

required to ensure all animals were finished at slaughter. Due to slower growing animals 

within the first three blocks, 4 animals from these blocks were excluded from analysis as 

they had not reached the targeted 680 kg finished weight by day of shipment for their 

respective blocks. 

Significance for all response variables across all periods was set at P < 0.10, and 

trends at 0.10 < P < 0.15. 
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Results 

Grazing Period 

Pasture data and prolactin responses 

Total ergovaline + ergovalinine concentrations are presented in Table 3.3. E+ 

pastures contained higher concentrations of these two isomers than E- pastures (P < 

0.01). 

Prolactin concentrations were approximately 28% higher for E- steers on d32 and 

d110 (P < 0.01; Table 3.4). Influences of exit velocity on prolactin concentrations, 

however, were not as consistent. On d 32, high exit velocity steers tended to have lower 

plasma concentrations (P = 0.12), but this trend was not evident on d110 (P = 1.00). 

 

Average daily gain 

The effects of endophyte, exit velocity, and their interaction on ADG are 

presented in Table 3.5. For the overall grazing period, E- steers experienced greater ADG 

compared to E+ steers (P < 0.01; 0.58 vs 0.45 ± 0.054 kg/d). Animals designated as low 

exit velocity tended to have greater ADG throughout the grazing period (P = 0.14; 0.54 

vs 0.49 ± 0.056 kg/d, respectively), with no interactions between endophyte and exit 

velocity treatments detected for this period (P = 0.68). 

To test if differences in ADG may be attributable to genetic differences in toxic 

endophyte tolerance, the T-SnipTM values were evaluated as a covariate in analyses for 

ADG responses. These values proved to be ineffective in explaining any growth-related 

response differences due to endophyte, and no correlation was observed between T-

SnipTM values and ADG for either endophyte treatment (Fig. 3.1; P = 0.38 and 0.48 for 

pooled- and independent-slope models, respectively, data not shown). 
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Receiving Period 

Cell-mediated and humoral responses 

The three lymphocyte IFN-γ production measurements were not affected by either 

endophyte or exit velocity treatments (P ≥ 0.34; Table 3.6). However, a time effect was 

detected for both response variables across the 4 weeks (P < 0.01) in which the 

proportion of lymphocytes producing IFN-γ increased linearly over time, whereas 

average lymphocyte production of this cytokine were quadratic during the same time 

period (Figures 3.2 and 3.3, respectively; total IFN-γ production by lymphocytes is 

shown in Fig. 3.4). Conversely, Lepto. pomona titers were higher for E+ steers, relative 

to E- steers, during the receiving period (P = 0.09; Table 3.7). No differences in titer 

responses were observed between exit velocity designations (P ≥ 0.44). 

 

Performance data 

The first 28 days after removal from pasture were analyzed separately to observe 

potential residual effects of grazing toxic endophyte upon responses to sudden 

environmental and dietary changes. Effects of endophyte, exit velocity, and their 

interaction were not significant during the receiving period for ADG (Table 3.7; P ≥ 

0.16). However, compared with E+ steers during this period, E- steers consumed 

approximately 0.37 kg-1∙hd-1∙d-1 more dry matter (P = 0.03), but were less efficient in 

growth efficiency (gain:feed = 0.215 vs 0.244 ± 0.0096 for E- and E+, respectively; P < 

0.01). Effects of exit velocity on DMI were also observed during this 4-week period, as 

high exit velocity steers had consumed approximately 0.53 kg-1∙hd-1∙d-1 less dry matter 

than low exit velocity steers (P < 0.01) but gain to feed did not differ between the two 

treatments (P = 0.94). DMI was also examined as a percentage of body weight, with high 
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exit velocity steers consuming approximately 0.0006 kg∙kgBW-1∙d-1 less dry matter 

during this 28d period, indicating the observed influence of exit velocity on DMI was 

independent of body weight. 

 

Finishing Period 

Effects of both endophyte and exit velocity treatments were observed throughout 

the finishing period. Steers previously grazed on E+ pastures maintained a numerically 

higher ADG during each weigh interval of the finishing period, resulting in an overall 

0.09 kg/d greater daily gain for the whole finishing period (Table 3.7; P = 0.07). Steers 

previously grazed on E+ pastures also experienced a 0.08 greater G:F ratio than their E- 

counterparts (Table 3.7; P < 0.01), but total dry matter intake and dry matter as a 

percentage of body weight were not different (P ≥ 0.74) between endophyte treatments. 

High exit velocity animals consumed approximately 0.41 kg∙hd-1∙d-1 and 0.0005 

kg∙kgBW-1∙d-1 less dry matter than low exit velocity steers for the whole finishing period 

(P = 0.05). Differences in absolute DMI were largely driven by effects during the 2nd and 

3rd weigh intervals, as DMI was approximately 0.37 and 0.63 kg∙hd-1∙d-1, respectively, 

greater in low exit velocity steers (P = 0.03), although treatment differences were not 

detected when DMI was examined as a percentage of body weight (P ≥ 0.15). Exit 

velocity also affected whole finishing period gain efficiencies, with high exit velocity 

animals outperforming low exit velocity steers by approximately 0.007 kg of body weight 

gained per kilogram of feed (P = 0.01). However, no differences in ADG (P = 0.72) were 

observed between exit velocity treatments.  
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Carcass Data 

All carcass data is presented in Table 3.8. Despite the performance differences 

between treatments during the finishing period, animal carcass measurements were not 

notably affected by endophyte or exit velocity. Steers previously grazed on E+ pastures 

maintained higher kidney, pelvic, heart fat percentages (P = 0.05), but did not differ from 

E- steers in backfat measurements (P = 0.20) or marbling scores (P = 0.80). Similarly, 

low exit velocity steers had higher yield grades (P = 0.04) but did not differ from high 

exit velocity steers in other carcass measurements (P ≥ 0.19). 

 

Discussion 

Grazing Period 

Circulating prolactin concentrations can be utilized as a physiological indicator of 

exposure to ergot alkaloids, with lower concentrations of prolactin observed following 

consumption of these toxins (Schillo et al., 1988). In this study, prolactin concentrations 

analyzed on d32 and d110 of the grazing period corroborated expectations from pasture 

alkaloid concentration, with steers grazing E+ pastures having lower serum prolactin 

concentrations. 

The data collected during the grazing period agree with most reports of animals 

grazing tall fescue pastures. Average daily gain for the whole grazing period was 

approximately 0.13 kg lower in E+, as compared with E-, steers, which is consistent with 

reports from others (Coffey et al., 1990; Tully, 1992; Parish et al., 2003; Watson et al., 

2004) and a common sign of fescue toxicosis (Schmidt and Osborn, 1993; Waller, 2009).  

Fescue toxicosis signs are typically more apparent during periods of increased 

temperature (Thompson and Stuedemann, 1993).  Over the first three weigh intervals, the 
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THI steadily increased, overall, to its apex just below the emergency heat stress point, 

and thus above the alert and danger levels, described by Hahn (1999). This was 

particularly evident during the 3rd interval which coincided with the highest THI values 

for the entire grazing season, when weight gains in both treatments decreased by 33 to 

53% compared with the 2nd interval. Prior to the start of the 4th weigh interval, the THI 

decreased to near the alert, or lowest, heat stress level (Hahn, 1999), and remained 

relatively constant through the duration of grazing. During this time, growth rates 

rebounded to levels similar to those observed for the second interval for both endophyte 

treatment groups. 

 

Immunological Responses 

Humoral immune response, in the form of Leptospirosis pomona antibody 

production, was impacted by endophyte treatment, with increased production in E+ 

steers. Despite the consistency of this result with other post-endophyte bovine titer 

responses (Dawe et al., 1997; Rice et al., 1997), investigation of a mechanistic 

explanation has yet to be provided. One possibility is this increased humoral immunity 

may be driven by serotonergic responses due to consumption of endophytic alkaloids. 

Serotonin treatment, in the presence of LPS, was reported to stimulate B cell proliferation 

in rats and mice, with similar effects observed using the serotonin agonist 8-OH-DPAT 

(Iken et al., 1995). Ergovaline has been reported to bind with certain serotonin receptor 

subtypes and induce vasoconstriction in cattle via alteration of serotonin receptors (Dyer, 

1993; Klotz et al., 2007). Thus, consumption of this alkaloid by E+ steers may have 

contributed to the observed increased titer response against Lepto. Pomona. 
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It is also possible the increased titer responses in E+ steers were driven by a 

previous decrease in the plane of nutrition. Pollock et al. (1994) reported calves fed a 

greater amount of milk substitute each day prior to weaning had lower vaccination titers 

to horse red blood cell (administered post-weaning), indicating a previous lower plane of 

nutrition may increase vaccine efficacy, even after the nutrient restriction period has 

ceased. The steers grazing E+ pastures, experienced lower ADG than E- steers, indicating 

that E+ steers were on a lower plane of nutrition. To determine if the increased humoral 

responses of cattle previously grazed on E+ pastures is a direct result of alkaloid 

exposure, lower plane of nutrition, or a combination of the two, future research is needed. 

In contrast with humoral immune responses, cell-mediated responses were 

unaffected by endophyte treatment in this study. This finding, on the surface, conflicts 

with results from other studies conducted by our lab examining relationships between 

post-endophyte and lymphocyte IFN-γ production (Chapter 2). However, there are three 

key differences between the current study and those two experiments. First, this study 

utilized steers whereas Chapter 2 investigated this relationship in heifers. It is unclear 

what role sex hormones may play in this relationship, if any. Secondly, total DMI was 

controlled and equivalent between E- and E+ treatment groups in the experiments 

described in Chapter 2, but was not controlled (and likely differed between endophyte 

treatments, as reflected by ADG) during the grazing period of the current experiment. 

Third, in Chapter 2, heifers were fed a known concentration of ergovaline + ergovalinine 

each day, potentially increasing the ability to detect differences between endophyte 

treatments. In the present study, average pasture concentrations were obtained at the 

beginning of the grazing season. However, these concentrations are known to fluctuate 
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throughout the year (Rogers et al., 2011) and the amount of grass the consumed, 

including the total amount of alkaloid ingested each day, was not measured in the current 

experiment. Therefore, to further investigate the relationship, or lack thereof, between E+ 

consumption and lymphocyte IFN-γ production in steers, future research should be 

conducted in a manner which better accounts for alkaloid consumption. 

 

Finishing Period Growth Performance 

Effects of endophyte treatment on gain efficiency, DMI, and ADG during the first 

28 days of the finishing period indicated steers grazed on toxic endophyte pastures may 

have been experiencing a compensatory response following the restricted growth 

observed during the grazing period. The increased absolute dry matter intake by E- steers 

over the first 28d of the finishing period was a result of the relatively larger size of these 

animals compared with E+ steers during this weigh interval, as there was no difference 

between endophyte treatments when DMI was analyzed as a percentage of body weight. 

Periods of compensation, such as that observed for the E+ steers during the 

second weigh interval, have been noted to be commonly preceded and accompanied by 

increased gain efficiency in animals previously under nutrient restriction relative to those 

who never experienced the restriction (Ryan et al., 1993). In that study, the compensatory 

response in both sheep and cattle subsequent to a period of severe nutrient restriction was 

observed first as an increased gain efficiency and then later with increased DMI. 

However, it was noted this increased DMI lasted through the duration of the experiment 

for calves, but not sheep, to which the authors attributed sheep with a more severe 

nutrient restriction (i.e. greater weight loss), thereby encouraging a more rapid and 
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efficient response. The authors concluded this indicates that the degree to which 

compensation occurs in the animal is dependent upon the severity of the restriction 

experienced. In the current study, which had a much lower degree of restriction than that 

noted by Ryan et al. (1993), E+ steers experienced improved gain efficiencies during the 

receiving period (d110 to 138), with a tendency from d138 to 166 to consume a greater 

amount of dry matter (as a percentage of body weight). This indicated that compensatory 

mechanisms, although softened in comparison to the aforementioned study, may have 

been present during the first 56d in the feedlot, attributing to the overall difference in 

ADG observed for the finishing period. 

Periods of nutrient restriction have also been associated with decreased liver and 

gastrointestinal tract weights (Murray et al., 1977; Johnson et al., 1987; Carstens et al., 

1991). The restricted growth of these organs, once the nutrient restriction has been 

alleviated, induces a greater deposition of protein, as opposed to fat, in these animals 

(Carstens et al., 1991). Therefore, it is possible the improved growth efficiency of E+, 

compared with E-, steers during the feedlot period of the present study may have resulted 

from an increased protein deposition due to decreased liver and gastrointestinal tract sizes 

arising from the decreased growth of these steers during the grazing period. This 

mechanism for compensation may assist in further explaining the observed titer 

responses, which were measured during the same period. Following a period of 

malnutrition, children supplemented with 175 cal/kg and 4 g of protein had greater 

typhoid immunization responses than was observed prior to supplementation and in the 

group supplemented with 100 cal/kg and 1 g of protein (Suskind et al., 1976). If 

compensatory responses were present in E+ steers during the time of vaccination in the 
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current study, as indicated by growth efficiency and daily gain responses, relative nutrient 

availability could have been increased in these calves, which may have contributed to the 

increased titer responses.  

Finishing period gain efficiency and DMI were also influenced by exit velocity 

treatment, as animals with greater exit velocities maintained higher growth efficiencies 

but numerically lower intakes than their low exit velocity herdmates. Despite numerically 

lower DMI (on a %BW basis) across the finishing period for animals designated as high 

exit velocity, there was not a corresponding difference in ADG. Although the observed 

reduction in DMI in the current study is consistent with previous reports (Burrow and 

Dillon, 1997; Petherick et al., 2002; Cafe et al., 2011), the increase in efficiency differs 

from others who have reported decreased (Burrow and Dillon, 1997; Petherick et al., 

2002), or no difference (Francisco et al., 2012) in gain efficiencies in high, as opposed to 

low, exit velocity animals. 

 

Carcass Data 

Consumption of E+ pastures has been noted to influence lipid metabolism in 

cattle, with E+ cattle maintaining lower serum cholesterol concentrations during grazing 

than calves on E- pastures (Bond et al., 1984a; Stuedemann et al., 1985; Rice et al., 

1997). In the current study, previous exposure to endphyte-infected pasture had no 

apparent effect on fat deposition, with the exception of KPH fat. Differences in KPH due 

to endophyte treatment have not been noted following a finishing period in other studies 

(Duckett et al., 2001; Realini et al., 2005). Although a detectable difference between 

endophyte treatments was approximately 0.06%, or about a 3% magnitude of difference, 

97



this minute increased KPH value in the carcasses of E+ steers is likely of minimal 

physiological importance. 

Conversely, the observed differences in yield grade between exit velocity groups 

presents an intriguing treatment effect. Yield grade is calculated using an equation that 

weights the measured carcass characteristics of backfat, KPH, ribeye area, and dressing 

percentage, with the final number is rounded down to the nearest whole number for 

reporting (USDA, 1997). Despite the appearance of a consistent relationship between exit 

velocity and yield grade in the present study (i.e. no interaction with endophyte treatment 

and lower yield grade associated with increased exit velocity), the main driver of this 

relationship differed between endophyte treatment groups. In E- steers, the change in 

yield grade was associated with lower backfat whereas in E+ steers, the relationship 

between exit velocity and calculated yield grade was related to a change in ribeye area. 

However, neither of these carcass characteristics were affected by either endophyte or 

exit velocity treatments, indicating these differences were very subtle, yet distinct enough 

to affect overall yield grade. 

 

Conclusions 

The results from this study indicate that both toxic endophyte and animal exit 

velocity may influence growth performance during grazing and finishing. From a 

finishing perspective, this data indicates that exit velocity may be a useful predictor of 

gain efficiency and feed intake in cattle. Previous toxic endophyte tall fescue 

consumption improved titer response to a bacterial vaccination. However, it is unclear 

whether this effect was due to a previous decreased plane of nutrition or a direct effect of 

an alkaloid upon humoral immunity. Future investigation of the mechanism for this 
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increased responsiveness to vaccination may be useful in formulating and implementing 

new management strategies to reduce incidence of morbidity among newly received 

feedlot cattle.
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Table 3. 1 Composition of supplementsa provided to steers during 110d grazing period. 

Ingredient Inclusion Rate 
Salt 85.00% 
Magnesium 4.00% 
Copper 2000 ppm 
Selenium 50 ppm 
Zinc 4000 ppm 
Manganese 7500 ppm 
Iodine 125 ppm 
Cobalt 15 ppm 
Vitamin A 200,000 IU/lb 

aGlucomannan treatment supplement contained 30 g/kg proprietary glucomannan additive. 
 
 
 

Table 3. 2 Diet composition of 167d finishing period (post-grazing) 

 % of DM 
 Weeks 1-2 Week 3 Week 4 Weeks 5-24 

Corn Silage 70 50 35 10.0 
Distiller’s Dried Grains 10 20 25 25.0 
Cracked Corn 10 20 30 27.5 
High Moisture Corn 0 0 0 27.5 
Supplementa 10 10 10 10.0 

aSupplement contained macro and trace minerals and vitamins formulated to support ADG of 1.93 kg/d, 
along with urea, monensin, and tylosin, in a ground corn carrier. 
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Table 3. 3 Presence of ergovaline, ergotamine, and related isomers in E+ and E- pastures. 

 Endophyte Treatment   P-Value 
 E- E+ SEM  Endo 

Ergovaline + Ergovalininea 43 425 38.2  <0.01 
Ergotamine + Ergotamininea 0.00 0.00 0.00  - 

aValues represent the sum of isomers, in ppb 
 

 

Table 3. 4 Influence of endophyte infected tall fescue and exit velocity (EV) on serum prolactin concentration in steers (n = 120) 
during 110d grazing period. 

 E- E+  P-Value 
 Low High Low High SEM Endo*EV Endo EV 

Day 32a 4.44 4.57 3.41 3.06 0.171 0.49 <0.001 0.12 
Day 110a 3.82 3.93 2.82 2.71 0.150 0.41 <0.001 1.00 

aMeans are presented as natural log-transformed, original units in ng/mL 
 
 
  

101



Table 3. 5 Influence of endophyte-infected tall fescue and exit velocity (EV) on steer (n = 120) daily gains during a 110d grazing 
perioda 

 E- E+  P-Values 
 Low High Low High SEM Endo*EV Endo EV 

d0 to 32 0.29 0.24 0.13 0.06 0.103 0.87 0.13 0.24 
d32 to 60 0.85 0.82 0.76 0.72 0.100 0.97 0.21 0.44 
d60 to 89 0.58 0.51 0.34 0.36 0.072 0.27 0.07 0.44 
d89 to 110 0.82 0.72 0.76 0.71 0.048 0.56 0.31 0.11 
d0 to 110 0.61 0.55 0.47 0.43 0.059 0.68 <0.01 0.14 

aMeans are presented as kg/d 
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Table 3. 6 Influence of endophyte infected tall fescue on steer (n = 20) peripheral lymphocyte IFN-γ production during the first 28d of 
the finishing period, with exit velocity (EV) as a covariate. 

 
Endophyte 
Treatment 

 P-Value 

 E- E+ SEM Endo*EV Endo*Week Endo EVe Week 
Proportion of lymphocytes 
producing IFN-γa,b 1.83 2.00 0.125 0.25 0.54 0.34 0.42 <0.01 

Average lymphocyte production 
of IFN-γa,c 10.31 10.39 0.087 0.74 0.59 0.82 0.67 <0.01 

Total lymphocyte population 
production of IFN-γa,d 12.14 12.40 0.162 0.29 0.68 0.40 0.62 <0.01 

aMeans are presented as log-transformed 
bPercent of peripheral blood mononuclear cells expressing Interferon-γ 
cMean fluorescence intensity of peripheral blood mononuclear cells expressing Interferon-γ 
dProduct of lymphocyte proportion and average production of Interferon-γ values 
eOnly high exit velocity steers were selected for these analyses. Thus, exit velocity was included as a covariate rather than a treatment 
effect
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Table 3. 7a Influence of endophyte infected tall fescue and exit velocity (EV) on steer (n = 118) growth performance and humoral 
immune responses during a 167d finishing period following summer grazing. 

 E- E+  P-Value 
 Low High Low High SEM Endo*EV Endo EV 
ADG (kg)         

d110-138 1.86 1.66 1.89 1.86 0.109 0.40 0.27 0.24 
d138-166 1.55 1.62 1.76 1.75 0.117 0.71 0.10 0.73 
d166-194 2.44 2.29 2.35 2.39 0.101 0.26 0.93 0.48 

d194-235a 2.05 2.25 2.14 2.23 0.107 0.42 0.61 0.02 
d235-256b 1.61 1.78 1.83 1.73 0.171 0.20 0.39 0.72 
d156-177c 1.41 1.19 1.31 1.51 0.176 - - - 
d0-Finishd 1.95 1.95 2.02 2.05 0.073 0.78 0.07 0.72 

DMI (kg)         
d110-138 8.52 7.82 7.98 7.70 0.207 0.18 0.04 <0.01 
d138-166 11.94 11.29 12.01 11.42 0.435 0.92 0.72 0.03 
d166-194 12.68 11.79 12.39 12.00 0.336 0.38 0.88 0.03 

d194-235a 12.79 12.38 12.55 12.59 0.326 0.39 0.96 0.50 
d235-256b 11.83 11.93 11.45 11.23 0.272 0.47 0.03 0.80 
d156-177c 10.81 11.14 10.59 10.94 0.196 -- - - 
d0-Finishd 11.66 11.07 11.42 11.18 0.267 0.41 0.74 0.06 

DMI (as %BW)         
d110-138 0.0212 0.0205 0.0209 0.0204 0.00048 0.74 0.32 0.04 
d138-166 0.0265 0.0264 0.0277 0.0265 0.00050 0.20 0.17 0.16 
d166-194 0.0250 0.0245 0.0252 0.0246 0.00047 0.87 0.68 0.15 

d194-235a 0.0218 0.0221 0.0221 0.0222 0.00034 0.76 0.56 0.52 
d235-256b 0.0190 0.0199 0.0194 0.0192 0.00039 0.15 0.64 0.29 
d156-177c 0.0175 0.0179 0.0173 0.0178 0.00047 -- - -- 
d0-Finishd 0.0228 0.0225 0.0230 0.0226 0.000242 0.82 0.33 0.14 
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Table 3. 8b Influence of endophyte infected tall fescue and exit velocity (EV) on steer (n = 118) growth performance and humoral 
immune responses during a 167d finishing period following summer grazing. 

 E- E+  P-Value 
 Low High Low High SEM Endo*EV Endo EV 

G:F         
d110-138 0.217 0.212 0.236 0.252 0.0096 0.29 <0.01 0.55 
d138-166 0.133 0.143 0.147 0.148 0.0104 0.51 0.20 0.42 
d166-194 0.198 0.194 0.191 0.201 0.0062 0.22 0.97 0.56 

d194-235a 0.163 0.182 0.170 0.179 0.0065 0.24 0.57 <0.01 
d235-256b 0.136 0.150 0.160 0.148 0.0156 0.21 0.28 0.94 
d156-177c 0.130 0.107 0.124 0.149 0.0200 -- - -- 
d0-Finishd 0.169 0.176 0.177 0.184 0.0044 0.92 <0.01 0.01 

Lepto. pomonae,f 2.89 2.81 3.05 2.98 0.118 0.96 0.09 0.44 
 
aIncludes all 5 blocks in analyses 
bIncludes only 2 blocks in analyses 
cOnly 1 block included for the means. No statistics available 
dAnalysis of full finishing period for all blocks 
eMeans presented are log transformed 
fData was collected during first 28 days of finishing period
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Table 3. 9 Influence of endophyte infected tall fescue and exit velocity on steer (n = 118) carcass data. 

 E- E+  P-Value 
 Low High Low High SEM Endo*EV Endo EV 
Hot Carcass Weighta 389.8 378.2 383.7 382.0 5.03 0.34 0.82 0.19 
Yield Grade 3.24 2.99 3.24 3.10 0.100 0.55 0.54 0.04 
Ribeye Areab 87.0 87.1 86.6 89.5 1.34 0.30 0.45 0.26 
Marbling 475.0 447.2 460.6 469.1 16.69 0.23 0.80 0.52 
Backfatc 1.32 1.19 1.35 1.35 0.074 0.27 0.20 0.22 
Kidney, Pelvic, Heart Fatd 1.88 1.91 1.95 1.96 0.045 0.69 0.05 0.54 
Dressing Percentaged 62.78 62.59 62.73 62.60 0.405 0.92 0.95 0.61 

aValues presented in kilograms 
bValues presented in cm2 
cValues presented in cm 
dValues presented as % 
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Figure 3. 1 T-snip scores from steers (n = 120) grazing E+ or E- pastures for 110d. Scores range from 0 to 50, with higher values 
suggested to be associated with greater toxic fescue tolerance. Trendlines, based on endophyte treatments, indicate T-snip scores were 
not a good determinant for toxic fescue tolerance. The R2 for E- (▲, solid line) steers was 0.0351, whereas it was 0.0011 for E+ (●, 
dashed line) steers, indicating that no correlation between expression of the T-snip gene and average daily gain on pasture existed. 
Analysis of variance, with inclusion of T-snip in the model as a covariate, yielded the following : endophyte (P < 0.01) , exit velocity 
(P = 0.16), endophyte x exit velocity ( P = 0.70), T-snip (P = 0.38). 
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Figure 3. 2 Proportion of lymphocytes expressing interferon-γ by week in steers (n = 20) previously grazed on endophyte infected or 
novel endophyte tall fescue pastures during receiving phase. Only high exit velocity steers (n = 1/paddock) were utilized for this 
analysis. Endophyte treatment did not influence the proportion of lymphocytes expressing interferon-γ (P = 0.34), but these 
proportions did fluctuate over the 4-week collection period (P < 0.01). An interaction between endophyte treatment and week was not 
detected (P = 0.54). E+ = ●. E- = ▲. 
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Figure 3. 3 Average lymphocyte production of interferon-γ by week in steers (n = 20) previously grazed on endophyte infected or 
novel endophyte tall fescue pastures during receiving phase. Endophyte treatment did not influence the average lymphocyte 
production of interferon-γ (P = 0.82), but average production of this cytokine by lymphocytes did fluctuate over the 4-week collection 
period (P < 0.01). Only high exit velocity steers (n = 1/paddock) were utilized for this analysis. An interaction between endophyte 
treatment and week was not detected (P = 0.59). E+ = ●. E- = ▲.  

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

-1 0 1 2 3 4 5

Lo
g(

Av
er

ag
e 

ly
m

ph
oc

yt
e 

pr
od

uc
tio

n 
of

 IF
N

-γ
)

Week

109



 
Figure 3. 4 Total lymphocyte interferon-γ production by week in steers (n = 20) previously grazed on endophyte infected or novel 
endophyte tall fescue pastures during receiving phase. Total IFN-γ production was calculated as the product of the average 
production of IFN-γ and the proportion of lymphocytes producing IFN-γ. Only high exit velocity steers (n = 1/paddock) were utilized 
for this analysis. Endophyte treatment did not influence the total lymphocyte production of interferon-γ (P = 0.40), but total 
production of this cytokine by lymphocytes did fluctuate over the 4-week collection period (P < 0.01). An interaction between 
endophyte treatment and week was not detected (P = 0.68). E+ = ●. E- = ▲. 
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Figure 3. 5 Environmental temperature-humidity index during the 110d grazing period. The fluctuating line represents the ambient 
THI in pastures, which were adjacent to the NOAA weather station used to collect these data. There are missing data due to station 
malfunction from 5/11 (d15) at 1300 to 5/14 (d18) at 1600 and 5/21 (d25) at 0700 to 5/21 (d25) at 2000. The three straight lines 
represent the three levels of heat stress described by Hahn (1999): Alert (bottom, THI = 75), Danger (middle, THI = 79), and 
Emergency (top, THI = 84). 
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Chapter 4: Influence of handling and transportation on systemic cytokine 
production 

 

Abstract 

Two experiments were conducted to investigate the effects of stress on 

immunological responses of beef cattle. Calves were evaluated at weaning for exit 

velocity. In experiment 1 (EXP 1), 18 steer and 18 heifer Angus calves were selected as 

the highest (n=9/sex) and lowest (n=9/sex) exit velocities measured in purebred Angus 

calves born that year (n=85). Exit velocity treatment (high and low) was assigned in both 

experiments based on these groupings. Calves were subjected to a 4-week halter-breaking 

program to evaluate the effect of human handling on interferon-γ (IFN-γ), tumor necrosis 

factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) 

expression changes. Calves were tied to railings and exposed to human contact 5 times 

per week for 4 weeks. Three mL of blood was collected via jugular venipuncture once 

weekly for RT-PCR analysis of the aforementioned cytokines. EXP 1 data was analyzed 

as ΔΔCT values. Experiment 2 (EXP 2) examined the effect a 500-mile transport on 

isolated peripheral lymphocyte production of IFN-γ, as determined by flow cytometry, in 

the steers from EXP 1 using the same high/low exit velocity treatments. Plasma blood 

samples were collected via jugular venipuncture on d0, d1, 2, 3, 7, 19, and 28, relative to 

start of transport. From these samples, PBMCs were isolated, counted, stimulated, stained 

for IFN-γ, and analyzed using flow cytometry. EXP 2 data was analyzed as proportion of 

lymphocytes producing IFN-γ, average lymphocyte production of IFN-γ, and total 

production of IFN-γ. Cattle in both experiments were fed a corn silage diet. During EXP 

1, relative expression of TNF-α was higher (P<0.01) and IFN-γ lower (P=0.03) in high 
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exit velocity calves. IFN-γ (P=0.07), IL-6 (P=0.02), IL-10 (P<0.01), and IL-12 (P=0.04) 

relative gene expression linearly increased over time, irrespective of treatment. In EXP 2, 

proportions of lymphocytes producing IFN-γ were higher (P=0.10) and average 

lymphocyte production of IFN-γ was lower (P=0.02) in high exit velocity steers, and 

these two responses offset each other so that total lymphocyte production of IFN-γ was 

not affected by exit velocity treatment (P=0.77). The results of these experiments indicate 

that relative cytokine expression may be affected by exit velocity and improve over time 

as calves adjust to stressors. Additionally, weaning exit velocity and transportation may 

not interact to influence the total production of IFN-γ by lymphocytes, but may affect the 

CD4+ differentiation and individual cell production capabilities. 

Keywords: lymphocyte, cattle, cytokine, IFN-γ, stress 

 

Introduction 

The average US beef calf will experience multiple transition periods in its lifetime 

such as weaning, transportation, new locations, new diets, and exposure to new pen mates 

(Loerch and Fluharty, 1999). This amount of change requires the calf to constantly adjust 

to new surroundings, with some coping better than others (Koolhaas et al., 1999). This 

constant transition requires an unavoidable human-calf interaction, with some form of 

handling observed at every level of production. One method utilized to desensitize calves 

to human presence is halter breaking, which constitutes an intense handling situation as 

calves are coerced into a gradual acclimatization to human interaction. The process of 

handling cattle has been reported to be ineffectual on average daily gain, but increase 

white blood cell counts (Petherick et al., 2009b) and plasma concentrations of the acute 
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phase protein ceruloplasmin (Francisco et al., 2012), indicating a potential effect of 

acclimating cattle to human handling on immune function. 

Cattle previously exposed to human handling, compared with cattle novel to 

handling, are reported to have lower exit velocities at the end of the handling period 

(Petherick et al., 2009a; Francisco et al., 2012). Measures of temperament, particularly 

exit velocity, have been noted to be associated with an animal’s immune function 

(Oliphint, 2006; Burdick et al., 2011). Recent studies from our laboratory demonstrated 

weaning exit velocity has an inverse relationship with systemic interferon-γ (IFN-γ) 

concentrations (Altman, 2015), and a direct relationship with rectal temperatures (Altman 

et al., 2016) during the first 24 hours following an LPS injection. In both experiments of 

Chapter 2, total and average lymphocyte production of IFN-γ were increased in higher 

exit velocity heifers following the endophyte exposure and increased temperature 

humidity index period in comparison with lower exit velocity heifers. Collectively, these 

studies suggest exit velocity, as a measure of temperament, may be related to production 

of immune system components in cattle. 

However, examination of changes in IFN-γ, as well as other key cytokines 

involved with regulation of innate and adaptive immune responses, during periods of 

intense human handling remain unreported. If such relationships existed, they could be 

utilized through evaluation of exit velocity, and other measures of temperament, to 

evaluate cattle for potential future incidence of and recovery from morbidity.  

Similar to handling, transportation of cattle from one location to another may lead 

to a decrease in the immune status of the animal (Swanson and Morrow-Tesch, 2001). 

This, coupled with exposure to new pathogens, can lead to increased morbidity/mortality 
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within a herd during the feedlot receiving period. Examining the relationship between 

transport-related stress and measures of temperament, namely weaning exit velocity, may 

improve understanding of morbidity and mortality rates during the feedlot receiving 

period. In turn, strategies may be developed to identify and isolate ‘more susceptible’ 

animals in an effort to more accurately target interventions and improve health 

management strategies for feedlot cattle. 

Therefore, the objective of these experiments was to determine if systemic 

cytokine production differed between high and low calf exit velocity in response to 

handling and transportation events. In EXP 1, this constituted an examination of relative 

gene expression of cytokines involved with activating innate responses and modulating 

differentiation of CD4+ T cells. It was hypothesized these expression patterns would 

increase as calves became more accustomed to human presence, but that this increase 

would be lessened in calves with greater flight responses. In EXP 2, calves were 

evaluated for lymphocyte IFN-γ production before and after a simulated transport from 

sale barn to feedlot. It was hypothesized transportation would exacerbate the level of 

immunosuppression experienced by high exit velocity calves to a greater degree than in 

low exit velocity calves, and that these responses would be particularly evident in the 

period immediately following the transportation period. 

 

Materials and Methods 

All methods were approved by the University of Kentucky Institutional Animal 

Care and Use Committee. 
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Experiment 1 

Eighteen Angus steers and eighteen Angus heifers, born on the University of 

Kentucky Oran C. Little Animal Research Center Beef Unit, were selected from their 

herd mates based on exit velocity measured at weaning. All calves (n = 85) born in the 

fall of 2016 were evaluated for weaning exit velocity using a laser trip system (Bruno et 

al., 2017; FarmTek, North Wylie, TX) following release from a headgate. The start and 

stop lasers were set 1.68 m apart, with the first laser approximately 0.5 m in front of the 

head gate to ensure calves did not prematurely start the timer prior to release from the 

head gate. At this time, vaccinations against viral and bacterial pathogens (Bovi-Shield 

Gold 5, Zoetis, Florham Park, NJ; Once PMH, Merck Animal Health, Summit, NJ; 

Somubac, Zoetis; Ultrachoice 7, Zoetis) were boostered and each calf’s weaning weights 

was recorded. Calves were selected for inclusion in this study from the extreme ends 

(within sex) of the weaning exit velocities evaluated. The exit velocity ranges for each 

group are as follows: all Angus calves measured = 0.68 to 4.73 m/s; high exit velocity 

heifers = 3.13 to 3.98 m/s; low exit velocity heifers = 0.91 to 2.26 m/s; high exit velocity 

steers = 2.86 to 4.73 m/s; low exit velocity steers = 0.68 to 1.35 m/s. The range of these 

measured exit velocities is consistent with those reported by others (Fell et al., 1999; Hall 

et al., 2011). 

A baseline blood sample was collected at weaning (d-15 for heifers, d-21 for 

steers) via jugular venipuncture into a Tempus Tube (Thermo Fisher Scientific, Waltham, 

MA) for use as a reference sample in later analyses of relative gene expression. The 

weaning period lasted 2 weeks, during which human interference was limited. Following 

the weaning period, calves underwent a 4-week halter breaking period. During this time, 

calves were placed in a head gate for collection of blood samples and placement of 
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halters. Blood samples were collected weekly on d1, 8, 15, and 22 via jugular 

venipuncture into Tempus Tubes. Samples were frozen at -20C until further analyzed. 

Following release from the head gate, calves were placed in pens of three, tied to railings, 

and exposed to human interaction (i.e. brushing and rubbing) for 2 hours a day, 5 days a 

week. 

 

RNA Extraction and RT-PCR Analysis 

Following collection, Tempus® tubes (ThermoFisher) were placed in a -20°C 

freezer until analyzed. Samples were grouped by collection date for thawing and resulting 

mRNA fragments were isolated following the manufacturer’s instructions. 

Cytokine gene expression was determined using an Applied Biosystems 7500 

sequence detection system (Applied Biosystems, Foster City, CA) following the methods 

of Adams et al. (2008). Briefly, 0.5 μg total RNA was diluted in nuclease-free water to a 

final volume of 49.5 μL, added to 30.5 μL reverse transcription master mix and 16 μL 

MgCl2. Reactions occurred at 42°C for 15 minutes and 95°C for 5 minutes in a 

thermocycler, with resulting cDNA diluted to 1:1 in nuclease-free water to allow 

measurement of multiple genes simultaneously using real time PCR. Incubated PCR 

reactions occurred at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds 

and 60°C for 1 minute. Each reaction well contained 20 μL master mix, 6.25 μL 

nuclease-free water, and 5 μL cDNA template, with all samples analyzed in duplicate. 

Changes in gene expression were calculated by relative quantitation using the ΔΔCT 

method (Livak and Schmittgen, 2001), with each animal’s weaning sample used as the 
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control sample for that animal (Schmittgen and Livak, 2008). The equations used were as 

follows: 

ΔΔCT = (CT of cytokine – Average CT of GADPH)Day of interest - (Average CT of 

cytokine- Average CT of GADPH)Weaning 

Relative quantity of cytokine expression = 2-ΔΔCT. 

 

Cytokine gene expression in each sample was analyzed using TaqManTM primer-

probe sets (Thermo Fisher, Waltham, MA) for GADPH (for use as a housekeeping gene; 

Bt03210913_g1), interleukin-6 (IL-6; Bt03211905_m1), interleukin (IL-10; 

Bt03212727_m1), interleukin-12 (IL-12; Bt03213922_m1), interferon-γ (IFN-γ; 

Bt03212723_m1), and tumor necrosis factor-α (TNF-α; Bt03259156_m1) expression 

using inventoried TaqManTM assays (Applied Biosystems, Foster City, CA). Weaning 

samples were evaluated for potential exit velocity treatment effects to ensure any 

observed differences during the halter breaking period.  From this data set, 2 calves were 

excluded from the TNF-α analysis, and 1 calf from IL-6 and IFN-γ analyses, as they were 

deemed to be outliers using the inter-quartile method (JMP 13, SAS, Cary, NC). Animals 

removed from weaning samples analyses were excluded from subsequent analyses 

involving the cytokine from which they were excluded. None of the cytokines differed in 

expression at weaning between exit velocity treatments (P ≥ 0.20; data not shown). 

 

Experiment 2 

The 18 Angus steers used in EXP 1 (462 ± 43.3 kg BW; 398 ± 13.7 days old), 

were used for EXP 2. One truck was utilized in transporting all 18 steers approximately 
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805 km, simulating a typical journey from a central KY sale barn to Midwest US 

feedlots. Steers were placed on a 36 ft trailer at 0800 and returned to the UKARC around 

1800 the same day. Animal location within the trailer was balanced between high and 

low exit velocity treatments to prevent location bias. Shipping hours were selected to 

simulate average conditions experienced by calves during a typical shipping period in the 

fall. Following the transportation phase, steers were placed in small group pens (n = 3; 6 

steers/pen) based on starting body weight and balanced for exit velocity treatments. 

Calves remained in these pens throughout the duration of the study and were fed a typical 

receiving transition diet (Table 4.1). Pens were cleaned each week to minimize fecal 

material or urine present in the pen. Fresh bedding, in the form of wood shavings, was 

provided to maintain a clean, dry area for the calves. Steer body weight were recorded at 

each blood collection (days 0, 1, 3, 8, 15, and 29). 

 

Blood Sampling 

Blood samples were collected on days 0, 1, 3, 8, 15, and 29 from each steer via 

jugular venipuncture into 3-15 mL Vacutainer (Bectin-Dickson; Franklin Lakes, NJ) 

tubes with Na-heparin added prior to blood collection. Samples were collected prior to 

morning feeding. Plasma was harvested from these samples and used to isolate peripheral 

blood mononuclear cells (PBMC). 

 

Evaluation of Lymphocyte IFN-γ Production 

In vitro cell mediated immunity was assessed through isolation of PBMCs from 

each sample using a protocol modified from the methods of Breathnach et al. (2006). 
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Briefly, upon arrival to the lab, all three blood tubes from each animal were composited 

into a 50 mL centrifuge tube, then centrifuged at 800 x g for 30 minutes using a slow 

brake. The resulting buffy coat was transferred to a new tube, rinsed with 10 mL of warm 

PBS, and layered on top of 10 mL Ficoll-Paque PlusTM solution (Amersham Biosciences, 

Piscataway, NJ) in another 50 mL centrifuge tube. Samples were spun at 500 x g for 30 

minutes using a slow brake. Cells were harvested and transferred to another 50 mL 

centrifuge tube containing 20 mL PBS and spun at 500 x g for 10 minutes using a fast 

brake. Supernatant was dumped out of this tube and 5 mL PBS was used to resuspend 

cells, with 10 mL D2O and 10 mL RPMI were added to this suspension. Warm PBS was 

used to top off all tubes to a final volume of 45 mL PBS when needed. Tubes were placed 

in a centrifuge and spun at 300 x g for 10 minutes with a fast brake, and these 

specifications were used for all subsequent spins. The resulting supernatant was dumped 

from the tube, cells were resuspended in 45 mL of PBS, and tubes were centrifuged. 

Supernatant was dumped from the tubes, and and 10 mL PBS was used to resuspended 

cells. A subsample of 100 μL was removed from each tube and added to 900 μL of PBS 

for quantification of cells in each sample using a Vicell Counter-XR (Beckman Coulter, 

Miami, FL), with resulting data for calculating the volume needed to freeze duplicate 

samples at 2.5 x 107 cells/mL. The appropriate volume from each tube was obtained by 

removing excess cell solutions from each tube, with a subsequent centrifuge spin. 

Resulting supernatant was dumped from each tube, and cells were resuspended with in a 

freeze media consisting of 50% RPMI (Gibco, Grand Island, NY), 40% fetal bovine 

serum (Sigma-Aldrich, St. Louis, MO; FBS), and 10% DMSO (Sigma). Solutions were 
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transferred into in 1.5 mL microcentrifuge tubes and placed in liquid nitrogen until all 

samples were collected. 

All time points from the same animal were analyzed together. On the day of 

analysis, samples were thawed in warmed 10 mL cRPMI (10% FBS (Sigma), 1% 

penicillin-streptomycin-glutamine, 0.1% 2-mercaptaethanol, and 88.9% RPMI (Gibco)) 

and PBMCs re-enumerated on a Vicell Counter-XR (Beckman Coulter, Miami, FL), and 

plated, stimulated, and stained following the methods described by Breathnach et al. 

(2006). Briefly, animal samples were split into two subsamples on a 24 well plate to form 

a control and stimulated well for each animal. To prevent secretion of synthesized IFN-γ, 

2 μL of brefeldin A (BFA) was added to each well, and an additional 10 μL of phorbol 

12-myristate 13-acetate (PMA)/ionomycin was added to each of the stimulated sample 

wells to induce IFN-γ production. Sample plates were placed into an incubator for 4 

hours at 5% CO2 and 37°C. Following incubation, 200 μL was removed from each 

sample well, placed in a 96 well plate, and centrifuged at 500 x g for 5 minutes, and the 

resulting supernatant was dumped. Cells were fixed in 100 μL of 2% paraformaldehyde 

and placed in a 4°C refrigerator overnight. 

Intracellular staining and flow cytometry analysis of the PBMCs was completed 

following the methods of Breathnach et al. (2006). Briefly, isolated cells were 

centrifuged at 500 x g for 5 minutes, resuspended in 150 μL saponin buffer (1% fetal 

bovine serum, 0.1% saponin, and 0.1% sodium azide), and recentrifuged at 500 x g for 5 

minutes. Cells were stained with 10 μg antibody/mL of mouse IgG1 anti-bovine IFN-

gamma FITC conjugated antibody (MCA1783F, Bio-Rad, Hercules, CA) in a 99% 

saponin buffer solution, and then incubated on ice for 30 minutes. Following incubating, 
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plates were spun at 500 x g for 5 minutes, and cells were resuspended in saponin buffer. 

Plates were recentrifuged at 500 x g for 5 minutes, and 200 μL FACS buffer was added to 

each well.  

Isolated PBMCs were passed through an Attune NxT flow cytometer (Thermo 

Fisher Scientific, Waltham, MA) and evaluated using forward and side scatter 

parameters, with data collected from the first 30,000 events. From this data, lymphocyte 

populations were evaluated for proportion producing IFN-γ and average production of 

IFN-γ. In addition,  these two parameters were multiplied together to provide an 

approximation of total IFN-γ produced by the lymphocyte population (Darrah et al., 

2007). PMA-ionomycin stimulated samples were compared with control samples from 

each steer to ascertain the magnitude of response. 

 

Statistics 

Experiment 1 

Weaning sample data was analyzed as ΔCT values using Proc Mixed of SAS 

(9.4), with gender included as a fixed blocking effect in the model statement. The 

denominator degrees of freedom were calculated using the Kenward Roger method, and 

main effects in the model statement included exit velocity treatment and gender. From the 

36 data points in each data set, 2, 1, and 1 data points were removed from TNF-α, IL-6, 

and IFN-γ, respectively. 

Data from the halter breaking period was analyzed as ΔΔCT values rather than 

relative quantity (RQ) values, as these were normally distributed and RQ values were log 

distributed, thus meeting the assumptions of ANOVA. Data points were deemed to be 
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outliers using the inter-quartile method (JMP 13, SAS, Cary, N.C.). Of the 143 data 

points in each data set, there were 12, 4, 7, and 9 data points removed from TNF-α, IL-

12, IL-6, IL-10, and IFN-γ data sets, respectively, prior to statistical analysis, which 

utilized the mixed procedure of SAS (9.4) with repeated measures. The autoregressive 1 

covariance structure was selected, with animal ID as the subject. Animal gender was 

included in the model statement as a blocking effect. Main effects of the model included 

week, exit velocity treatment, week x exit velocity treatment, and gender, with 

denominator degrees of freedom calculated using the Kenward Roger method. 

Significance was set at P < 0.10, and trends considered between 0.10 < P < 0.15. 

 

Experiment 2 

This experiment was conducted as a completely randomized design with repeated 

measures, with calf as the experimental unit. Calves were evaluated for measures of 

lymphocyte production of IFN-γ (proportion of lymphocytes producing IFN-γ, average 

lymphocyte production of IFN-γ, and total lymphocyte production of IFN-γ) and average 

daily gain. All data was tested for normality using JMP Pro (13.0, Cary, N.C.) prior to 

analysis with SAS (9.4, Cary, N.C.). 

Average daily gain responses were analyzed using the GLM procedure of SAS 

(9.4), with weaning exit velocity treatment as the main effect. Animals were penned by 

body weight, and data initially analyzed with pen as a block. However, block was 

determined to be non-significant (P = 0.55) and uninfluential to exit velocity analysis and 

was subsequently dropped from the model. 
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The lymphocyte IFN-γ production data were analyzed using the mixed procedure 

of SAS (9.4), with the Kenward-Roger method used to estimate denominator degrees of 

freedom. The covariance structure specified was first-order autoregressive. The repeated 

term was sample date, with subject specified as animal ID. Average production of IFN-γ 

responses were natural log transformed to provide a normalized data set for analysis, thus 

meeting the assumptions of ANOVA. The proportion of lymphocytes and total 

lymphocyte production of IFN-γ data did not require similar transformations. 

Significance was set as P ≤ 0.10, and trends considered to be 0.10 < P ≤ 0.15. 

 

Results and Discussion 

Experiment 1 

Relative expression was determined to increase across time (Table 4.2), regardless 

of exit velocity treatment, for IFN-γ (P = 0.02, Fig. 4.1), IL-6 (P = 0.02, Fig. 4.2), IL-12 

(P = 0.04, Fig. 4.3), and IL-10 (P < 0.01, Fig. 4.4). Across the 4-week halter-breaking 

period, the expression of all 4 cytokines increased by a magnitude of approximately 1. 

The similar direction of change among these cytokines agrees with current literature that 

relates IL-6, IL-12, and IFN-γ production changes, and agrees with the interrelationships 

associated with the cytokines. Interleukin-6, which can contribute to both anti-

inflammatory and pro-inflammatory responses (Scheller et al., 2011), has been reported 

to induce synthesis of IL-10 (Steensberg et al., 2003). Similarly, IL-12 is used by T cells 

to stimulate production of IFN-γ (Lynch, 2010), which goes on to activate macrophages, 

increasing production of pro-inflammatory cytokines, and thus decreasing the 

effectiveness of already present IL-10. In contrast, IL-10 is a major anti-inflammatory 

124



cytokine involved in many immune responses to counteract the effects of pro-

inflammatory cytokines to prevent excessive damage to tissues during the immune 

response (Murphy et al., 2012). Increasing concentrations of IL-10 have been noted to 

have a suppressive effect on IL-12 (Murphy et al., 2012), which may subsequently 

influence IFN-γ and IL-6 expression. Therefore, the similar fold-increase of expression 

among these 4 cytokines may represent a return to normal levels following weaning and 

be unrelated to the handling to which the calves were subjected. Conversely, no 

relationship between exit velocity and of relative cytokine expression was observed for 

IL-6 (P = 0.61), IL-12 (P = 0.19), and IL-10 (P = 0.73). 

The increasing relative expression of these cytokines over time suggests 

expression may have been suppressed initially at weaning and was lessened as acceptance 

of their new environment occurred. One possible mechanism for this observed pattern, 

which was not measured in this study, relates to glucocorticoid and catecholamine 

production (Wiegers et al., 2005). Glucocorticoids and catecholamines have been noted 

to suppress immune function, particularly cytokine synthesis, through inhibition of NFKB 

translocation (Auphan et al., 1995), with catecholamines additionally reported to suppress 

macrophage activation (Tracey, 2002). 

Of the 5 cytokines measured, only TNF-α expression did not change relative to 

the weaning sample. In response to weaning, O'Loughlin et al. (2011) reported that TNF-

α whole blood expression increased during the first 24h and stayed elevated over the next 

7d. A similar response was observed in that study for IFN-γ, but to a much larger 

magnitude. This would suggest that in unstimulated blood samples, such as those used in 

the current experiment, changes in TNF-α are less responsive to changes in the calf’s 
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environment than IFN-γ. However, there was an increased amount of TNF-α in high, as 

compared with low, exit velocity calves (P < 0.01; Table 4.2). This cytokine enhances 

vasculature epithelium expression of adhesion molecules used by the immune system for 

recruitment of leukocytes, chemokines, and cytokines to the site of infection (Murphy et 

al., 2012). Collectively, this may indicate high exit velocity calves have an enhanced 

ability to convalesce infected and/or damaged tissue, potentially leading to a more rapid 

recovery and diminished opportunity for the infection to spread 

In addition to increased relative TNF-α expression, high exit velocity calves had 

lower relative expression of IFN-γ (Table 4.2; P = 0.06) during the experimental period. 

This is consistent with our previous investigation of this relationship following a 

lipopolysaccharide challenge (Altman, 2015). Interestingly, when glimpsed across time 

(Fig. 4.5), the magnitude of difference between treatments increased, particularly over the 

last two weeks, suggesting that if changes in expression of this cytokine are due to 

acclimation, then high exit velocity calves did not acclimate to human handling during 

the 4-week period. 

It is interesting that IL-12 relative expression was not similarly affected as this 

cytokine is used by the immune system to stimulate production of preferentially 

differentiated CD4+ T cells into the TH1 subtype, a major producer of IFN-γ (Seder et al., 

1993; Lynch, 2010). As exit velocity treatment did not appear to influence IL-12 

expression, it may be hypothesized that the established exit velocity relationship with 

IFN-γ mRNA expression was independent of IL-12 production. There are feasible 

mechanisms through which this type of production may occur. For example, a change in 

IL-4 production without a subsequent change in IL-12 could influence relative expression 
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of IFN-γ, as these two cytokines have been shown to stimulate TH2 and TH1 

differentiation, respectively (Manetti et al., 1993). A shift in favor of a TH2 response 

would result in decreased IFN-γ production without influencing IL-12 concentrations. 

 

Experiment 2 

Average Daily Gain 

 The main objective of this study was to identify the potential relationship between 

exit velocity and lymphocyte production of IFN-γ following a typical transit between sale 

barn and feedlot. To facilitate estimation of the daily amount of feed needed for each pen, 

which was calculated on a kg feed/kgBW basis and managed as described by Bruno et al. 

(2017), animals of similar body weight were penned together, with each pen balanced to 

ensure treatments were equally represented. As in Bruno et al. (2017) and Chapter 3, both 

of which utilized a similar diet to the one in the present study, ADG did not differ 

between exit velocity groups in the current study during the first 28d in the feedlot 

setting. 

 

Peripheral Blood Mononuclear Cells 

Analysis of all three measures of lymphocyte production of IFN-γ (proportion of 

lymphocytes producing IFN-γ, average lymphocyte production of IFN-γ, and total 

production of IFN-γ) is critical to gaining a full understanding of the effect of a given 

treatment on an animal’s cell-mediated immune response. Changes in the proportion of 

lymphocytes expressing IFN-γ provide a measure of the magnitude of response to 

treatment by the cellular population, whereas average lymphocyte production of the 
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cytokine describes the quality or potency of cellular changes to the treatment (Darrah et 

al., 2007). By multiplying these two values together to obtain the total production by 

lymphocytes of IFN-γ, a conclusion of how much a treatment influences the total 

functional response, on a systemic level, may be drawn (Darrah et al., 2007). The results 

from this experiment illustrate why inclusion of only one of these variables may lead to 

an inaccurate analysis as each variable may have a different relationship with factors of 

interest. 

Total lymphocyte production of IFN-γ (P = 0.03; Chart 4.6) and the proportion of 

lymphocytes producing IFN-γ (P < 0.01, Chart 4.7), but not average lymphocyte 

production of IFN-γ (P = 0.76, Chart 4.8), initially decreased following transportation and 

returned to levels similar to baseline by the end of the 28d receiving period. This may 

indicate that transportation initially depresses differentiation of CD4+ cells into the TH1 

subtype, consequently causing an overall suppression of total lymphocyte production of 

IFN-γ without affecting the rate of synthesis of this cytokine by already present CD8+ and 

CD4+ TH1 lymphocytes, regardless of exit velocity. However, our study did not include a 

group of non-transported calves to confirm the observed decrease was due to 

transportation and not some other, unknown factor. 

The influence of exit velocity treatments on lymphocyte production of IFN-γ 

(Table 4.3) was inconsistent across each of these response variables. An approximate 

25% increase in the proportion of lymphocytes producing IFN-γ (P = 0.10) was observed 

with high, as compared with low, exit velocity steers. The opposite was observed in 

average lymphocyte production of IFN-γ (P = 0.02), as low exit velocity animals had 

approximately 14% greater production levels than high exit velocity animals. As a result 
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of the opposing responses of lymphocyte proportions and average production of IFN-γ, 

total lymphocyte IFN-γ production did not differ between exit velocity treatments (P = 

0.77). However, despite the overall absence of IFN-γ production differences between exit 

velocity treatments, these results indicate that exit velocity may work simultaneously 

through two separate mechanisms to influence production of this cytokine. The diverging 

relationships of lymphocyte proportions and average production of IFN-γ with exit 

velocity suggests that in response to intracellular bacteria and viruses, calmer steers may 

be more efficient with already present IFN-γ producing lymphocytes. 

Another potential explanation for the diverging treatment effects may be the 

mitogen used, as PMA + ionomycin is used to preferentially activate and maximize the 

amount of IFN-γ produced by cells in vitro by activating TH1 responses and down-

regulating IL-10 production (Baran et al., 2001). As the objective of this experiment was 

to examine potential relationships between lymphocyte IFN-γ production and exit 

velocity, our methodology required a mitogen that would maximize IFN-γ production, 

thereby providing a stronger test of this potential relationship. However, as this mitogen 

specifically targets only one aspect of cell-mediated immunity (i.e. TH1 responses), it 

may exaggerate any observed treatment effects. Thus, to further investigate this 

relationship, future research should utilize a mitogen that does not preferentially activate 

TH1 responses, such as phytohaemagglutinin or concavalin A, to explore any potential 

differences in other cytokines which may inhibit IFN-γ production and develop a 

mechanistic model which may explain the observed relationships observed with exit 

velocity in this experiment. 
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Conclusion 

Results from these experiments indicate relationships between exit velocity and 

cytokine production may be present in cattle during periods of handling and 

transportation. The decreased expression of IFN-γ in high, relative to low, exit velocity 

cattle confirms our previous observations of a relationship between this cytokine and 

measure of temperament. The relatively higher expression of TNF-α in high exit velocity 

calves may indicate an increased ability to induce changes in vascular epithelium, 

specifically in expression of adhesion molecules used to recruit other immune mediators 

to the site of inflammation, potentially expediting the convalescence of the injured tissue. 

Together, these two responses may indicate that exit velocity shows promise as a measure 

for evaluating the ability of calves to resist intracellular bacterial and viral pathogens as 

well as eradicate and alleviate pathogen tissue infiltration and damage. 

The absence of an overall net effect on lymphocyte production of IFN-γ between 

treatments suggests exit velocity may not be a good predictor of morbidity following 

transportation periods. However, these results also indicated exit velocity may be a 

measure of temperament that could be used to describes changes in lymphocyte 

differentiation and production, specifically as they relate to IFN-γ production. 

Exploration of these pathways was beyond the scope of this study but warrants further 

investigation.   
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Table 4. 1 Diet composition of 28-day receiving period following 805 km transport for 18 
Angus steers 

 % of DM 

 Week 1 Week 2 Week 3 Week 4 

Corn Silage 70 70 50 35 

Distiller’s Dried Grains 10 10 20 25 

Cracked Corn 10 10 20 30 

Supplement1 10 10 10 10 
1Supplement contained macro and trace minerals and vitamins formulated to support 
ADG of 1.93 kg/d, along with urea, monensin, and tylosin, in a ground corn carrier. 
  

 

 

Table 4. 2 Influence of exit velocity on the ΔΔCT of cytokines in Angus steers (n = 18) 
and heifers (n = 18), blocked by gender, during a 4-week halter breaking period. 

 Exit Velocitya,b  P-Value 
       Contrasts 
 Low High SEM EV Week EV*Week Linear Quad 

IFN-γ -0.18 
(1.13) 

0.39 
(0.77) 0.209 0.06 0.07 0.30 0.02 0.95 

IL-6 -0.41 
(1.33) 

-0.24 
(1.18) 0.228 0.61 0.01 0.49 <0.01 0.63 

IL-12 -0.78 
(1.72) 

-0.32 
(1.25) 0.244 0.19 0.04 0.70 0.02 0.86 

TNF-α 0.43 
(0.74) 

-0.16 
(1.12) 0.131 <0.01 0.99 0.64 - - 

IL-10 -0.89 
(1.86) 

-0.79 
(1.73) 0.228 0.73 <0.01 0.98 <0.01 0.68 

aValues are presented as ΔΔCT with associated errors. Statistical analysis was conducted 
on these values, as they were normally distributed. 
bValues in parentheses are the transformed ‘relative quantity’ (RQ) values 
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Table 4. 3 Cell Mediated Immunity by exit velocity of 18 Angus steers in response to 805 
km transport 

 
Exit Velocity 

Treatment  P-Value 

 Low High SEM EV Day 
EV x 
Day 

Proportion of 
lymphocytes producing 
IFN-γa 2.21 2.77 0.240 0.10 <0.01 0.94 
Average lymphocyte 
production of IFN-γb,c 7.41 7.26 0.042 0.02 0.76 0.61 
Total lymphocyte 
production of IFN-γc 3800 3991 443.5 0.77 0.03 1.00 

aMeans are expressed as a percentage 
bMeans are natural log transformed, original units were arbitrary 
cMeans are expressed in arbitrary units. Calculated as the product of the proportion of 
lymphocytes producing IFN-γ and the average lymphocyte production of IFN-γ 
 
 
 
 
 

Table 4. 4 Average daily gain by exit velocity of 18 Angus steers over 28 days following 
805 km transport 

 Exit Velocity Treatment  P-Value 
 Low High SEM EV 
ADG (kg) 2.10 2.08 0.152 0.92 
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Figure 4. 1 Fold change in expression of Interferon-γ, relative to weaning, in Angus steers and heifers (n = 18/sex) during a 4-week 
halter-breaking period. Data was analyzed using the ΔΔCT method of Livak and Schmittgen (2001). Values presented are relative to 
the values obtained at weaning, with each animal serving as its own control. GADPH was used as the reference gene for this study. 
Calves were separated into high and low exit velocity treatments based upon previous measurements at weaning, but no exit velocity 
treatment x time interactions were detected. A time effect (P = 0.06) was detected for interferon-γ, with a linear relationship (P = 
0.02) detected. 
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Figure 4. 2 Fold change in expression of Interleukin-6, relative to weaning, in Angus steers and heifers (n = 18/sex) during a 4-week 
halter-breaking period. Data was analyzed using the ΔΔCT method of Livak and Schmittgen (2001) and converted to relative quantity 
of expression (RQ) following analysis to illustrate the fold-change expression over time. Data was not analyzed using RQ values as 
they were log distributed and the ΔΔCT values were normally distributed. Values presented are relative to the values obtained at 
weaning, with each animal serving as its own control. GADPH was used as the reference gene for this study. Calves were separated 
into high and low exit velocity treatments based upon previous measurements at weaning, but no exit velocity treatment x time 
interactions were detected. A linear time effect (P = 0.01) was detected for interleukin-6, with a linear relationship (P < 0.01) 
detected. 
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Figure 4. 3 Fold change in expression of Interleukin-12, relative to weaning, in Angus steers and heifers (n = 18/sex) during a 4-week 
halter-breaking period. Data was analyzed using the ΔΔCT method of Livak and Schmittgen (2001) and converted to relative quantity 
of expression (RQ) following analysis to illustrate the fold-change expression over time. Data was not analyzed using RQ values as 
they were log distributed and the ΔΔCT values were normally distributed. Values presented are relative to the values obtained at 
weaning, with each animal serving as its own control. GADPH was used as the reference gene for this study. Calves were separated 
into high and low exit velocity treatments based upon previous measurements at weaning, but no exit velocity treatment x time 
interactions were detected. A linear time effect (P = 0.04) was detected for interleukin-12, with a linear relationship (P = 0.02) 
detected. 

0

0.5

1

1.5

2

2.5

0 1 2 3 4

Fo
ld

 c
ha

ng
e 

in
 e

xp
re

ss
io

n 
of

 IL
-1

2 
re

la
tiv

e 
to

 w
ea

ni
ng

Week of Experiment

135



 

 
 

Figure 4. 4 Fold change in expression of Interleukin-10, relative to weaning, in Angus steers and heifers (n = 18/sex) during a 4-week 
halter-breaking period. Data was analyzed using the ΔΔCT method of Livak and Schmittgen (2001) and converted to relative quantity 
of expression (RQ) following analysis to illustrate the fold-change expression over time. Data was not analyzed using RQ values as 
they were log distributed and the ΔΔCT values were normally distributed. Values presented are relative to the values obtained at 
weaning, with each animal serving as its own control. GADPH was used as the reference gene for this study. Calves were separated 
into high and low exit velocity treatments based upon previous measurements at weaning, but no exit velocity treatment x time 
interactions were detected. A linear time effect (P < 0.01) was detected for interleukin-10, with a linear relationship (P < 0.01) 
detected. 
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Figure 4. 5 Fold change in expression of Interferon-γ, by exit velocity and relative to weaning, in Angus steers and heifers (n = 
18/sex) during a 4-week halter-breaking period. Data was analyzed using the ΔΔCT method of Livak and Schmittgen (2001) and 
converted to relative quantity of expression (RQ) following analysis to illustrate the fold-change expression over time. Data was not 
analyzed using RQ values as they were log distributed and the ΔΔCT values were normally distributed. Values presented are relative 
to the values obtained at weaning, with each animal serving as its own control. GADPH was used as the reference gene for this study. 
Calves were separated into high and low exit velocity treatments based upon previous measurements at weaning, with greater 
increase in IFN-γ expression relative to samples obtained at weaning detected for low exit velocity calves. An exit velocity treatment x 
time interaction was not detected (P = 0.39), but this graph demonstrates the low exit velocity treatment was the only one to change 
expression of this cytokine, indicating any acclimation to handling may have been limited to this group. Responses are shown by high 
(●) and low (◦) exit velocity treatments. 
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Figure 4. 6 Influence of 805 km transport on the total lymphocyte production of interferon-γ in 18 Angus steers. Six plasma samples 
were obtained from 18 steers during a 28d experiment on d0 (prior to transport), d1 (after transport), d2, d7, d19, and d28. From 
these samples, peripheral blood mononuclear cells were isolated, counted, stimulated in vitro using brefeldin-A and phoribol 
myristate-13-acetate, and stained for interferon-γ. Sample analyses were gated around the lymphocyte population on a flow 
cytometer. A time effect (P = 0.03) was detected for this variable, but no differences were observed between exit velocity treatments (P 
= 0.77). Responses are shown by high (●) and low (◦) exit velocity treatments. 
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Figure 4. 7 Influence of 805 km transport on the average lymphocyte production of interferon-γ in 18 Angus steers. Six plasma 
samples were obtained from 18 steers during a 28d experiment on d0 (prior to transport), d1 (after transport), d2, d7, d19, and d28. 
From these samples, peripheral blood mononuclear cells were isolated, counted, stimulated in vitro using brefeldin-A and phoribol 
myristate-13-acetate, and stained for interferon-γ. Sample analyses were gated around the lymphocyte population on a flow 
cytometer. No time effect (P = 0.76) was detected for this variable, but high exit velocity steers were found to have lower average 
lymphocyte production of interferon-γ (P = 0.02) than steers during the experimental period. Responses are shown by high (●) and 
low (◦) exit velocity treatments.
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Figure 4. 8 Influence of 805 km transport on the proportion lymphocytes producing interferon-γ in 18 Angus steers. Six plasma 
samples were obtained from 18 steers during a 28d experiment on d0 (prior to transport), d1 (after transport), d2, d7, d19, and d28. 
From these samples, peripheral blood mononuclear cells were isolated, counted, stimulated in vitro using brefeldin-A and phoribol 
myristate-13-acetate, and stained for interferon-γ. Sample analyses were gated around the lymphocyte population on a flow 
cytometer. A time effect (P < 0.01) was detected for this variable, and high exit velocity steers were found to have higher proportions 
of lymphocytes producing IFN-γ (P = 0.10) than steers during the experimental period. Responses are shown by high (●) and low (◦) 
exit velocity treatments.
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Chapter 5: Conclusions 
 

The relationship between animal temperament and various measures of performance has 

been evidenced by others across species. In cattle, measures of temperament, particularly exit 

velocity, have been examined and utilized in several studies to estimate future growth 

performance. Several other experiments have demonstrated a relationship between these 

behavioral traits and components of the immune system in a variety of species. Collectively, 

these former studies have indicated exit velocity may be useful as a potential indicator of growth 

performance and immunological responses. 

In this dissertation, high exit velocity steers experienced greater growth efficiency than 

low exit velocity steers following a period of grazing endophyte-infected and endophyte-free 

pastures. Although this result was most pronounced during the first 28d in the feedlot, this 

relationship with exit velocity was detected for the entire finishing period. However, average 

daily gain and dry matter intake (as a percentage of body weight) did not share a similar 

relationship with exit velocity over this period. Similarly, this relationship does not appear to be 

consistently reported in literature. In light of this, it would be premature to conclude exit velocity 

is a useful predictor of future growth performance at this time, but the appearance of this 

relationship in this dissertation warrants further investigation in future studies. 

The relationship between exit velocity and systemic immune responses was also 

examined in this dissertation and determined to exist in the absence of endophyte and heat 

treatments and under a controlled environmental setting. During this pre-treatment period, total 

lymphocyte production of interferon-γ (IFN-γ) was observed to increase with increasing exit 

velocity, apparently largely due to changes in the proportion of lymphocytes producing IFN-γ 
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rather than a change in production rates. The presence of such a relationship gives credence to 

our theory that exit velocity could be utilized to estimate measures of cell-mediated immunity, 

particularly as this relationship was reestablished following cessation of the heat and endophyte 

treatments.  

Application of treatments associated with commonly encountered management practices 

did not appear to affect IFN-γ lymphocyte production in cattle with differing exit velocities. 

When calves were exposed to increased environmental heat conditions during the first study, 

lymphocyte production of IFN-γ did not differ between exit velocity treatments. This absence of 

a divergence in lymphocyte production of IFN-γ between these two treatment groups continued 

during the endophyte-infected treatment period. Similarly, total production of this cytokine by 

lymphocytes did not differ between exit velocity treatments following a 10h, 805 km 

transportation period. However, this nonexistence of an exit velocity effect on total lymphocyte 

production of this cytokine resulted from the offsetting relationships of average lymphocyte 

production of IFN-γ and the proportion of these lymphocytes producing IFN-γ with this measure 

of temperament. This difference became more obvious later in the post-transport period, as these 

differences were manifested to a greater extent, indicating potential relationships between 

differentiation and production capabilities of lymphocytes with exit velocity that could be 

masked by exposure to transportation. Cumulatively, these results indicate that application of 

these conditions (i.e. transport, endophyte, and heat) may diminish the ability to discern an effect 

of exit velocity on lymphocyte production of IFN-γ, with subsequent removal of animals from 

these conditions enhancing the visibility of this relationship. 
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Contrasting with these responses were the measures of whole blood gene expression of 

IFN-γ collected during a period of acclimation to human handling. Relative to samples obtained 

at weaning, expression of IFN-γ did not change in high exit velocity calves, whereas it increased 

over time in low exit velocity calves. This may indicate high, as compared with low, exit 

velocity calves are slower to acclimate to change, potentially suppressing cell-mediated immune 

responses, as evidenced by the discrepancy in IFN-γ expression between exit velocity treatments, 

and increasing the susceptibility of these calves to damage associated with intracellular pathogen 

infection. When viewed in conjunction with baseline lymphocyte measures from the first study 

of this dissertation, these results suggest that IFN-γ production may be directly related to exit 

velocity obtained at weaning. 

Interestingly, the relationship of exit velocity with cell-mediated immunity did not 

correspond to measures of humoral immunity. In neither the seed or the grazing experiments was 

exit velocity observed to influence titer responses to Lepto. pomona vaccination. However, a 

difference between studies was observed with endophyte treatment. Although this could be 

related to a difference in gender, the increased growth response of steers previously grazed on 

endophyte-infected pastures as well as other literature examining titer responses following 

periods of nutrient restriction, suggest the increased humoral response of these steers may have 

been a result of compensatory responses rather than a direct effect of endophyte consumption. 

Thus, future research investigating potential effects of endophyte-infected tall fescue 

consumption on concurrent or subsequent vaccination responses should utilize a model which 

allows for examination of nutrient restriction in combination with endophyte treatments. 
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Collectively, these findings indicate a potential relationship of exit velocity with systemic 

IFN-γ expression. The incorporation of this cytokine with many cell-mediated immune system 

activities indicate the potential relationship of IFN-γ with exit velocity described in this 

dissertation should be further investigated to ascertain the mechanisms through which these 

relationships are manifested. Exploration of these mechanistic pathways may assist in developing 

improved management strategies for maximizing herd health, most prominently in the feedlot 

setting. 
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