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ABSTRACT OF DISSERTATION

Bicategorical Traces and Cotraces

Familiar constructions like the trace of a matrix and the Euler characteristic of a
closed smooth manifold are generalized by a notion of trace of an endomorphism
of a dualizable object in a bicategory equipped with a piece of additional structure
called a shadow functor. Another example of this bicategorical trace, in the form
of maps between Hochschild homology of bimodules, appears in a 1987 paper by
Joseph Lipman, alongside a more mysterious ”cotrace” map involving Hochschild
cohomology. Putting this cotrace on the same category-theoretic footing as the trace
has led us to propose a ”bicategorical cotrace” in a closed bicategory with a ”coshadow
functor.” The program of bicategorical shadows and traces aims to unify seemingly
disparate pieces of mathematics underneath a common conceptual framework; by
adding notions of coshadow and cotrace to this machinery, we have drawn Lipman’s
residues and (co)traces into this framework and made progress toward describing 2-
representations and 2-characters in a way that parallels the application of traces to
ordinary group representations.

We begin by reviewing the theory of duality and trace in symmetric monoidal
categories and in bicategories, and we discuss the features of closed bicategories that
will be needed to develop a theory of cotraces. We then motivate and define bicate-
gorical coshadows and cotraces and proceed to establish several important properties
of these constructions. We also prove a very general interplay between traces and
cotraces in a closed bicategory with compatible shadows and coshadows. Finally, we
discuss applications of the bicategorical cotrace to Lipman’s residues and traces and
to Ganter and Kapranov’s study of 2-representations and 2-characters.
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Chapter 1 Introduction

A recurring theme in mathematics is that traces provide a way to turn complicated
objects into simpler ones, discarding much of the information in the original object
but retaining just enough information to say something useful about it. In partic-
ular, many familiar invariants arise as traces of identity maps. The trace of the
identity map on a real or complex vector space is the vector space’s dimension, which
classifies the vector space up to isomorphism. The trace of the identity map on a
finite CW complex is its Euler characteristic (vertices plus edges minus faces, and
so on in higher dimensions), which is not a complete invariant but is still a useful
tool for distinguishing between topological spaces. Finally, the trace of the identity
map on a group representation is its character, which forgets most of the data of
the representation and retains only the trace of each group element’s action on the
underlying vector space; over a field of characteristic zero, the character determines
the representation up to isomorphism.

The first two of these examples are generalized by a well-known notion of the trace
of an endomorphism of a dualizable object in a symmetric monoidal category [2, 15]
(dualizability generalizes the finiteness conditions in these examples). The character
of a group representation, however, requires the trace in a bicategory equipped with
a shadow, which was introduced by Ponto [11, 14, 13, 12] to generalize fixed-point
invariants such as the Reidemeister trace. It also generalizes the Hattori-Stallings
trace [5, 16], which extends the familiar linear algebra trace to endomorphisms of
modules over noncommutative rings. The price we pay for including noncommutative
rings is that the trace of an R-module endomorphism takes values not in R itself but
only in the quotient R of R’s underlying abelian group by the subgroup generated by
all elements of the form rs−sr. The passage from R to R is an example of a shadow,
which is the additional structure a bicategory requires in order to support a notion
of trace.

There are, however, some examples of trace-like constructions which are not fully
explained by categorical notions of trace; incorporating them into this perspective
requires a dual notion of cotrace. The example that originally motivated our de-
velopment of a bicategorical cotrace is the cotrace maps of [9]. Lipman provides a
more elementary development of Grothendieck’s residue symbol [4] by reframing it in
terms of Hochschild homology, and he establishes a sort of adjointness between trace
and cotrace, mediated by a pairing map on Hochschild homology and cohomology.
The simplest case of this adjointness is expressed by the following commutative dia-
gram, where R is any ring and F is a right R-module which is finitely generated and
projective (this is the appropriate sort of “finiteness” for taking modules):

1



Rc ⊗ HomR(F, F )

HomR(F, F )c ⊗ HomR(F, F ) Rc ⊗R

HomR(F, F ) R

R

1⊗trcotr⊗1

ρHomR(F,F ) ρR

tr

(1.1)

Just as the Hattori-Stallings trace necessitates the passage from R to its quotient
R, a cotrace compels us, dually, to replace R with its center Rc. The trace map
HomR(F, F ) → R is the Hattori-Stallings trace; its domain is HomR(F, F ), rather
than HomR(F, F ), because of cyclicity of the trace, i.e. the fact that tr(fg) = tr(gf).
The cotrace Rc → HomR(F, F )c sends r to multiplication by r, i.e. the map µr :
F → F, x 7→ xr. The pairing map ρR is multiplication in R, and ρHomR(F,F ) is
composition. Thus the diagram asserts that tr(µr ◦ f) = r tr(f), but writing this as
tr(ρ(cotr(r), f)) = ρ(r, tr(f)) makes it more strongly resemble an adjointness between
cotr and tr.

Lipman acknowledges that his description of residues is not fully satisfactory,
and he suspects that “there might well be a more fundamental approach to the
subject, encompassing a great deal more than we have dealt with here” [9]. We offer
a candidate for the more fundamental approach Lipman imagined, by repackaging his
traces and cotraces in terms of Ponto’s bicategorical trace [11, 14] and a new notion of
bicategorical cotrace. In doing so, we have teased out the formal structure underlying
Lipman’s trace formulas, which includes (1) a notion of “coshadow” and “cotrace”
dual to Ponto’s shadows and traces and (2) an interplay between bicategorical traces
and cotraces generalizing the results of [9].

Before we describe this interplay, some comments are in order about the shape
that traces and cotraces take. The trace of a linear transformation f : V → V is
often thought of as a number (i.e. an element of the ground field), but we prefer
to think of it as a map, namely the linear transformation k → k sending 1 to the
number which is ordinarily thought of as the trace of f . While this distinction may
seem inconsequential for the example of vector spaces, it turns out to be a crucial
shift in perspective that brings many different mathematical constructs underneath
the umbrella of “trace.” For instance, the trace of a endomorphism f of a right
R-module is an abelian group homomorphism Z → R (again, sending 1 to what
would typically be called the Hattori-Stallings trace of f). If we have not just a
right R-module but an (S,R)-bimodule, its trace is a map S → R; for example, a
right R-module F is naturally a (HomR(F, F ), R)-bimodule, whose trace is the map
HomR(F, F ) → R appearing in the diagram above. A representation of a group G can
be regarded as a (k[G], k)-bimodule (where k[G] is the group algebra), so its trace is

2



a map k[G] → k (since k is a field, and in particular a commutative ring, k = k), and
this map is nothing other than the character of the representation (Example 10). This
perspective allows us to view the character as a single trace, rather than a collection
of traces (one for each group element).

More generally, the trace of an (S,R)-bimodule (or a 1-cell R → S in a bicategory)
is a map ⟨⟨S⟩⟩ → ⟨⟨R⟩⟩, where the shadow ⟨⟨−⟩⟩ generalizes the quotienting operation
R 7→ R required for a sensible notion of trace. Dually, the replacement of a ring
by its center is generalized by a coshadow ⟨⟨−⟨⟨, which supports the formation of
cotraces ⟨⟨R⟨⟨ → ⟨⟨S⟨⟨. With this notation in place, we are finally prepared to state
the bicategorical generalization of the cotrace-trace adjointness illustrated by (1.1),
albeit somewhat imprecisely (see Theorem 3 for the precise statement).

Theorem 1. Given suitable maps f, g, h, i involving objects A,A′, B,B′, C, a coshadow
⟨⟨−⟨⟨, shadows ⟨⟨−⟩⟩ and ⟨⟨−⟩⟩, and a pairing map ⟨⟨−⟨⟨ ⊗ ⟨⟨−⟩⟩ ρ−→ ⟨⟨− ⊗−⟩⟩, the following
commutes:

⟨⟨A⟨⟨ ⊗ ⟨⟨B′⟩⟩

⟨⟨A′⟨⟨ ⊗ ⟨⟨B′⟩⟩ ⟨⟨A⟨⟨ ⊗ ⟨⟨B⟩⟩

⟨⟨A′ ⊗B′⟩⟩ ⟨⟨A⊗B⟩⟩

⟨⟨C⟩⟩

cotr(f)⊗1 1⊗tr(g)

ρ ρ

tr(h) tr(i)

This abstract perspective on traces is valuable because it often allows us to make
mathematical constructs and theorems more accessible by extracting the core ideas
from the technical details of their original presentation. Moreover, we are often able
to prove vastly more general versions of these results (for example, Theorem 1) and
port them over to other mathematical contexts. For example, the tools that we have
built to understand Lipman’s work have revealed promising links to the theory of
group representations and 2-representations.

The classical formulas for the characters of restricted and induced group repre-
sentations are consequences of multiplicativity of trace (Example 11). Weakening the
conditions defining a representation leads to 2-representations ; Ganter and Kapra-
nov [3] defined a 2-character and proved an induction formula for 2-representations,
and we have made progress toward understanding this result from the perspective of
bicategorical (co)traces. In particular, one of the key ingredients in the 2-character
of [3] turns out to be an example of a coshadow.

The aim of this dissertation is to lay the foundation for a theory of bicategorical
coshadows and cotraces. The main result is Theorem 1 (or Theorem 3), but along
the way we establish properties of coshadows and cotraces analogous to many of
the properties of trace described in [14], including cyclicity, functoriality, and Morita
invariance. The overarching goal is to illuminate connections between diverse math-
ematical contexts, so we emphasize the application of this categorical machinery to

3



examples such as Lipman’s trace-cotrace interplay and the categorical trace of Ganter
and Kapranov.

1.1 Outline

In Section 2 we begin by reviewing the theory of duality and trace in symmetric
monoidal categories and in bicategories, and then we discuss closed bicategories,
which will be the setting for our study of cotraces.

In Section 3 we develop the theory of bicategorical cotraces; we define coshadows
and cotraces and establish their important properties (including functoriality and
Morita invariance). We also demonstrate that while cotraces can also be defined in
symmetric monoidal categories, they coincide with symmetric monoidal traces.

In Section 4 we prove Theorem 1, showing that traces and cotraces are compatible
with the additional structure of a pairing map from a shadow and coshadow to a
second shadow.

4



Chapter 2 Background

We begin by reviewing the theory of duality and trace in symmetric monoidal cate-
gories and bicategories, which is developed in [2, 8, 10, 11, 14].

2.1 Symmetric Monoidal Duality and Trace

If V is a finite-dimensional vector space, then any linear transformation f : V → V
has a trace, which is the sum of the diagonal entries in any matrix representation
of f . The trace makes sense in much more general contexts though; instead of en-
domorphisms vector spaces, we can take the trace of an endomorphism of an object
in a symmetric monoidal category, as long as that object satisfies a “dualizability”
condition which generalizes finite-dimensionality for vector spaces.

Definition 1 ([2, Theorem 1.3]). Let (C ,⊗, I) be a symmetric monoidal category.
An object M of C is dualizable if there is an object M∗ of C and maps

η : I → M ⊗M∗ ε : M∗ ⊗M → I

such that the following triangle identities hold:

M M ⊗M∗ ⊗M

M

η⊗id

id
id⊗ε

M∗ M∗ ⊗M ⊗M∗

M∗

id⊗η

id
ε⊗id

We say that M∗ is a dual for M , and we refer to η and ε as the coevaluation and
evaluation (respectively) of the dual pair (they are sometimes called the unit and
counit, but we avoid that terminology so as not to overload the word “unit”).

We generally omit unit isomorphisms; for instance, we write M
η⊗id−−→ M⊗M∗⊗M

as shorthand for M ∼= I ⊗M
η⊗id−−→ M ⊗M∗ ⊗M .

Example 1. A vector space V over a field k is dualizable if and only if it is finite-
dimensional. If V is finite-dimensional, then V ∗ := Homk(V, k) is a dual for V ; if
e1, . . . , en is a basis for V and e∗1, . . . , e

∗
n is the corresponding dual basis for V ∗ (so

that e∗i (ej) = δij), then the maps

k V ⊗ V ∗

1
∑n

i=1 ei ⊗ e∗i

η
V ∗ ⊗ V k

ϕ⊗ v ϕ(v)

ε

witness (V, V ∗) as a dual pair. Conversely, if V is a dualizable vector space, then
η(1) =:

∑n
i=1 vi ⊗ ϕi is some finite sum of simple tensors, and one of the triangle

identities implies that v1, . . . , vn generate V , so V is finite-dimensional.

5



Dualizability allows us to extract useful information about an object; for example,
if a vector space is dualizable (i.e. finite-dimensional), we can use the structure of a
dual pair to determine its dimension:

Example 2. If V is a finite-dimensional vector space over k and V ∗ is its dual, with
η and ε as in Example 1, then the composite

k
η−→ V ⊗ V ∗ ∼=−→ V ∗ ⊗ V

ε−→ k

is the element of Homk(k, k) which is multiplication by dimV .

While there may be many choices of V ∗, η, and ε satisfying Definition 1, this map
k → k is independent of such choices, since it is determined solely by the dimension
of V .

A similar story plays out in topological settings as well, though we need to pass to
a category of spectra since the category of spaces has no nontrivial dual pairs. Having
done so, we produce an endomorphism of the monoidal unit analogous to Example 2
and find that it recovers a familiar topological invariant:

Example 3 ([2]). IfX is a compact CW complex, then Σ∞
+X is a dualizable spectrum

with dual DX (the Spanier-Whitehead dual), and the map

S
η−→ Σ∞

+X ∧DX ∼= DX ∧ Σ∞
+X

ε−→ S

is the element of [S, S] = π0(S) ∼= Z which is multiplication by the Euler characteristic
of X.

In either of these examples, we can insert an endomorphism f of the dualizable
object in order to obtain information about f .

Example 4. Let f : V → V be an endomorphism of a finite-dimensional vector
space V over k. Then the composite

k
η−→ V ⊗ V ∗ f⊗1−−→ V ⊗ V ∗ ∼=−→ V ∗ ⊗ V

ε−→ k

is multiplication by the trace of f .

Example 5. If X is a compact CW complex and f : X → X, then

S → Σ∞
+X ∧DX

Σ∞
+ f∧1

−−−−→ Σ∞
+X ∧DX ∼= DX ∧ Σ∞

+X → S

corresponds to multiplication by the Lefschetz number of f [2].

These are examples of the following general notion of trace in a symmetric mon-
oidal category:

Definition 2 ([2]). If M is a dualizable object in a symmetric monoidal category,
with dual M∗, then the trace of f : M → M is

I
η−→ M ⊗M∗ f⊗1−−→ M ⊗M∗ ∼=−→ M∗ ⊗M

ε−→ I.

If f is an identity map, we call its trace the Euler characteristic of M , by
analogy with Example 3. The trace of f is independent of choices of M∗, η, and ε.

6



2.2 Bicategorical Duality and Trace

The machinery of symmetric monoidal traces does not apply to modules over non-
commutative rings, since ModR does not have a monoidal tensor product if R is not
commutative. There is, however, a sensible notion of trace for modules over noncom-
mutative rings, the Hattori-Stallings trace [5, 16], but it takes values in a quotient
of the ring rather than the ring itself. The appropriate category-theoretic setting for
describing this trace is a bicategory.

For a definition of a bicategory see [7]. We denote the bicategorical composition in
a bicategory B by ⊙, and if R is a 0-cell in B, we denote the identity 1-cell for R by
UR. We writeM : R 7→ S to indicate thatM is a 1-cell from R to S, i.e.M ∈ B(R, S).
The most useful bicategory to keep in mind is Mod/Ring, the Morita bicategory of
rings, bimodules, and bimodule homomorphisms. In this bicategory, UR = RRR and
⊙ is the tensor product. We will sometimes also work in Mod/Algk

, the bicategory
of algebras over a commutative ring k, bimodules, and bimodule homomorphisms.

The following definition first appeared in [10].

Definition 3. Let M be a 1-cell in a bicategory B(R, S). We say M is right
dualizable if there is a 1-cell M∗ together with 2-cells

η : UR → M ⊙M∗ ε : M∗ ⊙M → US

such that the triangle identities hold. We say that M∗ is right dual to M , that
(M,M∗) is a dual pair , that M∗ is left dualizable , and that M is its left dual .

Unlike dual pairs in symmetric monoidal categories, bicategorical dual pairs have
a sidedness: right dualizability is not the same as left dualizability.

As in the symmetric monoidal setting, duals are unique up to isomorphism. For
example, suppose that (M,N) is a dual pair with unit and counit η and ε and that
(M,N ′) is a dual pair with unit and counit η′ and ε′. Then there are maps

N
id⊙η′−−−→ N ⊙M ⊙N ′ ε⊙id−−→ N ′ N ′ id⊙η−−→ N ′ ⊙M ⊙N

ε′⊙id−−−→ N

which are mutually inverse by the triangle identities for both dual pairs.

Example 6. An (R, S)-bimodule is right dualizable in Mod/Ring if and only if it
is finitely generated and projective as a right S-module. The argument is similar
to Example 1 and uses the fact that a right S-module M is finitely generated and
projective if and only if there are m1, . . . ,mn ∈ M and m∗

1, . . . ,m
∗
n ∈ HomS(M,S)

such that
∑n

i=1 mim
∗
i (m) = m for all m ∈ M .

Example 7. In the bicategory of categories, functors, and natural transformations,
the dual pairs are the adjoint pairs of functors, but in an unfortunate clash of nomen-
clature, left adjoints are right duals as a consequence of the order in which we write
composition.

Proposition 1 ([10]). If (M,M∗) and (N,N∗) are dual pairs, then so is (M⊙N,N∗⊙
M∗).

7



Proof. Let M ∈ B(R, S) and N ∈ B(S, T ). If the dual pairs (M,M∗) and (N,N∗)
have units η and η′ and counits ε and ε′, respectively, then

UR
η−→ M⊙M∗ 1⊙η′⊙1−−−−→ M⊙N⊙N∗⊙M∗ N∗⊙M∗⊙M⊙N

1⊙ε⊙1−−−−→ N∗⊙N
ε′−→ UT

are a unit and a counit for (M ⊙N,N∗ ⊙M∗).

If we attempt to write down a composite like the symmetric monoidal trace of
Definition 2, we quickly encounter a problem: there is no symmetry isomorphism to
get us from M ⊙M∗ to M∗ ⊙M , and in fact these aren’t even objects in the same
category. One possible remedy is to apply a functor to push M ⊙M∗ and M∗ ⊙M
into a third category, where we can ask for an isomorphism between their images.
This is the notion of a bicategorical shadow, which was introduced in [11]:

Definition 4. A shadow for a bicategory B consists of functors

⟨⟨−⟩⟩ : B(R,R) → T

for each 0-cell R of B and some fixed category T, equipped with a natural isomor-
phism

θM,N : ⟨⟨M ⊙N⟩⟩
∼=−→ ⟨⟨N ⊙M⟩⟩

for each M ∈ B(R, S) and N ∈ B(S,R), such that the following diagrams commute
whenever they make sense:

⟨⟨(M ⊙N)⊙ P⟩⟩ ⟨⟨P ⊙ (M ⊙N)⟩⟩ ⟨⟨(P ⊙M)⊙N⟩⟩

⟨⟨M ⊙ (N ⊙ P )⟩⟩ ⟨⟨(N ⊙ P )⊙M⟩⟩ ⟨⟨N ⊙ (P ⊙M)⟩⟩

θ
∼=

⟨⟨a⟩⟩ ∼=

⟨⟨a⟩⟩
∼=

θ

∼=
⟨⟨a⟩⟩

∼=

θ∼=

⟨⟨M ⊙ UR⟩⟩ ⟨⟨UR ⊙M⟩⟩ ⟨⟨M ⊙ UR⟩⟩

⟨⟨M⟩⟩

θ
∼=

⟨⟨ r⟩⟩

∼=

θ
∼=

⟨⟨ l⟩⟩ ∼=
⟨⟨ r⟩⟩

∼=

Here and elsewhere, the phrase “whenever they make sense” means that the 1-
cells have source and target 0-cells which make all tensor products and shadows (and,
later, hom objects and coshadows) valid. For example, the hexagon in Definition 4
“makes sense” if the targets of M , N , and P equal the sources of N , P , and M ,
respectively. The isomorphisms θM,N and θN,M are mutually inverse [14, Proposition
4.3], so we usually drop the subscripts and simply write θ.

Example 8. The zeroth Hochschild homology HH0(R,M) is the quotient (of abelian
groups) of M by the subgroup generated by elements of the form mr − rm. (This
is isomorphic to M ⊗R⊗Rop R.) This defines a shadow on Mod/Ring with target
Ab (or a shadow on Mod/Algk

with target Vectk). This boils down to the fact
that HH0(R,M ⊗S N) ∼= HH0(S,N ⊗R M) for bimodules RMS and SNR, since the
relation rm ⊗ n ∼ m ⊗ nr imposed by Hochschild homology mirrors the relation
ms⊗ n ∼ m⊗ sn imposed by the passage from M ⊗Z N to M ⊗S N .
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Example 9. There is a bicategory Ch/Ring whose 0-cells are rings, 1-cells are
non-negatively graded chain complexes of bimodules, and 2-cells are chain maps.
This bicategory has a shadow, which we also call HH0, given by HH0(R,C) =
C ⊗R⊗Rop R[0]; that is, HH0(R,C)n ∼= HH0(R,Cn). The symmetry isomorphism
θ : HH0(R,C ⊗S D) ∼= HH0(S,D ⊗R C) has a sign: θ(c⊗ d) = (−1)|c||d|d⊗ c.

The following generalizes the symmetric monoidal Euler characteristic of Defini-
tion 2.

Definition 5 ([11]). The Euler characteristic χ(M) of a right dualizable 1-cell
M ∈ B(R, S) is the map

⟨⟨UR⟩⟩ ⟨⟨M ⊙M∗⟩⟩ ⟨⟨M∗ ⊙M⟩⟩ ⟨⟨US⟩⟩.
⟨⟨η⟩⟩ θ

∼=
ε

Example 10. A k-linear representation of a group G can be viewed as module over
the group algebra k[G], which is a 1-cell k[G] 7→ k in Mod/Algk

. When the underly-
ing vector space of V is finite-dimensional, V is right dualizable and χ(V ) is a map
⟨⟨k[G]⟩⟩ → ⟨⟨k⟩⟩. If we use HH0 as the shadow, the quotient k[G] → HH0(k[G], k[G])
identifies pairs of group elements gh and hg; equivalently, it identifies conjugate ele-
ments, and thus HH0(k[G], k[G]) is k[cl(G)], the free k-vector space on the conjugacy
classes of G. Since k is commutative, HH0(k, k) ∼= k, and thus χ(V ) is a map
k[cl(G)] → k, which amounts to a class function G → k. By describing a right dual,
unit, and counit similar to those in Example 1, we compute that χ(V ) is the character

of V ; that is, χ(V )(g) = tr(V
g·−→ V ).

Defintiion 5 generalizes in two ways. First, we can introduce an endomorphism of
the dualizable object, similar to the transition from Examples 2 and 3 to Examples 4
and 5, respectively. Second, we can twist the endomorphism by 1-cells Q and P ,
making the trace a map ⟨⟨Q⟩⟩ → ⟨⟨P⟩⟩ rather than simply a map between shadows of
unit 1-cells.

Definition 6 ([11, Definition 4.5.1]). Let f : Q⊙M → M ⊙ P be a 2-cell where M
is right dualizable. The twisted trace of f is the composite

⟨⟨Q⟩⟩ ∼= ⟨⟨Q⊙ UR⟩⟩ ⟨⟨Q⊙M ⊙M∗⟩⟩ ⟨⟨M ⊙ P ⊙M∗⟩⟩

⟨⟨M∗ ⊙M ⊙ P⟩⟩ ⟨⟨US ⊙ P⟩⟩ ∼= ⟨⟨P⟩⟩.

⟨⟨1⊙η⟩⟩ ⟨⟨f⊙1⟩⟩

θ
∼=

⟨⟨ ε⊙1⟩⟩

The Euler characteristic for a right dualizable 1-cell M ∈ B(R, S) corresponds to

the twisted trace for the canonical isomorphism 2-cell UR⊙M
∼=−→ M ⊙US; this is the

sense in which we think of the Euler characteristic as a “trace of identity map.”
Suppose we have right dualizable 1-cells M ∈ B(R, S) and N ∈ B(S, T ) and

Q,P, L which twist endomorphisms of M and N :

f : Q⊙M → M ⊙ P g : P ⊙N → N ⊙ L.

The twisted traces of f and g are maps ⟨⟨Q⟩⟩ → ⟨⟨P⟩⟩ and ⟨⟨P⟩⟩ → ⟨⟨L⟩⟩. The following
theorem says that we can obtain the composite ⟨⟨Q⟩⟩ → ⟨⟨P⟩⟩ → ⟨⟨L⟩⟩ as a single trace
with respect to M ⊙N , which is dualizable by Proposition 1.
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Theorem 2 ([11]). Let M,N,Q, P, L, f, g be as above. Then the trace of

Q⊙M ⊙N
f⊙idN−−−−→ M ⊙ P ⊙N

idM⊙g−−−−→ M ⊙N ⊙ L

is

⟨⟨Q⟩⟩ tr(f)−−→ ⟨⟨P⟩⟩ tr(g)−−→ ⟨⟨L⟩⟩.

When applied to the isomorphisms

UR ⊙M ⊙N
∼=−→ M ⊙ US ⊙N

∼=−→ M ⊙N ⊙ UT

this theorem gives the following.

Corollary 1. If M ∈ B(R, S) and N ∈ B(S, T ) are right dualizable then

χ(M ⊙N) = χ(N) ◦ χ(M).

Example 11. The preceding corollary can be used to recover the formulas for char-
acters of restricted and induced representations. Given a subgroup H ≤ G and a
G-representation V , the restricted H-representation is ResGH(V ) := φk[G] ⊗k[H] V ,
where φ : k[H] → k[G] is the ring homomorphism induced by the inclusion of H
into G. Now φk[G] is right dualizable, since (φS, Sφ) is a dual pair for any ring
homomorphism φ : R → S [10, Example 16.4.2]. By Corollary 1, χ(ResGH(H)) is

⟨⟨k[H]⟩⟩ χ(φk[G])−−−−−→ ⟨⟨k[G]⟩⟩ χ(V )−−−→ ⟨⟨k⟩⟩.

The first map simply takes [h] ∈ HH0(k[H]) to [h] ∈ HH0(k[G]), which is well-defined
since elements which are conjugate in H are also conjugate in G.

Now, given an H-representation W , the induced G-representation is IndG
H(W ) :=

k[G]φ ⊗k[H] V . If [G : H] < ∞, then k[G]φ is right dualizable with right dual φk[G]
(this is not true for a general ring homomorphism φ). A coevaluation and evaluation
for the dual pair (k[G]φ, φk[G]) are given by

k[G]
η−→ k[G]φ ⊗k[H] φk[G] φk[G]⊗k[G] k[G]φ

ε−→ k[H]

g 7→
∑

giH∈G/H

ggi ⊗ g−1
i g ⊗ g′ 7→

{
gg′, gg′ ∈ H

0, gg′ /∈ H

where the gi are a choice of coset representatives forG/H. By Corollary 1, χ(IndG
H(V ))

is

⟨⟨k[G]⟩⟩ χ(k[G]φ)−−−−−→ ⟨⟨k[H]⟩⟩ χ(V )−−−→ ⟨⟨k⟩⟩.

The first map takes [g] to
∑

giH∈G/H, g−1
i ggi∈H [g

−1
i ggi] =

1
|H|

∑
s∈G, s−1gs∈H [s

−1gs]; then

after applying χ(V ) we get the usual character induction formula

χ(IndG
H(V ))(g) =

1

|H|
∑

s∈G, s−1gs∈H

χ(V )(s−1gs).

10



Definition 7. Let f : P ⊙M → M ⊙Q be a 2-cell where M is right dualizable with
right dual M∗. The mate of F is the map f ∗ : M∗ ⊙ P → Q⊙M∗ given by

M∗ ⊙ P
id⊙η−−→ M∗ ⊙ P ⊙M ⊙M∗ id⊙f⊙id−−−−−→ M∗ ⊙M ⊙Q⊙M∗ ε⊙id−−→ Q⊙M∗.

There is a construction analogous to Definition 6 for a twisted endomorphism
M∗⊙Q → P ⊙M∗ of a left dualizable 1-cell M∗. Using this, we obtain the following.

Proposition 2. Let f : Q ⊙ M → M ⊙ P be a 2-cell where M is right dualizable.
Then tr(f) = tr(f ∗).

2.3 Closed Bicategories

The bicategory Mod/Ring has additional structure that we have not yet made use
of, namely the hom-functors. Describing this structure is essential for generalizing
notions of cotrace that appear in the literature, just as the symmetric monoidal and
bicategorical trace generalize many familiar examples.

Definition 8 ([10]). A (right and left) closed bicategory is a bicategory B
equipped with right and left internal hom functors

− ◁− : B(R, T )× B(R, S)op → B(S, T )

and
− ▷− : B(S, T )op × B(R, T ) → B(R, S)

for all triples of 0-cells R, S, T and natural isomorphisms

B(S, T )(N,P ◁M) ∼= B(R, T )(M ⊙N,P ) ∼= B(R, S)(M,N ▷ P )

for all triples of 1-cells M : R 7→ S, N : S 7→ T , and P : R 7→ T .

Our most frequently used example of a bicategory, Mod/Ring (or Mod/Algk
), is

a closed bicategory. For bimodules RMS and RPT , the left internal hom object is
the (S, T )-bimodule P ◁M := HomR(M,P ). For bimodules SNT and RPT , the right
internal hom object is the (R, S)-bimodule N ▷ P := HomT (N,P ). We remember
the hom functors for bimodules by noting that triangle (◁ or ▷) always points from
source to target, and the direction it points indicates on which side the maps are linear
(e.g. the right-pointing triangle ▷ indicates that N▷P is the set of right T -linear maps
from N to P ).

There are evaluation maps

(N ▷ P )⊙N
ev−→ P and M ⊙ (P ◁M)

ev−→ P

(the transposes of idN▷P and idP◁M , respectively), which are natural in P and ex-
tranatural in M and N (respectively). For bimodules, the first of these is the evalua-
tion map HomT (N,P )⊗S N → P, φ⊗ n 7→ φ(n). Similarly, there are coevaluation
maps

M
coev−−→ N ▷ (M ⊙N) and N

coev−−→ (M ⊙N) ◁ M
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(the transposes of idM⊙N), which are natural in M and N (respectively) and ex-
tranatural in N and M (respectively). There is a natural isomorphism

(M ⊙N) ▷ P M ▷ (N ▷ P )t
∼=

(which we call t for “transpose” or “tensor-hom adjunction”) given by the transpose
of the transpose of

((M ⊙N) ▷ P )⊙M ⊙N
ev−→ P

and whose inverse is the transpose of

(M ▷ (N ▷ P ))⊙M ⊙N
ev⊙1−−−→ (N ▷ P )⊙N

ev−→ P.

There is a similar natural isomorphism for ◁, as well as a natural isomorphism

(N ▷ P ) ◁ M N ▷ (P ◁M),a
∼=

which we call a for “associator.”
One of the axioms of a bicategory is a pentagon ensuring that any two ways of

reparenthesizing four composed 1-cells through associators are equal. In a closed
bicategory, there are several more associativity pentagons—not axioms but rather
provably commuting diagrams—since there are now three ways to put two objects
together (⊙, ◁, and ▷). We describe some of them below since we will need them
later; note that they come in pairs since there are both left and right internal hom
functors.

Lemma 1. In a closed bicategory, the following diagrams commute for any 1-cells
W,X, Y, Z for which the diagrams make sense:

((W ⊙X)⊙ Y ) ▷ Z

(W ⊙ (X ⊙ Y )) ▷ Z

W ▷ ((X ⊙ Y ) ▷ Z) W ▷ (X ▷ (Y ▷ Z))

(W ⊙X) ▷ (Y ▷ Z)

t
∼=

(a−1)∗

∼=

t

∼=

t∗

∼=
t

∼=

((W ◁X) ◁ Y ) ◁ Z

(W ◁ (X ⊙ Y )) ◁ Z

W ◁ ((X ⊙ Y )⊙ Z) W ◁ (X ⊙ (Y ⊙ Z))

(W ◁X) ◁ (Y ⊙ Z)

t−1

∼=
t−1
∗

∼=

t−1

∼=

(a−1)∗

∼=
t−1

∼=
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The reader is warned that the two diagrams above will appear as squares rather
than pentagons when we make use of them later on, since we typically suppress the
associator for ⊙. To verify that diagrams like these commute, the easiest approach is
usually to take transposes until no hom-objects remain in the terminal object of the
diagram. For example, each side of the first pentagon above is thrice transposed by
tensoring with the identity map on W ⊙X ⊙ Y and then composing with

(W ▷ (X▷ (Y ▷Z)))⊙W ⊙X⊙Y
ev⊙12−−−→ (X▷ (Y ▷Z))⊙X⊙Y

ev⊙1−−−→ (Y ▷Z)⊙Y
ev−→ Z.

Making use of naturality of ev and the definitions of a and t in terms of their trans-
poses, one simplifies both sides of the pentagon (after transposing, that is) to the
same map.

Lemma 2. In a closed bicategory, the following diagrams commute for any 1-cells
W,X, Y, Z for which the diagrams make sense:

((W ⊙X) ▷ Y ) ◁ Z

(W ▷ (X ▷ Y )) ◁ Z

W ▷ ((X ▷ Y ) ◁ Z) W ▷ (X ▷ (Y ◁ Z))

(W ⊙X) ▷ (Y ◁ Z)

a
∼=

t∗
∼=

a

∼=

a∗

∼=
t

∼=

((W ▷X) ◁ Y ) ◁ Z)

(W ▷ (X ◁ Y )) ◁ Z)

W ▷ ((X ◁ Y ) ◁ Z) W ▷ (X ◁ (Y ⊙ Z))

(W ▷X) ◁ (Y ⊙ Z)

t−1

∼=
a∗

∼=

a

∼=

t−1
∗

∼=
a

∼=

Just as there are natural isomorphisms (M ▷ N) ◁ P ∼= M ▷ (N ◁ P ) analogous
to the associators (M ⊙ N) ⊙ P ∼= M ⊙ (N ⊙ P ), there are natural isomorphisms
US ▷ M ∼= M ∼= M ◁ UR analogous to the unitors UR ⊙M ∼= M ∼= M ⊙ US.

Lemma 3. Given a 1-cell M : R 7→ S, the transpose l : M → M◁UR of l : UR⊙M
∼=−→

M is an isomorphism, as is the transpose r : M → US ▷ M of r : M ⊙ US

∼=−→ M .
Moreover, these isomorphisms are natural in M .
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Proof. The inverse of l is

M ◁ UR UR ⊙ (M ◁ UR) M.l−1

∼=
ev

The inverse of r is similar, and naturality is straightforward to check.

These maps l and r satisfy properties analogous to the bicategory axiom relating
the associator and unitors.

Lemma 4. The following diagrams commute whenever they make sense:

1.

X ▷ Y (X ⊙ US) ▷ Y

X ▷ (US ▷ Y )

r∗

∼=

r∗

∼=
t∼=

Y ◁ X Y ◁ (UR ⊙X)

(Y ◁ UR) ◁ X

l∗

∼=

l∗

∼=
t∼=

2.

X ▷ Y (UR ⊙X) ▷ Y

UR ▷ (X ▷ Y )

l∗

∼=

r

∼=
t∼=

Y ◁ X Y ◁ (X ⊙ US)

(Y ◁ X) ◁ US

r∗

∼=

l

∼=
t∼=

3.

X ▷ Y X ▷ (Y ◁ U)

(X ▷ Y ) ◁ U

l∗
∼=

l

∼=
a−1∼=

Y ◁ X (U ▷ Y ) ◁ X

U ▷ (Y ◁ X)

r∗
∼=

r

∼=
a∼=

Lemma 5. For any 1-cell M : R 7→ S, the maps r, r∗ : US ▷M → US ▷ (US ▷M) are
equal, as are the maps l, l∗ : M ◁ UR → (M ◁ UR) ◁ UR.

2.4 Duality in Closed Bicategories

When internal hom functors are present, they are intimately related with duality.
The dual of a finite-dimensional k-vector space V , for example, is the hom space
Homk(V, k); in fact, in a closed symmetric monoidal category or closed bicategory,
the dual of M (when it exists) always takes the form of a hom object from M into a
unit object.

There are maps, natural in M , N , and P ,

N ⊙ (M ▷ P )
µ−→ M ▷ (N ⊙ P ) and (N ◁M)⊙ P

ν−→ (N ⊙ P ) ◁ M,

defined as the transposes of

N ⊙ (M ▷ P )⊙M
1⊙ev−−−→ N ⊙ P and M ⊙ (N ◁M)⊙ P

ev⊙1−−−→ N ⊙ P.
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Proposition 3 ([10]). The map µ : N ⊙ (M ▷P ) → M ▷ (N ⊙P ) is an isomorphism
if either M or N is right dualizable. Similarly, ν : (N ◁M) ⊙ P → (N ⊙ P ) ◁ M is
an isomorphism if either M or P is left dualizable.

Proof. If M is right dualizable, then

M ▷ (N ⊙ P ) (M ▷ (N ⊙ P ))⊙M ⊙M∗ N ⊙ P ⊙M∗

N ⊙ (M ▷ (P ⊙M∗ ⊙M)) N ⊙ (M ▷ P )

12⊙η ev⊙1

1⊙coev 1⊙(1⊙ε)∗

is inverse to µ. If N is right dualizable, then

M ▷ (N ⊙ P ) N ⊙N∗ ⊙ (M ▷ (N ⊙ P )) N ⊙ (M ▷ (N∗ ⊙N ⊙ P ))

N ⊙ (M ▷ P )

η⊙12 1⊙µ

1⊙(ε⊙1)∗

is inverse to µ. Inverses to ν are constructed similarly when M or P is left dualizable.

Proposition 4. If M ∈ B(R, S) is right dualizable, then its right dual is M ▷ US.

Proof. If M is right dualizable, then

UR
coev−−→ M ▷ (UR ⊙M) ∼= M ▷ (M ⊙ US)

µ−1

−−→ M ⊙ (M ▷ US)

and ev : (M ▷ US)⊙M → US exhibit (M, (M ▷ US)) as a dual pair.

Similarly, if M is left dualizable, then its left dual is UR ◁ M .
A map of the appropriate form for taking traces has a mate (Definition 7), and

dually a map of the appropriate form for taking cotraces (Definition 11) has a mate:

Definition 9. Let (M,M∗) be a dual pair in a closed bicategory. A map f : M▷Q →
P ◁M has a mate f ∗ : Q ◁M∗ → M∗ ▷ P given by

Q ◁M∗ (US ▷ Q) ◁ M∗ ((M∗ ⊙M) ▷ Q) ◁ M∗

(M∗ ▷ (M ▷Q)) ◁ M∗ (M∗ ▷ (P ◁M)) ◁ M∗

M∗ ▷ ((P ◁M) ◁ M∗) M∗ ▷ (P ◁ (M ⊙M∗))

M∗ ▷ (P ◁ UR) M∗ ▷ P.

r∗
∼=

(ε∗)∗

t∗
∼=

f∗∗

a
∼=

t∗
∼=

(η∗)∗ l
−1
∗
∼=

Similarly, a map g : Q◁M∗ → M∗ ▷P has a mate g∗ : M ▷Q → P ◁M . Moreover,
f ∗∗ = f and g∗∗ = g for any f : M ▷Q → P ◁M and g : Q◁M∗ → M∗ ▷P . While this
definition of f ∗ resembles Definition 9, there is an alternate description of f ∗ which is
often easier to work with by virtue of involving fewer hom-objects; it is the transpose
of the following:

(Q ◁M∗)⊙M∗ ∼= M ⊙Q⊙M∗ ∼= M ⊙ (M ▷Q) M ⊙ (P ◁M) P.
1⊙f ev
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Chapter 3 Coshadows and Cotraces

There are certain constructions appearing in the literature under the name of cotrace,
which resemble traces in some ways but differ in others. In this section, we develop
a theory of bicategorical cotraces which generalizes these examples and draws them
into the framework of bicategorical duality and trace. In this section, we present
the motivating examples, define a bicategorical coshadow and cotrace, and establish
key properties of coshadows and cotraces (most of them analogous to well-known
properties of shadows and traces). One might also ask if there are symmetric monoidal
cotraces; there are, but we show that in a symmetric monoidal setting, the notion of
cotrace coincides with that of trace.

3.1 Motivation, Definitions, and Examples

The prototypical example of a shadow is Hochschild homology HH0(R,M) ∼= M⊗R⊗Rop

R, which has the property that HH0(R,M ⊗S N) ∼= HH0(S,N ⊗R M) for bimod-
ules RMS, SNR. Hochschild cohomology HH0(R,M) ∼= HomR−R(R,M) does not
have this property, but it does have the property that HH0(R,HomS(M,N)) ∼=
HomR−S(M,N) ∼= HH0(S,HomR(M,N)) for bimodules RMS, RNS. This suggests
that the appropriate setting for studying cotraces is a closed bicategory and that the
analogue of a shadow functor should be the following.

Definition 10. Let B be a closed bicategory and T a category. A coshadow for
B taking values in T is a collection of functors

⟨⟨−⟨⟨ : B(R,R) → T

for each object R of B, equipped with a natural isomorphism

θ : ⟨⟨M ▷N⟨⟨
∼=−→ ⟨⟨N ◁M⟨⟨

for each M,N : R 7→ S, such that the following diagrams commute whenever they
make sense:

⟨⟨M ▷ (N ▷ P )⟨⟨ ⟨⟨(N ▷ P ) ◁ M⟨⟨ ⟨⟨N ▷ (P ◁M)⟨⟨

⟨⟨(M ⊙N) ▷ P⟨⟨ ⟨⟨P ◁ (M ⊙N)⟨⟨ ⟨⟨(P ◁M) ◁ N⟨⟨

θ
∼=

∼=

∼=

θ∼=

θ

∼=
∼=

⟨⟨UR ▷ M⟨⟨ ⟨⟨M ◁ UR⟨⟨ ⟨⟨UR ▷ M⟨⟨

⟨⟨M⟨⟨

θ
∼=

⟨⟨ r−1⟨⟨

∼=

θ
∼=

⟨⟨ l−1⟨⟨ ∼=
⟨⟨ r−1⟨⟨

∼=
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Example 12. Zeroth Hochschild cohomology HH0(R,M) ∼= {m ∈ M : mr =
rm ∀r ∈ R} ∼= HomR−R(R,M) defines a coshadow on Mod/Ring with target Ab.

Example 13. The categorical trace of [3], which sends a 1-cell M ∈ B(R,R) to
HomB(R,R)(UR,M), is an example of a coshadow. The key observation is that for
M,N ∈ B(R, S), the required isomorphism θ comes from the tensor-hom adjunctions

HomB(R,R)(UR,M ▷ N) ∼= HomB(R,S)(M,N) ∼= HomB(S,S)(US, N ◁ M).

This coshadow takes values in the category of sets, but if the bicategory is enriched
in a symmetric monoidal category V (in the sense that categories B(R, S) are V -
enriched categories in a way that is compatible with the horizontal composition of B),
then the categorical trace defines a V -valued coshadow. It is a curious fact that the
categorical trace provides a simple example of a coshadow on any closed bicategory
whatsoever.

Definition 11. Let B be a closed bicategory with a coshadow and (M,M∗) a dual
pair of 1-cells of B, with M ∈ B(R, S). The cotrace of a 2-cell f : M ▷Q → P ◁M ,
denoted cotr(f), is the composite:

⟨⟨Q⟨⟨ ⟨⟨US ▷ Q⟨⟨ ⟨⟨(M∗ ⊙M) ▷ Q⟨⟨ ⟨⟨M∗ ▷ (M ▷Q)⟨⟨

⟨⟨M∗ ▷ (P ◁M)⟨⟨ ⟨⟨(P ◁M) ◁ M∗⟨⟨

⟨⟨P ◁ (M ⊙M∗)⟨⟨ ⟨⟨P ◁ UR⟨⟨ ⟨⟨P⟨⟨

⟨⟨ r⟨⟨
∼=

⟨⟨ ε∗⟨⟨
∼=

⟨⟨f∗⟨⟨ θ
∼=

∼=
η∗ ⟨⟨ r−1⟨⟨

∼=

When there are multiple dualizable objects in play, we will sometimes subscript
cotr (or tr) with the dualizable object being used for that cotrace (or trace); that is,
we might write cotrM for the cotrace in Definition 11.

This definition mirrors that of the bicategorical trace (Definition 6); the only
reason it appears to composed of more maps than the trace is that in the trace we
usually suppress the associators Q⊙(M⊙M∗) ∼= (Q⊙M)⊙M∗ and M∗⊙(M⊙P ) ∼=
(M∗⊙M)⊙P , whereas for the cotrace we always explicitly write out the isomorphisms
(M∗ ⊙M) ▷ Q ∼= M∗ ▷ (M ▷Q) and (P ◁M) ◁ M∗ ∼= P ◁ (M ⊙M∗).

Lemma 6. The cotrace of f is independent of the choices of M∗, η, and ε.

Example 14. LetM : R 7→ S be a right dualizable 1-cell inMod/Ring, i.e. an (R, S)-
bimodule which is finitely generated and projective as a right S-module. Using HH0

as the coshadow, the cotrace of a map f : HomS(M,Q) → HomR(M,P ) is the map
HH0(S,Q) → HH0(R,P ) taking q to

∑
i f(qe

∗
i (−))(ei), where {ei} and {e∗i } are a

pair of dual bases for MS.

Example 15. Given a G-representation V , there is a map f : V ▷k → k[G]◁V given
by f(ϕ)(v) =

∑
g∈G ϕ(g−1v)g. In fact, this is an isomorphism, with inverse f−1 :

k[G] ◁ V → V ▷ k given by f−1(φ)(v) = e∗(φ(v)). If V is finite-dimensional (i.e. right
dualizable), then f has a cotrace HH0(k) → HH0(k[G]); since k is commutative
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HH0(k) is just k, and HH0(k[G]) is the subset of k[G] consisting of linear combinations∑
g∈G agg such that ag = ag′ whenever g and g′ are conjugate. The cotrace is

cotr(f)(1) =
∑
g∈G

χ(V )(g−1)g,

where χ(V ) is as in Example 10. Note that cotr(f) contains precisely the same
information as the character χ(V ): an element of HH0(k[G]) amounts to a scalar for
each conjugacy class of G, and the scalars picked out by this cotrace are the values
of χ(V ).

3.2 Basic Properties

The cotrace satisfies properties analogous to those of the bicategorical trace, which
are catalogued in Section 7 of [14]. Some of the diagrams proving these properties get
quite large, so to make them a bit more manageable we sometimes omit the symbol
⊙. We adopt the convention that ◁ and ▷ bind more loosely than composition by
juxtaposition, e.g. AB ▷ C is to be understood as (A⊙B) ▷ C, not A⊙ (B ▷ C).

The following is analogous to Proposition 7.1 in [14]:

Proposition 5. Let M be a right dualizable 1-cell, let f : M ▷Q → P ◁M be a 2-cell,
and let g : Q′ → Q and h : P → P ′ be 2-cells. Then

⟨⟨h⟨⟨ ◦ cotr(f) ◦ ⟨⟨g⟨⟨ = cotr(h∗ ◦ f ◦ g∗).

Proof. The composite around the outside top, right, and bottom of Figure 3.1 is
cotr(h∗ ◦ f ◦ g∗). Each square commutes because of functoriality of the internal hom
or naturality of θ, t, r, or l.

⟨⟨Q′⟨⟨ ⟨⟨US ▷ Q′⟨⟨ ⟨⟨(M∗ ⊙M) ▷ Q′⟨⟨ ⟨⟨M∗ ▷ (M ▷Q′)⟨⟨

⟨⟨M∗ ▷ (P ′ ◁ M)⟨⟨

⟨⟨(P ′ ◁ M) ◁ M∗⟨⟨⟨⟨P ′ ◁ (M ⊙M∗)⟨⟨⟨⟨P ′ ◁ UR⟨⟨⟨⟨P ′⟨⟨

⟨⟨Q⟨⟨ ⟨⟨US ▷ Q⟨⟨ ⟨⟨(M∗ ⊙M) ▷ Q⟨⟨ ⟨⟨M∗ ▷ (M ▷Q)⟨⟨

⟨⟨M∗ ▷ (P ◁M)⟨⟨

⟨⟨(P ◁M) ◁ M∗⟨⟨⟨⟨P ◁ (M ⊙M∗)⟨⟨⟨⟨P ◁ UR⟨⟨⟨⟨P⟨⟨

⟨⟨g⟨⟨ ⟨⟨g∗⟨⟨ ⟨⟨g∗⟨⟨ ⟨⟨g∗∗⟨⟨

⟨⟨h∗∗⟨⟨

⟨⟨h⟨⟨ ⟨⟨h∗⟨⟨ ⟨⟨h∗⟨⟨ ⟨⟨h∗∗⟨⟨

cotr(f)

⟨⟨r⟨⟨
∼=

⟨⟨ε∗⟨⟨ ⟨⟨t⟨⟨
∼=

⟨⟨(h∗ ◦ f ◦ g∗)∗⟨⟨

⟨⟨θ⟨⟨

∼=

⟨⟨t−1⟨⟨

∼=
⟨⟨η∗⟨⟨⟨⟨ l−1⟨⟨

∼=

⟨⟨r⟨⟨
∼=

⟨⟨ε∗⟨⟨ ⟨⟨t⟨⟨
∼= ⟨⟨f∗⟨⟨

⟨⟨θ⟨⟨

∼=

⟨⟨t−1⟨⟨

∼=
⟨⟨η∗⟨⟨⟨⟨ l−1⟨⟨

∼=

Figure 3.1: Diagram for Proposition 5

The following is analogous to Proposition 7.4 in [14]:
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Proposition 6. If f : UR ▷ Q → P ◁ UR is any 2-cell, then cotr(f) is

⟨⟨Q⟨⟨ ⟨⟨UR ▷ Q⟨⟨ ⟨⟨P ◁ UR⟨⟨ ⟨⟨P⟨⟨⟨⟨ r⟨⟨
∼=

⟨⟨f⟨⟨ ⟨⟨ l−1⟨⟨
∼=

Proof. In the diagram in Figure 3.2, the map around the outside from ⟨⟨Q⟨⟨ to ⟨⟨P⟨⟨ is
cotr(f). Note that two of the arrows are labeled two different ways; this makes use
of Lemma 5.

⟨⟨Q⟨⟨ ⟨⟨UR ▷ Q⟨⟨

⟨⟨(UR ⊙ UR) ▷ Q⟨⟨

⟨⟨UR ▷ (UR ▷ Q)⟨⟨

⟨⟨UR ▷ (P ◁ UR)⟨⟨

⟨⟨(P ◁ UR) ◁ UR⟨⟨

⟨⟨P ◁ (UR ⊙ UR)⟨⟨

⟨⟨P ◁ UR⟨⟨⟨⟨P⟨⟨

⟨⟨P ◁ UR⟨⟨

Lemma 3

Definition 10

⟨⟨r⟨⟨
∼=

⟨⟨r∗⟨⟨
∼=

⟨⟨t⟨⟨
∼=

⟨⟨f∗⟨⟨

⟨⟨θ⟨⟨

∼=

⟨⟨t−1⟨⟨

∼=
⟨⟨(l−1)∗⟨⟨

∼=
⟨⟨ l−1⟨⟨

∼=

⟨⟨r∗⟨⟨ = ⟨⟨r⟨⟨

∼=

⟨⟨ l−1⟨⟨ = ⟨⟨(l∗)−1⟨⟨
∼=

⟨⟨f⟨⟨

1

⟨⟨r⟨⟨
∼=

Lemma 1.1

Lemma 1.1

Figure 3.2: Diagram for Proposition 6

The following is analogous to Theorem 2, which is Proposition 7.5 in [14]; it says
that a composite of cotraces with respect to dualizable objects M and N is the same
as a single cotrace with respect to N ⊙M (which is dualizable by Proposition 1).

Proposition 7. Let M and N be right dualizable 1-cells in a closed bicategory with
a coshadow. For 2-cells f : M ▷ Q → P ◁ M and g : N ▷ P → L ◁ N , the composite
cotr(g) ◦ cotr(f) : ⟨⟨Q⟨⟨ → ⟨⟨L⟨⟨ is equal to the cotrace (with respect to N ⊙M) of the
composite

(N ⊙M) ▷ Q N ▷ (M ▷Q) N ▷ (P ◁M) (N ▷ P ) ◁ M

(L ◁ N) ◁ M L ◁ (N ⊙M)

t
∼=

f∗ a−1

∼=

g∗ t−1

∼=

(3.1)

Proof. The left and bottom sides of the diagram in Figure 3.3 are cotr(g) ◦ cotr(f),
and the top and right sides are the cotrace of (3.1), except that we have deleted the
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⟨⟨Q⟨⟨
⟨⟨ε∗r⟨⟨
−−−→ ⟨⟨(M∗ ⊙M) ▷ P⟨⟨ at the beginning and the ⟨⟨L ◁ (N ⊙N∗)⟨⟨

⟨⟨l−1
η∗⟨⟨

−−−−→ ⟨⟨L⟨⟨ at
the end, since these are common to both sides. Every unlabeled square commutes
because of functoriality of − ▷− and − ◁− or naturality of θ, t, a, r, or l.

If (M,M∗) is a dual pair, a 2-cell f : M ▷Q → P ◁M has a mate f ∗ : Q ◁M∗ →
M∗ ▷ P (Definition 9), which has the same cotrace as f :

Proposition 8. If M is right dualizable and f : M ▷ Q → P ◁ M is a 2-cell, then
cotr(f) = cotr(f ∗).

Proof. The left and bottom sides of the diagram in Figure 3.4 are cotr(f), and the
top and right sides are cotr(f ∗). Every unlabeled square commutes because of func-
toriality of − ▷− and − ◁− or naturality of θ, t, a, r, or l.

We conclude this list of properties with an analogue of cyclicity of the bicategorical
trace [14, Proposition 7.2], which generalizes the familiar fact from linear algebra that
tr(AB) = tr(BA) for any matrices such that AB and BA are square matrices (even
if A and B themselves are not square).

Proposition 9. Let M and N be right dualizable 1-cells in a closed bicategory with
a coshadow. For maps f : M ▷Q1 → P1 ◁N and g : P2 ⊙M → N ⊙Q2, the following
diagram commutes:

⟨⟨Q1 ◁ Q2⟨⟨ ⟨⟨P1 ◁ P2⟨⟨

⟨⟨Q2 ▷ Q1⟨⟨ ⟨⟨P2 ▷ P1⟨⟨

cotr(g∗f∗)

θ ∼= θ∼=

cotr(f∗g∗)

where g∗f∗ and f∗g
∗ mean the following:

M▷(Q1◁Q2) ∼= (M▷Q1)◁Q2
f∗−→ (P1◁N)◁Q2

∼= P1◁(N⊙Q2)
g∗−→ P1◁(P2⊙M) ∼= (P1◁P2)◁M

N▷(Q2▷Q1) ∼= (N⊙Q2)▷Q1
g∗−→ (P2⊙M)▷Q1

∼= P2▷(M▷Q1)
f∗−→ P2▷(P1◁N) ∼= (P2▷P1)◁N

Proof. The top and right sides of the diagram in Figure 3.5 are cotr(g∗f∗) : ⟨⟨Q1 ◁ Q2⟨⟨ →
⟨⟨P1 ◁ P2⟨⟨, while the left and bottom sides of the diagram in Figure 3.6 are

⟨⟨Q1 ◁ Q2⟨⟨ ⟨⟨Q2 ▷ Q1⟨⟨ ⟨⟨P2 ▷ P1⟨⟨ ⟨⟨P1 ◁ P2⟨⟨.θ
∼=

cotr(f∗g∗) θ
∼=

The two diagrams glue together along their other edges. Every unlabeled square
commutes because of functoriality of −⊙−, − ▷−, or − ◁− or naturality of θ, t, a,
r, or l.
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Figure 3.3: Diagram for Proposition 7
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Figure 3.5: Diagram for Proposition 9
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Figure 3.6: Diagram for Proposition 9
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3.3 Functoriality

One of the most important properties of the trace is that it is preserved by lax
functors, or at least those which preserve the dual pair relevant to the trace in question
(Proposition 8.3 in [14]). We state a similar result for cotraces, after describing the
structure of a lax functor between closed bicategories.

A lax functor F : B → C between bicategories is compatible with the horizontal
composition in B and C , in the sense that it comes equipped with coherence 2-cells
F (M) ⊙ F (N) in C for each pair of 1-cells M and N in B. This might lead us to
ask a lax functor between closed bicategories to include similar compatibility with
the internal hom functors, but in fact this is automatic: for example, we get a map
F (M ▷N) → F (M) ▷ F (N) as the transpose of

F (M ▷N)⊙ F (M) → F ((M ▷N)⊙M)
F (ev)−−−→ F (N).

Thus a lax functor between closed bicategories is nothing more than a lax functor
between the underlying bicategories. However, the functoriality result we want and
the concomitant notion of lax coshadow functor use the coherence 2-cells for ▷ and ◁
rather than the ones for ⊙, so we present a definition of lax functor between closed
bicategories in terms of the former.

In the following definition we make use of the transpose ◦ : Y ▷ Z → ((X ▷ Y ) ▷
(X ▷ Z)) of the “composition” map ◦ : (Y ▷ Z)⊙ (X ▷ Y ) → X ▷ Z, which itself is is
the transpose of

(Y ▷ Z)⊙ (X ▷ Y )⊙X
1⊙ev−−−→ (Y ▷ Z)⊙ Y

ev−→ Z.

Definition 12. Let B and C be closed bicategories. A lax closed functor F :
B → C is

� A function F0 : obB → obC

� For each R, S ∈ obB, a functor FR,S : B(R, S) → C (F0(R), F0(S))

� Natural transformations c : FR,S(N ▷ P ) → FS,T (N) ▷ FR,T (P )

� Natural transformations c : FS,T (P ◁M) → FR,T (P ) ◁ FR,S(M)

� Maps i : UF0(R) → FR,R(UR)

such that the following diagrams commute whenever they make sense (we usually
suppress the subscripts of F when they are clear from context):

F (N ▷ P ) F ((M ▷N) ▷ (M ▷ P )) F (M ▷N) ▷ F (M ▷ P )

F (N) ▷ F (P ) (F (M) ▷ F (N)) ▷ (F (M) ▷ F (P )) F (M ▷N) ▷ (F (M) ▷ F (P ))

◦

c

c

c∗

◦ c∗
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UF (R) F (UR)

F (M) ▷ F (M) F (M ▷M)

i

l F (l)

c

F (M) F (US ▷ M)

UF (S) ▷ F (M) F (US) ▷ F (M)

F (r)

∼=

r ∼= c

i∗

along with similar diagrams for the other hom functor − ◁ −, and the following
diagram relating the maps c for the two hom functors:

F ((M ▷N) ◁ P ) F (M ▷N) ◁ F (P ) (F (M) ▷ F (N)) ◁ F (P )

F (M ▷ (N ◁ P )) F (M) ▷ F (N ◁ P ) F (M) ▷ (F (N) ◁ F (P ))

c

F (a) ∼=

c∗

a ∼=

c c∗

Definition 13. Let B and C be closed bicategories equipped with coshadows with
target categories T and Z, respectively. A lax coshadow functor is a lax closed
functor F : B → C together with a functor Fcotr : T → Z and a natural transforma-
tion

ϕ : Fcotr ◦ ⟨⟨−⟨⟨B → ⟨⟨−⟨⟨C ◦ F

such that the following diagram commutes whenever it makes sense:

Fcotr⟨⟨M ▷N⟨⟨ Fcotr⟨⟨N ◁M⟨⟨

⟨⟨F (M ▷N)⟨⟨ ⟨⟨F (N ◁M)⟨⟨

⟨⟨F (M) ▷ F (N)⟨⟨ ⟨⟨F (N) ◁ F (M)⟨⟨

Fcotr(θ)

∼=

ϕ ϕ

⟨⟨ c⟨⟨ ⟨⟨ c⟨⟨

θ

∼=

We will make use of the following result in proving that lax closed functors preserve
cotraces.

Lemma 7. If F : B → C is a lax closed functor, the following commutes:

F ((M ⊙N) ▷ P ) F (M ⊙N) ▷ F (P ) (F (M)⊙ F (N)) ▷ F (P )

F (M ▷ (N ▷ P )) F (M) ▷ F (N ▷ P ) F (M) ▷ (F (N) ▷ F (P ))

c

F (t) ∼=

c∗

t∼=

c c∗

Proof. Both sides are the transpose (via the tensor-hom adjunction for F (M)) of the
transpose (via the tensor-hom adjunction for F (N)) of

F ((M ⊙N) ▷ P )⊙ F (M)⊙ F (N)
c◦(1⊙c)−−−−→ F (((M ⊙N) ▷ P )⊙M ⊙N)

F (ev)−−−→ F (P ).
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Proposition 10. Let F : B → C be a lax coshadow functor and M ∈ B(R, S) a
right dualizable 1-cell with right dual M∗.

1. [11, Proposition 4.3.6] If c : F (M) ⊙ F (M∗) → F (M ⊙ M∗) and i : UF (S) →
F (US) are isomorphisms, then F (M) is right dualizable with right dual F (M∗).

2. If, furthermore, the map cM,Q : F (M ▷Q) → F (M) ▷ F (Q) is an isomorphism,
then for any 2-cell f : M ▷Q → P ◁M , the following commutes:

F ⟨⟨Q⟨⟨B F ⟨⟨P⟨⟨B

⟨⟨F (Q)⟨⟨C ⟨⟨F (P )⟨⟨C

F (cotr(f))

ϕ ϕ

cotr(cM,P ◦F (f)◦c−1
M,Q)

Proof. Part (i) is Proposition 8.3(i) in [14]. For part (ii), the diagram in Figure 3.7
has ϕ ◦ F (cotr(f)) along the left side and cotr(cF (f)c−1) ◦ ϕ along the right side.
Every unlabeled square commutes because of naturality of ϕ, c, or θ.

3.4 Morita Invariance

One of the most important properties of Hochschild homology is that it is Morita in-
variant, meaning that ifR and S are Morita equivalent rings, then HHn(R) ∼= HHn(S).
Moreover, there is a trace map which is an isomorphism between the Hochschild ho-
mologies of R and S. In fact, this is an example of a general notion of Morita invari-
ance that all shadow functors satisfy. After reviewing the classical notion of Morita
equivalence and its generalization to bicategories and shadows, we will demonstrate
that coshadows also satisfy Morita invariance.

Rings R and S are Morita equivalent if their module categories ModR and
ModS are equivalent. If there are bimodules RPS and SQR such that P ⊗S Q ∼= R (as
(R,R)-bimodules) and Q⊗R P ∼= S (as (S, S)-bimodules), then

−⊗R P : ModR ⇄ ModS : −⊗S Q

are mutually inverse equivalences of categories, and it turns out that any equivalence
between ModR and ModS arises this way. The leads to a notion of Morita equivalence
in a bicategory:

Definition 14 ([1]). Two 0-cells R and S in a bicategory B are Morita equivalent
if there are 1-cells P ∈ B(R, S) and Q ∈ B(S,R) and isomorphisms

η : UR

∼=−→ P ⊙Q ε : Q⊙ P
∼=−→ US

satisfying the triangle identities. This means that (P,Q) is a dual pair, and η−1 and
ε−1 witness (Q,P ) as a dual pair as well.
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F ⟨⟨Q⟨⟨ ⟨⟨FQ⟨⟨ ⟨⟨UFS ▷ FQ⟨⟨ ⟨⟨FUS ▷ FQ⟨⟨ ⟨⟨F (M∗ ⊙M) ▷ FQ⟨⟨

F ⟨⟨US ▷ Q⟨⟨ ⟨⟨F (US ▷ Q)⟨⟨ ⟨⟨(FM∗ ⊙ FM) ▷ FQ⟨⟨

F ⟨⟨(M∗ ⊙M) ▷ Q⟨⟨ ⟨⟨F ((M∗ ⊙M) ▷ Q)⟨⟨ ⟨⟨FM∗ ▷ (FM ▷ FQ)⟨⟨

F ⟨⟨M∗ ▷ (M ▷Q)⟨⟨ ⟨⟨F (M∗ ▷ (M ▷Q))⟨⟨ ⟨⟨FM∗ ▷ F (M ▷Q)⟨⟨

F ⟨⟨M∗ ▷ (P ◁M)⟨⟨ ⟨⟨F (M∗ ▷ (P ◁M))⟨⟨ ⟨⟨FM∗ ▷ F (P ◁M)⟨⟨

F ⟨⟨(P ◁M) ◁ M∗⟨⟨ ⟨⟨F ((P ◁M) ◁ M∗)⟨⟨ ⟨⟨F (P ◁M) ◁ FM∗⟨⟨ ⟨⟨FM∗ ▷ (FP ◁ FM)⟨⟨

F ⟨⟨P ◁ (M ⊙M∗)⟨⟨ ⟨⟨F (P ◁ (M ⊙M∗))⟨⟨ ⟨⟨(FP ◁ FM) ◁ FM∗⟨⟨

⟨⟨FP ◁ (FM ⊙ FM∗)⟨⟨

F ⟨⟨P ◁ UR⟨⟨ ⟨⟨F (P ◁ UR)⟨⟨ ⟨⟨FP ◁ F (M ⊙M∗)⟨⟨

F ⟨⟨P⟨⟨ ⟨⟨FP⟨⟨ ⟨⟨FP ◁ UFR⟨⟨ ⟨⟨FP ◁ FUR⟨⟨

Lemma 7

Lemma 7

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

⟨⟨r⟨⟨
∼=

⟨⟨(i−1)∗⟨⟨
∼=

⟨⟨(Fε)∗⟨⟨

⟨⟨c⟨⟨

⟨⟨c⟨⟨

⟨⟨c∗⟨⟨

⟨⟨t⟨⟨∼=

⟨⟨c−1
∗ ⟨⟨∼=

⟨⟨c⟨⟨

F ⟨⟨r⟨⟨ ∼= ⟨⟨Fr⟨⟨ ∼=

F ⟨⟨ε∗⟨⟨ ⟨⟨F (ε∗)⟨⟨

F ⟨⟨t⟨⟨ ∼= ⟨⟨Ft⟨⟨ ∼=

F ⟨⟨f∗⟨⟨ ⟨⟨F (f∗)⟨⟨ ⟨⟨(Ff)∗⟨⟨
⟨⟨c⟨⟨

F (θ) ∼=
⟨⟨c⟨⟨

θ
∼=

⟨⟨c∗⟨⟨

θ∼=
⟨⟨c∗⟨⟨

F ⟨⟨t−1⟨⟨ ∼=

⟨⟨t−1⟨⟨∼=

⟨⟨F (t−1)⟨⟨ ∼=

⟨⟨c⟨⟨

⟨⟨(c−1)∗)⟨⟨∼=

F ⟨⟨η∗⟨⟨ ⟨⟨F (η∗)⟨⟨

⟨⟨c⟨⟨
F ⟨⟨ l−1⟨⟨ ∼= ⟨⟨F (l

−1
)⟨⟨ ∼= ⟨⟨(Fη)∗⟨⟨

⟨⟨i∗⟨⟨⟨⟨ l−1⟨⟨

∼=

Definition 13

Definition 12

Definition 12

Figure 3.7: Diagram for Proposition 10

In the Morita bicategory Mod/Ring, this recovers the classical notion of Morita
equivalence. Shadows are Morita invariant:

Proposition 11 ([1, Proposition 4.8]). Let (P,Q) be a Morita equivalence between
0-cells R and S in a bicategory B with a shadow ⟨⟨−⟩⟩. Then ⟨⟨M⟩⟩ ∼= ⟨⟨Q⊙M ⊙ P⟩⟩ for
any 1-cell M ∈ B(R,R), and moreover, there is a bicategorical trace witnessing this
equivalence.

Proof. The trace of η ⊙ 12 : M ⊙ P
∼=−→ P ⊙ Q ⊙M ⊙ P is an isomorphism ⟨⟨M⟩⟩

∼=−→
⟨⟨Q⊙M ⊙ P⟩⟩.

In the case that M is a unit 1-cell, we have:
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Corollary 2. If R and S are Morita equivalent 0-cells in a bicategory with a shadow
⟨⟨−⟩⟩, then ⟨⟨UR⟩⟩ ∼= ⟨⟨US⟩⟩.

Coshadows are also Morita invariant:

Proposition 12. Let (P,Q) be a Morita equivalence between 0-cells R and S in
a closed bicategory B with a coshadow ⟨⟨−⟨⟨. Then ⟨⟨M⟨⟨ ∼= ⟨⟨Q⊙M ⊙ P⟨⟨ for any
1-cell M ∈ B(R,R), and moreover, there is a bicategorical cotrace witnessing this
equivalence.

Proof. The transpose of Q ⊙ (Q ▷ M)
∼=−→ (Q ⊙ M ⊙ P ) is an isomorphism, so its

cotrace is an isomorphism ⟨⟨M⟨⟨
∼=−→ ⟨⟨Q⊙M ⊙ P⟨⟨.

Example 16. The coshadow of Proposition 12 using the categorical trace of [3] as
the coshadow (Example 13) recovers the isomorphism of [3, Proposition 3.8(a)].

3.5 Symmetric Monoidal Cotraces

We can define a symmetric monoidal cotrace, but it turns out be a trace. We write
[−,−] for the internal hom in a closed symmetric monoidal category (i.e. [Y,−] is the
right adjoint to −⊗ Y ). We also make use of the map µ : X ⊗ [Y, Z] → [Y,X ⊗ Z],
which is an isomorphism if X or Y is dualizable (cf. Proposition 3).

Definition 15. Let (C ,⊗, I) be a closed symmetric monoidal category and (M,M∗)
a dual pair. The cotrace of a map f : [M,Q] → [M,P ] is the composite:

Q ∼= [I,Q] [M∗ ⊗M,Q] [M∗, [M,Q]] [M∗, [M,P ]]

[M∗ ⊗M,P ] [M ⊗M∗, P ] [I, P ] ∼= P

ε∗ t
∼=

f∗

t
∼=

s∗

∼=
η∗

This is similar to the bicategorical cotrace (Definition 11), but no coshadow is
needed since there are not two different internal hom functors.

Proposition 13. Let M be a dualizable object in a symmetric monoidal category,
and let f : [M,Q] → [M,P ]. Then cotr(f) = tr(f̃), where M∗ := [M, I] and f̃ is the
unique map making the following commute:

Q⊗M∗ [M,Q]

M∗ ⊗ P P ⊗M∗ [M,P ]

f̃

µ

∼=

f

s

∼=
µ

∼=

Proof. In the diagram of Figure 3.8, the left-hand side is tr(f̃) and the right-hand side
is cotr(f). As in a closed bicategory, if M is dualizable its dual is isomorphic to [M, I]
(see Proposition 4), so we take M∗ to be [M, I], with coevaluation and evaluation

η : I [M,M ] M ⊗ [M, I]l µ−1

∼= and ε : [M, I]⊗M
ev−→ I.
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We let M∗∗ be [M∗, I] and define the coevaluation η′ and evaluation ε′ similarly. To
verify that a subdiagram of Figure 3.8 commutes (if it’s not because of something
straightforward like properties of symmetric monoidal categories or naturality of µ),
the simplest approach is, as usual, to take transposes of both sides until no hom
objects remain in the target.

Q

Q⊗ I Q⊗ [I, I] [I,Q]

Q⊗M∗ ⊗M∗∗ Q⊗ [M∗, [M, I]] Q⊗ [M∗ ⊗M, I] [M∗ ⊗M,Q]

[M,Q]⊗M∗∗ [M∗, [M,Q]]

[M,P ]⊗M∗∗ [M∗, [M,P ]]

M∗ ⊗ P ⊗M∗∗ P ⊗M∗ ⊗M∗∗ P ⊗ [M∗, [M, I]] P ⊗ [M∗ ⊗M, I] [M∗ ⊗M,P ]

M∗∗ ⊗M∗ ⊗ P P ⊗M∗∗ ⊗M∗ P ⊗ [M, [M∗, I]] P ⊗ [M ⊗M∗, I] [M ⊗M∗, P ]

I ⊗ P P ⊗ I P ⊗ [I, I] [I, P ]

P

r−1

∼=
r

∼=

1⊗ r

∼=
µ

∼=

1⊗ η′

1⊗ µ
∼=

1⊗ t−1

∼=

1⊗ ε∗

µ
∼=

ε∗

µ⊗ 1

∼=

µ
∼=

t∼=

f̃ ⊗ 1

s⊗ 1
∼=

µ⊗ 1 ∼=

f ⊗ 1

µ
∼=

f∗

s ∼=

s
∼=

1⊗ s ∼=

1⊗ µ
∼=

1⊗ t−1

∼=
µ
∼=

t−1∼=

1⊗ µ
∼=

1⊗ t−1

∼=

1⊗ s∗∼=

µ
∼=

s∗∼=

ε′ ⊗ 1

s
∼=

1⊗ ε′

1⊗ r
∼=

1⊗ η∗

µ
∼=

η∗

l

∼=
r

∼=
r−1

∼=

Figure 3.8: Diagram for Proposition 13

In a bicategory, however, traces and cotraces truly are different, for the simple rea-
son that shadows and coshadows are different; Hochschild homology and cohomology,
for example, are not the same thing.
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Chapter 4 Interplay Between Traces and Cotraces

The original motivation for our study of cotraces was [9], in which both traces and co-
traces arise and interact with each other. This interaction is mediated by a “pairing”
map from a shadow and coshadow to a second shadow.

Example 17. IfM andN are (R,R)-bimodules, we have ρ : HH0(R,M)⊗HH0(R,N) →
HH0(R,M ⊗R N) taking m⊗ [n] to [m⊗ n]. In fact, there is a pairing HHn(R,M)⊗
HHn(R,N) → HH0(R,M ⊗R N) for any n ≥ 0.

The main result of [9], Proposition 4.5.4, is a relation between traces and cotraces.
In the case that n = 0, it takes the following form, where R is a commutative ring,
M is an R-module considered as an (R,R)-bimodule, and F is a finitely generated
projective right R-module viewed as an (S,R)-bimodule, where S := HomR(F, F ):

HH0(R,M)
⊗HH0(S, S)

HH0(S,HomR(F, F ⊗R M))
⊗HH0(S, S)

HH0(R,R)
⊗HH0(R,R)

HH0(S, S) HH0(R,R)

HH0(R,R)

1⊗trcotr⊗1

ρ ρ

tr

(4.1)

If M = R, this reduces to the diagram of (1.1). Symbolically, this asserts that if
m ∈ HH0(R,M) and [φ] ∈ HH0(S, S), then

tr(ρ(cotr(m), [φ])) = ρ(m, tr([φ])),

which looks like a kind of “adjointness” between trace and cotrace. The cotrace takes
m ∈ HH0(R,M) to the homomorphism x 7→ x⊗m in HH0(S,HomR(F, F ⊗R M)).

More generally, suppose that we have shadows ⟨⟨−⟩⟩ and ⟨⟨−⟩⟩ and a coshadow ⟨⟨−⟨⟨,
all taking values in a common monoidal category. Suppose also that there are maps

ρM,N : ⟨⟨M⟨⟨ ⊗ ⟨⟨N⟩⟩ → ⟨⟨M ⊙N⟩⟩

which are natural inM andN . If ρ is appropriately compatible with the isomorphisms
θ for the coshadow and shadows, then cotraces with respect to ⟨⟨−⟨⟨ and traces with
respect to ⟨⟨−⟩⟩ satisfy the same sort of adjointness that Lipman’s traces and cotraces
do. We record the necessary compatibility in the following definition.
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Definition 16. A pairing ρ between a coshadow ⟨⟨−⟨⟨, a shadow ⟨⟨−⟩⟩, and another
shadow ⟨⟨−⟩⟩, all taking values in the same monoidal category, is a family of maps
ρM,N : ⟨⟨M⟨⟨ ⊗ ⟨⟨N⟩⟩ → ⟨⟨M ⊙N⟩⟩ which are natural in M and N and such that the
following diagram commutes whenever it makes sense:

⟨⟨Z ◁ X⟨⟨ ⊗ ⟨⟨Y ⊙X⟩⟩ ⟨⟨X ▷ Z⟨⟨ ⊗ ⟨⟨X ⊙ Y ⟩⟩

⟨⟨(Z ◁ X)⊙ Y ⊙X⟩⟩ ⟨⟨(X ▷ Z)⊙X ⊙ Y ⟩⟩

⟨⟨X ⊙ (Z ◁ X)⊙ Y ⟩⟩ ⟨⟨Z ⊙ Y ⟩⟩

θ⊗θ
∼=

ρ ρ

θ ∼= ⟨⟨ ev⊙1⟩⟩∼=

⟨⟨ ev⊙1⟩⟩

With HH0 as the coshadow and HH0 playing the role of both shadows, the maps
of Example 17 form a pairing. We are finally in a position to state and prove a precise
version of Theorem 1.

Theorem 3. Let T be a monoidal category and B a closed bicategory with shadow
functors ⟨⟨−⟩⟩ and ⟨⟨−⟩⟩ and coshadow ⟨⟨−⟨⟨, all with target T. Suppose also that there
is a pairing ρ : ⟨⟨−⟨⟨ ⊗ ⟨⟨−⟩⟩ → ⟨⟨− ⊙ −⟩⟩. Let F and H be right dualizable 1-cells in B,
and let ξ : Q⊙ F → F ⊙ P , γ : F ▷M → N ◁ F , ζ : N ⊙Q⊙ F ⊙H → F ⊙H ⊙ Z,
and δ : M ⊙ P ⊙H → H ⊙ Z be 2-cells in B such that the following commutes:

F ⊙ (F ▷M)⊙Q⊙ F ⊙H F ⊙ (N ◁ F )⊙Q⊙ F ⊙H

F ⊙ (F ▷M)⊙ F ⊙ P ⊙H N ⊙Q⊙ F ⊙H

F ⊙M ⊙ P ⊙H F ⊙H ⊙ Z

1⊙γ⊙13

12⊙ξ⊙1 ev⊙13

1⊙ev⊙12 ζ

1⊙δ

Then the following commutes:

⟨⟨M⟨⟨ ⊗ ⟨⟨Q⟩⟩

⟨⟨N⟨⟨ ⊗ ⟨⟨Q⟩⟩ ⟨⟨M⟨⟨ ⊗ ⟨⟨P⟩⟩

⟨⟨N ⊗Q⟩⟩ ⟨⟨M ⊙ P⟩⟩

⟨⟨Z⟩⟩

cotrF (γ)⊗1 1⊗trF (ξ)

ρ ρ

trF⊙H(ζ) trH(δ)

Proof. In the diagram in Figure 4.1, the left-hand side is trH(δ) ◦ ρ ◦ (1 ⊗ trF (ξ))
and the right-hand side is trF⊙H(ζ) ◦ ρ ◦ (cotrF (γ) ⊗ 1). We follow the convention
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discussed at the start of Section 3.2, omitting the symbol ⊙. Every unlabeled square
commutes because of naturality of ρ, θ, or ev or functoriality of −⊙− or −⊗−.

The situation in which Lipman’s result arises is as follows. If we let Q, P , and
H be unit 1-cells, and let Z = M , ξ = idF , and δ = idM , then the hypothesis of
Theorem 3 reduces to the following:

F ⊙ (F ▷M)⊙ F F ⊙ (N ◁ F )⊙ F

F ⊙M N ⊙ F

1⊙γ⊙1

1⊙ev ev⊙1

ζ

For an example of a collection of objects and maps making this diagram commute,
start with any 1-cells F : S 7→ R and M : R 7→ R (with F right dualizable), and let
N = F ▷ (F ⊙M). Then let ζ be ev : (F ▷ (F ⊙M))⊙ F → F ⊙M and let

γ : F ▷M → (F ▷ (F ⊙M)) ◁ F

be the adjoint of µ : F ⊙ (F ▷ M) → F ▷ (F ⊙M). The hypothesis of Theorem 3 is
satisfied since the following diagram commutes:

F ⊙ (F ▷M)⊙ F F ⊙ ((F ▷ (F ⊙M)) ◁ F )⊙ F

F ⊙M (F ▷ (F ⊙M))⊙ F

1⊙µ⊙1

µ⊙1
1⊙ev ev⊙1

ev

Example 18. Start with a ring R, a finitely generated projective right R-module
F , and an (R,R)-bimodule M . Using HH0 and HH0 as the (co)shadows, the pairing
of Example 17, and the setup above (N = F ▷ (F ⊙ M), ζ = ev, γ = µ, ζ = idF ,
δ = idM), Theorem 3 recovers (4.1), which is [9, Proposition 4.5.4] in the case n = 0.
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⟨⟨M
⟨⟨
⊗

⟨⟨P
⟩⟩

⟨⟨M
P
⟩⟩

⟨⟨M
P
H
H

∗ ⟩⟩
⟨⟨H

Z
H

∗ ⟩⟩
⟨⟨H

∗ H
Z
⟩⟩

⟨⟨Z
⟩⟩

⟨⟨F
∗ F

M
P
H
H
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H
Z
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▷
M
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P
F

∗ ⟩⟩

⟨⟨F
(F

▷
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F
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Figure 4.1: Diagram for Theorem 3
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Chapter 5 Future Work

The program of bicategorical shadows and traces aims to unify seemingly disparate
pieces of mathematics underneath a common conceptual framework. By adding no-
tions of coshadow and cotrace to this machinery, we have drawn Lipman’s residues
and (co)traces into this framework and opened the road to incorporating Ganter and
Kapranov’s 2-characters in a way that parallels the application of traces to ordi-
nary group representations. In this section, we give an overview of several promising
directions for future work along these lines.

5.1 2-Representations and 2-Characters

With Travis Wheeler, we aim to describe Ganter’s and Kapranov’s categorical char-
acter as a bicategorical cotrace. Having done so, we expect to be able to deduce
their main result, which generalizes the induction formula for characters, from formal
properties of cotraces (though we suspect that this may actually require a theory of
tricategorical coshadows and cotraces, rather than bicategorical traces and cotraces).

Conjecture 1. The 2-character induction formula of [3] is an example of properties
of the cotrace.

A further outcome of identifying the right bicategorical setting for 2-representations
is that we can compute traces of 2-representations, with the hope that these traces
will recover the same 2-character which is an example of a cotrace:

Conjecture 2. The 2-character can be computed with either a trace or a cotrace as
a consequence of a version of Theorem 3.

5.2 Understanding Coshadows

Hess and Rasekh established an equivalence between functors out of the Hochschild
homology of a bicategory and shadows on that bicategory [6]. We plan to investigate
whether there is an analogous equivalence between functors out of the Hochschild
cohomology of a closed bicategory and coshadows on that bicategory.

5.3 Residues and Traces of Differential Forms

Lipman [9] studied residues and traces of differential forms, translating ideas from al-
gebraic geometry into commutative algebra through the use of Hochschild (co)homology.
Having reinterpreted Lipman’s (co)traces as bicategorical (co)traces, We would like to
reverse-engineer this translation in order to apply these trace methods to the original
algebro-geometric situation.
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5.4 Fixed Point Theory

Bicategorical traces have applications to the study of fixed points, such as the Lefschetz-
Hopf theorem and analogues for the Reidemeister trace. We would like to investigate
whether cotraces have similar applications to fixed point theory.

Copyright© Justin A. Barhite, 2023.
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