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ABSTRACT OF DISSERTATION

q-Polymatroids and their application to rank-metric codes.

Matroid theory was first introduced to generalize the notion of linear independence.
Since its introduction, the theory has found many applications in various areas of
mathematics including coding theory. In recent years, q-matroids, the q-analogue of
matroids, were reintroduced and found to be closely related to the theory of Fqm-linear
rank metric codes. This relation was then generalized to q-polymatroids and Fq-linear
rank metric codes. This dissertation aims at developing the theory of q-(poly)matroid
and its relation to the theory of rank metric codes.

In a first part, we recall and establish preliminary results for both q-polymatroids
and q-matroids. We then describe how linear rank metric codes induce q-polymatroids
and show how some invariants of rank-metric codes are fully determined by the in-
duced q-polymatroid. Furthermore, we show that not all q-polymatroids arise from
rank metric codes which gives rise to the class of non-representable q-polymatroids.
We then define the notion of independent space for q-polymatroids and show that
together with their rank values, those independents spaces fully determine the q-
polymatroid.

Next, we restrict ourselves to the study of q-matroids. We start by studying the
characteristic polynomial of q-matroids by relating it to the characteristic polyno-
mial of the projectivazition matroid. We establish a deletion/contraction formula for
the characteristic polynomial of q-matroids and prove a q-analogue of the Critical
Theorem.

Afterwards, we study the direct-sum of q-matroids. We show the cyclic flats of the
direct sum can be nicely characterized in terms of the cyclic flats of each summands.
Using this characterization, we show all q-matroids can be uniquely decomposed (up
to equivalence) into the direct sum of irreducible components. We furthermore show
that unlike classical matroids, the direct sum of two representable q-matroids over
some fixed field is not necessarily representable over that same field.

Finally we consider q-matroids from a category theory perspective to study the
theoretical similarities and differences between classical matroids and q-matroids. We
show the direct sum of q-matroids is a coproduct in only one of those categories which
stands in contrast to categories of classical matroids. We conclude by showing the



existence of a functor from categories of q-matroids to categories of matroids which
provide an alternative method to study the former categories.
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Chapter 1 Introduction

Rank-metric codes – originally introduced by Delsarte [18] and later independently
re-discovered by Gabidulin [21] as well as Roth [43] – have been in the focus of
algebraic coding theory throughout the last 15 years thanks to their suitability for
communication networks. Their coding-theoretic properties have been studied in
detail, and various constructions of optimal codes, such as MRD codes, have been
found. For details we refer to the vast literature.

In this dissertation we focus on the algebraic and combinatorial aspects of rank-
metric codes and study them with the aid of associated q-polymatroids. We will focus
on linear rank-metric codes, that is, subspaces of some matrix space Fn×m

q , endowed
with the rank metric. On various occasions we will consider Fqm-linear rank-metric
codes, that is, codes that turn into Fqm-subspaces of Fn

qm under a suitable identification
of Fn×m

q with Fn
qm . Not surprisingly, the algebraic and combinatorial properties of a

rank-metric code depend on the ‘degree of linearity’.
In [36] Jurrius/Pellikaan introduce q-matroids and show that Fqm-linear rank-

metric codes give rise to q-matroids, thus providing a vast variety of examples of q-
matroids. As the terminology indicates, q-matroids form the q-analogue of matroids:
instead of subsets of a finite set one considers subspaces of a finite-dimensional vec-
tor space over a finite field. Furthermore, similarly to classical matroids there are
various ways to define q-matroids, called cryptomorphisms. A large collection of
cryptomorphisms is presented in [11]. In [11] (and the precursor [10]), Byrne and
co-authors considerably extend the list of cryptomorphic definitions. As has been
shown in [10, 11, 36], the theory of q-matroids nicely parallels the theory of matroids.
It should be noted that q-matroids appeared already much earlier in the Ph.D. thesis
[14] but remained unnoticed in the coding community until [36].

While Fqm-linear rank-metric codes give rise to q-matroids, this is not the case for
Fq-linear rank-metric codes. However, as shown by Gorla and co-authors in [29] as
well as Shiromoto [44] and Ghorpade/Johnson [22], Fq-linear rank-metric codes induce
q-polymatroids. This means that the rank function attains rational values. As for
classical polymatroids this seemingly slight generality in the rank function causes q-
polymatroids to be much less rigid than q-matroids. An even further generalization
appears in [7], where Britz and co-authors study q-demimatroids associated with
rank-metric codes.

Since their reintroduction, much progress was made in the theory of q-(poly)matroids,
see [9, 13, 26, 23, 24, 27, 25, 33, 34] amongst others. This dissertation aims to develop
the combinatorial and algebraic theory of q-(poly)matroids and establish new relation
with the theory of rank metric codes. The content of the dissertation is separated in
five chapters as described below.

In Chapter 2, we introduce the notion of q-polymatroids and provide preliminary
results regarding the combinatorial structure of those objects. We then recall how
rank metric codes induce q-polymatroids and study their relation. We for example
show that the generalized weights of a code are fully determined by the flats of the in-
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duced q-polymatroid and that deletion and contraction of q-polymatroids correspond
to puncturing and shortening of rank-metric codes. Finally we consider the question
of representability of q-polymatroids. That is, a q-polymatroid is representable if it
is induced by a rank metric code. We will show several example of q-polymatroids
that are not representable.

In Chapter 3, we introduce the notion of independent space of q-polymatroids
and study their properties. We show that our notion non-trivially generalizes the
notion of independent space for q-matroids. We furthermore prove the collection of
independent spaces of a q-polymatroid satisfies the same axiomatic properties than
the independent spaces of q-matroids. However, unlike the latter, we show the inde-
pendent spaces of q-polymatroids fully determine the q-polymatroid, if the rank value
of those spaces is also considered. This characterization provides a cryptomorphic
definition for q-polymatroids. We conclude the chapter with a study of the spanning
spaces of q-polymatroids and how their properties differ from those of spanning spaces
of q-matroids.

In the remaining of the chapters, we restrict ourselves to the study of q-matroids.
In Chapter 4 we study the relation between q-matroids and classical matroids via
the intermediate of the projectivization matroid, introduced in [34]. The latter is a
matroid defined on the projective space of the groundspace of the q-matroid together
with a suitable rank function. A q-matroids and its projectivization matroid share
a similar flat structure. Therefore we can use well-known results from classical ma-
troid theory to study invariants of q-matroids that depend only on the flat structure
such as the characteristic polynomial of q-matroids. We use this to establish a dele-
tion/contraction formula for the characteristic polynomial of q-matroids and prove
a q-analogue of the Critical Theorem. The latter establishes a further connection
between Fqm-linear rank metric codes and q-matroids. In fact, it shows that given a
rank metric code, one can determine the number of t-tuples of codewords with given
support by evaluating the characteristic polynomial of a contraction of the q-matroid.

In Chapter 5, we investigate properties of the direct-sum of q-matroids, an oper-
ation between q-matroids established in [13]. We first study the rank function of the
direct-sum and provide several equivalent ways to define it. Furthermore we show
that the cyclic flats of the direct sum can be nicely characterized in terms of the
cyclic flats of each summands. This in turn, allows us to show that every q-matroid
can be uniquely decomposed (up to equivalence) into the direct sum of irreducible
q-matroids. The latter are precisely the q-matroids that can’t be written as the direct
sum of two “smaller” q-matroids. We conclude the chapter by studying the repre-
sentability of the direct sum. For classical matroids, it is known that the direct sum
of two representable matroids over a fixed field is also representable over that same
field. However, this does not hold true for q-matroids. We provide examples of this
fact by using the notion of paving q-matroids.

Finally in Chapter 6 we introduce several types of maps between q-matroids, such
as q-weak and q-strong maps. The former type of map preserves the rank structure of
q-matroids whereas the latter preserves the flat structure. We use those maps to study
q-matroids from a category theory approach. This approach allows to bring forward
the similarities and differences between classical matroids and their q-analogue. We
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show a coproduct always exist in only one of the categories introduced. The category
in question is that of q-matroids where the morphisms are linear q-weak maps where
the coproduct is the the direct sum introduced in [13]. This holds in contrast to
categories of matroids as a coproduct also exist when the maps between matroids are
strong maps. Finally, we show the projectivization map is a functor from categories of
q-matroids to categories of matroids. This functor provides an alternative approach to
study maps between q-matroids. In fact it allows us to show an equivalent definition
for q-strong maps and show that q-strong maps are also q-weak.

Notation: q is a prime power, F = Fq is the finite field of order q. E is a
finite dimensional vector space over F and L(E) is the collection of subspaces of
E. A k-dimensional subspace is sometimes referred to as a k-space. The subspace
generated by x1, . . . , xt ∈ E is denoted by ⟨x1, . . . xt⟩. We write U ≤ V if U is a
subspace of V and U ⪇ V if U is a proper subspace of V . Given G ∈ Fn×m, we
use rowsp(G), colsp(G) to denote the row space and column space of G respectively.
Furthermore we use the abbreviation RREF for reduced row echelon form. The
standard basis vectors of Fn are denoted by e1, . . . , en.

Let [n] = {1, . . . , n} and for some finite set S we denote its collection of subsets
by 2S. Finally q-matroid are denoted by script letter, i. e. M,N whereas classical
matroids are denoted by capital letters, i. e. M,N .

Copyright© Benjamin Jany, 2023.
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Chapter 2 An introduction to q-(poly)Matroids and their application.

In this chapter, we first introduce the notion q-polymatroids and q-matroids and es-
tablish some basic properties. We then introduce and study several classes of spaces
of q-(poly)matroids. Afterwards, we proceed to relate the theory of q-polymatroids
to the theory of rank-metric codes. We show how rank-metric codes induce q-
polymatroids and how the two theory relate to one another. Finally we discuss the
notion of representable q-polymatroids and show that not all q-polymatroids arise
from rank-metric codes. Results from this chapter also appear in [24] and [27].

2.1 Preliminaries on q-Polymatroids.

q-Polymatroids can be seen as the q-analogue of polymatroids and as a generalization
of q-matroids [36]. The following definition is from [29, Def. 4.1] of Gorla et al., with
the sole difference that we require rank functions to assume rational values.

Definition 2.1.1. A q-polymatroid (q-PM) on E is a pair (E, ρ), where ρ : L(E) −→
Q≥0 satisfies

(R1) Dimension-Boundedness: 0 ≤ ρ(V ) ≤ dimV for all V ∈ L(E);

(R2) Monotonicity: V ≤ W =⇒ ρ(V ) ≤ ρ(W ) for all V,W ∈ L(E);

(R3) Submodularity: ρ(V +W ) + ρ(V ∩W ) ≤ ρ(V ) + ρ(W ) for all V,W ∈ L(E).

The function ρ is called a rank-function, for all V ≤ E the value ρ(V ) is called the
rank of V and the value ρ(E) is called the rank of the q-PM.

q-PM is a generalization of the notion of q-matroid as defined in [36]. In fact, the
latter can be defined in the following way.

Definition 2.1.2. A q-PM M = (E, ρ) for which ρ(V ) ∈ N0 for all V ∈ L(E) is
called a q-matroid.

Because of the above, all notions introduced in this section apply to both q-
matroids and q-polymatroids. Later on we will restrict ourselves to the study of
q-matroids which have a more rigid structure then that of q-PM. The following addi-
tional notions for q-PMs will be useful.

Definition 2.1.3. Let M = (E, ρ) be a q-PM. A number µ ∈ Q>0 is a denominator
of ρ (and M) if µρ(V ) ∈ N0 for all V ∈ L(E). The smallest denominator is called the
principal denominator. We declare 1 the principal denominator of the trivial q-PM.

Let us relate our definition to the literature. First of all, a q-matroid in the sense
of Jurrius/ Pellikaan [36] is exactly a q-matroid as defined above. Next, as already
mentioned, our definition coincides with that in [29, Def. 4.1] by Gorla et al. except

4



that our rank functions take rational values. As we will see in Section 2.3, this is
indeed the case for the q-PMs induced by rank-metric codes. Finally, for any r ∈ N
a (q, r)-polymatroid as in [44, Def. 2] by Shiromoto can be turned into a q-PM with
denominator r by dividing the rank function by r. Conversely, given a q-PM (E, ρ)
with denominator µ, then (E, µρ) is a (q, ⌈µ⌉)-polymatroid in the sense of [44]. As we
will see in 3, denominators will play a crucial role in defining the independent spaces
of q-PMs.

Remark 2.1.4. (1) Every denominator µ of a q-PM (E, ρ) satisfies µ ≥ 1. Indeed,
by (R1) ρ(V ) ≤ 1 for all 1-spaces V , and by (R3) ρ is the zero map if and only
if ρ(V ) = 0 for all 1-spaces V .

(2) Let (E, ρ) be a non-trivial q-PM. For V ∈ L(E) write ρ(V ) = αV /βV with
αV , βV ∈ N relatively prime. Then the principal denominator is given by

µ =
lcm{βV | V ∈ L(E)}
gcd{αV | V ∈ L(E)}

,

and µN is the set of all denominators of (E, ρ).

We now define the notion of loop and loopspace for q-polymatroids. They will be
used throughout the dissertation.

Definition 2.1.5. Let M = (E, ρ) be a q-matroid. A 1-dimensional space V ≤ E is
a loop of M if ρ(V ) = 0.

Lemma-Definition 2.1.6. [36, Lemma 11] Let M = (E, ρ) be a q-matroid,
{⟨v1⟩, . . . , ⟨vs⟩} be the collection of loops of M and L =

∑s
i=1⟨vi⟩. Then ρ(L) = 0.

The space L the loop space of M.

The following q-matroids will occur throughout the dissertation. They can also
be found at [36, Ex. 4]. One easily verifies that the map ρ is indeed a rank function.

Example 2.1.7. Let E a vector space over Fq and dimE = n. Fix k ∈ [n] and define
ρ(V ) = min{k, dimV } for V ∈ L(E). Then (E, ρ) is a q-matroid. It is called the
uniform q-matroid on E of rank k and denoted by Uk,n(q), or Uk(E). Furthermore
the q-matroid U0,n(q) is called the trivial q-matroid and Un,n(q) is called the free
q-matroid.

Some of the basic properties for q-matroids derived in [36, Sec. 3] hold true for
q-PMs as well. We spell out the following ones, which we will need later on. The
proofs are identical to the ones in [36, Prop. 6 and 7].

Proposition 2.1.8. Let (E, ρ) be a q-PM.
(a) Let V,W ∈ L(E). Suppose ρ(V + ⟨x⟩) = ρ(V ) for all x ∈ W . Then ρ(V +W ) =

ρ(V ).

(b) Let V ∈ L(E) and X, Y ∈ L(E) be 1-spaces such that ρ(V ) = ρ(V + X) =
ρ(V + Y ). Then ρ(V +X + Y ) = ρ(V ).

5



The following notion of equivalence is from [29, Def. 4.4].

Definition 2.1.9. Two q-PMs Mi = (Ei, ρi), i = 1, 2, are equivalent, denoted by
M1 ≈ M2, if there exists an F-isomorphism α ∈ HomF(E1, E2) such that ρ2(α(V )) =
ρ1(V ) for all V ∈ L(E1).

At this point we want to briefly discuss a more general notion of equivalence for
q-PMs.

Remark 2.1.10. Two q-PMs Mi = (Ei, ρi), i = 1, 2, are scaling-equivalent if there
exists an F-isomorphism α ∈ HomF(E1, E2) and a ∈ Q>0 such that ρ2(α(V )) =
aρ1(V ) for all V ∈ L(E1). This notion makes sense for q-PMs because there exist
non-trivial q-PMs that do not attain the upper bound in (R1) non-trivially. We briefly
elaborate. Let us call a q-PM M = (E, ρ) exact if there exists some nonzero space
V̂ ∈ L such that ρ(V̂ ) = dim V̂ . Clearly, a non-trivial q-matroid is exact, but there
exist non-trivial non-exact q-PMs; see Example 2.3.18 in the next section. It follows
immediately from the submodularity in (R3) that a q-PM M = (E, ρ) is exact if and
only if there exists a 1-space V such that ρ(V ) = 1. This implies that any denominator
of an exact q-PM is an integer. One can turn a non-exact q-PM (E, ρ) into an exact
one using scaling-equivalence. Indeed, suppose ρ(V ) < dimV for all V ∈ L(E) \ 0.
Let a = max{ρ(V )/ dimV | V ∈ L(E)\0}. Then a ∈ Q>0 and there exists V̂ ∈ L(E)
such that a = ρ(V̂ )/ dim V̂ . Thus (E, a−1ρ) is an exact q-PM.

We now introduce the dual q-PM. It is a straightforward generalization of duality
of matroids based on the rank function (see, e.g. [39, Prop. 2.1.9]), but requires
more details when replacing set-theoretic complements by orthogonal spaces. Since
we define q-PMs over arbitrary ground spaces, we need to specify a non-degenerate
symmetric bilinear form, and, not surprisingly, the dual rank function depends on the
choice of this form. But as we will see, different forms lead to equivalent dual q-PMs.
This generality is needed in order to discuss deletions and contractions later on. Part
of the following result is from [29, 4.5–4.7] (see also [36, Thm. 42] for q-matroids).

Theorem 2.1.11. Let ⟨· | ·⟩ be a non-degenerate symmetric bilinear form on E. For
V ∈ L(E) define V ⊥ = {w ∈ E | ⟨v |w⟩ = 0 for all v ∈ V }. Let M = (E, ρ) be a
q-PM and set

ρ∗(V ) = dimV + ρ(V ⊥)− ρ(E). (2.1)

Then ρ∗ is a rank function on E and M∗ = (E, ρ∗) is a q-PM. It is called the dual
of M. Furthermore, M∗∗ = M, where M∗∗ = (M∗)∗ is the bidual, and M and M∗

have the same set of denominators. Finally, the equivalence class of M∗ does not
depend on the choice of the non-degenerate symmetric bilinear form. More precisely,
if ⟨⟨· | ·⟩⟩ is another non-degenerate symmetric bilinear form on E and M∗̂ = (E, ρ∗̂)
is the resulting dual q-PM, then M∗̂ ≈ M∗.

Proof. The fact that ρ∗ is a rank function and the identity ρ∗∗ = ρ have been proven in
[29, Thms. 4.6, 4.7]. The statement about the denominators is obvious. It remains to
show the very last statement. Thus, let ⟨⟨· | ·⟩⟩ be another non-degenerate symmetric
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bilinear form on E. For V ∈ L(E) denote by V ⊥ and V ⊥⊥ the orthogonal spaces of V
with respect to ⟨· | ·⟩ and ⟨⟨· | ·⟩⟩, respectively. Let v1, . . . , vℓ be a basis of E and ψ :
E −→ Fℓ be the associated coordinate map. Let Q = (⟨vi |vj⟩), Q̂ = (⟨⟨vi |vj⟩⟩) ∈ Fℓ×ℓ

be the Gram matrices associated to the bilinear forms. Then Q, Q̂ are symmetric
and nonsingular and we have ⟨v |w⟩ = ψ(v)Qψ(w)T and ⟨⟨v |w⟩⟩ = ψ(v)Q̂ψ(w)T for
all v, w ∈ E. Define the automorphism

ϕ : E −→ E, v 7−→ ψ−1(ψ(v)Q̂Q−1). (2.2)

Now we have for any V ∈ L(E) and w ∈ E

w ∈ ϕ(V )⊥ ⇐⇒ ψ(ϕ(v))Qψ(w)T = 0 for all v ∈ V

⇐⇒ ψ(v)Q̂Q−1Qψ(w)T = 0 for all v ∈ V

⇐⇒ w ∈ V ⊥⊥.

Hence V ⊥⊥ = ϕ(V )⊥ and thus ρ∗(ϕ(V )) = ρ∗̂(V ) for all V ∈ L(E). This shows that
M∗ and M∗̂ are equivalent.

The next result has been proven in [29] for q-PMs on Fℓ, endowed with the stan-
dard dot product. Thanks to the just proven invariance of the dual, it generalizes as
follows without the need to specify bilinear forms.

Proposition 2.1.12 ([29, Prop. 4.7]). Let M = (E, ρ) and M̂ = (Ê, ρ̂) be q-PMs.
Then M ≈ M̂ implies M∗ ≈ M̂∗.

Remark 2.1.13. In the q-analogue the dual q-matroid depends on the choice of a
NSBF (see Theorem 2.1.11) and therefore one needs to fix an NSBF in order to
define certain notion related to the dual q-matroid. For example, in classical matroid
theory, a single element set is a coloop of a matroid M if it is a loop in the dual
matroid M∗ (see 4.4 for more details). For q-matroids, the notion of a coloop is not
well-defined, without fixing a choice of NSBF. Indeed, a 1-dimensional subspace ⟨x⟩
would be called a coloop of M if it is a loop of M∗, that is, if ρ∗(⟨x⟩) = 0. Hence we
say a coloop of M w. r. t a choice of NSBF is a one-dimensional vector space ⟨x⟩
such that ρ∗(⟨x⟩) = 0.

Example 2.1.14 ([36, Ex. 47]). It is easy to see that Uk,n(q)
∗ = Un−k,n(q).

We now define deletion and contraction for q-PMs. We will see in 2.3 that deletion
and contraction are closely related to shortening and puncturing of rank-metric codes.

Definition 2.1.15. Let M = (E, ρ) be a q-PM and X ∈ L(E).
(a) Define ρ|X : L(X) −→ Q≥0, W 7−→ ρ(W ). Then M|X := (X, ρ|X) is a q-PM

on X and is called the restriction of M to X.

(b) Fix a non-degenerate symmetric bilinear form ⟨· | ·⟩ on E. The restriction of M
to X⊥ is called the deletion of X from M w.r.t. ⟨· | ·⟩, and the resulting q-PM
(M|X⊥ , ρ|X⊥) is denoted by (M\X)⟨·|·⟩ or simply M\X if the bilinear form is
clear from the context.
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In (a), it is clear that ρ|X satisfies (R1)–(R3) from Definition 2.1.1 and thus is
a rank function. In (b), the deletion (M \ X)⟨·|·⟩ truly depends on ⟨· | ·⟩: different
choices of the bilinear form lead in general to non-equivalent q-PMs. However, for any
bilinear forms ⟨· | ·⟩ and ⟨⟨· | ·⟩⟩ on E with orthogonal spaces V ⊥ and V ⊥⊥, respectively,
we obviously have X⊥ = Y ⊥⊥ for Y = (X⊥)⊥⊥ and thus M|X⊥ = M|Y ⊥⊥ .

We now turn to contractions.

Theorem 2.1.16. Let M = (E, ρ) be a q-PM and X ∈ L(E). Let π : E −→ E/X
be the canonical projection. We define the map

ρE/X : L(E/X) −→ Q≥0, V 7−→ ρ(π−1(V ))− ρ(X).

Then M/X := (E/X, ρE/X) is a q-PM, called the contraction of X from M.

Proof. We have to show that ρE/X satisfies (R1)–(R3).
(R1) Let V ∈ L(E/X). Then X ≤ π−1(V ) and thus the monotonicity of ρ implies
ρE/X(V ) ≥ 0. Next, π−1(V ) = X ⊕A for some A ∈ L(E). Then dimA = dimV and
submodularity of ρ yields ρE/X(V ) = ρ(π−1(V ))− ρ(X) ≤ ρ(A) ≤ dimA = dimV .
(R2) V1 ≤ V2 ≤ E/X implies π−1(V1) ≤ π−1(V2) and therefore ρE/X(V1) ≤ ρE/X(V2).
(R3) Let V, W ≤ E/X. Then π−1(V +W ) = π−1(V ) + π−1(W ) and π−1(V ∩W ) =
π−1(V ) ∩ π−1(W ) and therefore

ρE/X(V +W )+ρE/X(V ∩W ) = ρ
(
π−1(V ) + π−1(W )

)
− ρ(X)

+ ρ
(
π−1(V )∩π−1(W )

)
− ρ(X)

≤ ρ(π−1(V )) + ρ(π−1(W ))− 2ρ(X)

= ρE/X(V ) + ρE/X(W ).

Remark 2.1.17. Deletion and contraction of q-PM generalize the similar operations
defined for q-matroids defined in [36]. In fact if M = (E, ρ) is a q-matroid it is easy
to see by definition that for all V ≤ E, both M/V and M\ V are q-matroids.

We conclude this section by showing that deletion and contraction are mutually
dual in the following sense. Since duality is involved, we need to pay special attention
to the choice of the non-degenerate symmetric bilinear form. For dimX = 1, the
following result also appears in [36, Thm. 60]. However, the proof given there does
not apply if X ≤ X⊥ and yields a weaker form of equivalence between the matroids.
Also in [9, Lem. 12] the result below is proven for a weaker form of equivalence.
Recall from Definition 2.1.9 that in this paper equivalence of q-PMs is based on
linear isomorphisms between the ground spaces.

Theorem 2.1.18. Let M = (E, ρ) be a q-PM and X ∈ L(E). Then

(M\X)∗ ≈ M∗/X and M\X ≈ (M∗/X)∗.

Proof. We will show the first equivalence. The second one follows from from biduality;
see Theorem 2.1.11 and Proposition 2.1.12. We need some preparation. Recall from
Theorem 2.1.11 that the dual of a q-PM depends on the choice of the non-degenerate
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symmetric bilinear form (NSBF) and that different choices lead to equivalent dual
q-PMs. Hence for the first equivalence we need NSBFs on E and on X⊥, the latter
being the ground space of M \ X. Note that if ⟨· | ·⟩ is an NSBF on E, then the
restriction of ⟨· | ·⟩ to the resulting orthogonal X⊥ is in general degenerate. For this
reason we proceed as follows. Choose a subspace Y ∈ L(E) such that X ⊕ Y = E.
Choose NSBFs ⟨· | ·⟩X on X and ⟨· | ·⟩Y on Y and define

⟨x1 + y1 |x2 + y2⟩ := ⟨x1 |x2⟩X + ⟨y1 |y2⟩Y for all x1, x2 ∈ X, y1, y2 ∈ Y.

It is easy to verify that ⟨· | ·⟩ is a NSBF on E. Denoting the resulting orthogonal of a
subspace V ∈ L(E) by V ⊥, we observe X⊥ = Y and thus X⊕X⊥ = E. Furthermore,
for any subspace Z ≤ X⊥ we have

Z⊥⊥ = Z⊥ ∩X⊥, (2.3)

where Z⊥⊥ denotes the orthogonal of Z in X⊥ w.r.t. ⟨· | ·⟩Y . Now we have compatible
NSBFs on E and X⊥ and can turn to the stated equivalence (M\X)∗ ≈ M∗/X.

Note that we have a well-defined isomorphism

ξ : E/X −→ X⊥, v +X 7−→ x̂,

where v = x+ x̂ is the unique decomposition of v into x ∈ X and x̂ ∈ X⊥. We show
that

(ρ∗)E/X(V ) = (ρ|X⊥)∗(ξ(V )) for all V ∈ L(E/X). (2.4)

Let π : E −→ E/X be the canonical projection and V ∈ L(E/X). Then π−1(V ) =
ξ(V )⊕X and thus π−1(V )⊥ = ξ(V )⊥ ∩X⊥. Now we compute

(ρ∗)E/X(V ) = ρ∗(π−1(V ))− ρ∗(X)

= dimπ−1(V ) + ρ(π−1(V )⊥)− ρ(E)−
(
dimX + ρ(X⊥)− ρ(E)

)
= dimπ−1(V )− dimX + ρ(π−1(V )⊥)− ρ(X⊥)

= dim ξ(V ) + ρ(ξ(V )⊥ ∩X⊥)− ρ(X⊥)

= dim ξ(V ) + ρ|X⊥(ξ(V )⊥ ∩X⊥)− ρ|X⊥(X⊥)

= dim ξ(V ) + ρ|X⊥(ξ(V )⊥⊥)− ρ|X⊥(X⊥)

= (ρ|X⊥)∗(ξ(V )),

where the penultimate step follows from (2.3) and the last step is the very definition
of (ρ|X⊥)∗(ξ(V )) for the chosen NSBF on X⊥.

2.2 More properties of q-(poly)matroids.

In this section, we consider different classes of spaces for both q-matroids and q-
polymatroids and study their properties. Many of the results from this section are
generalizations of results from classical matroid theory, (see for example [39]), and
serve as the groundwork results that will be used throughout the dissertation. We
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start by defining the closure operator and flats for q-polymatroids. We then restrict
ourselves to q-matroids and define several other types of spaces. The reason for
restricting ourselves to q-matroids in the latter part of this section, is that most of the
spaces we define have either no existing generalization to q-polymatroids or generalize
non-trivially (as we will see in Chapter 3). For flow of text, we delay examples of q-
polymatroids to the next section and will predominantly use the uniform q-matroids
as examples for this section. Throughout the section, some of the definitions and
results hold only for q-matroids. The reader should therefore pay close attention on
the objects considered in each statement.

2.2.1 The closure operator and flats of q-polymatroids.

We start with by defining the notion of flat and closure for q-polymatroids. As in
(classical) matroid theory, a flat is, by definition, an inclusion-maximal space for a
given rank. Flats naturally come with a closure operator. We derive some basis
properties of the closure operator and flats and will illustrate that – just like for
classical polymatroids – the lattice of flats is not semimodular and (without the
associated rank values) does not fully determine the q-PM. In fact, a q-PM may have
the same flats as a q-matroid without being a q-matroid itself. If otherwise specified,
throughout the section let M = (E, ρ) be a q-PM.

Definition 2.2.1. A space F ∈ L(E) is called a flat of M if

ρ(F + ⟨x⟩) > ρ(F ) for all x ∈ E \ F.

We denote the collection of flats by F(M), FM, or simply F . A flat H is called a
hyperplane if there is no flat strictly between H and E. Furthermore, we define the
closure operator of M as

cl : L(E) −→ L(E), V 7−→
∑

dimX=1
ρ(V+X)=ρ(V )

X.

Clearly, E ∈ F(M), and 0 ∈ F(M) if and only if M has no loops. With the aid
of Proposition 2.1.8(a) we obtain immediately

ρ(V ) = ρ(cl(V )) for all V ∈ L(E). (2.5)

Flats can be regarded as ‘rank-closed’ subspaces.

Proposition 2.2.2. A subspace F ∈ L(E) is a flat of M if and only if F = cl(F ).

Proof. If F = cl(F ) and x ̸∈ F , then ρ(F+⟨x⟩) > ρ(F ). Hence F is a flat. Conversely,
let F be a flat and let x ∈ cl(F ). Then ρ(F + ⟨x⟩) = ρ(F ), and thus x ∈ F . Hence
F = cl(F ).

The closure operator satisfies the following properties. The last statement below
has been proven in [36, Thm. 68].
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Theorem 2.2.3. Let M = (E, ρ) be a q-polymatroid and V,W ∈ L(E). Then

(CL1) V ≤ cl(V ).

(CL2) If V ≤ W , then cl(V ) ≤ cl(W ).

(CL3) cl(V ) = cl(cl(V )).

Furthermore, if M is a q-matroid then the following also holds:

(CL4) MacLane-Steinitz exchange axiom: For all V ∈ L(E) and all vectors x, y ∈
E \ cl(V ) we have ⟨y⟩ ≤ cl(V + ⟨x⟩) ⇐⇒ ⟨x⟩ ≤ cl(V + ⟨y⟩).

Proof. (CL1) is obvious.
(CL2) Let V ≤ W and let x ∈ cl(V ). We want to show that x ∈ cl(W ). This is clear
if x ∈ V , and thus we assume that x ̸∈ V . Choose U ∈ L(E) such that W = V ⊕ U .
Then

ρ(W + ⟨x⟩) = ρ((V ⊕ U) + (V ⊕ ⟨x⟩))
≤ ρ(V ⊕ U) + ρ(V ⊕ ⟨x⟩)− ρ((V ⊕ U) ∩ (V ⊕ ⟨x⟩))
= ρ(W ) + ρ(V )− ρ((V ⊕ U) ∩ (V ⊕ ⟨x⟩))
= ρ(W ) + ρ(V )− ρ(V ) = ρ(W ),

where the penultimate step follows from V ≤ (V ⊕U)∩ (V ⊕⟨x⟩) ≤ V ⊕⟨x⟩ together
with ρ(V ⊕ ⟨x⟩) = ρ(V ). All of this shows that ρ(W + ⟨x⟩) = ρ(W ) and therefore
x ∈ cl(W ).
(CL3) Let V ∈ L(E). Then cl(V ) ≤ cl(cl(V )) follows from (CL1) since cl(V ) is a
subspace. For the converse let x ∈ cl(cl(V )). With the aid of (CL1) and (2.5) we
obtain

ρ(V ) ≤ ρ(V + ⟨x⟩) ≤ ρ(cl(V ) + ⟨x⟩) = ρ(cl(V )) = ρ(V ).

Thus we have equality across, and this shows that x ∈ cl(V ).The proof of the last
statement can be found in [36, Thm. 68]

Flats satisfy the following simple properties. The last statement statement was
shown in [10, Prop. 26, Thm. 28, Cor. 29, Thm. 31] and [11, Thm. 48]

Theorem 2.2.4. Let F be the collection of flats of M = (E, ρM). Then

(F1) E ∈ F .

(F2) If F1, F2 ∈ F , then F1 ∩ F2 ∈ F .

Furthermore, if M is a q-matroid then F also satisfies:

(F3) For all F ∈ F and vectors x ∈ E \ F there exists a unique cover F ′ ∈ F of F
such that ⟨x⟩ ≤ F ′.

Furthermore a collection of spaces F ⊆ L(E) satisfies (F1)-(F3) if and only if there
exist a q-matroid M = (E, ρ) such that FM = F .
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Proof. (F1) is clear from Definition 2.2.1. For (F2) let F1, F2 ∈ F . Then (CL2)
yields cl(F1 ∩ F2) ⊆ cl(F1) ∩ cl(F2) = F1 ∩ F2. Thus F1 ∩ F2 ∈ F thanks to Proposi-
tion 2.2.2.The proof of the last statements can be found in [10, Prop. 26, Thm. 28,
Cor. 29, Thm. 31], [11, Thm. 48].

From (CL2), Proposition 2.2.2, and (F2) we immediately obtain

Proposition 2.2.5. Any V ∈ L(E) satisfies cl(V ) =
⋂

F∈F
V ≤F

F .

In both Theorem 2.2.3 and Theorem 2.2.4, it is important to mention that in
general, q-PM do not satisfy properties (CL4) and (F3). An example of such a q-
PM is given later on in Example 2.3.17. Note, moreover, that for any q-PM M the
collection F of flats forms a lattice under inclusion: the meet and join of two flats
F1, F2 ∈ F are F1 ∧ F2 := F1 ∩ F2 and F1 ∨ F2 := cl(F1 + F2), respectively. We
call this lattice the lattice of flats of a q-PM. The flat cl(0) =

⋂
F∈F F is the unique

minimal element of the lattice F . Furthermore, we say that F2 covers F1 if F1 ⪇ F2

and there exists no F ∈ F such that F1 ⪇ F ⪇ F2. For instance, the hyperplanes of
F are the flats covered by E. Furthermore given a lattice F , a chain of length t is a
sequence of elements F0 ⪇ ··· ⪇ Ft, where Fi ∈ F and such that Fi covers Fi−1 for
all 1 ≤ i ≤ t. We let hF : F −→ Z0 where hF(F ) is the length of a maximal chain
from cl(0) to F , and call hF the height function of the lattice.

For q-matroids, the lattice of flats is a particularly well structured lattice. In fact,
it was shown as was shown in [34] that the lattice of flats is a geometric lattice. We
recall a geometric lattice is a finite, semimodular and atomistic lattice. Because none
of the latter terms will be needed in this dissertation and for conciseness purposes we
refer the reader to [39] for a more detail description of geometric lattices.

Theorem 2.2.6. [11, 34, Thm. 48 /Prop. 21] Let M = (E, ρ) be a q-matroid and F
its lattice of flats. Then F is a geometric lattice. Furthermore for all F ∈ F ,

ρ(F ) = hF(F ),

where hF denotes the height function of F .

Proof. The first statement was proven in [34, Prop. 2.1] whereas the second statement
was proven in [11, Thm. 48].

The above result is in general not true for q-polymatroids. It will furthermore
become especially useful in Chapter 4.

2.2.2 Independent spaces, basis and circuits of q-matroids.

We start by introducing the notion of independent spaces, basis and circuits of a
q-matroid.

Definition 2.2.7. Let M = (E, ρ) be a q-matroid:

• A space I ∈ L(E) is independent if ρ(I) = dim I. We denote the collection of
independent spaces of M by IM or I(M).
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• A space B ∈ L(E) is a basis if ρ(B) = dim(B) = ρ(E). We denote the
collection of basis of M by BM or B(M).

• A space C ∈ L(E) is a circuit if C is dependent and all its proper subspaces
are independent. We denote the collection of circuits of M by CM or C(M).

Similarly to classical matroids, one can fully determine a q-matroid via any col-
lection of spaces defined previously (see [11]). As we will see in Chapter 3, the above
notions can be non-trivially generalized to q-polymatroids as well. However not all the
properties presented in this section hold for q-polymatroids. Consider the following
example.

Example 2.2.8. Let dimE = n, 0 ≤ k ≤ n, and consider the uniform q-matroid
Uk,n(q). Using the rank function of Uk,n(q) its easy to show that

IUk,n(q) = {I ≤ E : dim I ≤ k}
BUk,n(q) = {B ≤ E : dimB = k}
CUk,n(q) = {C ≤ E : dimC = k + 1}

We now summarize some properties regarding those different spaces. First we
introduce the following notation.

Definition 2.2.9. Let M = (E, ρ) be a q-matroid and IM its collection of indepen-
dent spaces. For V ≤ E define

I(V ) := {I ≤ V : I ∈ IM},

B(V ) := {I ≤ V : I ∈ IM and if I ⪇ W ≤ V then W /∈ I}.

The set I(V ) are independent spaces of M contained in V and B(V ) are the bases
of V , i.e. the maximal independent spaces of V w.r.t. inclusion.

We start with the properties of independent spaces that allow to define a crypto-
morphism of q-matroids.

Theorem 2.2.10. [36, Thm 8] Let M = (E, ρ) be a q-matroid and IM its collection
of independent spaces. Then I satisfies:

(I1) IM ̸= ∅.

(I2) If I ≤ J and J ∈ IM then I ∈ IM.

(I3) If I, J ∈ IM and dim I < dim J then there exist x ∈ J \I such that I⊕⟨x⟩ ∈ I.

(I4) Let V,W ≤ E, I ∈ B(V ) and J ∈ B(W ). Then there exist K ∈ B(V +W ) such
that K ≤ I + J .
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Furthermore,
ρ(V ) = max{dim(I) : I ∈ IM(V )} (2.6)

for all V ≤ E. Finally if a collection of spaces I ⊆ L(E) satisfies (I1)-(I4) then
M′ = (E, ρ′), where ρ′(V ) = max{dim(I) : I ∈ I(V )} for all V ≤ E, is a q-matroid
such that IM′ = I.

Finally for circuits we have the following result for which the proof follows directly
from (2.6).

Proposition 2.2.11. Let M = (E, ρ) be a q-matroid and CM its collection of circuits.
Then for all C ∈ CM we have

ρ(C) = dimC − 1.

Of course basis and circuits satisfy many more properties which will not be used
in this dissertation. We therefore refer to [11] or [36] for the interested reader.

2.2.3 Open spaces and cyclic cores of q-matroids.

We define the cyclic core of a subspace. Our definition (2.2.16) is a vector-based
q-analogue of the classical cyclic core in [20, p. 395]. More precisely, our cyclic core
consists of vectors in the ground space E (rather than subspaces) that behave in
the desired way with respect to hyperplanes, and it is not hard to see that the so
defined set is indeed a subspace. Making use of duality and the properties of the
closure operator, we show that the cyclic core of a subspace V is the largest open
space contained in V . This also shows immediately that the cyclic-core operator is
the dual of the closure operator (Corollary 2.2.21) and idempotent (Corollary 2.2.22).
Subspaces that coincide with their cyclic core are called cyclic spaces, and it turns
out that these are exactly the open spaces. A theory of the cyclic core was first
proposed in [2]. Here we develop an alternative approach, which is well suited for our
study of the direct sum of q-matroidsin subsequent sections. We briefly describe the
differences and similarities.

Remark 2.2.12. The main difference between [2] and our work is the starting point
for developing the theory. In [2], the authors start with the definition of cyclic spaces.
This can easily be done without the need of a cyclic-core operator and is identical to
what we call cyclic spaces. Furthermore, the authors define two concepts that may be
regarded as q-analogues of the classical cyclic core: Cyc(V ) is defined as a collection of
certain 1-dimensional subspaces ([2, Def. 2.3]) and the cyclic-core operator cyc(V ) is
the sum of the cyclic subspaces contained in V ([2, Def. 2.8]). The relation between
these two concepts is clarified in [2, Prop. 2.18], which then also shows that our
cyclic-core operator coincides with the one in [2]. Due to the different routes taken,
the authors in [2, Sec. 2.1] establish properties of cyclic spaces in order to study
their cyclic-core operator, while we establish properties of our cyclic-core operator
and obtain those for cyclic spaces as a consequence. Thus, while the results look
almost identical, they arise in different order and their proofs differ in each single
case.
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Notation 2.2.13. Let M = (E, ρ) be a q-matroid and M∗ = (E, ρ∗) be its dual
with respect to ⟨· | ·⟩ We denote by cl( · ) and cl∗( · ) the closure operators of M and
M∗, respectively.

Before getting to the notion of cyclic core, we introduce the notion of open space
of q-matroids, defined in [11].

Definition 2.2.14. Let M = (E, ρ) be a q-matroid. A space O ∈ L(E) is open if O
is a sum of circuits of M. We denote the collection of open spaces of M by OM or
O(M).

We now list some fundamental properties of q-matroids. As one can see from
those properties, open spaces and flats are dual notion, whereas circuits are dual to
hyperplanes. Part (a) and (b) are in [11, Cor. 86, Cor. 79], and (c) is a consequence
of (a) and (b) together with Definition 2.2.7 Part (d) follow from Definition 2.2.14.

Theorem 2.2.15. Let M = (E, ρ) be a q-matroid and M∗ = (E, ρ∗) be its dual
with respect to some NSBF ⟨· | ·⟩. Let V ∈ L(E). Then
(a) V ∈ O(M) ⇐⇒ V ⊥ ∈ F(M∗).

(b) V ∈ C(M) ⇐⇒ V ⊥ ∈ H(M∗).

(c) If V ∈ F(M), then V =
⋂
F≤H

H∈H(M)

H.

(d) O1, O2 ∈ O(M) =⇒ O1 +O2 ∈ O(M)

With the above properties established, we now turn towards the notion of cyclic
core.

Definition 2.2.16. For V ∈ L(E) we define the cyclic core of V as

cyc(V ) = {x ∈ V | ρ(W ) = ρ(V ) for all W ≤ V such that W + ⟨x⟩ = V }.

Note that every subspaceW appearing in the definition has codimension at most 1
in V . In the context of cyclic cores, we use the following notation.

Notation 2.2.17. For V ≤ E define

Hyp(V ) = {W ≤ V : dimW = dimV − 1}.

Clearly, if V is independent then cyc(V ) = 0. The converse is true as well as we
will see in Theorem 2.2.20.

Proposition 2.2.18. Let V ∈ L(E). Then cyc(V ) ∈ L(E), i.e., cyc(V ) is a subspace
of E.

Proof. Clearly 0 ∈ cyc(V ) and cyc(V ) is closed under scalar multiplication. Let
x, y ∈ cyc(V ) and let W ≤ V be such that W + ⟨x+ y⟩ = V . We want to show that
ρ(W ) = ρ(V ). Without loss of generality let W ̸= V . Then dimW = dimV − 1 and
x+ y ̸∈ W . Thus we may assume that x ̸∈ W . Hence W + ⟨x⟩ = V , and using that x
is in cyc(V ) we conclude ρ(W ) = ρ(V ).
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We will show below that cyc(V ) is the largest open space contained in V . We will
do so by making use of duality and the closure operator.

Lemma 2.2.19. Let V ∈ L(E) and C1, . . . , Ct ∈ C(M) be the circuits of M con-
tained in V . Then

cl∗(V ⊥) =
t⋂

i=1

C⊥
i .

Proof. Since cl∗(V ⊥) is a flat in M∗, Theorem 2.2.15 implies

cl∗(V ⊥) =
⋂

cl∗(V ⊥)≤H
H∈H(M∗)

H =
⋂

cl∗(V ⊥)≤C⊥

C∈C(M)

C⊥ =
⋂
C≤V

C∈C(M)

C⊥,

where the last step follows from the fact that C⊥ is a flat of M∗, which implies the
equivalences cl∗(V ⊥) ≤ C⊥ ⇐⇒ V ⊥ ≤ C⊥ ⇐⇒ C ≤ V .

Now we obtain the following description of the cyclic core. Using either the theory
developed in [2] or ours, it is easy to verify that it agrees with the one defined in [2,
Def. 2.8].

Theorem 2.2.20. For V ∈ L(E) we have

cyc(V ) =
∑
C≤V

C∈C(M)

C.

Thus cyc(V ) is an open space and in fact the largest open space contained in V . As
a consequence, V is independent if and only if cyc(V ) = 0.

Proof. Let C1, . . . , Ct ∈ C(M) be the circuits of M contained in V . We have to show
that cyc(V ) =

∑t
i=1Ci. From Lemma 2.2.19 we know that cl∗(V ⊥) = ∩t

i=1C
⊥
i , and

thus (2.5) implies

ρ∗(V ⊥) = ρ∗
( t⋂

i=1

C⊥
i

)
. (2.7)

We now turn to the stated identity.
“⊆” Let x ∈ cyc(V ). Let W ≤ V be such that dimW = dimV −1 and W + ⟨x⟩ = V .
Then ρ(W ) = ρ(V ) and thus

ρ∗(W⊥) = dimW⊥ + ρ(W )− ρ(E) = dim(V ⊥) + 1 + ρ(V )− ρ(E) = ρ∗(V ⊥) + 1.

Thus ρ∗(W⊥) > ρ∗
(⋂t

i=1C
⊥
i

)
, which in turn implies that W⊥ is not a subspace

of
⋂t

i=1C
⊥
i . Hence

∑t
i=1Ci ̸≤ W . Since this is true for every W ∈ Hyp(V ) not

containing x, we conclude that x ∈
∑t

i=1Ci.
“⊇” It suffices to show that each Ci is in cyc(V ). Let x ∈ Ci. We show that
ρ(W ) = ρ(V ) for allW ∈ Hyp(V ) such thatW+⟨x⟩ = V . Choose such a subspaceW .
Then clearly x ̸∈ W and thus Ci ̸≤ W . Using the containment Ci ≤ V we obtain
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cl∗(V ⊥) ≤ cl∗(C⊥
i ) = C⊥

i and cl∗(W⊥) ̸≤ C⊥
i . This implies cl∗(V ⊥) ⪇ cl∗(W⊥) and

thus
ρ∗(V ⊥) = ρ∗(cl∗(V ⊥)) < ρ∗(cl∗(W⊥)) = ρ∗(W⊥).

Since dimV ⊥ + 1 = dimW⊥, submodularity of ρ∗ yields ρ∗(W⊥) ≤ ρ∗(V ⊥) + 1. All
of this leads to ρ∗(W⊥) = ρ∗(V ⊥) + 1. Now we compute

ρ(V ) = dimV + ρ∗(V ⊥)− ρ∗(E) = dimV + ρ∗(W⊥)− 1− ρ∗(E)

= dimW + ρ∗(W⊥)− ρ∗(E) = ρ(W ),

as desired. All of this proves that x ∈ cyc(V ) and thus
∑t

i=1Ci ≤ cyc(V ). Finally,
cyc(V ) = 0 if and only if V contains no circuits, which means that V is independent.

The cyclic-core operator is dual to the closure operator in the following sense.
This also appears in [2, Lem. 2.23].

Corollary 2.2.21. Let V ∈ L(E). Then cyc(V )⊥ = cl∗(V ⊥).

Proof. Let C1, . . . , Ct ∈ C(M) be the circuits contained in V . With the aid of

Lemma 2.2.19 and Theorem 2.2.20 we compute cl∗(V ⊥) =
⋂t

i=1C
⊥
i =

(∑t
i=1Ci

)⊥
=

cyc(V )⊥.

The previous results imply that open spaces of M form a lattice (O(M), <,∧,∨)
with V ∧W = cyc(V ∩W ) and V ∨W = V +W . It is the dual of the lattice of flats
of M∗; for the latter see [10, Thm. 3.10 and 3.13]. The following is immediate with
Theorem 2.2.20 or Corollary 2.2.21; see also [2, Thm. 2.10].

Corollary 2.2.22. Let V,W ∈ L(E). Then
(a) V ≤ W =⇒ cyc(V ) ≤ cyc(W ).

(b) cyc(cyc(V )) = cyc(V ).

In the context of the cyclic core, it is natural to cast the following definition.

Definition 2.2.23. A subspace V ∈ L(E) is cyclic if cyc(V ) = V .

Theorem 2.2.20 and Definition 2.2.16 show that any V ∈ L(E) satisfies

V is open ⇐⇒ V is cyclic ⇐⇒ ρ(W ) = ρ(V ) for all W ∈ Hyp(V ). (2.8)

We will use “open” and “cyclic” interchangeably.
Dualizing the identity ρ(V ) = ρ(cl(V )) provides us with part (a) of the next result;

see also [2, Lem. 2.16 and 2.17].

Proposition 2.2.24. Let V ∈ L(E).
(a) dimV − ρ(V ) = dim cyc(V )− ρ(cyc(V )).

(b) Let V = cyc(V ) ⊕W . Then ρ(V ) = ρ(cyc(V )) + dimW and dimW = ρ(W ),
i.e., W is independent.
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Proof. (a) follows from

dimV ⊥ + ρ(V )− ρ(E) = ρ∗(V ⊥) = ρ∗(cl∗(V ⊥)) = ρ∗(cyc(V )⊥)

= dim cyc(V )⊥ + ρ(cyc(V ))− ρ(E).

(b) The first part is a consequence of (a) because dimW = dimV −dim cyc(V ). Now
submodularity implies ρ(cyc(V )) + dimW = ρ(V ) ≤ ρ(cyc(V )) + ρ(W ), and thus
ρ(W ) = dimW .

2.2.4 Cyclic flats of q-matroids.

We turn to the notion of cyclic flats, which are simply flats that are also cyclic spaces.
Thanks to the closure operator and cyclic-core operator, the collection of cyclic flats
turns into a lattice. The main result of this section states that the collection of cyclic
flats along with their rank values uniquely determine the q-matroid . This section is
the relatively standard q-analogue of the theory of cyclic flats for matroids as can be
found in [4] or [20, Sec. 2.4]. The first two results appear also, with slightly different
proofs, in [2, Sec. 2.2]. Thereafter we take a different route than [2] by focusing on
the rank function.

We continue with the setting from Notation 2.2.13. Our first result states that
the cyclic-core operator preserves flatness and the closure operator preserves cyclicity.
The corresponding fact for classical matroids is only mentioned in passing at [20,
Sec. 2.4].

Lemma 2.2.25. Recall the collections F(M) of flats and O(M) of open (i.e., cyclic)
spaces of M.

(a) F ∈ F(M) =⇒ cyc(F ) ∈ F(M).

(b) F ∈ O(M) =⇒ cl(F ) ∈ O(M).

As a consequence, every V ∈ L(E) satisfies cl(cyc(V )) ≤ cyc(cl(V )) and both spaces
are elements of the intersection F(M) ∩ O(M).

The spaces cl(cyc(V )) and cyc(cl(V )) are in general not identical. See Exam-
ple 2.2.27 below.

Proof. (a) Let x ∈ E \ cyc(F ). We have to show that ρ(cyc(F ) + ⟨x⟩) > ρ(cyc(F )).
i) If x ̸∈ F , then ρ(F + ⟨x⟩) = ρ(F ) + 1, since F is a flat, and the desired inequality
follows from (2.5).
ii) Let x ∈ F \ cyc(F ). The definition of cyc(F ) implies the existence of a space
Ŵ ∈ Hyp(F ) such that x ̸∈ Ŵ and ρ(Ŵ + ⟨x⟩) = ρ(Ŵ )+ 1. Thus, ρ(F ) = ρ(Ŵ )+ 1.
Assume by contradiction that ρ(cyc(F ) + ⟨x⟩) = ρ(cyc(F )). Then (2.5) implies
ρ(W + ⟨x⟩) = ρ(W ) for all subspaces W containing cyc(F ). Hence we conclude
cyc(F ) ̸≤ Ŵ . Thus there exists y ∈ cyc(F )\Ŵ . Now Ŵ+⟨y⟩ = F , and ρ(Ŵ ) = ρ(F )
since y ∈ cyc(F ). This contradicts the above, and thus ρ(cyc(F ) + ⟨x⟩) > ρ(cyc(F )).
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(b) Let cyc∗ be the cyclic-core operator of the dual q-matroid M∗. With the aid of
Theorem 2.2.15(a), Corollary 2.2.21 and Part (a) we conclude

F ∈ O(M) ⇒ F⊥ ∈ F(M∗) ⇒ cyc∗(F⊥) ∈ F(M∗) ⇒ cl(F )⊥ ∈ F(M∗)

⇒ cl(F ) ∈ O(M).

As for the consequence note that cl(V ) is a flat and thus (a) together with Corol-
lary 2.2.22 implies that cyc(cl(V )) is a flat containing cyc(V ). Now the stated con-
tainment follows from Theorem 2.2.3(CL2). The rest is clear.

Using the cyclic-core operator and the closure operator we obtain a lattice con-
sisting of the cyclic flats. It also appears in [2, Prop. 2.24] and is the q-analogue of
[19, Prop. 3] (which refers to [4]).

Corollary 2.2.26. Let Z(M) = F(M) ∩ O(M), that is, Z(M) is the collection of
cyclic flats of M, or, alternatively, of open and closed spaces. Then (Z(M),≤,∧,∨)
is a lattice, where the meet and join are defined as

Z1 ∧ Z2 = cyc(Z1 ∩ Z2) and Z1 ∨ Z2 = cl(Z1 + Z2) for all Z1, Z2 ∈ Z(M).

The rank values of the meet and join are given by

ρ(Z1 ∧ Z2) = ρ(Z1 ∩ Z2)− dim
(
(Z1 ∩ Z2)/Z1 ∧ Z2

)
and ρ(Z1 ∨ Z2) = ρ(Z1 + Z2).

As a consequence

ρ(Z1) + ρ(Z2) ≥ ρ(Z1 ∨ Z2) + ρ(Z1 ∧ Z2) + dim
(
(Z1 ∩ Z2)/Z1 ∧ Z2

)
.

Proof. By (F2) and Theorem 2.2.15(d) Z1 ∩ Z2 is a flat and Z1 + Z2 is an open
space. Hence Z1 ∧ Z2 and Z1 ∨ Z2 are in Z(M) thanks to Lemma 2.2.25. Next,
if V ∈ Z(M) satisfies V ≤ Zi for i = 1, 2, then V is an open space in Z1 ∩ Z2

and thus V ≤ cyc(Z1 ∩ Z2) thanks to Theorem 2.2.20. Similarly, if W ∈ Z(M)
satisfies Zi ≤ W for i = 1, 2, then W is a closed space containing Z1 + Z2 and thus
cl(Z1 + Z2) ≤ W by Theorem 2.2.3(CL2). Thus (Z(M),≤,∧,∨) is a lattice. The
rank value of Z1∨Z2 follows from the fact that ρ(Z1⊕Z2) = ρ(cl(Z1⊕Z2)), while the
rank value of Z1 ∧ Z2 is a consequence of Proposition 2.2.24(a). The last inequality
now follows from submodularity of ρ applied to Z1 ∩ Z2 and Z1 + Z2.

Note that Z = Z(M) is not empty. The least and greatest elements of the lattice
Z are given by 0Z = cl(0) and 1Z = cyc(E) and their rank values are

ρ(0Z) = 0 and ρ(1Z) = ρ(E)− dim(E/ cyc(E)),

where the second part follows from Proposition 2.2.24. In Example 2.2.31 below we
will see that the lattice Z is in general not semi-modular, and thus not graded. But
even in the case where Z is graded, its height function does not agree, in general,
with the rank function ρ.
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Example 2.2.27 (see also [2, Prop. 2.30]). Let 0 < k < n = dimE and consider the
uniform q-matroid Uk(E); see Example 2.1.7. The only flats other than E are the
spaces of dimension at most k−1, and the only nonzero cyclic spaces are the spaces of
dimension at least k+1; see (2.8). Thus Z := Z(Uk(E)) = {0, E}. Since this is true
for every k, this shows that the collection Z(M) of a q-matroid M does not uniquely
determine M. Furthermore, since ρ(E) = k, we also see that the height function
of the lattice Z does not agree with the rank function of Uk,n(q) (unless k = 1).
Finally, for any k-dimensional subspace V we have cl(cyc(V )) = cl(0) = 0, and
cyc(cl(V )) = cyc(E) = E. This shows that cl(cyc(V )) and cyc(cl(V )) do not agree.
For the trivial and the free q-matroid we have Z(U0(E)) = {E} and Z(Un(E)) = {0}.

Below we will show that we can reconstruct the entire q-matroid M by way of
the cyclic flats along with their rank values. The following lemma will be needed. It
is the q-analogue of [19, Lem. 5] and also appears in [2, Lem. 2.23], where it is proven
with the aid of a characterization of cyclic spaces as inclusion-minimal spaces with
respect to the nullity function.

Lemma 2.2.28. Let V ∈ L(E). Then V ∩ cl(cyc(V )) = cyc(V ).

Proof. “⊇” is clear. For the other containment let x ∈ V ∩ cl(cyc(V )). Then
⟨x⟩ + cyc(V ) ≤ V and ρ(⟨x⟩ + cyc(V )) = ρ(cyc(V )) because x is in the closure
of cyc(V ). Furthermore, cyc(V ) = cyc(cyc(V )) ≤ cyc(⟨x⟩ + cyc(V )) ≤ cyc(V ), and
thus cyc(V ) = cyc(⟨x⟩+ cyc(V )). With the aid of Proposition 2.2.24(a) we compute

dim cyc(V )− ρ(cyc(V )) ≤ dim(⟨x⟩+ cyc(V ))− ρ(cyc(V ))

= dim(⟨x⟩+ cyc(V ))− ρ(⟨x⟩+ cyc(V ))

= dim(cyc(⟨x⟩+ cyc(V )))− ρ(cyc(⟨x⟩+ cyc(V )))

= dim cyc(V )− ρ(cyc(V )).

Hence we have equality in the first step, and this means x ∈ cyc(V ).

Now we arrive at the following q-analogue of [4, Lem. 3.1(i)] characterizing inde-
pendent spaces. This characterization will be crucial because it will allow us to derive
the entire rank function of the q-matroid from the cyclic flats and their rank values.
This is different from the approach taken in [4] and in [2] for q-matroids, where the
entire (q-)matroid is reconstructed through the lattice of flats.

Theorem 2.2.29. Consider the collection Z(M) of cyclic flats of M. Let V ∈ L(E).
Then

V is independent ⇐⇒ dim(V ∩ Z) ≤ ρ(Z) for all Z ∈ Z(M).

Thus the cyclic flats together with their rank values fully determine the collection of
independent spaces and thus the entire q-matroid M.

Proof. “⇒” If V is independent, then so is V ∩Z and thus dim(V ∩Z) = ρ(V ∩Z) ≤
ρ(Z) for any subspace Z.
“⇐” Let V be dependent and Z = cl(cyc(V )), which is in Z(M). Then V ∩ Z =
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cyc(V ) thanks to Lemma 2.2.28 and ρ(Z) = ρ(cyc(V )). Now Proposition 2.2.24(a)
implies dim(V ∩Z) = dim cyc(V ) = ρ(Z)+dimV −ρ(V ) > ρ(Z), where the last step
follows from the dependence of V . This establishes the equivalence. The last state-
ment follows from the well-known fact that the independent spaces fully determine
the q-matroid ; see Theorem 2.2.10.

The previous characterization of independent spaces lets us determine the rank
function of the entire q-matroid from the cyclic flats together with their rank values;
see also [20, Prop. 3] for classical matroids.

Corollary 2.2.30. Let M = (E, ρ) be a q-matroid and Z = Z(M) be its collection
of cyclic flats. Then

ρ(V ) = min
Z∈Z

(
ρ(Z) + dim(V + Z)/Z

)
for all V ∈ L(E).

Proof. Theorem 2.2.29 tells us that a space I is independent if and only if ρ(Z) ≥
dim(I ∩ Z) for all Z ∈ Z. With the aid of the dimension formula for subspaces we
may rewrite the inequality as dim I ≤ ρ(Z) + dim(I + Z)/Z. Now let V ∈ L(E).
Using (2.6) we obtain

ρ(V ) = max{dim I | I ≤ V, I independent}
= max{dim I | I ≤ V, dim I ≤ ρ(Z) + dim(I + Z)/Z for all Z ∈ Z}
≤ max{dim I | I ≤ V, dim I ≤ ρ(Z) + dim(V + Z)/Z for all Z ∈ Z}

≤ min
Z∈Z

(
ρ(Z) + dim(V + Z)/Z

)
.

For the converse consider Ẑ = cl(cyc(V )), which is in Z. With the aid of (2.5),
Proposition 2.2.24(a) and Lemma 2.2.28 we arrive at

min
Z∈Z

(
ρ(Z) + dim(V + Z)/Z

)
≤ ρ(Ẑ) + dim(V + Ẑ)/Ẑ

= ρ(Ẑ) + dimV − dim(V ∩ cl(cyc(V ))

= ρ(cyc(V )) + dimV − dim cyc(V )

= ρ(V ).

The above result does not imply that the lattice structure of (Z(M),≤,∧,∨)
together with the rank values of the cyclic flats are sufficient to determine the q-
matroid up to equivalence. This will be illustrated in Example 5.3.18.

The collection of cyclic flats is often astoundingly small. The following example
is inspired by [2, Sec. 3].

Example 2.2.31. Let F = F2 and in F8 consider the collection Z = {Z0, . . . , Z4},
where

Z0 = 0, Z1 = ⟨e1, e2⟩, Z2 = ⟨e1, e2, e3, e4⟩, Z3 = ⟨e5, e6, e7, e8⟩, Z4 = F8.
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Set ρ̂(Zi) = i for i = 0, . . . , 4. Using a computer algebra system one verifies that the
map

ρ : L(F8) −→ N0, ρ(V ) = min
Z∈Z

(
ρ̂(Z) + dim(V + Z)/Z

)
,

satisfies (R1)–(R3) from Definition 2.1.1 (see also Corollary 2.2.30). Moreover,
ρ(Z) = ρ̂(Z) for all Z ∈ Z and the q-matroid M = (F8, ρ) satisfies Z(M) = Z. This
also follows from [2, Prop. 3.7 and Thm. 3.11]. We have the following cardinalities
of flats, cyclic spaces etc.

Table 2.1: The cardinality of flats, cyclic spaces etc. for some q-matroid.

flats cyclic spaces cyclic flats ind. spaces dep. spaces circuits bases

99597 105097 5 307905 109294 94079 199775

Finally, notice that the lattice Z has the form

Z4

Z1

Z2Z3

Z0

Figure 2.1: A non-semimodular lattice of cyclic flats.

and this is clearly not semi-modular (see [45, Prop. 3.3.2]).

We close this section with the most extreme case. Every q-matroid has at least
one cyclic flat, namely cl(0). Let us consider the case where this is the sole cyclic
flat. Such q-matroidsdo indeed exist, for instance, the trivial and the free q-matroid
on E (see Example 2.2.27).

Proposition 2.2.32. Let M = (E, ρ) be a q-matroid with a single cyclic flat, say
Z(M) = {Ẑ}. Thus Ẑ = cl(0) = cyc(E) and ρ(Ẑ) = 0. Then for any V ∈ L(E)

V ∈ F(M) ⇐⇒ Ẑ ≤ V and V ∈ O(M) ⇐⇒ V ≤ Ẑ.

In particular, cl(0) = E ⇐⇒ M = U0(E) and cyc(E) = 0 ⇐⇒ M = UdimE(E).

Proof. Note first that for any V ∈ L(E) we have

cl(cyc(V )) = cyc(cl(V )) = Ẑ. (2.9)

Thus if V is a flat, then Ẑ = cyc(V ) ≤ V . Similarly, if V is cyclic, then V ≤ cl(V ) =
Ẑ. It remains to consider the opposite implications.
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1) If V ≤ Ẑ, then ρ(V ) = 0 and V is clearly cyclic.
2) Let now Ẑ ≤ V . Then (2.9) along with Lemma 2.2.28 implies cyc(V ) = Ẑ. Writing
V = V1 ⊕ Ẑ, we obtain from Proposition 2.2.24(b)

ρ(V ) = ρ(Ẑ) + dimV1 = dimV1.

Let now x ∈ E \V . Then Ẑ ≤ V +⟨x⟩ and we may write V +⟨x⟩ = (V1+⟨x1⟩)⊕ Ẑ for
some x1 ̸∈ V1. But then the same reasoning as for V provides us with ρ(V + ⟨x⟩) =
dim(V1 + ⟨x1⟩), and hence ρ(V + ⟨x⟩) = dimV1 + 1 = ρ(V ) + 1. Thus V is a flat.
The last two equivalences are clear.

In Chapter 5, we will see that a q-matroid with a single cyclic flat is the direct
sum of a trivial and a free q-matroid .

2.3 Application of q-polymatroids to coding theory.

In this subsection we study q-PMs associated to linear rank-metric codes as introduced
in [29].

We furthermore establish several connections between rank-metric codes and q-
PM. Throughout, let F := Fq for a prime power q.

2.3.1 Rank-metric code and the induced q-polymatroid.

We first collect some well-known facts for codes in Fn×m.

Definition 2.3.1. The rank-metric on Fn×m is defined as

d : Fn×m × Fn×m −→ N0, d(A,B) = rk(A−B).

A linear-rank-metric code is a subspace C of the metric space (Fn×m, d).

From the above definition note d(A, 0) = rk(A) for all A ∈ Fn×m. One can also
define non-linear rank-metric codes, which are simply subsets of metric spaces rather
than subspaces. However, for the entirety of the dissertation we consider only linear
rank-metric code. Part (a)–(c) of the following proposition is standard knowledge on
rank-metric codes, see for instance [28], and Part (d) can be found in [42, Lem. 28].
For V ≤ Fℓ denote by V ⊥ ≤ Fℓ the orthogonal space with respect to the standard
dot product.

Proposition-Definition 2.3.2. Let C ≤ Fn×m be a rank-metric code.
(a) The rank distance of C is defined as drk(C) = min{rk(M) |M ∈ C \ 0}.
(b) If d = drk(C), then dim(C) ≤ max{m,n}(min{m,n} − d + 1), which is known

as the Singleton bound. If dim(C) = max{m,n}(min{m,n} − d + 1), then C is
called an MRD code.

(c) The dual code of C is defined as C⊥ = {M ∈ Fn×m | tr(MNT) = 0 for all N ∈ C},
where tr(·) denotes the trace of the given matrix. If C is an MRD code with rank
distance d, then C⊥ is an MRD code with rank distance min{m,n} − d+ 2.
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(d) For V ∈ L(Fn) and W ∈ L(Fm) we define the following subspaces of C, which are
known as shortenings:

C(V, c) = {M ∈ C | colsp(M) ≤ V } and C(W, r) = {M ∈ C | rowsp(M) ≤ W},

where colsp(M) and rowsp(M) denote the column space and row space of M ,
respectively. Then Fn×m(V, c)⊥ = Fn×m(V ⊥, C) and Fn×m(W, r)⊥ = Fn×m(W⊥, r)
and

dim C(V ⊥, c) = dim C −m dimV + dim C⊥(V, c), (2.10)

dim C(W⊥, r) = dim C − n dimW + dim C⊥(W, r).

Now we are ready to introduce q-PMs associated to a rank-metric code. The
following definition and the first statement are from [29]. The statements in (2.11)
are immediate consequences of Proposition-Definition 2.3.2(d).

Proposition 2.3.3 ([29, Thm. 5.3]). Let C ≤ Fn×m be a nonzero rank-metric code.
Define the maps

ρc :L(Fn) −→ Q≥0, V 7−→ dim C − dim C(V ⊥, c)

m
,

ρr :L(Fm) −→ Q≥0, W 7−→ dim C − dim C(W⊥, r)

n
.

Then ρc and ρr are rank functions with denominators m and n, respectively. Further-
more,

ρc(V ) = dimV − 1

m
dim C⊥(V, c) and ρr(W ) = dimW − 1

n
dim C⊥(W, r). (2.11)

The denominators m and n are in general not principal. Note that in the notation
we suppress the dependence of these maps on the code C.

Definition 2.3.4. Let C ≤ Fn×m be a nonzero rank-metric code. The q-PMsMc(C) :=
(Fn, ρc) and Mr(C) := (Fm, ρr) are called the column q-polymatroid and row q-
polymatroid of C, respectively. Their ranks are dim C/m and dim C/n, respectively.

The expressions in (2.11) show immediately that if C1 ≤ C2, then ρC,1(V ) ≤ ρC,2(V )
for all V ∈ L(Fn), where ρC,i is the column rank function of Ci. Similarly for the row
q-PM. This has also been proven in [22, Lem. 22].

Equivalence of codes, in the following (standard) sense, translates into equivalence
of the associated q-PMs.

Definition 2.3.5. Let C, C ′ ≤ Fn×m be rank-metric codes. We call C and C ′ equiv-
alent if there exist matrices X ∈ GLn(F), Y ∈ GLm(F) such that C ′ = XCY :=
{XMY | M ∈ C}. If n = m, we call C, C ′ transposition-equivalent if there exist
matrices X, Y ∈ GLn(F) such that C ′ = XCTY := {XMTY |M ∈ C}.
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The proof of the next result is straightforward with (2.11) by noting that C ′ =
XCY implies (C ′)⊥ = (X−1)TC⊥(Y −1)T and C ′ = XCTY implies

(C ′)⊥ = (X−1)T(C⊥)T(Y −1)T.

For an alternative proof see [29, Prop. 6.7].

Proposition 2.3.6. Let C, C ′ ≤ Fn×m be rank-metric codes.
(a) Suppose C, C ′ are equivalent, say C ′ = XCY for some X ∈ GLn(F), Y ∈ GLm(F).

Then Mc(C) and Mc(C ′) are equivalent via β ∈ HomF(Fn,Fn) given by x 7→
(XT)−1x. Similarly, Mr(C) and Mr(C ′) are equivalent via the isomorphism α ∈
HomF(Fm,Fm) given by x 7→ x(Y T)−1.

(b) Let n = m and suppose C, C ′ are transposition-equivalent, say C ′ = XCTY for
X, Y ∈ GLn(F). Then Mc(C) and Mr(C ′) are equivalent via α and Mr(C) and
Mc(C ′) are equivalent via β with α, β as in (a).

Equivalence allows us to easily introduce Fqm-linear rank-metric codes. Recall
that F = Fq. Let α be a primitive element of the field extension Fqm and f =
xm −

∑m−1
i=0 fix

i ∈ F[x] be its minimal polynomial over F. We define the companion
matrix

∆f =


1

. . .

1
f0 f1 ··· fm−1

 ∈ GLm(F). (2.12)

Let ψ : Fqm −→ Fm be the coordinate map with respect to the basis (1, α, . . . , αm−1).
Extending this map entry-wise, we obtain, for any n, an isomorphism

Ψ : Fn
qm −→ Fn×m,

(
x1 ··· xn

)
7−→

ψ(x1)...
ψ(xn)

 . (2.13)

Now multiplication of c :=
∑m−1

i=0 ciα
i ∈ Fqm by ω corresponds to right multiplication

of its coordinate vector ψ(c) = (c0, . . . , cm−1) ∈ Fm by ∆f . Therefore, an F-linear
subspace C of Fn

qm is Fqm-linear if and only if its image Ψ(C) ≤ Fn×m is invariant
under right multiplication by ∆f . Recall further that F[∆f ] is a subfield of order qm

of Fm×m, and more generally, if s is a divisor of m, then F[∆(qm−1)/(qs−1)
f ] is a subfield

of order qs. Allowing different bases for the coordinate map, we arrive at the following
definition.

Definition 2.3.7. Let C ≤ Fn×m be a rank-metric code (hence an F-linear subspace).
Let s be a divisor ofm and setM = (qm−1)/(qs−1). Then C is right Fqs-linear if there
exists an X ∈ GLm(F) such that the code CX is invariant under right multiplication
by ∆M

f . Left linearity over Fqn and its subfields is defined analogously.

Clearly, the qualifiers right/left are needed only in the case where Fqs is a subfield
of both Fqm and Fqn . Note that for C̃ := CX we have C̃(V, c) = C(V, c)X for all
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V ∈ L(Fn). Furthermore, if C̃ is invariant under right multiplication by ∆M
f , then so

is C̃(V, c). Hence C̃(V, c) is right Fqs-linear (see also [36, Lem. 19] for the case s = m),
and thus its dimension over F is a multiple of s. All of this leads to the following
remark.

Remark 2.3.8. Let C ≤ Fn×m be a right Fqs-linear rank-metric code for some sub-
field Fqs of Fqm. Then µ = m/s is a denominator of the column q-PM Mc(C). In
particular, for s = m the q-PM Mc(C) is a q-matroid. These are exactly the q-
matroids studied in [36]. Of course, the column q-PM of a code C ≤ Fn×m may be
a q-matroid even if C is not right Fqm-linear. This is for instance the case for MRD
codes in Fn×m if m ≥ n (see Proposition 2.3.11). Analogous statements hold for the
row q-PM.

The above allows to consider Fqm-linear codes as subspaces of Fn
qm , which is often

common and will be extremely useful when presenting examples of q-matroids. Con-
sider the isomorphism Ψ : Fn

qm −→ Fn×m from (2.13). Then with any Fqm-subspace C
of Fn

qm we can associate the column q-PM Mc(Ψ(C)), which is in fact a q-matroid.

We denote this q-matroid by MG, where G ∈ Fk×n
qm is a generator matrix of C (that is,

its rows form a basis of C). This is the approach taken in [36]. The following lemma
has been proven in [36, Sec. 5]. It determines the rank function of MG with the aid
of G. For self-containment we include a short proof using our notation.

Lemma 2.3.9. Let C ≤ Fn
qm be an Fqm-linear rank-metric code with generator ma-

trix G ∈ Fk×n
qm , where k = dimFqm

C. Consider the associated q-matroid MG =
(Fn, ρc). Let V ∈ L(Fn) with dimV = t, and let Y ∈ Fn×t be such that V = colsp(Y ).
Then

ρc(V ) = rkFqm
(GY ).

Proof. Clearly rkFqm
(GY ) does not depend on the choice of Y . Since Y has en-

tries in F, any x ∈ Fn
qm satisfies xY = 0 ⇐⇒ Y TxT = 0 ⇐⇒ Y TΨ(x) = 0 ⇐⇒

colsp(Ψ(x)) ≤ V ⊥. Set C̃ = Ψ(C) ≤ Fn×m. Then the space C̃(V ⊥, C) satisfies
Ψ−1(C̃(V ⊥, C)) = {x ∈ C | xY = 0}. Let πY : C −→ Ft

qm be the Fqm-linear map

given by x 7−→ xY . Then ker πY = Ψ−1(C̃(V ⊥, C)) and im πY = rowspFqm
(GY ). Now

the desired statement follows from

ρc(V ) =
dimF C̃ − dimF C̃(V ⊥, C)

m
= dimFqm

C̃ − dimFqm
Ψ−1(C̃(V ⊥, C)) = rkFqm

(GY ).

Remark 2.3.10. The above lemma generalizes as follows. Consider a general rank-
metric code C ≤ Fn×m with F-dimension k. Taking the pre-image under Ψ of a
basis of C, we obtain a matrix G ∈ Fk×n

qm such that Ψ−1(C) = rowspF(G), where the
latter is defined as the F-subspace of Fn

qm generated by the rows of G. Denote its
F-dimension by rowrkF(G). Then it is easy to see that for V as in Lemma 2.3.9 we
have ρc(V ) = rowrkF(GY )/m.
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Let us return to general rank-metric codes in Fn×m. From now on we will focus
on the associated column q-PMs. The discussion of the row q-PMs is analogous. On
several occasions we will have to pay close attention to the cases n ≤ m versus n > m.
We first record the following simple fact, which is immediate with Proposition 2.3.3
(see also [29, Prop. 6.2] and [36, Lem. 30]). Let C ≤ Fn×m be a nonzero rank-metric
code with rank distance d and let d⊥ be the rank distance of C⊥. Then for any
V ∈ L(Fn)

ρc(V ) =


dim C
m

, if dimV > n− d,

dimV, if dimV < d⊥.
(2.14)

Together with Proposition-Definition 2.3.2(b),(c) this immediately leads to the
following result for MRD codes if n ≤ m.

Proposition 2.3.11 ([29, Cor. 6.6]). Let n ≤ m and C ≤ Fn×m be an MRD code
with drk(C) = d. Let ρc be the rank function of the associated column q-PM Mc(C).
Then

ρc(V ) = min{n− d+ 1, dimV } for all V ∈ L(Fn).

Hence Mc(C) is the uniform matroid Un−d+1(Fn). In particular, Mc(C) is a q-
matroid, i.e., its principal denominator is 1.

In order to discuss the q-PM associated to MRD codes for m ≤ n we need the
following lemma.

Lemma 2.3.12. Let C ≤ Fn×m be a rank-metric code with drk(C) = d. Let V ∈ L(Fn)
and dimV = v. Then dim C(V, c) ≤ max{m, v}(min{m, v} − d+ 1).

Proof. First assume that V = colsp(Iv | 0)T = ⟨e1, . . . , ev⟩, where ei ∈ Fn is the i-th
standard basis vector. Then we have a rank-preserving, thus injective, linear map

π : C(V, c) −→ Fv×m,

(
M
0

)
7−→M.

Hence im(π) is a rank-metric code in Fv×m of rank distance at least d, and the
upper bound for dim C(V, c) follows from the Singleton bound. For the general case
where V = ⟨x1, . . . , xv⟩, choose Y ∈ GLn(F) such that Y xi = ei for i ∈ [v] and set
C ′ = Y C. Then C ′ has rank distance d as well and Y C(V, c) = C ′(Y V, C). Since
Y V = ⟨e1, . . . , ev⟩, the upper bound on dim C(V, c) follows from the first part of this
proof.

Now we obtain the following information about the column q-PM of an MRD code
if m ≤ n.

Theorem 2.3.13. Let m ≤ n and C ≤ Fn×m be an MRD code with drk(C) = d.
Furthermore, denote the dimension of V ∈ L(Fn) by v. Then the rank function ρc of
the associated column q-PM Mc(C) satisfies

ρc(V ) =

{
v, if v ≤ m− d+ 1,

n(m−d+1)
m

, if v ≥ n− d+ 1.
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Furthermore ρc(V ) ≥ max{1, v/m}(m− d+ 1) if v ∈ [m− d+ 2, n− d].

Proof. For v ≥ n− d+ 1 we have ρc(V ) = m−1 dim C = nm−1(m− d+ 1) thanks to
(2.14). Next, using (2.11) and the fact that drk(C⊥) = m−d+2 we arrive immediately
at ρc(V ) = v if v ≤ m − d + 1. The remaining statement follows from (2.11) along
with Lemma 2.3.12, which applied to C⊥ yields dim C⊥(V, c) ≤ m(v −m + d − 1) if
v ≤ m and dim C⊥(V, c) ≤ v(d− 1) if v ≥ m.

If m = n− 1, the interval [m− d+ 2, n− d] is empty for any d. Thus we have

Corollary 2.3.14. Let C ≤ Fn×(n−1) be an MRD code. Then Mc(C) is fully deter-
mined by the parameters (n, drk(C), |F|) and is not a q-matroid (unless drk(C) = 1).

Remark 2.3.15. In the situation of Theorem 2.3.13 the denominator m is not nec-
essarily principal (even if the code is not linear over a subfield of Fqm). This is for
instance the case for a [7 × 6; 4]-MRD code: n(m − d + 1)/m = 7/2, and thus the
principal denominator is 2.

If m < n−1, the column q-PM of an MRD code C in Fn×m is not fully determined
by the parameters (n,m, drk(C), |F|). This is illustrated by the following example.

Example 2.3.16. In F5×2
2 consider the codes C1 = ⟨A1, . . . , A5⟩ and C2 = ⟨B1, . . . , B5⟩,

where

A1 =


1 1
1 0
0 0
1 0
0 0

 , A2 =


1 1
1 1
1 0
0 1
0 0

 , A3 =


0 0
0 0
1 1
0 0
0 1

 , A4 =


0 0
0 1
0 0
0 0
1 1

 , A5 =


1 0
0 1
1 1
0 0
0 1

 ,

B1 =


1 0
0 1
0 0
0 0
0 0

 , B2 =


0 0
1 0
0 1
0 0
0 0

 , B3 =


0 0
0 0
1 0
0 1
0 0

 , B4 =


0 0
0 0
0 0
1 0
0 1

 , B5 =


0 1
0 0
0 1
0 0
1 0

 .

Both codes are MRD with rank distance d = 2; in fact, C2 is a (F25-linear) Gabidulin
code. The q-PMs Mc(C1) and Mc(C2) are not equivalent. Indeed, denote the two rank
functions by ρic, i = 1, 2, and consider ρic(V ) for dimV ∈ {2, 3} = [m− d+ 2, n− d].
For the 155 subspaces of F5

2 of dimension 2 the map ρ1c assumes the value 1 exactly
once and the values 3/2 and 2 exactly 28 and 126 times, respectively. On the other
hand, ρ2c assumes the values 3/2 and 2 exactly 31 and 124 times, respectively, and
never takes the value 1.

In the following examples we let Eij ∈ Fn×m
q be the matrix with entry 1 in the

ij-coordinate and 0 elsewhere. The next examples show that properties (CL4) and
(F3) of respectively Theorem 2.2.3 and Theorem 2.2.4 may not be satisfied for q-PM.
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Example 2.3.17. (a) Consider the code C1 = ⟨A1, . . . , A5⟩ ≤ F5×2
2 from Exam-

ple 2.3.16. It can be verified that Mc(C) has 81 flats and 29 hyperplanes. Further-
more, the collection of flats does not satisfy (CL4) and (F3) (recall Theorem 2.2.3
and Theorem 2.2.4). Unsurprisingly, the hyperplane axioms known for q-matroids
(see [11, Def. 12]) do not hold either, and in particular, the hyperplanes do not
all have the same rank.

(b) Let F = F2 and C = ⟨E12 + E23 + E33, E12 + E13 + E33, E12 + E13 + E21 + E32⟩ ≤
F3×3. It is straightforward to verify that the associated column q-PM M = (F3, ρc)
is not a q-matroid but has the same collection of flats as the q-matroid MG, where

G =

(
1 0 α
0 1 α

)
∈ F2×3

4 .

As a consequence, F(M) and the closure operator satisfy (F1)–(F3) and (CL1)–
(CL4).

We briefly return to the notion of scaling equivalence and non-exactness from
Remark 2.1.10.

Example 2.3.18. For q-PMs induced by rank-metric codes non-exactness is a very
restrictive property. Indeed, the first identity in (2.11) shows that

Mc(C) is not exact ⇐⇒ C⊥(V, c) ̸= 0 for all V ∈ L(Fn) \ 0. (2.15)

In particular, non-exactness of Mc(C) implies drk(C⊥) = 1. An example of a code
satisfying (2.15) is for instance C, C⊥ ≤ F3×4

2 given by

C = ⟨E13, E23, E33, E12 + E22 + E41 + E43⟩
C⊥ = ⟨E11, E21, E31, E41 + E43, E12 + E43, E22 + E43, E32, E42⟩.

The column q-PM Mc(C) can be rescaled with factor 3/2, leading to an exact q-
PM M′. It turns out that M′ = MC(C ′) for the code C ′ ≤ F4×4

2 given by

C ′ = ⟨E11, E12, E21, E22, E31, E32, E13 + E23 + E44, E14 + E24 + E43 + E44⟩.

It is not clear to us whether representability of q-PMs by rank-metric codes (see the
next section) is preserved under rescaling.

We close this subsection with the following important result showing that dual-
ity of q-PMs corresponds to trace-duality of codes. Recall duality of q-PMs from
Theorem 2.1.11.

Theorem 2.3.19 ([29, Thm. 8.1]). Let C ≤ Fn×m be a rank-metric code and C⊥ ≤
Fn×m its dual code. Then Mc(C)∗ = Mc(C⊥), where Mc(C)∗ is the dual of Mc(C)
w.r.t. the standard dot product on Fn. Analogously, Mr(C)∗ = Mr(C⊥).
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2.3.2 Flats of q-polymatroids and generalized rank weights.

This subsection is devoted to showing that the generalized weights of a rank-metric
code in Fn×m can be determined by the flats of the associated column q-PM if m > n.
For m < n, the corresponding result is true for the row q-PM, and for m = n both
q-PMs are needed. In order to be aligned with most of the literature on rank-metric
codes, we will assumem ≥ n. For further details on generalized weights and anticodes
we refer to [41], from which the next definition is taken.

Definition 2.3.20 ([41, Def. 22 and 23]). Let m ≥ n and C ≤ Fn×m be a code.
(a) We define maxrk(C) = max{rk(M) | M ∈ C}. We call the code C an optimal

anticode if dim C = mmaxrk(C).
(b) For i = 1, . . . , dim C the i-th generalized weight of C is defined as

ai(C) =
1

m
min{dim(A) | A ≤ Fn×m is an optimal anticode, dim(C ∩ A) ≥ i}.

In [29] it has been shown that the generalized weights can be computed from the
associated q-PMs of the code. We will derive the generalized weights in a slightly
different form, and, since we need the ideas of the proof later on, we also briefly
sketch the proof. In [29, Thm. 7.2] the result has been used to characterize optimal
anticodes with the aid of q-PMs.

Theorem 2.3.21 ([29, Thm. 7.1]). Let m ≥ n and C ≤ Fn×m be a code. Define

aCi (C) = n−max{dimV | V ∈ L(Fn), ρc(V ) ≤ ρc(Fn)− i/m},

ari(C) = m−max{dimW | W ∈ L(Fm), ρr(W ) ≤ ρr(Fm)− i/n}.

Then for all i = 1, . . . , dim C

ai(C) =

{
aCi (C), if m > n,

min{aCi (C), ari(C)}, if m = n.

Proof. Let first m > n. It is well known [38, Thm. 3] that the optimal anticodes
in Fn×m are the spaces of the form Fn×m(V, c) for any V ∈ L(Fn). Furthermore
dimFn×m(V, c) = m dimV . Since C ∩ Fn×m(V ⊥, C) = C(V ⊥, c) and m−1 dim C =
ρc(Fn), the very definition of ρc leads to

dim(C ∩ Fn×m(V ⊥, C)) ≥ i⇐⇒ ρc(V ) ≤ ρc(Fn)− i/m. (2.16)

Now the statement follows from n − dimV = dimV ⊥ = m−1 dimFn×m(V ⊥, C). In
the case m = n, the optimal anticodes are of the form Fm×m(V, c) and Fm×m(V, r),
where V ∈ L(Fm). This implies that we have to take the row and column q-PM into
account, and again the statement follows.

Let us briefly relate aCi (C) to certain invariants introduced in the literature.
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Remark 2.3.22. (a) In [22, Def. 10] the authors introduce generalized weights of
q-PMs. Since their definition of q-PMs differs from ours, we need to be careful
when comparing the two notions of generalized weights. Let us start with a q-
PM M = (Fn, ρ) in our sense and let µ be a denominator of M. Set τ :=
µρ. Then M′ := (Fn, τ) is a (q, µ)-polymatroid in the sense of [22, Def. 1]. In
[22, Def. 10] the authors define the i-th generalized weight of M′ as di(M′) =
min{dimX | τ(Fn) − τ(X⊥) ≥ i}. Suppose now that M = Mc(C) for some
rank-metric code C ≤ Fn×m. Then µ := m is a denominator and the equivalence
ρ(V ) ≤ ρ(Fn)− i/m⇐⇒ τ(Fn)− τ(V ) ≥ i shows that di(M′) = aiC(C) for all i.

(b) In [7, Thm. 8] the authors associate a q-demimatroid to a rank-metric code. A
q-demimatroid is a generalization of a q-PM that does not require submodularity,
but captures a certain duality relation; see [7, p. 1505]. More precisely, to the
code C ≤ Fn×m they associate the q-demimatroid (Fn, s, t) defined by s(V ) =
dim C(V, c) and t(V ) = dim C⊥(V, c). Neither of these functions is submodular,
but they satisfy the required duality relation thanks to (2.10). In [7, p. 1507] the
authors introduce various combinatorial invariants of such q-demimatroids, and it
is straightforward to verify that aCi (C) equals their σi for all i. The power of their
approach comes to light in particular in [7, Sec. 4.2 and 4.3], where the authors
provide a very nice and short proof of the Wei duality for the generalized weights
of a rank-metric code with the aid of the associated q-demimatroid.

We return to Theorem 2.3.21 and consider the case m = n in further detail. As
we show next, for i = 1 we have a1(C) = aC1(C) = ar1(C).

Corollary 2.3.23. Let C ≤ Fm×m be a code. Then aC1(C) = ar1(C) and therefore

drk(C) = m−max{dimV | V ∈ L(Fm), ρc(V ) ≤ ρc(Fm)− 1/m}
= m−max{dimV | V ∈ L(Fm), ρr(V ) ≤ ρr(Fm)− 1/m}.

Recall from Proposition 2.3.3 that ρc(Fm) = ρr(Fm) = m−1 dim C for any code
C ≤ Fm×m. Thus the above inequalities can be written as ρc(V ) ≤ (dim C − 1)/m
and ρr(V ) ≤ (dim C − 1)/m.

Proof. It is well known [41, Thm. 30] that drk(C) = a1(C), the first generalized weight.
Hence it suffices to show aC1(C) = ar1(C). Let d = drk(C) and M ∈ C be such that
rk(M) = d. Let V = colsp(M) and W = rowsp(M) and set A = Fm×m(V, c)
and A′ = Fm×m(W, r). Then A and A′ are optimal anticodes of dimension md and
C ∩ A ̸= 0 ̸= C ∩ A′. Thus (2.16) yields ρc(V

⊥) ≤ ρc(Fm) − 1/m and, similarly,
ρr(W

⊥) ≤ ρr(Fm)− 1/m. Since V and W are clearly of minimal dimension satisfying
C ∩ A ̸= 0 ̸= C ∩ A′, all of this shows that aC1(C) = ar1(C).

For i > 1 and C ≤ Fm×m we have in general aCi (C) ̸= ari(C), and it depends on i
which of the two is the minimum. Our next example shows that this is even the case
for vector rank-metric codes (that is, Fqm-linear codes in Fm

qm). As a consequence, the
generalized weights in Definition 2.3.20 do not coincide with the generalized weights
introduced in [37]. The example also addresses a small oversight in [41] and shows
that [41, Thm. 28] is only true for codes in Fn

qm with n < m.

31



Example 2.3.24. Let q = 2 and m = 6. Let ω ∈ F26 be a primitive element with
minimal polynomial f = x6 + x4 + x3 + x+ 1. Consider the generator matrix

G =

1 0 0 ω9 0 0
0 1 0 0 ω18 0
0 0 1 0 0 ω18

 ∈ F3×6
26 .

Note that, in fact, the entries of G are in the subfield F23. Using the isomorphism Ψ
from (2.13), we obtain the rank-metric code

Ψ(rowspF26
(G)) = C := ⟨Aj∆

i
f | j = 1, 2, 3, i = 0, . . . ,m− 1⟩,

where ∆f is as in (2.12) and Aj is the image of the j-th row of G under Ψ. Thus
dimF2 C = 18. By construction, the row spaces of the matrices A1, A2, A3 are contained
in the 3-dimensional subspace V̂ := Ψ(F23) ≤ F6

2. It turns out that dim C(V̂ , r) = 9
(which implies ar9 ≤ 3). SageMath computations lead to the following data

Table 2.2: Row and column generalized weights of C

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

aCi 2 2 2 2 2 2 4 4 4 4 4 4 6 6 6 6 6 6
ari 2 2 2 3 3 3 3 3 3 5 5 5 6 6 6 6 6 6

We see that, for instance ar9 < aC9 , whereas ar10 > aC10. This implies that the
generalized weights ai(C) in general do not coincide with aCi (C). In [37] the latter
are defined to be the generalized weights of C (see [37, Cor. 4.4, Thm. 5.4] and [41,
Thm. 18]). This shows that the definitions of generalized weights in [41, Def. 23] and
[37] do not agree for Fqm-linear codes in Fm

qm.

We return to general codes in Fn×m. Our next result shows that the generalized
weights of a rank-metric code are determined by the flats of the q-PM. It is straight-
forward to check that this is the analogue of [6, Thm. 3], where the generalized
weights of a linear block code are determined via cocircuits of suitable truncations of
the associated matroid. The complements of these cocircuits are, by definition, flats
of a certain rank in the original matroid. The only difference to our result below is
the inequality (rather than equality) in ρc(V ) ≤ ρc(Fn)− i/m below. This is needed
because – in contrast to matroids and q-matroids – for q-PMs equality may not be
attained.

Theorem 2.3.25. Let m ≥ n and C ≤ Fn×m be a code. Let FC and Fr be the sets of
flats of the q-PMs Mc(C) = (Fn, ρc) and Mr(C) = (Fm, ρr), respectively. Define

bCi (C) = n−max{dimV | V ∈ FC, ρc(V ) ≤ ρc(Fn)− i/m},

bri(C) = m−max{dimW | W ∈ Fr, ρr(W ) ≤ ρr(Fm)− i/n}.

Then for all i = 1, . . . , dim C

ai(C) =

{
bCi (C), if m > n,

min{bCi (C), bri(C)}, if m = n.
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Furthermore, if n = m then bC1(C) = br1(C).

Proof. We will show bCi (C) = aCi (C) for all i. The proof for bri(C) = ari(C) is analogous.
Clearly, aCi (C) ≤ bCi (C) for all i. For the converse inequality, let V ∈ L(Fn) such that
ρc(V ) ≤ ρc(Fn) − i/m. Consider cl(V ), the closure of V . Then dimV ≤ dim cl(V )
by (CL1) and ρc(cl(V )) ≤ ρc(Fn) − i/m thanks to (2.5). All of this implies the
desired inequality bCi (C) ≤ aCi (C) for all i. The last statement for i = 1 follows from
Corollary 2.3.23.

Our final result allows us to determine the rank distance of a rank-metric code
via the hyperplanes of the associated q-PM.

Corollary 2.3.26. Let C ≤ Fn×m be a code.
(a) If m > n, then drk(C) = n−max{dimH | H is a hyperplane in Mc(C)}.
(b) If m = n, then drk(C) = n− w, where

w = max{dimH |H is a hyperplane in Mc(C)}
= max{dimH |H is a hyperplane in Mr(C)}.

Proof. It is well known [41, Thm. 30] that drk(C) = a1(C). Suppose first that m > n.
Denote by FC the collection of flats of the q-PM Mc(C). Theorem 2.3.25 implies
drk(C) = n − v, where v = max{dimV | V ∈ FC, ρc(V ) ≤ ρc(Fn) − 1/m}. Let
V ∈ FC be such that dimV = v and ρc(V ) ≤ ρc(Fn) − 1/m. Suppose V is not a
hyperplane. Then there exists V ′ ∈ FC such that V ⪇ V ′ ⪇ Fn. Since all these
spaces are flats we have ρc(V ) < ρc(V

′) < ρc(Fn). Using that m is a denominator of
Mc(C), this yields ρc(V ′) ≤ ρc(Fn)− 1/m. Now dimV ′ > v leads to a contradiction.
Thus V is a hyperplane. This concludes the case m > n. For m = n we know from
Corollary 2.3.23 that drk(C) = aC1(C) = ar1(C). Thus the result follows from the first
part of this proof.

2.3.3 Shortening/Puncturing of codes and Deletion/Contraction of q-
polymatroids.

This subsection is devoted to the relation between deletion and contraction of q-PMs
induced by rank-metric codes and puncturing and shortening of the codes. We focus
on row puncturing and shortening, which will correspond to deletion and contraction
of the associated column q-PM. The following terminology is from [12, Sec. 3].

Definition 2.3.27. Let u ∈ [n] and πu : Fn×m −→ F(n−u)×m be the projection onto
the last n− u rows. Let C ≤ Fn×m be a rank-metric code. We define

Cu = {M ∈ C |Mij = 0 for i ≤ u},

that is, Cu is the subcode consisting of all matrices of C whose first u rows are zero.
Let A ∈ GLn(F).
(a) The puncturing of C w.r.t. A and u is defined as the code

Π(C, A, u) = πu(AC) ≤ F(n−u)×m.
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(b) The shortening of C w.r.t. A and u is defined as the code

Σ(C, A, u) = πu((AC)u) ≤ F(n−u)×m.

In Proposition-Definition 2.3.2(d) we called the space C(V, c) a shortening of C.
This is consistent because C(V, c) is isomorphic (even isometric w.r.t. the rank-metric)
to Σ(C, A, u), where u = dimV and A = (A1 | A2)

T ∈ GLn(F) such that colsp(A1) =
V ⊥.

Now we are ready to relate deletion and contraction of q-PMs induced by rank-
metric codes to puncturing and shortening of the codes, respectively. The following
result is a direct q-analogue of the well-known relation between matroids and linear
block codes; see [35, Sec. 1.6.4].

Theorem 2.3.28. Let C ≤ Fn×m be a rank-metric code and M = Mc(C) be the
associated column q-PM. Let X ∈ L(Fn) and set dimX = u. Choose any matrix
A ∈ GLn(F) of the form A =

(
B
D

)
, where D ∈ F(n−u)×n is such that rowsp(D) = X⊥.

Then
M\X ≈ Mc(Π(C, A, u)) and M/X ≈ Mc(Σ(C, (A−1)T, u)).

Proof. We start with the first equivalence. Let ρ be the rank function of Mc(C) and
ρ′ be the rank function of Mc(C ′), where C ′ = Π(C, A, u). Thus

ρ′ : L(Fn−u) −→ Q≥0, V 7−→ dim C ′ − dim C ′(V ⊥, r)

m
.

Consider the isomorphism

ψ : Fn−u −→ X⊥, v 7−→ vD.

Then ψ(V ) ≤ X⊥ for all V ∈ L(Fn−u) and therefore ρM\X(ψ(V )) = ρ(ψ(V )) by the
very definition of deletion. Now the desired equivalence M \ X ≈ Mc(Π(C, A, u))
follows if we can show that

ρ′(V ) = ρ(ψ(V )) for all V ∈ L(Fn−u). (2.17)

In order to do so, let V ∈ L(Fn−u) and let Z ∈ Ft×(n−u) be such that V = rowsp(Z).
From the very definition of the matrices involved we obtain

C(X, C) = {M ∈ C | colsp(M) ≤ X} = {M ∈ C | DM = 0},

C(ψ(V )⊥, C) = {M ∈ C | colsp(M) ≤ ψ(V )⊥} = {M ∈ C | ZDM = 0},

C ′(V ⊥, C) = {N ∈ C ′ | colsp(N) ≤ V ⊥} = {N ∈ C ′ | ZN = 0}.

Furthermore, we have the surjective linear map

ξD : C −→ C ′, M 7−→ DM

and observe that C(X, C) = ker ξD ≤ C(ψ(V )⊥, C) as well as ξD
(
C(ψ(V )⊥, C)

)
=

C ′(V ⊥, C). Hence we conclude

dim C − dim C ′ = dim C(X, C) = dim C(ψ(V )⊥, C)− dim C ′(V ⊥, C).
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As a consequence,

dim C ′ − dim C ′(V ⊥, C)
m

=
dim C − dim C(ψ(V )⊥, C)

m
,

and this establishes (2.17).
We now turn to the second equivalence. Applying the first equivalence to the code C⊥

we obtain Mc(C⊥) \ X ≈ Mc(Π(C⊥, A, u)). With the aid of Theorems 2.1.18 and
2.3.19 this leads to

Mc(C)/X ≈ (Mc(C⊥) \X)∗ ≈ Mc(Π(C⊥, A, u))∗ = Mc(Π(C⊥, A, u)⊥).

Now the desired equivalence follows from Π(C⊥, A, u)⊥ = Σ(C, (A−1)T, u), which has
been proven in [12, Thm. 3.5] (and is true for n ≤ m and n > m).

2.4 Representability of q-Polymatroids.

In this section we discuss representability of q-PMs via rank-metric codes. We will
present various examples of q-matroids that are not representable via Fqm-linear rank-
metric codes (thereby answering a question from [36, Sec. 11]). Later in this section
we will show that a q-matroid is not even representable via any Fq-linear rank-metric
code. We first fix the following notions of representability. Recall Fqm-linearity from
Definition 2.3.7. As before, F = Fq.

Definition 2.4.1. Let E be an n-dimensional F-vector space and M = (E, ρ) be a
q-PM.
(a) M is said to be Fn×m-representable if there exists a rank-metric code C ≤ Fn×m

such that M ≈ Mc(C).
(b) Suppose M is a q-matroid. Then M is said to be Fqm-representable if there exists

a right Fqm-linear code C ≤ Fn×m such that M ≈ Mc(C).

For Fqm-representability, it will be necessary to consider Fqm-linear codes as sub-
spaces of Fn

qm , as previously discussed and consider the rank function of the induced
q-matroid as in Lemma 2.3.9.

We first start with the following example that shows that uniform q-matroids are
always representable over a field large enough.

Example 2.4.2. Let Uk,n(q) be the uniform q-matroid of rank k with ground space Fn
q ;

that is, the rank function is given by ρ(V ) = min{k, dimV } for all V ∈ L(Fn
q ). Then

U0,n(q) and Un,n(q) are representable over Fq. Precisely, U0,n(q) is represented by the
1 × n-zero matrix and Un,n(q) by the n × n-identity matrix. For 0 < k < n, the
uniform q-matroid Uk,n(q) is representable over Fqm if and only if m ≥ n. Indeed,
a matrix G ∈ Fk×n

qm represents Uk,n(q) iff rk(GY T) = k for all Y ∈ Fk×n
q of rank k.

But this is equivalent to G generating an MRD code [21, Thm. 2 and 3] and such a
matrix G exists if and only if m ≥ n; see [28, Rem. 3.10].
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In general, determining whether a q-PM, or even a q-matroid, is representable is
an extremely difficult problem. For instance in classical matroid theory the notion
of representable matroids has been intensively studied, yet the classification of non-
representable matroids is still an open problem.

To illustrate, consider the following example which is a follow up from Exam-
ple 2.2.31.

Example 2.4.3. Let M = (F8
2, ρ) be the q-matroid from example Example 2.2.31.

Then M is representable via the Fqm-linear rank-metric code generated by the follow-
ing matrix. This matrix was found by a carefully crafted random search.

G =


1 ω26772 0 ω43180 0 0 ω46265 ω31452

0 0 1 ω3844 0 0 ω8371 ω59093

0 0 0 0 1 0 ω45712 ω50716

0 0 0 0 0 1 ω12688 ω10916

 ∈ F4×8
216

where ω is a primitive element satisfying ω16 + ω5 + ω3 + ω2 + 1 = 0. It is not clear
to us whether M is representable over a smaller field.

In light of this example, we construct example of q-(poly)matroids that are not
representable. We start with Fqm-representability of q-matroids. Of course, a q-
matroid M = (Fn, ρ) may be representable over some field Fqm , but not over any
smaller field extension of F. This is for instance the case for M = MG, where

G =

(
1 0 0 α
0 1 α2 α4

)
∈ F2×4

24 ,

where α4+α+1 = 0. It can be verified with SageMath or any other computer algebra
system that MG = (F4

2, ρc) is not representable over F2l for l ≤ 3. In fact, MG is not
even F4×l

2 -representable for any l ≤ 3.
We now construct q-matroids that are not Fqm-representable for any m ∈ N. In

order to do so, we will make use of non-representable (classical) matroids. Recall that
a matroid is a pair M = (X, r), where X is a finite set and r : 2X −→ N0 satisfies
(R1)–(R3) from Definition 2.1.1 if we replace the dimension, resp. sum, of subspaces
by the cardinality, resp. union, of subsets. The rank of M is defined as r(X). A
matroid M = (X, r) is called representable over the field F if there exists k ∈ N and
a matrix G ∈ F k×|X| with columns indexed by the elements of X, such that for any
subset A ⊆ X we have r(A) = rk(GA), where GA ∈ F k×|A| is the submatrix of G
consisting of the columns with indices in A. It is easy to see that if such a matrix
exists then we may choose k = r(X).

The next result will provide us with a crucial link between q-matroids and ma-
troids.

Theorem 2.4.4. Let M = (Fn, ρ) be a q-matroid and B = {v1, . . . , vn} be a basis
of Fn. Define

r : 2B −→ N0, A 7−→ ρ(⟨A⟩).
Then (B, r) is a matroid, denoted byM(M,B). Furthermore, ifM is Fqm-representable,
then M(M,B) is Fqm-representable.
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Proof. 1) We show that r is indeed a rank function. (R1) and (R2) are clear. For (R3)
let A,B ⊆ B. By basic Linear Algebra ⟨A ∪B⟩ = ⟨A⟩+⟨B⟩ and ⟨A ∩B⟩ = ⟨A⟩∩⟨B⟩,
and therefore

r(A ∪B) + r(A ∩B) = ρ(⟨A ∪B⟩) + ρ(⟨A ∩B⟩) = ρ(⟨A⟩+ ⟨B⟩) + ρ(⟨A⟩ ∩ ⟨B⟩)
≤ ρ(⟨A⟩) + ρ(⟨B⟩) = r(A) + r(B).

2) We now turn to the statement about representability. Let M = MG for some
G ∈ Fk×n

qm . Define the matrixX = (v1, . . . , vn), which is in GLn(F), and set G′ := GX.
Index the columns of G′ by v1, . . . , vn, and for any A ⊆ B denote by G′

A the submatrix
of G′ with columns indexed by A. Let now A = {va1 , . . . , val} be any subset of B and
Y ∈ Fn×l be the matrix with columns va1 , . . . , val . Then ⟨A⟩ = colsp(Y ) and thus

r(A) = ρ(⟨A⟩) = rk(GY ) = rk(G′X−1Y ) = rk(G′(ea1 , . . . , eal)) = rk(G′
A).

This shows that the matroid M(B, r) is represented by the matrix G′ ∈ Fk×n
qm .

Having established this particular relation between q-matroids and induced ma-
troids, we now turn to a class of matroids that can be interpreted as such induced
matroids. They form a special case of paving matroids. A matroid is called paving if
no circuit has cardinality less than the rank of the matroid. The following result is
well known; see [39, 1.3.10] for a more general statement. We include an elementary
proof which generalizes immediately to q-matroids.

Proposition 2.4.5. Let B be a set with |B| = n and let k ∈ [n]. Let A be a collection
of k-subsets of B such that |A∩B| ≤ k− 2 for all distinct A, B ∈ A. Define the map

r : 2B −→ N0, X 7−→

{
k − 1, if X ∈ A,

min{|X|, k}, if X ̸∈ A.

Then r is a rank function on B. We denote the resulting matroid by MB,A. The
circuits are given by the subsets in A and all (k + 1)-subsets that do not contain a
subset in A.

Proof. (R1) and (R2) are clear. For (R3) we have to show r(A ∪ B) ≤ r(A) +
r(B) − r(A ∩ B) for all subsets A,B ⊆ B. We may assume A ̸⊆ B and B ̸⊆ A for
otherwise the statement is clear. Note that r(A ∪ B) ≤ k for all subsets. Consider
S := r(A) + r(B)− r(A ∩B) and note that S ≥ r(A) + r(B)− |A ∩B|. We proceed
by cases.
1) If r(A) = r(B) = k, then S = 2k − r(A ∩B) ≥ k.
2) If r(A) = |A| and r(B) = k, then S ≥ |A|+k−|A∩B| ≥ |A|+k−(|A|−1) = k+1.
3) If r(A) = |A| and r(B) = |B|, then S ≥ |A|+ |B| − |A∩B| = |A∪B| ≥ r(A∪B).
4) If A, B ∈ A, then S ≥ 2k − 2− |A ∩B| ≥ k.
5) If A ∈ A and r(B) = k, then S ≥ 2k − 1− |A ∩B| ≥ 2k − 1− (k − 1) = k.
6) If A ∈ A and r(B) = |B|, then S ≥ k−1+ |B|−|A∩B| ≥ k−1+ |B|−(|B|−1) =
k.
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The q-analogue reads as follows. The proof is entirely analogous to the previous
one: just replace cardinality and union of subsets by dimension and sum of subspaces,
respectively.

Proposition 2.4.6. Let n ∈ N and fix an integer k ∈ [n]. Let S be a collection of
k-spaces in Fn such that dim(V ∩W ) ≤ k − 2 for all distinct V, W ∈ S. Define the
map

ρ : L(Fn) −→ N0, V 7−→

{
k − 1, if V ∈ S,

min{dimV, k}, if V ̸∈ S.

Then (Fn, ρ) is a q-matroid. We denote it by Mn,F,S .

We can easily link the two constructions.

Proposition 2.4.7. Let B be a basis of Fn and let A be a collection of k-subsets of B
such that |A ∩ B| ≤ k − 2 for all distinct A, B ∈ A. Set S = {⟨A⟩ | A ∈ A}. Then
dim(V ∩W ) ≤ k − 2 for all V, W ∈ S and MB,A =M(Mn,F,S , B).

Proof. It is easy to see that dim(V ∩W ) ≤ k − 2 for all V, W ∈ S. For the second
statement let MB,A = (B, r) and Mn,F,S = (Fn, ρ). Then we have for any subset
X ⊆ B

r(X) =

{
k − 1, if X ∈ A,

min{|X|, k}, if X ̸∈ A,

}
and

ρ(⟨X⟩) =

{
k − 1, if ⟨X⟩ ∈ S,

min{dim ⟨X⟩, k}, if ⟨X⟩ ̸∈ S.

}

This proves the desired statement.

Now we are ready to present examples of q-matroids with ground space Fn that are
not Fqm-representable for any m ∈ N. In each case the non-representability follows
from the non-representability of the associated matroid with the aid of Theorem 2.4.4.
The following examples are universal in the sense that they apply to a large class of
fields F.

Example 2.4.8. (a) The Vamos Matroid [39, Ex. 2.1.25]: Let n = 8, k = 4 and

A =
{
{1, 2, 3, 4}, {1, 4, 5, 6}, {2, 3, 5, 6}, {1, 4, 7, 8}, {2, 3, 7, 8}

}
.

The matroid V8 :=M[8],A is known as the Vamos matroid. It is not representable
over any field [39, p. 169, Ex. 7(e)]. In fact, it is the smallest such matroid.
Choose any finite field F and let ξ be a bijection between [n] and a fixed basis B of
Fn. Then Theorem 2.4.4 and Proposition 2.4.7 tell us that the q-matroid M8,Fq ,S ,
where S = {⟨ξ(A)⟩ | A ∈ A}, is not Fqm-representable for any m ∈ N. A similar
example can be constructed for n = 9, k = 3 and the non-Pappus matroid [39,
Ex. 1.5.15].
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(b) The Fano Matroid [39, Ex. 1.5.7]: Let n = 7, k = 3 and

A =
{
{1, 2, 4}, {2, 3, 5}, {3, 4, 7}, {1, 5, 7}, {2, 6, 7}, {4, 5, 6}, {1, 3, 6}

}
,

which is the set of lines in the Fano plane. The matroid F7 := M[7],A is called
the Fano matroid. It is not representable over any field of odd characteristic [39,
Prop. 6.4.8]. Thus, if q is odd then the corresponding q-matroid M7,Fq ,S , where
S = {⟨ξ(A)⟩ | A ∈ A}, is not Fqm-representable for any m (here ξ is a bijection
between [7] and a basis of F7

q).

(c) The non-Fano Matroid: If one omits one of the sets in the collection A in (b),
one obtains the non-Fano matroid F−

7 :=M[7],A′, which is not representable over
any field of even characteristic [39, Prop. 6.4.8]. Thus we have the analogous
conclusion as in (b) for q-matroids with even q.

It remains an open question whether any of the above q-matroids is Fn×m-repre-
sentable. However, we have the following smaller example of a q-matroid M that
is not Fn×m-representable for any m. It has been shown in [13, Sec. 3.3] that M is
not Fqm-representable. This shows that the converse of Theorem 2.4.4 is not true
because every matroid over a groundset of cardinality 4 is representable over any
field of size at least 3. In fact, the q-matroid of the following theorem together with
all possible choices of bases B in Theorem 2.4.4 lead – up to isomorphism – to the
uniform matroid of rank 2 or to the paving matroids M[4],A with A = {{1, 2}} or
A = {{1, 2}, {3, 4}} (see the notation of Proposition 2.4.5). The latter two matroids
are representable over every field.

Theorem 2.4.9. Let F = F2 and consider S = {V0, V1, V2, V3} ⊂ L(F4), where

V0 = ⟨1000, 0100⟩, V1 = ⟨0010, 0001⟩, V2 = ⟨1001, 0111⟩, V3 = ⟨1011, 0110⟩.

(We may also choose any other partial spread of size 4). Let M = M4,F,S (see
Proposition 2.4.6), that is M = (F4, ρ), where

ρ(V ) = 1 for V ∈ S and ρ(V ) = min{2, dimV } otherwise.

Then M is not F4×m-representable for any m ∈ N.

Proof. Assume to the contrary that there exists m ∈ N and a rank-metric code
C ≤ F4×m such that

ρ(V ) =
dim C − dim C(V ⊥, c)

m
for all V ∈ L(F4).

Using V = F4, we see that dim C = 2m. Furthermore, the above values of ρ(V ) and
the identity S = {V ⊥

0 , . . . , V
⊥
3 } lead to

dim C(V, c) =
{

0, if dimV ≤ 1 or [dimV = 2 and V ̸∈ S],
m, if V ∈ S or dimV = 3.

(2.18)
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The conditions dim C(V0, C) = dim C(V1, C) = m and dim C(V, c) = 0 if dimV = 1
imply that C has a basis of the form(

A1

0

)
, . . . ,

(
Am

0

)
,

(
0
B1

)
, . . . ,

(
0
Bm

)
, (2.19)

where A = ⟨A1, . . . , Am⟩ and B = ⟨B1, . . . , Bm⟩ are MRD codes in F2×m. As for the
spaces V2 and V3 note that

V2 = rowsp

(
1 0 0 1
0 1 1 1

)
= rowsp

(
I2 | ST

)
,

V3 = rowsp

(
1 0 1 1
0 1 1 0

)
= rowsp

(
I2 | TT

)
,

where

S =

(
0 1
1 1

)
, T = S2 = S−1 =

(
1 1
1 0

)
.

Clearly, a matrix M ∈ C is in C(V2, C) if and only if M =
(

A
SA

)
for some A ∈ A.

Hence there exist linearly independent matrices
(

Ãi

SÃi

)
, i = 1, . . . ,m, in C. But then

Ã1, . . . , Ãm ∈ A must be linearly independent. Thus B = SA. Using the space V3
we obtain similarly B = TA. Hence A = T−1SA, and the latter is TA. In other
words, A is T -invariant. Note that {0, I, T, T 2} is the subfield F4, and in particular,
T 2 = I + T . All of this shows that A is an F4-vector space (thus has even dimension
over F2) and has an F2-basis of the form A1, . . . , Aℓ, TA1, . . . , TAℓ, where ℓ = m/2.
Using this basis of A, (2.19) reads as(

A1

0

)
, . . . ,

(
Aℓ

0

)
,

(
TA1

0

)
, . . . ,

(
TAℓ

0

)
,

(
0

TA1

)
, . . . ,

(
0

TAℓ

)
,(

0
(I + T )A1

)
, . . . ,

(
0

(I + T )Aℓ

)
.

This shows that C contains the matrices
(

Ai+TAi

Ai+TAi

)
for i = 1, . . . , ℓ, and therefore

dim C(V, c) ≥ ℓ for V = ⟨1010, 0101⟩. This contradicts (2.18) and we conclude that
there is no code C ≤ F4×m that represents the q-matroid M.

It is not yet clear whether there exists a q-matroid M = (Fn, ρ) and m ∈ N such
that M is not Fqm-representable but Fn×m-representable.

Copyright© Benjamin Jany, 2023.
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Chapter 3 An independent space cryptomorphism for q-polymatroids.

In this chapter, we introduce the notion of independent space for q-polymatroids. We
show that the collection of independent spaces satisfies properties analogous to those
for q-matroids. However, different from the latter, the independent spaces do not
fully determine the q-PM. Only if we also take their rank values into account, can
we fully recover the q-PM. We furthermore study the notion of spanning spaces and
strongly independent spaces. Supporting examples for the theory developed in this
chapter are postponed to Section 3.4. Results from this chapter also appear in [23].

3.1 Independent Spaces of q-polymatroids.

We start this section by introducing the notion of independent space for q-polymatroids.
Considering the theory of classical matroids and q-matroids, one may be inclined to
declare a space V in a q-PM (E, ρ) independent if ρ(V ) = dimV . While this is
indeed the right notion for q-matroids, it turns out to be too restrictive for q-PMs:
in many q-PMs the only subspace satisfying ρ(V ) = dimV is the zero space (e.g.
Example 3.4.2). Nonetheless, the property ρ(V ) = dimV turns out to play a concep-
tual role (see also [9]), and we will return to it in Section 3.3, where we will call such
spaces strongly independent.

The following definition of independence is inspired by [39, Cor. 11.1.2], which
deals with classical polymatroids.

Definition 3.1.1. Let M = (E, ρ) be a q-PM with denominator µ (which need not
be principal). A space I ∈ L(E) is called µ-independent if

ρ(J) ≥ dim J

µ
for all subspaces J ≤ I.

I is called µ-dependent if it is not µ-independent. A µ-circuit is a µ-dependent space
for which all proper subspaces are µ-independent. A 1-dimensional µ-dependent space
is called a µ-loop. We define Iµ = Iµ(M) = {I ∈ L(E) | I is µ-independent}. If µ
is the principal denominator of M, we may skip the quantifier µ and simply use
independent, dependent, loop, circuit, and I.

It is easy to see that the inequality ρ(I) ≥ dim I/µ is not preserved under taking
subspaces (take for instance the subspace I = V from Example 3.4.3), which is
why the condition for subspaces is built into our definition. Clearly, if µ̂ is the
principal denominator of M, then µ̂-independence implies µ-independence for any
denominator µ of M. Furthermore, the zero subspace of E is µ-independent, and
every dependent space V contains a circuit: take any subspace W of V of smallest
dimension satisfying ρ(W ) < dimW/µ (which clearly exists).

Let us consider the independent spaces of the q-PMs induced by MRD codes.

Example 3.1.2. Let C ≤ Fn×m be an MRD code with rank distance d.
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(a) If m ≥ n then I1(MC(C)) = {V ∈ L(Fn) | dimV ≤ n− d+1}. This follows from
Proposition 2.3.11 and the fact that the independent spaces of uniform q-matroid
U = Uk(E) are exactly the space of dimension at most k.

(b) If m ≤ n then Im(MC(C)) = L(Fn), which can be verified with the aid of Theo-
rem 2.3.13.

For q-matroids our notion of independence coincides with independence in Defi-
nition 2.2.7.

Proposition 3.1.3. Let (E, ρ) be a q-PM. Then for all V ∈ L(E)

ρ(V ) = dimV =⇒ ρ(W ) = dimW for all W ≤ V.

As consequence, if (E, ρ) is a q-matroid, then V is 1-independent iff ρ(V ) = dimV .

Proof. Writing V = W ⊕Z for some complement Z ofW , we obtain dimV = ρ(V ) ≤
ρ(W ) + ρ(Z) ≤ dimW + dimZ = dimV , and thus we have equality everywhere.

We continue with discussing basic properties of independent spaces, thereby fo-
cusing on the differences to q-matroids. Supporting examples are given in Section 3.4.

Remark 3.1.4. (a) While in a q-matroid a space is independent iff its rank value
assumes the maximal possible value, this is not the case for q-PMs. More pre-
cisely, independent spaces of the same dimension need not have the same rank
value. This is illustrated by Example 3.4.2.

(b) Dependent spaces may have a larger rank value than independent spaces of the
same dimension; see Example 3.4.3.

(c) Let V ∈ L(E) be a µ-circuit. Then µρ(V ) = dimV − 1 = µρ(W ) for all hy-
perplanes W in V . Indeed, independence of W along with (R2) tells us that
dimV − 1 = dimW ≤ µρ(W ) ≤ µρ(V ) < dimV . Thus we have equality
since µρ takes integer values. While in a q-matroid a subspace V satisfying
µρ(V ) = dimV − 1 = µρ(W ) for all its hyperplanes W is a circuit, this is
not the case for q-PMs; see Example 3.4.4.

(d) A q-PM with principal denominator µ is not uniquely determined by its collection
of µ-independent spaces. For instance, in either of the non-equivalent q-PMs in
Example 2.3.16 all subspaces are 2-independent. This example also shows that –
different from q-matroids – a q-PM in which all spaces are µ-independent need
not be a uniform q-matroid.

Independence behaves well under scaling-equivalence if the denominator is taken
into account.

Remark 3.1.5. Let dimE1 = dimE2 and Mi = (Ei, ρi), i = 1, 2, be q-PMs with prin-
cipal denominators µi. Suppose M1 and M2 are scaling-equivalent, say ρ2(α(V )) =
aρ1(V ) for all V ∈ L(E1), where a ∈ Q>0 and α : E1 −→ E2 an isomorphism.
Then a−1µ1ρ2(α(V )) = µ1ρ1(V ) ∈ N and thus a−1µ1 is a denominator of M2. Hence
a−1µ1 = kµ2 for some k ∈ N; see Remark 2.1.4(b). Similarly, aµ2 = k̂µ1 for some
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k̂ ∈ N. Thus k = k̂ = 1 and aµ2 = µ1. Now we have µ2ρ2(α(V )) = µ1ρ1(V ) for all
V ∈ L(E) and therefore

V is µ1-independent in M1 ⇐⇒ µ1ρ1(W ) ≥ dimW for all W ≤ V

⇐⇒ µ2ρ2(α(W )) ≥ dimα(W ) for all α(W ) ≤ α(V )

⇐⇒ α(V ) is µ2-independent in M2.

In order to derive our main result about the collection of µ-independent spaces,
we will make use of an auxiliary q-matroid. The following construction mimics the
corresponding one in [39, Prop. 11.1.7] for classical polymatroids.

Theorem 3.1.6. Let M = (E, ρ) be a q-PM with denominator µ. Define the map

rρ,µ : L(E) −→ N0, V 7−→ min{µρ(W ) + dimV − dimW | W ≤ V }.
Then Z := ZM,µ := (E, rρ,µ) is a q-matroid, and the independent spaces of Z coincide
with the µ-independent spaces of M, i.e.,

Iµ(M) = I(Z) = {I ∈ L(E) | rρ,µ(I) = dim I}.
Proof. Recall the induced integer ρ-function τ = µρ. Thus τ(V ) = µρ(V ) ≤ µ dimV
for all V ∈ L(E). Clearly r := rρ,µ takes integer values. We now verify (R1)–(R3) of
Definition 2.1.1 for r.

(R1) Obviously r(V ) ≥ 0 for all V . Furthermore, r(V ) ≤ τ(0) + dim(V )− dim(0) =
dimV .

(R2) Let V ≤ V ′. It suffices to consider the case dimV ′ = dimV + 1 and thus
V ′ = V ⊕ ⟨x⟩ for some x ∈ E. Assume by contradiction that r(V ) > r(V ′). Then
there exists W ′ ≤ V ′ such that

τ(W ′) + dimV ′ − dimW ′ < τ(W ) + dimV − dimW for all W ≤ V. (3.1)

Clearly W ′ ̸≤ V and thus we may write W ′ = X ⊕ ⟨y⟩ for some X ≤ V and y ̸∈ V .
Then dimX = dimV − dimV ′ + dimW ′ and (3.1) leads to

τ(W )−dimW > τ(W ′)+dimV ′−dimW ′−dimV = τ(W ′)−dimX for all W ≤ V.

ChoosingW = X, we arrive at τ(X) > τ(W ′) and thus ρ(X) > ρ(W ′). SinceX ≤ W ′

this contradicts that ρ is a rank function. All of this establishes (R2) for the map r.

(R3) Let V, V ′ ∈ L(E). Choose W ≤ V, W ′ ≤ V ′ such that

r(V ) = τ(W ) + dimV − dimW and r(V ′) = τ(W ′) + dimV ′ − dimW ′.

Then W +W ′ ≤ V + V ′ and W ∩W ′ ≤ V ∩ V ′ and therefore

r(V +V ′) + r(V ∩ V ′) ≤ τ(W +W ′) + dim(V + V ′)− dim(W +W ′)

+ τ(W ∩W ′) + dim(V ∩ V ′)− dim(W ∩W ′)

= τ(W+W ′) + τ(W∩W ′) + dimV − dimW

+ dimV ′ − dimW ′

≤ τ(W ) + τ(W ′) + dimV − dimW + dimV ′ − dimW ′

= r(V ) + r(V ′),
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where the second inequality follows from (R3) for ρ. This establishes (R3) for the
map r.

It remains to investigate the µ-independent spaces. From Definition 3.1.1 and (R1)
we obtain

V is µ-independent ⇐⇒ τ(W ) ≥ dimW for all W ≤ V

⇐⇒ τ(W ) + dimV − dimW ≥ dimV for all W ≤ V

⇐⇒ r(V ) ≥ dimV

⇐⇒ r(V ) = dimV.

Together with Proposition 3.1.3 this establishes the stated result.

It should be noted that the auxiliary q-matroid ZM,µ does not uniquely determine
the q-PM M, even if µ is the principal denominator. This can be seen from Exam-
ple 2.3.16: both M1 and M2 have principal denominator 2 and in either q-PM all
spaces are 2-independent (see also Example 3.1.2(b)). Hence Theorem 3.1.6 implies
ZM1,2 = ZM2,2 = U5(F5

2).
As we show next, a q-matroid M coincides with its auxiliary q-matroid ZM,1.

Remark 3.1.7. Let M = (E, ρ) be a q-matroid, thus ρ takes only integer values.
(a) We show that ZM,1 = M. The auxiliary rank function is rρ,1(V ) = min{ρ(W ) +

dimV − dimW | W ≤ V } for V ∈ L(E). Choosing W = V we obtain rρ,1(V ) ≤
ρ(V ). For the opposite inequality, choose W ≤ V . Then there exists Z ≤ V such
that W ⊕ Z = V and submodularity (R3) yields

ρ(V ) = ρ(W + Z) ≤ ρ(W ) + ρ(Z) ≤ ρ(W ) + dimZ = ρ(W ) + dimV − dimW.

Since W is arbitrary, this shows ρ(V ) ≤ rρ,1(V ) and thus ZM,1 = M.

(b) If we choose µ > 1, then there is in general no obvious relation between ZM,µ

and M; see Example 3.4.5.

Theorem 3.1.6 shows that the µ-independent spaces of the q-PM M coincide with
the independent spaces of the auxiliary q-matroid ZM,µ. Therefore, all properties of
independent spaces of q-matroids, recall 2.2.10 that do not involve the value of the
rank function hold true for q-PMs as well. Before formulating our result we cast the
following important notions.

Definition 3.1.8. Let M = (E, ρ) be a q-PM with denominator µ. For V ∈ L(E)
we define

Iµ(V ) = {I ∈ Iµ(M) | I ≤ V }.

A subspace Î ∈ Iµ(V ) is said to be a µ-basis of V if there exists no J ∈ Iµ(V ) such

that Î ⪇ J . We denote by Bµ(V ) the set of all µ-bases of V . The µ-bases of E are
called the µ-bases of M.
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The µ-bases of V are thus the inclusion-maximal µ-independent subspaces of V
(i.e., the maximal elements of the poset (Iµ(V ),≤)). Their rank values will be dis-
cussed in the next section. Note that the sets Iµ(V ) and Bµ(V ) are non-empty for
every V ∈ L(E) since {0} is µ-independent.

We are now ready to present the following properties of the collection of µ-
independent spaces of a q-PM. The result is an immediate consequence of Theo-
rem 3.1.6 together with [36, Thm. 8].

Corollary 3.1.9. Let M = (E, ρ) be a q-PM with denominator µ and set Iµ :=
Iµ(M). Then
(I1)Iµ ̸= ∅, in fact {0} ∈ Iµ.

(I2)If I ∈ Iµ and J ≤ I, then J ∈ Iµ.

(I3)If I, J ∈ Iµ and dim I < dim J , then there exists x ∈ J \I such that I⊕⟨x⟩ ∈ Iµ.

(I4)Let V, W ∈ L(E) and I ∈ Bµ(V ), J ∈ Bµ(W ). Then there exists a basis K ∈
Bµ(V +W ) that is contained in I + J .

Note that (I3) implies that for any V ∈ L(E) we have

Bµ(V ) = {Î ∈ Iµ(V ) | Î is dimension-maximal in Iµ(V )}. (3.2)

Since the independent spaces of the q-matroid ZM,µ coincide with those of the
q-PM M, the same is true for the dependent spaces, circuits, and bases. As a conse-
quence, any property about the collection of these spaces in q-matroids holds true for
q-PMs as well – as long as it does not involve the rank value. Let us illustrate this
for the dependent spaces and bases. The following properties have been established
in [11, Thm. 67] and [36, Thm. 37] for q-matroids and therefore apply to q-PMs as
well.

Corollary 3.1.10. Let M = (E, ρ) be a q-PM with denominator µ. Let Dµ and
Bµ be the collection of µ-dependent spaces and µ-bases of M, respectively. Then Dµ

and Bµ satisfy
(D1){0} ̸∈ Dµ.

(D2)If D1 ∈ Dµ and D2 ∈ L(E) such that D1 ⊆ D2, then D2 ∈ Dµ.

(D3)Let D1, D2 ∈ Dµ be such that D1 ∩D2 ̸∈ Dµ. Then every subspace of D1 +D2

of codimension 1 is in Dµ.

(B1)Bµ ̸= ∅.
(B2)Let B1, B2 ∈ Bµ be such that B1 ≤ B2. Then B1 = B2.

(B3)Let B1, B2 ∈ Bµ and A be a subspace of B1 of codimension 1 such that B1∩B2 ≤
A. Then there exists a 1-dimensional subspace Y of B2 such that A+ Y ∈ Bµ.

(B4)Let A1, A2 ∈ L(E) and I1, I2 be maximal dimensional intersections of some
members of Bµ with A1 and A2, respectively. Then there exist a maximal di-
mensional intersection of a member of Bµ with A1 + A2 that is contained in
I1 + I2.

In [11, Thm. 68] and [36, Thm. 37] it has been shown that any collection of
subspaces satisfying (D1)–(D3) (resp. (B1)–(B4)) is the collection of dependent spaces
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(resp. bases) of a unique q-matroid. Similar statements hold true for circuits in q-
matroids (see [11, Cor. 72]). None of these characterizations extend to q-PMs – even
if we take the rank values into account. This can be seen from the two non-equivalent
q-PMs in Example 2.3.16: In both cases, the only 2-basis is F5 and has rank value
5/2. Trivially, this example also shows that the circuits and dependent spaces along
with their rank values do not determine the q-PM. Example 3.4.6 is a non-trivial
example for the same phenomenon.

On the positive side, in the next section we will show that we can fully recover a
q-PM from its independent spaces and their rank values. Recall from Remark 3.1.4(d)
that the independent spaces alone (without their rank values) do not uniquely deter-
mine the q-PM.

3.2 The Rank Function on Independent Spaces.

We begin by showing that for a q-PM the rank function is fully determined by its
values on the independent spaces. We then go on to prove that all bases of a given
subspace have the same rank value, and this value coincides with the rank value of the
subspace. This result allows us to investigate whether a collection of spaces satisfying
(I1)–(I4) from Corollary 3.1.9 gives rise to a q-PM whose collection of independent
spaces is exactly the initial collection. Since the rank value of independent spaces in
a q-PM is not as rigid as in a q-matroid, we also need to specify a meaningful rank
function on the collection of spaces. All of this results in Theorems 3.2.4 and 3.2.5.

Theorem 3.2.1. Let M = (E, ρ) be a q-PM with denominator µ and let V ∈ L(E).
Then

ρ(V ) = max{ρ(I) | I ∈ Iµ(V )}.

Proof. Set ρ′(V ) = max{ρ(I) | I ∈ Iµ(V )}. Thanks to (R2), ρ′(V ) ≤ ρ(V ), and it

remains to establish ρ(V ) ≤ ρ′(V ). Let Î ∈ Iµ(V ) be of maximal possible dimension

such that ρ(Î) = ρ′(V ). If V is µ-independent, then Î = V and we are done. Thus
let V be µ-dependent.

Case 1: dim Î = dimV − 1.
Then V = Î ⊕ ⟨x⟩ for any x ∈ V \ Î and submodularity of ρ implies ρ(V ) ≤ ρ(Î) +
ρ(⟨x⟩). As before, we use the integer ρ-function τ = µρ. Let s be minimal such
that there exists an s-dimensional µ-circuit of V , say W . Such space exists by µ-
dependence of V . Then Remark 3.1.4(c) implies τ(W ) = dimW − 1. By (I2) W is
not contained in Î and thus W ∩ Î is a hyperplane of W thanks to dim Î = dimV −1.
Hence Remark 3.1.4(c) yields τ(W ∩ Î) = τ(W ). Using that V = W + Î, we obtain
by submodularity of τ

τ(V ) ≤ τ(W ) + τ(Î)− τ(W ∩ Î) = τ(Î) = µρ′(V ).

All of this shows that ρ(V ) = ρ′(V ), as desired.

Case 2: dim Î < dimV − 1.
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Let x ∈ V \ Î. Using that ρ′(W ) ≤ ρ′(Z) for any subspaces W,Z such that W ≤ Z,
we obtain

ρ(Î) = ρ′(Î) ≤ ρ′(Î ⊕ ⟨x⟩) ≤ ρ′(V ) = ρ(Î),

and hence ρ(Î) = ρ′(W ), where W := Î ⊕ ⟨x⟩. Note that W is µ-dependent thanks
to the maximality of Î. Furthermore, dim Î = dimW − 1. Therefore Case 1 yields
ρ′(W ) = ρ(W ). Now we arrived at ρ(Î) = ρ(Î + ⟨x⟩) for all x ∈ V , and [26,
Prop. 2.5(a)] (based on [36, Prop. 6]) tells us that ρ(Î) = ρ(V ). Since ρ(Î) = ρ′(V ),
this concludes the proof.

Corollary 3.1.9 and Theorem 3.2.1 generalize one direction of [36, Thm. 8] where
the same properties are proven for the independent spaces of q-matroids. Our next
goal is to generalize the other direction of [36, Thm. 8], namely to characterize the
collections of spaces plus rank values that give rise to a q-PM having those spaces
as independent spaces. The following result will be crucial. It shows that the rank
value of any µ-basis of a subspace V equals the rank value of V .

Theorem 3.2.2. Let M = (E, ρ) be a q-PM with denominator µ. Let V ∈ L(E).
Then

ρ(I) = ρ(V ) for all I ∈ Bµ(V ).

In particular, all µ-bases of V have the same rank value.

Proof. Throughout the proof we will omit the subscript µ. The result is clearly true
if V is independent. Thus, let V be dependent. Set t = dimV . In order to avoid
denominators we use again the integer ρ-function τ := µρ. First of all, there exists

J ∈ B(V ) such that τ(J) = τ(V ). (3.3)

Indeed, by Theorem 3.2.1 there exists J ∈ I(V ) such that τ(J) = τ(V ), and by
Property (I2) along with the monotonicity of τ we may assume that J ∈ B(V ). Note
that by (3.2) all spaces in B(V ) have the same dimension, which we denote by s.

Case 1: s = t − 1. Let I ∈ B(V ). We want to show that τ(I) = τ(V ). Choose a
circuit, say C, in V . Then τ(C) = dimC − 1 (see Remark 3.1.4(c)). Clearly, C ̸⊆ I
by Property (I2) and thus C + I = V thanks to dim I = dimV − 1. Furthermore,
C ∩ I is independent, being a subspace of I, and thus τ(C ∩ I) ≥ dim(C ∩ I). Using
submodularity, we obtain

τ(V ) = τ(C + I) ≤ τ(C) + τ(I)− τ(C ∩ I) ≤ dimC − 1 + τ(I)− dim(C ∩ I)
= τ(I) + dim(C + I)− (dim I + 1) = τ(I),

where the last step follows from C + I = V and dim I +1 = dimV . All of this shows
τ(I) ≥ τ(V ), and thus τ(I) = τ(V ) thanks to (R2). Hence all bases of V have the
same rank value.

Case 2: s < t− 1. We will show that

τ(I) = τ(J) for all I ∈ B(V ), (3.4)
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where J is as in (3.3). We induct on the codimension of I ∩ J in I. Let dim(I ∩ J) =
s− r, thus 0 ≤ r ≤ s. The case r = 0 is trivial.
i) Let r = 1. Then I = (I ∩ J) ⊕ ⟨x⟩ for some x ∈ I \ J . Set W = J ⊕ ⟨x⟩. Then
W ≤ V and dimW = dim J +1. Thus W is dependent by maximality of J . Hence I
and J are elements of B(W ), and Case 1 implies τ(I) = τ(J).
ii) Assume now τ(I) = τ(J) for all I ∈ B(V ) such that dim(I ∩ J) ≥ s − (r − 1)
for some r ≥ 2. Let I ∈ B(V ) be such that dim(I ∩ J) = s − r. Choose K ≤ I
and x ∈ I \ J such that I = (I ∩ J) ⊕K ⊕ ⟨x⟩ and set I1 = (I ∩ J) ⊕K. Then I1
is independent and dim I1 = dim I − 1 = dim J − 1. Thanks to Property (I3) there
exists y ∈ J \ I1 such that

I ′ := I1 ⊕ ⟨y⟩ ∈ B(V ).

Now we have three bases, I ′, I, J , of V . We show first τ(I) = τ(I ′). Since y ̸∈ I we
have the subspace W := I ⊕ ⟨y⟩ of V , which must be dependent due to maximality
of I. Furthermore, I, I ′ ≤ W and dim I ′ = dim I = dimW − 1, and therefore
τ(I) = τ(I ′) thanks to Case 1. Next, we show τ(I ′) = τ(J). In order to do so, note
that I ′ = (I ∩ J) ⊕K ⊕ ⟨y⟩, where y ∈ J . Thus dim(I ′ ∩ J) ≥ s − (r − 1) and the
induction hypothesis yields τ(I ′) = τ(J). All of this establishes (3.4) and concludes
the proof.

Remark 3.2.3. In a q-matroid M = (E, ρ) a subspace V ∈ L(E) satisfies

V is independent and ρ(V ) = ρ(E) ⇐⇒ V is a basis of M.

The forward direction is the definition of basis in [36, Def. 2]. By Theorem 3.2.2
the direction “⇐=” holds true for q-PMs as well. However, “=⇒” is not true, as
the q-PMs in Examples 2.3.16 and 3.4.6 show. In other words, in a q-PM not every
I ∈ Iµ(V ) satisfying ρ(I) = ρ(V ) is a µ-basis of V .

We are now ready to provide a characterization of the pairs (I, ρ̃) of collections I
of subspaces and rank functions ρ̃ on I that give rise to a q-PM whose collection of
independent spaces is I and whose rank function restricts to ρ̃. Clearly, I has to
satisfy (I1)–(I4) from Corollary 3.1.9, and ρ̃ must satisfy (R1)–(R3). However, for
independence we also need the rank condition from Definition 3.1.1. This leads to
(R1′) in Theorem 3.2.4 below. Furthermore, since the sum of independent spaces
need not be independent, we have to adjust (R3) and replace ρ̃(I+J) by max{ρ̃(K) |
K ∈ I, K ≤ I + J}, thereby accounting for Theorem 3.2.1. This results in the
submodularity condition (R3′) below. Since one can easily find examples showing
that (R1′)–(R3′) are not sufficient to guarantee submodularity of the extended rank
function (defined in (3.5) below), we also have to enforce Theorem 3.2.2. This leads
to condition (R4′), which states that for any space V all maximal subspaces that
are contained in I have the same rank value. As we will see, all these conditions
together guarantee submodularity of the extended rank function, and the spaces
in I are independent in the resulting q-PM. However, the q-PM may have additional
independent subspaces; see Example 3.4.7. In order to prevent this, we need a natural
closure property. This will be spelled out in Theorem 3.2.5.
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Theorem 3.2.4. Let I be a subset of L(E). For V ∈ L(E) set I(V ) = {I ∈ I | I ≤
V } and denote by Imax(V ) the set of inclusion-maximal subspaces in I(V ). Suppose I
satisfies the following.

(I1) {0} ∈ I.

(I2) If I ∈ I and J ≤ I, then J ∈ I.

(I3) If I, J ∈ I and dim I < dim J , then there exists x ∈ J \I such that I⊕⟨x⟩ ∈ I.

(I4) Let V, W ∈ L(E) and I ∈ Imax(V ), J ∈ Imax(W ). Then there exists a space
K ∈ Imax(V +W ) that is contained in I + J .

Furthermore, let ρ̃ : I −→ Q and µ ∈ Q>0 such that µρ̃(I) ∈ Z for all I ∈ I.
Suppose ρ̃ satisfies the following.

(R1′) 0 ≤ µ−1 dim I ≤ ρ̃(I) ≤ dim I for all I ∈ I.

(R2 ′) If I, J ∈ I such that I ≤ J , then ρ̃(I) ≤ ρ̃(J).

(R3 ′) For all I, J ∈ I we have max{ρ̃(K) | K ∈ I(I + J)}+ ρ̃(I ∩ J) ≤ ρ̃(I) + ρ̃(J).

(R4 ′) For all V ∈ L(E) and I, J ∈ Imax(V ) we have ρ̃(I) = ρ̃(J).

Define the map

ρ : L(E) −→ Q, V 7−→ max{ρ̃(I) | I ∈ I(V )}. (3.5)

Then M = (E, ρ) is a q-PM with denominator µ, and I ⊆ Iµ(M).

Note that thanks to (I3) the set Imax(V ) equals the set of maximal-dimensional
spaces in I(V ). Furthermore, by (R2′) and (R4′) every V ∈ L(E) satisfies ρ(V ) =
ρ̃(I) for each I ∈ Imax(V ).

Proof. It is clear that µ is a denominator of ρ. We have to show that ρ satisfies
(R1)–(R3) from Definition 2.1.1.
(R1) Let V ∈ L(E) and I ∈ I such that I ≤ V and ρ̃(I) = ρ(V ). Then 0 ≤ ρ̃(I) ≤
dim I ≤ dimV , which establishes (R1).
(R2) Let V,W ∈ L(E) be such that V ≤ W . Let I ∈ I be such that I ≤ V and
ρ̃(I) = ρ(V ). Then I ≤ W and the definition of ρ implies ρ(W ) ≥ ρ̃(I) = ρ(V ), as
desired.
(R3) Let V,W ∈ L(E). Choose K ∈ Imax(V ∩ W ). Then (3.5) implies ρ̃(K) =
ρ(V ∩W ). Applying (I3) repeatedly, we can find I ∈ Imax(V ) and J ∈ Imax(W ) such
that K ≤ I and K ≤ J . By (I4) there exists H ∈ Imax(V +W ) such that H ≤ I +J .
Now (R2′) and (R4′) imply

ρ̃(I) = ρ(V ), ρ̃(J) = ρ(W ), ρ̃(H) = ρ(I + J) = ρ(V +W ),

ρ̃(K) = ρ̃(I ∩ J) = ρ(V ∩W ).
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From (R3′) we obtain ρ(I + J) + ρ̃(I ∩ J) ≤ ρ̃(I) + ρ̃(J), and we finally arrive at

ρ(V +W )+ρ(V ∩W ) = ρ̃(H)+ρ̃(K) = ρ(I+J)+ρ̃(I∩J) ≤ ρ̃(I)+ρ̃(J) = ρ(V )+ρ(W ),

as desired. Finally, (R1′) shows that the spaces in I are µ-independent, thus I ⊆
Iµ(M).

The q-PM M from the last theorem has in general more independent spaces
than I; see Example 3.4.7. We can easily force equality I = Iµ(M) by adding the
following natural closure property.

Theorem 3.2.5. Let the pair (I, ρ̃) be as in Theorem 3.2.4. Suppose (I, ρ̃) satisfies
(I1)–(I4) and (R1′)–(R4′) as well as the following closure property:

(C) If V ∈ L(E) is such that
(a) all proper subspaces of V are in I,
(b) max{ρ̃(I) | I ∈ I(V )} ≥ µ−1 dimV ,

then V is in I.

Then I = Iµ(M) for the q-PM M from Theorem 3.2.4.

Note that by (I2) and (R1′), any subspace V ∈ I satisfies the properties in (a)
and (b).

Proof. Thanks to Theorem 3.2.4 it remains to show that any V ∈ Iµ(M) is in I.
Recall that ρ(V ) = max{ρ̃(I) | I ∈ I(V )}. We induct on dimV .
i) Let dimV = 1. Then ρ(V ) ≥ µ−1 dimV holds true by the definition of µ-
independence, hence (b) is satisfied. Property (a) is trivially satisfied by (I1). Now (C)
implies V ∈ I.
ii) Let dimV = r and assume that all subspaces V ∈ Iµ(M) of dimension at most
r − 1 are in I. Since V ∈ Iµ(M), the same is true for all its subspaces. Hence all
proper subspaces are in I by induction hypothesis. Again, ρ(V ) ≥ µ−1 dimV is true
by µ-independence and thus Property (C) implies that V ∈ I.

3.3 Spanning Spaces and Strongly Independent Spaces.

In this section, we introduce (minimal) spanning spaces and (maximally) strongly
independent subspaces. While in q-matroids the notions ‘minimal spanning space’,
‘maximally strongly independent space’, and ‘basis’ coincide, they are distinct for q-
PMs. However, in q-PMs spanning spaces turn out to be the dual notion to strongly
independent spaces. This result may be regarded as the generalization of the duality
result for bases in q-matroids. The latter states that for a q-matroid M a space B is a
basis of M if and only if B⊥ is a basis of M∗. We show that, in fact, this equivalence
characterizes q-matroids within the class of q-PMs.

Definition 3.3.1. Let M = (E, ρ) be a q-PM and let V ∈ L(E).
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(a) V is called a spanning space if ρ(V ) = ρ(E) and V is a minimal spanning space
if it is a spanning space and no proper subspace is a spanning space.

(b) V is strongly independent if ρ(V ) = dimV and it is maximally strongly in-
dependent if it is strongly independent and not properly contained in a strongly
independent subspace.

Clearly, strongly independent subspaces are µ-independent for every denomina-
tor µ of M. Furthermore, in q-matroids strong independence coincides with indepen-
dence. We remark that strongly independent subspaces of q-PMs play a crucial role
in [9] for the construction of subspace designs. For q-matroids the following notions
coincide.

Proposition 3.3.2. Let M = (E, ρ) be a q-matroid and V ∈ L(E). Then

V is maximally strongly independent ⇐⇒ V is a basis

⇐⇒ V is a minimal spanning space.

Proof. The first equivalence is clear since for q-matroids strong independence coin-
cides with independence (see Proposition 3.1.3). We turn to the second equivalence.
“⇒” Let V be a basis of M. Then dimV = ρ(V ) = ρ(E). For every proper subspace
W ⪇ V we have ρ(W ) ≤ dimW < dimV = ρ(E), hence W is not a spanning space.
This proves minimality of V . “⇐” Let now V be a minimal spanning space. Then
ρ(V ) = ρ(E). Suppose V is dependent. Then there exists a basis W of V , and Theo-
rem 3.2.2 implies ρ(W ) = ρ(V ) = ρ(E). This contradicts minimality of V . Hence V
is independent and thus a basis thanks to Remark 3.2.3.

The last result is not true for q-PMs. For instance, it can be verified that for either
q-PM in Example 2.3.16 the basis has dimension 5, the minimal spanning spaces have
dimension 3, and the maximally strongly independent spaces have dimension 2. On
the other hand, there exist q-PMs that are not q-matroids and yet the bases coincide
with the minimal spanning spaces (for instance the q-PM (F3, ρ) in [26, Ex. 4.2]).
Thus the second equivalence in Proposition 3.3.2 does not characterize q-matroids.
As for the first equivalence, note that if a µ-basis of a q-PM is strongly independent,
then this is true for all bases (because they all have the same dimension by (3.2)
and the same rank by Theorem 3.2.2). Thus all independent spaces are strongly
independent thanks to Proposition 3.1.3 and the rank function is integer-valued by
Theorem 3.2.1. This shows that the first equivalence does characterize q-matroids.

The following describes the relation between bases and minimal spanning spaces
in a q-PM.

Proposition 3.3.3. Let M = (E, ρ) be a q-PM with denominator µ.
(a) A minimal spanning space is µ-independent.

(b) Every µ-basis of M contains a minimal spanning space and every minimal span-
ning space is contained in a µ-basis.

Proof. (a) Let V be a minimal spanning space. If V is µ-dependent, then V contains
a µ-basis W , and Theorem 3.2.2 implies ρ(W ) = ρ(V ) = ρ(E). This contradicts
minimality of V . (b) is clear.
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Recall duality from Theorem 2.1.11. Our next result shows that bases are com-
patible with duality in “the expected way” if and only if the q-PM is a q-matroid.
Part (a) has been established in [36].

Proposition 3.3.4. Let the q-PMs M = (E, ρ) and M∗ = (E, ρ∗) be as in Theo-
rem 2.1.11.
(a) If M is a q-matroid, then for every basis B of M the orthogonal space B⊥ is a

basis of M∗.

(b) Let µ be a denominator of M. Suppose there exists a µ-basis B of M such that
the orthogonal space B⊥ is a µ-basis of M∗. Then M is a q-matroid.

Proof. (a) has been proven in [36, Thm. 45].
(b) Let B be a µ-basis of M and B⊥ be a µ-basis of M∗. Then ρ(B) = ρ(E) and thus
ρ∗(B⊥) = dimB⊥ + ρ(B)− ρ(E) = dimB⊥. Theorem 3.2.2 implies that every basis
B̂ of M∗ satisfies ρ∗(B̂) = ρ∗(B⊥) = dimB⊥ = dim B̂. Now Proposition 3.1.3 yields
ρ∗(I) = dim I for all µ-independent spaces I of M∗. Hence the dual rank function ρ∗

is integer-valued on the µ-independent spaces. But then the entire rank function ρ∗

is integer-valued thanks to Theorem 3.2.1. Now ρ = ρ∗∗ is also integer-valued, which
means that M is a q-matroid.

The above result has an interesting consequence. Recall from Theorem 3.1.6
the auxiliary q-matroid ZM,µ. Part (b) above implies that if M is a q-PM with
denominator µ andM is not a q-matroid, then ZM∗,µ ̸≈ Z∗

M,µ. Indeed, Theorem 3.1.6
implies that a subspace B ∈ L(E) is a µ-basis in M if and only if it is a basis in
ZM,µ. Thanks to Proposition 3.3.4(a) the latter is equivalent to B⊥ being in basis in
Z∗

M,µ. But by Proposition 3.3.4(b) B⊥ is not a basis of M∗, and thus not of ZM∗,µ.
Spanning spaces and strongly independent spaces are mutually dual, as one can

see immediately with (2.1). This may be regarded a generalization of [11, Prop. 87]
and [36, Thm. 45] (i.e., Proposition 3.3.4(a)), where the same results have been
established for q-matroids.

Proposition 3.3.5. Let M and M∗ be as in Proposition 3.3.4 and let V ∈ L(E).
Then V is a (minimal) spanning space in M if and only if V ⊥ is (maximally) strongly
independent in M∗.

We close the section with a few remarks on the properties – or rather lack thereof
– of strongly independent spaces and spanning spaces in q-PMs. Neither maximally
strongly independent spaces nor minimal spanning spaces are as well-behaved as
bases. This is not surprising since neither collection consists of subspaces of constant
dimension (which can be verified with Example 3.4.6).

Remark 3.3.6. (a) Let M be a q-PM and Ĩ be its collection of strongly independent
subspaces. Thanks to Proposition 3.1.3 Ĩ satisfies (I2) of Corollary 3.1.9. It is
not hard to find (sufficiently large) examples showing that Ĩ does not satisfy (I3)
and (I4).
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(b) Bases in a q-PM satisfy conditions (B1)–(B4) in Corollary 3.1.10. But neither
the maximally strongly independent subspaces nor the minimal spanning spaces
satisfy (B3) or (B4).

3.4 Examples.

Example 3.4.1. Example 2.3.16 gives two MRD codes in F5×2
2 with the same rank

distance whose column q-PMs are not equivalent. Recall C1 = ⟨A1, . . . , A5⟩ and C2 =
⟨B1, . . . , B5⟩, where

A1 =


1 1
1 0
0 0
1 0
0 0

 , A2 =


1 1
1 1
1 0
0 1
0 0

 , A3 =


0 0
0 0
1 1
0 0
0 1

 , A4 =


0 0
0 1
0 0
0 0
1 1

 , A5 =


1 0
0 1
1 1
0 0
0 1

 ,

and

B1 =


1 0
0 1
0 0
0 0
0 0

 , B2 =


0 0
1 0
0 1
0 0
0 0

 , B3 =


0 0
0 0
1 0
0 1
0 0

 , B4 =


0 0
0 0
0 0
1 0
0 1

 , B5 =


0 1
0 0
0 1
0 0
1 0

 .

Both codes are MRD with rank distance d = 2, and C2 is actually a (F25-linear)
Gabidulin code. Consider the q-PMs Mi := MC(Ci) = (F5, ρiC), i = 1, 2. From
Theorem 2.3.13 we know that ρ1C(V ) = ρ2C(V ) = dimV for dimV ≤ 1 and ρ1C(V ) =
ρ2C(V ) = 5/2 if dimV ≥ 4. As for the 2-dimensional subspaces of F5

2, it turns out
that the map ρ1C assumes the value 1 exactly once and the values 3/2 and 2 exactly 28
and 126 times, respectively, whereas ρ2C assumes the values 3/2 and 2 exactly 31 and
124 times, respectively, and never takes the value 1. Similar differences occur for the
3-dimensional subspaces. Thus M1 and M2 are not equivalent.

Example 3.4.2. Independent spaces of the same dimension need not have the same
rank value. Let F = F2 and consider the code C ≤ F3×3 generated by0 1 0

0 0 1
0 0 1

 ,

0 1 1
0 0 0
0 0 1

 ,

0 1 1
1 0 0
0 1 0

 .

Let M = MC(C) = (F3, ρC) be the associated column q-PM. Then for all V ∈ L(F3)\
{0}

ρC(V ) =

{
2/3 if dimV = 1 or V = ⟨e1 + e2, e3⟩,
1 otherwise.

Thus 3 is the principal denominator and all spaces are independent. In particular, all
2-dimensional spaces are independent, but they do not assume the same rank value.
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Example 3.4.3. A dependent space may have a larger rank value than an independent
space of the same dimension. Let F = F2 and C ≤ F5×3 be the code generated
by the standard basis matrices E11, E12, E23, E32, E41, E42. In the column q-PM
MC(C) = (F5, ρC) the subspace I = ⟨e2, e3⟩ is independent with ρC(I) = 2/3, while
the subspace V = ⟨e1 + e2, e5⟩ satisfies ρC(V ) = 1 and is dependent (because ⟨e5⟩ is a
loop).

Example 3.4.4. A subspace V satisfying µρC(W ) = µρC(V ) = dimV − 1 for all its
hyperplanes W need not be a circuit. Let F = F2 and

∆ =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 , A1 =



0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1
0 0 1 1
1 0 0 1

 , A2 =



1 0 0 0
0 0 0 0
1 0 0 0
1 0 0 1
0 1 1 1
0 0 0 1

 , A3 =



1 1 0 1
0 0 1 0
0 0 1 0
1 0 0 0
0 0 0 1
1 0 1 0

 .

Set C = ⟨A1, A2, A3, A1U, A2U, A3U⟩, where U = ∆5. Then C is a right F22-linear
rank-metric code of dimension 6. Indeed, ∆ is the companion matrix of the primitive
polynomial f := x4+x+1 ∈ F2[x] and since 5 = (24−1)/(22−1), any root ω of f leads
to a primitive element ω5 of the subfield F22. Thus Ψ

−1
B (C), where B = (1, ω, ω2, ω3),

is an F22-subspace of F6
24. The principal denominator of MC(C) is µ = 2. There

exist 497 µ-circuits, one of which has dimension 1 and all others have dimension 4.
An additional 169 spaces V satisfy µρC(V ) = dimV − 1, and 97 of them also satisfy
µρC(W ) = dimV − 1 for all its hyperplanes W .

Example 3.4.5. There is no obvious relation between the auxiliary q-matroid ZM,µ

of a q-matroid M and M itself if µ > 2. Let n ≥ 3 and fix a 2-dimensional sub-
space X ∈ L(Fn). Set ρ(X) = 1 and ρ(V ) = min{dimV, 2} for V ̸= X. One can
check straightforwardly that M = (Fn, ρ) is a q-matroid (this also follows from [26,
Prop. 4.7]). Choosing µ = 2, one verifies that rρ,2 = min{dimV, 4}, and thus the
q-matroids M and ZM,2 are not equivalent.

Example 3.4.6. Let F = F2 and consider the codes C = ⟨A1, A2, A3⟩,
C ′ = ⟨A1, A2, A

′
3⟩ ≤ F4×3, where

A1 =


0 0 0
1 0 0
0 1 1
0 1 0

 , A2 =


1 0 1
1 0 0
0 0 0
1 1 1

 , A3 =


0 1 0
0 1 1
0 1 0
0 1 1

 , A′
3 =


1 0 0
0 0 0
1 0 1
1 0 1

 .

Both the associated q-PMs M = MC(C) = (F4, ρC) and M′ = MC(C ′) = (F4, ρ′C)
have principal denominator 3, and the space F4 is the only dependent space. Hence M
and M′ share the same bases, namely all 3-dimensional spaces. Moreover, ρC(V ) =
1 = ρ′C(V ) for all bases V . Yet, M and M′ are not equivalent: in M the rank
value 1 is assumed by 33 subspaces of dimension 2, whereas in M′ it is assumed by
32 subspaces of dimension 2 (in both q-PMs 4 subspaces of dimension 1 have rank
value 1 as well).
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Example 3.4.7. Consider the q-PM M = (F3, ρC) from Example 3.4.2. We have
seen already that I3(M) = L(F3). Define the set

I = {V ∈ L(F3) | V ̸= ⟨e1 + e2, e3⟩ and V ̸= F3}

and let ρ̃ = ρC|I. One easily verifies that (I, ρ̃) satisfies (I1)–(I4) and (R1′)–(R4′).
Furthermore, the extension ρ defined in Theorem 3.2.4 equals ρC and thus the induced
q-PM (F3, ρ) equals M. Now we have I ⊊ I3(M).

Copyright© Benjamin Jany, 2023.
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Chapter 4 The Projectivization Matroid of a q-Matroid.

In this chapter, we restrict ourselves to the study of q-matroids and study their con-
nection to classical matroids via the intermediate of the projectivization matroid.
The latter is a matroid that can be associated to the q-matroid and which preserves
the structure of the lattice of flats. This in turn will allows us to study the charac-
teristic polynomial of q-matroids from a classical matroid perspective. We establish
a deletion/contraction formula for the characteristic polynomial of q-matroids and
then prove a q-analogue of the Critical Theorem for q-matroids and Fqm-linear rank
metric codes. Result from this chapter also appear in [33].

4.1 Preliminaries on Matroids.

We start this chapter by recalling with some preliminary results on classical matroids
which will be needed throughout the chapter. The reader may note that many of
those properties are similar to those established in Chapter 2. Many proof regarding
properties of matroid will be omitted in section and the reader may refer to [39] for
more details. The following notation will be used in this chapter. S and T are finite
sets, 2S is the power set of S and [n] := {1, . . . , n} for n ∈ N0. Furthermore given a
set S and A ⊆ S, let S − A := {e ∈ S : e /∈ A}. Finally, to distinguish q-matroids
from matroids, the former will be denoted by the script letters M, N , whereas the
latter will be denoted by the capital letters M,N .

Definition 4.1.1. A matroid is an ordered pair M = (S, r), where S is a finite set
and r is a function r : 2S → N0 such that for all A,B ∈ 2S :

(R1) Boundedness: 0 ≤ r(A) ≤ |A|.

(R2) Monotonicity: If A ⊆ B then r(A) ≤ r(B).

(R3) Submodularity: r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

S is called the groundset of M and r its rank function.

Throughout, identify {e} with e and {v} with v. Two matroids M = (S, rM) and
N = (T, rN) are equivalent, denoted M ∼= N , if there exists a bijection between the
groundsets, ψ : S → T , such that rM(A) = rN(ψ(A)) for all A ⊆ S. Given a matroid
M = (S, r), e ∈ S is a loop of M if r(e) = 0. M is said to be loopless if it does not
contain any loops. A subset F ⊆ S is a flat if r(F ∪ v) > r(F ) for all v /∈ F . It is
well known that the collection of flats, denoted FM , forms a geometric lattice. For
any F1, F2 ∈ FM , the meet and join are defined as follows F1 ∧ F2 := F1 ∩ F2 and
F1 ∨ F2 := clM(F1 ∪ F2), where clM(A) = {v ∈ S : r(A ∪ v) = r(A)} =

⋂
{F ∈

FM : A ⊆ F}. Given F1, F2 ∈ FM , we say F2 covers F1 if for all F ∈ FM such that
F1 ⊆ F ⊆ F2 then F = F1 or F = F2. When discussing FM , we interchangeably
use the terms collection of flats and lattice of flats. The flats of a matroid satisfy
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three axiomatic properties, analogous to the properties of Theorem 2.2.4 that fully
determine the matroid.

Proposition 4.1.2. [39, Sec. 1.4 Prob 11.] Let M = (S, rM) be a matroid and FM

its collection of flats. Then FM satisfies the following:

(F1) S ∈ FM .

(F2) If F1, F2 ∈ FM then F1 ∩ F2 ∈ FM .

(F3) Let F ∈ FM and v /∈ F , then there exists a unique F ′ ∈ FM covering F such
that F ∪ v ⊆ F ′.

Furthermore, rM is uniquely determined by FM and rM(A) = h(clM(A)) for A ⊆ S,
where h(F ) denotes the height of F in the lattice FM .

Recall, the height of an element F in a geometric lattice, is the length of a maximal
chain from the minimal element of the lattice to F . The reader may refer to [39, Sec
1.7] for more details. Similarly to q-matroids (recall Theorem 2.1.11), there exist a
notion of duality for matroids.

Definition 4.1.3. Let M = (S, r) be a matroid. The dual matroid M∗ = (S, r∗) is
defined via the rank function

r∗(A) = |A| − r(S) + r(S − A).

Using the dual matroid, a coloop of M = (S, r) is an element e ∈ S such that
{e} is a loop of M∗.We now define the operations of deletion and contraction for
matroids.

Definition 4.1.4. Let M = (S, r) be a matroid and let A ⊆ S.

• The matroid M \A = (S−A, rM\A), where rM\A(B) = r(B) for all B ⊆ S−A,
is called the deletion of A from M .

• The matroid M/A = (S − A, rM/A), where rM/A(B) = r(B ∪ A) − r(A) for all
B ⊆ S − A, is called the contraction of A from M .

The following well-known facts about the deletion and contraction of matroids
will be needed. Refer to [39, Prop 3.1.25] for a proof.

Proposition 4.1.5. Let M = (S, r) be a matroid. Let A,B ⊆ S be disjoint sets.
Then

• (M \ A) \B =M \ (A ∪B) = (M \B) \ A,

• (M/A)/B =M/(A ∪B) = (M/B)/A,

• (M \ A)/B = (M/B) \ A.
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To avoid the surplus of parenthesis, we omit them if there is no risk of confusion.
At this point we make a brief comment about the notation that is used in this chapter
only. The notation \ always denotes the deletion operation and set exclusion is
denoted by the − sign. However, the notation / is used to denote both the contraction
of (q-)matroids and quotient space (i.e E/V ). The reader should therefore use context
in order to differentiate between the latter two.

Similarly to q-matroids, deletion and contraction are dual operations i.e. M∗\A =
(M/A)∗. A proof of this fact can be found in [39, Sect. 3]. A matroid N (resp. q-
matroid N ) is a minor of M (resp. M) if it can be obtained from M (resp. M) by
a sequence of deletion and contraction.

We close this section by showing that for both matroids and q-matroids, the flats
of a contraction can be characterized in terms of the flats of the original (q-)matroid.
Recall Proposition 6.1.13 for the contraction of q-matroids.

Proposition 4.1.6. Let M = (S, rM) be a matroid, M = (E, ρM) be a q-matroid
and FM , FM their respective lattice of flats. Let A ⊆ S, V ≤ E and consider M/A
and M/V . Then

(1) FM/A = {F ⊆ S − A : F ∪ A ∈ FM},

(2) FM/V = {F ≤ E/V : π−1(F ) ∈ FM}, where π : E → E/V .

Furthermore A (resp. V ) is a flat of M (resp. M) if and only if M/A (resp. M/V )
is loopless.

Proof. (1) is shown in [39, Prop 3.3.7]. For (2), first let F ∈ FM/V and consider
the space W := π−1(F ) ≤ E. Let x /∈ W . Then ρM(W ⊕ ⟨x⟩) = ρM/V (F ⊕
⟨π(x)⟩)+ρM(V ) > ρM/V (F )+ρM(V ) = ρM(W ), where the inequality holds because
F ∈ FM/V and π(x) /∈ F . Since this is true for all x /∈ W then W ∈ FM.

Now let F ≤ E/V such that π−1(F ) ∈ FM. Let ⟨x⟩ ≤ F/V such that x /∈ F . Then
ρM/V (F ⊕ ⟨x⟩) = ρM(π−1(F ⊕ ⟨x⟩))− ρM(V ) = ρM(π−1(F ) + π−1(⟨x⟩))− ρM(V ) >
ρM(π−1(F )) − ρM(V ) = ρM/V (F ). Once again, since this is true for all x /∈ F then
F ∈ FM/V .

We show the second part of the statement for matroids, and note the proof for
q-matroid is analogous to it. Consider M/A with A ∈ FM and let e ∈ S − A.
Then rM/A(e) = rM(e ∪ A) − rM(A) > 0 since A is a flat. Since this holds for all
e ∈ S − A, then M/A is loopless. Now assume A /∈ FM then A ⊊ clM(A) and let
e ∈ clM(A) − A ⊆ S − A. Then rM/A(e) = rM(A ∪ e) − r(A) = 0 since e ∈ clM(A).
Hence M/A contains a loop.

4.2 The Projectivization Matroid.

In [34], Johnsen and co-authors showed that a q-matroid M with groundspace E
induces a matroid P (M) with groundset the projective space of E. This induced
matroid, called the projectivization matroid of M turns out to be an interesting
object to study. In fact, it was shown in that same paper, that the projectivization
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preserves the flat structure of M. It therefore becomes a useful tool when studying
properties of q-matroids that depend only on flats.

For completeness, we reintroduce the construction of the projectivization matroid.
The following notation will be used. Given a finite dimensional vector space E over
Fq, let PE := {⟨v⟩Fq : v ∈ E − {0}} be the projective space of E. The map,

P̂ : (E − {0}) −→ PE , v 7→ ⟨v⟩Fq induces a lattice map P : L(E) −→ 2PE, where

P ({0}) = ∅ and P (V ) = {P̂ (v) : v ∈ V − {0}} = {P (⟨v⟩) : v ∈ V − {0}} for
V ≤ E. We call the lattice map P the projectivization map. Usually, P̂ is called
the projectivization map, however for our purposes, it is more convenient to consider
the projectivization as a lattice map. Note that P is inclusion preserving and that
P (V ∩W ) = P (V ) ∩ P (W ) for all V,W ∈ L(E). For any S ⊆ PE let P−1(S) :=
{v ∈ E : P̂ (v) ∈ S} = {v ∈ E : P (⟨v⟩) ∈ S}. Note that (P−1 ◦ P )(V ) = V for all
V ≤ E. Finally let ⟨S⟩ := ⟨P−1(S)⟩Fq for any S ⊆ PE. We say S ⊆ PE contains a
basis of E if ⟨S⟩ = E. We can now introduce the projectivization matroid.

Theorem 4.2.1. ([34, Def.14, Prop. 15]) Let M = (E, ρ) be a q-matroid and let
r : 2PE → N0 such that for all S ⊆ PE,

r(S) = ρ(⟨S⟩).

Then P (M) := (PE, r) is a matroid, and is called the projectivization matroid of
M.

We now turn towards the relation between the flats of a q-matroid M and those
of its projectivization matroid P (M). In the following result, the meet and join refers
to those of the lattice of flats defined in Section 2.2.1 for q-matroids and Section 4.1
for matroids.

Lemma 4.2.2. [34, Lem.16, Prop.21] Let M be a q-matroid, P (M) its projec-
tivization matroid, and FM, FP (M) their respective lattice of flats. Furthermore,
let P (FM) := {P (F ) : F ∈ FM}. Then the following hold:

1) FP (M) = P (FM).

2) P (F1 ∨ F2) = P (F1) ∨ P (F2) and P (F1 ∧ F2) = P (F1) ∧ P (F2), for all F1, F2 ∈
FM.

Therefore FP (M)
∼= FM as lattices.

The next result shows when a matroid with groundset PE is the projectivization
matroid of a q-matroid with groundspace E.

Theorem 4.2.3. Let M = (PE, r) be a matroid and FM its lattice of flats. Further-
more let P−1(FM) := {P−1(F ) ∪ {0} : F ∈ FM}. If P−1(F ) ∪ {0} is a subspace of
E for all F ∈ FM , then M = (E,P−1(FM)) is q-matroid. Furthermore FM

∼= FM.

In the following proof, to avoid confusion between the properties of flats of ma-
troids and q-matroids, we denote by (qF1) - (qF3) the properties satisfied by q-
matroids established in Theorem 2.2.4.
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Proof. We show F := P−1(FM) is a collection of flats of a q-matroid by showing it
satisfies (qF1)-(qF3) of Theorem 2.2.4. Throughout the proof we use the fact that FM

is the collection of flats of a matroid, and hence satisfies (F1)-(F3) of Proposition 4.1.2.
Since FM satisfies (F1), PE ∈ FM , and therefore P−1(PE) ∪ {0} = E ∈ F . This
shows (qF1). Let V1 := P−1(F1) ∪ {0}, V2 := P−1(F2) ∪ {0} ∈ F . Since F1, F2 ∈ FM

then F1 ∩ F2 ∈ FM . Furthermore, P (V1 ∩ V2) = P (V1) ∩ P (V2) = F1 ∩ F2 ∈ FM .
Hence V1 ∩ V2 = P−1(F1 ∩ F2) ∪ {0} ∈ F , showing (qF2).

Finally for (qF3), fix F ∈ FM , let V := P−1(F )∪{0} ∈ F and w /∈ V . Since P is
inclusion preserving P (⟨w⟩) /∈ P (V ) = F . Hence there exists a unique flat F ′ ∈ FM

covering F such that F ∪ P (⟨w⟩) ⊆ F ′. Let V ′ := P−1(F ′) ∪ {0}. By definition
V ′ ∈ F and since V ′ is a subspace containing V ∪w then V ⊕ ⟨w⟩ ≤ V ′. To show V ′

covers V , assume there exists W ∈ F such that V ⪇ W ≤ V ′. Applying P and using
the fact that P is inclusion preserving, we get F = P (V ) ⊊ P (W ) ⊆ P (V ′) = F ′.
However because W ∈ F then P (W ) ∈ FM . But F ′ covers F hence we must have
that P (W ) = F ′ and therefore W = V ′. This implies V ′ is a cover of V and shows
F is the collection of flats of a q-matroid.

Finally to show FM and F are isomorphic as lattices, note that P (F) = FM hence
by Lemma 4.2.2 the isomorphism follows.

We now show that the lattice of flats of the q-matroid M contracted by a flat F
is isomorphic to the lattice of flats of P (M)/P (F ).

Theorem 4.2.4. Let M be a q-matroid, P (M) its projectivization matroid and
FM,FP (M) their respective lattice of flats. Then FM/F

∼= FP (M)/P (F ) (as lattices)
for any F ∈ FM.

Proof. Throughout let F ′
1, F

′
2 ∈ FM/F and Vi = π−1(F ′

i ), where π : E → E/F .
By Proposition 4.1.6 and Lemma 4.2.2, F ′

i ∈ FM/F ⇔ Vi ∈ FM ⇔ P (Vi) ∈
FP (M) ⇔ P (Vi) − P (F ) ∈ FP (M)/P (F ). Furthermore, F ′

1 = F ′
2 ⇔ V1 = V2 ⇔

P (V1) − P (F ) = P (V2) − P (F ). Hence there is a one-to-one correspondence be-
tween FM/F and FP (M)/P (F ) described by the map ψ : FM/F → FP (M)/P (F ), where
ψ(F ′

i ) = P (Vi) − P (F ). Since the lattices of flats are finite, to show ψ is a lattice
isomorphism, we need only to show ψ preserves meets. Recall that the meet of flats
in either lattice is the intersection of the flats.

ψ(F ′
1 ∩ F ′

2) = P (V1 ∩ V2)− P (F )

= (P (V1) ∩ P (V2))− P (F )

= (P (V1)− P (F )) ∩ (P (V2)− P (F ))

= ψ(F ′
1) ∩ ψ(F ′

2),

which completes the proof.

The next few properties about projectivization matroids, although not difficult to
prove, will be useful in following sections.

Proposition 4.2.5. Let M = (E, ρ) be a q-matroid and P (M) = (PE, r) its projec-
tivization matroid. Then M contains a loop if and only if P (M) contains a loop.
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Proof. Let ⟨e⟩ ≤ E be a 1-dimensional subspace. By definition, r(P (⟨e⟩)) = ρ(⟨e⟩).
Hence ⟨e⟩ is a loop in M if and only if P (⟨e⟩) is a loop in P (M).

Proposition 4.2.6. Let M = (E, ρ) be a q-matroid and P (M) = (PE, r) its pro-
jectivization matroid. Let A ⊆ PE be such that A contains a basis of E. Then
r(A) = r(PE).

Proof. Since A contains a basis of E then ⟨A⟩ = E. Hence r(A) = ρ(⟨A⟩) = ρ(E) =
r(PE).

We conclude the section by studying the relation between minors of a q-matroid
and minors of its projectivization matroid. To do so we introduce the following
notation.

Notation 4.2.7. Let V ≤ E.

• QV := {⟨w⟩ ∈ PE : ⟨w⟩ ̸≤ V } = PE − P (V ).

• Q∗A
V := QV − A for A ⊆ QV .

Note that PE−QV = PV . Furthermore for spaces W,V ≤ E such that W ⊕V =
E, every element in E/W can be written as v+W for a unique v ∈ V . Thus the map
ψ : E/W → V , v +W 7→ v is a well-defined vector space isomorphism and induces
a bijection on projective spaces. By slight abuse of notation we use ψ as both the
vector space isomorphism and the projective space bijection. It can then easily be
shown that ⟨ψ(A)⟩ = ψ(⟨A⟩) for all A ⊆ P(E/W ).

Theorem 4.2.8. Let M = (E, ρ) be a q-matroid and let W,V ≤ E such that W ⊕
V = E. Let V ⊥ be the orthogonal space of V w.r.t. a fix NSBF. Furthermore let
S = {⟨w1⟩, . . . , ⟨wt⟩} ⊆ PE such that {w1, . . . , wt} is a basis of W .Then

P (M/W ) ∼= (P (M)/S) \ Q∗S
V

P (M\ V ⊥) ∼= P (M) \ QV .

Proof. Let N := P (M)/S \ Q∗S
V . Note N has groundset PE − QV = PV whereas

P (M/W ) has groundset P(E/W ). Let ψ : P(E/W ) → PV be the bijection described
previously. To show N ∼= P (M/W ), we must show rP (M/W )(A) = rN(ψ(A)) for all
A ⊆ P(E/W ). Let π : E → E/W be the canonical projection. Since {w1, . . . , wt} is
a basis of W and S = {⟨w1⟩, . . . , ⟨wt⟩}, then π−1(⟨A⟩) = ⟨ψ(A)⟩+W = ⟨ψ(A) ∪ S⟩.
Furthermore by Theorem 4.2.1, rP (M)(S) = ρ(W ). Hence we get:

rP (M/W )(A) = ρM/W (⟨A⟩)
= ρM(π−1(⟨A⟩))− ρM(W )

= ρM(⟨ψ(A) ∪ S⟩)− ρM(⟨S⟩)
= rP (M)(ψ(A) ∪ S)− rP (M)(S)

= rP (M)/S(ψ(A))

= rN(ψ(A)),
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where the last equality holds because ψ(A) ⊆ PV which is the groundset of N .
Moving on to the second equivalence. Both matroid P (M\ V ⊥) and P (M) \QV

have groundset PV . Hence we need only to show that the rank functions of both
matroids are equal. Let A ⊆ PV .

rP (M\V ⊥)(A) = ρM\V ⊥(⟨A⟩)
= ρM(⟨A⟩)
= rP (M)(A)

= rP (M)\QV
(A),

where the last equality follows because A ⊆ PV which is the groundset of P (M) \
QV .

4.3 The Characteristic Polynomial.

The characteristic polynomial is a useful invariant for both matroids and q-matroids.
For the former it was intensively studied over the years, see for example [46, 49]. The
latter was more recently introduced for q-polymatroids [9], and was used to establish
a weaker version of the Assmus-Mattson Theorem. However, in this paper, we are
only interested in the characteristic polynomial of q-matroids.

Before defining the characteristic polynomial, we recall the definition of the
Möbius function which will often be used throughout the section.

Definition 4.3.1. Let (P,≤) be a finite partially ordered set. The Möbius function
for P is defined via the recursive formula

µP (x, y) :=


1 if x = y,

−
∑

x≤z⪇y µP (x, z) if x < y,

0 otherwise.

We use the subscript of µ to distinguish between the Möbius functions of different
posets. If the underlying poset is clear, the subscript may be omitted. We now define
the characteristic polynomial of a matroid.

Definition 4.3.2. Let M = (S, r) be a matroid and L(S) the lattice of subsets of S.
The characteristic polynomial of M is defined as follow:

χM(x) :=
∑
A⊆S

µL(S)(∅, A)xr(S)−r(A)

=
∑
A⊆S

(−1)|A|xr(S)−r(A).

It is well known that if a matroidM contains a loop, its characteristic polynomial
is identically 0. On the other hand ifM is loopless, then the characteristic polynomial
of M can be rewritten using the Möbius function of the lattice of flats. Furthermore,
one can recursively define the characteristic polynomial of a matroid in terms of the
characteristic polynomial of its minors. We summarize this in the following theorem.
Proofs can be found in [46, Sec.3] and [49, Sec.7.1].
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Theorem 4.3.3. Let M = (S, r) be a matroid and F be its lattice of flats. If M
contains a loop then χM(x) = 0. If M has no loops, then

χM(x) =
∑
F∈F

µF(0, F )x
r(S)−r(F ).

Furthermore for e ∈ S,

χM(x) =

{
χM\e(x)χM/e(x) if e is a coloop,

χM\e(x)− χM/e(x) otherwise.

Similarly to matroids, the characteristic polynomial of a q-matroid M is identi-
cally 0 if M contains a loop, and can be rewritten using the Möbius function of the
lattice of flats otherwise. This was in fact shown by Whittle in [48], where the author
generalized the result to any weighted lattice endowed with a closure operator. How-
ever for self containment purposes proofs of those facts will be included. Furthermore,
we use the projectivization matroid to find a recursive formula for the characteristic
polynomial of q-matroids. The characteristic polynomial of a q-matroid is defined in a
similar way than for matroids but uses the Möbius function of the lattice of subspace
of the grounspace of the q-matroid.

Definition 4.3.4. [9, Def. 22] Let M = (E, ρ) be a q-matroid and L(E) be the
subspace lattice of E. The characteristic polynomial is defined as

χM(x) :=
∑
V≤E

µL(E)(0, V )xρ(E)−ρ(V )

=
∑
V≤E

(−1)dimV q(
dimV

2 )xρ(E)−ρ(V )

We state a few straightforward lemmas that will be useful later on. Recall from
Lemma-Definition 2.1.6 the loop space of a q-matroid consists of all 1-dimensional
loops of a q-matroids.

Lemma 4.3.5. Let M = (E, ρ) be a q-matroid, FM its lattice of flats, and L its loop
space. Then L ≤ F for all F ∈ FM.

Proof. Let V ≤ E. By the monotonicity and submodularity properties of the rank
function, ρ(V ) ≤ ρ(V + L) ≤ ρ(V ) + ρ(L)− ρ(V ∩ L) ≤ ρ(V ). Hence equality holds
throughout and L ≤ clM(V ). Since this is true for all V ≤ E then L ≤ F for all flats
F of M.

Lemma 4.3.6. Let M = (E, ρ) be a q-matroid, F its lattice of flats and L := L(E).
Then

χM(x) =
∑
F∈F

∑
V : clM(V )=F

µL(0, V )xρ(E)−ρ(F ).
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Proof. Let V ≤ E, then clM(V ) ∈ F and ρ(V ) = ρ(clM(V )). Hence we get

χM(x) =
∑
V≤E

µL(0, V )xρ(E)−ρ(V )

=
∑
F∈F

∑
V : clM(V )=F

µL(0, V )xρ(E)−ρ(F ).

We can now show that if a q-matroid contains a loop its characteristic polyno-
mial is identically 0, whereas if it is loopless then the characteristic polynomial is
determined by the Möbius function of the lattice of flats.

Theorem 4.3.7. [see also [48, Thm. 3.2,Prop. 3.4]] Let M be a q-matroid and F
its lattice of flats. If M contains a loop then χM(x) = 0. If M is loopless then

χM(x) =
∑
F∈F

µF(0, F )x
ρ(E)−ρ(F )

Proof. From Lemma 4.3.6, we know

χM(x) =
∑
F∈F

∑
V : cl(V )=F

µL(0, V )xρ(E)−ρ(F ).

We show that for all flat F ∈ F ,

∑
V : cl(V )=F

µL(0, V ) =

{
0 if M has a loop,

µF(0, F ) otherwise.
(4.1)

First assume that M has a loop. We proceed by induction on the rank value of
flats. Let F ∈ FM such that ρ(F ) = 0, i.e F = clM(0). Since M contains a loop,
{0} ⊊ F . Hence by Definition Definition 4.3.1,∑

V : cl(V )=F

µL(0, V ) =
∑

0≤V≤F

µL(0, V ) = 0.

Assume (Eq. (4.1)) holds for all F ∈ F such that ρ(F ) ≤ k − 1.
Fix F ∈ F such that ρ(F ) = k. Then

0 =
∑
V≤F

µL(0, V )

=
∑

V : cl(V )=F

µL(0, V ) +
∑

F ′⪇F,F ′∈F

∑
V : cl(V )=F ′

µL(0, V )

=
∑

V : cl(V )=F

µL(0, V ),
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where the last equality follows by induction hypothesis. Therefore if M has a loop
then χM(x) = 0.

Now assume M is loopless. We once again proceed by induction on the rank of
the flats of M. Since M is loopless, {0} ∈ F . Let F = {0}, then (Eq. (4.1)) follows
trivially from Definition Definition 4.3.1. Assume (Eq. (4.1)) holds true for all F ∈ F
such that ρ(F ) ≤ k − 1. Fix a flat F ∈ F with ρ(F ) = k. Then

µF(0, F ) = −
∑

F ′⪇F,F ′∈F

µF(0, F
′)

= −
∑

F ′⪇F,F ′∈F

∑
V : cl(V )=F ′

µL(0, V )

= −
∑

V : cl(V )⪇F

µL(0, V )

=
∑

V : cl(V )=F

µL(0, V ),

where the second equality follows from the induction hypothesis, and the last equality
follows from Definition Definition 4.3.1. This completes the proof.

As the next theorem shows, defining the characteristic polynomial in terms of the
lattice of flats of the q-matroid allows us to link the characteristic polynomial of a
q-matroid with that of its projectivization matroid.

Theorem 4.3.8. Let M be a q-matroid and P (M) be its projectivization matroid.
Then

χM(x) = χP (M)(x).

Proof. By Proposition 4.2.5 M contains a loop if and only if P (M) contains a loop.
Furthermore, by Lemma 4.2.2, we know FM ∼= FP (M) as lattices. Due to Propo-
sitions Proposition 4.1.2 and Theorem 2.2.4, ρM(F ) = hFM(F ) = hFP (M)

(P (F )) =
rP (M)(P (F )) and this for all flats F ∈ FM and P (F ) ∈ FP (M). Therefore, the result
follows directly from Theorem 4.3.3 and Theorem 4.3.7.

We furthermore get the following result when considering the contraction of M
by a subspace V ≤ E.

Proposition 4.3.9. Let M = (E, ρ) be a q-matroid and P (M) = (PE, r) its projec-
tivization matroid. Then for all V ≤ E,

χM/V (x) = χP (M)/P (V )(x).

Proof. Let V ≤ E, then V ∈ FM ⇔ P (V ) ∈ FP (M). If V /∈ FM then by
Proposition 4.1.6 M/V and P (M)/P (V ) contain loops, therefore χM/V (x) = 0 =
χP (M)/P (V )(x). If V ∈ FM, by Theorem 4.2.4, FM/F

∼= FP (M)/P (V ) as lattices and,
by Proposition 4.1.6, both matroids are loopless. Hence, Theorem 4.3.3 and Theo-
rem 4.3.7 imply, χM/V (x) = χP (M)/P (V )(x).
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The close connection between the characteristic polynomial of a q-matroid M and
that of its projectivization matroid gives a new approach to study the former. In fact,
we use this approach to find a recursive formula for the characteristic polynomial of a
q-matroid in terms of the characteristic polynomial of its minors. Because we will be
using the recursive formula defined in Theorem 4.3.3 on the projectivization matroid
P (M) and its minors, we need to pay a particular attention on whether P (M) and
its minors contain coloops. To do so, we therefore fix an NSBF, and consider coloops
of q-matroids with respect to that NSBF. We thus need the following few lemmas.

Lemma 4.3.10. Let M = (S, r) be a matroid and M = (E, ρ) be a q-matroid. Then

(a) w ∈ S is a coloop of M ⇐⇒ r∗(w) = 0 ⇐⇒ r(S − w) = r(S)− 1

(b) ⟨w⟩ ≤ E is a coloop of M ⇐⇒ ρ∗(⟨w⟩) = 0 ⇐⇒ ρ(⟨w⟩⊥) = ρ(E)− 1

Proof. Statement (a) can be found in [39, Section 1.6, Exercise 6]. Statement (b)
follows from Theorem 2.1.11.

Recall the notation QV = {⟨w⟩ : ⟨w⟩ ̸≤ V }, and Q∗e
V = QV − {⟨e⟩} for ⟨e⟩ ∈ QV

introduced in Notation Notation 4.2.7. To make the results and proofs easier to read,
we may omit the brackets to denote 1-dimensional spaces and we let v⊥ := ⟨v⟩⊥ for
v ∈ E.

Lemma 4.3.11. Let M = (E, ρ) be a q-matroid, P (M) = (PE, r) its projectivization
matroid and e, v ∈ PE such that ⟨e⟩ ⊕ ⟨v⟩⊥ = E. Let A ⊊ Q∗e

v⊥, then:

(a) for all w ∈ Q∗e
v⊥ − A, the element w is not a coloop of the matroid P (M) \ A.

(b) for all w ∈ Q∗e
v⊥ and z ∈ Qv⊥ − (A ∪ w), the element z is not a coloop of

P (M) \ A/w.

(c) for all w1, w2 ∈ Qv⊥ − A, the matroid P (M) \ A/{w1, w2} contains a loop.

(d) e is a coloop of the matroid P (M) \ Q∗e
v⊥ if and only if ⟨v⟩ is a coloop of M.

Proof. Throughout, let Q := Q∗e
v⊥ , H := v⊥ and {h1, ···hn−1} be a basis of H.

Furthermore let A ⊊ Q, w ∈ Q − A and consider the matroid N := P (M) \ A =
(PE − A, rN). Note that r(S) = rN(S) for all S ⊆ PE − A.

Statement (a). Note the set B := {h1, . . . , hn−1, e} is a basis of E, since e /∈ H
and dimH = dimE − 1. Moreover B ⊆ PE −Q ⊆ PE − (A ∪ w) ⊆ PE − A. Hence
by Proposition 4.2.6, r(PE −Q) = r(PE − (A∪w)) = r(PE −A) = r(PE). Because
rN(S) = r(S) for all S ⊆ PE − A, we have rN(PE − (A ∪ w)) = rN(PE − A) so, by
Lemma 4.3.10, w is not a coloop of N , proving statement (a).
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Statement (b). Let B := {h1, . . . , hn−1, w} which is a basis of E. We need only
to show r∗N/w(z) ̸= 0 for all z ∈ Qv⊥ − (A ∪ w).

r∗N/w(z) = |z|+ rN/w(PE − (A ∪ w ∪ z))− rN/w(PE − (A ∪ w))
= 1 + rN((PE − (A ∪ w ∪ z)) ∪ w)− rN(w)− rN(PE − A) + rN(w)

= 1 + r(PE − (A ∪ z))− r(PE − A)

= 1 + ρ(E)− ρ(E) = 1

where the last equality follows from Proposition 4.2.6 because B is a subset PE −
(A ∪ z) and PE − A.

Statement (c). Let w1, w2 ∈ Qv⊥ − A and W = ⟨w1, w2⟩. Clearly dimW = 2 and
dim(W ∩ ⟨v⟩⊥) = 1. Hence there exists z ∈ W such that ⟨z⟩ /∈ Qv⊥ . We show z is a
loop of N/{w1, w2}, i.e. rN/{w1,w2}(z) = 0.

rN/{w1,w2}(z) = r(z ∪ {w1, w2})− r({w1, w2})
= ρ(⟨z, w1, w2⟩)− ρ(⟨w1, w2⟩)
= ρ(W )− ρ(W ) = 0.

Statement (d). Let N ′ := P (M) \ Q = (PE −Q, rN ′). By Lemma 4.3.10 ⟨v⟩ is a
coloop of M if and only if ρ(H) = ρ(E) − 1. Moreover, ρ(H) = r(PH) = rN ′(PH)
and ρ(E) = r(PE) = r(PE −Q) = rN ′(PE −Q). Hence ⟨v⟩ is a coloop of M if and
only if rN ′(PH) = rN ′(PH ∪ e)− 1 if and only if e is a coloop of N ′.

With those results in place, we are now ready to consider the first step of our
main theorem. For the next results we use the following notation. Given Q∗e

v⊥ , fix an
ordering of its elements. Define S0 := ∅ and Si := {w1, . . . , wi} where wj is the jth

element of Q∗e
v⊥ . Note furthermore that |Si| = i and Sqn−1−1 = Q∗e

v⊥ . Moreover, in the
proofs of the remaining results in this section, Proposition 4.1.5 and Theorem 4.3.3
may be used without mention.

Proposition 4.3.12. Let M = (E, ρ) be a q-matroid, P (M) = (PE, r) its projec-
tivization matroid, e, v ∈ PE such that ⟨e⟩ ⊕ ⟨v⟩⊥ = E. Then

χM(x) =

{
χM\v(x)χM/e(x)−

∑qn−1−2
i=0 χP (M)\Si/wi+1

if v is a coloop of M
χM\v(x)− χM/e(x)−

∑qn−1−2
i=0 χP (M)\Si/wi+1

otherwise

Proof. We first use an induction argument on k := |Sk| to show that for all 1 ≤ k ≤
qn−1 − 1,

χP (M)(x) = χP (M)\Sk
(x)−

k−1∑
i=0

χP (M)\Si/wi+1
(x). (4.2)

We prove the base case when k = 1. By Lemma 4.3.11 (a), w1 is not a coloop
of P (M) hence, by Theorem 4.3.3, χP (M)(x) = χP (M)\S1(x)− χP (M)\S0/w1(x), where
recall S0 = ∅ and S1 = {w1}.
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Now assume (Eq. (4.2)) holds for k ≤ qn−1 − 2. Then

χP (M)(x) = χP (M)\Sk
(x)−

k−1∑
i=0

χP (M)\Si/wi+1
(x)

= χP (M)\(Sk∪wk+1)(x)− χP (M)\Sk/wk+1
(x)−

k−1∑
i=0

χP (M)\Si/wi+1
(x)

= χP (M)\Sk+1
(x)−

k∑
i=0

χP (M)\Si/wi+1
(x).

The second equality holds true by Theorem 4.3.3, because wk+1 is not a coloop of
P (M) \ Sk by Lemma 4.3.11 (a). This establishes (Eq. (4.2)).

Because Sqn−1−1 = Q∗e
v⊥ , we conclude the proof by using Theorem 4.3.3 on

χP (M)\Sqn−1−1
(x) with the element e ∈ Qv⊥ − Sqn−1−1. We therefore consider two

cases: when e is a coloop of P (M) \ Q∗e
v⊥ or not. By Lemma 4.3.11 (d), those two

cases correspond exactly to when ⟨v⟩ is a coloop of M or not. First assume e is a
coloop of P (M) \ Q∗e

v⊥ , and therefore ⟨v⟩ is a coloop of M. Then by Theorem 4.3.3

χP (M)\Q∗e
v⊥
(x) = χP (M)\Q

v⊥
(x)χP (M)\Q∗e

v⊥
/e(x).

By Theorem 4.2.8, P (M) \ Qv⊥ = P (M\ v) and P (M) \ Q∗e
v⊥/e

∼= P (M/e) hence
their respective characteristic polynomials are equal. Furthermore by Theorem 4.3.8,
χP (M\v)(x) = χM\v(x) and χP (M/e)(x) = χM/e(x). Therefore, χP (M)\Sqn−1−1

(x) =

χP (M)\Q
v⊥
(x) · χP (M)\Q∗e

v⊥
/e(x) = χM\v(x) · χM/e(x), which, when substituted in

(Eq. (4.2)) gives us the wanted equality.
If e is a not coloop of P (M) \Q∗e

v⊥ , and therefore ⟨v⟩ is not a coloop of M. Then

χP (M)\Q∗e
v⊥
(x) = χP (M)\Q

v⊥
(x)− χP (M)\Q∗e

v⊥
/e(x).

Once again using Theorems Theorem 4.2.8 and Theorem 4.3.8, the wanted equality
follows.

At this point, note that the characteristic polynomial χM(x) depends on both
the characteristic polynomial of minors of the q-matroid M and the characteristic
polynomial of minors of P (M). In the following Theorem, we rewrite all characteristic
polynomials of minors of P (M) in terms of characteristic polynomials of minors of
M.

Theorem 4.3.13. Let M = (E, ρ) be a q-matroid and e, v ∈ E such that ⟨e⟩⊕⟨v⟩⊥ =
E. Then

χM(x) =

{
χM\v(x)χM/e(x)−

∑
w∈Q∗e

v⊥
χM/w(x) if v is a coloop of M,

χM\v(x)−
∑

w∈Q
v⊥
χM/w(x) otherwise.
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Proof. Given the equation of Proposition 4.3.12, we show that

qn−1−2∑
i=0

χP (M)\Si/wi+1
(x) =

∑
w∈Q∗e

v⊥

χM/w(x). (4.3)

Fix 0 ≤ i ≤ qn−1−2 and consider χP (M)\Si/wi+1
(x). For all A ⊆ Qv⊥ − (Si∪wi+1),

we show by induction on |A| that

χP (M)\Si/wi+1
(x) = χP (M)\(Si∪A)/wi+1

(x). (4.4)

First let |A| = 1 and let w ∈ A. By Lemma 4.3.11 (b), w is not a coloop of
P (M) \ Si/wi+1. Therefore

χP (M)\Si/wi+1
(x) = χP (M)\(Si∪w)/wi+1

(x)− χP (M)\Si/{wi+1,w}(x).

By Lemma 4.3.11 (c), P (M) \ Si /{wi+1, w} contains a loop which implies its char-
acteristic polynomial is 0. Hence χP (M)\Si/wi+1

(x) = χP (M)\(Si∪w)/wi+1
(x). Now let

|A| = k and let w ∈ A. Since |A − w| = k − 1 by induction hypothesis we get
χP (M)\Si/wi+1

(x) = χP (M)\(Si∪(A−w))/wi+1
(x). Once again by Lemma 4.3.11 (b), w is

not a coloop of P (M) \ (Si ∪ (A− w))/wi+1 hence

χP (M)\(Si∪(A−w))/wi+1
(x) = χP (M)\(Si∪A)/wi+1

(x)− χP (M)\(Si∪A)/{wi+1,w}(x).

By Lemma 4.3.11 (c) P (M) \ (Si ∪ A)/{wi+1, w} contains a loop and therefore its
characteristic polynomial is 0. This completes the proof of (Eq. (4.4)), which if
A = Qv⊥ − (Si ∪ wi+1) shows that

χP (M)\Si/wi+1
(x) = χ

P (M)\Q
∗wi+1

v⊥
/wi+1

(x).

Finally by Theorems Theorem 4.2.8 (where S = {wi+1}) and Theorem 4.3.8 we
get

χP (M)\Si/wi+1
(x) = χM/wi+1

(x). (4.5)

Since the above induction holds true for any i chosen, then (Eq. (4.5)) holds for all
0 ≤ i ≤ qn−1 − 2 and

qn−1−2∑
i=0

χP (M)\Si/wi+1
(x) =

qn−1−2∑
i=0

χM/wi+1
(x)

=
∑

w∈Q∗e
v⊥

χM/w(x).

Substituting (Eq. (4.3)) into the equation of Proposition 4.3.12 gives the desired
result.
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4.4 Rank Metric and Linear Block Codes.

As already seen in Section 2.3, q-matroids are closely related to the study of Fqm-linear
rank metric codes. Classical matroids also have a close connection to coding theory
and more precisely with the study linear block codes with the Hamming metric. In
fact, any linear block code induces a matroid, and many code invariants are fully
determined by that matroid. In [1], Alfarano and co-authors showed that an Fqm-
linear rank metric code C induces a linear block code that shares similar parameters.
We show in this section how the projectivization matroid of a q-matroid relates to
the matroid associated to that linear block code. Furthermore we use this relation
and results from Section 5 to show the q-analogue of the Critical Theorem in terms
of q-matroids and Fqm-linear rank metric codes.

We start the section by recalling some coding theory concepts. As described in
Section 2.3 we consider Fqm-linear rank metric code as a subspaces of Fn

qm . Further-
more let Γ be a basis of the vector space Fqm over Fq and ΨΓ : Fn

qm −→ Fn×m
q be the

coordinate map introduced in Eq. (2.13). Recall for all v = (v1, . . . , vn) ∈ Fn
qm , let

ΨΓ(v) be the n×m matrix such that the ith row of ΨΓ(v) is the coordinate vector of
vi with respect to the basis Γ. Moreover, throughout the section, we fix the NSBF
on Fn

q to be the standard dot product. We define the following two weight functions.

Definition 4.4.1. For all v ∈ Fn
qm, the Hamming weight ωH, and the rank weight

ωrk of v are defined as follow:

ωH(v) := #non-zero entries of v

ωrk(v) := rkFq(ΨΓ(v)).

It is well known that the rank weight is independent of the basis Γ chosen. Both
weight functions induce a metric on Fn

qm , where d∆(v, w) = ω∆(v−w) for v, w ∈ Fqm

and ∆ ∈ {H, rk}. A linear block code is a subspace of the metric space (Fn
qm , dH), and

an Fqm-linear rank metric code is a subspace of the metric space (Fn
qm , drk). Given

a code C ≤ Fn
qm , let dH(C), respectively drk(C), denote the minimum weight over all

non zero elements of the code. If dim C = k, then d∆(C) ≤ n− k+1 for ∆ ∈ {H, rk}.
For each metric, the above bound is called the Singleton bound. C is said to be
maximum distance separable, respectively maximum rank distance if the Hamming-
metric, respectively the rank-metric, Singleton bound is achieved. For both metrics,
the weight distribution of the code is defined as follows.

Definition 4.4.2. Let C ≤ Fn
qm be a code. For ∆ ∈ {H, rk}, let

W
(i)
∆ (C) := |{v ∈ C : ω∆(v) = i}| .

Furthermore let W∆(C) := (W
(i)
∆ (C) : 0 ≤ i ≤ n). WH(C) is called the Hamming

weight distribution of C and Wrk(C) is called the rank weight distribution of C.

We now introduce two notions of support for elements of Fn
qm .
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Definition 4.4.3. Let v = (v1, . . . , vn) ∈ Fn
qm and V ⊆ Fn

qm.

SH(v) = {i : vi ̸= 0} and SH(V ) =
⋃
v∈V

SH(v)

Srk(v) = colspFq
(ΨΓ(v)) and Srk(V ) =

∑
v∈V

Srk(v)

SH, respectively Srk, are called the Hamming support and rank support of v ∈ Fn
qm

or V ⊆ Fn
qm.

Once again, the rank support of an element v ∈ Fn
qm , or subset V ⊆ Fqm , is

independent of the basis Γ chosen. Furthermore, a linear block code, respectively
Fqm-linear rank metric code, C ≤ Fn

qm is said to be non-degenerate if SH(C) = [n],
respectively Srk(C) = Fn

q . Given a code C ≤ Fn
qm , it is of interest to consider the set

of elements of C with a given support.

Definition 4.4.4. Let C ≤ Fn
qm be a code, A ⊆ [n] and V ≤ Fn

q . Let

CH(A) := {v ∈ C : SH(v) = A}
Crk(V ) := {v ∈ C : Srk(v) = V }

We now make the connection between codes and (q-)matroids. Note that linear
block codes and Fqm-linear rank metric codes can be represented via a generator
matrix G ∈ Fk×n

qm , where C := rowspFqm
(G). Both a matroid and a q-matroid can

be induced from the generator matrix. The following construction is well known for
matroids (see [39, Sec.6]) and is shown in Lemma 2.3.9 for q-matroids. We recall both
constructions below.

Proposition 4.4.5. Let C ≤ Fn
qm be a code and G ∈ Fk×n

qm a generator matrix of
C. For i ∈ [n], let ei ∈ Fn

q denote the ith standard basis vector and for V ≤ Fn
q let

YV ∈ Fn×t
q such that colspFq

(YV ) = V . Define r : [n] → N0 and ρ : L(Fn
q ) → N0 such

that:

r(A) = rkFqm

(
G ·

[
ei1 ··· eia

])
for all A ⊆ [n]

ρ(V ) = rkFqm
(G · YV ) for all V ≤ Fn

q .

Then MC := ([n], r) is a matroid and MC = (Fn
q , ρ) is a q-matroid and are called

the matroid (resp. q-matroid) associated with C.

Note that neither MC nor MC depend on the choice of generator matrix for C.
Similarly to q-matroids, there exist the notion of representable matroids. A matroid
is said to be Fq representable if it induced by a linear block code C ≤ Fn

q . FThe (q-
)matroid induced by a code is a useful tool to determine some of the code’s invariants.
In the rest of this section, we consider invariants of the code that are determined by
the characteristic polynomial of the induced (q-)matroid. We first recall the notion
of weight enumerator of a (q-)matroid. The weight enumerator of the q-matroid was
defined in [9, Def. 43] and a similar concept was established in [30] for matroids.

71



Definition 4.4.6. Let M = (S, r) be a matroid and M = (E, ρ) be a q-matroid, with
|S| = n = dimE. Let

A
(i)
M (x) =

∑
A⊆S,|A|=i

χM/(S−A)(x)

A
(i)
M(x) =

∑
V≤E,dimV=i

χM/V ⊥(x)

The weight enumerator of the matroid, respectively q-matroid, is the list AM :=
(A

(i)
M (x) : 1 ≤ i ≤ n), respectively AM := (A

(i)
M(x) : 1 ≤ i ≤ n).

Note in the above equations that if S − A or V ⊥ are not flats of their respective
matroid or q-matroid, then χM/(S−A)(x) = 0 = χM/V ⊥(x). Hence the summands
of the weight enumerator can be restricted to the complement, respectively the or-
thogonal space, of flats. Thus we have the following result, which is well-known for
matroids (see [30, Prop 3.3]) and was hinted at in [9] for q-matroids.

Theorem 4.4.7. Let M = (S, r) be a matroid and M = (E, ρ) be a q-matroid, with
|S| = n = dimE. Then

A
(i)
M (x) =

∑
F∈FM ,|F |=n−i

χM/F (x),

A
(i)
M(x) =

∑
F∈FM,dimF=n−i

χM/F (x).

It was shown in [9, Lem 49] that the weight enumerator of a representable q-
matroid is closely related to the weight distribution of its associated code. For ma-
troids a similar relation holds and was established in [30, Prop 3.2].

Theorem 4.4.8. Let C ≤ Fn
qm be a code, M and M be, respectively, the matroid and

q-matroid induced by C. Let A ⊆ [n] and V ≤ Fn
q . Then

(1) χM/A(q
m) = |CH([n]− A)| and W

(i)
H (C) = A

(i)
M (qm).

(2) χM/V (q
m) = |Crk(V ⊥)| and W

(i)
rk (C) = A

(i)
M(qm).

Remark 4.4.9. The above Theorem together with Theorem 4.4.7, tells us that if
|CH([n] − A)| and |Crk(V ⊥)| are non-zero then A and V are flats in M and M,
respectively.

Because the weight enumerator of a (q-)matroid can be expressed in terms of flats,
we get the following relation between the weight enumerator of a q-matroid and that
of its projectivization matroid.

Proposition 4.4.10. Let M = (E, ρ) be a q-matroid and P (M) = (PE, r) its pro-
jectivization matroid. Then

A
(j)
P (M)(x) =

{
A

(i)
M(x) if j = qn−qn−i

q−1
,

0 otherwise.
(4.6)
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Proof. First, recall by Lemma 4.2.2, FP (M) = {P (F ) : F ∈ FM} and dimF = n −
i ⇔ |P (F )| = qn−i−1

q−1
⇔ |PE − P (F )| = qn−qn−i

q−1
. Furthermore, by Proposition 4.3.9,

if X ⊆ PE is not a flat, then χP (M)/X(x) = 0. So for all 1 ≤ j ≤ qn−1
q−1

, such that

j ̸= qn−qn−i

q−1
for some 1 ≤ i ≤ n, we get A

(j)
P (M)(x) = 0. Now assume j = qn−qn−i

q−1
for

some 1 ≤ i ≤ n. Then

A
(i)
M(x) =

∑
F∈FM,dimF=n−i

χM/F (x)

=
∑

F∈FM,dimF=n−i

χP (M)/P (F )(x)

=
∑

P (F )∈FP (M),|P (F )|= qn−i−1
q−1

χP (M)/P (F )(x)

= A
(j)
P (M)(x),

where the second equality follows from Proposition 4.3.9.

With the above setup, we now discuss the linear block code induced by an Fqm-
linear rank metric code, as introduced in [1]. In their paper, the authors use q-
systems and projective systems to introduce the Hamming-metric code associated to
a rank metric code. We use a slightly different approach to introduce the associated
Hamming metric code that does not require the previously stated notions.

Definition 4.4.11. Let C ≤ Fn
qm be an Fqm-linear rank metric code and let G ∈ Fk×n

qm

be a generator matrix of C. Furthermore let H ∈ F
n× qn−1

q−1
q where each column of H

is a representative of a distinct element of PFn
q . We call the matrix GH := G ·H an

Fq-decomposition of G via H and CH := rowspFqm
(GH) is called a Hamming-metric

code associated to C via H

Remark 4.4.12. Given a non-degenerate Fqm-rank metric code C, the code CH of
Definition Definition 4.4.11 is a Hamming-metric code associated with C as in [1,
Def. 4.6]. In fact, it easy to show the projective system induced by the columns
of GH is a representative of the equivalence class (ExtH ◦ Φ)([C]) as introduced in
[1]. Furthermore note that unlike the construction in [1], Definition Definition 4.4.11
does not depend on q-systems and projective systems hence we do not require C to
be non-degenerate code. Finally, as noted in [1], a Hamming metric code associated
to an Fqm-linear rank metric code C is not unique. In our case, CH depends on the
choice of the matrix H of the Fq-decomposition. However, all Hamming-metric codes
associated with C are monomially equivalent.

Because CH is a linear block code, it induces a matroid MCH . It turns out that
MCH is equivalent to the projectivization matroid P (MC) of the q-matroid induced
by C.
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Theorem 4.4.13. Let C ≤ Fn
qm be a rank metric code, MC its associated q-matroid,

and P (MC) its projectivization matroid. Furthermore let CH be a Hamming-metric
code associated to C via H and MCH its induced matroid. Then

P (MC) ∼= MCH as matroids.

Proof. Let G ∈ Fk×n
qm be a generator matrix of C and let GH = G · H be a Fq-

decomposition of G via H. Let hi be the ith column of H, hence PFn
q = {⟨hi⟩ : i ∈[

qn−1
q−1

]
. Define the bijection ψ : PFn

q →
[
qn−1
q−1

]
, where ψ(⟨hi⟩) = i. Furthermore, let

A ⊆ PFn
q , ψ(A) = {i1, . . . , ia} and YA :=

[
ei1 ··· eia

]
∈ F

qn−1
q−1

×|A|
q , where ej is the

jth standard basis element of F
qn−1
q−1
q . By Proposition 4.4.5 we get

rMCH
(ψ(A)) = rkFqm

(GH ·
[
ei1 ··· eia

]
)

= rkFqm
(G ·H ·

[
ei1 ··· eia

]
)

= rkFqm
(G ·

[
hi1 ··· hia

]
)

= ρMC(⟨hi1 , . . . , hia⟩Fq)

= rP (MC)(A),

where the last equality follows from Theorem 4.2.1.

Remark 4.4.14. The above theorem allows us to relabel the groundset
[
qn−1
q−1

]
of the

matroid MCH in terms of the elements of the projective space PFn
q . Precisely if G ·H

is the Fq-decomposition associated to CH , relabel i ∈
[
qn−1
q−1

]
by ⟨hi⟩ ∈ PFn

q , where hi

is the ith column of H.

We get the following result as an immediate corollary of Theorem 4.4.13.

Corollary 4.4.15. If M is Fqm-representable then its projectivization matroid P (M)
is Fqm-representable.

In [1, Theorem 4.9], it was established that the rank-weight distribution of a
rank metric code C is closely related to the Hamming-weight distribution of any
Hamming-metric code associated to C. By Theorem 4.4.8, Proposition 4.4.10 and
Theorem 4.4.13 we arrive at the same result from a purely matroid/q-matroid ap-
proach.

Theorem 4.4.16. [1, Thm 4.9] Let C be an Fqm-linear rank metric code and CH be
a Hamming-metric code associated to C.Then

W
(j)
H (CH) =

{
W

(i)
rk (C) if j = qn−qn−i

q−1
,

0 otherwise.
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We conclude this chapter by showing the q-analogue of the Critical Theorem.
The Critical Theorem, introduced by Crapo and Rota [15, Thm 1], states that the
characteristic polynomial of the matroid MC induced by the linear block code C
determines the number of multisets of codewords with a given support. It was nicely
restated in [5, Thm 2] in terms of coding theory terminology (recall Definition 4.4.3).

Theorem 4.4.17. Let C ≤ Fn
q be a linear block code and M = ([n], r) its induced

matroid. For all A ⊆ [n], the number of ordered t-tuples V = (v1, . . . , vt), where
vj ∈ C for all 1 ≤ j ≤ t, such that SH(V ) = A is given by χM/([n]−A)(q

t).

For our last result, we show an analogous statement for Fqm-linear rank metric
codes and q-matroids by using the projectivization matroid. It is worth mentioning
that Alfarano and Byrne were able to show an analogue of the Critical Theorem for
q-polymatroids and matrix rank metric codes by using a different approach involving
the Möbius inversion formula [8] .

For the next results we make use of Remark 4.4.14, and relabel the elements of
the groundset of the matroid induced by CH in terms of elements of PFn

q . Following
this relabeling, we can also describe the support of a codeword of CH in terms of the
elements of PFn

q . More precisely, if CH is induced by the Fq-decomposition G ·H, for
any v ∈ CH , let SH(v) = {⟨hi⟩ ∈ PFn

q : vi ̸= 0}, where hi and vi are respectively
the ith column of H and the ith component of v. Furthermore, we need the following
well-known result for which we include a proof for self-containment. For two vectors
v, w we let v · w denote the standard dot-product.

Lemma 4.4.18. Let v ∈ Fn
qm, Srk(v) = W ≤ Fn

q and w ∈ Fn
q . Then v · w = 0 if and

only if w ∈ W⊥.

Proof. Let Γ := {γ1, . . . , γm} be a basis of Fqm over Fq, and let Y := ΨΓ(v) ∈ Fn×m
q ,

where W := colspFq
(Y ). Then v · w = 0 ⇔

∑n
i=1 viwi = 0 ⇔∑n

i=1

(∑m
j=1 γjvij

)
wi = 0 ⇔

∑m
j=1 γj (

∑n
i=1 vijwi) = 0. Since Γ is a basis of Fqm over

Fq and vijwi ∈ Fq, the previous equality holds if and only if
∑n

i=1 vijwi = 0 for all
1 ≤ j ≤ m. But note

∑n
i=1 vijwi = v(j) · w, where v(j) is the jth column of Y . Hence

v · w = 0 ⇔ v(j) · w = 0 for all 1 ≤ j ≤ m⇔ w ∈ colspFq
(Y )⊥ ⇔ w ∈ W⊥.

The following Lemma relates the rank support of elements of the code C with the
Hamming support of elements of the associated Hamming-metric code CH .

Lemma 4.4.19. Let C ≤ Fn
qm be a rank metric code, CH be a Hamming-metric

code associated to C via H. Furthermore, let V = {v1, . . . , vt} be a subset of C and
V ·H := {v1 ·H, . . . , vt ·H} . Then

Srk(V ) = W ⇔ SH(V ·H) = PFn
q − P (W⊥).

Moreover if M and P (M) are the q-matroid and projectivization matroid induced
respectively by C and CH then W⊥ and P (W⊥) are, respectively, flats of M and
P (M).
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Proof. Consider the subset V := {v1, . . . , vt} ⊆ C. By definition, W := Srk(V ) =∑t
j=1 Srk(vj). Let Wj := Srk(vj). For all 1 ≤ j ≤ t, by Lemma 4.4.18, vj · w = 0 if

and only if w ∈ W⊥
j . Hence for all columns hi of H, it follows that vj · hi = 0 if and

only if hi ∈ W⊥
j . By definition, this is true if and only if SH(vj ·H) = PFn

q −P (W⊥
j ).

Hence SH(V ·H) =
⋃t

i=1 SH(vj ·H) =
⋃t

j=1(PF
n
q − P (W⊥

j )), where the first equality

follows by definition. Therefore Srk(V ) = W ⇔ SH(V ·H) =
⋃t

j=1(PF
n
q − P (W⊥

j )) =

PFn
q − (

⋂t
j=1 P (W

⊥
j )) = PFn

q − P (W⊥). Finally, W⊥ and P (W⊥) are flats of M and
P (M) respectively because of Remark Remark 4.4.9.

We are now ready to show the Critical Theorem for Fqm-linear rank metric codes
and q-matroids.

Theorem 4.4.20. Let C ≤ Fn
qm be an Fqm-linear rank metric code and M its induced

q-matroid. For all W ≤ Fn
q , the number of ordered t-tuples V = (v1, . . . , vt), where

vj ∈ C for all 1 ≤ j ≤ t, such that Srk(V ) = W is given by χM/W⊥(qmt).

Proof. Let CH be the Hamming-metric code associated with C via H and P (M) be
its associated matroid. Note that every element of CH is of the form v ·H for some
v ∈ C. Hence every tuple of elements of CH is of the form V · H for some V ⊆ C.
Furthermore, since H has full row-rank, there is a bijection between elements of C
and CH and hence a bijection between t-tuples V ⊆ C and t-tuples V ·H ⊆ CH . By
Theorem 4.4.17, the number of t-tuple V ·H ⊆ CH such that SH(V ·H) = PE−P (W⊥)
is given by χP (M)/P (W⊥)(q

mt). Moreover, by Proposition 4.3.9, χP (M)/P (W⊥)(q
mt) =

χM/W⊥(qmt). Finally, by Lemma 4.4.19, Srk(V · H) = PE − P (W⊥) if and only if
Srk(V ) = W and therefore χM/W⊥(qmt) counts the number of t-tuples V ⊆ C such
that Srk(V ) = W .

The above result, and its proof, shows a close connection between the Critical
Theorem for matroids and that for q-matroids. Furthermore it can easily been seen
from the above approach that the critical problem for q-matroids, that is finding the
smallest power of q that makes the characteristic polynomial of a q-matroid non-zero,
is a specific case of the critical problem for matroids.

Copyright© Benjamin Jany, 2023.
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Chapter 5 The Direct sum of q-Matroids.

In this chapter we introduce and study the direct sum of q-matroids introduces by
[13]. We study the rank function of the direct sum and show that the cyclic flats of
the direct sum can easily be characterized via the cyclic flats of each summands. The
characterization of the cyclic flats will then allow us to study the decomposition of
q-matroids into irreducible components. We show every q-matroids can be uniquely
decomposed into the direct sum of irreducible q-matroids, up to equivalence. Finally
we conclude the chapter by studying the representability of the direct sum of q-
matroids. More precisely we show that unlike classical matroids, the direct sum of
two Fqm-representable q-matroid is not necessarily Fqm representable. Results in this
chapter also appear in [27] and [25]

5.1 Preliminaries on the Direct Sum of q-Matroids.

In this introduce the direct sum of q-matroids and study its rank function. The first
definition of it has been given in [13]. We will present a different, more concise,
definition, which results in the same construction. It will enable us to study its
properties in more detail. In particular, we will derive various ways to compute the
rank function, the most efficient one being based on the cyclic flats of the components.
Moreover, we will show that the dual of a direct sum is the direct sum of the dual
q-matroids.

We start with the union of two q-matroids, which is the q-analogue of the matroid
union; see e.g., [39, Thm. 11.3.1].

Theorem 5.1.1 ([13, Thm. 28]). Let Mi = (E, ρi), i = 1, 2, be q-matroids on the
same ground space E. For V ∈ L(E) define

ρ(V ) = dimV +min{ρ1(X) + ρ2(X)− dimX | X ≤ V } (5.1)

Then M = (E, ρ) is a q-matroid, called the union of M1 and M2, and denoted by
M = M1 ∨M2.

Proof. The fact that ρ is a rank function is in [13, Thm. 29] and also follows from
Theorem 3.1.6. The main argument in these proofs is that the map ρ1+ρ2 : L(E) −→
N0 satisfies (R2) and (R3) from Definition 2.1.1. Hence it gives rise to a q-polymatroid.
The minimization in (5.1) turns this map into a rank function of a q-matroid.

In order to define the direct sum of two q-matroids Mi = (Ei, ρi), we need,
unsurprisingly, the direct sum E = E1 ⊕ E2 of F-vector spaces E1 and E2. For any
such direct sum we denote by

πi : E −→ Ei and ιi : Ei −→ E

the corresponding projection and embedding. We will identify a subspace Vi ∈ L(Ei)
with its image ιi(Vi).
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The construction of the direct sum consists of two steps:

(1) Add the ground space E1 of the q-matroid M1 = (E1, ρ1) as a space of rank 0 to
the q-matroid M2 = (E2, ρ2) and vice versa. This results in two q-matroids M′

1, M′
2

on the common ground space E1 ⊕ E2 and with rank functions ρ′i.

(2) Take the union of M′
1 and M′

2.

Theorem 5.1.2 ([13, Sec. 7]). Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and set
E = E1 ⊕ E2. Define ρ′i : L(E) −→ N0, V 7−→ ρi(πi(V )) for i = 1, 2. Then
M′

i = (E, ρ′i) is a q-matroid for i = 1, 2. Set M = M′
1 ∨M′

2, that is, M = (E, ρ),
where

ρ(V ) = dimV + min
X≤V

(
ρ′1(X) + ρ′2(X)− dimX

)
for V ∈ L(E). (5.2)

Then M is a q-matroid, called the direct sum of M1 and M2 and denoted by M1 ⊕
M2.

Proof. We show that ρ′i is indeed a rank function for i ∈ {1, 2}. WLOG let i = 1.
Using that ρ1 is a rank function, we have 0 ≤ ρ1(π1(V )) ≤ dim π1(V ) ≤ dimV , and
this shows (R1). (R2) is trivial. For (R3) let V,W ∈ E. Note first that π1(V ∩W ) ⊆
π1(V ) ∩ π1(W ). Thus

ρ′1(V +W ) = ρ1(π1(V +W )) = ρ1(π1(V ) + π1(W ))

≤ ρ1(π1(V )) + ρ1(π1(W ))− ρ1(π1(V ) ∩ π1(W ))

≤ ρ1(π1(V )) + ρ1(π1(W ))− ρ1(π1(V ∩W ))

= ρ′1(V ) + ρ′1(W )− ρ′1(V ∩W ).

The rest follows from Theorem 5.1.1.

We clearly have ρ′i(Ej) = 0 for i ̸= j. Even more, one can easily verify that
M′

i ≈ Mi ⊕ U0(Ej), where U0(Ej) is the trivial q-matroid on the ground space Ej.
Thus M′

i is a special instance of the direct sum (called “adding a loop space” in
[13]). Some additional basic and to-be-expected properties of the direct sum will be
presented below in Theorem 5.1.5 after deriving more convenient expressions for the
rank function.

The definition of the rank function of M1 ⊕ M2 in (5.2) becomes quickly very
cumbersome as it requires computing the minimum over all subspaces of V . We
now derive various more efficient ways of determining the rank values. The most
convenient one is given in Corollary 5.1.8 below, which only requires the cyclic flats
of M1 and M2. We start with the following simple improvements.

Proposition 5.1.3. Consider the situation of Theorem 5.1.2. Define the sets

X = {X ∈ L(E) | ρ′1(X) + ρ′2(X) < dimX}, (5.3)

T = {X1 ⊕X2 | Xi ∈ L(Ei)},
T (V ) = {X1 ⊕X2 | Xi ≤ πi(V )} for V ∈ L(E).
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Then for any V ∈ L(E)

ρ(V ) = dimV + min
X∈{0}∪(X∩L(V ))

(
ρ′1(X) + ρ′2(X)− dimX

)
(5.4)

= dimV + min
X∈T

(
ρ′1(X) + ρ′2(X)− dim(X ∩ V )

)
(5.5)

= dimV + min
X∈T (V )

(
ρ′1(X) + ρ′2(X)− dim(X ∩ V )

)
. (5.6)

As a consequence, V is independent in M1 ⊕M2 iff L(V ) ∩ X = ∅.

Proof. 1) Using X = 0 in (5.2) we obtain ρ(V ) ≤ dimV (as it has to be). Hence
we only have to test the subspaces X of V that may lead to ρ(V ) < dimV . This is
exactly the collection X , and thus (5.4) is established. This identity also implies the
statement about the independent spaces.
2) LetM1 := minX≤V

(
ρ′1(X)+ρ′2(X)−dimX

)
andM2 := minX≤E

(
ρ′1(X)+ρ′2(X)−

dim(X ∩V )
)
. Clearly M2 ≤M1. For the converse inequality let X̂ ≤ E be such that

M2 = ρ′1(X̂)+ρ′2(X̂)−dim(X̂ ∩V ). Set X̃ := X̂ ∩V . Using monotonicity of the rank
function we obtainM1 ≤ ρ′1(X̃)+ρ′2(X̃)−dim X̃ ≤ ρ′1(X̂)+ρ′2(X̂)−dim(X̂∩V ) =M2.
Thus M1 =M2 and

ρ(V ) = dimV + min
X≤E

(
ρ′1(X) + ρ′2(X)− dim(X ∩ V )

)
. (5.7)

Actually, this expression for the rank function of the direct sum appears in [13,
Thm. 25]; see also [13, Rem. 26]. Now we are ready to prove (5.5). Recall that
ρ′i(X) = ρi(πi(X)). Hence ρ′1(X) + ρ′2(X) only depends on the projections πi(X).
Since X ≤ π1(X) ⊕ π2(X) =: X ′ for any subspace X, we have ρ′1(X) + ρ′2(X) −
dim(X ∩ V ) ≥ ρ′1(X

′) + ρ′2(X
′) − dim(X ′ ∩ V ). This shows that it suffices to take

the minimum in (5.7) over subspaces X satisfying X = π1(X) ⊕ π2(X). But this is
exactly the collection T , and hence (5.5) is established.
3) Let X = X1 ⊕ X2 ∈ T . Then X ∩ V ⊆ Y1 ⊕ Y2, where Yi = Xi ∩ πi(V ). Set
Y := Y1⊕Y2. Then Y ∈ T (V ) andX∩V ⊆ Y ∩V . Thus ρ1(Y1)+ρ2(Y2)−dim(Y ∩V ) ≤
ρ1(X1)+ ρ2(X2)− dim(X ∩V ). This shows that the minimum in (5.5) is attained by
a subspace in T (V ) and (5.6) is proven.

The above allows an immediate characterization of the circuits of the direct sum.

Corollary 5.1.4. Consider the direct sum M1 ⊕ M2 as in Theorem 5.1.2 and the
set X in (5.3). Then the circuits of the direct sum are given by

C(M1 ⊕M2) = {X ∈ X | X is inclusion-minimal in X}.

As to be expected, the direct sum behaves well with respect to restriction to
the initial ground spaces Ei and the according contraction. Recall Definitions 2.1.9,
2.1.15(a) and 2.1.16.

Theorem 5.1.5 ([13, Thm. 47, Cor. 48]). Let M = M1⊕M2 be as in Theorem 5.1.2.
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(a) For all Vi ∈ L(Ei) we have ρi(Vi) = ρ′i(Vi) and ρ
′
j(Vi) = 0 for j ̸= i. Furthermore,

ρ(V1⊕V2) = ρ1(V1)+ρ2(V2). Hence Mi ≈ M|Ei
≈ (M′

i)|Ei
, and the isomorphism

is provided by ιi. Moreover, for i ̸= j the q-matroid (M′
i)|Ej

is the zero q-matroid.

(b) ρ(M) = ρ1(M1) + ρ2(M2).

(c) M/Ei ≈ Mj for i ̸= j.

Proof. (a) The first statement follows from ρ′i(Vi) = ρi(πi(Vi)) = ρi(Vi). Let now
V = V1 ⊕ V2. By (5.6) there exist X = X1 ⊕ X2 for some Xi ≤ Vi such that
ρ(V ) = dimV + ρ′1(X1) + ρ′2(X2) − dimX. Write Vi = Xi ⊕ Zi for some Zi ≤ Vi.
Using the properties of the rank functions ρ′i we compute

ρ(V ) = ρ′1(X1) + ρ′2(X2) + dimZ1 + dimZ2 ≥ ρ′1(X1) + ρ′2(X2) + ρ′1(Z1) + ρ′2(Z2)

≥ ρ′1(X1 ⊕ Z1) + ρ′2(X2 ⊕ Z2) = ρ′1(V1) + ρ′2(V2)

= ρ1(V1) + ρ2(V2) ≥ ρ(V ),

where the last step follows from (5.6) with X = V . This establishes the desired
identity. The isomorphisms follow from ρ(Vi) = ρi(Vi) = ρ′i(Vi), and the rest is clear.
(b) is a consequence of (a) because ρ(M) = ρ(E) = ρ1(E1) + ρ2(E2).
(c) Without loss of generality let i = 1. Denote the rank function of M/E1 by ρ̂1. Let
V ∈ L(E2). Then ρ̂1(V/E1) = ρ(E1⊕V )−ρ(E1) = ρ1(E1)+ρ2(V )−ρ1(E1) = ρ2(V ),
where the last identity follows from (a). Hence M2 andM/E1 are equivalent via
the isomorphism π̂ : E2 −→ E/E1 induced by the canonical projection from E onto
E/E1.

Now we obtain a very efficient way of computing the rank function of the direct
sum which only requires the collections of cyclic flats of the two summands. The
following notation we be convenient for the rest of this paper.

Notation 5.1.6. Let E = E1 ⊕ E2 and Yi ⊆ L(Ei) for i = 1, 2. We define

Y1 ⊕ Y2 = {Y1 ⊕ Y2 | Yi ∈ Yi}.

Theorem 5.1.7. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and let Fi = F(Mi)
and Zi = Z(Mi), that is, Fi (resp. Zi) are the collections of flats (resp. cyclic flats)
of Mi. Let ρ be the rank function of M1 ⊕ M2. Then for all V ∈ L(E1 ⊕ E2) we
have

ρ(V ) = dimV + min
F1⊕F2∈F1⊕F2

(
ρ1(F1) + ρ2(F2)− dim((F1 ⊕ F2) ∩ V )

)
(5.8)

= dimV + min
Z1⊕Z2∈Z1⊕Z2

(
ρ1(Z1) + ρ2(Z2)− dim((Z1 ⊕ Z2) ∩ V )

)
. (5.9)

Proof. 1) We use (5.5). Let X = X1 ⊕X2 ∈ T . Clearly, ρ′i(X) = ρi(Xi) for i = 1, 2.
Suppose X1 ̸∈ F1. Then there exists X ′

1 ∈ L(E1) such that X1 ⪇ X ′
1 and ρ1(X1) =

ρ1(X
′
1). Therefore X ⪇ X ′

1 ⊕ X2 =: X ′ and ρ1(X
′
1) + ρ2(X2) − dim(X ′ ∩ V ) ≤

ρ1(X1) + ρ2(X2) − dim(X ∩ V ). The same argument applies to X2, and this shows

80



that the minimum in (5.5) is attained by a space in F1 ⊕F2. This establishes (5.8).
2) Let V ∈ L(E) and set

M1 = min
F1⊕F2∈F1⊕F2

(
ρ1(F1) + ρ2(F2)− dim((F1 ⊕ F2) ∩ V )

)
,

M2 = min
Z1⊕Z2∈Z1⊕Z2

(
ρ1(Z1) + ρ2(Z2)− dim((Z1 ⊕ Z2) ∩ V )

)
.

Clearly M1 ≤ M2. For the converse let F̂ := F̂1 ⊕ F̂2 ∈ F1 ⊕ F2 be such that
M1 = ρ1(F̂1) + ρ2(F̂2) − dim(F̂ ∩ V ). Set Zi = cyci(F̂i), where cyci( · ) is the cyclic
core in the q-matroid Mi. Then Zi is in Zi thanks to Lemma 2.2.25. Moreover,
Z = Z1 ⊕ Z2 ≤ F̂ and ρi(F̂i) = ρi(Zi) + dim(F̂i/Zi) by Proposition 2.2.24. Now we
compute

M1 = ρ1(F̂1) + ρ2(F̂2)− dim(F̂ ∩ V )

= ρ1(Z1) + dim(F̂1/Z1) + ρ2(Z2) + dim(F̂2/Z2)− dim F̂ − dimV + dim(F̂ + V )

≥ ρ1(Z1) + ρ2(Z2)− dimZ − dimV + dim(Z + V )

= ρ1(Z1) + ρ2(Z2)− dim(Z ∩ V ) ≥M2.

Hence M1 =M2, which establishes (5.9).

The identity (5.9) can be rewritten as the following convenient identity. Note
its resemblance with Corollary 2.2.30. Using this identity we will prove in the next
section that Z1⊕Z2 is the collection of cyclic flats of M1⊕M2, and thus it is indeed
a special case of Corollary 2.2.30.

Corollary 5.1.8. In the situation of Theorem 5.1.7 we have

ρ(V ) = min
Z∈Z1⊕Z2

(
ρ(Z) + dim(V + Z)/Z

)
for all V ∈ L(E1 ⊕ E2).

Proof. Let Z = Z1 ⊕ Z2 ∈ Z1 ⊕Z2. With the aid of Theorem 5.1.5(a) we compute

ρ1(Z1) + ρ2(Z2)− dim(Z ∩ V ) = ρ(Z)− dimZ − dimV + dim(Z + V )

= ρ(Z) + dim(Z + V )/Z − dimV,

and the result follows from (5.9).

In the last part of this section we turn to the dual of the direct sum. As shown
next, it is the direct sum of the dual q-matroids if taken with respect to compatible
NSBFs. Defining duality with respect to lattice anti-isomorphisms, the result below
appears also in [13, Thm. 50]. We will comment on the relation in Remark 5.1.10.

Theorem 5.1.9. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids. Set E = E1 ⊕ E2.
Choose NSBFs ⟨· | ·⟩i on Ei and set ⟨v1 + v2 |w1 + w2⟩ = ⟨v1 |w1⟩1 + ⟨v2 |w2⟩2 for
all vi, wi ∈ Ei. Then ⟨· | ·⟩ is an NSBF on E and

(M1 ⊕M2)
∗ = M∗

1 ⊕M∗
2,

where M∗
i and (M1⊕M2)

∗ are the dual q-matroids with respect to the given NSBFs.
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Proof. It is easy to see that ⟨· | ·⟩ is an NSBF on E. We denote the corresponding
orthogonal space of V ≤ E by V ⊥, while for W ≤ Ei we use W

⊥(i) for the orthogonal
of W in Ei with respect to ⟨· | ·⟩i. By construction we have

(V1 ⊕ V2)
⊥ = V

⊥(1)
1 ⊕ V

⊥(2)
2 for all Vi ∈ L(Ei).

Let M∗
1 ⊕M∗

2 = (E, ρ̃) and M1 ⊕M2 = (E, ρ). Then (M1 ⊕M2)
∗ = (E, ρ∗) with

ρ∗ as in (2.1). We have to show that ρ∗(V ) = ρ̃(V ) for all V ∈ L(E). We will use
(5.5) for the rank function ρ (Corollary 5.1.8 does not simplify the computations.).
Writing X = X1 ⊕X2 for X ∈ T we have

ρ̃(V ) = dimV + min
X∈T

(
ρ∗1(X1) + ρ∗2(X2)− dim(X ∩ V )

)
.

With the aid of Theorem 5.1.5(a) we obtain for any X = X1 ⊕X2 ∈ T

ρ∗1(X1) + ρ∗2(X2)− dim(X ∩ V )

= dimX1 − ρ1(E1) + ρ1(X
⊥(1)
1 ) + dimX2 − ρ2(E2) + ρ2(X

⊥(2)
2 )− dim(X ∩ V )

= dimX − ρ(E) + ρ(X⊥)− dimE + dim(X ∩ V )⊥

= dimX − ρ(E) + ρ(X⊥)− dimE + dim(X⊥ + V ⊥)

= dimX − ρ(E) + ρ(X⊥)− dimE + dimX⊥ + dimV ⊥ − dim(X⊥ ∩ V ⊥)

= dimV ⊥ − ρ(E) + ρ(X⊥)− dim(X⊥ ∩ V ⊥).

Using {X⊥ | X ∈ T } = T and again (5.5) we now arrive at

ρ̃(V ) = dimE − ρ(E) + min
X∈T

(
ρ(X⊥)− dim(X⊥ ∩ V ⊥)

)
= dimE − ρ(E) + min

X∈T

(
ρ(X)− dim(X ∩ V ⊥)

)
= dimV − ρ(E) + dimV ⊥ + min

X∈T

(
ρ1(X1) + ρ2(X2)− dim(X ∩ V ⊥)

)
= dimV − ρ(E) + ρ(V ⊥) = ρ∗(V ),

as desired.

Remark 5.1.10. In [13, Def. 6] the authors define duality of q-matorids with respect
to an involutory anti-isomorphism on the subspace lattice L(E). Denoting such an
anti-isomorphism by ⊥, the definition of M∗ reads exactly as in Theorem 2.1.11.
Since the orthogonal complement with respect to a chosen NSBF induces a lattice
anti-isomorphism, the duality result in [13, Thm. 50] appears to be more general than
Theorem 5.1.9. However, as we now briefly discuss, the two results differ only by a
semi-linear isomorphism on E (if dimE ≥ 3). Indeed, choose an NSBF on E and
denote the corresponding orthogonal space of V ≤ E by V ⊥ . Then τ : L(E) −→
L(E), V 7−→ V ⊥ is an anti-isomorphism on the lattice L(E). Let now ⊥ be any
anti-isomorphism on L(E). Then τ◦ ⊥ is a lattice isomorphism and thanks to the
Fundamental Theorem of Projective Geometry (see for instance [3, Ch. II.10] or [40,
Thm. 1]) there exists a semi-linear isomorphism f : E −→ E such that τ(V ⊥) =
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f(V ) for all V ∈ L(E). In other words, (V ⊥)⊥ = f(V ) or V ⊥ = f(V )⊥ for all
V ∈ L(E). This shows that the lattice anti-isomorphism ⊥ differs from the one
induced by the chosen NSBF by the semi-linear isomorphism on E. Denote the dual
rank function of M = (E, ρ) with respect to ⊥ and τ by ρ∗(⊥) and ρ∗(⊥), respectively.
Then ρ∗(⊥)(V ) = ρ∗(⊥)(f(V )) and thus the two dual q-matroids differ only by the semi-
linear isomorphism f . This shows that [13, Thm. 50] is a consequence Theorem 5.1.9
above, which has a significantly shorter and simpler proof.

5.2 The Cyclic Flats of the Direct Sum.

In this short section we show that the cyclic flats of a direct sum M1 ⊕ M2 is the
collection of the direct sums of the cyclic flats of the two components M1 and M2.
Recall Section 2.2.4 for definition and properties of cyclic flats. The following lemma
is needed.

Lemma 5.2.1.
(a) Let M = (E, ρ) be a q-matroid. Suppose F ∈ F(M) and O ∈ O(M) are such

that F ⪇ O. Then 0 < ρ(O)− ρ(F ) < dimO − dimF .

(b) Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and ρ be the rank function of M1⊕M2.
Let F = F1 ⊕ F2 with Fi ∈ F(Mi) and O = O1 ⊕ O2 with Oi ∈ O(Mi) be such
that F ⪇ O. Then 0 < ρ(O)− ρ(F ) < dimO − dimF .

Proof. Since F is a flat, we clearly have 0 < ρ(O)−ρ(F ). Furthermore, let O = F⊕T
for some T ≤ O. Then (R1)–(R3) for ρ imply ρ(O) ≤ ρ(F )+ ρ(T ) ≤ ρ(F )+dimT =
ρ(F ) + dimO − dimF . We show that the first inequality is strict. To do so, let
U ∈ Hyp(T ). Then F ⊕U ∈ Hyp(O). Thus cyclicity of O implies ρ(O) = ρ(F ⊕U) ≤
ρ(F ) + ρ(U) < ρ(F ) + dimT , as desired.
(b) By assumption Fi ≤ Oi for i = 1, 2. Without loss of generality we may assume
F1 ⪇ O1. With the aid of Theorem 5.1.5(a) and Part (a) we compute

ρ(O)− ρ(F ) = ρ1(O1)− ρ1(F1) + ρ2(O2)− ρ2(F2)

< dimO1 − dimF1 + dimO2 − dimF2 = dimO − dimF.

The second expression also shows that ρ(O)− ρ(F ) > 0.

Now we are ready for our main result.

Theorem 5.2.2. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and Zi = Z(Mi). As in
Notation 5.1.6 let Z1 ⊕Z2 = {Z1 ⊕ Z2 | Zi ∈ Zi}. Then

Z(M1 ⊕M2) = Z1 ⊕Z2.

Proof. “⊇” Let V ∈ Z1 ⊕Z2. Then V = V1 ⊕ V2 for some Vi ∈ Zi.
a) We show that V is a flat in M1 ⊕ M2. Let x ∈ E \ V . We need to show that
ρ(V + ⟨x⟩) = ρ(V ) + 1. By Corollary 5.1.8 there exists Ẑ = Ẑ1 ⊕ Ẑ2 ∈ Z1 ⊕Z2 such
that

ρ(V + ⟨x⟩) = ρ(Ẑ) + dim((V + ⟨x⟩+ Ẑ)/Ẑ).
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If Ẑ = V , then this implies ρ(V +⟨x⟩) = ρ(V )+1, as desired. Let now Ẑ ̸= V and set
F := V ∩Ẑ = (V1∩Ẑ1)⊕(V2∩Ẑ2). Since each Vi∩Ẑi is a flat (see Theorem 2.2.15), F
is of the form F = F1 ⊕ F2, where Fi ∈ F(Mi). By assumption Vi are cyclic spaces,
and thus we may apply Lemma 5.2.1(b) to F ⪇ V . This leads to

ρ(V )− ρ(Ẑ) ≤ ρ(V )− ρ(F ) < dimV − dim(F ) = dim(V/F ), (5.10)

which in turn implies

ρ(V +⟨x⟩) = ρ(Ẑ)+dim((V +⟨x⟩+Ẑ)/Ẑ) > ρ(V )−dim(V/F )+dim((V +⟨x⟩+Ẑ)/Ẑ).

Since dim(V/F ) = dim(V/(V ∩ Ẑ)) = dim((V + Ẑ)/Ẑ) ≤ dim((V + ⟨x⟩+ Ẑ)/Ẑ), we
conclude that ρ(V + ⟨x⟩) > ρ(V ), as desired.
b) We show that V is cyclic. Let D ∈ Hyp(V ). By Corollary 5.1.8 there exists
Ẑ ∈ Z1 ⊕Z2 such that

ρ(D) = ρ(Ẑ) + dim((D + Ẑ)/Ẑ).

If Ẑ = V , then this implies ρ(D) = ρ(V ), as desired. Thus let Ẑ ̸= V . As above, we
set F := V ∩ Ẑ and apply Lemma 5.2.1(b) to F ⪇ V . Thus we have again (5.10) and
compute

ρ(D) = ρ(Ẑ) + dim((D + Ẑ)/Ẑ)

> ρ(V )− dim(V/V ∩ Ẑ) + dim(D/D ∩ Ẑ) = ρ(V )− 1 + dim(V ∩ Ẑ)
− dim(D ∩ Ẑ)

≥ ρ(V )− 1.

This shows ρ(D) = ρ(V ).
“⊆” Let Z ∈ Z(M1 ⊕M2). Again, by Corollary 5.1.8 there exists Ẑ ∈ Z1 ⊕Z2 such
that

ρ(Z) = ρ(Ẑ) + dim((Z + Ẑ)/Ẑ). (5.11)

Since Z is cyclic, every space D ∈ Hyp(Z) satisfies

ρ(D) = ρ(Z) = ρ(Ẑ) + dim((Z + Ẑ)/Ẑ) ≥ ρ(Ẑ) + dim((D + Ẑ)/Ẑ) ≥ ρ(D),

and hence dim((D + Ẑ)/Ẑ) = dim((Z + Ẑ)/Ẑ). Since this is true for every D ∈
Hyp(Z), we conclude Z ≤ Ẑ. Next, Z is a flat and thus every x ∈ E \ Z satisfies

ρ(Z) < ρ(Z + ⟨x⟩) ≤ ρ(Ẑ) + dim((Z + ⟨x⟩+ Ẑ)/Ẑ).

Together with (5.11) this implies dim(Z + Ẑ) < dim(Z + ⟨x⟩ + Ẑ), and thus x ̸∈ Ẑ.
Since this is true for every x ∈ E \ Z, we conclude that Ẑ ≤ Z. All of this shows
that Z = Ẑ and thus Z ∈ Z1 ⊕Z2. This concludes the proof.

Theorem 5.2.2 in combination with Corollary 5.1.8 immediately implies associa-
tivity of the direct sum operation (which is not obvious from the very definition of
the direct sum). The result will be crucial for the decomposition of q-matroids in the
next section.
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Corollary 5.2.3. Let Mi, i = 1, 2, 3, be q-matroids. Then (M1 ⊕ M2) ⊕ M3 =
M1 ⊕ (M2 ⊕M3).

The analogous identity as in Theorem 5.2.2 is not true for the flats, independent
spaces, circuits etc.

Remark 5.2.4. Let Mi = (Ei, ρi), i = 1, 2, and M = M1 ⊕ M2. Recall Nota-
tion 5.1.6. With the aid of Theorem 5.1.5 it is easy to see that I(M1) ⊕ I(M2) ⊂
I(M), F(M1) ⊕ F(M2) ⊂ F(M), O(M1) ⊕ O(M2) ⊂ O(M), and C(M1) ∪
C(M2) ⊂ C(M). In general equality does not hold in any of these cases.

We conclude this section by illustrating the discrepancies in the following example.

Example 5.2.5. Let F = F2 and consider F23 with primitive element ω satisfying
ω3 + ω + 1 = 0. Let

G1 =

(
1 0 ω3

0 1 ω

)
, G2 =

(
1 0 ω3 ω
0 1 ω4 ω2

)
, G =


1 0 ω3 0 0 0 0
0 1 ω 0 0 0 0
0 0 0 1 0 ω3 ω
0 0 0 0 1 ω4 ω2

 .

Note that G is the block diagonal matrix with diagonal blocks G1 and G2. Let Mi =
MGi

and N = MG, i.e., they are the q-matroids represented by G1, G2, and G,
respectively. Furthermore, let M = M1 ⊕ M2. Thus both M and N have ground
space F7. In the following table we list the number of flats, cyclic spaces, etc. of all
these q-matroids.

Table 5.1: Cardinality of collection of spaces for M1, M2, M and N .

flats cyclic spaces cyclic flats ind. spaces dep. spaces circuits bases

M1 7 2 2 14 2 1 6

M2 11 11 5 48 19 9 32

N 2201 124 40 24108 5104 73 9792

M 7541 412 10 24861 4351 355 10416

Note that the 10 cyclic flats of M are consistent with Theorem 5.2.2. It is remark-
able that M has significantly more flats and cyclic spaces than N , yet fewer cyclic
flats. Furthermore, one can verify that the cyclic flats of M are also cyclic flats of
N . Finally, all independent spaces of N are also independent spaces of M, which
will also be studied in We will prove those latter facts in generality in Section 5.4.

5.3 Decomposition of q-Matroids into Irreducible Components.

We introduce the notion of irreducibility for q-matroids and show that every q-matroid
can be decomposed as a direct sum of irreducible q-matroids, whose summands are
unique up to equivalence. Our main tool are cyclic flats, in particular Theorem 5.2.2.
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This makes our approach substantially different from classical matroid theory, where
decompositions are usually based on connected components. As to our knowledge
there is no notion of connectedness for q-matroids that may be used for decomposi-
tions into direct sums; see also [13, Sec. 8].

Throughout, let M = (E, ρ) be a q-matroid. In order to simplify the discussion of
irreducibility and decompositions we start with the following simple fact concerning
equivalence in the sense of Definition 2.1.9. It can easily be checked with the definition
in Theorem 5.1.2.

Remark 5.3.1. Suppose M ≈ M̂1 ⊕ M̂2. Then there exists a decomposition E =
E1 ⊕ E2 and q-matroids Mi such that

M = M1 ⊕M2, Mi = M|Ei
, Mi ≈ M̂i.

As a consequence, we do not need to take equivalence into account when discussing
decomposability into direct sums.

Definition 5.3.2. The q-matroid M is called reducible if there exists q-matroids
M1, M2 with nonzero ground spaces such that M = M1 ⊕ M2. Otherwise M is
called irreducible.

Clearly, a q-matroid on a 1-dimensional ground space is irreducible. Furthermore,
thanks to Theorem 5.1.9 M is irreducible if and only if M∗ is. We collect some facts
about the uniform q-matroids.

Example 5.3.3. (a) The trivial and the free q-matroids U0,n and Un,n are irreducible
if and only if n = 1. Indeed, Theorem 5.1.2 implies U0,n1 ⊕ U0,n2 = U0,n and
likewise Un1,n1 ⊕ Un2,n2 = Un,n, where n = n1 + n2.

(b) For 0 < k < n := dimE the uniform q-matroid M := Uk(E) is irreducible.
To see this, note first that Z(M) = {0, E} thanks to Example 2.2.27. Suppose
M = M1 ⊕M2 for some q-matroids Mi = (Ei, ρi). Then the identity Z(M) =
Z(M1) ⊕ Z(M2) implies that, without loss of generality, Z(M1) = {Z1} and
Z(M2) = {Z2, Z

′
2}. Thus 0 = Z1 ⊕ Z2 and E = Z1 ⊕ Z ′

2, and therefore Z1 =
0, Z2 = 0, Z ′

2 = E. Since E = E1 ⊕ E2 and Z ′
2 ≤ E2, this leads to E2 = E

and thus E1 = 0. Hence M1 has a zero-dimensional ground space and M is
irreducible.

(c) Conversely, if M = (E, ρ) is such that Z(M) = {0, E} and ρ(E) = k ∈
{1, . . . , n−1}, then M = Uk(E). Indeed, suppose there exists a space V such that
ρ(V ) < min{k, dimV }. Let l = dimV be minimal subject to this condition. Then
ρ(V ) = l−1 and V is cyclic. Thus cl(V ) = E and ρ(V ) = ρ(E) = k, contradicting
the choice of V . This shows ρ(V ) = min{k, dimV } for all V ∈ L(E).

The goal of this section is (a) to provide a criterion for irreducibility and (b) to
show that every q-matroid decomposes into a direct sum of irreducible q-matroids,
whose summands are unique up to ordering and equivalence. The next lemma will
be needed throughout.
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Lemma 5.3.4. Let Ẑ ∈ Z(M) and consider the restriction M|Ẑ. Then

Z(M|Ẑ) = {Z ∈ Z(M) | Z ≤ Ẑ}.

Proof. Set Z = {Z ∈ Z(M) | Z ≤ Ẑ}. Denote the rank function of M|Ẑ by ρ̂.

“⊇” is obvious since ρ̂(V ) = ρ(V ) for all V ≤ Ẑ.
“⊆” Let Z ∈ Z(M|Ẑ). Clearly Z is cyclic in M because any D ∈ Hyp(Z) is a

subspace of Ẑ and thus satisfies ρ(D) = ρ̂(D) = ρ̂(Z) = ρ(Z). To show that Z is a
flat in M, let x ∈ E \Z. If x ∈ Ẑ \Z, then ρ(Z + ⟨x⟩) = ρ̂(Z + ⟨x⟩) > ρ̂(Z) = ρ(Z).
If x ∈ E \ Ẑ, then x ̸∈ cl(Z) because cl(Z) ≤ cl(Ẑ) = Ẑ (where cl( · ) denotes the
closure in M). Thus ρ(Z + ⟨x⟩) > ρ(Z). All of this shows that Z is a flat in M.

Our first result shows that whenever E is not a cyclic flat ofM, then for any direct
complement E2 of cyc(E) in E we may split off the free q-matroid on E2 from M.

Proposition 5.3.5. Let E1 = cyc(E) and choose E2 ≤ E such that E1 ⊕ E2 = E.
Consider the restrictions Mi = M|Ei

for i = 1, 2. Then
(a) M2 is the free q-matroid on E2.

(b) Z(M) = Z(M1).

(c) M = M1 ⊕M2.

Proof. (a) Proposition 2.2.24(b) implies that E2 is independent inM and thus inM2.
Since every subspace of an independent space is independent, the result follows.
(b) follows from Lemma 5.3.4 together with the fact that Z(M) is a lattice with
greatest element cyc(E).
(c) Part (a) and Example 2.2.27 tell us that Z(M2) = {0}, and thus (b) and Theo-
rem 5.2.2 imply

Z(M1 ⊕M2) = Z(M1) = Z(M).

Denote the rank function of M1⊕M2 by ρ̂. Then Theorem 5.1.5(a) implies ρ̂(Z1) =
ρ1(Z1) = ρ(Z1) for all Z1 ∈ Z(M1). Hence the cyclic flats in Z(M) have the same
rank value in the q-matroids M1 ⊕ M2 and M. The result follows from Corol-
lary 2.2.30.

Dually, we may split off the trivial q-matroid on cl(0) from M.

Proposition 5.3.6. Let E1 = cl(0) and choose E2 ≤ E such that E = E1 ⊕ E2.
Consider the restrictions Mi = M|Ei

= (Ei, ρi) for i = 1, 2 and let πi : E −→ Ei be
the projections.

(a) M1 is the trivial q-matroid on E1.

(b) ρ(V ) = ρ2(π2(V )) for all V ∈ L(E).

(c) M = M1 ⊕M2.

We call cl(0) the loop space of M. It consists of all vectors x ∈ E such that ρ(⟨x⟩) =
0.
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Proof. (a) is clear and so is the very last part about the vectors in the loop space.
(b) Let V ∈ L(E). Since V ≤ π1(V )⊕ π2(V ) we have ρ(V ) ≤ ρ(π1(V )) + ρ(π2(V )) =
ρ(π2(V )) = ρ2(π2(V )). For the converse inequality, let y ∈ π2(V ). Then there
exists x ∈ E1 such that x + y ∈ V . As a consequence, V + ⟨y⟩ = V + ⟨x⟩ and
ρ(V ) ≤ ρ(V + ⟨x⟩) ≤ ρ(V ) + ρ(⟨x⟩) = ρ(V ). Hence we have equality across and this
shows that ρ(V + ⟨y⟩) = ρ(V ) for all y ∈ π2(V ). Now Proposition 2.1.8(a) leads to
ρ(V + π2(V )) = ρ(V ) and thus ρ(π2(V )) ≤ ρ(V ).
(c) Let ρ̂ be the rank function of M1 ⊕M2. Then

ρ̂(V ) = dimV + min
X≤V

(
ρ2(π2(X))− dimX

)
= dimV + min

X≤V

(
ρ(X)− dimX

)
= dimV + ρ(V )− dimV = ρ(V ),

where the third step follows from the inequality dimA − ρ(A) ≤ dimB − ρ(B) for
any A ≤ B (which is a simple consequence of submodularity).

The following terminology will be convenient.

Definition 5.3.7. M is called full if cl(0) = 0 and cyc(E) = E.

Remark 5.3.8. The notion of a full matroid does not exist in classical matroid theory
(as to our knowledge) because a matroid satisfying cl(0) = 0 and cyc(E) = E is simply
called loopless and coloopless. As mentioned previously the notion of coloop depends
on the choice of NSBF for the dual q-matroid. For this reason we will not use the
notion of coloops.

Now we can present a first step toward a decomposition of M.

Theorem 5.3.9. Given M = (E, ρ). Set l = dim cl(0) and f = dimE−dim cyc(E).

(a) M is the direct sum of a trivial, a free, and a full q-matroid. Precisely, there
exists a full q-matroid M′ such that

M ≈ U0,l ⊕ Uf,f ⊕M′.

(b) If M ≈ U0,a ⊕ Ub,b ⊕N , where N is full, then a = l, b = f and N ≈ M′.

We call U0,l, Uf,f , and M′ the trivial, free and full component of M, respectively.

Proof. Let E = cyc(E)⊕∆ and cyc(E) = cl(0)⊕ Γ. Then dim∆ = f .
(a) By Proposition 5.3.5 we have M = Uf (∆) ⊕ M|cyc(E), and Proposition 5.3.6
implies M|cyc(E) = U0(cl(0))⊕M|Γ. This proves the stated decomposition of M, and
it remains to show that M′ := M|Γ is full. Again Propositions 5.3.5 and 5.3.6 give us
Z(M) = Z(M|cyc(E)) = {cl(0)⊕Z | Z ∈ Z(M′)}. Since cl(0) and cyc(E) = cl(0)⊕Γ
are the least and greatest element of the lattice Z(M), we conclude that 0 and Γ are
the least and greatest element of the lattice Z(M′). Thus M′ is full.
(b) Using Remark 5.3.1 we have

M = U0(A)⊕ Ub(B)⊕N
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for some A,B,N ≤ E such that A⊕B⊕N = E, a = dimA, b = dimB, and where N
is the ground space of N . Moreover, by (a)

M = U0(cl(0))⊕ Uf (∆)⊕M′.

From Theorem 5.2.2 and Example 2.2.27 we obtain Z(M) = {A} ⊕ Z(N ). Since N
is full, the least element of the lattice Z(N ) is 0 and thus A is the least element
of Z(M). But the latter is cl(0) and thus we arrive at A = cl(0) and a = l. In
the same way, the greatest element of Z(N ) is N and thus A ⊕ N is the greatest
element of Z(M). Hence A ⊕ N = cyc(E) and a + dimN = dim cyc(E), which
implies f = dimE − dim cyc(E) = b, as desired. In order to show that N ≈ M′

note that cyc(E) = A ⊕ Γ = A ⊕ N and M|cyc(E) = U0(A) ⊕M′ = U0(A) ⊕N (see
Theorem 5.1.5(a)). Now Theorem 5.1.5(c) yields N ≈ (M|cyc(E))/A ≈ M′. This
concludes the proof.

We have the following special case.

Corollary 5.3.10. |Z(M)| = 1 if and only if M is the direct sum of a trivial and
a free q-matroid. Precisely, let l = dim cl(0) and f = dimE − l. Then Z(M) =
{cl(0)} ⇐⇒ M ≈ U0,l ⊕ Uf,f .

Proof. The backward direction follows immediately from Theorem 5.2.2 together with
|Z(U0,l)| = |Z(Uf,f )| = 1 for any l, f . The forward direction is a consequence of
Theorem 5.3.9 because the assumption implies cl(0) = cyc(E).

In order to derive a criterion for irreducibility we need the following two lemmas.
Recall, for any subspace V ∈ L(E) we use B(V ) for the collection of bases of V , i.e.,
B(V ) = {I ≤ V | dim I = ρ(I) = ρ(V )}.

Lemma 5.3.11. Suppose there exist flats F1, F2 of M such that F1 ∩ F2 = 0 and
ρ(F1 ⊕ F2) = ρ(F1) + ρ(F2).
(a) Let Bi ∈ B(Fi). Then B1 ⊕B2 ∈ B(F1 ⊕ F2).

(b) Let Vi ∈ L(Fi). Then ρ(V1 ⊕ V2) = ρ(V1) + ρ(V2).

Proof. (a) Bi ≤ Fi = cl(Fi) together with ρ(Bi) = ρ(Fi) implies cl(Bi) = Fi. Since
cl(Bi) ≤ cl(B1⊕B2), this leads to B1⊕B2 ≤ F1⊕F2 = cl(B1)⊕cl(B2) ≤ cl(B1⊕B2),
and thus ρ(B1 ⊕ B2) = ρ(F1 ⊕ F2) thanks to (2.5). Now we have ρ(B1 ⊕ B2) =
ρ(F1) + ρ(F2) = dimB1 + dimB2 = dim(B1 ⊕ B2), which shows that B1 ⊕ B2 is a
basis of F1 ⊕ F2.
(b) Let Bi ∈ B(Vi). Then Bi is an independent space in Fi and thus contained in a
basis of Fi, say B

′
i (see [36, Thm. 37]). Thanks to part (a) B′

1 ⊕ B′
2 is independent

and hence so is B1 ⊕B2. Putting everything together, we obtain

ρ(V1⊕V2) ≤ ρ(V1)+ρ(V2) = dimB1+dimB2 = dim(B1⊕B2) = ρ(B1⊕B2) ≤ ρ(V1⊕V2).

which proves the stated identity.

Lemma 5.3.12. Let M be full. Suppose M = M1 ⊕ M2 for some q-matroids
Mi = (Ei, ρi). Then Ei ∈ Z(M) and M1, M2 are full.
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Proof. Since M is full, E is in Z(M) = Z(M1) ⊕ Z(M2). Thus there exist Zi ∈
Z(Mi) such that E = Z1⊕Z2. But then E = E1⊕E2 together with Zi ≤ Ei implies
Zi = Ei, and we conclude that Ei ∈ Z(Mi). In the same way, 0 ∈ Z(M) implies
0 ∈ Z(Mi) for i = 1, 2, and hence M1 and M2 are full. Finally, E1 = E1 ⊕ 0 is in
Z(M1)⊕Z(M2) = Z(M) and similarly for E2.

Now we are ready for our first main result of this section, a characterization of
irreducibility.

Theorem 5.3.13. Let M = (E, ρ) and dimE ≥ 2. The following are equivalent.
(i) M is irreducible.

(ii)M is full and there exist no nonzero spaces Z1, Z2 ∈ Z(M) such that

Z1 ⊕ Z2 = E, ρ(Z1) + ρ(Z2) = ρ(E), and Z1 ⊕Z2 = Z(M), (5.12)

where Zi = {Z ∈ Z(M) | Z ≤ Zi}.

Note that Zi = Z(M|Zi
) thanks to Lemma 5.3.4.

Proof. “(i) ⇒ (ii)” Let M be irreducible. Then Example 5.3.3(a) and Theorem 5.3.9
together with dimE ≥ 2 imply that M is full. Suppose there do exist nonzero spaces
Z1, Z2 ∈ Z(M) satisfying (5.12). We show that

M = M|Z1 ⊕M|Z2 .

Set Z = Z(M|Z1) ⊕ Z(M|Z2) and denote the rank functions of M|Z1 ⊕ M|Z2 and
M|Zi

by ρ′ and ρi, respectively. With the aid of Theorem 5.1.7 and Lemma 5.3.11(b)
we obtain for all V ∈ L(E)

ρ′(V ) = dimV + min
Y1⊕Y2∈Z

(
ρ1(Y1) + ρ2(Y2)− dim((Y1 ⊕ Y2) ∩ V )

)
= dimV + min

Y1⊕Y2∈Z

(
ρ(Y1) + ρ(Y2)− dim((Y1 ⊕ Y2) ∩ V )

)
= min

Y1⊕Y2∈Z

(
ρ(Y1 ⊕ Y2) + dim((V + (Y1 ⊕ Y2))/(Y1 ⊕ Y2))

)
= ρ(V ),

where the very last step follows from Corollary 2.2.30 and the identity Z = Z(M).
This establishes the stated direct sum and thus contradicts the irreducibility of M.
“(ii) ⇒ (i)” Suppose M is full. By contradiction assume that M is reducible, say
M = M1 ⊕ M2 for some Mi = (Ei, ρi) with nonzero ground spaces Ei. Then
E = E1⊕E2 and ρ(E) = ρ(E1)+ρ(E2); see Theorem 5.1.5(a). Moreover, Mi = M|Ei

.
Now Lemma 5.3.12 implies that Ei ∈ Z(M) and Theorem 5.2.2 shows that Z(M) =
Z(M|E1)⊕Z(M|E2). Lemma 5.3.4 tells us that Z(M|Ei

) = {Z ∈ Z(M) | Z ≤ Ei},
and all of this gives us cyclic flats E1, E2 satisfying the conditions in (5.12).

Since the collection of cyclic flats is in general quite small, the just presented
criterion for irreducibility is in fact very convenient. For instance, simple inspection
shows that the q-matroid in Example 2.2.31 is irreducible.
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Example 5.3.14. Let us consider the q-matroids M1, M2, M = M1 ⊕M2, and N
from Example 5.2.5.
(1) We start with M2 = MG2, which has ground space F4. Its cyclic flats are

0, ⟨e1 + e3, e2 + e3 + e4⟩, ⟨e1 + e3 + e4, e2⟩, ⟨e3, e4⟩, F4

with rank values 0, 1, 1, 1, 2. Hence M2 is full and in fact irreducible.
(2) Consider now M1 = MG1, which has ground space F3. Its cyclic flats are

0, ⟨e1 + e3, e2 + e3⟩.

Hence M1 is not full and since cyc(F3) = ⟨e1 + e3, e2 + e3⟩, we can split off a free q-
matroid over a 1-dimensional ground space; see Theorem 5.3.9. The other summand
is M1|cyc(F3). Straightforward verification shows that this q-matroid is the uniform
q-matroid of rank 1 on cyc(F3). Since U1(F2) is the only full q-matroid on F2 of
rank 1, we obtain M1 ≈ U1(F)⊕ U1(F2).
(3) As a consequence, the q-matroid M has irreducible decomposition M ≈ U1(F)⊕
U1(F2)⊕M2.
(4) As for the q-matroid N = MG, we have cl(0) = 0 and dim cyc(F7) = 6, thus
cyc(F7) = rowsp(A) for some A ∈ F6×7. The q-matroid N|cyc(F7) is equivalent to
the q-matroid N ′ represented by the matrix GAT ∈ F4×6

23 , which has rank 3. By
construction N ′ is full (see Theorem 5.3.9) and N ≈ U1(F) ⊕ N ′. Since U1(F) has
exactly one cyclic flat, N ′ has 40 cyclic flats just like N ; see Theorem 5.2.2. Apart
from cl(0) = 0 and cyc(F6) = F6 with rank 3, the cyclic flats of N ′ are as follows:

7 cyclic flats of dimension 2 and rank 1,

24 cyclic flats of dimension 3 and rank 2,

7 cyclic flats of dimension 4 and rank 2.

In order to check N ′ for irreducibility it thus suffices to test whether any pair (Z1, Z2)
of cyclic flats with dimZ1 = 2 and dimZ2 = 4 satisfies (5.12). It turns out that there
are 28 pairs (Z1, Z2) such that Z1⊕Z2 = F6. By Lemma 5.3.4 the collection Z(N ′|Zi

)
consists exactly of the cyclic flats contained in Zi. Now one easily finds that for each
pair (Z1, Z2) one has |Z(N ′|Z1)| = 2 and |Z(N ′|Z2)| = 5, and thus the third condition
of (5.12) is not satisfied. All of this shows that N ≈ U1(F)⊕N ′ is a decomposition
of N into irreducible q-matroids.

We continue with our second main result, the decomposition of q-matroids into
irreducible summands.

Theorem 5.3.15. Any q-matroid M = (E, ρ) is a direct sum of irreducible q-
matroids, whose summands are unique up to equivalence.

Proof. It is clear that every q-matroid is the direct sum of irreducible q-matroids.
For the uniqueness, note first that thanks to Theorem 5.3.9 we may disregard trivial
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and free summands. Thus we may assume that M is full and, using once more
Remark 5.3.1, that

M =
t⊕

i=1

Mi =
s⊕

i=1

Ni, (5.13)

where each summand Mi and Ni is irreducible (and full by Lemma 5.3.12). We will
show that s = t and, after suitable ordering, Ni = Mi for all i = 1, . . . , t. Thanks to
Lemma 5.3.12 we have

Mi = (Zi, ρi), Ni = (Z ′
i, ρ

′
i), where E =

t⊕
i=1

Zi =
s⊕

i=1

Z ′
i and Zi, Z

′
i ∈ Z(M).

Thus Mi = M|Zi
and Ni = M|Z′

i
for all i. Moreover, Z(M) =

⊕t
i=1 Z(Mi) =⊕s

i=1Z(Ni).
Consider now Z ′

1. Then

Z ′
1 =

t⊕
i=1

Vi for some Vi ∈ Z(Mi). (5.14)

Hence Vi ≤ Zi for all i and by Theorem 5.1.5(a)

ρ(Z ′
1) =

t∑
i=1

ρi(Vi) =
t∑

i=1

ρ(Vi). (5.15)

We show next that

Z(N1) =
t⊕

i=1

Z(Vi), where Z(Vi) = {Z ∈ Z(Mi) | Z ≤ Vi}. (5.16)

For “⊇” choose Wi ∈ Z(Vi). Then W :=
⊕t

i=1Wi ≤
⊕t

i=1 Vi = Z ′
1. Furthermore, W

is in Z(M), and thus W ∈ {Z ∈ Z(M) | Z ≤ Vi} ⊆ Z(N1), where the last
containment is a consequence of Lemma 5.3.4.
For “⊆” let W ∈ Z(N1). Then W ∈ Z(M) and thus W =

⊕t
i=1Wi for some

Wi ∈ Z(Mi), which means in particular that Wi ≤ Zi. But since W ≤ Z ′
1 =

⊕t
i=1 Vi

and Vi ≤ Zi, we conclude Wi ≤ Vi for all i. This establishes (5.16).
Now (5.14)–(5.16) with Theorem 5.3.13 tell us that N1 is reducible unless exactly one
subspace Vi is nonzero. In other words, irreducibility of N1 implies that, without loss
of generality, V2 = . . . = Vt = 0 and thus Z ′

1 = V1 ≤ Z1.
With the same argument we obtain Z1 ≤ Z ′

j for some j ∈ {1, . . . , s}. Hence Z ′
1 ≤ Z ′

j

and the directness of the sum
⊕s

i=1 Z
′
i implies j = 1 and Z ′

1 = Z1. This shows
N1 = M|Z1 = M1.
Continuing in this way, we see that every summand Nj appears as a summand Ml,
and thus s ≤ t. By symmetry s = t and, after reindexing, Mi = Ni for all i.

Now we can easily classify all q-matroids on a 3-dimensional ground space.
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Example 5.3.16. The only irreducible q-matroids on a 3-dimensional ground space
are (up to equivalence) are U1,3 and U2,3. Indeed, since any irreducible q-matroid
on a 3-dimensional ground space is full, all 1-dimensional spaces must have rank 1
and all 2-dimensional spaces must have the same rank as the entire space. With
the aid of Theorem 5.3.9 and the decomposition of trivial and free q-matroids in
Example 5.3.3(a) we obtain now all q-matroids (up to equivalence) on a 3-dimensional
ground space. They are as follows. Note that this is independent of the field size q.

Table 5.2: Classification of q-matroids over a 3-dimensional ground space.

rank=0 U0,1 ⊕ U0,1 ⊕ U0,1

rank=1 U0,1 ⊕ U0,1 ⊕ U1,1, U0,1 ⊕ U1,2, U1,3

rank=2 U0,1 ⊕ U1,1 ⊕ U1,1, U1,1 ⊕ U1,2, U2,3

rank=3 U1,1 ⊕ U1,1 ⊕ U1,1

This classification has been derived earlier by different methods in [13, Appendix
A.4].

On a 4-dimensional ground space the description of the irreducible q-matroids is
much harder. With the same arguments as above we see that the uniform q-matroid
U1,4 is the only irreducible q-matroid of rank 1, and thus by duality U3,4 is the only
one of rank 3.

In order to discuss q-matroids of rank 2 we need the notion of a partial k-spread.
Recall that a subset V of L(E) consisting of k-dimensional subspaces is called a
partial k-spread if V ∩ W = 0 for all V ̸= W in V . It is called a k-spread if
|V| = (qn − 1)/(qk − 1), where dimE = n. This is the maximum possible size of
a partial k-spread and achievable if and only if k divides n. Hence if k | n, a partial
k-spread of size s exists for all 1 ≤ s ≤ (qn − 1)/(qk − 1).

Proposition 5.3.17. Let dimE = 4.
(a) Let t ∈ {2, . . . , q2 + 3} \ {4} and V be a partial 2-spread of size t − 2. On L(E)

define

ρV(V ) =

{
1, if V ∈ V ,

min{2, dimV }, otherwise.
(5.17)

Then MV = (E, ρV) is an irreducible q-matroid with Z(MV) = V ∪ {0, E}, thus
|Z(M)| = t. Moreover, Z1 ∧ Z2 = Z1 ∩ Z2 and Z1 ∨ Z2 = Z1 + Z2 for all
Zi ∈ Z(M).

(b) Each irreducible q-matroid of rank 2 on E is of the form MV = (E, ρV) for some
partial 2-spread V. Its number of cyclic flats is |V|+ 2, which is at most q2 + 3.

(c) U2(E) is the unique irreducible q-matroid of rank 2 with exactly 2 cyclic flats.

(d) Let t ≥ 3 and V , W be partial 2-spreads of size t − 2 and MV , MW be the
associated q-matroids. Then there exists a bijection α on L(E) such that ρV(V ) =
ρW(α(V )) for all V ∈ L(E). In particular, there exists a rank-preserving and
dimension-preserving lattice isomorphism between Z(MV) and Z(MW). For this
reason we may call MV and MW “bijectively equivalent”.
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Proof. (a) First of all, Proposition 2.4.6 tells us that MV := (E, ρV) is indeed a q-
matroid. One easily checks that Z(MV) = V ∪ {0, E}. In particular, |Z(MV)| = t.
Since all spaces in V have dimension 2, it is obvious that cyc(Z1 ∩Z2) = Z1 ∩Z2 and
cl(Z1+Z2) = Z1+Z2 for all Z1, Z2 ∈ Z(M). For any V ∈ V we have {Z ∈ Z(MV) |
Z ≤ V } = {0, V }, and therefore Theorem 5.3.13 shows that MV is irreducible if
and only if |V| ̸= 2, which means t ̸= 4; for V = {V1, V2} we obtain the reducible
q-matroid MV = M|V1 ⊕M|V2 ≈ U1,2 ⊕ U1,2.
(b) Let M = (E, ρ) be irreducible and of rank 2. Set V = {V ∈ L(E) | dimV =
2, ρ(V ) = 1}. Using cl(0) = 0 and submodularity of ρ one obtains that V is a partial
2-spread. Since ρ(E) = 2, the set V is exactly the collection of subspaces V for which
ρ(V ) ̸= min{k, dimV }, and we conclude that M = MV . The rest follows from (a)
and the fact that any partial 2-spread in E has size at most q2 + 1.
(c) An irreducible q-matroid M with exactly 2 cyclic flats must have Z(M) = {0, E},
and Example 5.3.3(c) establishes the result.
(d) Choose any dimension-preserving bijection α on L(E) such that α(V) = W .
Then α is also rank-preserving thanks to (5.17).

We have the following interesting example, where the bijection in Proposition 5.3.17
(d) is not induced by a linear (or semi-linear) isomorphism on E. Thus, we obtain
non-equivalent q-matroids whose lattices of flats are related by a rank-preserving
lattice isomorphism.

Example 5.3.18. This example is inspired by some facts from finite geometry. Con-
sider F = F3. The two sets A1 and A2 defined below are spread sets in F2, that is,
subsets of F2×2 of order 9 such that A− B ∈ GL2(F) for all distinct A,B in Ai. To
any spread set one can associate a right quasifield. This is F9 for A1 and a right
quasifield of Hall type for A2. Since these two right quasifields are not isotopic we
will obtain two 2-spreads of the same size that are not related by a vector-space iso-
morphism. This background is not needed since everything below can also be checked
straightforwardly.
In F2×2 let

A1 =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
2 1

)
,

(
0 2
1 0

)
,

(
1 2
1 1

)
,

(
2 0
0 2

)
,

(
2 2
1 2

)
,(

0 1
2 0

)
,

(
2 1
2 2

)}
,

A2 =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
2 0
0 2

)
,

(
1 1
1 2

)
,

(
2 2
2 1

)
,

(
0 1
2 0

)
,

(
0 2
1 0

)
,(

1 2
2 2

)
,

(
2 1
1 1

)}
.

Note that A1 is a subspace of F2×2, whereas A2 is not. Define the set of matrices

Bi =
{(

0 | I
)}

∪
{(
I | A

)
| A ∈ Ai

}
⊆ F2×4 for i = 1, 2.
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Then
Vi =

{
rowsp(M) |M ∈ Bi

}
, i = 1, 2,

are collections of 2-dimensional subspaces in L(F4). One easily verifies that V ∩W = 0
for all distinct V,W ∈ Vi (or argues that A1 and A2 are spread sets). Hence V1 and V2

are 2-spreads in F4 because their cardinality is 10 = q2 + 1. By Proposition 5.3.17,
we obtain two irreducible q-matroids MVi

=: Mi = (F4, ρi). We have the following
properties.
(1) M1 and M2 are not equivalent in the sense of Definition 2.1.9. Indeed, there
exists no vector space automorphism α on F4 that maps the set V1 to V2. This follows
from the fact that the field F9 is not isotopic to any Hall quasifield or can be checked
directly using a computer algebra system by showing that no matrix in GL4(F) maps
the set B1 to the set B2 (after taking the reduced row echelon forms). Now it is clear
that the q-matroids M1 and M2 are also not lattice-equivalent either because by the
Fundamental Theorem of Projective Geometry any lattice isomorphism is given by a
semi-linear isomorphism, which over a prime field is linear.
(2) F(Mi) = O(Mi) = Z(Mi) = Vi ∪ {0,F4}, and in each of these lattices meet
and join are simply intersection and sum. Moreover, there exits a rank-preserving
lattice isomorphism between F(M1) and F(M2). The identities follow from the fact
that Vi is a 2-spread (as opposed to just a partial spread), which means that every
1-dimensional space ⟨x⟩ is contained in a subspace of Vi and therefore ⟨x⟩ is not a
flat. The rest of the identities is easily verified, and the remaining statements follow
from Proposition 5.3.17.
(3) It is remarkable that M1 is representable over F9, whereas M2 is not representable
over any field extension of F. Indeed, one easily verifies that M1 = MG, where

G =

(
1 ω2 0 0
0 0 1 ω2

)
∈ F2×4

9 ,

where ω ∈ F9 satisfies ω2 + 2ω + 2 = 0. To see that M2 is not representable,
suppose that M2 = MG′ for some G′ ∈ F2×4

3m (for some m). Then rkG′ = 2 and
we may assume G′ to be in reduced row echelon form. Next, any such G′ must
satisfy rk

(
G′(0 | I

)
T
)
= rk

(
G′(I | 0

)
T
)
= rk

(
G′(I | I

)
T
)
= 1 (see the set A2 and

Lemma 2.3.9), and therefore must be of the form

G′ =

(
1 a 0 0
0 0 1 a

)
for some a ∈ F3m .

Using now rk
(
G′(I | A)T

)
= 1 for A being the fourth and the sixth matrix in the

set A2 leads to a = 1. But then the q-matroid MG′ has loops, and thus MG′ ̸= M2.
Thus M2 is not representable.

The above discussion suggests that a classification of the irreducible q-matroids
on a 4-dimensional ground space appears to be quite challenging.
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5.4 The representability of the direct sum.

In this section we turn to representability of the direct sum of representable q-
matroids. We will provide an example of F4-representable q-matroids over the ground
space F4

2 for which the direct sum is not representable over any field extension F2m . A
crucial ingredient will be paving q-matroids defined below. We show that if M1, M2

are paving q-matroids of the same rank and represented by matrices Gi satisfying a
certain condition, then the direct sum M1⊕M2 is not represented by the block diag-
onal matrix diag(G1, G2). This will be used to create the desired example. A second
example will be provided where the direct sum is representable only over larger fields
than the summands.

Note that in the context of representability, it suffices to consider q-matroids with
ground space Fn.

Definition 5.4.1. A q-matroid M = (Fn, ρ) is paving if dimC ≥ ρ(M) for all
circuits C of M.

A large class of paving q-matroids is given by Proposition 2.4.6. For the following
result recall Notation 2.2.13.

Proposition 5.4.2. Let Mi = (Fni , ρi), i = 1, 2, be paving q-matroids with ρ1(M1) =
ρ2(M2) = k. Let n = n1 + n2 and M = (Fn, ρ) = M1 ⊕M2. Denote by C1, C2 and
C the collections of circuits of M1, M2, and M, respectively. Then every C ∈ C has
dimension at least k and

{C ∈ C | dimC = k} = {C1⊕0 | C1 ∈ C1, dimC1 = k}∪{0⊕C2 | C2 ∈ C2, dimC2 = k}.

For the proof recall that in any q-matroid (E, ρ) a k-dimensional circuit C satisfies
ρ(C) = k − 1.

Proof. We start with the stated identity. Denote the set on the right hand side by V .
“⊇” Let C1 ⊕ 0 ∈ V . From Theorem 5.1.5 we obtain ρ(C1 ⊕ 0) = ρ1(C1) = k − 1,
and thus C1 ⊕ 0 is dependent in M. Clearly, every subspace of C1 ⊕ 0 is of the form
I1 ⊕ 0 where I1 is independent in M1. Using again Theorem 5.1.5 we conclude that
I1 ⊕ 0 is independent in M and thus C1 ⊕ 0 is a circuit of M of dimension k. The
same reasoning holds for 0⊕ C2 ∈ V .
“⊆” By Theorem 5.1.2 a subspace C ∈ L(Fn) is a circuit of M if and only if it is
inclusion-minimal subject to

ρ1(π1(C)) + ρ2(π2(C)) ≤ dimC − 1, (5.18)

where π1, π2 are the projections from Fn to the first n1 and last n2 coordinates, re-
spectively. Let C ∈ C and dim C ≤ k.
1) Let dimπ1(C) = k (which implies dimC = k). Then (5.18) implies that π1(C) is
a dependent space of M1, and thus a circuit thanks to the paving property. Hence
ρ1(π1(C)) = k − 1 and thus ρ2(π2(C)) = 0 by (5.18). But then π2(C) = 0 by
the paving property of M2, and thus C = π1(C) ⊕ 0. In the same way we have
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C = 0⊕ π2(C) if dimπ2(C) = k.
2) Let dim πi(C) = ℓi < k for i = 1, 2. Then πi(C) is independent in Mi and
ρi(πi(C)) = ℓi. Now we obtain dimC ≤ dimπ1(C) + dimπ2(C) = ℓ1 + ℓ2 =
ρ1(π1(C))+ρ2(π2(C)) in contradiction to (5.18). Hence this case does not arise. This
also shows that all circuits have dimension at least k, and the proof is complete.

We now turn to representability of the direct sum and start with the following
unsurprising result.

Theorem 5.4.3. Let Mi = (Fni , ρi), i = 1, 2, be q-matroids of rank ki. Let n =
n1 + n2 and M = M1 ⊕ M2. Suppose M is representable over Fqm. Then M1

and M2 are representable over Fqm and M = MG for a matrix G of the form

G =

(
G1 0
0 G2

)
,

where Gi ∈ Fki×ni
qm are such that MGi

= Mi.

Proof. Let M = (Fn, ρ) and suppose M = MG for some matrix G over Fqm . Since
ρ(M) = k := k1 + k2 by Theorem 5.1.5, we may assume that G is in Fk×n

qm and has
rank k. Furthermore, without loss of generality let G be in RREF. Then we can
write G as

G =

(
G1 G′

0 G2

)
for some matrices G1 ∈ Ft1×n1

qm , G2 ∈ Ft2×n2
qm of full row rank and some matrix G′ ∈

Ft1×n2
qm . Hence t1 + t2 = k1 + k2. We show that M1 = MG1 . To do so, let Y ∈ F·×n1

and set Ŷ = (Y | 0), which is in F·×n. Then V := rowsp(Y ) is in L(Fn1) and
V ⊕ 0 = rowsp(Ŷ ). With the aid of Lemma 2.3.9 and Theorem 5.1.5 we compute

rk(G1Y
T) = rk(GŶ T) = ρ(rowsp(Ŷ )) = ρ(V ⊕ 0) = ρ1(V ).

This shows that M1 = MG1 . As a consequence, t1 = k1 and t2 = k2. Next,

k2 = ρ2(Fn2) = ρ(0 ⊕ Fn2) = ρ(rowsp(0 | In2)) = rk
(

G′

G2

)
. Since rkG2 = k2 this

implies rowsp(G′) ⊆ rowsp(G2). Using that G is in RREF, we conclude G′ = 0 and
hence G is block diagonal. In the same way as above we obtain M2 = MG2 . This
concludes the proof.

We will now make use of some notions in the theory of rank-metric code, previously
introduced in Section 4.4. The proof of Theorem 5.4.5 below illustrates the well known
fact that for a representable q-matroidMG the dimension of a dependent space equals
the rank-weight of a suitable codeword in the dual code rowsp(G)⊥ = kerG (where
the dual is defined with respect to the standard inner product). For ease of notation
in the proof of Theorem 5.4.5 we introduce a different, yet equivalent way to define
the notion of rank support, previously introduced in Definition 4.4.3.

97



Definition 5.4.4. For a vector v = (v1, . . . , vn) ∈ Fn
qm we define the F-support of v

as the subspace
Srk(v) = ⟨v1, . . . , vn⟩F ≤ Fqm .

Furthermore, recall the rank-weight of v is ωrk(v) := dimFq(Srk(v)).

Theorem 5.4.5. For i = 1, 2 let Gi ∈ Fk×ni
qm be of rank k and Mi = MGi

be the
associated q-matroids. Suppose M1 and M2 are both paving. Suppose furthermore
that there exist vectors vi ∈ kerGi such that ωrk(v1) = ωrk(v2) = k and Srk(v1) =
Srk(v2). Then M = M1 ⊕M2 is not represented by

G =

(
G1 0
0 G2

)
. (5.19)

Proof. Let N = MG, that is, N is the q-matroid generated by G. We will show
that N and M do not have the same circuits of dimension at most k.
First of all, Proposition 5.4.2 implies that all circuits of M have dimension at least k,
and the k-dimensional ones are also circuits of N thanks to their form described in
that proposition.
We will show the existence of a circuit of N of dimension at most k that is not a
circuit of M. To do so, let Srk(v1) = ⟨α1, . . . , αk⟩ for some (F-linearly independent)
αi ∈ Fqm . Set α = (α1, . . . , αk) ∈ Fk

qm . Then there exist matrices Yi ∈ Fk×ni of rank k
such that αYi = vi for i = 1, 2. Hence 0 = GiYi

TαT, and thus rk(GiYi
T) < k for

i = 1, 2. This shows that Vi := rowsp(Yi) ∈ L(Fni) is a dependent space of Mi. Since
dimVi = k, the paving property implies that Vi is a circuit of Mi. Now we have

G

(
Y1

T

Y2
T

)
αT =

(
0
0

)
,

which means that G(Y1 | Y2)T has rank less than k. Therefore W := rowsp(Y1 |
Y2) ∈ L(Fn1+n2) is a k-dimensional dependent space of N . Since Y1 and Y2 are both
nonzero,W is not a circuit of the direct sum M thanks to Proposition 5.4.2. Since M
does not have any circuits of dimension less than k, we conclude that W contains a
circuit of N of dimension at most k that is not a circuit of M. This implies that
N ̸= M, and G does not represent M.

Now we are ready to provide an example of a direct sum of representable q-
matroids that is not representable over any field extension.

Proposition 5.4.6. Let F = F2 and F4 = {0, 1, ω, ω + 1}. Consider the matrix

G1 =

(
1 ω 0 ω + 1
0 0 1 ω

)
∈ F2×4

4

and set M1 := MG1 = (F4, ρ1). Then M1 ⊕M1 is not representable over any field
extension F2m.
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Proof. 1) We first show thatM1 is of the form as in Proposition 2.4.6 and thus paving
of rank 2. Set V = {rowsp(Y1), rowsp(Y2), rowsp(Y3), rowsp(Y4), rowsp(Y5)}, where

Y1=

(
1 0 0 0
0 1 0 0

)
, Y2=

(
1 0 1 1
0 1 0 1

)
, Y3=

(
1 0 0 1
0 0 1 1

)
,

Y4=

(
0 1 1 0
0 0 0 1

)
, Y5=

(
1 1 0 1
0 0 1 0

)
. (5.20)

One can verify, by hand or with for instance SageMath, that

ρ1(V ) =

{
1, for V ∈ V ,

min{2, dimV }, otherwise.
(5.21)

For instance, ρ1(V ) = 1 for all 1-dimensional subspaces simply reflects that the
columns of G1 are linearly independent over F2. Furthermore, G1Y2

T =
(

ω 1
ω+1 ω

)
,

which has rank 1. Similarly, the rank of all subspaces can easily be verified. As a
consequence, M1 is of the form as in Proposition 2.4.6 and thus paving of rank 2.
Clearly, the matrix

Ĝ1 =

(
1 ω + 1 0 ω
0 0 1 ω + 1

)
,

obtained from G by replacing the primitive element ω by its conjugate ω + 1, also
represents M1.
2) We show that G1 and Ĝ1 are the only matrices over any field extension F2m , m ≥ 1,
that represent M1. To do so, let m ≥ 1 and H = (h1, h2, h3, h4) ∈ F2×4

2m be such
that MH = M1. Thus rk(HY T) = rk(G1Y

T) for all matrices Y ∈ F·×4. Without
loss of generality we may assume that H is in RREF. Clearly rk(H) = 2. Moreover,
h1, . . . , h4 are linearly independent over F2 because M1 has no loops (a loop is a
1-dimensional space of rank 0). Next, rk(HY1

T) = 1 = rk(HY4
T) shows that h2 ∈

⟨h1⟩F2m
and h4 ∈ ⟨h2 + h3⟩F2m

. Hence h2 and h4 are not pivot columns of H. All of
this implies that H must be of the form

H =

(
1 α 0 αβ
0 0 1 β

)
for some α, β ∈ F2m .

The F2-linear independence of the columns of H implies that α, β ̸∈ F2. Next,

1 = rk(HY3
T) = rk

(
1 + αβ αβ
β 1 + β

)
= rk

(
1 αβ
1 1 + β

)
,

and this results in αβ = 1 + β. Using this, we continue with

1 = rk(HY2
T) = rk

(
1 + αβ α + αβ
1 + β β

)
= rk

(
β α+ 1 + β

1 + β β

)
= rk

(
β α+ 1

1 + β 1

)
.
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Using the determinant and αβ = 1 + β we conclude that α + β = 0, hence α = β,
and with αβ = 1+ β we arrive at β2 + β + 1 = 0. Thus β ∈ F4 \ F2 (and m is even),
and the two choices β ∈ {ω, ω + 1} lead to H ∈ {G1, Ĝ1}.
3) Consider now M = M1 ⊕M1. From 2) and Theorem 5.4.3 we know that if M is
F2m-representable for some m ∈ N, then m is even and any representing matrix is of
the form

G =

(
G′

1 0
0 G′

2

)
, where G′

i ∈ {G1, Ĝ1}.

Since v = (1, 1, ω, 1) ∈ kerG1, v̂ = (1, 1, ω + 1, 1) ∈ ker Ĝ1 satisfy Srk(v) = Srk(v̂) =
⟨1, ω⟩ we may apply Theorem 5.4.5 and conclude that M is not representable over
any field extension F2m .

In the following case, the direct sum is not representable over the same field as
the summands, but over a field extension.

Proposition 5.4.7. Let M1 = U1,2(q). Then M1 is representable over Fq2, whereas
M1 ⊕M1 is representable over Fqm iff m ≥ 4.

Proof. We know already, by Example 2.4.2, that M1 is representable over Fq2 . Even
more, for any m ≥ 2 any matrix G =

(
1 α

)
with α ∈ Fqm \ Fq represents M1.

Consider now M = M1 ⊕M1 = (F4, ρ). With the aid of the very definition of the
direct sum one easily verifies that ρ(V ) = 1 for all 1-dimensional spaces V ≤ F4,
while for the 2-dimensional spaces

ρ(V ) =

{
1, if V = ⟨e1, e2⟩ or V = ⟨e3, e4⟩,
2, otherwise,

(5.22)

where e1, . . . , e4 are the standard basis vectors of F4. Suppose M is representable
over Fqm . Theorem 5.4.3 tells us that M has a representing matrix of the form

G =

(
1 β 0 0
0 0 1 γ

)
for some β, γ ∈ Fqm \ F.

1) Let m = 2. Then Fq2 = ⟨1, β⟩. Thus γ = a+ bβ for some a, b ∈ F. Set

V = rowsp(Y ), where Y =

(
a b 0 1
1 0 1 0

)
.

Then dimV = 2 and rk(GY T) = 1. This contradicts (5.22), and thus G does not
represent M.
2) Let m = 3. Then Fq3 = ⟨1, β, β2⟩ and

γ = c0 + c1β + c2β
2, β3 = b0 + b1β + b2β

2 for some bi, ci ∈ F.

This implies βγ = c2b0+(c0+c2b1)β+(c1+c2b2)β
2. Now we have the following cases:

i) If c2 = 0, then rk(GY T) = 1 for

Y =

(
c0 c1 0 1
1 0 1 0

)
.
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ii) If c2 ̸= 0 = c1 + c2b2, then rk(GY T) = 1 for

Y =

(
c2b0 c0 + c2b1 0 1
0 1 1 0

)
.

iii) If c2 ̸= 0 ̸= c1 + c2b2, we have (c1 + c2b2)γ − c2βγ = f0 + f1β for some fi ∈ F and
thus rk(GY T) = 1 for

Y =

(
f0 f1 0 1

c1 + c2b2 −c2 1 0

)
.

In all cases we obtain a contradiction to (5.22) and conclude that M is not repre-
sentable over Fq3 .
3) Let m ≥ 4. We show that M is represented by the matrix

G =

(
1 z 0 0
0 0 1 z2

)
for any z ∈ Fqm of degree at least 4.

Denote by D(M) and D(MG) the collections of dependent spaces of M and MG,
respectively. We will show that

D(MG) = D(M). (5.23)

To do so, we first determine the set X = {X ∈ L(F4) | ρ1(π1(X)) + ρ1(π2(X)) <
dimX} from Theorem 5.1.2. Since M1 is the uniform q-matroid of rank 1, we have
ρ1(π1(X)) + ρ1(π2(X)) = min{1, dim π1(X)} + min{1, dim π2(X)} ≤ 2 for all X ∈
L(F4), which together with (5.22) implies

X = {X ≤ F4 | dimX ≥ 3} ∪ {⟨e1, e2⟩, ⟨e3, e4⟩}.

The form of X shows that every subspace of F4 containing a space in X is itself in X .
Now it follows from Theorem 5.1.2 that

X = D(M).

We now turn to the q-matroid MG = (F4, ρ̂). By definition ρ̂(rowsp(Y )) = rk(GY T)
for any matrix Y ∈ F·×4. Set G′

1 = (1 z) and G′
2 = (1 z2), thus

G =

(
G′

1 0
0 G′

2

)
.

Since both G′
1 and G′

2 represent the q-matroid M1, any matrix Y = (Y1 | Y2) ∈ F·×4

satisfies
rk(G′

iYi
T) = ρ1(πi(rowsp(Y ))).

Let now Y = (Y1 | Y2) ∈ F·×4 be such that rowsp(Y ) ∈ D(M) = X . Then

ρ̂(rowsp(Y )) = rk(GY T)

≤ rk(G′
1Y1

T) + rk(G′
2Y2

T)

= ρ1(π1(rowsp(Y ))) + ρ1(π2(rowsp(Y )))

< rkY.
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This shows that D(M) ⊆ D(MG). This can also be concluded from the coproduct
property of M⊕M; see [26, Thm. 5.5]. It remains to show the converse containment.
Let now Y ∈ Ft×4 be a matrix of rank t such that rowsp(Y ) ∈ D(MG). Thus

rk(GY T) < t. (5.24)

We will show that rowsp(Y ) is in X . For t ≥ 3 every Y satisfies (5.24) and rowsp(Y )
is contained in X , while for t = 1 no matrix Y satisfies (5.24). It remains to consider
the case t = 2. Let

Y =

(
a1 b1 c1 d1
a2 b2 c2 d2

)
be of rank 2 and satisfying (5.24). Without loss of generality let Y be in RREF. We
compute

GY T =

(
a1 + b1z a2 + b2z
c1 + d1z

2 c2 + d2z
2

)
and

det(GY T) = (a1c2 − a2c1) + (b1c2 − b2c1)z + (a1d2 − a2d1)z
2 + (b1d2 − b2d1)z

3.

Recall that 1, z, z2, z3 are linearly independent over Fq by choice of z. Thanks to the
RREF of Y we only have to consider the following cases.
i) If a1 = b1 = a2 = b2 = 0, then rowsp(Y ) = ⟨e3, e4⟩ is in X .
ii) Let a1 = 1, a2 = 0, b1 = 0, b2 = 1. Then det(GY T) = c2 − c1z + d2z

2 − d1z
3 and

(5.24) implies c1 = c2 = d1 = d2 = 0. Thus rowsp(Y ) = ⟨e1, e2⟩, which is in X .
iii) Let a1 = 1 and a2 = b2 = 0. Then det(GY T) = c2 + b1c2z + d2z

2 + b1d2z
3 and

(5.24) implies c2 = d2 = 0. But this contradicts that Y has rank 2 and thus this case
does not occur.
iv) Let a1 = a2 = 0 = b2 and b1 = 1. Then det(GY T) = c2z+ d2z

3 and (5.24) implies
c2 = d2 = 0, which contradicts rkY = 2. Hence this case does not occur either.
All of this establishes (5.23). Thanks to Definition 2.1.1, we arrive at M = MG, and
this shows the Fqm-representability of M.

Thus far we provided two examples. In the first one, the direct sum of repre-
sentable q-matroids is not representable, and in the second one it requires a larger
field size for a representation than the summands. In fact, almost all examples that
we were able to compute fall into one of the two categories. The only examples known
to us where the direct sum is representable over the same field as both summands,
are such that one summand is representable over Fq. While we are not able to prove
a general statement about these specific direct sums, we can discuss two extreme
cases. If M1 is the trivial q-matroid U0,n1(q) it can easily be seen that M1 ⊕M2 is
representable over the same field as M2 via the matrix G′ = (0 |G) where G repre-
sents M2. The other extreme, where M1 is the free q-matroid, is dealt with in the
following proposition.
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Proposition 5.4.8. Let M1 = Un1,n1(q), which is representable by In1, and let the
q-matroid M2 = (Fn2

q , ρ2) be represented by G2 ∈ Fk2×n2
qm . Then M1 ⊕M2 is repre-

sentable over Fqm and a representing matrix is given by

G =

(
In1 0
0 G2

)
.

Proof. Set n = n1 + n2. We first consider the q-matroid MG and determine its rank
function, which we denote by ρG. Let V ∈ L(Fn) and V = rowsp(Y ) where Y ∈ Fℓ×n

of rank ℓ. Without loss of generality, we may assume that Y is in reduced row echelon.
Then Y partitions as

Y =

(
Y1 Ŷ
0 Y2

)
, (5.25)

for some Yi ∈ Fℓi×ni and Ŷ of corresponding size, and where rk(Yi) = ℓi for i = 1, 2.
This means that rowsp(Y1) = π1(V ), which has dimension ℓ1, and rowsp(Y2) =
π2(V ∩ (0⊕ Fn2)), which has dimension ℓ2. Now we have

GY T =

(
Y1

T 0

G2Ŷ
T G2Y2

T

)
,

and since Y1
T has full column rank, we obtain the rank value

ρG(V ) = rk(GY T) = rk(V1)+rk(G2Y2
T) = dim π1(V )+ρ2(π2(V ∩(0⊕Fn2))). (5.26)

We now turn to M1 ⊕ M2 and denote its rank function by ρ. We use (5.4) to
evaluate ρ, thus

ρ(V ) = dimV + min
X≤V

σ(X), where σ(X) = dim π1(X) + ρ2(π2(X))− dimX. (5.27)

Consider again V = rowsp(Y ) with Y as in (5.25). Let X be a subspace of V of
dimension x. Then X is of the form X = rowsp(SY ) for some S ∈ Fx×ℓ of rank x.
Again, we may assume S in reduced row echelon form and can partition the matrix
as

S =

(
S1 Ŝ
0 S2

)
,

where Si ∈ Fxi×ℓi of rank xi and Ŝ accordingly. Then

SY =

(
S1Y1 S1Ŷ + ŜY2
0 S2Y2

)
.

The two diagonal blocks have full row rank and π1(X) = rowsp(S1Y1) while π2(X) =

rowsp
(

S1Ŷ+ŜY2

S2Y2

)
. Now we have

σ(X) = rk(S1Y1) + ρ2(π2(X))− dimX = ρ2(π2(X))− rk(S2Y2),
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which we want to minimize over all subspaces X of V . Note that this expression does
not depend on π1(X). Furthermore, since rk(S2Y2) does not depend on Ŝ and ρ2 is
non-decreasing, the minimum is attained by a space X of the form X = rowsp(0 |
S2Y2). Thus we arrive at

σ(X) = ρ2(π2(X))− dim(π2(X)),

which we have to minimize over all subspaces π2(X) of rowsp(Y2). It is easy to see
that the rank function ρ of any q-matroid satisfies ρ(V ) − dimV ≤ ρ(W ) − dimW
whenever W ≤ V (see for instance [13, Lem. 2]), and thus we conclude that the
minimum is attained by a subspace X such that π2(X) = rowsp(Y2). Choosing
X = rowsp(0 | Y2), we may rewrite (5.27) as

ρ(V ) = dimV + ρ2(rowsp(Y2))− dim rowsp(Y2) = rk(Y1) + ρ2(rowsp(Y2)),

which agrees with (5.26). All of this shows that M1 ⊕M2 = MG, as stated.

We conclude this chapter with the following result that if M1, M2 are represented
respectively by G1, G2 then the cyclic flats of M1 ⊕ M2 are also cyclic flats of the

q-matroid N induced by

(
G1 0
0 G2

)
Theorem 5.4.9. Let Fqm be a field extension of F = Fq and Gi ∈ Fai×ni

qm , i = 1, 2, be
matrices of full row rank. Set

G =

(
G1 0
0 G2

)
∈ F(a1+a2)×(n1+n2)

qm .

Denote by Mi = (Fni , ρi), i = 1, 2, and N = (Fn1+n2 , ρ̂) the q-matroids represented
by G1, G2, and G, thus ρi(rowsp(Y )) = rk(GiY

T) for Y ∈ Fy×ni and ρ̂(rowsp(Y )) =
rk(GY T) for Y ∈ Fy×(n1+n2).

(a) If F ∈ F(M1)⊕F(M2), then F ∈ F(N ).

(b) If O ∈ O(M1)⊕O(M2), then O ∈ O(N ).

As a consequence, Z(M1 ⊕M2) ⊆ Z(N ) and thus I(N ) ⊆ I(M1 ⊕M2).

Note that the very last statement about the independent spaces also follows from
the coproduct property of M1 ⊕M2, discussed in Theorem 6.3.3.

Proof. The first part of the consequence follows from Theorem 5.2.2 and the second
part from Theorem 2.2.29. For the proof of (a) and (b) we will make use of the fact

ρ̂(V1 ⊕ V2) = ρ1(V1) + ρ2(V2) for all Vi ∈ L(Fni). (5.28)

This follows directly from the block diagonal form of G and the fact that every space
V1 ⊕ V2 is the row space of a block diagonal matrix as well.
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(a) Let F ∈ F(M1)⊕F(M2) and x ∈ Fn1+n2 \F . We want to show that ρ̂(F+⟨x⟩) >
ρ̂(F ). By assumption,

F = rowsp

(
Y1 0
0 Y2

)
for some Yi ∈ Fyi×ni such that rowsp(Yi) ∈ F(Mi).

Write x = (x1 | x2) with xi ∈ Fni . Without loss of generality let x1 ̸∈ rowsp(Y1).
Since rowsp(Y1) is a flat in M1, this implies

rk(G1[Y
T
1 , x

T
1 ]) = ρ1(rowsp(Y1) + ⟨x1⟩) > ρ1(rowsp(Y1)) = rk(G1Y

T
1 ).

Hence G1x
T
1 is not in the column space of G1Y

T
1 and we obtain

ρ̂(F + ⟨x⟩) = rk

(G1 0
0 G2

)Y1 0
0 Y2
x1 x2

T


= rk

(
G1Y

T
1 0 G1x

T
1

0 G2Y
T
2 G2x

T
2

)
> rk

(
G1Y

T
1 0

0 G2Y
T
2

)
= ρ̂(F ).

Since x was arbitrary, this proves that F is a flat of N .
(b) Let O ∈ O(M1) ⊕O(M2) and let D ∈ Hyp(O). We want to show that ρ̂(D) =
ρ̂(O). By assumption O = O1 ⊕ O2 with Oi ∈ O(Mi). Recall the projections πi
from Fn1+n2 to Fni and set D̂ = π1(D) ⊕ π2(D). Then D ≤ D̂ ≤ O and since
dimD = dimO − 1, we have D̂ = D or D̂ = O.
(b1) If D̂ = D we may assume π1(D) = O1 and π2(D) ∈ Hyp(O2). Using cyclicity
of O2 and (6.15) we arrive at

ρ̂(D) = ρ̂(D̂) = ρ1(π1(D)) + ρ2(π2(D)) = ρ1(O1) + ρ2(O2) = ρ̂(O),

which is what we wanted.
(b2) Let D̂ = O. Set dimO = k+1 and thus dimD = k. Write D = rowsp(M1 |M2),
where Mi ∈ Fk×ni . Then

D̂ = O = rowsp

(
M1 0
0 M2

)
.

Hence Oi = rowsp(Mi). Let rkM1 = k1. Then rkM2 = k − k1 + 1. Using elementary
row operations we may assume that (M1 |M2) is of the formm1 m2

M21 0
0 M22

 for some mi ∈ Fni , M21 ∈ F(k1−1)×n1 , M22 ∈ F(k−k1)×n2 .

Since rkM2i = rkMi − 1 it follows that rowsp(M2i) ∈ Hyp(rowsp(Mi)). Using the
cyclicity of rowsp(Mi) we conclude that rk(GiM

T
2i) = rk(GiM

T
i ) = rk(Gi[m

T
i ,M

T
2i])
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for i = 1, 2. This means that Gim
T
i is in the column space of GiM

T
2i, and thus

ρ̂(D) = rk

(
G1m

T
1 G1M

T
21 0

G2m
T
2 0 G2M

T
22

)
= rk

(
G1M

T
21 0

0 G2M
T
22

)
= rk

(
G1M

T
1 0

0 G2M
T
2

)
= ρ̂(O).

All of this shows ρ̂(D) = ρ̂(O) for every D ∈ Hyp(O) and thus O ∈ O(N ). This
concludes the proof.

We believe that studying representability of q-matroids, especially finding ob-
structions to representability, will be a challenging, but highly instructive topic for a
better understanding of q-matroids and their differences to matroids. A characteri-
zation of representability of the direct sum in terms of the summands may be a first
step in this direction. Note that Theorem 5.4.5 provides already an obstruction to
representability in a special case.

Copyright© Benjamin Jany, 2023.
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Chapter 6 Categories of q-Matroids.

In this chapter we take a category approach towards the study of q-matroids. This
approach allows to establish differences between the structure of classical matroids
and their q-analogue. The main result of this chapter is the proof that a coproduct
always exist only in the category of q-matroids where maps are linear q-weak maps.
This holds in contrast to classical matroid for which a coproduct also exist in the
category of matroids with strong maps as morphisms. Furthermore, we show there
exist a functor from categories of q-matroids to categories of matroids which provide
an alternative approach the study the former category. Results in this chapter also
appear in [26] and [33].

6.1 Maps Between q-Matroids.

In this section we introduce maps between q-matroids. The candidates for such maps
are (possibly nonlinear) maps between the ground spaces of the q-matroids with the
property that they map subspaces to subspaces. Such maps will be called L-maps.
By definition, L-maps induce order-preserving maps between the associated subspace
lattices. As a consequence, one may choose L-maps or their induced maps as maps
between q-matroids. In Section 6.4 we will briefly discuss the second option, while
for now we focus on L-maps themselves. As maps between q-matroids, they should
respect the q-matroid structure. This can be achieved in various ways, and we will
introduce the options later in this section.

Throughout this section let E1, E2 be finite-dimensional F-vector spaces.

Definition 6.1.1. Let ϕ : E1 −→ E2 be a map. We call ϕ an L-map if ϕ(V ) ∈ L(E2)
for all V ∈ L(E1). The induced map from L(E1) to L(E2) is denoted by ϕL. A
bijective L-map is called an L-isomorphism. Finally, L-maps ϕ, ψ from E1 to E2 are
L-equivalent, denoted by ϕ ∼L ψ, if ϕL = ψL.

An L-map ϕ : E1 −→ E2 is thus a possibly nonlinear map that maps subspaces
of E1 to subspaces of E2. It satisfies ϕ(0) = 0 and

ϕ(⟨v⟩) = ⟨ϕ(v)⟩ for all v ∈ E1. (6.1)

This follows from the fact that ϕ(⟨v⟩) is a subspace of cardinality at most q containing
0 and ϕ(v). Our definition of L-isomorphisms is justified by the following simple fact.

Remark 6.1.2. Let ϕ : E1 −→ E2 be a bijective L-map. Then ϕ−1 is also an L-
map. To see this, note that dimE1 = dimE2 by bijectivity of ϕ and thus the subspace
lattices L(E1) and L(E2) are isomorphic. Hence ϕ−1 is also an L-map.

Recall that a map ϕ : E1 −→ E2 is F-semilinear if ϕ is additive and there exists
σ ∈ Aut(F) such that ϕ(cv) = σ(c)ϕ(v) for all v ∈ E1 and c ∈ F. Clearly, any semi-
linear map ϕ : E1 −→ E2 is an L-map. Here are examples of non-semi-linear L-maps
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and of L-equivalent maps. A more general construction of L-equivalent L-maps will
be given in Proposition 6.1.9(b).

Example 6.1.3. (a) Let X ⪇ E1 be any subspace and let v1, . . . , vℓ ∈ E1 be such
that ⟨v1⟩, . . . , ⟨vℓ⟩ are the distinct lines in E1 that are not contained in X. Choose
z ∈ E2 \ {0}. Set

ϕ : E1 −→ E2, v 7−→
{

0, if v ∈ X,

λz, if v = λvi for some i ∈ [ℓ].

Then ϕ(V ) = {0} for all V ∈ L(X) and ϕ(V ) = ⟨z⟩ for all V ∈ L(E1) \ L(X).
Thus, ϕ is an L-map. Furthermore, the pre-image of any subspace is a subspace.
Indeed, let W ≤ E2. Then ϕ−1(W ) = X if z ̸∈ W and ϕ−1(W ) = E1 if z ∈ W .
Note that ϕ depends on the choice of the representatives vi for the distinct lines.
One can easily create examples where ϕ is not semi-linear. (In fact, one can show
that there always exist choices such that ϕ is not semi-linear unless dimE1 = 1
or [dimX = dimE1 − 1 and Fq = F2].)

(b) Let ϕ : F3
2 −→ F2

2 be given by ϕ(v1, v2, 0) = (v1, v2) and ϕ(v1, v2, 1) = (0, 0) for
all v1, v2 ∈ F2. Then ϕ is a nonlinear L-map. In this case, the pre-image of a
subspace is not necessarily a subspace, for instance ϕ−1({(0, 0)}).

(c) Clearly, if ϕ : E1 −→ E2 is an L-map, and ψ = λϕ for some λ ∈ F∗, then ϕ
and ψ are L-equivalent L-maps.

(d) Let F4 = {0, 1, α, α2} and consider the semi-linear map ϕ : F2
4 −→ F2

4, (v1, v2) 7−→
(v21, v

2
2). Furthermore, let

ψ : F2
4 −→ F2

4, (v1, v2) 7−→
{
α(v21, v

2
2), if (v1, v2) ∈ ⟨(1, 1)⟩,

(v21, v
2
2), otherwise.

One easily verifies that ψ is an L-map and ϕ and ψ are L-equivalent.

We now discuss the relation between L-maps from E1 to E2 and lattice homo-
morphism from (L(E1),≤,+,∩) to (L(E2),≤,+,∩). To do so, recall the following
notions and simple facts. For further details see for instance [17, Ch. 2].

Remark 6.1.4. Let (Li,≤i,∨i,∧i), i = 1, 2, be two lattices and ϕ : L1 −→ L2 be a
map. Then ϕ is a lattice homomorphism if it is meet- and join-preserving, that is,
ϕ(a∧1 b) = ϕ(a)∧2 ϕ(b) and ϕ(a∨1 b) = ϕ(a)∨2 ϕ(b) for all a, b ∈ L1. If each Li has
a least element 0i and a greatest element 1i, we call ϕ a {0, 1}-lattice homomorphism
if it is a lattice homomorphism satisfying ϕ(01) = 02 and ϕ(11) = 12. Finally, we
call ϕ order-preserving if a ≤1 b implies ϕ(a) ≤2 ϕ(b) for all a, b ∈ L1. We have the
following facts.
(a) Every lattice homomorphism is order-preserving [17, Prop. 2.19]. Clearly, every

L-map ϕ induces an order-preserving map ϕL.

(b) Let ϕ : E1 −→ E2 be an L-map and ϕ(v1) = ϕ(v2) ̸= 0 for some distinct v1, v2 ∈
E1. Then ϕL is not meet-preserving and thus not a lattice homomorphism. An
example of such a map ϕ is in Example 6.1.3(a) if dimE1 > 1.
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(c) A lattice homomorphism need not be a {0, 1}-lattice homomorphism. Consider
for instance the embedding τ : F2

2 −→ F3
2, (x, y) 7−→ (x, y, 0), and the map ϕ :

L(F2
2) −→ L(F3

2) given by ϕ(V ) = τ(V ).

(d) A lattice isomorphism is a {0, 1}-lattice isomorphism.

(e) A {0, 1}-lattice homomorphism need not be a lattice isomorphism. Consider, for
instance, ϕ : L(F2

2) −→ L(F4
2), which maps 0 to 0 and F2

2 to F4
2 and the three

1-spaces in F2
2 to the subspaces ⟨1000, 0100⟩, ⟨0010, 0001⟩, and ⟨1010, 0101⟩.

Note that the map in Remark 6.1.4(e) is not induced by an L-map (because
dimV < dimϕ(V )). For maps induced by L-maps we have some stronger statements.

Proposition 6.1.5. Let ϕ : E1 −→ E2 be an L-map and ϕL : L(E1) −→ L(E2) be
the induced map.
(a) If ϕ is injective, then ϕL is a lattice homomorphism.

(b) Suppose E2 ̸= 0. Then ϕ is an L-isomorphism ⇐⇒ ϕL is a {0, 1}-lattice homo-
morphism ⇐⇒ ϕL is a lattice isomorphism.

Note that if E2 = 0, then the zero map induces a {0, 1}-lattice homomorphism;
thus the exceptional case in (b).

Proof. (a) Let V1, V2 ∈ L(E1) and V̂i = ϕ(Vi). Then clearly ϕ(V1 ∩ V2) ⊆ V̂1 ∩ V̂2.
For the converse containment let v̂ ∈ V̂1 ∩ V̂2. Then there exist vi ∈ Vi such that
ϕ(v1) = v̂ = ϕ(v2) and injectivity implies v1 = v2 ∈ V1 ∩ V2. This shows ϕ(V1 ∩ V2) =
V̂1 ∩ V̂2 and thus ϕL is meet-preserving. Next, we clearly have V̂1 + V̂2 ⊆ ϕ(V1 + V2)
and equality follows from dim(V̂1 + V̂2) = dim V̂1 +dim V̂2 − dim(V̂1 ∩ V̂2) = dimV1 +
dimV2 − dim(V1 ∩ V2) = dim(V1 + V2) = dimϕ(V1 + V2). Thus ϕ is join-preserving.
(b) Let E2 ̸= 0. The only implication that remains to be proven is that if ϕL is
a {0, 1}-lattice homomorphism then ϕ is bijective. Thus, let ϕL be a {0, 1}-lattice
homomorphism. By assumption ϕ(E1) = E2, and thus ϕ is surjective and dimE2 ≤
dimE1. Let ei = dimEi. We have to show that e1 = e2. Assume by contradiction
that e2 < e1. We proceed in several steps.
i) Clearly ϕ maps 1-spaces of E1 to subspaces of E2 of dimension 1 or 0. Suppose
ϕ(V ) = ϕ(W ) for some 1-spaces V ̸= W . Then the properties of a {0, 1}-lattice
homomorphism imply ϕ(V ) = ϕ(V ) ∩ ϕ(W ) = ϕ(V ∩W ) = ϕ(0) = 0. Since Ei has
(qei − 1)/(q − 1) 1-spaces, we conclude that at most (qe2 − 1)/(q − 1) 1-spaces of E1

are mapped to 1-spaces, and thus ϕ maps at least (qe1 − qe2)/(q − 1) 1-spaces to 0.
ii) Let now V ∈ L(E1) be a maximal-dimensional subspace such that ϕ(V ) = 0. Then
V ̸= E1 since E2 ̸= 0. Let dimV = v. The number of 1-spaces in V is (qv−1)/(q−1).
Using e2 ≤ e1 − 1 as well as v ≤ e1 − 1, we compute

qe1 − qe2

q − 1
− qv − 1

q − 1
≥ qe1 − qe2

q − 1
− qe1−1 − 1

q − 1
= qe1−1 − qe2 − 1

q − 1
≥ 1.

Now i) tells us that there exists at least one 1-spaceW ∈ L(E1) such thatW ̸≤ V and
ϕ(W ) = 0. Now the join-preserving property implies ϕ(V +W ) = ϕ(V ) + ϕ(W ) = 0,
in contradiction to the maximality of V . All of this shows that e1 = e2 and thus ϕ is
bijective.
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The L-isomorphisms from Proposition 6.1.5(b) are, up to L-equivalence, semi-
linear maps. This is a consequence of the Fundamental Theorem of Projective Geom-
etry; see for instance [3, Ch. II.10] or [40, Thm. 1] (for the interesting original source
of this theorem, which is attributed to von Staudt, one may also consult [31]).

Theorem 6.1.6. Let dimE1 = dimE2 = n, where n ≥ 3. Let τ : L(E1) −→ L(E2)
be a lattice isomorphism. Then there exists a semi-linear map ϕ : E1 −→ E2 such
that τ = ϕL.

Corollary 6.1.7. Let dimE1 = dimE2 = n, where n ≥ 3 or q = n = 2. Let
τ : E1 −→ E2 be an L-map and suppose there exist vectors v1, . . . , vn of E1 such
that τ(v1), . . . , τ(vn) are linearly independent. Then τ is bijective and there exists a
semi-linear isomorphism ϕ : E1 −→ E2 such that τ ∼L ϕ. In particular, if q = 2,
then τ = ϕ is a linear isomorphism.

Proof. Since τ(E1) is a subspace and contains τ(v1), . . . , τ(vn), we conclude that
τ(E1) = E2. Hence τ is a bijection. For n = 2 = q it is clear that τ is a linear
isomorphism (any nonzero vector in E1 or E2 is the sum of the other two nonzero
vectors). For n ≥ 3 we may use Theorem 6.1.6.

We return to general L-maps and list some basic facts.

Proposition 6.1.8. Let ϕ, ψ : E1 −→ E2 be L-maps such that ϕ ∼L ψ.
(a) For all v ∈ E1 there exist λv ∈ F∗ such that ϕ(v) = λvψ(v).

(b) ϕ−1(V ) = ψ−1(V ) for all V ∈ L(E2).

(c) If ψ is an L-isomorphism, then so is ϕ, and ϕ−1 ∼L ψ
−1.

(d) If ψ is injective (resp. surjective), then so is ϕ.

(e) If ϕ and ψ are linear, then ϕ = λψ for some λ ∈ F∗.

Proof. (a) It suffices to consider v ̸= 0. Note that ϕ(v) = 0 ⇐⇒ ψ(v) = 0, and in this
case we may choose λv = 1. In the case ψ(v) ̸= 0 ̸= ϕ(v) the result follows from (6.1).
(b) For v ∈ E1 let λv ∈ F∗ be as in (a). For any V ∈ L(E2) we have ϕ−1(V ) = {v ∈
E1 | ϕ(v) ∈ V } = {v ∈ E1 | λvψ(v) ∈ V } = {v ∈ E1 | ψ(v) ∈ V } = ψ−1(V ).
(c) If ψ is an L-isomorphism, then the lattices L(E1) and L(E2) are isomorphic
(see Remark 6.1.2). Next, E2 = ψ(E1) = ϕ(E1), and thus ϕ is bijective as well.
Furthermore, ψL and ϕL are lattice isomorphisms from L(E1) to L(E2) satisfying
(ψ−1)L = (ψL)

−1 = (ϕL)
−1 = (ϕ−1)L.

(d) The statement about surjectivity is clear since ϕ(E1) = ψ(E1). For injectivity
use (c) with E2 = ψ(E1).
(e) Let W = kerψ, hence also W = kerϕ, and let E1 = V ⊕ W . Let v1, . . . , vr
be a basis of V . By (a) there exist λi ∈ F∗ such that ϕ(vi) = λiψ(vi) for i ∈
[r]. Furthermore, ϕ(v1 + vi) = λ̂ψ(v1 + vi) for some λ̂ ∈ F∗. Linearity implies
ψ(λ1v1 + λivi) = ϕ(v1 + vi) = λ̂ψ(v1 + vi) = ψ(λ̂v1 + λ̂vi), and injectivity of ψ
on V yields λ1 = λi = λ̂ for all i ∈ [r]. Hence ϕ|V = λ̂ψ|V . Now we obtain
ϕ(v + w) = ϕ(v) + 0 = λ̂ψ(v) + 0 = λ̂ψ(v) + λ̂ψ(w) = λ̂ψ(v + w) for all v ∈ V and
w ∈ W , and this proves the desired statement.
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The following results show how we may alter an L-map without changing the
induced lattice homomorphism. Part (a) also shows that L-maps are L-equivalent if
they agree on the 1-spaces.

Proposition 6.1.9. Let ψ : E1 −→ E2 be an L-map.
(a) Let ϕ : E1 −→ E2 be a map such that ϕ(0) = 0 and ϕ(⟨v⟩) = ψ(⟨v⟩) for all

v ∈ E1. Then ϕ is an L-map and ϕ ∼L ψ.

(b) Suppose ψ is an L-isomorphism. Fix w ∈ E1 \ 0 and τ ∈ F∗ and set ŵ =
ψ−1(τψ(w)). Then ⟨ŵ⟩ = ⟨w⟩. Define the map ϕ : E1 −→ E2 via

ϕ(v) = ψ(v) for v ∈ E1 \ ⟨w⟩, ϕ(µw) = ψ(µŵ) for µ ∈ F.

Then ϕ is an L-isomorphism and ϕ ∼L ψ. If τ = 1, then ϕ = ψ.

Proof. (a) is immediate from ϕ(V ) =
⋃

v∈V ϕ(⟨v⟩) =
⋃

v∈V ψ(⟨v⟩) = ψ(V ) for all
V ∈ L(E1).
(b) Bijectivity of ψ implies ŵ ̸= 0 and ψ(ŵ) = τψ(w), thus ψ(⟨w⟩) = ⟨ψ(w)⟩ =
⟨ψ(ŵ)⟩ = ψ(⟨ŵ⟩). This in turn implies ⟨w⟩ = ⟨ŵ⟩. The map ϕ is clearly bijective and
satisfies ϕ(0) = 0. We show that ϕ satisfies the condition of (a). First let v ̸∈ ⟨w⟩.
Then also λv ̸∈ ⟨w⟩ for all λ ∈ F∗ and ϕ(⟨v⟩) = {ϕ(λv) | λ ∈ F} = {ψ(λv) | λ ∈
F} = ψ(⟨v⟩). Next, for v = µw with µ ̸= 0 we have ϕ(⟨v⟩) = {ϕ(λµw) | λ ∈ F} =
{ψ(λµŵ) | λ ∈ F} = ψ(⟨ŵ⟩) = ψ(⟨w⟩) = ψ(⟨v⟩). Thus we may apply (a) and the
statement follows.

We now turn to L-maps between q-matroids. There are different options for
such a map to respect the q-matroid structure. For (a) and (b) below we adopt the
terminology known for classical matroids; see, e.g. [47, Def. 8.1.1 and Def. 9.1.1].
Our notion of rank-preserving maps in (c), however, is different from rank-preserving
weak maps for classical matroids: the latter are weak maps that preserve the rank of
the matroid; see [47, p. 260]. The definition below will be convenient for us.

Definition 6.1.10. Let Mi = (Ei, ρi) be q-matroids with flats Fi := F(Mi). Let
ϕ : E1 −→ E2 be an L-map. We define the following types.

(a) ϕ is a q-strong map from M1 to M2 if ϕ−1(F ) ∈ F(M1) for all F ∈ F(M2)
(this implies in particular that ϕ−1(F ) is a subspace of E1).

(b) ϕ is a q-weak map from M1 to M2 if ρ2(ϕ(V )) ≤ ρ1(V ) for all V ∈ L(E1).

(c) ϕ is rank-preserving from M1 to M2 if ρ2(ϕ(V )) = ρ1(V ) for all V ∈ L(E1).

For any L-map ϕ : E1 −→ E2 we will also use the notation ϕ : M1 −→ M2. This
allows us to discuss its type.

In Section 6.5, we will consider both maps between matroids and maps between
q-matroids. To avoid confusion, we therefore use the term q-weak and q-strong for
maps between q-matroids. However, the “q-” may be omitted if there is no risk of
confusion.

111



Note that each of the types above are actually properties of the induced map ϕL.
This raises the question as to whether one should define maps between q-matroids
(E1, ρ1) and (E2, ρ2) as maps (with certain properties) between the underlying sub-
space lattices L(E1) and L(E2). However lattice homomorphisms are too restrictive as
they exclude some non-injective maps (see also Remark 6.1.4(b)), while simply order-
preserving maps appear to be too general. In Section 6.4 we will briefly consider the
setting where the maps are those induced by L-maps. Note that the distinction of
maps between the ground spaces versus maps between the subspace lattices does not
occur for classical matroids because a map on a set S is uniquely determined by its
induced map on the subset lattice of S.

We return to Definition 6.1.10. Clearly, the composition of maps of the same type
is again a map of that type. Furthermore, L-equivalent L-maps are of the same type
(see Proposition 6.1.8(b) for q-strong maps). Note, however, that if ϕ : M1 −→ M2

is a bijective strong (resp. weak) map, then ϕ−1 : M2 −→ M1 may not be strong
(resp. weak): take for instance the identity map Uk(Fn) −→ Uk−1(Fn). Being rank-
preserving and being strong are not related: there exist q-strong maps that are not
rank-preserving (e.g., the identity map from any nontrivial q-matroid M = (E, ρ) to
the trivial q-matroid on E) and there exist rank-preserving maps that are not strong
(e.g., ϕ : F2

2 −→ F2
2, (x, y) 7−→ (x, 0) and where M1 and M2 are the q-matroids

on F2
2 of rank 1 with ⟨e2⟩ and ⟨e1 + e2⟩ as the unique flat of rank 0, respectively).

Unsurprisingly, q-weak maps are in general not strong: take for instance the identity
on F4

2, which induces a weak, but not q-strong map from U2(F4
2) to the q-matroid

M from Example 2.4.8. However, it can be shown that – just like in the classical
case [47, Lemma 8.1.7] – q-strong maps are q-weak. This will be done later on in
Section 6.5 For now, we show the following simple result.

Proposition 6.1.11. Let Mi = (Ei, ρi) be q-matroids and ϕ : E1 −→ E2 be an
L-isomorphism. Consider ϕ as a map from M1 to M2. Then

ϕ and ϕ−1 are q-weak maps ⇐⇒ ϕ is rank-preserving ⇐⇒ ϕ and ϕ−1 are q-strong maps.

Proof. Recall from Remark 6.1.2 that ϕ−1 is also an L-map. The first equivalence is
clear. Consider the second equivalence.
“⇒” Let ϕ be a rank-preserving isomorphism. Then ρ2(ϕ(V )) = ρ1(V ) and dimϕ(V ) =
dimV for all V ∈ L(E1). Using Theorem 2.2.4 we conclude that V is a flat in M1

iff ϕ(V ) is a flat in M2.
“⇐” Let now ϕ and ϕ−1 be q-strong maps. Then ϕ(F(M1)) = F(M2), that is, ϕ in-
duces an isomorphism between the lattices of flats of M1 and M2. Using the height
function on these lattices (see Theorem 2.2.4 we conclude that ρ1(F ) = ρ2(ϕ(F ))
for all F ∈ F(M1) and thus ρ1(V ) = ρ2(ϕ(V )) for all V ∈ L(E1). Hence ϕ is
rank-preserving.

Just like there exist linear maps between any vector spaces (over the same field),
there exist weak and q-strong maps between any q-matroids M1 and M2.

Example 6.1.12. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids.
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(a) The zero map ϕ0 from E1 to E2 is a q-weak map from M1 to M2. It is also a
q-strong map since ϕ−1

0 (W ) = E1 ∈ F(M1) for all W ≤ E2.

(b) Let X = {x ∈ E1 | ρ1(⟨x⟩) = 0}, that is, X is the closure of {0} in M1 in
the sense of Theorem 2.2.3. In particular, X ≤ E1. Let z ∈ E2 \ {0}. As in
Example 6.1.3(a) choose vectors v1, . . . , vℓ ∈ E1\X such that ⟨v1⟩, . . . , ⟨vℓ⟩ are the
distinct lines in E that are not in X and consider the map ϕ as in that example.
Then ϕ is a q-weak map. Indeed, for any V ≤ X we have ρ1(V ) = 0 = ρ2({0}) =
ρ2(ϕ(V )), while for V ∈ L(E1) \ L(X) we have ρ1(V ) ≥ 1 ≥ ρ2(⟨z⟩) = ρ2(ϕ(V )).
Moreover, the pre-images in Example 6.1.3(a) show that ϕ is strong. Note that if
X = E1, i.e., M1 is the trivial q-matroid, then ϕ is the zero map.

We now turn to minors of q-matroids and determine the type of the corresponding
maps.

Proposition 6.1.13. Let M = (E, ρ) be a q-matroid and let X ≤ E.
(a) Let M|X be the restriction of M to X. Then the embedding ι : X −→ E, x 7−→ x,

is a linear strong and rank-preserving (hence weak) map from M|X to M.

(b) Let M/X be the contraction of X from M. Then the projection π : E −→
E/X, x 7−→ x+X is a linear strong and q-weak map from M to M/X.

Proof. (a) Recall that M|X = (X, ρ̂), where ρ̂(V ) = ρ(V ) for all V ≤ X. This shows
that ι is rank-preserving. Let F ∈ F(M). Then ι−1(F ) = F ∩X and clM(F ∩X) ⊆
clM(F ) = F , where clM(A) denotes the closure of the space A in the q-matroidM (for
the closure see Theorem 2.2.4). Thus for any v ∈ X the identity ρ((F ∩X) + ⟨v⟩) =
ρ(F ∩X) implies v ∈ F . Hence clM|X (F ∩X) = F ∩X and thus ι−1(F ) ∈ F(M|X).
(b) Recall that M/X = (E/X, ρ̃), where ρ̃(π(V )) = ρ(V + X) − ρ(X). Thus by
submodularity ρ̃(π(V )) ≤ ρ(V ) − ρ(V ∩ X), showing that π is weak. In order to
show that π is strong, let F ∈ F(M/X). Thus ρ̃(F + ⟨v +X⟩) > ρ̃(F ) for all
v+X ∈ (E/X)\F . Since π−1(F + ⟨v +X⟩) = π−1(F )+ ⟨v⟩, this implies ρ(π−1(F )+
⟨v⟩) > ρ(π−1(F )) for all v ∈ E \ π−1(F ). Thus π−1(F ) ∈ F(M).

Restricting an L-map to its image does not change its type.

Proposition 6.1.14. Let Mi = (Ei, ρi) be q-matroids and ϕ : M1 −→ M2 be a
strong (resp. weak or rank-preserving) map. Let X := imϕ. Then X is a subspace
of E2 and we call the restriction M2|X the image of ϕ. The map ϕ̂ : E1 −→ X, v 7−→
ϕ(v), is a strong (resp. weak or rank-preserving) map from M1 to M2|X . In other
words, ϕ restricts to a map M1 −→ M2|X of the same type.

Proof. The statement is clear for weak and rank-preserving maps. Let now ϕ be
strong and F ∈ F(M2|X). Then ρ2(F + ⟨v⟩) > ρ2(F ) for all v ∈ X \ F . Hence the
closure clM2(F ) satisfies clM2(F ) \ F ⊆ E2 \ X. Using that imϕ = X, we obtain
ϕ−1(clM2(F )) = ϕ̂−1(F ). Since the former is a flat in M1, we conclude that ϕ̂ is a
q-strong map.

Finally we record the simple observation that representability is not preserved
under strong or weak bijective maps. Take for instance the identity map on F4

2. It
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induces a bijective strong and q-weak map from the representable q-matroid U4(F4
2)

to the non-representable q-matroid in Example 2.4.8.

6.2 Non-Existence of Coproducts in Categories of q-Matroids.

In this section we consider categories of q-matroids with various types of morphisms.
We will show that – with one exception – none of these categories has a coproduct.

Definition 6.2.1. We denote by q-Mats, q-Matrp, q-Matw, q-Matl-s, q-Matl-rp,
and q-Matl-w the categories with q-matroids as objects and where the morphisms are
the strong, rank-preserving, weak, linear strong, linear rank-preserving and linear q-
weak maps, respectively.

In this section we show that none of the first 5 categories has a coproduct, while
in the next section we establish the existence of a coproduct in q-Matl-w. It is in
fact the direct sum as introduced recently in [13]. The non-existence of a coproduct
in q-Mats and q-Matl-s stands in contrast to the case of classical matroids, where
the direct sum (see [39, Sec. 4.2]) forms a coproduct in the category with q-strong
maps as morphisms, see [47, Ex. 8.6, p. 244] (which goes back to [16]). We know
from Proposition 6.1.11 that isomorphisms in the first three categories coincide, and
so do those in the second three categories. This gives rise to the following notions of
isomorphic q-matroids.

Definition 6.2.2. We call q-matroids M1 and M2 isomorphic if they are isomor-
phic in the category q-Matrp, that is, there exists a rank-preserving L-isomorphism
ϕ : M1 −→ M2 (equivalently, ϕ and ϕ−1 are strong). M1 and M2 are linearly
isomorphic, denoted by M1

∼= M2, if they are isomorphic in the category q-Matl-rp.

Due to Theorem 6.1.6 the above notion of isomorphism coincides with lattice-
equivalence in [13, Def. 5]. The same theorem tells us that any rank-preserving
L-isomorphism is induced by a semi-linear map.

Remark 6.2.3. Let ϕ : E1 −→ E2 be an L-isomorphism and M1 = (E1, ρ1) be
a q-matroid. Define M2 = (E2, ρ2) via ρ2(V ) := ρ1(ϕ

−1(V )) for all V ∈ L(E2).
Then M2 is a q-matroid and isomorphic to M1. The flats of M2 are given by
F(M2) = {ϕ(F ) | F ∈ F(M1)}.

The following linear maps will be used throughout this paper. For E = E1 ⊕ E2

let
ιi : Ei −→ E, x −→ x (6.2)

be the natural embeddings. If Ei = Fni and E = Fn1+n2 we define the maps as

ι1 : Fn1 :−→ Fn1+n2 , x −→ (x, 0), ι2 : Fn2 :−→ Fn1+n2 , y −→ (0, y). (6.3)

Next we present a simple construction that will be crucial later on. It shows that
representable q-matroids M1 and M2 can be embedded in a q-matroid M in such
a way that the ground spaces of Mi form a direct sum of the ground spaces of M.
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However, as we will illustrate by an example below, the resulting q-matroid M is
not uniquely determined by the q-matroids M1 and M2, but rather depends on the
representing matrices (which has also been observed in [13, Sec. 3.2]). It is exactly
this non-uniqueness that allows us to prove the non-existence of coproducts.

Proposition 6.2.4. Let Fqm be a field extension of F = Fq and Gi ∈ Fai×ni
qm , i = 1, 2,

be matrices of full row rank. Set

G =

(
G1 0
0 G2

)
∈ F(a1+a2)×(n1+n2)

qm .

Denote by Mi = (Fni , ρi), i = 1, 2, and N = (Fn1+n2 , ρ) the q-matroids represented
by G1, G2, and G, thus ρi(rowsp(Y )) = rk(GiY

T) for Y ∈ Fy×ni and ρ(rowsp(Y )) =
rk(GY T) for Y ∈ Fy×(n1+n2). Then ιi : Mi −→ N , i = 1, 2, is a linear, rank-
preserving, and q-strong map with image N|Fni . Thus N|Fni is linearly isomorphic
to Mi for i = 1, 2.

Proof. Let Y ∈ Fy×n1 be a matrix of rank y. Then rowsp(Y ) ≤ Fn1 and ι1(rowsp(Y )) =
rowsp(Y | 0). Moreover,

ρ(rowsp(Y | 0)) = rk

((
G1 0
0 G2

)(
Y T

0

))
= rk(G1Y

T) = ρ1(rowsp(Y )).

Thus ι1 is rank-preserving. Similarly, ι2 is rank-preserving. In order to show that ιi :
Mi −→ N is a q-strong map, let us first consider the pre-images of a subspace
rowsp(Y ), where Y ∈ Fy×(n1+n2). They can be computed as follows. There exist
Ui ∈ GLy(F) such that

U1Y =

(
A1 0
A3 A4

)
, U2Y =

(
0 B2

B3 B4

)
,

where the first block column consists of n1 columns and the second one of n2 columns,
and where A4 and B3 have full row rank. Then ι−1

1 (rowsp(Y )) = rowsp(A1) and
ι−1
2 (rowsp(Y )) = rowsp(B2). Suppose now that rowsp(Y ) ∈ F(M). By symmetry
it suffices to show that rowsp(A1) ∈ F(M1). To this end let v1 ∈ Fn1 such that
ρ1(rowsp(A1) + ⟨v1⟩) = ρ1(rowsp(A1)). Setting v = ι1(v1) = (v1, 0), we have

ρ1(rowsp(A1) + ⟨v1⟩) = rk
(
G1(A1

T v1
T)
)

and

ρ(rowsp(Y ) + ⟨v⟩) = rk

(
G1A1

T G1v1
T G1A3

T

0 0 G2A4
T

)
.

We conclude that ρ(rowsp(Y ) + ⟨v⟩) = ρ(rowsp(Y )) and hence v ∈ rowsp(Y ) since
the latter is a flat. But then v1 ∈ rowsp(A1), and this shows that rowsp(A1) is a flat.
This shows that ιi are linear, injective, strong, and rank-preserving maps. Clearly,
N|Fni is the image of ιi, and thus ιi induces an isomorphism between Mi and N|Fni

in q-Matl-rp.

115



The next proposition shows for a special case that the q-matroid N of the last
proposition depends on the representing matrices. This stands in contrast to the
classical case, where the block diagonal matrix of every choice of representing matrices
is a representing matrix of the direct sum; see [39, p. 126, Ex. 7].

Proposition 6.2.5. Let Fqm be a field extension of F = Fq with primitive element ω
and let Ω = {1, . . . , qm − 2} \ {k(qm − 1)/(q − 1) | k ∈ N} (hence ωi ̸∈ F for i ∈ Ω).
For i ∈ Ω define

G(i) =

(
1 ω 0 0
0 0 1 ωi

)
,

and let N (i) = (F4, ρ(i)) be the q-matroid represented by G(i). Define the subspaces
T1 = ⟨1000, 0100⟩ and T2 = ⟨0010, 0001⟩. Then for all i ∈ Ω
(a) ρ(i)(T1) = ρ(i)(T2) = 1 and ρ(i)(F4) = 2.

(b) ρ(i)(V ) = 1 for all 1-spaces V and ρ(i)(V ) = 2 for all 3-spaces V .

(c) Let L2 = {V ∈ L(F4) | dimV = 2, T1 ̸= V ̸= T2}. Then

ρ(i)(V ) = 2 for all V ∈ L2 ⇐⇒ 1, ω, ωi, ωi+1 are linearly independent over F.

(d) The flats of N (i) are given by F(N (i)) = {0,F4} ∪ F (i)
1 ∪ F (i)

2 , where

F (i)
2 = {V ∈ L(F4) | dimV = 2, ρ(i)(V ) = 1},

F (i)
1 = {V ∈ L(F4) | dimV = 1, V ̸≤ W for all W ∈ F (i)

2 }.

}
(6.4)

Thus for m > 3 there exist at least two non-isomorphic q-matroids of the form
N (i).

Proof. (a) Clearly ρ(i)(T1) = ρ(i)(T2) = 1 and ρ(i)(F4) = rk(G) = 2.
(b) By assumption on i the elements 1, ωi are linearly independent over F. Thus,
G(i)x ̸= 0 for any nonzero vector x ∈ F4 and hence ρ(i)(V ) = 1 for all 1-spaces V .
Suppose there exists a 3-space V such that ρ(i)(V ) = 1. Clearly, V does not contain
both T1 and T2. Let T1 ̸≤ V . Then dim(V ∩T1) = 1, and submodularity of ρ(i) implies
2 = ρ(i)(F4) = ρ(i)(V + T1) ≤ 1 + 1− ρ(i)(V ∩ T1) = 1, which is a contradiction.
(c) Consider now an arbitrary 2-space V = ⟨(a0, a1, a2, a3), (b0, b1, b2, b3)⟩. Since
ρ(i)(V ) is the rank of the matrix

(
1 ω 0 0
0 0 1 ωi

)
a0 b0
a1 b1
a2 b2
a3 b3

 =

(
a0 + a1ω b0 + b1ω
a2 + a3ω

i b2 + b3ω
i

)
, (6.5)

we conclude that ρ(i)(V ) = 1 if and only if its determinant is zero, thus

ρ(i)(V ) = 1 ⇐⇒ (a0b2−a2b0)+(a1b2−a2b1)ω+(a0b3−a3b0)ωi+(a1b3−a3b1)ωi+1 = 0.
(6.6)

Now we can prove the stated equivalence. “⇐” Suppose 1, ω, ωi, ωi+1 are linearly
independent. Then ρ(i)(V ) = 1 if and only if all coefficients in (6.6) are zero. We
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consider the following cases. (i) If a0 ̸= 0 = b0, then b2 = b3 = 0. Thus b1 ̸= 0
since dimV = 2, and subsequently a2 = a3 = 0. But then V = T1. (ii) Suppose
a0 = b0 = 0. If a1 = 0 = b1, then V = T2. Thus assume without loss of generality
that a1 ̸= 0. But then b2 = (b1/a1)a2 and b3 = (b1/a1)a3 and thus dimV = 1, which
is a contradiction. (iii) If a0 ̸= 0 ̸= b0, then without loss of generality a0 = b0 and as
in (ii) we obtain dimV = 1 or V = T1.
“⇒” Suppose 1, ω, ωi, ωi+1 are linearly dependent, say f0 + f1ω + f2ω

i + f3ω
i+1 = 0

with f0, . . . , f3 ∈ F, not all zero. Using (6.5) one obtains ρ(V ) = 1 for V =
⟨(1, 0,−f1,−f3), (0, 1, f0, f2)⟩ ∈ L2.
(d) The statement about the flats is clear from the rank values, and the statement
about non-isomorphic q-matroids N (i) follows from (c) because 1, ω, ωi, ωi+1 are lin-
early dependent for i = 1 and linearly independent for i = 2 if m > 3.

For later use we record the following fact.

Lemma 6.2.6. Let m ≥ 4 and the data be as in Proposition 6.2.5. Define F ′ =
∪i∈ΩF(N (i)). Then

F ′ = {0,F4, T1, T2} ∪ {V ∈ L(F4) | dimV ≤ 2, V ∩ T1 = 0 = V ∩ T2}.

Proof. Recall the sets F (i)
1 ,F (i)

2 from (6.4). Note that T1, T2 ∈ F (i)
2 for all i ∈ Ω.

Denote the set on the right hand side of the stated identity by F ′′. “⊆” Let V ∈ F ′.
If dimV = 1, then V ∈ F (i)

1 for some i and thus V ̸≤ Tℓ for ℓ = 1, 2. Hence V ∈ F ′′.
Let now dimV = 2 and thus ρ(i)(V ) = 1 for some i. The statement is clear for
V ∈ {T1, T2}, and thus let V ̸∈ {T1, T2}. Suppose V ∩T1 = ⟨v⟩ for some v ̸= 0. Then
dim(V + T1) = 3 and thus 2 = ρ(i)(V + T1) ≤ ρ(i)(V ) + ρ(i)(T1) − ρ(i)(⟨v⟩) = 1, a
contradiction. Thus, V ∈ F ′′.
‘⊇” It is clear that the spaces 0,F4, T1, T2 are in F ′. We consider the 1-spaces and
2-spaces separately.
i) Let V ∈ L(F4) with dimV = 2 and V ∩ T1 = V ∩ T2 = 0. Choosing the matrix
M ∈ F2×4 in reduced row echelon form such that V = rowsp(M) we conclude that

M =

(
1 0 a b
0 1 c d

)
, where det

(
a b
c d

)
̸= 0. (6.7)

Now (6.6) reads as

ρ(i)(V ) = 1 ⇐⇒ c− aω + dωi − bωi+1 = 0 ⇐⇒ ωi =
aω − c

d− bω
.

Note that the denominator is indeed nonzero thanks to the determinant condition in
(6.7). Since the fraction is in Fqm and ω is a primitive element, (aω−c)/(d−bω) = ωi

for some i ∈ {0, . . . , qm−2}. Furthermore, the determinant condition in (6.7) implies
that (aω − c)/(d − bω) ̸∈ F and thus i ∈ Ω. All of this shows that ρ(i)(V ) = 1 for

some i ∈ Ω and thus V ∈ F (i)
2 ⊆ F ′.

ii) Let dimV = 1 and V ̸≤ Tℓ for ℓ = 1, 2. LetW be a 2-space containing V . ThenW
is distinct from T1 and T2, and Proposition 6.2.5(c) for i = 2 implies ρ(2)(W ) = 2.

Hence V ∈ F (2)
1 ⊆ F ′, as desired.
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We now turn to coproducts in the above defined categories of q-matroids. Let us
recall the definition.

Definition 6.2.7. Let C be a category andM1, M2 be objects in C. A coproduct ofM1

and M2 in C is a triple (M, ξ1, ξ2), where M is an object in C and ξi :Mi −→M are
morphisms, such that for all objects N and all morphisms τi :Mi −→ N there exists
a unique morphism ϵ :M −→ N such that ϵ ◦ ξi = τi for i = 1, 2.

It is well-known (and straightforward to verify) that if (M, ξ1, ξ2) is a coproduct
of M1 and M2 and ϕ :M −→ M̂ is an isomorphism (i.e., a bijective morphism whose
inverse is also a morphism), then (M̂, ϕ ◦ ξ1, ϕ ◦ ξ2) is also a coproduct of M1 and M2.
Furthermore, every coproduct of M1 and M2 is of this form.

The rest of this section is devoted to the non-existence of coproducts in the first
5 categories of Definition 6.2.1. Our first result narrows down the ground space of a
putative coproduct in an expected way. Furthermore, it shows that the accompanying
morphisms are injective and can be chosen as linear maps. We introduce the following
notation. Let T = {s, rp, w, l-s, l-rp, l-w} be the set of types of morphisms. For any
∆ ∈ T we denote by q-Mat∆ the corresponding category, and the morphisms in
this category are called type-∆ maps. Note that the maps in Proposition 6.2.4 and
Proposition 6.1.13(a) are type-∆ for each ∆ ∈ T .

Theorem 6.2.8. Let ∆ ∈ T . Let Mi, i = 1, 2, be representable q-matroids with
ground spaces Ei. Suppose M1 and M2 have a coproduct (M, ξ1, ξ2) in q-Mat∆.
Then they have a coproduct of the form (M̃, ι1, ι2) where M̃ has ground space E1⊕E2

and ιi : Ei −→ E1 ⊕ E2 are the natural embeddings as in (6.2) (hence linear).

Proof. Suppose without loss of generality that Mi is a q-matroid on the ground space
Fni . Let (M, ξ1, ξ2) be a coproduct of M1,M2. We may also assume that the ground
space of M is Fn for some n. Recall that ξi may not be semi-linear maps, but the
images ξi(Fni) are subspaces of Fn. We proceed in several steps.

Claim 1: ξi is injective for i = 1, 2 and ξ1(Fn1) ∩ ξ2(Fn2) = {0}.
Since each Mi is representable, we may apply Proposition 6.2.4 and obtain the
existence of a q-matroid N on Fn1+n2 and linear maps αi : Mi −→ N where
α1(v1) = (v1, 0) and α2(v2) = (0, v2) for all vi ∈ Fni . Thanks to Proposition 6.2.4
the maps αi are type-∆. Hence the universal property of the coproduct implies the
existence of a type-∆ map ϵ : M −→ N such that ϵ◦ξi = αi, i = 1, 2. Now injectivity
of ξi follows from injectivity of αi. Suppose ξ1(v1) = ξ2(v2) for some vi ∈ Fni . Then
α1(v1) = α2(v2), which means (v1, 0) = (0, v2). Thus v1 = 0 and v2 = 0. This implies
ξ1(v1) = ξ2(v2) = 0, and the claim is proved.

Claim 2: Fn = ξ1(Fn1)⊕ ξ2(Fn2) and thus n = n1 + n2.
Set Xi = ξi(Fni), which is a subspace of Fn, and X = X1 ⊕ X2. Consider the
restriction M|X . The maps ξ̂i : Mi −→ M|X , v −→ ξi(v), are clearly type-∆ as
well; see Proposition 6.1.14. We want to show that (M|X , ξ̂1, ξ̂2) is a coproduct as
well. To do so, consider first the diagram
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M1

M

M2

M|X
��

ξ1
��

ξ̂1

OO

ξ2

??

ξ̂2

//ϵ̂

Since M is a coproduct, there is a unique type-∆ map ϵ̂ satisfying ϵ̂ ◦ ξi = ξ̂i for
i = 1, 2. Define τ : M|X −→ M via x −→ x. From Proposition 6.1.13(a) we know
that τ is type-∆. Consider the map ϵ̂ ◦ τ : M|X −→ M|X . It satisfies ϵ̂ ◦ τ |Xi

= idXi

for i = 1, 2. Hence Corollary 6.1.7 implies that ϵ̂ ◦ τ : X −→ X is a bijective map
(and equivalent to a semi-linear isomorphism).
Let now N be any q-matroid and αi : Mi −→ N be type-∆ maps. Then there exists
a type-∆ map ϵ : M −→ N resulting in the commutative diagram

M|X

M1

M

M2

N
��

ξ1

��

α1

OO

ξ2

??

α2

//ϵ��

ξ̂1

__

ξ̂2

//τ

Hence the map γ := ϵ ◦ τ : M|X −→ N is type-∆ and satisfies γ ◦ ξ̂i = αi. It remains
to show the uniqueness of γ. Suppose there is also a type-∆ map δ : M|X −→ N
such that δ ◦ ξ̂i = αi for i = 1, 2. Set γ̃ = γ ◦ ϵ̂ ◦ τ and δ̃ = δ ◦ ϵ̂ ◦ τ . Now we have
γ ◦ ϵ̂◦ ξi = γ ◦ ξ̂i = αi and δ ◦ ϵ̂◦ ξi = δ ◦ ξ̂i = αi. Since M is a coproduct, we conclude
that γ ◦ ϵ̂ = δ ◦ ϵ̂. This implies γ̃ = δ̃ and since ϵ̂ ◦ τ is a bijection, this in turn yields
δ = γ = ϵ ◦ τ . All of this shows that (M|X , ξ̂1, ξ̂2) is a coproduct. Hence M and
M|X are isomorphic in q-Mat∆, and this means X = Fn.

Claim 3: M1, M2 have a coproduct of the form (M̃, ι1, ι2), where M̃ has ground
space Fn1+n2 and ιi : Mi −→ M̃ are as in (6.3).
We show first that there exists an L-isomorphism β : X −→ Fn1+n2 such that β ◦
ξ̂i = ιi, i = 1, 2. In a second step this map will be turned into the desired type-
∆ isomorphism between M|X and the new coproduct M̃. To show the existence
of β, use again the construction in Proposition 6.2.4: consider any q-matroid N on
Fn1+n2 and the type-∆ maps ιi : Mi −→ N with ιi as in (6.3). Since M|X is a
coproduct, there exists a type-∆ map β : M|X −→ N such that β ◦ ξ̂i = ιi, i = 1, 2.
Hence e1, . . . , en are in the image of β and thus Corollary 6.1.7 implies that β is
bijective. All of this provides us with the desired L-isomorphism β : X −→ Fn1+n2 .
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Note that β is linear if ∆ ∈ {l-s, l-rp, l-w}. Now we use Remark 6.2.3 to define a
new q-matroid structure on Fn1+n2 . Set M̃ = (Fn1+n2 , ρ̃) via ρ̃(V ) := ρ(β−1(V ))
with ρ being the rank function of M|X . This makes sense because the inverse of
an L-isomorphism is again an L-map. Thanks to Remark 6.2.3 the flats of M̃ are
given by F̃ := {β(F ) | F ∈ F(M|X)}. This turns β into an isomorphism in q-
Mat∆ from M|X to M̃, and the maps ιi = β ◦ ξ̂i : Mi −→ M̃ are type-∆. Thus
(M̃, β ◦ ξ̂1, β ◦ ξ̂2) = (M̃, ι1, ι2) is a coproduct, as desired.

Now we are ready to show the non-existence of a coproduct in the following linear
cases.

Theorem 6.2.9. Let q ≥ 2 and ∆ ∈ {l-s, l-rp}. There exist representable q-matroids
that do not have a coproduct in q-Mat∆.

Proof. Let F = Fq and M1 = U1(F2) = M2, that is M1 and M2 are the uniform
q-matroids on F2 with rank 1. Their collections of flats are

F(M1) = F(M2) = {{0},F2}. (6.8)

Assume by contradiction that M1 andM2 have a coproduct. From Theorem 6.2.8 we
know that it is without loss of generality of the form (M, ι1, ι2), where M has ground
space F4 and ιi are as in (6.3). We will show that such M does not exist. To do so, we
construct various q-matroids N (j) along with type-∆ maps τi : Mi −→ N (j), i = 1, 2.
Consider the construction in Proposition 6.2.5 for m = 4. Let ω ∈ Fq4 be a primitive
element and let Ω and G(j), j ∈ Ω, be as in that proposition. For every j ∈ Ω let
N (j) = (F4, ρ(j)) be the associated q-matroid, thus ρ(j)(rowsp(Y )) = rk(G(j)Y T) for
Y ∈ Fy×4. Note that the uniform q-matroids M1 = M2 are represented by every
matrix (1 ωj) ∈ F1×2

q4 , j ∈ Ω. Therefore Proposition 6.2.4 tells us that for every j ∈ Ω

the maps ιi : Mi −→ N (j), i = 1, 2, are type-∆ for either ∆ under consideration.
Since (M, ι1, ι2) is a coproduct in q-Mat∆, this implies

for all j ∈ Ω there exists a type-∆ map ϵj : M −→ N (j) such that ϵj ◦ ιi = ιi for i = 1, 2.
(6.9)

Hence ϵj(v1, 0) = (v1, 0) and ϵj(0, v2) = (0, v2) for all v1, v2 ∈ F2. Then linearity of ϵj
implies ϵj = idF4 for all j ∈ Ω and we arrive at the commutative diagrams

M1

M

M2

N (j)
��

ι1

��

ι1

OO

ι2

??

ι2

//id (6.10)

where id : M −→ N (j) is type-∆.
a) For ∆ = l-rp this implies that M is isomorphic to each N (j), which contradicts
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Proposition 6.2.5(d). Hence M1 and M2 do not have a coproduct in q-Matl-rp.
b) Let ∆ = l-s. Since id : M −→ N (j) is a q-strong map for all j ∈ Ω, we conclude
that the elements of

F ′ :=
⋃
j∈Ω

F(N (j)).

have to be flats of M. From Lemma 6.2.6 we know that

F ′ = {0,F4, T1, T2} ∪ {V ∈ L(F4) | dimV ≤ 2, V ∩ T1 = 0 = V ∩ T2}, (6.11)

where T1 = ⟨1000, 0100⟩ and T2 = ⟨0010, 0001⟩. Let F := F(M). Then F satisfies
(F1)–(F3) from Theorem 2.2.4. This implies in particular that (F3) has to be true
for the flats in F ′. To investigate this further we define for V ∈ F ′

CovF ′(V ) = {F ∈ F ′ | V < F and there is no Z ∈ F ′ such that V < Z < F}.

We call the elements of CovF ′(V ) covers of V in F ′. Of course, the covers of V in F ′

need not be covers of V in the lattice F . Using (6.11) we can determine the covers
in F ′ explicitly. For ease of notation set

F ′
1 = {V ∈ F ′ | dimV = 1} = {V ∈ L(F4) | dimV = 1, V ̸⊆ T1 ∪ T2},

F ′
2 = {V ∈ F ′ | dimV = 2, T1 ̸= V ̸= T2} = {V ∈ L(F4) | dimV = 2, V ∩ T1 = 0 = V ∩ T2}.

Note that

F ′
2 =

{
rowsp

(
1 0 a b
0 1 c d

) ∣∣∣∣∣ a, b, c, d ∈ F, det
(
a b
c d

)
̸= 0

}
.

Then

CovF ′(V ) =


{T1, T2} ∪ F ′

1 if V = 0,

{W ∈ F ′
2 | V ≤ W} if V ∈ F ′

1,

{F4} if V ∈ F ′
2 ∪ {T1, T2}.

(6.12)

Note that for V ∈ F ′
1 the set {W ∈ F ′

2 | V ≤ W} is indeed nonempty. Choose
now V = ⟨(1, 1, 1, 0)⟩ ∈ F ′

1, and v = (1, 0, 0, 0). By property (F3) the space
V + ⟨v⟩ has to be in a unique cover, say F̂ , of V in F . Since v ∈ T1, it is
clear that F̂ ̸∈ CovF ′(V ). Note that ι−1

1 (F̂ ) contains ι−1
1 (v) = (1, 0), and there-

fore ι−1
1 (F̂ ) = F2 thanks to (6.8) since ι1 is a q-strong map. Hence F̂ contains the

subspace ⟨(1, 1, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0)⟩ = ⟨(0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0)⟩. Us-
ing now ι2 we conclude that F̂ = F4. But now the gradedness of the lattice F (see
Theorem 2.2.4 together with F ′ ⊆ F and (6.12) shows that F4 is not a cover of V
in F . Hence we arrive at a contradiction and thus there is no coproduct of M1 and
M2 in q-Matl-s

With ∆ = l-w being discussed in the next section, it remains to consider the
nonlinear cases.

Theorem 6.2.10. Let q ≥ 2 and ∆ ∈ {w, s, rp}. There exist representable q-matroids
that do not have a coproduct in q-Mat∆.
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Proof. Let F = Fq. As in the proof of Theorem 6.2.9 let M1 = M2 = U1(F2).
Consider the uniform q-matroid N = U3(F3). Denote the rank functions of these
q-matroids by ρM1 , ρM2 , and ρN . For any nonzero vector v ∈ F2 let λv ∈ F∗ be its
leftmost nonzero entry. For i = 1, 2 define αi : F2 −→ F3 via αi(0) = 0 and

α1(v) = λve1 and α2(v) = λve2 for all v ∈ F2 \ 0,

where e1, e2 are the first two standard basis vectors in F3. Then α1, α2 are L-maps. In
fact αi(V ) = ⟨ei⟩ if V ̸= 0 and αi(0) = 0. We claim that αi : Mi −→ N is type-∆ for
each ∆ ∈ {w, s, rp}. Indeed, every nonzero subspace V ∈ L(F2) satisfies ρMi

(V ) =
1 = ρN (αi(V )) and hence αi is rank-preserving (and thus weak). Furthermore, note
that every subspace V ≤ F3 is a flat of N and satisfies α−1

i (V ) ∈ {0, F2} = F(Mi)
(with α−1

i (V ) = 0 iff ei ̸∈ V ). Thus αi is strong.
Now we are ready to show that M1 and M2 do not have a coproduct in q-Mat∆.
Recall from Theorem 6.2.8 that if they do have a coproduct then they have one of
the form (M, ι1, ι2) with ground space F4 and ιi as in (6.3). We will establish the
non-existence of such a coproduct by showing that there is no L-map ϵ : F4 −→ F3

such that ϵ ◦ ιi = αi for i = 1, 2.
Assume that there does exist an L-map ϵ : F4 −→ F3 such that ϵ◦ ιi = αi for i = 1, 2.
Consider the subspaces V = ⟨(1, 0, 0, 0), (0, 0, 1, 0)⟩ and W = ⟨(1, 0, 0, 0), (0, 0, 0, 1)⟩
of F4. Then ϵ(V ) and ϵ(W ) are subspaces of F3 of cardinality at most q2 and contain
⟨e1, e2⟩. Hence ϵ(W ) = ϵ(V ) = ⟨e1, e2⟩, and ϵ|V and ϵ|W are injective. Since e1 + e2 ∈
ϵ(V ) = ϵ(W ), there exist vectors v ∈ V and w ∈ W such that ϵ(v) = ϵ(w) = e1 + e2.
These vectors must be of the form v = λ(1, 0, µ, 0) and w = λ′(1, 0, 0, µ′) for some
λ, λ′, µ, µ′ ∈ F∗. Set U = ⟨(1, 0, µ, 0), (1, 0, 0, µ′)⟩. Then ϵ(0, 0, µ,−µ′) = α2(µ,−µ′) =
µe2 ∈ ϵ(U), and since ϵ(U) is a subspace of cardinality at most q2 which also contains
e1 + e2, we conclude that ϵ(U) = ⟨e1, e2⟩. Thus ϵ|U is injective. But this contradicts
ϵ(v) = ϵ(w) = e1 + e2. All of this shows that there is no L-map ϵ with the desired
properties and thus M1 and M2 do not have a coproduct in q-Mat∆.

6.3 A Coproduct in q-Matl-w.

In this section we establish the existence of a coproduct in the category q-Matl-w. In
fact, we will show that the direct sum is such a coproduct.

We first show that the q-matroids M1 and M2 are naturally embedded in the
direct via rank-preserving isomorphisms.

Theorem 6.3.1 ([13, Sec. 7]). Let the data be as in Theorem 5.1.2 and in particular
E = E1 ⊕ E2. Let ιi be as in (6.2). Let V ∈ L(Ei). Then

ρ′i(ιi(V )) = ρi(V ) = ρ(ιi(V )) and ρ′j(ιi(V )) = 0 for j ̸= i.

As a consequence, ιi induces linear rank-preserving isomorphisms between Mi and
M|ιi(Ei) and (M′

i)|ιi(Ei).

Proof. ρ′i(ιi(V )) = ρi(V ) follows from πi(ιi(V )) = V and ρ′j(ιi(V )) = 0 is clear
because πj(ιi(V )) = 0. We show next the identity ρ′i(ιi(V )) = ρ(ιi(V )) for i = 1.
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Choose X ≤ ι1(V ) and write ι1(V ) = X ⊕ Y . Using that ρ′1 is a rank function, we
obtain ρ′1(ι1(V )) ≤ ρ′1(X) + ρ′1(Y ) ≤ ρ′1(X) + dimY = ρ′1(X) + dim ι1(V )− dimX =
ρ′1(X) + ρ′2(X) + dim ι1(V ) − dimX, where the last step follows from the fact that
X ∈ ι1(E1), hence ρ

′
2(X) = 0. All of this shows that the minimum in (5.2) is attained

by ρ′1(ι1(V )), and therefore ρ′1(ι1(V )) = ρ(ι1(V )). The consequence is clear.

Thanks to the above we may and will from now on identify subspaces V in Ei

with their image ιi(V ).
We now turn to our main result stating that M1⊕M2 is a coproduct in q-Matl-w.

We need the following lemma.

Lemma 6.3.2. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and ϕ : M1 −→ M2 be
a linear map. Suppose ϕ is not a q-weak map. Then there exists a circuit C of M1

such that

ρ2(ϕ(C)) > ρ1(C), dimC = dimϕ(C), ϕ(C) is an independent space in M2.
(6.13)

Proof. Since ϕ is not weak there exists an inclusion-minimal subspace V ∈ L(E1)
such that ρ2(ϕ(V )) > ρ1(V ). Clearly V ̸= 0. We will show that V is the desired
circuit and proceed in several steps.
1) We first establish the following identities

ρ1(W ) = ρ1(V ) = ρ2(ϕ(W )) = ρ2(ϕ(V ))−1 for all W ≤ V with dimW = dimV − 1.
(6.14)

Let W ≤ V with dimW = dimV − 1. Write V = W ⊕X, thus X is a 1-space. Then
ϕ(V ) = ϕ(W ) + ϕ(X) and therefore dimϕ(V ) ≤ dimϕ(W ) + 1. Furthermore, by
minimality of V we have ρ2(ϕ(W )) ≤ ρ1(W ). Using the properties of rank functions,
we obtain

ρ2(ϕ(W )) ≤ ρ1(W ) ≤ ρ1(V ) < ρ2(ϕ(V )), (6.15)

and thus ϕ(W ) ⪇ ϕ(V ), which means dimϕ(V ) = dimϕ(W ) + 1, and in fact
ϕ(V ) = ϕ(W )⊕ ϕ(X). This implies ρ2(ϕ(V )) ≤ ρ2(ϕ(W )) + 1. Together with (6.15)
this yields ρ2(ϕ(V )) = ρ2(ϕ(W )) + 1 as well as ρ2(ϕ(W )) = ρ1(W ) = ρ1(V ). This
establishes (6.14).
2) We show that ϕ|V is injective. Assume to the contrary that there exists v ∈ V \ 0
such that ϕ(v) = 0. Then V = W ⊕ ⟨v⟩ for some subspace W of V and thus ϕ(V ) =
ϕ(W ). But this contradicts (6.14). Hence ϕ|V is injective and dimV = dimϕ(V ).
3) We show that ϕ(V ) is independent inM2. Assume to the contrary that ρ2(ϕ(V )) <
dimϕ(V ). Then there exists an independent subspace I ⪇ ϕ(V ) such that ρ2(ϕ(V )) =
ρ2(I) = dim I. Since ϕ|V is injective, there exists a subspace J ⪇ V such that ϕ(J) =
I and dim J = dim I. Now we have dim J = dim I = ρ2(I) ≤ ρ1(J) ≤ dim J , where
the first inequality follows from the minimality of V subject to ρ2(ϕ(V )) > ρ1(V ).
Thus we have equality throughout, which shows that J is independent in M1. Fur-
thermore, since J ⪇ V there exists a subspace W ⪇ V with dimW = dimV − 1 such
that J ≤ W ⪇ V . Applying ϕ we arrive at ρ2(I) ≤ ρ2(ϕ(W )) ≤ ρ2(ϕ(V )) = ρ2(I),
and we have equality throughout. But this contradicts (6.14) and therefore ϕ(V ) is
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independent in M2.
4) It remains to show that V is a circuit. (6.14) together with 2) and 3) implies that for
every hyperplane W of V we have ρ1(W ) = ρ1(V ) = ρ2(ϕ(V ))− 1 = dimϕ(V )− 1 =
dimV − 1 = dimW . This shows that V is dependent and W is independent in M1.
Since W was an arbitrary hyperplane of V , we conclude that V is a circuit.

Theorem 6.3.3. Let Mi = (Ei, ρi), i = 1, 2, be q-matroids and M = M1 ⊕M2 =
(E, ρ) be the direct sum as defined in Theorem 5.1.2. Let ιi be as in (6.2). Then
(M, ι1, ι2) is a coproduct of M1 and M2 in the category q-Matl-w.

Proof. First of all, thanks to Theorem 6.3.1 the maps ιi : Mi −→ M are rank-
preserving, thus weak. Let N = (Ẽ, ρ̃) be a q-matroid and αi : Mi −→ N be linear
q-weak maps. We have to show the existence of a unique linear q-weak map ϵ : M −→
N such that ϵ◦ ιi = αi for i = 1, 2. Since M has ground space E1⊕E2 it is clear that
the only linear map satisfying ϵ ◦ ιi = αi is given by ϵ(v1 + v2) = α1(v1) + α2(v2) for
all vi ∈ Ei; recall that we identify Ei with ιi(Ei). Thus it remains to show that this
map ϵ is weak. We will use Lemma 6.3.2. Choose any circuit C in M. Denote by ρ′i
and πi the maps as in Theorem 5.1.2 and set Xi = πi(C). Then C ≤ X1 ⊕X2 and,
since Xi ≤ Ei, we obtain ϵ(C) ≤ ϵ(X1 ⊕ X2) = ϵ(X1) + ϵ(X2) = α1(X1) + α2(X2).
Applying the rank function ρ̃ and using the weakness of the maps αi, we compute

ρ̃(ϵ(C)) ≤ ρ̃(α1(X1) + α2(X2)) ≤ ρ̃(α1(X1)) + ρ̃(α2(X2))

≤ ρ1(X1) + ρ2(X2) = ρ′1(C) + ρ′2(C) ≤ dimC − 1,

where the last step follows from Corollary 5.1.4 because C is a circuit. This shows
that ϵ(C) is not an independent space of N with the same dimension as C. Thus, no
circuit in M satisfies (6.13), and this shows that ϵ is weak.

Example 6.3.4. Let F = Fq and consider the q-matroids M1 = M2 = U1(F2), i.e.,
ρ1(V ) = ρ2(V ) = min{1, dimV } for all V ∈ L(F2). The direct sum M1 ⊕ M2 has
been determined in [13, Ex. 48] using the definition of its rank function in (5.2). In
this example we will derive the same result by making use of the fact that M1⊕M2 is a
coproduct in q-Matl-w. Let ω be a primitive element of Fq4. Then G = (1 ω2) ∈ F1×2

q4

represents M1 = M2. Consider G
(2) as in Proposition 6.2.5 and let N (2) = (F4, ρ(2))

be the q-matroid generated by G(2). Thanks to Proposition 6.2.5 we have

ρ(2)(V ) = min{2, dimV } for V ∈ L(F4) \ {T1, T2} and ρ(2)(T1) = ρ(2)(T2) = 1,

where T1, T2 are as in Proposition 6.2.5. Furthermore, Proposition 6.2.4 provides us
with the linear rank-preserving, hence weak, maps ιi : Mi −→ N (2) for i = 1, 2. As a
consequence, the map ϵ : M1 ⊕M2 −→ N (2) from the previous proof is the identity
map on F4. It thus induces a q-weak map from M1 ⊕ M2 to N (2), and this means
that the rank function ρ of M1 ⊕M2 satisfies

ρ(V ) ≥ min{2, dimV } for V ∈ L(F4) \ {T1, T2} and ρ(T1) ≥ 1, ρ(T2) ≥ 1.

Using that ιi are also rank-preserving maps from Mi to M1⊕M2, see Theorem 6.3.1,
we obtain that ρ(T1) = ρ(T1) = 1 and ρ(F4) = ρ(ι1(F2) ⊕ ι2(F2)) ≤ ρ(ι1(F2)) +
ρ(ι2(F2)) = ρ1(F2)+ρ2(F2) = 2. This implies that ρ = ρ(2) and thus N (2) = M1⊕M2.
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We close this section with the following characterization of the direct sum.

Remark 6.3.5. The fact that M1⊕M2 is a coproduct in q-Matl-w can be translated
into the following characterization of the direct sum. For any finite-dimensional F-
vector space E define the set SE = {ρ | ρ is a rank function on E} and the partial
order ρ ≤ ρ′ :⇐⇒ ρ(V ) ≤ ρ′(V ) for all V ∈ L(E). Let now Mi = (Ei, ρi), i = 1, 2,
be q-matroids and set E = E1 ⊕ E2. Then the set Ŝ = {ρ ∈ SE | ρ|Ei

≤ ρi} has a
unique maximum, say ρ̂, and M1 ⊕M2 = (E, ρ̂).

6.4 q-Matroids with L-Classes.

In this short section we discuss a different approach to maps between q-matroids.
Since the q-matroid structure is based on subspaces and different L-maps may induce
the same map on subspaces (i.e., are L-equivalent), one may define maps between
q-matroids as maps between subspace lattices induced by L-maps. Precisely, for an
L-map ϕ : E1 −→ E2 define the L-class as [ϕ] = {ψ : E1 −→ E2 | ψ ∼L ϕ}. Then

[ϕ] : L(E1) −→ L(E2), V 7−→ ϕ(V ), (6.16)

is well-defined (and equals ϕL). Since the type of a map (see Definition 6.1.10) is
invariant under L-equivalence, this gives rise to strong, weak, and rank-preserving
L-classes between q-matroids. Furthermore, we call an L-class linear, if it contains a
linear L-map (not all maps in a linear L-class are linear since by Proposition 6.1.9 we
may tweak a linear map into an L-equivalent nonlinear L-map). Setting [ϕ1] ◦ [ϕ2] :=
[ϕ1 ◦ ϕ2], which is indeed well-defined, we obtain categories

q-Mat[∆] for ∆ ∈ {s, rp, w, l-s, l-rp, l-w},

in which the morphisms are L-classes of the specified type. Being isomorphic or
linearly isomorphic in the sense of Definition 6.2.2 does not change when moving to
L-classes.

It turns out that L-classes are not better behaved than L-maps. The following
result suggests that in fact L-maps, rather than L-classes, are the appropriate notion
of maps between q-matroids.

Theorem 6.4.1. None of the categories q-Mat[∆], ∆ ∈ {s, rp, w, l-s, l-rp, l-w}, has
coproduct except for the case (q, [∆]) = (2, [l-w]).

The proof is for the most part straightforward, but tedious. We provide a sketch.
Sketch of Proof. In essence one follows the proofs of Sections 6.2 and 6.3 and re-

places L-maps by their L-classes. Consequently, equality of maps (which is pointwise)
needs to be replaced by equality of L-classes on all 1-spaces (see Proposition 6.1.9(a)).
With this in mind, one verifies the following.

1) The proof of Theorem 6.2.8 reducing coproducts to the form (M, [ι1], [ι2]) carries
through without additional changes.

2) ∆ ∈ {s, rp, w}. The proof of Theorem 6.2.10 also generalizes without additional
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changes.

3) ∆ ∈ {l-s, l-rp}. The proof of Theorem 6.2.9 needs a bit more care. With the
strategy described above we arrive at statement (6.9), which now reads as

for all j ∈ Ω there exists a type-[∆] map [ϵj] such that [ϵj ◦ ιi] = [ιi] for i = 1, 2.

Thus [ϵj](⟨(v1, 0)⟩) = ⟨(v1, 0)⟩ and [ϵj](⟨(0, v2)⟩) = ⟨(0, v2)⟩ for all v1, v2 ∈ F2 and all
j ∈ Ω. Since the L-class [ϵj] is linear, Proposition 6.1.8(e) implies that, without loss
of generality, there exist aj ∈ F∗ such that

ϵj(x1, x2, x3, x4) = (x1, x2, x3, x4) diag(1, 1, aj, aj) for all (x1, x2, x3, x4) ∈ F4,

where diag(1, 1, aj, aj) is the 4 × 4-diagonal matrix with the specified diagonal en-
tries. In particular, ϵj need not be the identity and in Diagram (6.10) we have
potentially different maps [ϵj] : M −→ N (j) for each j ∈ Ω. Note that each ϵj is an
L-isomorphism. Now we consider the two types of Theorem 6.2.9.
a) Let ∆ = l-rp. Then M is linearly isomorphic to each N (j), contradicting Proposi-
tion 6.2.5(d).
b) Let ∆ = l-s. Consider the q-matroids N (j) = (F4, ρ(j)). We claim that ρ(j)(V ) =
ρ(j)([ϵj](V )). Indeed, let V = rowsp(Y ) for some Y ∈ Fy×4. Then ϵ(j)(V ) =
rowsp(Y diag(1, 1, aj, aj)). The definition of G(j) implies that G(j) diag(1, 1, aj, aj) =
diag(1, aj)G

(j), and thus

ρ(j)(ϵj(V )) = rk
(
G(j) diag(1, 1, aj, aj)Y

T
)

= rk
(
diag(1, aj)G

(j)Y T
)

= rk
(
G(j)Y T

)
= ρ(j)(V ).

With the aid of (6.4) we conclude that [ϵj](F(N (j))) = F(N (j)) for all j ∈ Ω. Now
we are ready to return to the proof of Theorem 6.2.9 and specifically to the set F ′ =⋃

j∈Ω F(N (j)). We claim that F ′ ⊆ F(M). Indeed, let F ∈ F ′. Then F ∈ F(N (j))

for some j ∈ Ω and thus [ϵj](F ) ∈ F(N (j)). Since [ϵj] is strong, we conclude that
F = [ϵ−1

j ]([ϵj](F )) is a flat in M. Now the rest of the proof of Theorem 6.2.9, starting
at (6.11), generalizes to L-classes as described above, and leads to a contradiction.

4) (q,∆) = (2, l-w). Note that for q = 2 linear maps are L-equivalent if and only if
they are equal (see Proposition 6.1.8(e)). Therefore the result from Theorem 6.3.3
remains valid for q-Mat[l-w] if q = 2.

5) q > 2 and ∆ = l-w. Following the proof of Theorem 6.3.3, we see that the existence
of a coproduct implies the existence of a unique L-class [ϵ] satisfying [ϵ]◦ [ιi] = [αi] for
i = 1, 2. However, choosing the linear q-weak map ϵ as in that proof, we can now take
any linear map ϵ′ such that ϵ′|E1 = λ1ϵ|E1 and ϵ′|E2 = λ2ϵ|E2 for some λ1, λ2 ∈ F∗ and
obtain a linear q-weak map satisfying [ϵ′] ◦ [ιi] = [αi] for i = 1, 2. Choosing λ1 ̸= λ2
we obtain [ϵ′] ̸= [ϵ], which proves that the uniqueness of the map [ϵ] fails. Therefore
M1⊕M2 is not a coproduct of M1 and M2 in q-Mat[l-w]. A similar reasoning shows
that the two q-matroids do not have any coproduct in q-Mat[l-w]. □
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6.5 A functor from category of q-matroids to category of matroids.

Maps between matroids have been found useful to study matroids from a category
theory approach. The reader may refer to [32, 47] for more details. In this section we
focus on the relation between maps of q-matroids and maps of matroids, and show that
the projectivization map is a functor from categories of q-matroids to categories of
matroids. This, in turn, provides a new approach to study maps between q-matroids.

Similarly to q-matroids, one can define the notion of weak and strong maps be-
tween matroids. Before introducing these maps matroids, we must define the matroid
operation of a single element extension by adjoining a loop, which we refer to as loop
extension. The reader may refer to [39, Sect. 7.2] and [47, Chap. 8] for proofs and a
more detailed discussion of the single element extension.

Proposition 6.5.1. Let M = (S, r) be a matroid and {oM} denotes a symbol disjoint
from S. Let So := S ∪{oM} and ro : 2

So → N0 be such that ro(A) = r(A−{oM}), for
all A ⊆ So. ThenMo := (So, ro) is a matroid, and {oM} is a loop inMo. Furthermore
Mo is called a loop extension of M .

The subscript of the added loop may be omitted if it is clear from context in which
matroid the loop is contained. The next proposition relates the flats FMo and FM .
Furthermore, we recall that two lattices are isomorphic (denoted by ∼=) if there exists
an order preserving bijection between the lattices that preserves meets and joins.

Proposition 6.5.2. Let M be a matroid, Mo a loop extension of M , and FM , FMo

their respective collection of flats. Then

FMo = {F ∪ {o} : F ∈ FM}.

and FM
∼= FMo as lattices.

Remark 6.5.3. Note that Mo \ {o} = M . This deletion can be seen as identifying
the element {o} with the empty set of M , and does not change the overall structure
of the matroid.

As the next definition will show a map between matroids is a map defined on the
groundset of the loop extension matroids. By remark 6.5.3, the added loop can be
seen as an element representing the empty set of the matroid. Hence, mapping an
element to the added loop of the codomain can be seen as mapping an element to the
empty set.

Definition 6.5.4. Let M = (S, rM) and N = (T, rN) be matroids and Mo, No be
their respective loop extension matroids. A map σ : M → N is a map between the
groundsets of the loop extension matroids, i.e. σ : So → To, such that σ(oM) = oN .
Furthermore σ is said to be:

• weak if rNo(σ(A)) ≤ rMo(A) for all A ⊆ So.

• strong if σ−1(F ) ∈ FMo for all F ∈ FNo.
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It is well known (see [47, Chap. 8, Lem. 8.1.7]) that strong maps are weak maps.
Furthermore a map σ : M → N induces a map σ# : FMo → FNo , where σ

#(F ) =
clNo(σ(F )) for all F ∈ FMo . Using Proposition 6.5.2, one can alternatively define
σ# : FM → FN . As the following theorem shows, the induced map σ# provides an
alternative definition for strong maps.

Theorem 6.5.5. ([47, Prop 8.1.3])
A map σ :M → N is a strong map if and only if the following hold:

(1) for all F1, F2 ∈ FM ,

σ#(F1 ∨ F2) = σ#(F1) ∨ σ#(F2)

(2) σ# sends atoms of FM to atoms or to the zero of FN .

The main result of this section is the analogue of Theorem 6.5.5 for q-matroids. We
turn to the definitions of maps between q-matroids, as introduced in [26]. Similarly
to matroids, maps between q-matroids are maps between groundspaces that send
subspaces to subspaces.

To study the relation between maps of matroids and maps of q-matroids we need
the following notation. Given a vector space E, define the extended projective space
of E as PoE = PE ∪ {o}, where {o} is an arbitrary element disjoint from PE. Let
Po : E → PoE, where Po(0) = o and Po(v) = P̂ (v) for v ̸= 0 and P̂ : E−{0} → PE is
as introduced in the previous section. We call Po the extended projectivization map.
Note, unlike the projectivization map, we do not consider Po as lattice map but as a
map between a vector space to its extended projective space. Given a q-matroid M =
(E, ρ) and the loop extension of its projectivization matroid P (M)o = (PoE, ro), the
map Po can be viewed as a map between the groundspace E to the groundset PoE
such that ρ(V ) = ro(Po(V )) for all V ≤ E. Furthermore for any A ⊆ PoE let
⟨A⟩ := ⟨P−1

o (A)⟩Fq . It can easily be shown that ro(A) = ρ(⟨A⟩).
Recall from Definition 6.1.1 that an L-map σ : E1 → E2 induces a map on the

lattices of subspaces σL : L(E1) → L(E2). By restricting σL to the 1-dimensional
spaces and the 0 of E1, σL can be viewed as map between the extended projective
spaces PoE1 and PoE2, i.e σL : PoE1 → PoE2. As the next proposition shows, σ and
σL commute with the extended projectivization map.

Proposition 6.5.6. Let σ : E1 → E2 be an L-map, σL : PoE1 → PoE2 its in-
duced map on the extended projective spaces, and Po : Ei → PoEi be the extended
projectivization map. Then

Po ◦ σ = σL ◦ Po.

Proof. Let v ∈ E1. Since σ is an L-map then ⟨σ(v)⟩ = σ(⟨v⟩) = σL(⟨v⟩). But note
⟨σ(v)⟩ = Po(σ(v)) and ⟨v⟩ = Po(v). Hence the wanted equality follows.

We now consider the case when an L-map σ is a map between q-matroids. The
induced map σL between the extended projective spaces turns out to be a map be-
tween projectivization matroids. Furthermore σ being q-weak or q-strong is fully
determined by whether σL is weak or strong, and vice versa.
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Theorem 6.5.7. Let M = (E1, ρM), N = (E2, ρN ) be q-matroids and P (M) =
(PE1, rP (M)), P (N ) = (PE2, rP (N )) be their projectivization matroids. Let σ : M →
N be an L-map. Then σL : P (M) → P (N ) is a map between the projectivization
matroids and the following holds:

• σ is q-weak if and only if σL is weak

• σ is q-strong if and only if σL is strong.

Proof. To start note that σL is a map between the groundsets of the loop extension
matroid P (M)o and P (N )o with σL(oP (M)) = oP (N ). Thus σL : P (M) → P (N ) is
well defined.

We first prove σ is q-weak if and only if σL is weak. Assume σ is weak. Let
A ⊆ PoE1 and V := ⟨A⟩. Both Po and σ are inclusion preserving, hence, (Po ◦
σ)(P−1

o (A)) ⊆ (Po ◦ σ)(V ). Using Proposition 6.5.6 on the first term of the previous
inclusion gives us (σL ◦ Po)(P

−1
o (A)) = σL(A) ⊆ (Po ◦ σ)(V ). Furthermore, by the

monotonicity property of the rank functions and because σ is weak, we get

rP (N )o(σL(A)) ≤ rP (N )o((Po ◦ σ)(V ))) = ρN (σ(V )) ≤ ρM(V ) = rP (M)o(A).

Because A ⊆ PoE1 was arbitrarily chosen, then σL is weak.
Now assume σL is weak. Let V ≤ E1 and recall ρM(V ) = rP (M)o(Po(V )). Since

σL is weak rP (N )o((σL ◦ Po)(V )) ≤ rP (M)o(Po(V )). Hence by Proposition 6.5.6,
rP (N )o((Po ◦ σ)(V )) ≤ rP (M)o(Po(V )). This implies ρN (σ(V )) ≤ ρM(V ) and shows σ
is q-weak.

We now show that σ is q-strong if and only if σL is strong. From Proposition 6.5.2
and Lemma 4.2.2, F ∈ FM ⇔ P (F ) ∈ FP (M) ⇔ P (F ) ∪ {o} ∈ FP (M)o . A similar
chain of equivalence holds for FN and FP (N )o . Furthermore all flats of P (N )o are
of the form Po(F ) = P (F ) ∪ {o} for some flat in N . Therefore σL is strong iff
σ−1
L (Po(F )) ∈ FP (M)o for all Po(F ) ∈ FPo(N ) iff (σL ◦ Po)

−1(Po(F )) ∈ FM for all
Po(F ) ∈ FPo(N ) iff (Po ◦ σ)−1(Po(F )) = σ−1(F ) ∈ FM for all F ∈ FN iff σ is q-
strong.

From the above theorem it can easily be seen that the projectivization map is
a functor from the category of q-matroids with q-weak (resp. q-strong) map to the
category of matroids with weak (resp. strong) maps.

Corollary 6.5.8. Let M = (E1, ρM), N = (E2, ρN ) be q-matroids and σ : M → N
be a q-strong map. Then σ is a q-weak map.

Proof. If σ : M → N is a q-strong then σL : P (M) → P (N ) is a strong map by
Theorem 6.5.7. Furthermore by [47, Chap. 8, Lem. 8.1.7], this implies σL is a weak
map and hence σ is a q-weak map, once again by Theorem 6.5.7.

Furthermore, Theorem 6.5.7 can also be used to prove an analogue of Theo-
rem 6.5.5. To do so, we first define the analogue of the map σ#.

129



Definition 6.5.9. Let M and N be q-matroids with respective groundspaces E1, E2

and σ : M → N be an L-map. Define σ# : FM → FN such that

σ#(F ) = clN (σ(F )).

The next useful Lemma shows that the induced maps σ# and σ#
L commute with

the extended projectivization map.

Lemma 6.5.10. Let M,N be q-matroids, FM,FN their lattices of flats and P (M),
P (N ) their projectivization matroids. Furthermore let σ : M → N be an L-map,
σL : P (M) → P (N ) its induced map and Po : Ei → PoEi the extended projectivization
map. Then

Po ◦ σ# = σ#
L ◦ Po

Proof. First recall, F ∈ FM ⇔ Po(F ) ∈ FP (M)o . Let F ∈ FM , then σ(F ) ⊆ σ#(F )
and since Po is inclusion preserving (Po ◦σ)(F ) ⊆ (Po ◦σ#)(F ). By Proposition 6.5.6,
the above containment implies (σL ◦ Po)(F ) ⊆ (Po ◦ σ#)(F ). Applying the closure
operator of P (N )o, we get

(σ#
L ◦ Po)(F ) = clP (N )o((σL ◦ Po)(F )) ⊆ clP (N )o((Po ◦ σ#)(F )) = (Po ◦ σ#)(F ),

where the final equality holds because σ#(F ) ∈ FN and therefore (Po ◦ σ#)(F ) ∈
FP (N )o . Assume, for sake of contradiction, that (σ#

L ◦ Po)(F ) ⊊ (Po ◦ σ#)(F ). Let

F ′ := (σ#
L ◦ Po)(F ). Then

(σL ◦ Po)(F ) ⊆ F ′ ⊊ (Po ◦ σ#)(F ).

By considering their preimage under Po and because σL ◦ Po = Po ◦ σ, we get

σ(F ) ⊆ P−1
o (F ′) ⊊ σ#(F ).

However since F ′ ∈ FP (N )o then P−1
o (F ′) ∈ FN . Therefore P−1

o (F ′) must contain
clN (σ(F )) = σ#(F ), a contradiction. Hence

(σ#
L ◦ Po)(F ) = (Po ◦ σ#)(F ).

In the statement of the previous Lemma, one can replace the extended projec-
tivization map Po by the projectivization map P introduced in the previous section.
In fact, as previously remarked, the map σ#

L can be considered as map between the
lattices of flats FP (M) to FP (N ). Furthermore the projectivization map can also be
restricted to a map between the lattice of flats of a q-matroid and its projectivization
matroid. In the following Lemma, P refers to the projectivization map restricted to
the lattice of flats FM and FN .

Lemma 6.5.11. Let the data be as in Lemma 6.5.10, and let P be the projectivization
map on the lattices of flats FM and FN . Then

P ◦ σ# = σ#
L ◦ P.
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Proof. Recall FP (M) = {F ′ − {o} : F ′ ∈ P (M)o} = {Po(F ) − {o} : F ∈ FM} =
{P (F ) : F ∈ FM} and that the same holds for P (N ). From the above chain of
equality and Lemma 6.5.10, equality follows straightforwardly.

We conclude the chapter by showing the analogue of Theorem 6.5.5 for q-strong
maps.

Theorem 6.5.12. Let M, N be q-matroids. An L-map σ : M → N is a q-strong
map if and only if the following holds:

(1) for all F1, F2 ∈ FM,

σ#(F1 ∨ F2) = σ#(F1) ∨ σ#(F2)

(2) σ# sends of FM atoms to atoms or to the zero of FN .

Proof. (⇒) Let σ : M → N be a q-strong map, which implies by Theorem 6.5.7
that σL : P (M) → P (N ) is a strong map. By Lemma 4.2.2 (1), F ∈ FM ⇔
P (F ) ∈ FP (M). Furthermore, from Theorem 6.5.5 we obtain σ#

L (P (F1) ∨ P (F2)) =

σ#
L (P (F1))∨σ#

L (P (F2)) for all F1, F2 ∈ FP (M). By Lemma 4.2.2 (2), P (F1)∨P (F2) =

P (F1∨F2), hence σ
#
L (P (F1∨F2)) = σ#

L (P (F1))∨σ#
L (P (F2)). Applying Lemma 6.5.11

on the above equalities gives us

(P ◦ σ#)(F1 ∨ F2) = (P ◦ σ#)(F1) ∨ (P ◦ σ#)(F2)

= P (σ#(F1) ∨ σ#(F2)).

Finally since P is an isomorphism on the lattice of flat, the above equality implies

σ#(F1 ∨ F2) = σ#(F1) ∨ σ#(F2),

which shows σ satisfies property (1) for all F1, F2 ∈ FM.
To show σ satisfies property (2), let F ∈ FM be an atom. Since P is a lattice

isomorphism then P (F ) is an atom of FP (M). Moreover σL is a strong map, hence

by Theorem 6.5.5, (σ#
L ◦ P )(F ) must be an atom or the zero of FP (N ). But by

Lemma 6.5.11, (σ#
L ◦P )(F ) = (P ◦σ#)(F ), which implies σ#(F ) must be an atom or

the zero of FN because, once again, P is a lattice isomorphism. This concludes that
σ# satisfies the wanting properties.

(⇐) Let σ# satisfy properties (1) and (2). We show that σ is a q-strong map by
showing that σL is a strong map. To do so we show that σ#

L satisfies Theorem 6.5.5.
Let P (F1), P (F2) ∈ FP (M). By Lemma 4.2.2 (2) σ#

L (P (F1)∨P (F2)) = σ#
L (P (F1∨

F2)). Using Lemma 6.5.11 and the fact that σ# satisfies property (1), we get

(σ#
L ◦ P )(F1 ∨ F2) = (P ◦ σ#)(F1 ∨ F2)

= P (σ#(F1) ∨ σ#(F2))

= (P ◦ σ#)(F1) ∨ (P ◦ σ#)(F2)

= (σ#
L ◦ P )(F1) ∨ (σ#

L ◦ P )(F2),
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where the second to last equality follows from Lemma 4.2.2 (2). Hence σ#
L satisfies

property (1) of Prop 6.5.5.
Let P (F ) ∈ FP (M) be an atom which, since P is a lattice isomorphism, implies F

is an atom of FM. Once again we use (σ#
L ◦P )(F ) = (P ◦σ#)(F ). Because σ# satisfies

property (2) then σ#(F ) is an atom or the zero of FN . Finally since P is a lattice
isomorphism between FN and FP (N ) then P (σ

#(F )) = σ#
L (P (F )) must be an atom

or the zero of FP (N ) which show σ#
L satisfies property (2) of Theorem 6.5.5. Therefore

σL is a strong map and by Theorem 6.5.7 we get that σ is q-strong, concluding the
proof.

Copyright© Benjamin Jany, 2023.
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