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ABSTRACT OF DISSERTATION

Lattice minors and Eulerian posets

We study a partial ordering on pairings called the uncrossing poset which first ap-
peared in the literature in connection with a certain stratified space of planar electrical
networks. We begin by examining some of the relationships between the uncrossing
poset and Catalan combinatorics, and then proceed to study the structure of lower
intervals. We characterize the lower intervals in the uncrossing poset that are isomor-
phic to the face lattice of an n-dimensional cube. Moving up in complexity certain
lower intervals are isomorphic to the poset of simple vertex labeled minors of an
associated graph.

Inspired by this structure, we define a notion of minors for lattices enriched with
a generating set. This notion abstracts the notion of simple vertex labeled minors
of a graph. We can associate a generator-enriched lattice to any polymatroid, a far
reaching generalization of graphs, and show that conversely any generator-enriched
lattice has an associated polymatroid. The generator-enriched lattice encodes the
simple information of the closure operator of the polymatroid analagous to how a ge-
ometric lattice encodes the simple information of a matroid. For a generator-enriched
lattice associated to a graph, we show the minors of the generator-enriched lattice
are in bijection with the simple vertex labeled minors of the graph. This bijection is
generalized to any generator-enriched lattice and its associated polymatroid.

We proceed to study a partial order structure on the minors of a given generator-
enriched lattice called the minor poset whose relations correspond to performing
deletions and contractions. A construction for minor posets in terms of the zipping
operation introduced by Reading is given. This construction implies any minor poset
is isomorphic to the face poset of a regular CW sphere, and in particular, implies
minor posets are Eulerian. This construction also yields cd-index inequalities for
minor posets. We characterize the generator-enriched lattices whose minor poset is
itself a lattice as meet-distributive lattices avoiding a single forbidden minor. As
a special case, minor posets of distributive lattices avoiding this forbidden minor
are isomorphic to the face lattice of the order polytope of the dual of the poset of
join-irreducibles.

The deletion and contraction operations of generator-enriched lattices do not com-
mute. We introduce a modified version of contractions, called weak contractions, that



do commute with deletions. From this operation we define weak minor posets whose
relations correspond to performing deletions and weak contractions. The theory of
weak minor posets closely parallels that of minor posets. Most notably, weak minor
posets are shown to be complemented lattices and strong maps between generator-
enriched lattices induce meet-preserving maps between the weak minor posets in
analogy with the zipping construction for minor posets. We characterize graded
weak minor posets and give EL-labelings for weak minor posets of generator-enriched
lattices whose minors each have an EL-labeling. In particular, we find any graded
weak minor poset is also shellable.

KEYWORDS: uncrossing poset, minors, deletion and contraction, polymatroids,
lattices, Eulerian posets
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Chapter 1 Introduction

1.1 Posets

In this section we briefly define some basic notions of posets and lattices. The reader
may refer to [46, Chapter 3] or [10] for a more thorough introduction.

A poset, or partially ordered set, is a set P together with a binary relation < such
that for all z,y, 2 € P

(i) x <=z,
(i) if x <y and y < z then z =y,
(iii) if z <y and y < z then = < z.

Let [n] denote the set {1,...,n}. The Boolean algebra of rank n, denoted B,, is
the poset consisting of all subsets of [n] ordered by inclusion. The length n chain
is the poset C,, = {0 < 1 < 2 < --- < n}. The face lattice of the n-dimensional
cube, denoted @Q,,, has underlying set {0, 1,*}" U {6} The order relation of @), is
the componentwise ordering induced by the partial order 0 < * > 1 among vectors,
and 0 <zforall z € Q,.

If x <y and for any z with x < z < y either z = x or z = y holds then we say x
15 covered by y or y covers x and denote this by x < y. Posets are depicted by Hasse
diagrams. The Hasse diagram of a poset P is a directed graph with vertex set P and
edges directed from x to y whenever z < y. Hasse diagrams will be depicted so that
all edges are directed upwards. See Figure for examples.

Given two posets P and (), a map f : P — @ is said to be order-preserving
if p; < p; in P implies that f(p;) < f(p2) in Q. A map is an isomorphism of posets
when it is an order-preserving bijection and the inverse map is order-preserving as
well.

T /\
12 13 23 *0 *0 1% *1

00 10 01 11

3
|

><>] J <>
| \/
0 0

Bs Cs Q2

Figure 1.1: Examples of Hasse diagrams



A subposet of P is a subset () C P equipped with the same order relation. A
(closed) interval of P is a subposet of the form [z,y] = {z € P : 2z < z < y}
where x < y. An open interval is a subposet of the form (x,y) = [z,y] \ {z,y}.
The dual poset of P is the poset P* with underlying set P and order relation defined
by x <p« y when x >p y. A poset P is said to be ranked when the lengths of all inclu-
sionwise maximal chains in P are the same. If P is ranked the rank of an element z,
denoted rk(x), is the length of any maximal chain in the subposet {y € P:y < z}.

An element x is mazimal if x < y only holds for x = y and dually x is minimal
if > y only holds for z = y. When P has a unique maximal element it will be
denoted 1 and when P has a unique minimal element it will be denoted 0. A poset is
said to be graded when it is ranked and has a unique minmal element and a unique
maximal element. When P has a 0 the elements which cover 0 are referred to as
atoms.

Let P be a poset and let x,y € P. The join of x and y is an element z > z,y
such that whenever w > x,y we have z < w. Dually the meet of x and y is an
element z < z,y such that whenever w < x,y we have z > w. We view taking the
join of two elements x and y as a binary operation denoted by x V y, and likewise for
the meet which is denoted as = A y. Both of these operations are commutative and
associative and are idempotent in the sense that x V& = x and z A x = z for any
element x.

A lattice is a poset in which the join and meet of any two elements exist. Boolean
algebras are the prototypical examples of lattices. In a Boolean algebra the join of
two elements is their union and the meet of two elements is their intersection. A
chain of length n and the face lattice (),, of an n-dimensional cube are examples of
lattices as well. An element x is said to be join irreducible if whenever x = y V z
then either y = x or z = x. Given a lattice L we denote the set of join irreducibles
by irr(L). It is a basic fact of lattice theory that any finite poset that has a 0 and in
which any two elements have a join is a lattice. Dually any finite poset that has a 1
and in which any two elements have a meet is a lattice. See [46, Proposition 3.3.1]

1.2 Overview of the uncrossing poset

In this subsection we give an overview of the uncrossing poset, which we study in
Chapter 2l References for this material are [28], [36, Section 4.5] and [35].

The uncrossing poset UC,, of order n consists of all pairings on [2n] adjoined with
an element 0. The order relations correspond to resolving crossings in an associated
diagram for the pairing. We view pairings on [2n| as fixed point free involutions. The
medial diagram of a pairing 7 consists of a circle with the points 1,...,2n placed
in clockwise order on the boundary of the circle and arcs drawn within the circle
between the points. If every pair of arcs in a medial diagram cross at most once then
an arc from ¢ to j indicates that ¢ is paired with j. If two arcs cross more than once
then locally resolving one of the intersections so that the resulting arcs have one less
intersection does not change the pairing represented. See Figure for an example
of removing a double-crossing in this way.



Figure 1.2: Locally resolving a double intersection. Both diagrams represent the same
pairing (15)(23)(46).

(16)(28)(34)(57)

(16)(27)(58)(34)

Figure 1.3: Pairings and examples of medial diagrams.

Given a medial diagram M let 7(M) denote the pairing represented by M. By
definition the pairing 7(M) pairs ¢ and j when there is an arc from ¢ to j in the
medial diagram obtained from M by removing all double crossings. Figure[L.3]depicts
examples of medial diagrams for pairings.

Definition 1.2.1. The uncrossing poset UC,, is the poset consisting of all pairings
of [2n] along with a minimal element 0. The order relation is defined as o < T when
there is a medial diagram M for T and a sequence of local crossing resolutions that
when applied to M result in a medial diagram for o.

Figure depicts the Hasse diagram of UC3 and Figure in Appendix [A]
depicts the Hasse diagram of UC;.

Basic enumerative information of the uncrossing poset is of combinatorial interest,
for instance the rank function, number of atoms and number of elements. Let <; be
the ordering on [2n] defined by

1<;1+1<; - <;2n<; 1< - <;1— 1.

Given a pairing 7 define the crossing number cross(t) to be the number of pairs of
arcs (i,7(i)) and (7,7(7)) such that i <; j <; 7(:) <; 7(j). Given a medial diagram



1 1 1 1 1 1
6 2 6 2 6 2 6 2 6 2 6 2
5 3 5 3 5 3 5 3 5 3 5 3
4 4 4 4 4 4

1 1 1 1 1
6 2 6 2 6 2 6 2 6 2
5 3 5 3 5 3 5 3 5 3
4 4 4 4 4

~

0

Figure 1.4: The uncrossing poset UCs.

for 7 in which no two arcs cross more than once, a pair of arcs crosses if and only if the
pair contributes to cross(7). The uncrossing poset is graded: given a pairing 7 € UC,,
its rank is given by its crossing number rk(7) = cross(7) + 1. The atoms of UC,, are
thus the pairings with no crossings.

Noncrossing chord diagrams with n chords are a classical object counted by the

1 2n
n + n
well studied combinatorial objects. [45, Exercise 6.19] and [47] give an extensive
listing of combinatorial objects enumerated by the Catalan numbers.

To count the number of pairings on [2n] one can construct a pairing by choosing
what is paired to 1, for which there are 2n — 1 options, then choosing what is paired
to the smallest as of yet unpaired point, for which there are 2n — 3 options, continuing
in this manner we see the number of pairings is

2n—1)2n—3)---1=(2n— 1)L

Catalan numbers, , which is a well known sequence that enumerates many

The maximal element of UC,, is the pairing (1,7 + 1)(2,n + 1)---(n,2n) in which



every pair of arcs forms a crossing. This pairing has (g) crossings so the uncrossing
poset UC,, is rank (g) + 1.

Lam showed that the uncrossing poset UC,, is Eulerian in [35, Theorem 1]. This
means that every nontrivial interval in UC,, has an equal number of odd and even
rank elements. The proof relied on an embedding of the uncrossing poset into the
dual of an affine Bruhat order. Lam leveraged this map to give a direct counting
proof that the uncrossing poset is Eulerian.

Theorem 1.2.2 (Lam [35, Theorem 1]). The uncrossing poset UC,, is Eulerian.

A poset can be viewed topologically via its order complex. The order complex of a
poset P is the simplicial complex A(P) consisting of all chains of P. When P has a 0
and 1 we are usually interested in the order complex of the proper part of P defined
as the subposet P\ {6, /1\} A shelling of a simplicial complex is an ordering F7, ..., F}
of the facets such that for each facet F; the intersection F; N (F} U---U F;_1) is pure
of dimension dim(F;) — 1. A poset is shellable if its order complex is shellable.

A lexicographic shelling of a poset is one induced by certain types of edge labelings
of the Hasse diagram of the poset. The simplest type is an EL-labeling. An FL-
labeling of a poset P is a labeling A of the covers of the poset with an ordering
of the labels given such that each interval [z,y] of P has a unique maximal chain
whose sequence of labels is weakly increasing and furthermore this chain’s sequence
of labels is lexicographically least among all maximal chains of [z, y]. There are other
techniques to produce lexicographic shellings in which the notion of a descent in a
label sequence is weakened or in which the labeling A is allowed to depend upon a
choice of a maximal chain.

Lam conjectured that UC,, is lexicographically shellable in [35, Conjecture 1], and
Hersh and Kenyon proved this fact in [28, Theorem 3.18]. Hersh and Kenyon gave
an EC-labeling of the dual poset UC;. This induces a shelling for the uncrossing
poset UC,, as a chain of UC, is a chain of UC] and vice versa hence the order
complexes A(UC,,) and A(UC?) coincide.

Theorem 1.2.3 (Hersh-Kenyon [28, Theorem 3.18]). The poset UC;, has an EC-
labeling.

The EC-labeling that Hersh and Kenyon constructed depended in part upon a
classical EL-labeling for the Bruhat order on the symmetric group. Certain intervals
from this Bruhat order appear as intervals in the dual poset UC.

Given a permutation 7 of [n] define its inversion number to be

inv(m) = |{i < j:m(@) >n())}

The Bruhat order on the symmetric group &,, has cover relations defined by 7 < 79
when inv(mg) = inv(m;) + 1 and m = (¢, j)m for some transposition (4, j). Figure
in Appendix [A] depicts the Hasse diagram of the Bruhat order on &3 and Figure
depicts the Hasse diagram of the Bruhat order on &,. This partial order can be
visualized by placing points 1,...,n along the top and bottom of a rectangle and
connecting a point ¢ along the bottom the point (i) along the top with a strand. If



Figure 1.5: Diagrams associated to the cover relation 3214 < 4213.

this diagram is drawn such that no two strands cross more than once, and no strand
crosses itself then the inversion number of the permutation is the number of crossings
between the strands. Multiplying the permutation on the left by a transposition (i, )
corresponds to swapping the ends of the strands at ¢ and j along the top of the
diagram. See Figure [1.5]

Hersh and Kenyon showed if o < 7 are pairings such that the sets

{ie2n]:i<o(i)} and {i € 2n]:i < 7(7)}

coincide then the interval [o, 7] in UC,, is dual to an interval of the Bruhat order. We
give a more detailed statement and a proof in Proposition [2.2.4]
We recall the definition of a regular CW complex.

Definition 1.2.4 ([I2, Definition 4.7.4]). A regular CW complez is a topological
space I' presented as a union I' = |J, va of closed cells v, satisfying the following
properties.

(1) Each cell v, is homeomorphic to a closed ball of some dimension.

1) For any two distinct cells v, and ~yg the interiors v, \ 0V, and v \ 0yz are
B B 8
disjoint.

(11i) For any cell v, the boundary 07, is a union of closed cells.

The dimension of a regular CW complex I' is the maximum dimension of a cell
of I'. The face poset of a regular CW complex I" consists of all closed cells of I" along
with a 0 and /1\, with the cells ordered by inclusion. A regular CW complex which
is homeomorphic to a sphere is said to be a reqular CW sphere. Figure depicts
a regular CW sphere whose face poset is isomorphic to the uncrossing poset UCs.
For any finite regular CW complex the face poset determines the CW complex up
to homeomorphism since the order complex of the proper part of the face poset is
homeomorphic to the CW complex [37, Theorem 1.7].

For a thorough treatment of CW complexes in full generality see [37], or for a
shorter introduction see the appendix in [27]. Section 4.7 (b) in [12] contains an
introduction to CW complexes.



Figure 1.6: A regular CW sphere of dimension 2.

Hersh and Kenyon also used their shelling result to show that the uncrossing poset
is isomorphic to the face poset of a regular CW complex.

Corollary 1.2.5 (Hersh-Kenyon [28, Corollary 3.19]). The uncrossing poset UC,, is
isomorphic to the face poset of a reqular CW complex.

Since the uncrossing poset UC,, is isomorphic to the lower interval

A~

0,(Ln+1)---(n—1,2n)(2n + 1,2n + 2)]

of UC,, ;1 this corollary implies the CW complex whose face poset is UC,, is a sphere.

1.2.1 Electrical Networks

The uncrossing poset originates from the theory of planar electrical networks. Medial
diagrams are essentially in bijection with certain graphs, and local crossing resolutions
in medial diagrams corresponds to deleting and contracting edges of these graphs.
Viewing the uncrossing poset in terms of these graphs will be useful in Chapter 2
The paper [36] by Lam is a reference for the material in this subsection.

A circular planar embedding of a graph is an embedding into the closed disk of the
plane with all edges embedded within the interior of the disk. The vertices may lie on
the boundary. A planar electrical network is a finite graph together with a circular
planar embedding and real valued edge weights which are thought of as modeling
conductance. A planar electrical network has an associated linear transformation
called the response matriz which maps a vector of voltages input to the boundary
vertices to a vector of currents flowing in to the network at each boundary vertex.
Two planar electrical networks are said to be electrically equivalent when they have
the same response matrix. A partition of the boundary vertices of a planar graph
is said to be noncrossing when the convex hulls of the vertices in each block of the
partition are disjoint.

For each noncrossing partition of the vertices there is an associated grove mea-
surement for the network, these grove measurements determine the response matrix
and vice versa. In [36] Lam uses these grove measurements as a coordinatization of
the space of planar electrical networks by the real projective space indexed by non-
crossing partitions. The space of projective coordinates of planar electrical networks



Figure 1.7: A cactus graph.

is stratified with each stratum consisting of the coordinates for networks with a fixed
set of vanishing coordinates.

To every planar electrical network G there is an associated medial diagram M (G).
Any medial diagram for the pairing represented by M (G) is associated to a graph
which is electrically equivalent to G. Thus certain pairings index the equivalence
classes of electrical networks. In [36] Lam introduced a compactification of the space
of electrical networks, consisting of networks called cactus networks, in which the
electrical equivalence classes are indexed by all pairings. The poset UC,, is the face
poset of the stratification of the space of projective coordinates of cactus networks
([36, Theorem 5.8]).

A cactus network with n boundary vertices is a finite graph together with real
valued edge weights, a planar embedding into the disc with edges in the interior, n
vertices on the boundary, and a boundary partition identifying the boundary vertices
that is a noncrossing partition. A cactus graph is the underlying embedded graph of a
cactus network, that is, a cactus network without any edge weights. We depict cactus
graphs embedded into the union of discs, each attached to another at a boundary
vertex, that is obtained by pinching the disc so that any two boundary vertices
identified by the boundary partition come together. Figure depicts a cactus
graph.

There is a correspondence between cactus graphs and medial diagrams. Let G
be a cactus graph with n boundary vertices vy,...,v,. To construct the medial
diagram M (G), on each disk for each boundary vertex v place two new points v™
and v~ just to the left and right of v. We construct the arcs of M(G) piecewise. For
each newly added vertex u placed left or right of a boundary vertex v, add an arc
segment between u and the edge e that is incident to v and that is closest to v near v.
If no such edge exists connect v* and v~ by an arc. For each pair (v, F') where v
is an internal vertex of the cactus graph GG and F' is a face of GG incident to v, add
an arc segment between the two edges contained in F' incident to v. If there is only



Figure 1.8: The construction of a medial diagram from a cactus graph.

one such edge, add an arc segment which is a closed loop attached to this edge and
wrapping around v. If v is an isolated internal vertex, add an arc that is a closed
loop around v. The endpoints of any arc segment are either a boundary vertex or
the endpoint of four arc segments. Where four arc segments meet is interpreted as a
transversal intersection of arcs, loosely speaking the two arcs pass straight through
the intersection.

Closed loop arcs in medial diagrams were not discussed previously, to clarify
adding any such arcs does not change what pairing is represented, and neither will
resolving any crossings involving such an arc.

The correspondence between cactus graphs and medial diagrams is essentially a
bijection. Figure [1.8 shows a cactus graph and its associated medial diagram. Given
a medial diagram M with 2n points, the cactus graph G is constructed as follows.
For ¢ =1,...,n, in between the points 2: — 1 and 2¢ 4+ 1 place a boundary vertex v;.
Color the regions of the medial diagram black and white so that no two regions sharing
an edge are the same color. The regions containing the boundary vertices v; are all
the same color, say white. For each white internal region of the medial diagram place
an internal vertex. Then for each pair of white regions sharing an intersection in the
medial diagram draw an edge between the associated internal vertices. Lastly the
boundary partition of the cactus graph identifies any two boundary vertices that are
in the same region of the medial graph.

Given a medial diagram M let G(M) denote the associated cactus graph, and
given a cactus graph G let M (G) denote the associated medial diagram. Any cactus
graph has an associated pairing 7(M (G)) which we denote simply as 7(G). A cactus
graph G is said to be critical when the number of edges of G equals the crossing
number cross(7(G)). Each pairing 7 corresponds to a stratum in the stratification
of the space of cactus networks and this stratum is parameterized by varying edge
weights on a critical cactus graph representation of 7.

Observe that when given a medial graph M along with its corresponding cactus
graph G = G(M) that the crossings in M correspond to the edges of GG. Further-



Figure 1.9: Resolving a crossing in a medial diagram along with the associated cactus
graphs.

more resolving a crossing in the medial diagram M corresponds to either deleting or
contracting the corresponding edge in the cactus graph G. See Figure Note that
a cactus graph has no edge labels or labelings of internal vertices, but the boundary
vertices are labeled. If a contraction identifies two boundary vertices, that is, the
contraction merges two blocks in the boundary partition, then the labels of these two
boundary vertices are merged. Given two pairings 7, 7 € UC,, we have 7y < 7, if and
only if there is a cactus graph Gy with 7(G3) = 7 and a sequence of deletions and
contractions which when applied to Gs result in a cactus graph G; with 7(G1) = 71.

1.2.2 Noncrossing partition lattice

We have already seen one relationship between noncrossing partitions and the un-
crossing poset, namely, every cactus graph has a noncrossing boundary partition. In
this subsection we describe the lattice structure of noncrossing partitions. For details
of this structure and some of its varied connections, the reader can refer to [38].

Given a partition p of [n] and i € [n] let p(i) denote the block of p that contains i.
A partition p of [n] is said to be noncrossing when for any indices i <; j <; k <; £
if p(i) = p(k) and p(j) = p(¢) then p(i) = p(j), that is, all four indices i, j, k, ¢ are
in the same block. Noncrossing partitions are typically drawn via a circular diagram
where the points 1, ... n are placed clockwise along the boundary of a circle and the
blocks are depicted as the convex hull of their points. A partition is noncrossing if
and only if no two blocks in this circular diagram intersect.

The noncrossing partition lattice NC, is the set of noncrossing partitions of [n]
partially ordered by reverse refinement, that is, p; < ps when p;(i) C py(i) for all 1.
This does indeed define a lattice, the maximal element has a single block [n] and
the meet p = p; A po of two partitions is defined by p(i) = p1(2) N pa(i) for i € [n].
Figure depicts the noncrossing partition lattice NCy.
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Figure 1.10: The noncrossing partition lattice N'C,.

The number of noncrossing partitions of [n] is given by the nth Catalan number
thus noncrossing partitions of [n] are in bijection with pairings on [2n] with no cross-
ings. The construction of a cactus graph gives such a bijection. Given a pairing 7
with no crossings, draw a medial diagram M for 7 with no crossings. The cactus
graph G(M) has no edges and is thus essentially the same as its boundary partition
which is a noncrossing partition of [n]. This bijection also shows up in the computa-
tion of a certain map on noncrossing partitions called the Kreweras complementation,
first introduced by Kreweras in [33]. Given a noncrossing partition p, to construct the
Kreweras complement r(p) first add 2n pairing points on either side of the partition
points 1,...,n. Each pairing point lies in a region bordered by the boundary of the
circle and the blocks of the partition. Draw an arc from each pairing point to the
first pairing point in the same region when proceeding clockwise or counterclockwise
around the region in the direction towards the associated partition point. Then add n
new complement partition points. The ith complement partition point is placed in
between the pairing points 2 — 1 and 2¢ — 2 for i = 2,...,n — 1 and the complement
partition point 1 is placed in between the pairing points 2n and 1. The complement
partition block x(p)(i) consists of all complement partition points in the same region
as ¢ cut out by the arcs of the pairing.

Figure depicts the Kreweras complements of all elements of the noncrossing
partition lattice NC4. The noncrossing partition lattice N'C, is self dual and the

11



Figure 1.11: Construction of the Kreweras complements for elements of the noncross-
ing partition lattice NC4. The partitions are depicted in red with their Kreweras
complements in blue with dashed lines.

Kreweras complementation is an isomorphism between NC, and its dual NC;.

Biane determined in [6l Theorem 2] the skew automorphism group of the non-
crossing partition lattice. The skew automorphism group is the group of all bijections
which either are order-preserving and inverse order-preserving or are order-reversing
and inverse order-reversing.

Theorem 1.2.6 (Biane). Forn > 3 the skew automorphism group of the noncrossing
partition lattice NC,, is isomorphic to the dihedral group Dy, of order 4n.

The dihedral group Dy, is identified with the skew automorphism group of the
lattice N'C,, via the usual action of Dy, applied to the partition points and the com-
plement partition points arranged as depicted in Figure |[1.11] The Kreweras comple-
mentation corresponds to the rotation by 27 /2n radians.

12



Figure 1.12: Examples of polymatroids with a ground set of size 3.

1.3 Polymatroids

In Chapter [3| we introduce the notion of a generator-enriched lattice which will be
the basis for the minor posets studied in Chapter [} Generator-enriched lattices are
intimately related with polymatroids, which were introduced by Edmonds in [21] in
connection with optimization theory. Edmonds introduced polymatroids as polytopes
which generalize the concept of a matroid by replacing independent subsets with
independent weightings by nonnegative real numbers (subsets corresponding to 0,1
weightings). Edmonds gave an equivalent definition in terms of a rank function which
we will prefer for our purposes.
Given a set F let Bgr denote the Boolean algebra of all subsets of E.

Definition 1.3.1. A polymatroid over the ground set E is a function r : Bp — Rxq
such that the following three conditions hold.

(i) r(0) = 0.
(11) The function r is order-preserving.

(111) For any subsets X, Y C E we have r(X UY) +r(XNY) <r(X)+rY).

Figure[I.12|depicts several examples of polymatroids. For a subset X of the ground
set the image r(X) is referred to as the rank of X (with respect to r). Condition (iii)
in Definition [1.3.1]is referred to as submodularity. When a polymatroid r : By — Rxg
is integer valued and also satisfies r(X) < |X]| for all X C FE, it is a matroid. Fig-
ure [1.12] (c) is a matroid while Figure[L.12] (a) and (b) are not.

Matroids are rich combinatorial objects that abstract notions of independence such
as acylic subsets of graphs and linear independence in vector spaces. The book [39)
is a standard reference for matroid theory. Two examples of matroids motivate much
of the theory and its terminology. Given a graph G there is an associated matroid
whose ground set is the set of edges of G. The rank of set X of edges is the size of a
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minimal spanning subgraph of X. The other motivating example comes from vector
configurations. Given a set F of vectors in a vector space V there is a matroid whose
ground set is the set F and the rank of a subset is the dimension of the linear span
in V. If F is a set of any subspaces of V', not all 1-dimensional, defining the rank of
a subet X of E to be the dimension of the smallest subspace of V' including X does
not define a matroid, but this gives an example of a polymatroid.

Let r be a polymatroid with ground set E. An element e € FE is said to
be a loop when r({e}) = 0. Two elements e, f € E are said to be parallel
when r({e}) =r({e, f}) =r({f}). The parallel class of e is the collection of elements
parallel to e. A polymatroid with no loops or distinct parallel elements is said to be
simple.

The operations of deletion and contraction generalize to (poly)matroids. The
deletion of r by X C F is the polymatroid 7\ X = T\BE\X, that is, the usual function
restriction of 7 to Bp\ x. The contraction of r by X is the polymatroid r/X defined
on E\ X by (r/X)(Y) = r(YUX) —r(Y). These operations are essentially the
restriction of r to a lower, respectively, an upper interval of the Boolean algebra Bg,
but with a reindexing and a shift in the latter case.

The simplification of a polymatroid is any polymatroid obtained by deleting all
loops and deleting all but one element in each parallel class. Any two simplifications
of a polymatroid are isomorphic in that there is a bijection between the ground sets
that preserves the rank function.

A matroid r on the ground set E has an associated closure operator

defined by X = {e € E : r(X U {e}) = r(X)}. Note that the submodularity of r
implies that 7(X) = r(X). The closure operator determines the matroid, and this
can be used to give an equivalent definition for matroids. The closed sets X of the
matroid r are referred to as the flats of r. The flats have the structure of a lattice
when order by inclusion, the meet is the intersection and the join is the closure of the
union.

A lattice L is said to be submodular if whenever x and y in L cover the meet z Ay
then the join x V y covers both x and y. Equivalently a lattice is submodular
if it is graded and the rank function is submodular in that for all z and y we
have rk(z V y) + rk(z A y) < rk(z) + rk(y); see [46, Proposition 3.3.2]. A lattice
is said to be atomic when every element can be expressed as a join or atoms, in other
words, only the atoms are join irreducible. A lattice that is submodular and atomic
is said to be geometric. Birkhoff characterized the lattices that are isomorphic to
the lattice of flats of a matroid as finite geometric lattices in [9]. The lattice of flats
when considered only up to isomorphism encodes only the simple information of the
matroid in that the simplification of the matroid can be recovered.

The notion of the closure operator of a polymatroid makes sense via the same
definition as for matroids, but this does not uniquely determine the polymatroid.
Similarly, the flats of a polymatroid can be defined in the same way and the flats form
a lattice, but this carries less information about the polymatroid than the lattice of
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flats carries of a matroid. In Theorem we show that generator-enriched lattices
encode the simple information of polymatroid closure operators in a way analogous to
geometric lattices and matroids. We describe in Section [3.4] the operations of deletion
and contraction, which are well-defined on closure operators of polymatroids, in terms
of the associated generator-enriched lattice. These operations are further studied in
Chapter {4 in regard to a partial ordering.

1.4 PL-spheres, CW posets and the zipping operation

In Chapter [4] we introduce minor posets of generator-enriched lattices. The order rela-
tions of this poset correspond to performing deletions and contractions on a generator-
enriched lattice. The main result of this chapter is a construction for minor posets
in terms of Reading’s zipping operation. This operation was introduced in [41], Sec-
tion 4] where it was used to study intervals in Bruhat orders and their cd-indices. We
use this construction to show that the minor poset of any generator-enriched lattice
is isomorphic to the face poset of a regular CW sphere and that the order complex of
the proper part of any minor poset is a PL-sphere. A generalization of the dual of the
zipping operation to quasi-graded posets that geometrically corresponds to merging
strata in Whitney stratifications was introduced in [23]. We introduce the zipping
operation and related background needed for this construction and its corollaries here.

Definition 1.4.1. Let P be a poset. A triple x,y,z € P is said to be a zipper when
the following three conditions hold:

(1) The element z covers x and y and no other element in P.

(i) {pe P:p<z}={peP:p<y}.

(i1i) The element z is the join of x and y.

We denote a zipper as z,y < z. Note that in a zipper z,y < z the element z
uniquely determines the zipper since z only covers x and y.

Definition 1.4.2. Let P be a poset and let x,y < z be a zipper. The zipped poset,
denoted zip(P, z), is obtained from P by identifying the elements x,y,z as a new
element w with order relation defined by the following three conditions holding for

all p,q € P\ {x,y,z}:
1. p < qin zip(P, 2) if and only if the same holds in P.
2. p<w inzip(P, z) if and only if p < x, hence p <y and p < z, in P.
3. p>w inzip(P,2) if and only if p > x or P >y in P.

When the poset P is the face poset of a regular CW complex, a zipper z,y < z
consists of an open cell z such that

0z=xUyUdx
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Figure 1.13: A schematic depiction of a zipping operation in the Hasse diagram on
the left and in a CW complex on the right.

where = and y are open cells such that dr = Jy and such that item (iii) in Defi-
nition holds. Zipping the zipper contracts the cell z while identifying the two
cells x and y. Figure |1.13]illustrates this.

A graded poset is said to be thin when every rank 2 interval forms a diamond.

Remark 1.4.3. If P is a thin poset then a triple x,y < z forms a zipper whenever
conditions (1) and (iii) of Definition are satisfied. Condition (ii) follows from
thinness and condition (i).

Proposition 1.4.4 (Reading [41, Proposition 4.4]). If P is a graded and thin poset
and x,y < z form a zipper then the poset zip(P, z) is graded and thin as well.

The zipping operation is well-behaved topologically in that it preserves PL-
sphericity. Recall a simplicial complex A is said to be a PL-sphere when there is
a piecewise linear homeomorphism from A to the boundary of a simplex. Equiv-
alently A is a PL-sphere when there is a simplicial subdivision of A that is
combinatorially isomorphic to a simplicial subdivision of the boundary of a simplex.
A poset P is said to be a PL-sphere when the order complex A(P) is a PL-sphere.
Background on PL-spheres can be found in [12, 4.7 (d)] and [30]. Proper parts of
face lattices of polytopes, in particular of the face lattice of a cube, are examples of
posets that are PL-spheres.

In order to derive the cd-index inequalities for minor posets in Section it will
be important to observe that when a poset P is a PL-sphere every open interval of P
is a PL-sphere as well. To see this, given a simplicial complex A and a face X, define
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the link of X to be the subcomplex
linka(X)={Y eA: XNY =0, XUY € A}.

Let P be a poset with 0 and T and let z < y in P. The order complex of the open
interval (,1) appears as a link in the order complex A(P \ {0,1}), namely, as the
link of any chain C' = C, U C,, where C, is a maximal chain of (0,z] and C, is a
maximal chain of [y,T). Links of PL-spheres are themselves PL-spheres.

Lemma 1.4.5 (Hudson [30, Corollary 1.16]). Given a simplicial complex A that is a
PL-sphere, for any face X of A the link linka(X) is a PL-sphere.

Theorem 1.4.6 (Reading [41, Theorem 4.7]). Let P be a poset such that x,y < z
form a zipper. If the proper part of P is a PL-sphere then so is the proper part

of zip(P, z).

Reading’s zipping operation also behaves nicely with respect to the cd-index.
The cd-index and the effect of zipping operations on the cd-index is discussed at the
end of the chapter in Section [L.5]

We also use the following characterization, due to Bjorner, in Chapter [4| to estab-
lish that the minor poset of any generator-enriched lattices is isomorphic to the face
poset of a regular CW sphere.

Definition 1.4.7 (Bjorner [II Definition 2.1]). A poset P is a CW poset if the
following three conditions hold:

1. P has a unique minimal element 0 and a unique maximal element 1.
2. |P| > 3.

3. A((ﬁipA)) is homeomorphic to a sphere for all elements p in the open inter-
val (0,1

).

Definition differs slightly from the one given in [II] since in the present
context face posets are adjoined with a maximal element which does not correspond
to a cell.

Theorem 1.4.8 (Bjorner [11, Proposition 3.1]). A poset is a CW poset if and only
if it is isomorphic to the face poset of a reqular CW complex.

1.5 The cd-index

In this section we give an overview of the cd-index. For a more complete, discussion
see [3]. The cd-index of a poset is a polynomial in noncommutative variables ¢ and d
which enumerates chains in a very compact way, abstracting the problem of counting
flags in polytopes. The cd-index was introduced by Bayer and Klapper in [5].

Let P be a graded rank n 4 1 poset with 0 and 1. For S C [n] let Ps denote the
rank selected poset, the subposet of P consisting of elements whose rank is an element
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of S adjoined with 0 and 1. Define fs to be the number of maximal chains of Ps.
The collection (fs)scpy is called the flag f-vector of P. Define hg by

hg = Z(_l)\S\TIfT_

TCS

The collection (hs)scpy is called the flag h-vector of P. Note that the flag h-vector
is the image of the flag f-vector under a linear transformation. Furthermore this
transformation is invertible. Using Md&bius inversion the above relation is equivalent

to
fs=>_ hr.

TCS

Let a and b be noncommutative variables each of degree 1. For S C [n] we encode
the set S as a monomial ug = uy - - - u,, defined by

a 1 &5,
U; =
b 1¢€8.

Define the ab-index of P to be the polynomial

W(P) = Z hsus.

SCn]

The ab-index is a generating function for the flag h-vector of P and thus contains all
the information of the flag f-vector as well. Note that the ab-index is homogeneous
of degree n.

Define noncommutative variables ¢ = a + b and d = ab + ba. We consider c
to be degree 1 and d to be degree 2. If the ab-index W(P) can be expressed as a
polynomial in the variables ¢ and d then this polynomial is the cd-index of P. We
denote the cd-index of P by W(P) as well. This is unlikely to cause confusion, we
will discuss the ab-index only sparingly.

The cd-index is a very compact way to enumerate chains in P in which all linear
redundancies are removed. This feature is reflected in a result due to Bayer and Billera
[4, Proposition 2.2], namely the existence of the cd-index implies all homogeneous
linear relations between entries of the flag f-vector that hold for any Eulerian poset
of rank n+1. The additional fact that the coefficient of ¢” in the cd-index is 1 implies
all such linear relations, homogeneous and nonhomogeneous.

Example 1.5.1. Consider the Boolean algebra Bs depicted in Figure[I.1. Since Bs
is rank 3 here n = 2. The entries of the flag f-vector and flag h-vector are:

S| fs | hs | us
0| 1| 1| aa
11 38| 2| ba
21 3| 2 |ab
121 6 1 | bb
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Figure 1.14: A poset whose cd-index has a negative coefficient.

Summing the terms hgug we obtain

U(B3) = a* + 2ab + 2ba + b?
=c?+d.

The coefficients of the cd-index can be negative. For example, the poset depicted
in Figure has cd-index c* 4 2c¢2d + 2dc? — 4d”. See [26] for a discussion of this
poset and similar posets in regard to the existence of an R-labeling.

In small examples such as the computation of ¥(Bs) shown above, the translation
from the ab-index to the cd-index can be done without too much difficulty in an
ad hoc manner. For larger examples and for computer calculations this is not really
appropriate and an algorithm is desirable.

The following process, which is described in the discussion after Lemma 1.1 in
[44], gives an algorithmic way to compute the cd-index from the ab-index. This is
implemented in the computer program described in Section[6.3] First, we define a new
variable e = a—b. Observe 2a = c+e and 2b = c—e, so we may express the ab-index
in terms of e and ¢ simply by substituting (c + e)/2 for a and substituting (c —e)/2
for b. Call the result of this substitution the ce-index. Since e?> = c¢? — 2d any even
power of e can be expressed as a polynomial in ¢ and d. No odd power of e is a
polynomial in ¢ and d since both ¢ and d are symmetric in a and b but e is not.
Thus, the cd-index exists if and only if the ce-index has only even powers of e, and
when this is the case the cd-index can then be computed by substituting ¢ — 2d
for e2.

The ab-index can also be computed more directly by assigning a certain weight
to chains and summing over all chains of P that contain 0 and 1. This viewpoint is
often more useful in arguments that require directly counting chains in posets. The
weight of a chain C'is w(C) = wy - - - w,, defined by

b if there is a rank 7 element of C,
w; =
' a—b otherwise.

The ab-index is W(P) = ), w(C) where the sum is over all chains C' in P such
that 0,1 € C.
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There has been a lot of interest in establishing nonnegativity of the cd-index of
geometrically motivated classes of Eulerian posets. It turns out a sufficient condition
for nonnegativity is the Gorenstein*® condition. Without going into detail, a poset is
said to be Gorenstein® when the order complex of its proper part and every link in this
complex have the homology of a sphere of the same dimension. See [24, Section 2.1]
for a precise definition of the Gorenstein™ condition. Any poset that is shellable is
Gorenstein®, in particular face lattices of polytopes are Gorenstein®*. Additionally,
face posets of regular CW spheres are Gorenstein* as are posets with a 0 and T whose
proper part is a PL-sphere.

Many results lead up to the nonnegativity result for Gorenstein™ posets. Purtill
showed that the coefficients of the cd-index are nonnegative for face lattices of poly-
topes of dimension at most 5 [40, Proposition 7.11], and polytopes with simplicial
facets [40, Corollary 7.8]. More generally Purtill showed that any CL-shellable Eule-
rian poset whose proper upper intervals are all Boolean algebras has a cd-index with
nonnegative coefficients in [40, Corollary 7.4]. Stanley showed that the cd-index of
the face poset of any S-shellable (spherically shellable) regular CW sphere, a class
which includes all polytopes, has nonnegative coefficients in [44, Theorem 2.2], and
also that the cd-index of any Gorenstein® poset such that all lower intervals are
Boolean algebras has nonnegative coefficients in [44], Corollary 3.1]. Reading estab-
lished the nonnegativity of certain coefficients of cd-indices of all Gorenstein* posets
in [42] Theorem 3]. The most general case below was conjectured by Stanley in [44]
Conjecture 2.1] and proved by Karu.

Theorem 1.5.2 (Karu [31, Theorem 1.3]). If P is a Gorenstein™ poset then the
coefficients of the cd-index W(P) are nonnegative.

There has also been interest in inequalities relating cd-indices of different posets.
Billera, Ehrenborg and Readdy showed that the set of cd-indices of lattices of re-
gions of oriented matroids is minimized by the cd-index of the cross polytope [8|
Corollary 7.5], and in particular that the set of cd-indices of zonotopes is minimized
by the cd-index of the cube [8, Corollary 7.6]. Billera and Ehrenborg gave cer-
tain inequalities between the cd-index of a polytope and the cd-index of a face [7,
Theorem 5.1], a particular case being W(P) > U(Pyr(F')) where F' is a facet of the
polytope P and Pyr(F) = F'x By [7, Corollary 5.2]. This result was then used to show
that the set of cd-indices of polytopes is minimized by the cd-index of the simplex,
that is, the cd-index of the Boolean algebra [7, Theorem 5.3]. Billera and Ehrenborg
also showed that the cd-indices of the cyclic polytopes coefficientwise maximize cd-
indices of polytopes in [7, Theorem 6.5]. Generalizing the lower bound for polytopes,
Ehrenborg and Karu showed in [24, Corollary 1.3] that the cd-index of the Boolean
algebra is the minimum among all Gorenstein® lattices of a given rank. In Chapter
we prove some inequalities for minor posets (Corollaries |4.3.10] 4.3.11] and 4.3.14]).

Reading’s zipping operation (Definition behaves nicely with respect to
the cd-index. This is the main tool we use to prove inequalities in Chapter [4

Theorem 1.5.3. If P is an Eulerian poset and x,y < z form a zipper, then the
poset zip(P, z) is Eulerian as well.
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(a) (Reading [{1, Proposition 4.5, Theorem 4.6]) If z 1p then

A~

U(zip(P, z)) = U(P) — U([0,z]p) - d - ¥([z, 1]p).

(b) (Stanley [{4, Lemma 1.1]) If z = 1p then

U(zip(P, z)) = V(P) - c.

Copyright© William Gustafson, 2023.
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Chapter 2 The uncrossing poset

2.1 Introduction

In this chapter we study the uncrossing poset from a combinatorial and structural
view. In Section we encode pairings as certain pairs consisting of a Dyck path
and a permutation. This encoding leads to a decomposition of the uncrossing poset
into lower intervals of the Bruhat order; see Proposition 2.2.6l Furthermore, when
examining the atoms of the uncrossing poset the encoding gives a bijection between
Dyck paths and 312-avoiding permutations. We show this bijection is an isomor-
phism between the Bruhat order, respectively weak order, resricted to 312-avoiding
permutations and dominance order on Dyck paths, respectively the Tamari lattice.

In Section [2.3] we show in Proposition the CW complex whose face poset is
isomorphic to the uncrossing poset has a 1-skeleton isomorphic to the Hasse diagram
of the noncrossing partition lattice. We then use this result to show the automorphism
group of the uncrossing poset is the dihedral group.

Finally, in Section we study the structure of the simpler lower intervals in
the uncrossing poset. In Theorem we characterize the lower intervals that
are isomorphic to the face lattice of a cube. In Proposition we describe a
zipping construction to produce the next simplest lower intervals in the uncrossing
poset from the face lattice of a cube. To end the chapter we discuss some of the
difficulties preventing us from extending this construction to more complicated cases
which motivates us to study generator-enriched lattices in the following chapters.

2.2  312-avoiding permutations and Dyck paths

In this section we discuss a bijection between pairings and certain pairs of permu-
tations and Dyck paths. By considering the pairs that correspond to a pairing with
no crossings this leads to a bijection between Dyck paths and 312-avoiding permu-
tations which is well structured. This bijection also leads to a decomposition of the
uncrossing poset into lower intervals from the Bruhat order on the symmetric group
generated by 312-avoiding permutations.

We first give an alternate definition of the order relation of the uncrossing poset
which is more intuitive than local crossing resolutions and does not depend on the
choice of a representative for pairings. This characterization is stated in terms of the
action of &,, on pairings, viewed as fixed point free involutions, by conjugation. In
other words for 7 € &, and 7 € UC, \{0}, we define 7(7) = 7' Acting with a
transposition (7, j) on a pairing 7 corresponds to swapping ¢ and j in the pairing or
by commuting the transposition on both sides past 7 swapping 7(i) and 7(j).

Lemma 2.2.1. We have o < 7 in UC, \{0} if and only if there is a sequence of trans-
positions ty, ..., 1l such that o =ty ---t1(7) and letting to be the identity permutation
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forv=1,... k we have
cross(t; - - - to(7)) — cross(t;—1 - - - to(7)) = 1.

Proof. Let o and T be pairings on [2n]. It will suffice to show that o < 7 if and only
if there exists indices ¢ and j such that o = (i,j)7(4,7) and cross(t) — cross(o) = 1.
Let M be a reduced medial diagram representing 7. We have o < 7 if and only if there
is a crossing in M which when locally resolved results in a reduced medial diagram M’
representing o. Let ¢ and j be points such that there is an arc from i to 7(j) in the
medial diagram M’ for o. The local resolution creates a double intersection for
indices k that satisfy i <; k <; j and 7(i) <; 7(k) <; 7(5). On the other hand,
applying the transposition (,7) removes an extra crossing for each such index k.
Note the effects of the local resolution and of the transposition agree if and only
if the local resolution creates no pair of distinct arcs that cross an even number of
times. Furthermore, since the medial diagram M is reduced and a single resolution
was performed to obtain M’, two arcs in the medial diagram M’ cross no more
than twice. Thus applying the transposition (,j) to the pairing 7 has the same
effect as applying the local resolution if and only if cross(7) — cross((4,7)7(i,7)) = 1.
Therefore (4, j)7(i,7) < 7 if and only if cross(7) — cross((4,j)7(i, 7)) = 1. O

Recall a Dyck path is a lattice path with steps (1,0) (or an E step) and (0, 1)
(or an N step) from the origin (0,0) to the point (n,n) that lies weakly above the
line y = x. We will typically encode Dyck paths as an NFE-word with 2n letters.
An N E-word defines a Dyck path if and only if there are n N steps and n E steps
and the ith E step has at least ¢ IV steps preceding it. Given a Dyck path we use
the notation N; to refer to the ith N step (when not indexing the E steps), and
similarly F; refers to the ith E step of the given path.

Given a Dyck path P define the height sequence h(P) = (hy, ..., hy) by letting h;
be the number of N steps preceding the ¢th F step. Equivalently h; is the height of
the path at the ith F step when drawn in the plane. Observe that the map P — h(P)
is a bijection onto the set of sequences with n terms hq, ..., h, such that h; < h; 4
and 1 < h; < n.

Let 7 € UC, be a pairing. We associate a Dyck path P(7) = Py,..., P, by
setting p; = N if i < 7(i) and otherwise setting p; = E. Note that P(7) is indeed a
Dyck path: the ith E step is the larger point in the ith pair and the corresponding N
step is preceded by ¢ — 1 other N steps, those which correspond to the smaller point
in the first 7+ — 1 pairs.

We also associate to each pairing 7 on [2n] a permutation m(7) on [n].
Let P = py,...,pop, = P(7). The permutation 7 = 7(7) is defined by the con-
dition 7(z) = j if the ith E step is paired with the jth N step by 7. It will be
convenient to view the pair (P, ) as the Dyck path P with each step F; labeled
by 7(i). We will denote labeled Dyck paths with the labels as superscripts on the F
steps. See Figure 2.1 The mapping 7 — (P(7),7(7)) is a bijection onto pairs (P, )
such that 7(7) < h(P);. The index of the step E; in P is paired to the index of the
step Ny by 7.
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3 NNNE3NE'E*E?

NE'NNE?E3

Figure 2.1: Examples of pairings and the associated labeled Dyck path.

This bijection is not in essence new. Hersh and Kenyon considered certain words
in bijection with pairings, obtained from the labeled Dyck path by replacing N; with ¢
and E; with 7(7) (see [28, Definition 3.2]). In [36, Section 4.7] Lam discussed Catalan
subsets which encode the Dyck path as the set of indices of the NV steps, and Catalan
necklaces which are in bijection with pairings. These Catalan subsets also appeared
in [15].

Observe that applying a transposition to a pairing corresponds to applying the
same transposition to the associated labeled Dyck path as a word, though with one
complication. If the N steps of the path are reordered, say by a permutation o, then
the labels of the E steps are permuted by 0! corresponding to resorting the N steps.
Note that the same effect of swapping two IV steps can be achieved by swapping two F
steps. This corresponds to changing which ends of the strands on the medial diagram
are swapped. From this perspective there are two kinds of swaps we can apply to a
given pairing: those which swap two E steps, and those which swap an N step and
an E step. We show in Proposition that the E, E swaps correspond to relations
in the Bruhat order, a result originally due to Hersh and Kenyon [28, Theorem 3.8].

The number of crossings of a pairing can be expressed in terms of the associated
Dyck path and permutation. Recall that inv(7) is the number of pairs i < j such
that 7(i) > m(j). For a Dyck path P = P, ..., P, define inv(P) to be the number
of pairs ¢ < j such that P, = F and P; = N.

Lemma 2.2.2. For any pairing T we have

n

cross(r) = (2> — inv(n(r)) — inv(P(7)).

Proof. We show that () = cross(7) + inv(x(7)) + inv(P(7)) by partitioning the set
of unordered tuples from [n] into three classes. Let ¢ < j be indices. Consider the
labeled Dyck path corresponding to 7 and the subword consisting of the four steps
corresponding to the four points incident to the ¢th and the jth arcs of 7. We have
the following three possibilities:
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NNNE?NE'E3E4

(15) (18)

NNNE?NE*E3E' NNNE?E'NE3E*

Figure 2.2: Two transpositions, (15) and (28), applied to a pairing, viewed on the
medial graph and in terms of the labeled Dyck paths.

N;N,E'E, (2.1)
N;N,E’E", (2.2)
N;E'N,E’. (2.3)

Observe that Case is the only case corresponding to a crossing of 7, that
Case is the only case where F; precedes E; hence corresponding to an inversion
of m(7) and that Case [2.3|is the only case contributing to inv(P(7)). O

Dominance order on Dyck paths is the poset Dom,, consisting of all Dyck paths
with 2n steps with the ordering P, < P, if when drawn in the plane the path P, always
lies weakly above the path P;. Equivalently, we have P; < P when h(P;); < h(P);
fori =1,...,n. Figures[A2land[A6]in Appendix[A]depict the Hasse diagrams of Doms
and Domy. This poset was studied in [2]. This is in fact a distributive lattice. Define
a poset on the transpositions of [n| by setting (i,7) < (k,0) if i < k < £ < j.
Mapping a Dyck path P to the set of transpositions (i, j) such that the unit square
whose bottom left corner is at the coordinate (i, j) lies below P gives an isomorphism
between Dom,, and the lattice of lower order ideals. This is a well known bijection.

The following is a stronger version of [28, Proposition 3.9].

Lemma 2.2.3. If o < 7 in UC,, then P(c) < P(7) in Dom,,.

Proof. 1t suffices to consider the case where o < 7, that is, where ¢ = (i,7)7
and cross(7) — cross(c) = 1. If the transposition (i,j) swaps two E steps in the
labeled Dyck path of 7 then the underlying path P(7) is unchanged. The only other
possibility, by Lemma is that an F step and an N step are swapped with the N
step preceding the F step in P(7). This implies that P(c) < P(7) since h(P(0))
and h(P(7)) agree except between the two steps that were swapped where h(P(7))
exceeds h(P(0)). O

Proposition 2.2.4 (Hersh-Kenyon [28, Theorem 3.8]). Given pairings o < 7 in UC,,
with P(o) = P(7) the interval [0, 7] is anti-isomorphic to the interval [m(7),m(0)]

of &,.
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Proof. We show that the covers of the two intervals are in bijection with the
order reversed. Consider a cover relation 7; < 7 in the interval [o,7]. By
Lemma cross(ny) — cross(my) = 1 and n; = (4,7)n2(7, ) for some 7,5 € [2n].
Since P(0) = P(7) by Lemma we have that P(17) = P(n) = P(n2). Thus
the transposition (7, 7) must exchange either two N steps or two E steps. We may
assume (i, 7) exchanges two E steps by replacing this transposition with (92(7), 72(7))
if necessary. The effect on the permutation m(rn,) is multiplying on the left by a
transposition, namely (', ;') assuming it was the ¢th and j'th E steps exchanged.
Thus, 7 () is obtained from 7 (1) via a single transposition and Lemma [2.2.2] shows
that this transposition creates one inversion. Thus, m(n;) = m(n2) in Bruhat order.
Consider applying a transposition (i,7) to the permutation @ = (o) such
that inv(m) — inv((¢, 7)7) = 1. Since the transposition (7, j) removes an inversion
it necessarily moves the larger of the two between ¢ and j rightward in 7. Since
the larger element is moved rightward we have that (i, j)m(i) < h(P);. Thus the
labeled Dyck path (P, (i, j)m) defines a pairing. By continuing in this manner every
permutation 7’ such that ¢ < 7’ < 7 defines a pairing from the labeled Dyck
path (P, 7). Furthermore by the same reasoning as above applying a transposition
to a permutation 7’ corresponds to exchanging two E steps in the labeled Dyck
path (P,7’) and removing an inversion of 7’ creates a crossing in the pairing.
Therefore, the inverse map is cover reversing as well. O

We now proceed to examine this bijection with labeled Dyck paths on the atoms
in UC,, that is, the pairings on [2n] with no crossings. Noncrossing chord diagrams
are a classical Catalan object. When restricted to pairings with no crossings the
map 7 — P(7) is a bijection onto the set of Dyck paths with 2n steps. To verify this
one can check that the inverse map is as follows. Given a Dyck path P = Py, ..., P,
construct a pairing 7 on the steps of P by pairing each E step from left to right to the
first IV step preceding it which is not already paired. This clearly has no crossings:
if i < j < 7(i) then i < 7(j) < 7(i) as if P; is an E step then it is paired to an
element greater than 7 since ¢ is paired to a step after P;, and if P; is an N step
then 7(j) < 7(i) as otherwise 7(i) would be paired to j.

Since the map 7 +— (P(7),7n(7)) is a bijection and when considering atoms the
map 7 — P(7) is a bijection, we have that the map 7 — m(7) is a bijection between
pairings with no crossings and some subset of permutations. This gives a bijection
between Dyck paths and this subset of permutations by defining 7(P) to be the
permutation 7(7) where 7 is the pairing with no crossings satisfying P(17) = P.
Lemma tells us that the permutation 7(P) has the most inversions among
permutations o satisfying o(i) < h(P); for i = 1,...,n. Thus we can explicitly
construct m = 7(P) by defining

(i) =max ({z € [n]\ {m(1),...,7(i = 1)} : @ < h(P);}).

We use this description below to show that this map P + w(P) is a bijection
between Dyck paths and 312-avoiding permutations. A permutation 7 is said to have
an occurrence of 312 when there are indices i < j < k such that 7(j) < (k) < 7(i). A
permutation is said to be 312-avoiding when it has no occurrences of the pattern 312.
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Figure 2.3: The bijection between atoms of the uncrossing poset UC3 and the five
Dyck paths with 6 steps.

The class of 312-avoiding permutations, and more generally o-avoiding permutations
for any o € &3, are a classical Catalan object [32].

Lemma 2.2.5. The map P — 7w(P) defined above is a bijection between Dyck paths
with 2n steps and 312-avoiding permutations of [n].

Proof. For any permutation m € &, define h(w) to be the sequence defined
by h(m); = max{m(l),...,m(i)}. Note that h(m) is a nondecreasing sequence
and h(m); > 4, hence it is the height sequence of some Dyck path. Define P(7) to be
the Dyck path P with h(P) = h(m).

Let m = w(P) for some Dyck path P. As discussed above we have

(i) =max ({z € [n]\ {m(1),...,7(i = 1)} : 2 < h(P);}).

For each index i where P achieves a new height, that is, h(P); > h(P);_1, we must
have (i) = h(P); since w(j) < h(P); < h(P); for j < i. Hence the successive
maximums of 7, that is, the terms of the sequence h(r);, are exactly the heights h(P);
of the path P. Therefore P(w(P)) = P.

Let m be a 312-avoiding permutation. To show that 7(P(7)) = m we must show
that, setting h = h(m), we have

7(i) = max ({z € [n) \ {m(1),...,7(e = 1)} : x < h;}).

Suppose for some index j that m(j) is not this maximum, that is, there exists an
index k > j such that w(k) > 7(j) and (k) < h;. Clearly we cannot have 7 (j) = h;,
hence there exists an index ¢ < j where 7(i) = h;. Observe that (i) > (k) > 7(j)
hence we have an occurrence of 312 in 7. Since 7 is 312 avoiding we then must have
that 7(7) is this maximum hence 7(P(7)) = 7. O
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This bijection allows us to establish the following decomposition for the uncrossing
poset. To state this decomposition, given a Dyck path P define UC,(P) to be the
subposet of the uncrossing poset UC,, consisting of all pairings 7 with P(7) = P.

Proposition 2.2.6. The uncrossing poset UC,, decomposes as a disjoint union con-
sisting of the minimal element and the subposets UC,,(P), that is,

UC, = {0y ulJ, UC.(P).

Furthermore, for all Dyck paths P the subposet UC,,(P) is an interval of UC,, and is
anti-isomorphic to the lower interval of Bruhat order on the symmetric group gener-
ated by the 312-avoiding permutation m(P).

Proof. The fact that the subposets UC,(P) are disjoint and their union is UC,, is
evident. Let 7 be the atom corresponding to the Dyck path P. The identity per-
mutation id certainly satisfies id(z) < h(P);, so there is a pairing o whose labeled
Dyck path is (P,id). The interval [, o] is included in UC,(P). Conversely given
any pairing n with P(n) = P one can resolve all crossings with transpositions that
exchange two E steps in the labeled Dyck path. This results in a pairing with no
crossings whose associated Dyck path is P, hence n > 7. We also have n < o
since applying transpositions to 7(n) to remove all inversions results in the iden-
tity permutation, and these transpositions correspond to applying E, E swaps to 7
resulting in the pairing o. Therefore UC,, = [, 0] as claimed. This interval is anti-
isomorphic to the interval [id, w()] by Proposition [2.2.4 Lemma shows that
the permutation (1) is 312-avoiding. Given any 312-avoiding permutation m Propo-
sition and Lemma show that the interval [id, 7] is anti-isomorphic to the
interval [7,0] in UC,, where 7 has labeled Dyck path (P(7),7) and o has labeled
Dyck path (P(r),id). ]

Figure depicts the decomposition of the uncrossing poset UC3 and Figure
in Appendix [A] depicts the decomposition of the uncrossing poset UC,.

It can be seen from Lemma that the bijection between Dyck paths and 312-
avoiding permutations sends the area statistic of a Dyck path

zi:h(P)i = (Z) —inv(P)

to the inversion number of the associated permutation. This area statistic is the
rank of the path in dominance order, so the bijection sends the rank function of
dominance order to the rank function of Bruhat order. We show below that in fact
this bijection is a poset isomorphism between dominance order on Dyck paths and
Bruhat order on 312-avoiding permutations. The result that dominance order on
Dyck paths is isomorphic to Bruhat order on 312-avoiding permutations was first
shown in [2] Theorem 5.1 using a map passing through noncrossing partitions. We
first need the following lemma

Before this we discuss the map 7 + h(m) defined in the proof above. It gives the
nearest 312-avoiding permutation above 7.
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Figure 2.4: The decomposition of UC;3 into 312-avoiding permutation lower intervals.

4

Proposition 2.2.7. Let m,0 € &, be permutations with © 312-avoiding. We
have o < 7 if and only if h(o); < h(w); fori=1,... n.

Proof. Set P = P(m). Let 7 be the pairing whose labeled Dyck path is (P, 7). Let n
be the pairing with labeled Dyck path (P,id). There exists a pairing with labeled
Dyck path (P, o) if and only if h(P); = h(w); > o(i). By Proposition we
have o < 7 if and only if there exists a pairing with labeled Dyck path (P, o). O

We note as a curiosity that the above result may be restated as that the
maps 7 — h(m) and P — 7(P) form a Galois correspondence between &,, and dom,,.

Corollary 2.2.8. The poset of 312-avoiding permutations under Bruhat order is
isomorphic to dominance order on Dyck paths via the map m+— P(m).

Proof. Applying Proposition with both ¢ and 7 as 312-avoiding permutations
shows that ¢ < 7 if and only if P(o) < P(7). O

Surprisingly our bijection between 312-avoiding permutations and Dyck paths is
also an isomorphism between two other classical partial orderings of permutations
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Figure 2.5: A schematic depiction of a cover relation of the poset AN,,.

and Catalan objects, namely the weak order on &,, restricted to 312-avoiding per-
mutations and the Tamari lattice of binary parenthesizations of n + 1 symbols. The
Hasse diagrams of the weak order on 63 and &, are depicted in Figures and [A7]
in Appendix [A] The fact that these posets are isomorphic was shown by Bjorner and
Wachs in [14] Theorem 9.6].

The Tamari lattice T}, consists of all ways to parenthesize a product of n + 1
symbols, with the entire product enclosed in one pair of parentheses. Cover relations
correspond to applying the associative law moving a pair of parentheses rightwards.
Schematically, covers have the following form.

) ) ) = ) () )

The Hasse diagrams of the Tamari lattices T3 and T, are depicted in Figures
and [A§]in Appendix [A]l Recall binary parenthesizations on n+ 1 symbols are in bijec-
tion with Dyck paths with 2n steps. Given a binary parenthesization, the associated
Dyck path has NE word obtained from the parenthesization by replacing multipli-
cation symbols - with NV and end parentheses ) with F and removing the remaining
symbols.

To show that the map m — P(m) is an isomorphism between weak order on 312-
avoiding permutations and the Tamari lattice, we use the following intermediate poset
defined on pairings. Given a pairing 7 two arcs i, 7(i) and j, 7(j) are said to be aligned
if i < 7(1) < 7 < 7(j) and said to be nested if 1 < 7 < 7(j) < 7(i). The align-nest
order AN, is the poset consisting of the pairings on [2n] that have no crossings. We
have a cover relation o < 7 in AN,, when there are aligned arcs i,0(i) and j,o(j)

with j = o(i)+1 and 7 is obtained from o by moving o (i) to the position immediately
following o(j). See Figure 2.5

Theorem 2.2.9. The map T +— P(7) is an isomorphism between the poset AN,
and the Tamari lattice T,, and the map 7 — 7(T) is an isomorphism between the
poset AN,, and the weak order on 312-avoiding permutations in &,,.

Proof. The pairing with no crossings corresponding to a Dyck path is obtained by
preceding left to right and pairing each E step to the first N step to its right which
is as of yet unpaired. Observe that in terms of the associated parenthesization the
associated pairing is the one that pairs each right parenthesis with the corresponding
multiplication symbol.
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A cover in the Tamari lattice corresponds to moving rightwards a right paren-
thesis which is immediately followed by the symbol - to the position immediately
after the right parenthesis corresponding to this multiplication symbol. This exactly
corresponds to a cover in the poset AN,,. Let 7 be the pairing corresponding to the
lower parenthesization in the cover from the Tamari lattice. Let ¢ be the index such
that 7(7) is the index of the moved right parenthesis, when not indexing occurrences
of left parantheses, and let j = 7(i) + 1. Then the arcs ¢, 7(7) and j, 7(j) are aligned,
and moving the end parenthesis rightwards corresponds to moving 7() to the posi-
tion immediately following 7(j). Thus the associated pairings form a cover in AN,,.
Conversely the conditions for a cover in AN, translate to the conditions for a cover
in the Tamari lattice formed by the associated parenthesizations. Since the cover
relations are in bijection we have that AN, is isomorphic to the Tamari lattice of
order n.

We have that m; < 7 in the weak order on 312-avoiding permutations if there is

a sequence tq,...,t; of simple transpositions such that mo = mt; - - - t4, no permuta-
tion mt; - -t is 312-avoiding and setting to = id we have inv(mto - - -¢;) < inv(m)
for e = 1,...,k. Consider a permutation 7 that has a 312-pattern, and a pairing 7

such that w(7) = m. There are indices ¢ < j < k such that k < 7(k) < 7(i) < 7(j).
Observe that the arcs i,7(:) and j,7(j) cross, and each nests over the arc k,7(k).
Conversely given a pairing with three arcs, two of which cross each other and nest
over the third, there is a 312-pattern in the associated permutation. Applying the
transpositions ¢, to the permutation corresponds to moving 7(i) in the pairing to
the position immediately following the next point corresponding to an E step of the
Dyck path. Note that if moving the point 7(¢) in this way creates a crossing that
the crossing arcs necessarily nest over a third arc. This sequence of transpositions
corresponds to a cover in the weak order precisely when every intermediate permuta-
tion has a 312-pattern, hence precisely when every intermediate pairing obtained by
the corresponding swaps has a crossing. The intermediate pairings all have crossings
when the sequence corresponds to a cover in the poset AN,,. Therefore the covers of
the weak order on 312-avoiding permutations are in bijection with the covers of the
poset AN,,, hence these posets are isomorphic. O

2.3 Noncrossing Partitions

Noncrossing partitions are a classical object enumerated by the Catalan numbers and
thus the atoms of UC,, are in bijection with the noncrossing partitions of [n]. A bi-
jection between these two objects arises quite naturally when viewing the uncrossing
poset in terms of electrical networks as discussed in Section To every non-
crossing partition we have an associated cactus graph with no edges. This graph is
formed by identifying the elements of each block of the partition. Conversely, every
cactus graph with no edges is associated to a pairing with no crossings. This bijection
for n = 3 can be seen from the atoms in the poset depicted in Figure 2.8 This bijec-
tion can also be viewed as taking a noncrossing partition to the pairing represented
by the medial diagram used in the construction of the Kreweras complement; see
Figure |1.11}

31



In this section we show that this bijection injects the Hasse diagram into the regu-
lar CW complex I'(UC,,) that has face poset isomorphic to the uncrossing poset UC,,.
We then use this result to show that the automorphism group of the uncrossing poset
is the dihedral group.

We will need the following observation.

Lemma 2.3.1. Every pairing 7 € UC,, lies above a unique set of atoms.

Proof. This follows from results in Lam’s paper [36]. Lam associated to each cactus
network a set of noncrossing partitions called an electroid which only depends on
the electrical equivalence class. In [36, Theorem 5.28] Lam showed the electroid
associated to a pairing 7 is the set of noncrossing partitions which correspond to an
atom in a € UC,, with a < 7. Corollary 5.33 in [36] says that we have 71 < 75 in UC,,
if and only if the associated electroids & and & satisfy & C &. Therefore no two
distinct elements have the same electroid. O]

Recall the 1-skeleton of a regular CW complex is the subcomplex consisting of
the cells of dimension at most 1, that is, the vertices and the edges.

Proposition 2.3.2. For n > 3 the 1-skeleton of the CW complex T'(UC,,) and the
Hasse diagram of the lattice NC, are isomorphic as graphs.

Proof. Given a pairing 7 with no crossings let p(7) be the associated noncrossing
partition obtained as the cactus graph from any reduced medial graph of 7. We extend
this bijection to a bijection between edges of the Hasse diagram of A'C,, and rank 2
elements of the uncrossing poset UC,,. Observe that each pairing with one crossing
has one associated critical cactus graph. This critical cactus graph has a single edge,
and this edge has two distinct vertices lying on the boundary. The edge corresponds to
the crossing of 7. Given a pairing T with one crossing we associate two partitions p(7)
and ¢(7). Let G be the critical cactus graph associated to 7. The partition p(7) is the
cactus graph obtained by deleting the edge of GG, and the partition ¢(7) is the partition
obtained by contracting the edge of G. Observe that ¢(7) is obtained by merging two
blocks of p(7), namely the vertices of G connected by an edge, hence p(1) < ¢(7)
in N'C,,. Conversely, given a cover relation p < ¢ in N'C,, form a cactus graph G whose
boundary partition is p and which has an edge between the two vertices corresponding
to the two blocks of p merged to form ¢. This procedue is a bijection between cover
relations of A'C,, and critical cactus graphs with a single edge, hence between cover
relations and pairings with a single crossing. Furthermore the two elements of the
cover relation are taken to the two atoms in UC,, below the corresponding pairing
with a single crossing. O]

Figure shows the noncrossing partition lattice N'C4 with elements labeled by
edgeless cactus graphs and the Hasse diagram edges labeled by cactus graphs with a
single edge.

The above result can be used to describe the automorphism group of the uncross-
ing poset. Recall that the group of skew automorphisms of the noncrossing partition
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Figure 2.6: The noncrossing partition lattice N'C, labeled with cactus graphs. The
Hasse diagram is isomorphic to the 1-skeleton of I'(UCy).

lattice N'C,, is isomorphic to the dihedral group Dy, via the action of Dy, on the 2n
points forming the partition and its Kreweras complementation as in Figure [1.11]

Proposition 2.3.3. For n > 3 the automorphism group of the uncrossing poset UC,,
is isomorphic to the dihedral group Dy, via the usual action on the 2n points of medial
diagrams.

Proof. The action of Dy, on medial diagrams is clearly an automorphism of UC,, for
all group elements. It remains to be seen that any automorphism of UC,, may be
realized as an element of D,,,.

Let ¢ be an automorphism of UC,,. The map ¢ induces a graph automorphism
of the 1-skeleton of the CW complex I'(UC,,), hence by Proposition a graph
automorphism of the Hasse diagram of NC,,.

We claim that this graph automorphism of the Hasse diagram of NC, is in fact
a skew automorphism of NC,. We denote the map on NC, induced by ¢ by ¢
as well. To prove the claim it will suffice to show that the image under ¢ of the
finest partition 1/2/--- /n is either itself or the coarsest partition 12---n. Once this
is established, it follows that ¢ either preserves or reverses all cover relations: any
cover relation lies in some maximal chain which under ¢ maps to a path between the
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minimum and maximum elements of N'C, of the same length hence the path must be
either strictly ascending or descending since N'C,, is graded.

Recall the ordering <; on [n] is defined by i <; i +1 <; --- <; i — 1. To
prove the claim, first consider a pairing 7 with no crossings with indices i, j, k such
that j <; 7(i) <; 7(j) <; k <; 7(k). The arcs (i,7(z)) and (k,7(k)) cannot be
crossed without also introducing a crossing between the arcs (j,7(j)) and (k, 7(k)).
Thus no such pairing can be covered by (g) elements. A pairing without such a
triple of indices must either have no nestings or one arc that nests over all the other
arcs with no nestings inside the outermost arc. These two situations correspond
to the pairings (1,2)---(2n —2,2n — 1) and (2n — 1,1)---(2n — 3,2n — 2). Since
the pairing (1,2)---(2n — 1,2n) has no nested arcs any two arcs can be crossed
without creating a second crossing, this pairing is covered (g) elements. Since the
pairing (2n—1,1) - - - (2n—3, 2n—2) is a rotation of the pairing (1,2) - - - (2n—2,2n—1),
it is also covered by (72‘) elements.

Having proven the claim we have established that the graph automorphism ¢ act-
ing on the Hasse diagram of N'C, is in fact a skew automorphism of the lattice NC,.
Thus we have a map from the automorphism group of UC,, to the dihedral group D.g,,.
This map is in fact an injection, the image of any element of UC,, under an auto-
morphism is determined by the images of the atoms by Lemma [2.3.1] hence by the
corresponding skew automorphism of NC,. On the other hand the action of Dy,
on UC, injects Dy, into the automorphism group of UC, and hence by finiteness
these injections are in fact bijections. O]

2.4 Lower interval structure of the uncrossing poset

In this section we study certain lower intervals of the uncrossing poset. We classify the
cubic lower intervals of UC,, and describe a construction for some slightly more com-
plicated lower intervals in terms of Reading’s zipping operation. Our investigations
here motivate the content of Chapters [3] and [4]

Let 7 € UC,, be a pairing and choose a critical cactus graph G corresponding
to 7. Recall that resolving a crossing locally in the medial diagram associated to G
corresponds to deleting and contracting edges of G. We use the graph G to define
a map from the face lattice Q)x of the k-dimensional cube where k is the number
of edges of G onto the lower interval [6, 7]. The face lattice @ is isomorphic the
poset {0, 1, %}E(S U {0} with componentwise order induced by the order 0 < * > 1.
We define ¢ : Q, — [0, 7] on faces F € {0, 1, *}E(© by letting ¢¢(F) be the pairing
associated to the cactus graph obtained by contracting all edges of G which index a 1
in F and deleting the edges which index a 0 in F. We also define ¢¢(0) = 0.

Lemma 2.4.1. Let 7 € UC,, be a pairing with k crossings and let G be a critical
cactus graph representing 7. The map ¢ : Qr — [0,7] defined above is an order-
preserving surjection. Furthermore we have o1 < 09 < 7 in UC,, if and only if for

all F € Qy with ¢(F') = oy there exists some Fy < F with ¢(Fy) = 0.

Proof. Let M be the medial graph associated to G. Since resolving crossings in a
medial diagram corresponds to deleting and contracting edges in the corresponding
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cactus graph, the image under ¢g of any face is a pairing in the interval [0, 7]. Fur-
thermore ¢¢ is order-preserving. To show that ¢ is surjective, let o < 7 in UC,,.
Choose a saturated chain 0 = 0y < 0y < -+ <0, = 7. Fori =1,...,r there is a
transposition (x;,y;) such that o;_1 = (2, v;)0;(x;, y;). Since the transposition (x,, ;)
resolves exactly one crossing of 7, locally resolving the crossing in the corresponding
way in the medial graph M of 7 does not create any pair of arcs crossing more than
once. This resolution does not create any loops either since the medial graph M has
no pair of arcs that cross more than once. The same argument now applies to o,_1,
so continuing in this manner we have a sequence of crossing resolutions which take
the medial diagram M for 7 to a medial diagram for o. These crossing resolutions
correspond to deletion and contraction of edges of the graph GG hence to a chain in Q.
Thus o is in the image of ¢¢.

Let 07 < 09 In [6, 7], and let ¢g(F) = o5. Consider the cactus graph H which
is obtained from G by performing the deletions and contractions as indicated by F.
If H is critical then the map ¢y is an order-preserving surjection onto [6, o9]. Let F}
be a face of the cross(os)-dimensional cube such that ¢ (Fy) = 01. Now observe that
the entries of F correspond to the * entries of F' and that the image ¢y (F7) is the
image under ¢ of the face obtained from F' by setting the x entries to either 0,1
or x as indicated by Fj.

To finish the proof we claim that every cactus graph has a minor which is critical
and has the same associated pairing. If deleting and contracting any edge of a cactus
graph H results in a cactus graph H' with 7(H') # 7(H) then every edge of H
corresponds to a crossing of 7(H ) hence H is critical. Otherwise, there is a minor H’
of H with 7(H') = 7(H). The minor H' has fewer edges than H so the claim follows

by induction on the number of edges. O

Lemma 2.4.2. Any pairing has at most one associated cactus graph which is critical
and has no internal vertices.

Proof. Let 7 be a pairing and let G be an associated critical cactus graph with no
internal vertices. Let £ be the set of partitions that correspond to an atom a < 7.
We show that the set £ determines the edges of G. Each partition in £ is obtained
as the boundary partition of a contraction by some set of edges of G. Hence this
set has a unique minimal element, namely the boundary partition of G. Let p be
this minimal element. For every edge e of G we have a partition p. which is the
boundary partition of G//e. Note that p. = p in NC, since p, is obtained by merging
in p the two blocks corresponding to the vertices of e. On the other hand if we have
any partition ¢ > p in £ then there is some set of edges of G which when contracted
results in a cactus graph with boundary partition ¢q. Since ¢ > p only two vertices were
identified in this contraction so the set of edges consists of a single edge. Therefore,
the partitions ¢ > p in £ are in bijection with the edges of G. Of course the edges of
a simple graph determine the graph, so there can only be one critical cactus graph
for 7 with no internal vertices. O]

Theorem 2.4.3. Given a cactus graph G, the map ¢q is injective if and only if G is
acyclic and has no internal vertices.
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Proof. First suppose that G has a cycle C. Let H be the result of deleting all edges
of G not contained in the cycle C' and contracting all but 2 edges of C. The edges
of H form a 2-cycle and thus deleting either edge results in a cactus graph with
the same associated pairing as H. Choosing faces on the cube which correspond to
these sequences of deletions and contractions we see that ¢g is not injective. Now
suppose G has an internal vertex. Since GG is a cactus graph there is an edge e incident
to this internal vertex. Consider the subgraph H of G whose only edge is e. The
pairing associated to H and the pairing associated to the result of deleting all edges
of G are the same. Thus, we see ¢¢ is not injective.

Every pairing ¢ < 7 has some associated cactus graph which is a minor of G.
Every minor of GG is acyclic and has no internal vertices. This observation implies
the minors are critical as well. By Lemma it remains to be seen that for every
minor H of G there is only one representation as an unordered sequence of deletions
and contractions applied to G. This follows from the fact that G is acyclic. For every
pair of vertices v and w of G which are identified in H there is exactly one path from v
to w in G and this path must be contracted to form H. Every contraction of G is
acylic, hence in particular has no 2-cycles or loops. This implies that the choice of
edges to delete in order to form H is unique. ]

A~

Corollary 2.4.4. Given a pairing T € UC,, the lower interval [0, 7] is isomorphic to
the face lattice of a cube if and only if in a reduced medial diagram for T every region
borders the boundary of the disc.

Proof. 1t will suffice to show there exists a cactus graph G for 7 such that ¢q is
injective. Lemma then implies that the inverse map is order-preserving. We
show that there exists a reduced medial diagram of 7 with every region bordering the
boundary of the disc precisely when there exists a cactus graph for 7 which is acyclic
and has no internal vertices.

Consider the construction of the cactus graph from the medial diagram. The
regions in the medial graph are two colored black and white and every black region
contains a vertex of the cactus graph. A region R that does not border the disc
corresponds to a sequence iy, %9, ..., %, 11 of crossings in the medial diagram. Every
intersection of arcs in the medial diagram lies in four regions, two are colored black
and two are colored white. The sequence of intersections has the property that 4,
and ;41 are both contained in a region R; of the opposite color of the region R
for j = 1,...,k with the indices taken modulo k. If the regions R; are colored
black then they each have a vertex, and since R; and R;; share a crossing they are
connected by an edge in the cactus graph. Thus, in this case we have a cycle in the
cactus graph. If the regions R; are colored white then the region R is colored black
and thus the cactus graph has an interior vertex.

Conversely, if the cactus graph has an interval vertex then this corresponds to a
region of the medial diagram. Furthermore this region does not border the bound-
ary simply because otherwise the corresponding vertex would be a boundary ver-
tex. Now suppose there is a cycle in the cactus graph. There exists a cyclic se-
quence Ry, ..., Ry, Ry of regions where R; and R;;; share a crossing for j = 1,..., k.
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Figure 2.7: A lower interval of the uncrossing poset UC, that is isomorphic to the
face lattice of the 3-dimensional cube.

There is a portion of an arc from the medial diagram which connects the two crossings
of each region R; which are shared with R;_; and R;;;. Connecting these arc por-
tions together the medial diagram contains a closed loop consisting of arc portions.
This closed loop may not be the boundary of a region in the medial diagram, but it
must enclose one, hence the medial diagram contains a region which does not border
the boundary. O]

Figure shows a lower interval of the uncrossing poset UC, that is isomorphic
to the poset ()3.

Expanding our scope to somewhat more complicated lower intervals, we consider
a lower interval generated by any pairing with a cactus graph representation that
has no internal vertices has a nice description in terms of the cactus graph. For the
proof below given a pairing 7 define £(7) to be the set of noncrossing partitions that
correspond to some atom a of UC,, with a < 7.
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Proposition 2.4.5. Let 7 be a pairing with an associated cactus graph G which has
no internal vertices. The lower interval [0,7] is isomorphic to the poset of simple
minors of the cactus graph G.

Proof. First we claim that every pairing ¢ < 7 has a single associated cactus graph
which is simple and a minor of 7. By Lemma [2.4.2| there is at most one critical cactus
graph with no internal vertices associated to 0. We show that any simple minor of G is
critical. Suppose that H is a minor of G and for some edge e of H that the associated
pairings 7(H ) and either 7(H/e) or 7(H \ e) are the same. The vertices of e must be
on the boundary so if they are distinct the boundary partition of H/e is not the same
as the boundary partition of H. Since the boundary partition of an associated cactus
graph is the minimal partition of the set £(o), if 7(H/e) = 7(H) then we must have
that e is a loop. The elements of £(o) are the partitions of the boundary vertices
obtained by contracting some subset of edges in H. Thus if 7(H) = 7(H \ e) then
there is a second path between the two vertices of e which only contains these two
boundary vertices. Since H has no internal vertices this second path must consist of
a single edge, hence H has an edge parallel to e. Therefore, if H is simple it must be
critical.

The map ¢ is a surjection so every pairing o < 7 has an associated cactus graph
which is a minor of G, and one may take this minor to be simple. Since this simple
minor is critical, every pairing o < 7 has exactly one associated simple cactus graph
which is a minor of G.

Let H; and H, be simple minors of G. On the one hand if H; is a minor
of Hy then 7(H;) < 7(Hz). On the other hand suppose that 7(H;) < 7(H,). By
Lemma there exists a minor H of Hy such that 7(H) = 7(H;). Since Hy has no
internal vertices neither does H, and we may assume that H is simple since simpli-
fications do not change the associated pairing. It has been established that there is
precisely one simple cactus graph with no internal vertices associated to 7(H;) so it
must be that H = H;. Therefore H; is a minor of Hy when 7(H;) < 7(H3). O

Figure depicts the poset of simple minors of a 3-cycle graph, which is isomor-
phic to the uncrossing poset UCj.

We describe in detail one class of lower intervals beyond those isomorphic to the
face lattice of a cube. This being the next simplest lower intervals, namely, those
generated by a pairing which has an associated cactus graph which is a cycle with no
internal vertices.

Recall that a zipping operation identifies three elements x,y and z in a poset P
such that the following three conditions hold.

(i) The element z only covers the elements = and y.
(ii)) {peP:p<z}={peP:p<y}.
(iii) The element z is the join of x and y.

If P is a thin poset, that is, all length 2 intervals form a diamond, condition (ii) above
follows from thinness and condition (i). Furthermore if P is graded and thin then so
is the zipped poset.
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Figure 2.8: The poset of simple minors of a 3-cycle cactus graph.

Proposition 2.4.6. Let 7 be a pairing with an associated cactus graph G which is a
cycle with no internal vertices. The lower interval [0, 7] in UC,, is isomorphic to the
face poset of the reqular CW complex obtained from the cube of dimension cross(T)

by first zipping all edges incident to a chosen vertex then zipping any 2-gons formed.

Proof. We first establish that the only vertices identified by the map ¢g are those
incident to the vertex (1,...,1) which corresponds to contracting all edges of G.
Contracting all edges but one in the cycle G and deleting the remaining edge results
in the same graph as contracting all edges so indeed ¢g does identify all vertices
incident to the vertex (1,...,1).

Consider the images under ¢¢ of vertices v; and vs of the cube that each have
at least two 0 entries. The vertices of G are ordered 1,...,n. We order the edges
as 12,23,...,nl. Let e;; and ejp be the first two edges of G corresponding to 0
components of v1. Similarly define e5; and egs. The edges e1; and eq5 divide G into two
components, one of which consists of edges contracted to form ¢¢(v;), and the other
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may have edges not contracted but certainly is not identified with the first component.
If the edge pairs {ej1,e12} and {ea1, ex2} are not the same then the images ¢¢g(vy)
and ¢g(vy) cannot be the same since the aforementioned components of G for v,
and vy are not the same. Now suppose that these two edge pairs coincide. Consider
the graph H = G \ {e11,e12} and the map ¢py. If v] is the vertex obtained from v;
by removing the components corresponding to e;; and ejs then the images ¢g(vy)
and ¢y (v]) agree. If we similarly define v} then ¢p(v)) = ¢g(ve) as well. The
graph H is acyclic and has no internal vertices so ¢y is injective by Theorem [2.4.3]
Thus if ¢g(v1) = ¢c(ve) then v| = v} which implies that v; = vy. Therefore ¢ only

identifies the vertices incident to the vertex (1,...,1).
It remains to be seen that the identifications can be done via the prescribed
sequence of zipping operations. Let v = (1,...,1) and let vy, ..., vq be the vertices

on the d-dimensional cube incident to v, where d = cross(7). We first must show that
each edge from v to v; is a zipper in the poset P;_; obtained from the face lattice Q4
of the d-dimensional cube by identifying v with vq,...,v;_1. The edge from v to v;
only covers v and v; in P;_;. Furthermore this edge is the join v V v; in Q4. Observe
the set of elements above v; in P;_; is the same as in ); hence the edge between v
and v; is still the join v V v; in P;_1. Since )y is graded and thin so is P;_; and this
establishes that this edge is a zipper.

Let Ry be the poset obtained from @)y by zipping all edges incident to v. To
construct [6, 7] we must now identify all cells whose vertex sets are the same. Observe
each of the (g) faces of dimension 2 which contain v are 2-gons in Ry. Hence such
faces must be zipped, identifying them along with the two edges making up the cell’s
boundary. Any 2-dimensional face of the cube is the join of two of its edges. Since
the zipping operations performed to construct Ry have not identified any edge not
incident to v to any other face, the faces which contain said edges are the same as
in ()4. Therefore the 2-dimensional faces in Ry which contain the vertex v are each
the join of their two edges.

Order the 2-dimensional cells Cf, ..., C(g‘) of Ry which contain the vertex v via

lexicographic order on the pair of vertices v;, v; incident to v that the 2-cell contains.
We must show that C; corresponds to a zipper in the poset R; 1. Let R; be the poset
obtained from Ry by zipping the first ¢ of the 2-cells which contain v. Consider a 2-
dimensional face of the cube which contains the vertex v. Such faces are formed by
choosing two vertices v; and v; incident to v and the fourth vertex is the sum v+v; +v;
when considering the vectors as elements of ]FQE(G). No two of these 2-dimensional
faces share the fourth vertex of the form v; 4+ v; 4+ v, and thus do not share the two
edges incident to this fourth vertex. Let the vertices of C; adjacent to v be u and w,
thus the four vertices of C; in () are v,u, w,v + u + w. We have established that
the zipping operations to construct R;_; from ()4 do not change the upper interval
generated by either of the two edges e; with vertices u and v 4+ u + w and ey with
vertices w and v 4+ u 4+ w. Thus Cj is still the join of e; and e, in the poset R;_;. We
have already established that C; has only these two edges in R;_; hence C; indeed
corresponds to a zipper in R;_ ;.

What remains to be seen is that the cells C, ..., C(d) are the only cells of dimen-
2
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sion greater than one which are identified with another to construct [0, 7] from Q.
Consider a 2-dimensional face F' € Q4 which does not contain the vertex v. No two
vertices v; and v; adjacent to v in ()4 are connected by an edge so F' contains at
most one v;. Thus F' has three vertices which are in trivial fibers of ¢5. No two
distinct 2-dimensional faces of (), share three vertices so such a face F' is not iden-
tified with any other face of dimension at most two by the map ¢g. Any face F' of
dimension k£ > 3 in (4 contains at most k£ + 1 of the vertices v,vy,...,v4. Hence F
has 28 — (k 4 1) vertices which are in a trivial fiber of ¢¢. Let Vi be the subset of
the vertices of F' in a trivial fiber of ¢¢. Since no four of the vertices v, vy, ..., v4 lie
on a 2-dimensional face of ()4, for k = 3 the set Vi cannot form a face either. Thus,
no two 3-dimensional faces Fi, 5 agree on the vertex subsets Vi, , Vi, and must have
distinct images under ¢¢. For k > 4 since |Vp| > 28 — (k + 1) > 2871 the vertices
in Vi do not form a face, and we reach the same conclusion. This establishes that
the described zipping operations indeed identify all faces in the same fiber of ¢g. O

Recall the cd-index, defined in Section[L.5] is a polynomial in the noncommutative
variables ¢ and d which enumerates the chains of a poset in a very compact manner.
From this zipping construction and Theorem we derive a formula for the cd-
index of pairings represented by a cactus graph which is a cycle with no internal
vertices in terms of the cd-index of the cube and of Boolean algebras.

Proposition 2.4.7. Let 7 be a pairing represented by a length k cycle cactus graph

with no internal vertices. The cd-index of the interval [0, 7] of the uncrossing poset
1S given by

W(0.7) = Q0 — k- W(Be) — (3 )ed - 0B

Proof. First observe that in the construction of Proposition the first k£ zipping
operations identify two vertices and an edge. The lower intervals generated by the
two vertices are each length 1 chains which have cd-index 1. Since these identifica-
tions all are done at the same rank and do not identify any two edges, the upper
intervals generated by edges remain the same throughout. The upper interval gen-
erated by any edge in the k-dimensional cube is the Boolean algebra Bj_;. Thus by
Theorem these first k zipping operations on the level of cd-indices amount to
subtracting kd - V(B;_1) in total.

Now consider the last (g) zipping operations, each of which identifies a 2-
dimensional cell with its two edges. The lower interval generated by an edge is
isomorphic to the Boolean algebra By which has cd-index c. The upper interval
generated by any of the (’;) 2-cells that are a part of one of the zipping operations
is the same as the corresponding upper interval in the k-dimensional cube. This is
because none of these 2-cells are identified by the zipping operations and none of the
zipping operations identify any cell of dimension greater than 2 with any other cell.
Therefore, at the time of zipping any of these 2-cells together with their edges the
upper interval generated by the 2-cell is isomorphic to the Boolean algebra Bj_;.
By Theorem in total these zipping operations amount to subtracting off the
term (5)ed - ¥(Bj_s) from the cd-index. O
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Figure 2.9: A cactus graph and a minor together with their lattice of flats.

One might hope to be able to extend the above construction beyond cactus graphs
which are a cycle by somehow carefully building up the complexity of the cactus
graph. Unforunately the complexity of the construction grows quite rapidly. When
moving from the simplest possible case, acylic graphs with no internal vertices, to the
next simplest possible case of a single cycle with no internal vertices the construction
already starts to require some delicacy. The case of a cactus graph consisting of two
cycles attached an edge with no internal vertices becomes quite difficult to work with
from the present perspective. The issue is that the smallest complexities we can add
to a graph, such as identifying two vertices to make a cycle, are in a sense too large.
What is needed is a way to refine this construction, a domain of objects containing
graphs through which we can pass forming intermediate steps between, say, an acyclic
graph and a cycle.

Recall that the flats of a graph G may be viewed as partitions of the vertices
which can be realized as the connected components of a subgraph of G, and that
these partitions form a lattice under reverse refinement order. When G is a cactus
graph with no internal vertices, these partitions are precisely the elements of the
atom set £(7(G)). We have already seen that for pairings o < 7(G) the set £(o) has
some structure to it as a subset of the lattice of flats of G. Namely that £(o) has
a minimal element under reverse refinement and that the elements which cover this
minimal element determine the entire set £(o).

Small examples indicate that these sets are closed under joins and that £(o) is
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the lattice of flats of the simple minor H of G with 7(H) = 0. See Figure These
examples also indicate that deletion and contraction operations on the cactus graph G,
with the results considered under electrical equivalence, correspond to removing and
joining by atoms in the lattice of flats. Thus, a natural larger domain of objects
within we may refine our previous construction is lattices.

For reasons that become apparent only with proper hindsight it is easier and in
some ways more natural to consider lattices enriched with the structure of a generating
set. Chapters |3| to [5| form a long digression in a theory of generator-enriched lattices
and deletion and contraction operations as an effort to generalize the construction of
Proposition and yield insights for all lower intervals [0, 7] of UC,, where 7 has
an associated cactus graph with no internal vertices. Along the way we find a theory
quite interesting in its own right.

Copyright© William Gustafson, 2023.

43



Chapter 3 Generator-enriched lattices, polymatroids and minors

3.1 Introduction

In this chapter we introduce a class of objects which provide a natural setting to
extend the construction of Proposition [2.4.6l Namely, the class of lattices enriched
with a generating set. The motivation to study lattices originates from the observation
that the minors of a cactus graph can be computed directly in terms of the lattice of
flats of the graph. It becomes clear that one needs to add the structure of a generating
set only after finding that the minor poset studied in Chapter [4 need not be Eulerian
when there is no structure of a generating set considered.

Generator-enriched lattices are closely connected with polymatroids. In this chap-
ter we discuss this connection. The main result is that generator-enriched lattices
correspond to closure operators of polymatroids in analogy to the correspondence
between geometric lattices and matroids. The precise statement is given in Theo-
rem[3.3.7 We describe how minors of polymatroid closure operators can be described
in terms of an associated generator-enriched lattice, and in Section define mi-
nors of generator-enriched lattices. In Theorem we show that minors of the
lattice of flats of a graph are in bijection with the simple vertex labeled minors of
the graph. This result connects the theory of generator-enriched lattice minors to the
lower intervals of the uncrossing poset studied in Section [2.4] In Theorem we

generalize this result to all polymatroids.

3.2 Background

Definition 3.2.1. A polymatroid on the ground set E is a function r : Bp — Rxg
satisfying the following conditions for all X, Y C E.

r(0) =0,
If X CY thenr(X) <r(Y),
r(XNY)+r(XUY)<rX)+rY).

—~~
w w
N

Condition is referred to as submodularity of the function 7.

Given a polymatroid r on E we say that an element e € E is a loop with respect
to r when r({e}) = 0. Two elements e, f € E are said to be parallel with respect
to r when r({e, f}) = r({e}) = r({f}). The parallel class of e with respect to r is
the collection of elements in £ which are parallel to e. A polymatroid is simple if it
has no loops and all parallel classes are trivial.

Our main interest in the present work is the closure operator of polymatroids.
The closure operator of a polymatroid » on F is the map = : B — Bpg defined
for X C E by

X={ecE:r(X)=r(XU{e}}
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The submodularity of r implies that r(X) = 7(X) for any X C E. Sets of the form X
are referred to as r-closed sets or flats of r. Edmonds showed that the set of flats
of a polymatroid is closed under intersection [2I, Theorem 25]. Since the set of flats
of a polymatroid is finite and has a maximal element, namely F, this implies that
the set of flats ordered under inclusion forms a lattice. The meet in this lattice is
intersection and the join is given by X VY = X UY.

Given a matroid r the closure operator uniquely determines r. For polyma-
troids this is not the case as the closure operator has no information about how
much the rank of sets may differ. For example, define a polymatroid on the ground
set £ = {1,2} by assigning rank value 1 to {1} and to {2} and assigning any rank
value in the interval (1,2] to the set {1,2}. The resulting closure operator is the
identity map on Bg regardless of the choice of the rank of {1,2}.

3.3 Polymatroids and generator-enriched lattices

We now introduce an object which will be seen to correspond to polymatroid closure
operators in the same way geometric lattices correspond to matroids.

Definition 3.3.1. A generator-enriched lattice is a pair (L, G) in which L is a finite
lattice and G C L\ {0} generates the lattice L via the join operation.

Note that if (L, G) is a generator-enriched lattice, the set G' necessarily contains
the set of join irreducibles of L which we will denote as irr(L). A generator-enriched
lattice of the form (L,irr(L)) will be said to be minimally generated.

A lattice is typically depicted via its Hasse diagram. The Hasse diagram is
not enough information to specify a generator-enriched lattice since it does not de-
scribe the generating set. Instead, a generator-enriched lattice may be depicted via
a diagram analogous to Cayley graphs for groups with a generating set. Given a
generator-enriched lattice (L,G) the associated diagram has vertex set L, and di-
rected edges (¢, V g) for ¢ € L and g € G such that ¢ # ¢V g. Just as with
Hasse diagrams all diagrams of generator-enriched lattices will be depicted so that
the edges are directed upwards. The diagram of a generator-enriched lattice deter-
mines the underlying lattice: the order relation ¢; < ¢35 holds when there is a directed
path from /¢ to £5 in the diagram. The minimal element 0 is the unique source vertex.
The generating set consists of the elements adjacent to 0. See Figure for examples
of diagrams of generator-enriched lattices. Additionally, Figure in Section
depicts the 10 generator-enriched lattices with 3 generators.

For every polymatroid we have an associated generator-enriched lattice.

Definition 3.3.2. Given a polymatroid r : E — R>( the generator-enriched lattice
of flats is the generator-enriched lattice (L, G) where

L={X:XCE}
G={{e}:ecE, r({e}) #0}.
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—)
—)
—)
—)

0 0 0 0
(a) (b) () (d)

Figure 3.1: In (a) is the Hasse diagram of a lattice L with irr(L) = {g, h,i}, and in
(b) is the diagram of the associated minimally generated lattice (L,irr(L)). In (c)
is the Hasse diagram of the Boolean algebra Bs, which is also the diagram of the
minimally generated lattice (Bq,{j, k}), and in (d) is the diagram of the generator-
enriched lattice (Bs, {J, k,T})

3 2
123 123
2 3 12 2 2
3 1 2
1 2 1 1 2
0 0
0 0

(a) (b) (c) (d)

Figure 3.2: In (a) and (c) are polymatroids, and in (b) and (d) respectively are the
diagrams of the generator-enriched lattice of flats.

See Figure|3.2| for examples of polymatroids and the associated generator-enriched
lattice of flats.

Let r and s be two simple matroids with lattice of flats L and K respectively.
A strong map between r and s is a map f : L — K which is join-preserving and
satisfies f(irr(L)) C irr(K)U{0x}. Strong maps between simple matroids were intro-
duced by Higgs in [29] and by Crapo independently in [I6]. The notion of structure
preserving maps between generator-enriched lattices defined below generalizes strong
maps between simple matroids.

Definition 3.3.3. Let (L,G) and (K, H) be generator-enriched lattices. A strong
map from (L,G) to (K, H) is a map f: L — K which is join-preserving and satis-
fies f(G) C HU{0x}. This will be abbreviated by saying that f : (L, G) — (K, H) is
a strong map.

A strong map f : (L,G) — (K, H) is said to be injective when it is injective as a
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map on the underlying lattices, and surjective when f(GU{0.}) = H U {0x}. Two
generator-enriched lattices are said to be isomorphic when there is a strong bijection
between them.

Strong maps between matroids may be equivalently defined in several ways, for
instance as join-preserving maps which also preserve the relation “covers or equals”;
see [16 Proposition 2]. This definition does not extend to the setting of generator-
enriched lattices, for example mapping atoms of a Boolean algebra to any elements
of a chain will induce a strong map which need not preserve covers.

Let (L,G) be a generator-enriched lattice and let £ be a ground set. Let %
denote the generator-enriched lattice (Bp, irr(Bg)). Given any map f : E — GU{0.}
we have an associated strong map F : Br — (L, G) defined by

F(x)=\/ f(a).

rzeX

for X C E. We refer to the map F' as the strong map induced by f.

A certain nonstandard definition of matroids is useful for our lattice theoretic view
of polymatroids. A matroid on a ground set E may be defined as a strong surjection f
from the Boolean algebra g onto a generator-enriched lattice of the form (L, irr(L))
for some geometric lattice L. In fact if one requires the map f to be strong in the
sense of Crapo [10], the image is necessarily geometric; see [I7, Proposition 9.12].
This view of matroids is briefly mentioned in [I7, pp. 9.8-9.9]. Accordingly, we now
turn our focus to strong surjections from Boolean algebras onto generator-enriched
lattices, and showing such maps are in bijection with polymatroid closure operators
(when the codomain generator-enriched lattice is considered up to isomorphism).

The following construction associates a closure operator to any strong surjection
from %p onto a generator-enriched lattice (L,G). This construction is standard in
the theory of Galois connections. Let 6 : Zr — (L, G) be a strong surjection. Define
a right-sided inverse ¢ to 6 by

o0)= |J X
(0

Xeo-1

The fact that fo¢ is the identity follows directly from the fact that 6 is join-preserving.
We define the closure operator associated to 6 to be the map cly = ¢po 6 : B — Bg.
One may associate a generator-enriched lattice (K, H) to such a closure operator by
setting

K ={cly(X): X C E},

and
H = {clp({e}) : e € E} \ {clp(D)}.
This generator-enriched lattice (K, H) is isomorphic to (L,G) via the isomor-
phism ¢ : (L, G) — (K, H), which has inverse ¢! = 0.
The following result says that a polymatroid can be equivalently defined as a
strong surjection from a Boolean algebra together with a strictly order-preserving
and submodular function with nonnegative real values.
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Proposition 3.3.4. Given a generator-enriched lattice (L,G) let 0 : Br — (L, G)
be a strong surjection. For any strictly order-preserving and submodular func-
tion r : L — Rso which maps 6L to 0, the composition r o 0 : By — Rsq s
a polymatroid whose generator-enriched lattice of flats is isomorphic to (L,G).
Furthermore the polymatroid is simple if and only if Oiw(By)uiey s injective.

Conversely, given a polymatroid s : B — Rso with generator-enriched lattice of
flats (L,G), let 0 : Br — (L,G) be the strong map induced by the map e — @.
There is a strictly order-preserving and submodular function r : L — Rso such
that s =ro#f.

Proof. Let s be the composition 7 o §. By assumption s(§) = r(0) = 0. The
maps 6 and r are order-preserving, hence s must be as well. To show that s
is submodular, let X and Y be subsets of E. Since 6 is join-preserving we
have s(XUY) = r(0(X)VE(Y)). On the other hand since 6 is order-preserving, the im-
age (X' NY') is a lower bound for both #(X) and §(Y'), hence (X NY) < (X)ANO(Y).
Thus s(XNY) <7(@(X)A0(Y)). Summing these two values results in the inequality

S(XNY)4+s(XUY) <r(@(X)NOY))+r@(X)VoY)).
Applying the submodularity of the function r leads to the inequality
sS(XNY)+s(XUY) <r@(X))+r0Y)) =s(X)+sY).

Therefore the function s is a polymatroid.

To show that the generator-enriched lattice of flats of s is isomorphic to (L, G),
it will suffice to show that the closure operator cly is the closure operator of s.
The closure of two sets X and Y with respect to s is the same if and only
if s(X) = s(XUY) = s(Y). Since r is strictly order-preserving, this holds if and only
if 6(X) = 0(Y), which holds if and only if clg(X) = cly(Y). By the same argument
we see that s has a loop or a nontrivial parallel class precisely when 0|z, U0} 18
not injective.

To prove the converse, consider a polymatroid s : By — R>y with generator-
enriched lattice of flats (L, G). Let 0 : B — (L, G) be the strong map induced by the
map e — {e}, and let 7 = s|;. If A C B € L are flats then s(A) < s(B) so r is strictly
order-preserving on L. Since AV B = AU B we have s(AV B) = s(AUB). Therefore
we have that r(AA B) +1r(AV B) = s(AN B) + s(AU B), which by submodularity
of s is less than or equal to s(A) + s(B). This of course equals 7(A) + r(B) so the
function r is submodular. O
Lemma 3.3.5. For any lattice L there exists a strictly order-preserving submodular

.

function r : L — Zso with r(0) = 0.

Proof. It will suffice to construct such a function with values in Qso. Afterwards
one can scale by a sufficiently large positive integer to clear denominators. Define a
function r : L — Qs by, for £ € L such that the largest chain in L from 0 to ¢ is
length k, setting r(¢) = 1 — 27%. The map r is strictly order-preserving and maps 0
to 0. To show r satisfies the submodularity condition, let z,y € L. It may be assumed
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that x A y is neither x nor y, otherwise the submodularity inequality holds trivially
for x and y. Let r(z) = 1 —27" and r(y) = 1 — 27™. It may also be assumed
that n < m. Observe that r(zAy) < 1—27"" and r(zVy) < 1. Adding these terms
gives,

rxAy)+r(zVy) <2-27"T1 <2 27" 27" = p(z) + 1(y).

Thus r is submodular and can be used to construct the desired function. O

It is known that every lattice is isomorphic to the lattice of flats of some polyma-
troid that is integer-valued. This result is attributed to Dilworth in 34 pp. 26] and
follows from Dilworth’s embedding theorem [18, Theorem 14.1], which states that any
finite lattice can be embedded into a geometric lattice. Below is a somewhat stronger
result.

Proposition 3.3.6. Fvery generator-enriched lattice is isomorphic to the generator-
enriched lattice of flats of some polymatroid, which may be chosen to have integer
values.

Proof. Let (L,G) be a generator-enriched lattice. By Lemmathere is an integer-
valued strictly order-preserving submodular function 7 on L. Let 6 : B¢ — (L,G)
be the strong surjection induced by the identity map on GG. By Proposition the
map r o 6 is a polymatroid whose lattice of flats is isomorphic to (L, G). n

Theorem 3.3.7. Let E be a set. A function from Bg to Bg is the closure op-
erator of a polymatroid if and only if it is the closure operator of a strong surjec-
tion 0 : Bg — (L, G) onto some generator-enriched lattice (L, G).

Proof. Let r : Bg — R>( be a polymatroid, and let (L, G) be the generator-enriched
lattice of flats of r. Let 6 : B — (L,G) be the strong map induced by the
map e — {e} from E to L. The image 6(X) is by definition

in other words, the smallest flat including m forallz € X. If Y is a flat including m
forall z € X, then Y D X. Taking the closure we have Y DO X. Thus, the image §(X)
equals the closure X. Since L C By the closure operator cly takes the same values
as 0 so we have shown that = = clp.

Conversely consider a generator-enriched lattice (L,(G) and a strong surjec-
tion 6 : B — (L,G). We wish to construct a polymatroid whose closure opera-
tor coincides with the closure operator cly of #. By Lemma there is a strictly
order-preserving submodular function r : L — R>(. By Proposition the func-
tion s = rof : B — R is a polymatroid on E. Furthermore the generator-enriched
lattice of flats of s is isomorphic to (L, G) via the isomorphism X + 6(X). From this
it is evident that ~ = cly, hence the closure operator cly of 6 is the closure operator
of the polymatroid s. O
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3.4 Minors

In this section we discuss minors of polymatroids with respect to the associated
closure operators and generator-enriched lattices. The underlying generator-enriched
lattice of a minor does not fully depend on the original polymatroid if it is simple,
only the underlying generator-enriched lattice.

In Section we discuss minors of generator-enriched lattices themselves (with
no structure of a strong surjection). In Theorem we show that for a graphic
matroid the minors of the generator-enriched lattice of flats are in bijection with the
minors of the graph when the vertices are labeled and the edges are unlabeled. In
Theorem we prove a generalization of this result to polymatroids.

Let r be a polymatroid with ground set E. The deletion by X C E is the poly-
matroid 7\ X : Bp\x — R>¢ defined as the usual function restriction r\ X =r[g,, .
The contraction by X is the polymatroid /X : Bpyx — R defined for Y C F\ X
by setting (r/X)(Y) = r(Y UX) —r(X). These operations correspond to restricting
to a lower and upper interval of the Boolean algebra Bpg respectively. Any polyma-
troid obtained from r via deletion and contraction operations is said to be a minor
of r.

3.4.1 Minors of strong surjections

We begin by observing that minors of a polymatroid closure operator are well defined
as the closure operator of the corresponding minor of any associated polymatroid.

Lemma 3.4.1. Let (r, E) and (s, E) be two polymatroids with the same closure opera-
tor. For any two disjoint sets X, Y C E the closure operators of the minors (r/X)\Y
and (s/X)\'Y are the same.

Proof. Let v = (r/X)\Y and s’ = (s/X)\Y. Let Z C F and e € E\ Z. By
assumption r(Z) = r(Z U {e}) if and only if s(Z) = s(Z U {e}). The minor 7’ is the
function defined on E'\ (X UY) by r'(Z) = r(Z) — r(X), and similarly for s and s'.
Thus we have that 1'(Z) = r'(Z U {e}) if and only if s'(Z) = s'(Z U {e}) which shows
that the closure operators of ' and s’ are the same. O

We now turn to defining deletion and contraction operations on strong surjections
from a lattice theoretic viewpoint. In Proposition |3.4.2] we prove that these operations
agree with the same operations on polymatroids. First we set up some notation.

Given a lattice L, let H C L and let z € L be an element such that z < h for
all h € H. Define the generator-enriched lattice with generating set H and minimal
element z to be

zeX

(H|z) = ({z\/ \/x:XQH},H)

- ({Z}U{\/x:@%XgH},H>.

rzeX
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Usually when listing H explicitly the set brackets will be repressed.

Let E be a ground set, let (L, G) be a generator-enriched lattice and consider a
strong surjection 6 : Br — (L,G). For X C FE define the deletion of 8 by X to be
the strong surjection

O\ X : Bpx = ({6({e}) :e € B\ X}\ {0£}[0r),

defined for Z C E\ X by (0 \ X)(Z) = 0(Z). Define the contraction of 0 by X to be
the strong surjection

0/ X Box — {0(X U{e}) s e c B\ XFA{O(X)}O(X)),

defined for Z C E'\ X by (6/X)(Z) =60(X U Z).

Conceptually the deletion by X of a strong surjection # is obtained by restricting 0
to the lower interval [(), E'\ X] C Bpg, and then restricting the codomain to ensure
the resulting function is a surjection. Similarly contracting by X corresponds to
restricting to the upper interval [ X, E] C Bg.

Proposition 3.4.2. Letr : E — R be a polymatroid with generator-enriched lattice
of flats (L, G), and let X, Y C E be disjoint sets. If 0 : Br — (L, G) is the strong
surjection associated to r then the closure operator of the polymatroid (r/X)\'Y is
equal to clig/x)\y -

Proof. Set ' = (r/X)\Y and ¢ = (0/X)\ Y. Let = denote the closure operator
of 7. By definition Z; = Zs if and only if 7'(Z,) = r'(Z, U Z5) = 1'(Z,) which occurs
if and only if r(Z,UX) = r(Z,UZ,UX) = r(Z,UX). Since cly is the closure operator
of r this occurs if and only if 0(Z; U X) = 0(Z, U Z, U X) = 0(Zy U X). This is in
turn equivalent to the condition 6'(Z,) = 0'(Z, U Zs) = 0'(Z,). Therefore, Z, = Z, if
and only if §'(Z;) = ¢'(Zs), and thus cly is the closure operator of r’. O

3.4.2 Minors of generator-enriched lattices

Let (L, G) be a generator-enriched lattice and 6 : Zr — (L, G) be a strong surjection.
When 6 is simple, that is, when 0| (,)ugey is injective, the codomain of the dele-
tion 6\ X depends only on the set {#({z}) : x € X}. Similarly the codomain of the
contraction /X depends only on the image 6(X). Thus viewing generator-enriched
lattices as encoding closure operators of simple polymatroids we have a notion of
deletion and contraction operations, the result of which is another generator-enriched
lattice.

Let (L,G) be a generator-enriched lattice and let I C G. The deletion of (L, G)
by I is the generator-enriched lattice

(L, G)\ T = (G \ I[0).

Let ig =V, @ and set J = {g Vig: g € G} \ {io}. The contraction of (L,G) by I is
the generator-enriched lattice

(L, G) /T = {Jlio)-
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1234

(a) (L, G) = (1,2,3,4/0) (b) (L,G)\ 1= (2,3,4/0)

1234 1234

N

12 13 12 13
1 1
(c) (L,G)/1 = (12,13,1234|1) (d) ((L,G)/1)\ (1234) = (12,13]1)

Figure 3.3: The face lattice of the square and several minors.

For convenience we also define the restriction of (L,G) to I as
(L, G)|r = (L, G)\ (G\ ).

The operations of deletion and contraction on generator-enriched lattices correspond
to first choosing a simple strong surjection, performing the operations as previously
defined for strong surjections, and taking a simplification of the result.

It will be convenient at times to index deletions and contractions by subsets of
some ground set E, or by elements of L instead. To define the former choose a labeling
of G by E so that G = {g. : e € E}. Given X C FE the deletion and contraction
by X are defined as

(L,G)\ X = (L,G)\ {gs : v € X},
(L,G)/X =(L,G)/{g, : v € X}.

Given ¢ € L the deletion and contraction by ¢ are defined as

(L, G)\ = (L,G)\{ge G:g <t}
(L, G)/t=(L,G)/{g € G:g < (}.

The result of any sequence of deletions and contractions applied to (L, ) is called
a minor of (L,G). See Figure |3.3| for examples.
A few basic remarks for minors of a generator-enriched lattice (L, G) are in order.

Remark 3.4.3. By definition the underlying lattice of a minor of (L,G) is a join
subsemilattice of L. In general the underlying lattice of a minor of (L,G) may not
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1 1
91 g3 g2 g3 I I g2
92 92
0 0
(L, G) (L, G)\ 1 (L, G)/2 (L, G)\1)/2 ((L,G)/2)\ 1

Figure 3.4: A generator-enriched lattice (L,G), where G = {g1, 92,93} for which
deletions and contractions do not commute, along with the relevant minors.

be a sublattice of L. For example, consider the partition lattice 11, with minimal
generating set

irr(ILy) = {12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34}.

Deleting the atom 13/2/4 results in a minor which is not a sublattice of 11y; in said
minor the meet of 123/4 and 134/2 is the minimal partition 1/2/3/4 as opposed
to 13/2/4 when computed in L.

Remark 3.4.4. Any interval of L is the underlying lattice of a minor of (L,G).
If a <bin L then the minor ((L,G)/a)|y has underlying lattice K = [a,b] of L. The
example given in Remark shows the converse is false, that in general not all
minors of (L, G) have as underlying lattice an interval of L.

Remark 3.4.5. The deletion and contraction operations of generator-enriched lat-
tices do not in general commute. Figure depicts an example. In this example
since 1 = g1 V gy the element 1 in the contraction (L,G)/2 is a generator indezed
by 1. Thus deleting 1 from (L, G)/2 removes 1, that is, (L, G)/2)\ 1 = (g2,0). On
the other hand, since 1 = g3\ go when the deletion (L,G)\ 1 is contracted by 2 the
resulting generator-enriched lattice (L, G)\ 1)/2 has 1 as a generator.

The following observation will be useful.

Lemma 3.4.6. Any minor of a generator-enriched lattice (L, G) may be expressed as
the result of a contraction followed by a deletion. Namely, a minor (K, H) of (L,G)
may be expressed as (K, H) = ((L,G)/0k)|u-

Proof. Let (K, H) be a minor of (L,G). By definition (K, H) may be expressed as
the result of a sequence of contractions and deletions. That is, for some possibly
empty sets of generators Iy, Ji, ..., I, J,., that

(K, H) = (- (L, G) L)\ ) -+ [ 1)\ e

For 1 < j <rlet ¢; be the join of all elements in I;. Set ig = i1 V- --V4,. By definition
of deletion and contraction, the minimal element Ox of K is 5. Furthermore, the gen-
erators of (K, H) can each be expressed as gViy V- - - Vi, = gVig for some g € G. Thus
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each generator of (K, H) is a generator of (L, G) /iy, hence (K, H) = ((L,G)/io)|n-
[l

The lemma below gives an explicit description of the generating sets of minors.

Lemma 3.4.7. For any generator-enriched lattice (L,G) the minors are pre-
cisely generator-enriched lattices of the form ({ N gi,...,0 NV ggll) for £ € L
and {g1,...,9x} € G such that g; £ £ for 1 < j <k.

Proof. Consider a minor (K, H) = ((L,G)/I)|; of (L,G), where I and J are sets
of generators. Let ¢ be the join of all elements of I and let J = {ji,...,jx}. By
definition

(K,H) =V j1,.... 0V jgll).

Conversely, consider a generator-enriched lattice (K, H) = (( V g1,...,0 V gi|l)
for some ¢ € L and g; € G with g; £ ¢ for 1 < j < k. The genera-
tors of the contraction (L,G)/¢ are all elements ¢V g for ¢ € G with g £ /.
Thus £V gq,...,¢V g are generators of (L,G) /¢, so setting I = {{V g1,...,LV gx}
we have that (K, H) = ((L,G)/0)|r. O

Lemma 3.4.8. If L is a geometric lattice then the minors of (L,irr(L)) are
the generator-enriched lattices of the form (€y,... Cg|l) such that ¢; = ¢ € L
for 1 < i < k. In particular, every minor of (L,irr(L)) is minimally generated and
geometric.

Proof. Since L is geometric, for any x,y € L we have z < y if and only if y = 2V i for
some i € irr(L). Thus Lemma m specializes to the claimed form of the generating
sets of minors of (L,irr(L)). In particular, for any minor (K, H) the generating set H
is the set of atoms of K.

Let (K, irr(K)) = (¢, ...,0k|¢) be a minor of (L,irr(L)). In order to show that K
is semimodular we claim that if x < y in K then z < y in L as well. Since z < y
there exists ¢ such that y = x vV ¢;. We have that ¢; = ¢V a for some atom a of L,
hence y = x V a. Since L is geometric this implies that x < y in L.

Now let z,y € K such that Ak y < x and x Ak y < y in K. Since K is a
subposet of L we have that z Ax y < x Ap y. On the other hand, since x Ax y is
covered by x and y in K, hence in L, we must have z Ax y =z Apy. Thus z Ap y is
covered by x and y in L, and since L is semimodular xVy covers  and y in L. Then
since x Vr y = x Vg y this implies that Vg y covers x and y in K, and therefore K
is geometric. O

Given a graph G, the lattice of flats L may be viewed as a lattice of partitions of
the vertices of G. Each flat is associated to the partition whose blocks consist of the
connected components of said flat considered as a subgraph of G. Let L(G) denote
the generator-enriched lattice of flats of G labeled as partitions. See Figure |3.5]

The minors of the graph G inherit a vertex labeling by blocks of a partition of the
vertices of G. When an edge is contracted, the label of the new vertex is obtained
by merging the two blocks labeling the vertices of the contracted edge. In this way
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G L(G) 1234

1 T

123/4  12/34  134/2  1/234

2 3 [

12/3/4 13/2/4 1/23/4 1/2/34

4 T~

1/2/3/4
G/12 L(G/12) G\ 34 L(G\ 34)
12 1234 1 123/4
N T
3 123/4  12/34 2 3 12/3/4 13/2/4 1/23/4
~_ T
4 12/3/4 -4 1/2/3/4

Figure 3.5: At (a) a graph G and at (b) the lattice of flats L(G). At (c) the simplifi-
cation of the contraction G/{1,2} and at (d) the contraction L(G)/(12/3/4).

the minors of a vertex labeled graph are considered to be themselves vertex labeled
graphs.

Theorem 3.4.9. Let G be a vertex labeled graph with unlabeled edges. The vertex
labeled minors of G that are simple are in bijection with the minors of the minimally
generated lattice of flats L(G) via the map H — L(H).

Proof. Let L be the lattice of flats of the graph G. It may be assumed that the
graph G is simple, that is, that G has no loops or multiple edges. This only changes
the labeling of elements in the lattice of flats and does not change the collection
of simple minors of G. The inverse of the map H — L(H) will be constructed.
Let (K,irr(K)) = (¢4,...,¢|¢) be a minor of (L,irr(L)). Construct a graph H as
follows. Each atom of L corresponds to an edge of G. The element ¢ corresponds to
a set of edges of GG; namely, those edges corresponding to an atom which is less than
or equal to /. Let H' be the minor of G obtained by contracting this set of edges
corresponding to ¢. The vertices of H' are labeled by the blocks of the partition /.
Each atom ¢; in K is obtained from the partition ¢ by merging two blocks, and
corresponds to an edge in H'. Let H” be the graph obtained from H’ by restricting
to these edges which correspond to an atom of K. The graph H is defined to be the
simplification of H”.

It remains to show that the map K +~— H constructed above and the
map H — L(H) are inverses. A vertex labeled graph H is determined by the
labeling of its vertices and its edges. The associated lattice minor (K, irr(K))
of (L,irr(L)) records this same information as the minimal partition and the atoms,
which in turn determines K. 0
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The above result generalizes to polymatroids with the appropriate notion replacing
vertex labeled minors.

Definition 3.4.10. Let r be a polymatroid with ground set E. A parallel closed pair
is a pair (F,s) such that F C E is a flat of r and s is a polymatroid that may be
obtained as a deletion of the polymatroid r/F satisfying the following condition:

If e € E\ F is parallel with respect to r/F to an element f of the
ground set of s then e is an element of the ground set of s as well. In
other words, the ground set of s must be a union of parallel classes with
respect to r/F.

For a graphic matroid the parallel closed pairs are in bijection with the vertex
labeled minors of the graph obtained by first contracting, and then deleting entire
parallel classes of edges. The vertex labeling naturally encodes the flat in the parallel
closed pair. Such graphs are in bijection with the simple minors when the edges are
unlabeled. Without an edge labeling each such graph has one simplification, obtained
by identifying parallel edges, and no two such graphs have the same simplification.
Thus, the following theorem is an analogue of Theorem [3.4.9]

Theorem 3.4.11. Let r be a polymatroid and let (L, G) be the associated generator-
enriched lattice of flats. The minors of (L, G) are in bijection with the parallel closed
pairs of r.

Proof. Let E be the ground set of r. Let = : Bg — Bpg be the closure operator of r.
Let 0 : B — (L, G) be the strong surjection induced by the ground set map e — {e}.

Let (F,s) be a parallel closed pair of r and let Y C E be the ground set of s.
Define a map f from the set of parallel closed pairs of the polymatroid r to the set
of minors of the generator-enriched lattice (L, G) by

f(F7 5) = ((LvG)|YUF)/F

To show f is a bijection construct the inverse map g. Let (K, H) be a minor
of (L,G) and let Y be the set

Y ={yeE:{y}Ulx € H}.

Let g(K, H) be the pair (O, (r/0x)|y). Observe that g(K, H) is a parallel closed
pair of r. Furthermore g is the inverse of f so the map f is a bijection. m

3.4.3 Minors of distributive lattices

In the remainder of this section we examine minors of minimally generated distribu-
tive lattices. Recall that the fundamental theorem of finite distributive lattices states
that every finite distributive lattice L is isomorphic to the lattice of lower order ideals
of the subposet irr(L) of L. The minors of a minimally generated distributive lattice
have an alternative description in terms of certain pairs of subsets of the poset of
irreducibles.
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Definition 3.4.12. Let P be a poset. An order minor of P is a pair (I, J) of disjoint
subsets of P such that J is a lower order ideal of P.

The poset P itself corresponds to the order minor (P, (). The set of order minors
of P is shown below to be in bijection with the minors of the minimally generated
lattice of lower order ideals of P. To prove this bijection, the following lemma is
needed.

Lemma 3.4.13. If L is a distributive lattice, for any ¢ € L and any distinct join
irreducibles i and j such that iV € # € and jV € # { the elements 1V £ and jV ¢ are
distinct.

Proof. Let L be the lattice of lower order ideals of a poset P, necessarily isomorphic
to irr(L). It may be assumed without loss of generality that ¢ £ jin L. Let p € P
be the element such that the principal lower order ideal of P generated by p is the
join irreducible ¢ of L. The fact that i V ¢ # ¢ implies that p is not contained in the
ideal £. Since i £ j the element p is not contained in the ideal j. As a consequence p
is not contained in the ideal j V ¢ since the join in L corresponds to the union of lower
order ideals. This establishes that i V £ # j Vv {. []

When (L,irr(L)) is the minimally generated lattice of lower order ideals of a
poset P there is an implicit bijection between P and the generating set irr(L).
Through this bijection deletions and contractions of (L,irr(L)) may be indexed by
subsets of P.

Proposition 3.4.14. Let L be the lattice of lower order ideals of a poset P. The
order minors of P and the minors of (L,irr(L)) are in bijection via the map

(1,J) — ((L,irr(L))|r0s)/J-

Proof. Define a map from minors of (L, irr(L)) to order minors of P as follows. Given
a minor (K, H) of (L,irr(L)) define J to be the subset of P corresponding to the join
irreducibles in L which are less than or equal to 0x. Define I to be the subset of P con-
sisting of all elements whose corresponding join irreducible ¢ of L satisfies iVOg € H.
Lemma[3.4.13]implies that I is the unique set satisfying (K, H) = (L, irr(L))|us)/J.
The inverse of this map is given by (I, J) — ((L,irr(L)|us)/J so we have a bijec-
tion. [l

Not only do the order minors of a poset index the minors of the minimally gen-
erated lattice of lower order ideals, the order minors also describe the isomorphism
types of the lattice minors.

Proposition 3.4.15. Let P be a poset and L the lattice of lower order ideals of P,
and let (I,J) be an order minor of P. The minor ((L,irr(L))|us)/J of (L,irr(L)) is

1somorphic to the minimally generated lattice of lower order ideals of 1.
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Proof. Let (I,J) be an order minor of P and let (K, H) = ((L,irr(L))|us)/J. Tt is
claimed that K consists of the lower order ideals of P whose maximal elements are all
contained in / U J and which include J. Observe that (L,irr(L))|;us is generated by
the principal lower order ideals which are themselves generated by an element of TU.J.
Hence this lattice consists of all lower order ideals of P whose maximal elements are
contained in I U J. The generators of ((L,irr(L))|;us)/J are thus each the union of
the lower order ideal J of P with a principal lower order ideal of P which is generated
by an element of I. Such lower order ideals as a join subsemilattice of L generate
the set of lower order ideals of P which include J and whose maximal elements are
contained in 1 U J.

Let (M,irr(M)) be the minimally generated lattice of lower order ideals of the
subposet I of P. Define a map f: (K,H) — (M,irr(M)) by f(A) = AN I. Define a
map g : (M, irr(M)) — (K, H) by letting g(A) be the lower order ideal of P generated
by AU J. Observe this is the inverse of f since every ideal in L includes J and has
maximal elements which are contained in I U J. Therefore K is isomorphic to M as
claimed. O]

Copyright© William Gustafson, 2023.
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Chapter 4 The minor poset

4.1 Introduction

Recall in Proposition [2.4.6] it was shown that if 7 is a pairing that can be depicted
by a medial graph with one internal region then the lower interval [6, 7] in the un-
crossing poset UC,, is isomorphic to the poset of simple minors of the associated
cactus graph G. Minors of a cactus graph have labeled vertices and unlabeled edges
so Theorem implies this interval [6, 7] can be computed in terms of the lattice
of flats of the graph GG. Motivated by this observation, in this chapter we introduce
minor posets of generator-enriched lattices. This broader class of objects provides a
natural setting to extend the zipping construction of Proposition [2.4.6|

In Section the minor poset is introduced. The class of generator-enriched lat-
tices for which the minor poset is itself a lattice is characterized in terms of forbidden
minors in Proposition [£.2.18/and Theorem[4.2.24] A decomposition of the minor poset
into Boolean algebras is given in Theorem [£.2.28] This decomposition is used to give
expressions for the rank generating function of minor posets associated to geometric
lattices with generating set consisting of the join irreducibles and to lattices with the
no parallels property (defined in Definition 4.2.17)). This class includes distributive
lattices with generating set consisting of the join irreducibles. See Theorems
and [4.2.32

In Section the minor poset of any generator-enriched lattice is shown to be
isomorphic to the face poset of a regular CW sphere; see Corollary This is
done via a construction using the zipping operation of Reading [41] in Theorem m
Using this construction in Corollaries4.3.10jand |4.3.11] we derive inequalities between
the coefficients of cd-indices of minor posets when there is a structure preserving
surjection between the associated generator-enriched lattices. In particular, we show
that the cd-index of the n-dimensional cube is the coefficientwise maximum of cd-
indices of minor posets of rank n + 1.

4.2 The minor poset

In this section a partial order structure on the set of minors of a given generator-
enriched lattice called the minor poset is studied. We begin with some basic results
for minor posets. In Section we discuss a few operations on generator-enriched
lattices and their effects on the minor poset. In Section {4.2.3| a characterization is
given of the generator-enriched lattices for which the minor poset is itself a lattice. In
Section [4.2.4)a decomposition theorem is presented which is used to derive expressions
for the rank generating function of minor posets in special cases.
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Figure 4.1: The minor poset of a generator-enriched lattice. The elements are depicted
via their diagrams.

4.2.1 Basic results

Definition 4.2.1. Let (L,G) be a generator-enriched lattice. The minor poset, de-
noted M(L,G), is the poset consisting of a unique minimal element O and the minors
of (L,G) and with order relation defined by (Ky, Hy) < (Ks, Hy) when (K, Hy) is a
minor of (Ko, Hy).

As an immediate observation note that the lower interval [, (K, H)] in the minor
poset M(L, G) is the minor poset M(K, H). See Figure for an example of a minor
poset. The Hasse diagrams of minor posets of generator-enriched lattices with 3
generators are depicted in Figures of Appendix [A]

Recall a ranked poset is said to be thin if all length 2 intervals are isomorphic to
the diamond poset, that is, the Boolean algebra B;. The following lemma is used to
show that minor posets are thin and graded.

Lemma 4.2.2. Let (L,G) be a generator-enriched lattice and let (K, Hy)
and (K3, Hy) be minors of (L,G) such that (Ki,H;) < (K, Hy) in the minor
poset M(L,G). If |Hy| — |Hy| = 2 then the interval [(Ky, Hy), (K2, H2)] of M(L, G)
forms a diamond.
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Proof. The minor (K7, Hy) may be presented as ((Ky, Hy)/I) \ J for some sets of
generators I and J. We proceed by considering the different possibilities for I
and J. When [ is empty the set J must contain two elements, say j; and js.
Then (K, Hy) = (K3, H2)\{J1, jo} and the open interval ((Ky, Hy), (K3, Hy)) consists
of the two minors (KQ, HQ) \ {]1} and (KQ, HQ) \ {]2}

Now consider the case where J is empty. In this case I may consist of either
one element or two elements. First suppose I = {iy,i2}. As a further subcase
assume that i; £ iy and i3 # is. Since by assumption |Hy| — |Hi| = 2, ev-
ery generator j of (Kj, H;) corresponds to a unique generator ¢ of (Ks, Hy) such
that i VV i1 Vi = 7. Due to this uniqueness no deletion of (K, Hs) has (K;, Hy) as a
minor. If (K, H) = (Ky, Hs) \ {j'} then j'Vi; Viy is not an element of (K, H)/{i1,i2}
but is an element of Kj. By similar reasoning no contraction of (K,, Hs) other
than the single contractions (Ks, Ho)/iy and (Ky, Hy)/is as well as (K, Hy) itself
has (K1, Hy) as a minor. This establishes that the open interval ((K7y, Hy), (K2, H2))
consists solely of the minors (K, Hy)/i; and (K, Hy)/is.

Now return to the case I = {ij,is} and now suppose that i; < ip. In this
case i1 V iy = iy 80 (Ky, Ho)/{i1,i2} = (K2, Hs)/{i2}. By a similar argument as
used in the previous subcase each generator j of (K, Hy) corresponds to a unique
generator j' of (Ky, Hy) such that 5/ Vi, = j. Due to this uniqueness no deletion
of (K3, Hy) other than (K, Hs) \ ¢; contains (K;, Hy) as a minor. Similarly, no con-
traction of (Ks, Hs) with the exceptions of (Ks, Hs)/i; and (K7, Hy) contain (K7, Hy)
as a minor. Thus, the open interval ((Ky, Hy), (Ko, H2)) consists solely of the mi-
nors (KQ, HQ)/Zl and (KQ, HQ) \ 1:1.

Suppose I = {i} and J = (). If there exists i/ € Hy such that i’ < i then
we may take I = {i,i'} which falls under a previous case. Otherwise, there is one
generator j € H; that corresponds to two generators ji, jo € Hs. All other generators
in H; correspond to a unique generator in Hy. Thus in this case

(K1, Hy), (K2, Hy)) = {(K2, H2) \ {j1}, (K2, H2) \ {ja}}-

What remains is the case when both I and J are singletons. Suppose I = {i}
and J = {iV j} for some generator j of (K», Hy). Once again since |Hy| — |H;| = 2,
every generator of (K, Hy) corresponds to a unique generator of (K, Hy), hence for
all generators ji, jo of (K3, Hy) the joins ¢V j; and iV jy are distinct. Hence, the open
interval ((K7, Hy), (K2, Hs)) consists of the minors (Ks, Hs) \ j and (Ks, Hs)/i. [

Lemma 4.2.3. For any generator-enriched lattice (L, G) the minor poset M(L, G) is
graded by vk(K, H) = |H| + 1 and is thin.

Proof. First we observe that the atoms of the minor poset M(L, G) are the minors
of (L, G) that contain one element. A generator-enriched lattice with a single element
has no generators, and thus has no minors. Thus, such elements cover the minimal
element () of M(L,G). On the other hand if a minor of (L, G) covers the minimal
element () of M(L, G), then by definition it must have no minors. A generator-enriched
lattice with no minors must have no generators and thus consists of a single element.
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By Lemma whenever (K, H) < (K3, Hy) the difference |Hy| — |H;| must
be less than 2. Clearly this difference is positive, so it must be equal to 1. Since
every atom has zero generators every saturated chain from the minimal element () to
a minor (K, H) must have the same length, namely |H| + 1.

Having proven the minor poset M(L, G) is graded by rk(K, H) = |H|+1, it follows
from Lemma that the poset M(L, G) is thin. [

The order relation of the minor poset of a generator-enriched lattice that satisfies
the join irreducible lift property is somewhat simpler.

Definition 4.2.4. A generator-enriched lattice (L, G) is said to lift join irreducibles

A~

if for all ¢ € L and i € G the element i V { is join irreducible in [(,1].

Taking ¢ = 0 in the above definition it is seen that a generator-enriched lat-
tice that lifts join irreducibles must be minimally generated. This property may be
equivalently stated as every minor of (L,G) is minimally generated. In particular
a minimally generated distributive lattice has the join irreducible lift property by
Proposition |3.4.15] as do minimally generated geometric lattices by Lemma [3.4.8|
Figure (3.3 shows that the face lattice of the square is an example of a minimally
generated lattice which does not lift join irreducibles.

Proposition 4.2.5. If (L,G) is a generator-enriched lattice with the join irre-
ducible lift property, and (Ky,Hy) and (Ks, Hs) are minors of (L,G) then we
have (K1, Hy) < (Ks, Hy) if and only if K; C K.

Proof. If (Ky,H,) < (K, Hy), that is, (Kj, H;) is a minor of (Ko, Hy), then
clearly Ky C Kg./\Now assume conve}"\sely that Ky C Ks. Set k; = 0k, and ky = Ok,

Let My = [ki,1] and My = [ko,1]. Since (L,G) has the join irreducible lift
property, Hy = irr(K;) C irr(M;). Furthermore

irr(My) ={iVk :i€irr(L)} ={iVk:ie€irr(My)}.

By assumption K7 C Kj. Thus irr(K;) C irr(M;) N Ky. Irreducibility in M; implies
irreducibility in M; N K. Thus irr(K;) C irr(M; N Ks), hence (K7, Hy) is a deletion
of

(Ml N KQ, iI'I'(Ml N KQ)) = (Kg, Hg)/kl

Therefore (K7, Hy) < (K», Hy) in M(L, G). O

At this point the isomorphism type of the minor posets of Boolean algebras and
chains are readily determined.

Proposition 4.2.6. The minor poset M(B,,,irr(B,,)) of the Boolean algebra B,, with
minimal generating set is isomorphic to the face lattice of the n-dimensional cube.

Proof. Recall that the face lattice of the n-dimensional cube is isomorphic to the poset

of intervals of B,, with the empty interval as the unique minimal element [46, Chap-

ter 3, Exercise 177]. It is easy to see from Lemma that the minors of (B, irr(B,))
are exactly the intervals of B,,. Proposition implies the order relations are the
same. =
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Proposition 4.2.7. The minor poset of the length n chain is isomorphic to the
rank n + 1 Boolean algebra.

Proof. In a chain every element except the minimal element is join irreducible and
hence must be a generator. As a result every subset of a chain is a minor. Proposi-
tion [4.2.5) implies the minors are ordered by inclusion. O]

Minor posets of minimally generated distributive lattices can be described in terms
of order minors.

Corollary 4.2.8. Let (L,irr(L)) be the minimally generated lattice of lower order
ideals of a poset P. The minor poset M(L,irr(L)) is isomorphic to the poset of order
ideals of P ordered via (I1,J1) < (I3, Jy) when Iy C Iy and the mazimal elements
of J1 are contained in Iy U Js.

Proof. Recall from Proposition [3.4.14] that an order minor (7, .J) corresponds to the
lattice minor ((L,irr(L))|sus)/J. Let

(Kh il“l“(K1>> = ((Lv irr(L)>|11UJ1)/‘]17

and
(£, irr(K3)) = (L, irr(L))| ,us,) /2
We have (K1, irr(K;)) < (Ko, irr(K>)) if and only if Ok, € K5 and

irr(Ky) C {i V0, : i € irr(Ky)}.

The former occurs precisely when the maximal elements of J; are contained in I, U Js.
The latter condition holds if and only if I; C I5. O

See Figure [£.2] for an example.

The lowest three ranks of minor posets are easily described. In particular from
Lemma the rank 1 elements of M(L, G) are in bijection with the elements of L
and the rank 2 elements of M(L,G) are in bijection with the edges of the diagram
of (L,G). Somewhat more can be said for the rank 2 and 3 minors when (L, G)
is minimally generated and geometric. The following lemma will be used for this
purpose.

Lemma 4.2.9. A generator-enriched lattice is minimally generated and geometric if
and only if it has no minors isomorphic to the length 2 chain.

Proof. The class of minimally generated geometric lattices is closed under taking
minors and the length 2 chain is not geometric. Conversely, consider a generator-
enriched lattice (L,G) which is not a minimally generated geometric lattice. First
consider the case in which (L, G) has some generator g that is not an atom. There
must be some atom a with a < g. Observe that the minor L|¢, 4 is isomorphic to
the length 2 chain. Now suppose that L is not upper semimodular. Let xz,y € L
such that t Ay < x and Ay < y but x £ = V y. Since y covers x Ay it is a
generator in the contraction (L,G)/(z A y). This implies that x V y is a generator
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Figure 4.2: The poset of order minors of a 3 element poset P. An order minor (I, J)
is depicted by coloring the elements of I black, circling the elements of J and coloring
the elements of P\ (/ U .J) white.

of the minor (L,G)/x = ((L,G)/(x A y))/xz. Since x £ x V y the minor (L,G)/x
has a generator which is not an atom. By the preceding case (L, G)/x has a minor
isomorphic to the length 2 chain which is a minor of (L, G) as well. O]

Proposition 4.2.10. The diagram of a generator-enriched lattice (L, G) is equal to
the Hasse diagram of L if and only if (L, G) is minimally generated and geometric.

Proof. First assume (L, G) is minimally generated and geometric. A minor (L, G)
with one generator is of the form (b|a) for a,b € L with a < b. Thus all edges of the
diagram are edges of the Hasse diagram of L. Since the converse always holds the
two graphs are equal.

Now let (L, G) be a generator-enriched lattice that either is not minimally gener-
ated or is not geometric. By Lemma the generator-enriched lattice (L, G) must
have a minor isomorphic to a length 2 chain. The diagram of a minor of (L, G) is a
subgraph of the diagram of (L, G), so there must be an edge in the diagram of (L, G)
that is not an edge of the Hasse diagram of L. m

64



Proposition 4.2.11. For any generator-enriched lattice (L,G) the lower inter-

vals [0, (K, H)| where tk(K, H) = 3 of the minor poset M(L,G) are each isomorphic
to the Boolean algebra Bs or the face lattice Qo of a square. Moreover, all inter-

A~

vals [0, (K, H)] with vk(K,H) = 3 are isomorphic to Qs if and only if (L,G) is
mainimally generated and geometric.

Proof. The only possible isomorphism types of a generator-enriched lattice with 2
generators are the minimally generated Boolean algebra ( By, irr(Bz)) and the length 2
chain. The minor poset of the Boolean algebra Bs is isomorphic to the face lattice
of a square while the minor poset of the length 2 chain is isomorphic to the Boolean
algebra B3. The second statement follows from Lemma [4.2.9 [

4.2.2 Operations on generator-enriched lattices

We next discuss several operations on generator-enriched lattices and how these af-
fect the associated minor posets. Recall that for two posets P and @) the diamond
product P o @ is defined to be the poset ((P\ {0p}) x (Q\ {0g})) U {0}. We define
the diamond product on generator-enriched lattices as

(L,G)o (K, H) = (Lo K,G x H).

The pyramid and prism operations are defined on a poset P as Pyr(P) = P x B
and Prism(P) = P o By. We define Pyr on generator-enriched lattices in the same
manner as Pyr(L,G) = (L,G) x (By,irr(B;)). For a discussion of the diamond
product, see [25, end of Section 2].

Given two generator-enriched lattices (L, G) and (K, H) define the Cartesian prod-
uct (L,G) x (K, H) to be the generator-enriched lattice

(L,G) x (K, H) = (L x K,(G x {0x}) U ({0.} x K)).

This operation of Cartesian product behaves nicely on the minor posets, it corre-
sponds to the diamond product.

Proposition 4.2.12. For any generator-enriched lattices (L, G) and (K, H) we have
that
M((L,G) x (K, H)) =2 M(L,G) o M(K, H).

In particular M(Pyr(L, G)) = Prism(M(L, G)) holds.
Proof. Let m : (L,G) o (K,H) — (L,G) and my : (L,G) o (K,H) — (L,G) be the
projection maps. These induce order-preserving maps 7; and 7, between the minor
posets. Neither of these maps send a minor to the minimal element (), so we have
an order-preserving map ¢ : M((L,G) x (K, H)) — M(L,G) ¢ M(K, H) defined on
minors by ¢<M7 I) = (ﬁl(Mv ])7ﬁ2(M7 ]))

The inverse of ¢ is the map v defined for pairs ((L',G’), (K’, H')) by

W((L, G, (K", H') = {(G" x {0 }) U ({01} x H')|(Or,0x))-
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To see that the image under 1 is indeed a minor, let G C G such that
G ={yg VO geq'}.
Similarly define H”. The generating set of the image under 1) can be described as
{(9,06) V (0, 05:) : g € Gy U{(0p, )V (0, 0x) : h € H"}.

Thus the image is indeed a minor of the Cartesian product.
Observe that for I C G’ we have

WL G\ (K HY) = (LG, (K H))\ (1 x {0 ),

and

O((L',GN/1 (K" HY) = (U, &), (K, H') /(1 x {0}
A similar statement holds for deletions and contractions of (K’, H'). Thus the map v
is order-preserving. O

We now consider the minor poset of the result of adjoining a new maximal element
to a generator-enriched lattice. Given a generator-enriched lattice (L, G) let (L, Q)
denote the generator-enriched lattice obtained by adjoining a new maximal element
which, necessarily, is an element of G.

Proposition 4.2.13. Let (L,G) be a generator-enriched lattice, then we have the
1somorphism

M(L,G) = Pyr(M(L, G)).
Proof. Let m be the maximal element of L. Observe since m is join irreducible and
maximal in L, for any minor (K, H) # (m,0) of (L,G), both (K U{m}, HU {m})
and (K \ {m}, H \ {m}) are minors of (L, G). Define a map
f:M(L,G) — Pyr(M(L, Q)

by setting f(0) = (,0), and for minors (K, H) of (L, G) setting

(K, H,0) if m¢ K,
FUSH) = ¢ (K\{m}, H\{m},T) ifm € H,
(0,7) if K={m}, H=40.

The map f is order-preserving. Define g : Pyr(M(L,G)) — M(L,G) by set-
ting ¢(0,0) = 0 and ¢(0,1) = (m, ) and setting

(K, H) if e =0,

giK, H,e) = {(KU{m},HU{m}) ife=T1.

Clearly the map g is order-preserving and is the inverse of f. O
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It would be interesting if minor posets of more generator-enriched lattices of the
form (L,G) o (K, H) could be described. Of course when K is a chain the mi-
nor poset M((L,G) o (K, H)) is an iterated pyramid of M(L,G). In general this
operation appears to be more nuanced. For example, considering the generator-
enriched lattice (C4,irr(C1)) o (By,irr(Bs)) the minor poset is not simply a pyramid
over M(By,irr(Bs)) but is instead the result of merging two triangular facets of this
pyramid.

Lastly we discuss an operation we call a mapping pyramid, which is defined for
two generator-enriched lattices with a strong surjection between them.

Definition 4.2.14. Let (L,G) and (K, H) be two disjoint generator-enriched lattices
and let [ : (L,G) — (K, H) be a strong surjection. Extend the join operations of L
and K to a join operation on LUK, for { € L and k € K let {V k = f({) V k.
The mapping pyramid of (L,G) with respect to f is the generator-enriched lat-

tice Pyr;(L,G) = (LU K,G U {0x}).

As an example the generator-enriched lattice (a, b, c|6> whose minor poset is de-
picted in Figure is isomorphic to the mapping pyramid Pyr,((a, b\@)) in which f
is the map ¢ — ¢V c.

In order to describe the minor posets of mapping pyramids we need the following
definition of a mapping prism of posets.

Definition 4.2.15. Let P and Q) be disjoint posets, each with a unique minimal ele-
ment, and let f : P — @) be an order-preserving map. The mapping prism Prism¢(P)
has underlying set

Prismy (P) = (((P\ {0}) x B) U (Q\ {0})) U {0)}.

The order relations of Prismy(P) are those induced by the subposets (P \ {0}) x B,
and Q \ {0}, along with the relations g < (p, 1) if and only if ¢ < f(p).

Proposition 4.2.16. Let (L,G) and (K, H) be two generator-enriched lattices and
let f:(L,G) — (K, H) be a strong surjection. Let F': M(L,G) — M(K, H) be the
order-preserving surjection induced by f. We have that

M(Pyr (L, G)) = Prismp(M(L, G)).

Proof. Consider applying a single deletion or contraction to Pyr;(L,G). If Ok is

deleted the result is (L, G), while if Ok is contracted the result is (K, H). If some
generator g € G of Pyr;(L,G) is contracted or deleted, the result is Pyr,((L,G)/g)
or Pyr;((L,G) \ {g}) respectively. Thus, we have three different types of minors
of Pyr;(L,G) which we may distinguish by whether the minor of Pyr/(L,G) is a
subset of L, of K or of neither. Define a map g : M(Pyr,(L, G)) — Prismp(M(L, G))
for (M, I) € M(Pyr;(L,G)) \ {0} by setting

(M, 1) if M C K,
g(M,I) =< (M, 1,0) if M C L,
(M\ K,I\{0g},1) otherwise.
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Figure 4.3: The diagram of a generator-enriched lattice with no parallels which is not
distributive.

Additionally define g() = 0. Define a map h : Prism;(M(L, G)) — M(Pyr,(L,G))
by for (M,I) € M(L,G) \ {0} setting

h(M,1,0) = (M,]I),
h(M,1,1) = Pyr,(M, ),

and for (M,I) € M(K, H) \ {0} setting
WM, I) = (M, I).

Additionally, set 2(0) = (. Observe the maps g and h are inverses and are each
order-preserving hence ¢ is the desired isomorphism. O]

4.2.3 The lattice property for the poset of minors

In this subsection we characterize the generator-enriched lattices where the associ-
ated poset of minors is itself a lattice. This characterization (Theorem and
Proposition is in terms of five forbidden minors.

To prove the characterization the following concept of a lattice with no parallels is
required. This property is weaker than the property that the minor poset is a lattice,
and is crucial to the proof of Theorem [4.2.24]

Definition 4.2.17. A generator-enriched lattice (L,G) has no parallels if for any
element ¢ € L and generators g,h € G whenever gV { # ( then gV { # h V(.
If gV € = hV{# { holds the generator-enriched lattice (L, G) is said to have a
parallel.

A parallel in a minimally generated geometric lattice corresponds to a nontrivial
parallel class in a contraction of the associated simple matroid. Lemma [3.4.13|shows
that any minimally generated distributive lattice has no parallels. Figure[4.3|gives an
example of a generator-enriched lattice which is not distributive and has no parallels.
The same example also shows a lattice with no parallels need not be semimodular,
but it will be seen lattices with no parallels are dual semimodular. As it turns out the
generator-enriched lattice depicted in Figure occurs as a minor of every generator-
enriched lattice with no parallels that is not distributive, this is Proposition 4.2.22
below. On the other hand the generator-enriched lattice shown in Figure (a) is
an example of a minimally generated modular lattice which has a parallel.
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Figure 4.4: The forbidden minors for the no parallels property.

The definition above of the no parallels property is a mild restatement of the
anti-exchange property for closure operators introduced by Edelman in [20]. Anti-
exchange closure operators are also referred to as convex geometries and are dual to
antimatroids. An antimatroid consists of a collection of feasible sets which are the
complements of the closed sets of an anti-exchange closure operator. Edelman showed
that a closure operator has the anti-exchange property if and only if the lattice of
closed sets is meet distributive. A lattice is meet distributive if every interval of
the form [A,_, v, 2] is Boolean. Given a generator-enriched lattice (L, &) we must

have G = irr(L), this is seen by taking ¢ = 0 in the definition, hence a generator-
enriched lattice has no parallels if and only if L is meet distributive and G = irr(L).

Proposition 4.2.18. A generator-enriched lattice has no parallels if and only if it has
no minor isomorphic to one of the four generator-enriched lattices whose diagrams
are depicted in Figure[{.4).

Proof. 1t is clear from the definition that the class of generator-enriched lattices
with no parallels is closed under taking minors. Observe that each of the four de-
picted generator-enriched lattices has a parallel formed by the elements labeled g, h
and ¢. Thus any generator-enriched lattice with a minor isomorphic to one of the
four generator-enriched lattices depicted in Figure has a parallel.

Let (L,G) be a generator-enriched lattice with a parallel. By definition there
exists an element ¢ € L and generators g;,g, € G such that ¢; V£ = gy V { # L.
Choose ¢’ to be minimal among such ¢, that is, g; V¢ = go V{' # ¢/ and for all £ < ¢
the elements g; V £ and g9 V £ are distinct. Choose an element ¢, of L such that there
is a generator h of (L, G) with h Vv {, = ¢'. Now consider the contraction (L,G) /4.
The elements g1 V £y, g2 V £y and ' are distinct and each is a generator of the con-
traction (L,G)/ly. Let (K, H) = ((L,G)/€o)|1g1vt0,govt0,3- The generator-enriched
lattice (K, H) has a parallel and three generators. It is readily checked that the
only possibilities for (K, H) are the four generator-enriched lattices depicted in Fig-
ure [4.4] O

Recall a generator-enriched lattice (L, G) is said to lift join irreducibles if for any

generator g and element ¢ € L the element gV / is join irreducible in the interval [¢, 1].
Equivalently a generator-enriched lattice lifts join irreducibles whenever every minor
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Figure 4.5: The forbidden minor for the join irreducible lift property.

is minimally generated. The following forbidden minor characterization shows this
property is weaker than the property of no parallels.

Lemma 4.2.19. A generator-enriched lattice lifts join irreducibles if and only if it
has no minors isomorphic to the generator-enriched lattice whose diagram is depicted

in Figure [{.0

Proof. The generator-enriched lattice depicted in Figure has underlying lattice
isomorphic to By and has three generators. Since this generator-enriched lattice is
not minimally generated, it does not lift join irreducibles. Since the join irreducible
lift property is closed under taking minors, no generator-enriched lattice with a minor
isomorphic to By with three generators lifts join irreducibles.

Let (L, G) be a generator-enriched lattice that does not lift join irreducibles. There
is some minor (K, H) of (L, G) that is not minimally generated. Let h be a generator
of (K, H) that is not join irreducible. The element h may be expressed as the join of
join irreducibles of K, say

h=1iV-Vi,.

Assume this set S = {iy, ..., 4.} is minimal in the sense that for any proper subset of S
the join is not equal to h. Consider the contraction (K’, H') = (K, H)/(i1 V- -+ Vi,_3).
Note that the element £ is equal to hVi; V- -+ Vi, 5 hence h is a generator of (K’, H').
By the minimality of S the generators a =iV ---Vi,_iand b=14V--- Vi, o Vi,
of (K',H'") are not equal to h. Furthermore, a and b must be incomparable
since a Vb = h. This shows that the minor (K’, H')|(qsny of (L, G), which has three
generators, has underlying lattice isomorphic to Bs. O]

The following lemma gives a third equivalent definition of the no parallels prop-
erty. This is needed to prove Theorem [4.2.24] This lemma is essentially due to
Avann [, Theorem 5.5] who gave several equivalent characterizations of meet dis-
tributive lattices. Dilworth first examined the duals of lattices satisfying the below
alternative description of the no parallels property in [19] where he characterized such
lattices as semimodular lattices whose modular sublattices are all distributive.

Lemma 4.2.20. Let (L,G) be a generator-enriched lattice with n generators and
let 0 : B, — L be the canonical strong surjection. The generator-enriched lat-
tice (L, G) has no parallels if and only if for every £ € L the set ~*({) has a unique
minimal element in the Boolean algebra.

Proof. Label the elements of G as g¢q,...,g,. Assume that (L,G) has a parallel,
namely for some element ¢ € L and 4,5 € [n] we have ¢; V¢ = ¢g; V ¢ # {. Choose
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some X C [n] such that (X) = £. Observe that (X U{i}) = 0(XU{j}) = g; VL. For
any sets A C B that are elements of the fiber 67!(g; vV {), we have [A, B] C 67(g; vV {).
Since the preimage set contains X U {i} and X U {7} but not the intersection X, it
does not have a unique minimal element.

To show the converse, suppose for some ¢ € L that §7'(¢) has two minimal
elements X and Y. If either X or Y is of cardinality 1 then ¢ is a generator of (L, G).
Furthermore the existence of a second minimal element of the preimage 6~1(¢) implies
that ¢ is join reducible in L. Thus in this case (L, G) does not lift join irreducibles,
hence (L, G) has a parallel. Now assume | X| > 2 and |Y| > 2. Choose some z € X\Y
and set X’ = X \ {z}. Since X is minimal in §7!(¢) the element §(X’) is not equal
to £. Consider the contraction (L,G)/X’. Since (X') V 0({z}) = ¢ the element ¢ is
a generator of (L,G)/X’. On the other hand ¢ =60(Y) = 6(X’) V O(Y) so

t=0(X")v \/ 0({y})

yey

Either 6(X') vV 6({y}) = ¢ for some y € Y or £ is not join irreducible in (L,G)/X".
The first case shows (L, G) has a parallel and the second shows that (L, G) does not
lift join irreducibles. In either case (L, G) has a parallel. O

At this point we take a small detour to use Lemma [4.2.20] to give a forbidden
minor characterization of distributive lattices.

Lemma 4.2.21. Given a generator-enriched lattice (L, G) with no parallels the lat-
tice L is distributive if and only if the umiue minimal expression of any element ¢ € L

A~

as a join of generators from Lemmalj.2.20 is the set of mazximal elements of GN[0p, ¢].

Proof. A distributive lattice satisfies the above condition since any lower order ideal is
expressed minimally as the union of principal lower order ideals generated by maximal
elements of the ideal. Now suppose (L, G) has no parallels and each element ¢ € L
has as its unique minimal expression as a join of generators the maximal elements
of GN [6L, ?]. Let J be the distributive lattice consisting of all lower order ideals of
the poset G. We have a join-preserving surjection from J onto L defined by mapping
a lower order ideal to the join of its elements computed in L.

We claim this surjection is also injective. Consider a lower order ideal I of G and

the join £ = \/,_, i. By assumption the set / must contain the set of maximal elements

of the lower order ideal G N [0y, ]. Since we also have I € G'N [0, /] this establishes
equality. Thus, each element ¢ € L has one lower order ideal in its preimage, so the

map is injective. [l

Proposition 4.2.22. A [attice L is distributive if and only if the generator-enriched
lattice (L,irr(L)) has no parallels and no minor isomorphic to the generator-enriched
lattice depicted in Figure[].3

Proof. Minors of minimally generated distributive lattices were shown to be them-
selves minimally generated and distributive in Proposition [3.4.15| Now let (L, G)
be a generator-enriched lattice with no parallels such that L is not distributive. By
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Lemma [4.2.21] there exists an element ¢ € L such that its unique minimal expression
as a join of generators is not the set of maximal elements of G' N [0z, ¢]. Assume ¢
is minimal in L with this property. Let M = {m4,...,m,} be the set of maximal
elements of GN [6L, ¢]. Suppose m; is not part of the minimal expression for ¢ and my
and ms are both included in the minimal expression. Set

(K,H) = ((L,G)|nm)/{ma,...,m;}.

We claim (K, H) is isomorphic to the generator-enriched lattice depicted in Fig-
urefd.3] Set m = myV---Vm, and set iy = myVm, set iy = myVm and set i3 = mzVm.
Observe ¢ = 11 Vig Vig = iy Viz. We need to show the other 5 nonempty joins of 71,9
and 73 are all distinct.

Proceeding upwards in the number of elements joined firstly, we have i, # i3
since i5 Vi3 = £. Each of iy,i2, and i3 have been expressed as a join of generators not
including the set M so ¢ # iy, 1s,13. Furthermore, iy 2 mo and i3 2 mqy so iy V iz # /.
Similarly, i1 V i # £. This also implies 71 V i3 # i1 V is.

What remains to be seen is that i1 \V iy is neither i; nor iy and similarly for i; V i3.
Since i1 Vig # £ but i1 Vig = £ we have iy V iy # 1. Similarly 47 Vi3 # i1. Recall  was
assumed minimal so the unique expression of i, V iy as a join of generators consists
of the maximal elements of G N [GL,il V ig]. Since m; was maximal in the larger
set GN [6,;, /] is also maximal in G N [GL, i1 V is]. We have expressed iy as a join of a
set of generators not containing my, namely

igzmg\/(m4\/---\/mr).

Thus, iy 2 i1 V iy so these elements are distinct. Similarly, i; V i3 # i3 which
establishes (K, H) is isomorphic to the generator-enriched lattice depicted in Fig-
ure 4.3 O

The following lemma characterizes the join operation in the minor poset for any
generator-enriched lattice.

Lemma 4.2.23. Let (L, G) be a generator-enriched lattice, let (K1, Hy) and (K, Hy)
be minors of (L, G) and set by = Ox, AOg,. The join (K1, Hy)V (Ky, Hy) in the minor
poset M(L, G) exists if and only if the following three conditions hold:

1. Let 0 be the canonical strong map onto (L,G)/lo.  The fibers 0~ (0, )
and 07 (0g,) each have a unique minimal element, say X, and X, respectively.

2. For each _generator h of (K1, Hy) there is a unique generator g of (L,G)/lo
with gV Ok, = h, and similarly for (K, Hs).

3. Any minor (K, H) of (L,G) such that
(K, H) Z (K17H1) and (K, H) Z (K27H2)

contains the element £.
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Let I be the set

I={0({z}) :z € X1 UXy}
UgVil:9eCG andgV6K1 € H}
U{gV il :geG and gV 0k, € Hy}.

If the above conditions are satisfied then the join (K, Hy) V (Ko, Hy) is the mi-
nor ((L,G)/)|s-

Proof. Assume that the join (K3, Hy) V (K», Hy) exists in M(L,G). Both of the
minors (K, Hy) and (K3, Hy) are a minor of the contraction (L,G)/ly, hence the
join (K7, Hy)V (K2, Hs) is a minor of (L, G) /¢y as well. Let z be the minimal element
of the underlying lattice of (K, Hy) V (K3, Hy). We have that z > {,. On the other
hand 6;(1 > z and 6K2 > 280 z < ly. Therefore z = £y. The join (K, Hy) V (K», Hs)
is thus a deletion of the minor (L, G)/{y, say (K1, H1) V (Ky, Hy) = ((L,G)/lo)|s
for some set J of generators. The set J must be the unique minimal set with the
properties 6;(1 can be expressed as a join of elements in J, the set H; is included in
the set {j V Ok, : j € J}, and the corresponding statements hold for (Ko, Hy). For
if J' is another set with these properties then ((L,G)/y)| s is greater than or equal
to both (K7, Hy) and (K», Hs); thus ((L, G)/l)|; < ((L,G) /)|, hence J C J'. The
existence of the set J implies that Conditions 1 and 2 hold. Condition 3 holds since
the join (K7, Hy) V (K3, H) contains the element £.

Now suppose Conditions 1 through 3 are satisfied. Let I be the set defined
in the statement and let (Ko, Hy) = ((L,G)/ly)|r- Consider a minor (K, H)
of (L,G) with (K,H) > (Ky,H;) and (K,H) > (K, Hy). By Condition 3 the
minor (K, H) contains ¢y. The contraction (K, H)/l, satisfies (K, H)/ly > (K1, Hy)
and (K, H)/ly > (Ks, Hy). Thus the set

{gV 0k, : g is a generator of (K, H)/ly)}
includes H; and similarly for (K5, Hy). Furthermore,
Ok, € (L, G)/ly and O, € (L, G)/ty

so by condition 1 the generating set of (L, G)/{y includes {#(z) : z € X; U Xy}. By
condition 2 the generating set of (L, G)/¢y and H include I, hence

(K, H) = ((L,G)/€o)]1-

Therefore, ((L,G)/l)| is the join (K7, Hy) V (K3, Hs). O

Theorem 4.2.24. For any generator-enriched lattice (L,G) the poset of mi-
nors M(L,G) is a lattice if and only if (L,G) has no parallels and no minor
isomorphic to the generator-enriched lattice whose diagram is depicted in Figure [{.6,
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Figure 4.6: A generator-enriched lattice whose minor poset is not a lattice. The
other four obstructions can be found in Figure [4.4

Proof. Since for any minor (K, H) of (L,G) the minor poset M(K, H) is a lower
interval in M(L, G), the property that the minor poset is a lattice is closed under
taking minors. It is readily checked that for each of the five generator-enriched
lattices depicted in Figures and the minor poset is not a lattice.

Let (L, G) be a generator-enriched lattice with no parallels, and such that there
are two minors (K, Hy) and (K, Hy) of (L, G) for which the join (K1, Hy)V (Kq, Hs)
in M(L, Q) does not exist. Set ¢; = Og,, l» = Ox, and £y = €1 A ly. It will be shown
that (L, G) must have a minor isomorphic to the generator-enriched lattice depicted
above. Since (L,G) has no parallels conditions 1 and 2 in Lemma must be
satisfied; condition 1 follows from Lemma 4.2.20| and condition 2 follows from the
definition of the no parallels property. Thus condition 3 must fail, that is, there is
some minor (K, H) with (K, H) > (K;, H,) and (K, H) > (K3, Hs), but where ¢, is
not an element of K. In particular this implies the element ¢, is neither ¢; nor /5.

Let 6 be the canonical map from Bjg| onto (L,G). The fiber 71(¢y) contains a
unique minimal element, say X. Let I, be the 6 images of all singletons included
in X, that is,

Iy ={0({z}) : z € X}.

Similarly define Iy, I and I for ¢;, ¢ and Ok respectively. By choice of I the join of
a set of generators is greater than or equal to £y only if said set includes Iy. A similar
statement holds for I; and I5. Since ¢y ¢ K the set

TU{geG:gVvig e H}

does not include I;. On the other hand since ¢; and ¢, are elements of K the sets Iy

and I are included in the above set. Thus, there is some ig € I\ (I[;Ul3). Recall ¢ is

neither ¢1 nor ¢5. Thus {1 £ 5 = 3V {y so I; cannot be included in IyU 5. Thus there

is some element iy € I \ (Ip U I3). Similarly, there is some element i € 15\ (1o U I4).
Let ¢ be the join of all elements in the set

J == I() U [1 U 12 \ {io,il,iz}.

Since ¢ is the join of the elements of J, and this set includes none of Iy, I; or I,
the element 7 is not greater than or equal to any of iy, i1 or i. Thus the ele-
ments i V ig, ¢ V iy, and 7 V io are each distinct from ¢, they are generators of the
contraction (L, G)/i, and by the no parallels assumption must be distinct. We claim
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the minor ((L, G)/%)|{igvi,i viisviy 18 isomorphic to the generator-enriched lattice de-
picted in Figure Note that ¢; Vi = ¢; Vi for j = 0,1,2. Since taking the join
with ¢ is an order-preserving map, we have i Vi < 41 V2 and ig Vi < 19 Vi. It
remains to show that ¢; V ¢ and iy V i are incomparable. The element i, V ¢ is the
join of the elements of I, U J which does not contain 7; hence does not include I;.
Thus is V7 2 11 hence i V@ 2 i1 V4. Similarly iy Vi 2 i5 V i. O

The four generator-enriched lattices depicted in Figure [£.4 and the generator-
enriched lattice depicted in Figure together form a forbidden minor characteriza-
tion of the generator-enriched lattices for which the minor poset is a lattice. Since all
five of these generator-enriched lattices have three generators, the following corollary
is immediate.

Corollary 4.2.25. For any generator-enriched lattice (L, G) the minor poset M(L, G)
is a lattice if and only if every interval [, (K, H)] such that vk(K, H) = 4 is a lattice.

The following restatement of Theorem [4.2.24] makes it clear generator-enriched
lattices whose minor poset is a lattice are incredibly sparse.

Corollary 4.2.26. Given a generator-enriched lattice (L,G) with no parallels the
minor poset M(L,G) is a lattice if and only if for each g € G there is a unique
element of G that covers g.

Proof. Observe if (L, G) has no parallels for any minor (K, H) the generating set H
is isomorphic to a subposet of G, this is clear from the definition of no parallels.
Conversely, simply by using deletions for any subposet of G there is a minor whose
generating set is isomorphic said subposet. Furthermore, any generator-enriched
lattice (K, H) with no parallels such that H is isomorphic as a poset to the generating
set of the generator-enriched lattice depicted in Figure is isomorphic to this same
generator-enriched lattice. Thus, the minor poset M(L,G) is a poset if and only if
for each x € G and y, z > x either y < z or z < y. This statement is equivalent to
the condition: for each g € G there is a unique element of G that covers g. n

Recall given a poset P the order polytope O(P) is the polytope consisting of all
order-preserving functions from P to [0,1]. The order polytope O(P) is defined by
the linear inequalities

zp, < x4 forp<qgin P
0<z,<1forall pin P.

For details of order polytopes see [43].

Proposition 4.2.27. If L is a distributive lattice such that the generator-enriched
lattice (L,irr(L)) has no minors isomorphic to the generator-enriched lattice depicted
in Figure[{.6| then the minor poset M(L,irr(L)) is isomorphic to the face poset of the
order polytope O(irr(L)*).
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Proof. The minors of (L,irr(L)) can each be uniquely expressed as ((L,irr(L))\I)/J
for I,J C irr(L) with TN J = () and J a lower order ideal. Conversely, every
such pair of subsets of irr(L) gives a minor. This is just a slight restatement of
Proposition [3.4.14] that is more convenient for the present purposes. Recall the order
polytope O(irr(L)*) is defined by the inequalities
0 <z <1foralliceirr(L),
z; <y for all i > j € irr(L).
Given a minor ((L,irr(L)) \ I)/J we associate the face of the order polytope defined
by the equations
x; = 0 for ¢ € max(irr(L)) N 1,
T = Teov(s) for i € I\ max(irr(L)),
xj=1for jeJ
The face may satisfy more equations induced by transitivity and the second type of

equation, but surely this defines a face.
Convsersely, given a face F of the order polytope we associate the mi-

nor ((L,irr(L))\ I)/J where I,J Cirr(L) are defined by
I'={icirr(L):x; =0 o0r & = Teoy) # 1 for all x € F},
J={jeirr(L):x;=1forall z € F}.
Plainly INJ = 0 and J is a lower order ideal of irr(L) since x € F are order-reversing
functions on irr(L).

The two correspondences described are inverses, so we have a bijection between
the face poset of the order polytope and the minor poset. Corollary [4.2.8, in the
present setting, says we have ((L,irr(L)) \ I)/Ji < ((L,irr(L)) \ I3)/J if and only if

J; 2 Jy and
L DI,

This is equivalent to the set of defining equations for the face associated to

(L, (L)) \ 15)/ 5

containing the defining equations for the face associated to

((L,irr(L)) \ 1)/ J1. O

4.2.4 A decomposition theorem

In this subsection we describe a decomposition of minor posets into a disjoint union
of Boolean algebras. This decomposition is leveraged to derive formulas for the rank
generating function of minor posets of minimally generated geometric lattices, and of
generator-enriched lattices with no parallels.

To state the decomposition theorem some notation is needed. Let (L,G) be
a generator-enriched lattice and let ¢ € L. Define M(L,G, ) to be the subposet
of M(L, G) consisting of the minors of (L, G) for which the minimal element is /.
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Theorem 4.2.28. Let (L,G) be a generator-enriched lattice. The minor poset
of (L,G) decomposes as a disjoint union of the minimal element () and the sub-
posets M(L, G, (), that is,

M(L,G) = {0}y ulJ,  M(L.G.0).

Furthermore, the subposet M(L, G, ¢) is the interval [(¢,0), (L, G)/f] of M(L,G), and
each such interval is isomorphic to a Boolean algebra.

Proof. Clearly the union is disjoint and consists of all elements of the minor
poset M(L,G). Fix ¢ € L and (K,H) € M(L,G,{). Deleting all genera-
tors from (K, H) results in the minor (Og,@) consisting of only the minimal
element ¢ of K. Thus (K,H) > (¢,0). By Lemma [3.4.6] the minor (K,H)
can be expressed as ((L,G)/¢) \ I for some set I. Thus (K,H) < (L,G)/¢
and M(L, G, ¢) C [(¢,0),(L,G)/f]. The minimal element of any minor of (L, G) /0 is
greater than or equal to ¢. On the other hand if (K, H) is a minor of (L, &) such
that (¢,0) is a minor of (K, H), then Ox < ¢. Thus [(¢,0), (L, G)/¢] € M(L,G,?) so
equality holds.

Since the contraction operation changes the minimal element of a generator-
enriched lattice, all relations (K, Hy) < (K3, Hy) in the interval M(L, G, ¢) must be
induced by deletions. Thus, (K, Hy) < (K3, Hy) in M(L, G, ¢) if and only if H; C H,.
Therefore M(L, G, ) is isomorphic to the Boolean algebra Bi(r,c)/0)-1- O

See Figure [4.7] for an example.

For a ranked poset P we denote the rank generating function by F(P;q). The rank
generating function of the Boolean algebra B, is F'(Bn;q) = > xcy dXl = (1 +q)"
Since the minimal element of each interval M(L,G,¢) is rank 1 in M(L,G), the
decomposition theorem above implies the following.

Lemma 4.2.29. For any generator-enriched lattice (L, G) the rank generating func-
tion of the poset of minors M(L, G) is given by

F(M(L,G);q) =14¢> (1+¢)°

where a({) = |{gV €:g€ G} \{l}|.

We now proceed to derive a more compact formula for minimally generated ge-
ometric lattices, and minimally generated distributive lattices. The formula for the
first of these is in terms of the incidence algebra of the lattice. See [46, Section 3.6]
for a more thorough introduction to incidence algebras.

Recall the incidence algebra of a finite poset P is the set of all maps from the
set of nonempty intervals of P to the complex numbers C. The incidence algebra is
equipped with a product, known as the convolution:

(frg)zy)= > flx,2)g(zy).

z<z<y
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Figure 4.7: The Boolean decomposition of the minor poset depicted in Figure [4.1

The identity is the map 0 defined by §(z,z) = 1 for all x € P and d(z,y) = 0 for
all z # y in P. The zeta function ¢ : Int(P) — C is defined by ((z,y) = 1. In order
to state the rank generating function formula an exponentiation operation is needed.
This exponentiation is the operation defined by

H f(x, Z)g(z,y).

r<z<y

We also need the map x which encodes cover relations, defined by x(z,y) = 1
when = < y and x(z,y) = 0 otherwise.

Theorem 4.2.30. Let L be a geometric lattice. The rank generating function of the
minor poset M(L,irr(L)) is

F(M(L,irr(L)); ) = 1+ q(¢ * (¢ + qr)*) Oz, 1)

Proof. Since the lattice L is geometric, the generators of the contraction (L, G)/( are
precisely the elements that cover the minimal element ¢. Thus

Z(l + q)rk(L/f)fl _ Z(l i q>|{€’€L:£’>£}|.

el el
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Expanding the term inside the sum gives

SO+ e = SO {1 +q li i: ; ?
1 )

teL CeL 00

=> TI¢+am)e, )

lel >0

=Y Tl +am 9 e)
el >0

=S¢ g )

lel

= (¢ * (¢ +gm)9)(0,1). =

For generator-enriched lattices with no parallels, we give an expression for the
rank generating function of M(L, &) in terms of the rank generating function of the
dual lattice L*. First we establish that a lattice with no parallels is indeed ranked. In
fact, we give a description of the rank function which gives another characterization
of lattices with no parallels. Avann also established this condition as equivalent to
meet distributivity in [I, Theorem 5.5].

Proposition 4.2.31. A generator-enriched lattice (L, G) has no parallels if and only
if the lattice L is graded and the rank function is given by rk(¢) = [{g € G : g < l}|.

Proof. For ¢ € Llet r(¢) =|{g € G : g < {}|. First assume that (L, G) has a parallel,
say for g,h € G and ¢ € L we have (N g={¢NVh # (. If t < {V g then g,h £ x. Thus
we must have r(¢V g) — r(xz) > 2 so r cannot be the rank function of L.

Now assume that (L, G) has no parallels. For any atom a € L clearly r(a) = 1,
so it will suffice to show that whenever z < y we have r(y) — r(z) = 1. Since z < y
for any g € G such that g <y but g £ x we havey =xVyg. f y=2Vg=2Vh then
since (L, G) has no parallels we have g = h. Thus there is exactly one such generator
and r(y) —r(z) = 1. O

Theorem 4.2.32. If L is a lattice with no parallels then the rank generating function
of the poset of minors M(L,irr(L)) is given by

F(M(L,irr(L));q) = 1+ qF(L* 1+ q).
Proof. Since (L,irr(L)) has no parallels
i (L. x2(L))/0) = |{i € ire(L) 3 % £},
On the other hand, the rank of the element ¢ € L is given by
tk(¢) = [{i € irr(L) -4 < £}

The cardinality of the set {i € irr(L) : i £ ¢} is the corank of £, that is, rk(1) — rk(¢).
This difference is equal to the rank of ¢ in the dual lattice L*. Substituting the rank
of £ in L* for the exponent in Lemma [4.2.29| results in the desired expression. O]

79



4.3 The zipping construction

In this section a construction is given for strong minor posets using the zipping
operation introduced by Reading in [41]. This construction implies that any minor
poset is isomorphic to the face poset of a regular CW sphere, and in particular is
Eulerian. The construction also yields inequalities for the cd-indices of minor posets.

4.3.1 Factoring strong surjections

In this subsection we provide a process to factor any strong surjection into strong
surjections that only identify two elements. For the maps appearing in this factoriza-
tion we give a description of the fibers of the induced map between the minor posets
which is needed for the proof of Theorem [4.3.7]

Definition 4.3.1. Let £(L,G) denote the poset consisting of edges of the diagram of
a generator-enriched lattice (L, G), that is, pairs (¢,0V g) for { € L and g € G such
that £\ g # €. Partially order the elements of E(L,G) by (¢,{V g) < ({Va,lVgVa)
fora e L.

An oriented edge in the diagram of a generator-enriched lattice (L, G) is deter-
mined by its vertices. For notational convenience the elements of £(L, G) will typically
be considered to be unordered pairs.

Definition 4.3.2. Given an equivalence relation ¢ on a generator-enriched lat-
tice (L,G), an edge of ¢ is an edge (¢,0V g) of (L,G) such that £ = (V g(¢).
Let E(¢) denote the set of edges of ¢. The equivalence relation ¢ is said to be
connected if for all a = b(¢p) there is a sequence a = cg,cq,...,c, = b such that
for 1 <i <k the pair {c;_1,¢;} is an edge of ¢.

Note that a connected relation is determined by its set of edges.

Lemma 4.3.3. Let ¢ be an equivalence relation on a generator-enriched lattice (L, G).
The relation ¢ is join-preserving if and only if it is connected and the set of edges E ()
forms an upper order ideal in the poset E(L,G) of edges of (L,G).

Proof. Let ¢ be a join-preserving equivalence relation on (L, G). To show that ¢ is
connected, let a,b € (L,G) with a = b(¢). Then a = a Vb = b(¢). Choose some
sequence gy, . .., g, of generators of (L,G) such that

a<aVgp <---<aV(gpV---Vg)=aVb.

Each term of the sequence must be congruent to a since said terms lie in the inter-
val [a, aVVb]. Thus each pair of subsequent terms in the sequence is an edge of ¢. There
exists a similarly defined sequence from b to aVVb. Concatenating these two sequences
gives a sequence from a to b consisting of edges of ¢. Therefore ¢ is connected.

In order to show that £(¢) forms an upper order ideal of £(L, G), let {a,b} be an
edge of ¢ and let £ € L. Since a = b(¢) and ¢ is join-preserving a V £ = bV {(¢).
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Hence if a V¢ # bV ¢ then {aV {,bV (} is an edge of ¢. Thus E(¢) is an upper order
ideal of £(L, G).

Conversely, consider a connected equivalence relation ¢ on L such that the
set of edges £(¢) forms an upper order ideal in the poset E(L,G) of edges
of (L,G). Let a,b € L such that a = b(¢). Since ¢ is connected there is a se-
quence a = g, €1, . . ., ¢x = b such that for 1 < i < k the pair {¢;_1,¢;} is an edge of ¢.
Taking the join with any ¢ € L results in a sequence aV{ = co\Vl,c1 VL, ..., cp V= bVL.
For 1 < ¢ < k either ¢;_y V€ =¢;VLor {ci_1 Ve VL isan edge of L. In the
second case since £(¢) is an upper order ideal, the edge {c;—1,¢;} € E(¢) implies
that {c;_1 V {,¢; V I} € E(¢). After removing repeated terms there is a sequence
from a V ¢ to bV £ consisting of edges of ¢. Thus a V£ = bV {(¢), hence ¢ is a
join-preserving equivalence relation. O

Lemma 4.3.4. Let (L,G) and (K, H) be generator-enriched lattices and consider a
strong map f : (L,G) — (K, H). If the map f has a single nontrivial fiber {z,y}
in L, then the element x is only covered by y or vice versa.

Proof. Since f(x) = f(y) it must be that f(x Vy) = f(x)V fly) = f(z).
Since f~'(z) = {z,y}, the element z V y is either x or y. Without loss of
generality we may assume that * < y. In fact * < y, since if z < 2z < y
then f(z) < f(2) < f(y) = f(x) so f(z) = f(x); hence z must be equal to x or to y.
If 2> x then f(z) = f(zV 2) = f(y V 2z). The map f is invertible when restricted
to L\ {x} so this implies that y V z = z hence y < z. Therefore x is only covered
by . O]

Lemma 4.3.5. Let (L,G) and (K, H) be generator-enriched lattices. Any strong
surjection f : (L,G) — (K, H) can be factored as f = f.o---o f; where each map f;
1S a strong surjection that identifies only two elements.

Proof. Consider the map f as an equivalence relation on L defined by a = b(f)
when f(a) = f(b). By Lemma this equivalence relation is connected and the
edges form an upper order ideal in the poset £(L,G) of edges of (L,G). Choose a
linear extension of £(L,G). Order the edges of f as {x1,y1},...,{xr,y.}. Define
equivalence relations f; for 1 < ¢ < r by letting f; be the transitive closure of the
relation defined by z; = y; for 1 < j < 4. By definition f; is connected and the
edges of f; form an upper order ideal in £(L,G) so f; is join-preserving. Thus,
each relation f; defines a generator-enriched lattice, namely the quotient (L,G)/f;.
Furthermore for each i either (L,G)/fis1 = (L,G)/fi or (L,G)/fit1 is obtained
from (L, G)/f; by identifying two elements, namely f;(x;11) and f;(y;+1). Thus the
strong map f factors as the product f,.o---o f; of the quotient maps. Removing any
of the maps f; which are the identity map gives the desired factorization. n

Lemma 4.3.6. Let (L,G) and (K,H) be generator-enriched lattices and
let f: (L,G) — (K,H) be a strong map. If the map f has a single nontrivial
fiber x < y then the induced map F : M(L,G) — M(K, H) has nontrivial fibers of the
form
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{(M, 1), (M, L), (M, L)) },

where

x,y€e U {GM},
(M., L) = (M.1)\ g},
B (M, )\ {z} ifxel,
W) = {(M, DAsY o=

Proof. Clearly such a triple {(M, I), (M,, 1), (M,, 1,)} consists of a single fiber of F,
and given any minor (M, 1) with 2,y € I U {0y} there is such a triple. Further-
more, the fiber containing (M, I) is precisely the set {(M,I),(M,,1,), (M, 1,)}.
Now suppose that (M, I) and (Ms, I5) are minors of (L, G) in the same fiber of F
such that neither I; U {03} nor I, U {0} contain both z and y. By assump-
tion f(Opr,) = f(Oag,). Either 0p, = Oy, or one is 2 and the other y. Consider
the case Op;, = Opg,. The equality F(My, 1) = F(Ms, I) holds, thus f(I1) = f(I3).
Hence these sets differ by exchanging = and y. There is a minor (M, ) of (L,G)
with I = I; UL, and 0y = Op,. This satisfies F(M,I) = F(My,I;) = F(M,, I,)
and (M, I) and (Ms, I5) are the minors (M, 1)\ {z} and (M, 1)\ {y}.

Now consider the case where 0y, # Opg,. Since f(Oar,) = f(0ps,) one must equal z
and the other must equal y. Say 6M1 = z. Since x < y the element y is a generator of
the contraction (L, G)/x. Consequently there is a minor (M, I) of (L, G) with 05y =
and I = IU{y}. Furthermore (M, ;) = (M,I)\{y} and (Ms, I) = (M, I)/{y}. O

4.3.2 The zipping construction for minor posets and inequalities

Theorem 4.3.7. Let (L, G) and (K, H) be generator-enriched lattices such that there
is a strong surjection from (L,G) onto (K,H). The minor poset M(K, H) can be
obtained from M(L,G) via a sequence of zipping operations.

Proof. By Lemma we may assume f has a single nontrivial fiber {z < y}.
Let F': M(L, G) = M(K, H) be the map induced by f. By Lemmal[d.3.6|the nontrivial
fibers of F are of the form {(M, I), (M, I,), (M,, 1))} in which (M,, I,) = (M, I)\{y}
and (M,, I,) = (M, 1)\ {z} when = # 0y and (M,, I,) = (M, I)/{y} when z = Oy.
Let Z be the set of maximal elements of these nontrivial fibers of F. Choose
some total ordering <, of Z with the property that for (M, ;) and (Ms, I5) in Z
with rk(My, ) < rk(May, I3) then (M, I;)<uip(Ma, Iz). The poset M(K, H) will be
obtained from M(L, G) by identifying each of the triples {(M, I), (M,, I,), (M,,I,)}
as described above. It will be shown these identifications may be made by zipping
each element of Z with respect to the order <.

Let (M,I) € Z and let (M,,I,) and (M,,I,) be the other elements of the same
fiber as (M, I) as before. Let P be the poset obtained from M(L,G) by zipping
elements of Z in increasing order with respect to <, up to but not including the
step of zipping the element (M, ). The minor poset M(L,G) is graded and thin
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by Lemma |4.2.3] so Proposition implies that P is graded and thin as well.
Let m : M(L,G) — P be the projection map induced by the zipping operations. To
show that the triple w(M,, I,,), 7(M,, I,), 7(M,I) forms a zipper in P it suffices to
show that m(M, I) only covers the elements m(M,, I,) and w(M,, I,), and show that
the join w(M,, I,) V w(M,, I,) in P is w(M,I), by Remark [1.4.3]

We claim any minor (M’,I’) other than (M, I,) or (M,,I,) covered by (M,I)
satisfies x,y € I' U {0y, }. This claim is obvious when (M’, I') is a deletion of (M, I).
Since x is only covered by y, for any z € L either 2z V2 = 2V y or z < x. Thus
contracting (M, I) by an element ¢ # x either fixes both elements = and y or re-
moves more than one generator. We conclude any minor (M’ ") < (M, I) satis-
fies #,y € I'U{0y}. By construction such a minor (M’, I’) was the maximal element
of a zipper in the construction of P and thus rkp(7(M’, I")) < rknz,q)(M’,I"). Hence
the element w(M’, I') is not covered by m(M,I). Therefore w(M,I) only covers the
elements w(M,, I,,) and w(M,, I,) in the poset P.

It remains to show w(M,I) = n(M,, I,) V n(M,,1,) in P. To this end, we first
observe (M, I) = (M,,1,) V (M, I,) in M(L,G). From the definitions of (M, I,)
and (M,, I,) either Ong, = 6My or 0y, = x. In the case the minimal element 0y, =

this is only covered by 6My =y in (M, I). With these relations in mind it is straight-
forward to check via Lemma that (M, I) = (M, I,) V (M,, I,) in M(L, G).
Now consider an element p € P that is an upper bound for the elements 7(M,, I,.)
and w(M,, I,). By construction the fibers 7=t o w(M,, I,) and 7! o (M, I,) are
trivial. The fact that p > w(M,, I,) implies there is some minor (N, J,) of (L,G)
such that (N, J,) > (M, I,;) and 7(N,, J,) = p. Similarly there is a minor (N, J,)
of (L,G) such that (N, J,) > (M,,I,) and ©(Ny, J,) = p. If (Ny,Jy) = (Ny, Jy)
then (N, J,) > (M, I), hence p > w(M, I) as desired. It remains to show this equality
must hold. Since p > w(M,, I,) we have that rkp(p) > rkp(7(M,, I))+1 = rk(M, I).
By construction no minors of (L, G) of rank greater than rk(M, I) were the maximal
element of a zipper in the construction of P, so 7~ !(p) consists of minors with
rank at most rk(M, ). If the fiber 7'(p) was not trivial then since P was con-
structed via zipping operations we have rkp(p) < rk(M,I) — 1 = rkp(n(M,, I..)).
Since p > m(M,,I,) this cannot be the case. Hence, the fiber 7 !(p) is triv-
ial and the equality (N,,J,) = (IV,,J,) holds, hence p > 7(M,I). There-
fore w(M,I) is the join of w(M,,I,) and w(M,,I,) in P. This establishes the
triple w(M,, I,,), 7(M,, I,), 7(M, I) forms a zipper in P and completes the proof. [

Figure depicts an example of the zipping construction.

Corollary 4.3.8. For any generator-enriched lattice (L, G) the minor poset M(L, G)
is Eulerian, and if G # 0 the proper part of M(L,G) is a PL-sphere.

Proof. Let n = |G|. Proposition says the minor poset M(B,,irr(B,)) is
isomorphic to the face lattice (), of the n-dimensional cube. In particular this
poset is Eulerian and the proper part is a PL-sphere. There is a strong surjection

from (B,,irr(B,)) onto (L,G), namely the canonical strong map. Thus, Theo-
rem implies that the minor poset M(L, G) can be obtained from @),, via zipping
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Figure 4.8: An example of the zipping construction.

operations. Theorems|1.4.6{and |1.5.3/imply that the minor poset M(L, G) is Eulerian
and if G # () then its proper part is a PL-sphere. O]

Corollary 4.3.9. For any generator-enriched lattice (L, G) with G # () the minor
poset M(L, G) is isomorphic to the face poset of a reqular CW sphere.

Proof. Since lower intervals of a minor poset are themselves minor posets, Corol-
lary along with Theorem [1.4.8| implies the result. O

Recall that the rank 1 elements of the minor poset M(L, G) are in bijection with
the elements of (L, G), and the rank 2 elements are in bijection with the edges of the
diagram of (L, G). It is interesting to note that the regular CW complex whose face
poset is isomorphic to M(L, G) has a 1-skeleton isomorphic to the diagram of (L, G).
In particular, when (L, G) is minimally generated and geometric, the 1-skeleton is
isomorphic to the Hasse diagram of L. In any case, when |G| = 3 the associated
CW complex can be constructed simply by embedding the diagram of (L, &) into
the 2-sphere.

Corollary 4.3.10. Let (L,G) be a generator-enriched lattice with n generators. The
following inequalities hold coefficientwise among the cd-indices:

0 < T(M(L,G)) < U(Q,).

Proof. The left-hand inequality is implied by Corollary and Theorem [1.5.2]
Theorem [1.5.2] also applies to the face lattice of the n-dimensional cube, to the in-
termediate posets in the zipping construction of M(L, G) and to all intervals of these
posets; as the proper parts of these posets are PL-spheres. Theorem [1.5.3] implies
that the cd-index of the minor poset M(L,G) may be obtained from the cd-index
of the face lattice of the n-dimensional cube by subtracting terms which all have
nonnegative coefficients. O

Corollary 4.3.11. Let (L,G) and (K, H) be generator-enriched lattices such that
there is a join-preserving surjection from (L, G) onto (K, H). The following inequality
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of cd-indices is satisfied coefficientwise:
U(M(K, H)) - - < w(M(L, Q). (4.1)

Proof. First consider the case where |G| = |H|. By Theorem [4.3.7 we have a sequence
of zipping operations that takes the minor poset M(L,G) to M(K, H). The minor
poset M(L, G) has proper part a PL-sphere, hence so does every intermediate poset re-
sulting from the sequence of zipping operations. By Theorem [1.5.2]every intermediate
poset, and every interval of every intermediate poset, has a cd-index with nonnega-
tive coefficients. By assumption rk(M(L, G)) = rk(M(K, H)) so no zipping operation
involves the maximal element. Thus, Theorem M(a) implies each zipping opera-
tion corresponds, on the level of cd-indices, to subtracting off some cd-polynomial
with nonnegative coefficients. Therefore, we have V(M(K, H)) < UV(M(L, G)) coeffi-
cientwise when |G| = |H|.

Now consider the case where |G| = |H|+ 1. Let f: (L,G) — (K, H) be a strong
surjection. Factor the map f as in Lemma [4.3.5, and then group maps which do not
decrease the number of generators. This results in a factorization f = fs3o fy0 f1, for
strong surjections

fl : (LaG) - (M>I)7
fo: (M, I)— (N, J),
f3 : (Na‘]) — (K,H),

such that |G| = |I| = |J|+1. By the previous case we have W (M(M, I)) < U(M(L, G))
and V(M(K, H)) < U(M(N,J)) coefficientwise. Consider the zipping sequence in-
duced by the map f,. Since |I|—|J| = 1 we have rk(M(M, I))—rk(M(N, J)) = 1, thus
there is one zipping operation which involves the maximal element. By the construc-
tion given in Theorem this is the final zipping operation. Let P be the result
of the zipping operations applied to M(M, I') with the exception of the final zipping
operation. The zipping operations used to construct P all correspond, on the level
of cd-indices, to subtracting off a cd-polynomial with nonnegative coefficients. Thus,
we have U(P) < W(M(M, I)). The minor poset M(N, J) is constructed from P by zip-
ping the maximal element 1p. By Theorem (b) we have W(P) = U(M(N, J))-c
We have established the following inequalities:

T(M(K, H)) - ¢ < B(M(N, ) - ¢ < UMM, ) < U(M(L,G)).

Finally, consider the case where |G|—|H| > 1. Factor the map f as in Lemma[.3.5]
and group maps so that each group ends with a map decreasing the number of gen-
erators by one. This results in a factorization f = f. o--- o f; consisting of strong
surjections f; : (M;, I;) — (M;.1, I;11) such that

| = o] = 1,
(M, I 1) (L,G),
) =

( 7’+17 +1 ( )
The previous case shows W(M(M;4q, [ 1)) c < U(M(M;, L)) fori =1,....r. It
follows that W(M(K, H)) - c” < ¥(M(L,G)), here r = |G| — |H]. O
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Remark 4.3.12. [t would be too much to expect the converse of the above corollary
to hold, namely, cd-index inequalities for minor posets would imply the existence
of strong surjections between the associated generator-enriched lattices. Indeed, this
converse is false. As a counterexample, let (K, H) be the generator-enriched lattice
labeled (a) in Proposition [4.2.18 and (L, G) the generator-enriched lattice labeled (b)
in Proposition[{.2.18 There is no strong surjection from (L, G) onto (K, H), but the

inequality is satisfied since

U(M(L,G)) = c® + 2cd + 3dc,
U(M(K, H)) = c® + cd + 3dc.

To end this section we consider a special case of inequality . Namely, it is
shown that any generator-enriched lattice with no parallels admits a strong surjection
onto the chain with the same number of generators. Thus, the set of cd-indices
of minor posets of generator-enriched lattices with no parallels and n generators is
minimized by the cd-index of the Boolean algebra B, ;. Restricting to those minor
posets that are lattices is a special case of [24, Corollary 1.3] which says that the
set of cd-indices of Gorenstein® lattices is minimized by the Boolean algebra. By
Theorem not every minor poset of a generator-enriched lattice with no parallels
is itself a lattice. In contrast, every minor poset that is a lattice is the minor poset
of a generator-enriched lattice with no parallels.

Lemma 4.3.13. If (L,G) is a generator-enriched lattice with n generators and no
parallels then there is a strong surjection onto the length n chain.

Proof. Construct a linear extension g1, ..., g, of the set GG of generators as follows.
For g; choose any element minimal in the subposet G of L. Consider the contrac-
tion (L, G)/g1. By the no parallels assumption, and the fact that g; is minimal, the
contraction (L,G)/g; must have n — 1 generators. Next choose any minimal gener-
ator g of (L,G)/g1. The element g corresponds to a unique generator g, of (L, G).
Now the process repeats considering the contraction (L, G)/{g1,g2}. This process
ends with an ordering ¢, ..., g, of G. This ordering has the property that for i < j

GV VG FgGV(gVeVgi)

In particular, the ordering is a linear extension of the poset G.
Label the elements of the length n chain C, as 0 < 1 < --- < n. Define a
map f: (L,G) — (C,,irr(Cy,)) by

f(f) = max({0} U{i: g; < £}).

To show that f is join-preserving, let a,b € L and suppose that f(a)V f(b) = i.
Let j > 4, by construction g £ g1 V---V g > aVb Thus g £ aVyb,
and f(aVb) # f(a)V f(b). Clearly f(aVb) > f(a)V f(b) so f(aVb)= f(a)V f(b).
Since the ordering g¢i,...,g, is a linear extension of the subposet G of L, the
image f(g;) is 7, hence f is a surjection. O]
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Corollary 4.3.14. The class of cd-indices of minor posets of generator-enriched
lattices with n generators and mno parallels is coefficientwise minimized by the cd-
index of the rank n + 1 Boolean algebra.

Proof. By Lemma [4.3.13| any generator-enriched lattice (L,G) with no parallels

and |G| = n admits a strong surjection onto the length n chain (C,,irr(C,)).
Corollary implies that
U(B,11) = Y(M(Cp,irr(Cy))) < ¥(M(L, G)). O

Copyright© William Gustafson, 2023.
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Chapter 5 The weak minor poset

5.1 Introduction

The deletion and contraction operations of generator-enriched lattices studied in
Chapter ] do not in general commute. Let us illustrate this with an example.

Let L = {0 < g1,92,93 < 1} that is, L is the rank 2 lattice with 3 atoms.
Let G = {g1,92,93}. The contraction (L,G)/1 has two elements ¢; and 1.
Since T = g1 Vgo = g1 V g3 it is indexed both by 2 and 3 and ((L,G)/1) \ 2
has only a single element g;. On the other hand, the minor (L,G) \ 2 has the
four elements 0 .91, 93 and 1. Contracting by 1 the minor ((L,G) \ 2)/1 has two
elements g; and 1= g1V gs.

The essential reason the operations do not commute in the above example
is because the deleted generator g, can be replaced by g3 when g¢; is contracted
since g1 V g2 = g1 V g3. In this chapter we introduce a form of modified contractions
called weak contractions which are engineered to commute with deletions. To make
weak contractions commute with deletions we define weak contractions so that this
replacement phenomenon is ruled out and if a generator is deleted so is any generator
it maps to under a weak contraction. Along with the weak contraction operation
we study an associated poset, the weak minor poset. The weak minor poset of a
generator-enriched lattice resembles the minor poset, but the relations are induced
by deletions and weak contractions in place of contractions so the weak minor poset
has a weaker order relation.

In Section p.2| we introduce weak contractions and the weak minor poset. We show
that the weak minor poset of any generator-enriched lattice is a lattice and describe
the join and meet operations. In analogy with Theorem we show strong maps
between generator-enriched lattices induce meet-preserving maps between the weak
minor posets.

In Section we examine the effects on the weak minor poset of the operations
of Cartesian product and adjoining a new maximum. Unlike minor posetes weak
minor posets are not in general graded. In Section we characterize graded weak
minor posets as those induced by generator-enriched lattices with no parallels. In
Section we induce a dual lexicographic shelling for the weak minor poset of a
generator-enriched lattice whose minors are all lexicographically shellable, along with
the corresponding dual construction. In particular, this shelling shows graded weak
minor posets are Cohen-Macaulay.

5.2 The weak minor poset

We begin with defining the weak contraction operation. First, we formalize the notion
of the generators deleted to form a minor as the minor’s deletion set defined below.

Definition 5.2.1. Let (L,G) be a generator-enriched lattice and let (K, H) be a

88



minor of (L,G). Define the deletion set of (K, H) to be
Del(K,H) ={ge G:gV0x & HU{0k}}.

Note a minor of (L, G) is determined by its deletion set and its minimal element,
if (K, H) is a minor then

(K,H) = ((L,G)/0x) \ {g V Ok : g € Del(K, H)}
= ((L,G) \ Del(K, H)) /0.

Conversely, choosing any element ¢ € L and a set D C G such that D N[0y, (] = 0
determines a minor with minimal element ¢ and deletion set D. Now we can give the
definition of weak contractions.

Definition 5.2.2. Let (L,G) be a generator-enriched lattice, let I C H and
set ig = \;ep i If Del(K, H) N [0,i0] = 0 then the weak contraction of (K, H) by I

with respect to (L, G) is
(K, H) /el = (K, H)/T)\{g Vio:g € Del(K, H)}.

Otherwise (K, H)/ a1 =0 holds.

A~

In the above definition the set G N[0, 4] is the set of generators that need to be
contracted to form the minor (K, H)/(1,)I. The condition Del(K, H)N [0, 4] = 0 can
be interpreted as saying no generator was both deleted and contracted. If a generator
was both deleted and contracted the operation does not really make sense and we
declare the result to be () for convenience; the element () will be an artificial minimum
in the weak minor poset.

Note a weak contraction applied to (L, G) itself is the same as a usual contraction.
We will frequently express minors as the result of a contraction followed by a deletion.

If (K, H) can be obtained from (M, I') using deletions and weak contractions with
respect to (L, G) then we say (K, H) is a weak (L, G)-minor of (M,I).

Let us return momentarily to the example from the beginning of the section.
Recall L = {6 < 1,092,093 < T} and G = {g1,92,95}. If we consider the same
operations as before except with weak contractions in place of contractions we find
the operations do commute as claimed. The minor ((L,G)/,c1) \ 2 = (D|g1) as
before. But now since Del((L,G) \ 2) = {g2} when applying the weak contraction
by 1 we get

(L, N2 eyl = (L, G)\2)/1)\ {g2 V g1 = T}
= (Dlg1).

We now verify that the operations of deletion and weak contraction commute in
general.
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Proposition 5.2.3. Let (L,G) be a generator-enriched lattice and firx a label-
ing G = {g1,...,9n} of the generating set. Deletions and weak contractions
commute, in that, for any X,Y C [n] such that g, £ \/ ,cx 9= for ally € Y and any
minor (K, H) of (L, Q)

(K, H) (,ayX)\Y = (K, H)\Y) /e X

As an aside, the hypothesis g, £ \/,cx 9. for y € Y could be removed if one
defined the result of deleting the minimal element from a generator-enriched lattice
to be the empty set. We opt instead to not alter the definition of deletions for
simplicity.

Proof. Set { =\/ .y X. By definition

(K. H)/ e,y X)\Y = ({¢Vh:he H}
\{fVg:geDel(K,H)}U{lVg,:yecY}U{l})|o).

On the other hand the minor ((K,H)\Y)/.¢X is equal to

({évh:heH\{ﬁK\/gy:yeY}}\({KVg:gEDel((K,H)\Y)}U{E})M}
={lVvh:he H}\({{Vg:geDel((K,H)\Y)}U{l})|¢).

The two minors are equal since Del((K, H) \Y) = Del(K,H) U{g, :y € Y}. O

Definition 5.2.4. Given a generator-enriched lattice (L,G) the weak minor

poset WM(L, G) consists of a unique minimal element O and all minors of (L,G)
with the order relation (K1, Hy) < (K, Hy) if and only if (K1, Hy) is a weak (L, G)-
minor of (Ko, Hy).

Figure depicts an example of a weak minor poset. The weak minor posets
of generator-enriched lattices with 3 generators are depicted in Appendix [A] The
following lemma gives a useful alternative definition of the order relation of weak
minor posets.

Lemma 5.2.5. Given a generator-enriched lattice (L,G) and minors (K, H)
and (M, I) we have (K, H) < (M, I) if and only if the following two conditions hold:
Oar < Ox,

Del(M, I) C Del(K, H).

Proof. First suppose (K, H) < (M, I). Then (K, H) is a weak minor of (M, I) so we

can write
(K7 H) = ((Mv I)/(L,G)/GK) \ {g\//dK 1g € Del(Kv H>}

Clearly this implies 0y < 0x and Del(M,I) C Del(K, H) as deletions and weak
contractions can only increase each of these attributes.
Conversely suppose 0y < 0x and Del(M, I) C Del(K, H). We wish to show

(K, H) = (M, 1)/(1.c)0x) \ {g V Ox : g € Del(K, H)}.
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0

Figure 5.1: An example of a weak minor poset.

First, observe since Del(M,I) C Del(K,H) C G\ [0,,0x] and 0y < Ox we
have O € M. Thus,

(M, 1)/(1.6)0k = (L, @)/0x) \ {g V Ox : g € Del(M, I)}.
Since Del(M, I') C Del(K, H) the last minor above is an upper bound for (K, H). [

Now we show that weak minor posets are lattices and describe the join and meet
operations.

Theorem 5.2.6. For any generator-enriched lattice (L,G) the weak minor
poset WM(L, G) is a lattice. Furthermore, given minors (K, H) and (M,I) of (L,G):

1. The meet (K, H) A (M, I) is the minor (N, J") defined by

Onn = O V O,
Del(N”, J") = Del(K, H) U Del(M, I)

if (Del(K, HYUDel(M, I))N[0L, 05 V0] = 0 and otherwise (K, HYA(M,I) = {.
2. The join (K,H)V (M,I) is the minor (N, J") defined by

Onv =0k A O,

Del(NY, JY) = Del(K, H) N Del(M, I).
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Proof. We begin by proving the given formula for meets. First suppose there is
some d € Del(K, H) UDel(M, I) such that d < 0x V 0,;. Without loss of generality
suppose d € Del(K, H). If there were a minor below both (K, H) and (M,1) its
minimal element must be an upper bound for O V 0. Thus, any common lower
bound of (K, H) and (M, I) is also a lower bound for (K, H)/(L,G)aM. By assump-
tion (K, H)/(1.c)0n = 0 so the meet (K, H) A (M, I) is 0 as well.

Now suppose d £ O V Oy for d € Del(K, H) UDel(M, I). Let (N*,J") be the
minor of (L, G) defined by

Onn = Ox V O,
Del(N”, J") = Del(K, H) UDel(M, I).

Suppose (N J is a minor of (L, G) such that (N, J) < (K, H) and (N, J) < (M, I).
By Lemma [5.2.5| this implies Oy > Ok V 0, and Del(N,.J) D Del(K, H) UDel(M, I).
This implies (N, J) < (N J") so (N, JN) = (K, H) A (M, I).

Now we prove the given formula for joins. Observe (NV,JY) is a well defined
minor since

Del(NY, JY)N [6L,6NV] C Del(NY, JY) N [aLyaK] =0.

We clearly have (NV,JY) > (K,H) and (NV,JY) > (M,I) by Lemma [5.2.5] The
same lemma also easily shows any upper bound for both (K, H) and (M, ) is an
upper bound for (N, JY). ]

Theorem in particular, shows for any generator-enriched lattice (L, ) the
lattice L is isomorphic to the sublattice of WM(L, G) consisting of contractions.

Proposition 5.2.7. Let (L,G) be a generator-enriched lattice.

1. The meet irreducibles of the weak minor poset WM(L,G) are the dele-
tions (L, G) \ {g} for g € G and the contractions (L,G)/{i} fori € irr(L).

2. The join irreducibles of the weak minor poset WM(L,G) are the minors
of (L,G) that contain a single element and the minors of the form (y|z) such
that x £y in L.

In particular, WM(L, G) is coatomic if and only if G is the set of atoms of L
and WM(L, G) is atomic if and only if L is geometric and G = irr(L).

Proof. 1t is clear from the description of meets in Theorem that the meet
irreducibles consist of the minors (K, H) such that either Ok is join irreducible
and Del(K, H) = 0 or O = 0y, and Del(K, H) is a singleton. These are precisely the
minors claimed to be the meet irreducibles of WM(L, G).

An element (K, H) is join irreducible in WM(L, G) if and only if (K, H) covers
one element. This is of course the case if (K, H) is an atom, suppose (K, H) is not
an atom. If |H| > 2 then (K, H) covers at least two elements, since for h € H
we have (K,H) > (K,H) \ {h}. Suppose H = {h}. In this case (K, H) is join
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irreducible if and only if (K, H)/{h} = 0. We have (K,H)/{h} = 0 if and only
if Del(K,H)N{g € G:g<h}+#0. Since H={h} we have

Del(K,H)={ge G:g %0k and gV 0x # h}.

Thus, (K, H) is join irreducible if and only if for all ¢ € G the conditions g € Ok
and g < h imply g V0x = h. This is equivalent to the condition Ox < h.

It is clear WM(L, G) is coatomic if and only if G is the set of atoms of L since each
deletion (L, G)\ {g} is a coatom and the sublattice of contractions is anti-isomorphic
to L. The fact that WM(L, G) is atomic if and only if L is geometric and G = irr(L)
follows from Proposition [4.2.10] O

In Theorem it was shown that strong surjections between generator-enriched
lattices induce certain order-preserving maps called zipping operations between the
minor posets. We prove an analagous result for weak minor posets, that strong maps
between generator-enriched lattices induce meet-preserving maps between the weak
minor posets.

A strong map f : (L,G) — (K, H) induces a map F : WM(L,G) - WM(K, H)
between the weak minor posets defined by
FI(L,G)/ONT) = (K, H)/f(0) \ (1)
if f(i) € f(¢) for all i € I and otherwise is the minimal element () of WM(K, H).
Equivalently, the image F'(M, ) of a minor (M, I) of (L,G) is defined by

0rarny = fOu),
Del(F(M, I)) = f(Del(M, 1))
if f(Del(M, ) N[0, f(0r)] = 0 and otherwise F(M, ) = 0.

Theorem 5.2.8. Given generator-enriched lattices (L, G) and (K, H) and a strong
map f : (L,G) — (K, H) the induced map F : WM(L,G) — WM(K, H) is meet-

preserving. Furthermore, if f is injective (surjective) then F is injective (surjective).

Proof. Let (M, I) and (N,.J) be minors of (L,G) and assume (M, I) A (N, J) # 0.
Recall, F(M,I) A F(N,J) = if and only if

(f(Del(M, 1)) U f(Del(N, J))) N [0, f(Onr) V f(On)] # 0

holds.
If this condition holds then by the definition of F' and applying Theorem [5.2.6| we
also have F((M,I) A (N,J)) = 0. On the other hand, if F(M,I) A F(N,J) # () then

(f(Del(M, I)) U f(Del(N, J))) N [0, f0nr) V F(On)] = 0.

This implies f(Del((M,I)A(N,J)))N [aKaa(M,I)/\(N,J)] # 0. Thus, F((M,I)A(N,J))
has deletion set f(Del(M, I))U f(Del(N,J)) and minimal element f(0,,)V f(Oy) and
is equal to F'(M,I) A F(N,J).
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Now assume the strong map f is injective. We wish to show the induced
map F is injective as well. Since the map f is join-preserving the inverse
map f~': f(L) — L is join-preserving as well. Now let (M, ) be a minor of (L, Q).
We have f(Del(M, I))N[0x,0x] = 0 if and only if £~ f(Del(M, I))Nf ([0, 0a7]) = 0
which is equivalent to the condition Del(M, ) N [6L,6M] = () which always holds.
Thus, only @ is mapped to § by F. Now, given a minor (N,J) of (L,G) such
that F'(M,I) = F(N,J) we have

J(Del(M, 1)) = f(Del(N, J))

and f(0y) = f(Oy). Since f is injective this implies (M, I) = (N, J) so F is injective
as well.

Now suppose f is surjective. To show F' is surjective let (M, 1) be a minor
of (K,H). Choose { € L such that f(¢) = 0y and choose a set D C G such
that f(D) = Del(M, ). For all h € Del(M,I) we have h £ 0. Since f is order-
preserving this implies g € ¢ for any g € G such that f(g) = h. Thus, there is a minor
of (L, G) with minimal element ¢ and deletion set D and its image is (M, I). O

Recall a lattice L is said to be complemented if for all ¢ € L there exists an
clement k € L such that £V k =1 and £ Ak = 6; the element k is said to be a
complement of £. As it turns out weak minor posets are complemented lattices. See
[10, Chapter 1, Section 9] for details regarding complements in lattices.

Proposition 5.2.9. Given a generator-enriched lattice (L,G) the weak minor
poset WM(L,G) is a complemented lattice. Given a minor (K,H) # (L,G) a
minor (M, 1) is a complement of (K, H) if and only if the following three conditions
hold:

(Del(K, H) U Del(M, 1)) N ([01,0x] U [0, 00]) # 0, (5.1)
Del(K, H) N Del(M, 1) C [0,,0] U [0z, 0u], (5.2)
O AOy = 0. (5.3)

Proof. First assume (K, H) and (M, I) are complements. Since
(K, H)V (M, 1) = (L,G),
by Theorem we must have 6;( A GM = 6L and
Del(K, H) N Del(M, 1) C [0,,0] U [0z, 0p]-
Since (K, H) A (M, I) = 0 by Theorem either
Del(K, H) N [0g,00] # 0

or

Del(M, I) N [0z, 0x] # 0,
hence (Del(K, H) UDel(M, 1)) N ([0, 04] U [0z, 0x]) # 0.
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Conversely, assume the following Conditions through hold. Then
(Del(K, H) NDel(M, 1))\ ([0, 0x] U [0z, 0p]) = 0
and since Ox A 0y = 0, Theorem implies (K, H)V (M, I) = (L,G). Since
Del(K, H) N [0r,0x] = 0

and o
Del(M,I)N[0g,0x] =0

our assumptions imply either
Del(K, H) N [0z, 04 # 0

or

Del(M, 1) N [0z, 0] # 0.
In either case (K, H) A (M, I) = ) holds. O

5.3 Operations

In this section we show the weak minor poset of a Cartesian product of generator-
enriched lattices is the diamond product of the weak minor posets; and that the weak
minor poset of a generator-enriched lattice with a new maximum attached is a certain
weak subposet of the pyramid over the weak minor poset. This first result is the same

as for minor posets (Proposition 4.2.12]).

Definition 5.3.1. Given two generator-enriched lattices (L,G) and (K, H) the
Cartesian product is the generator-enriched lattice

(L,G) x (K, H) = (L x K, (G x {0x}) U ({0} x K)).

Recall given two posets P and () each with a unique minimal element the diamond
product is defined as

PoQ=((P\{0p}) x (Q\ {0g})) u {0}.

The diamond product corresponds to direct products of polytopes and of regular CW
complexes.

Given a poset P the pyramid over P is the poset Pyr(P) = P x B; and the
prism over P is the poset Prism(P) = P ¢ By. We define the pyramid operator on
generator-enriched lattices in the same way Pyr(L,G) = (L, G) x (By,irr(By)).

Proposition 5.3.2. For any two generator-enriched lattices (L,G) and (K, H)
WM((L, G) x (K, H)) = WM(L, G) o WM(K, H).

In particular, the isomorphism WM(Pyr(L, G)) = Prism(WM(L, G)) holds.
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Proof. Let m, : L x K — L and g : L x K — K be the projection maps. Define a
map ¢ : WM((L,G) x (K,H)) - WM(L,G) o WM(K, H) on minors (M, I) by

O(M, I) = (m (M), 71 (D), e (M), mc (1),
We also set ¢(()) = (). The map ¢ has inverse given by
¢~ (L', K' H') = (G' x {0k }) U ({00} x H')|(0r, 0x)).-
Clearly the map ¢ is join-preserving from the formula in Theorem [5.2.6] m

The second operation we examine is that of adjoining a new maximum to a
generator-enriched lattice. Given a generator-enriched lattice (L, G) let L = LU{1;}

and G = G U {/1\3} for some new element TZ which is greater than all elements of L.

Note TZ is join irreducible in L so it must be an element of G for (E,@) to be a
generator-enriched lattice.

Proposition 5.3.3. Let (L,G) be a generator-enriched lattice. The weak minor
poset WM(L,G) is isomorphic to the weak subposet of Pyr(WM(L,G)) defined
by (A, e1) < (B, €2) if and only if the same relation holds in Pyr(WM(L,G)) and at

least one of the following two conditions holds:
1. (A7 61) 7£ ((87/]?)7
2. Del(B) = 0.

Proof. Define a map ¢ : WM(L,G) — Pyr(WM(L,G)) defined for minors (K, H)
of WM(L, G) by

(K, H,0) if1; ¢ K,
O(K, H) = (K\ {1z}, H\{1;},1) if1; € H,
(0,1) if 1; = 0

and by ¢(0) = (0,0). The inverse map is described by

(K, H) ife=0
(KU{1;},HU{1;})) ife=1

by ¢~(8,1) = (0[13) and ¢~(9,0) = 0.

Observe, if ¢(K,H) = (K',H',e) then Del(K’, H') = Del(K, H) \ {1;} when-
ever TE + 0. Setting gzﬁ(M/,\] ) :A(M L, /\EQ) a Eimilar statement holds. Thus, apply-
ing Lemma we see if 17 # O and 17 # 0y then (K, H) < (M, 1) holds if and

that is, the case ¢(K,H) = (0,1).

only if ¢(K, H) < 6(M, I).
)
,I) if and only if Del(M, I) = (; which

Now consider the case (K,H) = (0 |TE :
Since Del(K, H) = () we have (K, H) § (M, I
= (). On the other hand if Del(M', I") =0
WM(L,G) x {1}. Thus,

implies the condition condition Del(M’, I’)
and ¢(M, ) > (,1) we must have gb(M Ie
Del(M, I) = Del(M’, I') = 0
from which we conclude (M, I) > (K, H). O

¢_1(K7 H, 6) = {
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5.4 Graded weak minor posets

In this section we examine the special case of graded weak minor posets. We begin
with a characterization.

Proposition 5.4.1. The weak minor poset WM(L, G) is graded if and only if the
generator-enriched lattice (L, G) has no parallels. If (L, G) has no parallels then the
rank function of WM(L, G) is given by rk(K,H) = |H| + 1.

Proof. Let (K, H) be a minor of (L, G). In any case there is a chain of length |H|+1
from @) to (K, H), namely any chain of the form

0 < (0[0k) < ([0k) < -+ =< (hy, ..., h[0k) = (K, H)

where H = {hq,...,hyu}. It will suffice to show that the generator-enriched lat-
tice (L, G) has no parallels if and only if in every cover relation (K, H) < (M, 1)
in WM(L, G) we have |I| — |H| = 1.

First suppose (K, H) < (M,I) and |I| — |H| > 2. We claim (K, H) = (M, I)/0k.
Since the two minors form a cover relation clearly (K, H) is not a deletion of (M, )
so we conclude (K, H) = (M, ])/(L,G)GK. Since

(K, H) = (M,1)/(1,¢)0x
( )/OK)\{g\/OK g € Del(K, H) \ Del(M, I)}
= ( )\ {9V 0u : g € Del(K, H) \ Del(M, 1)})/0x

(M, 1
(M, 1

we see

(K, H) < (M, 1)\ {gV 0y : g € Del(K, H) \ Del(M,I)}.

We conclude Del(K, H) = Del(M, I) which implies (K, H) = (M,I)/0x. We also
conclude Oy is an atom in M as otherwise the contraction by a generator ¢ < Ok
would lie strictly in between (K, H) and (M, I). These two conclusions imply there
must be two generators iy,i, € I such that i; V OK =19V OK Thus, (M, ) has a
parallel which implies (L, G) has a parallel as well.

Now assume (L, G) has a parallel, say ¢ € L and g, h € G satisfy £V g = ¢V h. Fur-
thermore, assume ¢ is minimal with respect to this property, in that, for any ¢’ < ¢ the
elements 'V g and ¢’V h are distinct. Let ¢ < ¢ and consider the contractions (L, G)/¢
and (L,G)/¢'. On one hand (L,G)/¢ < (L,G)/¢ and on the other hand (L, G)/¢ has
at least 2 less generators than (L, G)/?. O

Weak minor posets admit a decomposition into Boolean algebras and this de-
composition can be used to express the rank generating function of the weak minor
poset of a generator-enriched lattice with no parallels in terms of the rank generating
function of the original lattice. This is in fact the same decomposition for the minor

poset in Theorem [4.2.28|
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Figure 5.2: An example of the Boolean decomposition of a weak minor poset.

Proposition 5.4.2. Given a generator-enriched lattice (L, G) let WM,(L, G) denote
the subposet of WM(L, G) consisting of minors with minimal element (. We have the
decomposition

WM(L,G) \ {0} = U%L WM,(L, G).
Furthermore WM, (L, G) = [(0|¢), (L, G) /€] and is Boolean of rank

{gVvil:geGH\{]

Proof. 1t is clear that the union of all posets WM, (L, G) is disjoint and contains all
minors of (L,G). Let (K, H) € WM,(L,G). We can express (K, H) as

(L,G)/O)\{gVl:geDel(K,H)}

o (K,H) < (L,G)/¢. On the other hand, we have (K, H)\ H = (0|¢). Thus, we
conclude

Since taking the minimal element is an order-reversing map from WM(L, G) to L
the other inclusion [(0|¢), (L, G)/¢] € WM,(L,G) is immediate. Finally, the inter-
val WMy (L, G) is Boolean since all relations must come from deletions so mapping
each minor to its generating set is an isomorphism between WM,(L,G) and the
Boolean algebra of subsets of {gV {: g€ G} \ {(}. O

We use this decomposition below to derive an expression for the rank generating
function of graded weak minor posets. Given a graded poset P we let F'(P;q) denote
the rank generating function Zpe P q®)
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Proposition 5.4.3. For any generator-enriched lattice (L, G) with no parallels

F(WM(L,G);q) =1+q ) F(L*;1+q).

el

Proof. Recall the rank generating function of the Boolean algebra is
F(Bn;q) = (1+4q)"
Thus, the Boolean decomposition of WM(L, ) yields

F(WM(L,G)iq) =1+q ) _(1+ q)™ "9/,

lel

Recall tk((L,G)/0) = {gV {:g e G} \{¢}|. Since (L,G) has no parallels this is
equal to [{g € G : g £ {}|. By Proposition 4.2.31] this is equal to

rk- (0) = k(1) — vk, (¢) 0.

5.5 Shelling weak minor posets

In this section we describe a process to induce a dual EL-labeling on the weak minor
poset of a generator-enriched lattice given EL-labelings on all the minors. Dually,
we induce an EL-labeling of the weak minor poset given dual EL-labelings on all
the minors. Generator-enriched lattices whose minors are all EL-labelable include
distributive lattices and geometric lattices. Generator-enriched lattices whose minors
are all dual EL-labelable includes generator-enriched lattices with no parallels as such
lattices are lower semimodular.

Theorem 5.5.1. Given a generator-enriched lattice (L, G) all of whose minors ad-
mit an EL-labeling the weak minor poset WM(L, G) is dual EL-labelable. Given a
generator-enriched lattice (L, G) all of whose minors admit a dual EL-labeling the
weak minor poset WM(L, G) is EL-labelable.

Proof. First consider the case where all minors of (L,G) admit an EL-labeling.
For I C G let A; be the EL-labeling on (L,G) \ I and let A; be the domain of A;.
Let A = ||;cqAr- We now define a labeling A on the covers of WM(L, &) with

domain 2¢ U A LU {0}. The labels are ordered via lexicographic ordering on 2¢ with
respect to some fixed ordering of GG, via the obvious way on A and via the rule

X <0</

forall ¢ € A and X C G.
Given a cover (K, H) \ {h} < (K, H) the image under A is defined to be

The covers ) < (|¢) all have image 0 under A\. The remaining covers are of the
form (K, H)/{h} < (K, H). Since this is a cover relation we must have O < h. The
image of such a cover relation under A is Ape(x,m)(0x < h).
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We now must show that each interval in the weak minor poset WM(L, G) has a
unique maximal downward rising chain which is lexicographically least. First consider
an interval of the form [(), (K, H)]. The last label of any maximal chain is 0. For a
maximal to be rising it must thus only use labels preceding 0 before the last cover,
hence, the only rising maximal chains consist solely of deletions of (K, H). The set
of labels of chains consisting of deletions of (K, H) are the all the same and only one
occurs in order, the order being lexicographic order on the sets

{geG:gVOx=h}

for h € H. Thus there is a unique rising downward maximal chain of [(), (K, H)].
Furthermore it is lexicographically least amongst all downward maximal chains since
labels of deletions are less than labels of contractions and it is clearly lexicographically
least of all chains consisting of deletions of (K, H).
Now consider an interval [(M, I), (K, H)]. Chains of this interval all contract the
set
{he H:h<0y}

and delete the set
Del(M,I)NH ={h e H:hV0y &IU{0y}}.

A rising chain must have all covers corresponding to deletions above those covers cor-
responding to contractions. Note this can be arranged although the reverse may not
since relations are induced by weak contractions which may involve deletions. There
is only way to perform the deletions in order so that the deletion portion of the chain
is rising. After the deletion portion of the chain is a chain from (K, H) \ Del(M,I)
to (M, I) which consists of contractions. The labels for this portion of the chain
are labels under Apei(as,r) from the interval [0k, 0as] of (L, G)\ Del(M, I). The inter-
val [GK, 6M] has a unique maximal upward rising chain which is lexicographically least.
A rising chain in the interval [(M, I), (K, H)] must use the corresponding contractions
to be rising so there is only one rising downward maximal chain. Furthermore the
chain is lexicographically least.

Now consider the case where all minors of (L, G) are dual EL-labelable. Let A
be the dual EL-labeling for (L, G) \ I and let A’ be the domain of . As before
set A" = | |,coA’. The label set is similarly A’ U 2% U {0} with 2¢ ordered lexico-
graphically but we now have the relations

<0< X

for ¢ € A" and X C G. Since we now consider upward chains we have a unique rising
chain for intervals [(), (K, H)] which has covers consisting of deletions in lexicographic
order from the bottom. Intervals [(M,I), (K, H)] have a unique rising chain which,
when viewed downward, begin with deletions and end with contractions with the
deletions in lexicographic order from the bottom of the chain and the contractions in
order of the dual EL-labeling of the interval [0, 0y/]. Similar observations as above
show that the rising chain is lexicographically least as well. O
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We use the following result due to Bjorner and Wachs to relate the homology of
(dual) EL-labelable weak minor posets to the homology of the associated generator-
enriched lattice.

Theorem 5.5.2 (Bjorner-Wachs [13, Theorem 5.9]). Given a poset P with an EL-
labelling the ith homology group H;(P\ {0,1},7Z) is free of rank equal to the number
of falling maximal chains in P of length i + 2.

Corollary 5.5.3. Given a generator-enriched lattice (L, G) all of whose minors admit
an EL-labeling or all of whose minors admit a dual EL-labelling

Hi+1<WM<L> G) \ {(Z)v (L7 G>}7Z> = Hx(L \ {67/1\}7 Z)
fori>0.

Proof. First, suppose the minors of (L, G) have EL-labellings. A downward falling
maximal chain in WM(L, G) must consist entirely of contractions since the last label
is 0. The labels of such a chain are labels from the El-labeling on L. Thus, every
falling maximal chain in WM(L, G) corresponds to a falling maximal chain in L. The
converse holds as well, given a maximal chain in L the corresponding sequence of con-
tractions forms a maximal chain. The falling maximal chains of L and WM(L, G) are
thus in bijection and the falling maximal chains in WM(L, G) all have one additional
element from the minimum ().

The case where the minors of (L, G) have dual EL-labelings is similar. An upward
falling chain must consist of contractions since the first label is 0. We have a bijection
between the falling chains in the exact same way. O]

Copyright© William Gustafson, 2023.
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Chapter 6 Future research

In this chapter we discuss some open questions and future directions for research.

6.1 The uncrossing poset and generalized minor posets

In the minor poset of a generator-enriched lattice (L,G) the contractions are con-
trolled by the lattice L, in that the set of contractions considered as maps with the
composition operation is isomorphic to the lattice L. On the other hand deletions
are always controlled by the Boolean algebra.

The uncrossing poset appears to be a poset of minors of some algebraic object
generalizing generator-enriched lattices in which deletions may be controlled by any
lattice. The lattice controlling contractions is the lattice of flats of any fixed cactus
graph associated to the top element. The lattice controlling deletions is the lattice
of flats of a dual cactus graph, this dual cactus graph is constructed from the medial
graph in the same manner but the vertices are placed in regions of the opposite color.
Figure depicts an example. Figure shows the results of contracting an edge
and of deleting an edge in the cactus graph. Observe deletions in the cactus graph
correspond to contractions in the dual cactus graph and vice versa. The deletion
depicted in Figure does not correspond to a cover relation, this is due to the
parallel edges created in the dual cactus graph. Since the deletions are controlled by
the lattice of flats of the dual cactus graph this deletion is the same as when it is
followed by deleting in the dual cactus graph edges that have another edge parallel
to them. These deletions correspond to resolving the double crossings of arcs in the
medial diagram. The contraction depicted in Figure [6.2] also does not correspond to
a cover. This is due to a more nuanced behavior.

Certain transformations called Y — A moves do not change the electrical equiva-
lence class, and hence the associated pairing, of a cactus graph. This transformation
replaces a 3-cycle in a cactus graph with an internal vertex at the center of the cycle
that is adjacent to the vertices of the cycle. Performing this transformation on the
graph depicted in Figure (b) with the only 3-cycle results in a graph with two
internal vertices of degree 2. These two vertices correspond to parallel edges in the
dual cactus graph and to double crossings in the medial graph. These reductions
explain why the contraction does not correspond to a cover.

This idea of an algebraic structure wherein deletions are controlled by a specified
lattice should generalize minor posets of generator-enriched lattices, the special case of
when deletions are as free as possible being controlled by a Boolean algebra. Perhaps
a zipping construction analogous to Theorem can be performed. Thus, we make
the following conjecture. The conjecture holds for any pairing with no internal regions
of a medial diagram representation that border each other along an arc segment.
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Figure 6.1: A cactus graph, depicted in red, along with the dual cactus graph, de-
picted in blue with dashed lines.

Figure 6.2: In (a) is the result of applying a deletion to the cactus graph in Figure
and in (b) is the result of applying a contraction.

Conjecture 6.1.1. For any pairing T € UC,, there is a sequence of zipping operations
that take the face lattice Qcross(r) 0f the cross(r)-dimensional cube to the interval [0, 7]
of the uncrossing poset UC,,.

Assuming this conjecture the same proof as Corollary would establish PL-
sphericity of the proper part of the uncrossing poset. We explicitly pose this weaker
conjecture.

Conjecture 6.1.2. The proper part of the uncrossing poset UC,, is a PL-sphere.

Conjecture [6.1.1] would also imply the uncrossing poset is isomorphic to the face
poset of a regular CW complex and Conjecture [6.1.2] would imply the uncrossing
poset is Gorenstein®*. Both of these results have been established by Hersh and
Kenyon in [28] by showing that the uncrossing poset is lexicographically shellable.
We also conjecture cd-index inequalities for the uncrossing poset which would follow
from Conjecture |6.1.1]
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Conjecture 6.1.3. Let 7 € UC,, be a pairing and choose a cactus graph representa-
tion G for T. Let L be the lattice of flats of G and let K be the lattice of flats of the
dual cactus graph. The following cd-index inequalities hold coefficientwise:

W([0,7]) < W(M(L, irr(L)),

A~

U([0,7]) < U(M(K,irr(K)).

In particular,

-~

\IJ([O, 7']) S q’(@cross(‘r))

holds.
The inequality \If([ﬁ, 7]) < U(Qeross(r))s if true, gives a very weak bound for the cd-
index of the interval [6, 7]. We provide evidence for Conjecture in Appendix .

6.2 Minor posets of generator-enriched lattices

We now turn to discussing questions related to minor posets of generator-enriched
lattices from Chapter [4 Corollary and Corollary established that any
minor poset is isomorphic to the face poset of a regular CW sphere and the proper part
of any minor poset is a PL-sphere. Given a generator-enriched lattice (L, G) denote
this regular CW sphere by I'(L, G). Since the proper part of the poset M(L,G) is a
PL-sphere the complex I'(L, G) can be realized with piecewise-linear cells. Is there a
combinatorially meaningful way to realize the complex I'(L, G) with piecewise linear
cells? The polytopes defined below appear to be promising candidates.

Definition 6.2.1. Let (L,G) be a generator-enriched lattice with n genera-
tors gi,...,9n, and let e; denote the ith standard basis vector of R™. For { € L

set
Vy = E €;.

gi<t

In particular, vg is the zero vector. The flat polytope P(L,G) is the convex hull of
the vectors vy for £ € L.

The vertices of a flat polytope correspond to the flats of the closure operator asso-
ciated to the canonical strong map. Figure shows an example of a flat polytope.
For any generator-enriched lattice (L, G) with 3 generators the boundary complex of
the flat polytope P(L,G) is a subdivision of the complex I'(L, G).

Conjecture 6.2.2. For any generator-enriched lattice (L, G) the boundary complex
of the closure polytope P(L,G) subdivides the CW complex T'(L,G). That is, there is
a realization of I'(L, G) such that the closed cells are each a union of faces of P(L,G).

When L is a distributive lattice the closure polytope P(L,irr(L)) is the order poly-
tope associated to the poset irr(L)*. Given a finite poset P the order polytope O(P)
consists of all order-preserving functions from P to [0,1] C R. The vertices of this
polytope are the order-preserving functions from P to {0,1}. The elements mapped
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(1,1,1)

=)

(0,0,1)

b (1,0,0)

0 (0,0,0)

Figure 6.3: On the left a generator-enriched lattice and on the right the associated
flat polytope. The black edges in the polytope correspond to edges of the diagram.
Merging facets along the red edges yields the CW complex I'(L, G).

to 1 by a vertex form an upper order ideal of P and conversely every upper order
ideal of P corresponds to a vertex of the polytope O(P). See [43] for a discussion of
order polytopes.

When L is a geometric lattice the closure polytope P(L,irr(L)) has vertices cor-
responding to the flats of the simple matroid defined by L. Several polytopes from
matroids have been studied. For instance the matroid polytope associated to a ma-
troid has vertices corresponding to the bases and the independence polytope has
vertices corresponding to the independent sets. However, the polytopes P(L,irr(L))
do not appear to have been previously studied.

Shifting focus, we pose some questions concerning the cd-indices of minor posets.
A few bounds have already been established for minor posets. A tight upper bound
of U(M(L,G)) < ¥(Q,) holds whenever the generator-enriched lattice (L, G) has n
generators, equality is achieved by the Boolean algebra (B,,irr(B,)). A tight lower
bound of W(B,1) was established for all generator-enriched lattices with no paral-
lels and n generators, the lower bound is achieved by (C,,irr(C,)). In the class of
all generator-enriched lattices with n generators coefficientwise minimal cd-indices
can be achieved by many generator-enriched lattices. For example for n = 3 the
generator-enriched lattices depicted in Figure (6) and (10) have minimal cd-
indices. Are there other nice classes of generator-enriched lattices for which tight
bounds for the cd-indices of minor posets can be described?

One example for which it may be tractable to obtain tight bounds for these cd-
indices is minimally generated geometric lattices with n atoms, or refining this to
such lattices of rank at most . Any geometric lattice of rank at most r» with n atoms
is the image under a strong map on the lattice of flats of the uniform matroid of
rank r on the ground set [n]; this is the lattice obtained from the Boolean algebra B,
by identifying the maximal element [n] with all elements of rank r or more. The
minor poset of this lattice thus achieves the maximum cd-index among all geometric
lattices of rank at most r with n atoms. On the other end, any geometric lattice
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a

Figure 6.4: The order complex of a weak minor poset.

with n atoms admits a strong surjection onto the rank 2 lattice consisting of n atoms,
a minimum 0 and a maximum 1. This is the lattice of flats of the uniform matroid
of rank 2 with ground set [n]. Thus computing the cd-indices of uniform matroids
would produce tight bounds for the cd-indices of minor posets of minimally generated
geometric lattices.

Given a generator-enriched lattice (L, G) the cd-index of the minor poset M(L, G)
only depends on the generator-enriched lattice (L, G) simply because the minor poset
is computed from (L,G). Can this relationship be made more explicit, that is, is
there a way to compute the cd-index directly from the generator-enriched lattice?
A result along these lines is that the cd-index of a zonotope can be computed from
the ab-index of the lattice of regions of the associated hyperplane arrangement [8]
Theorem 3.1].

6.3 Weak minor posets

In Chapter [5|it was established a weak minor poset WM(L, ) is Cohen-Macaulay if
and only if (L, G) has no parallels. A shelling was given for these weak minor posets,
so the order complex A(WM(L,G) \ {0, (L,G)}) is homotopic to a wedge of spheres
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(all of the same dimension). Can more be said topologically about weak minor posets?
For what generator-enriched lattices is the weak minor poset homeomorphic to a ball?

The homology of weak minor posets for which a shelling was given was shown to be
the same as the original lattice’s shifted up one dimension. Does the same result hold
for more generator-enriched lattices? Is this homology result indicative of a stronger
topological connection between the weak minor poset and the associated lattice? In
general, the suspension operation takes a toplogical space to one whose homology is
the same as the original space shifted up in one dimension. The weak minor poset is
not generally homeomorphic to the suspension of the original lattice. For example,
the order complex depicted in Figure[6.4]is not homeomorphic to the suspension over
3 points, which is the order complex of the associated lattice. This order complex is
homotopic to the suspension though via collapsing the two-dimensional triangles all
to one point. Are weak minor posets homotopic to a suspension over the associated
lattice, perhaps via a sequence of simplicial collapses?

Copyright© William Gustafson, 2023.
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Appendices

Appendix A: Posets

In this appendix we list Hasse diagrams of various posets studied in this dissertation.

Permutation and Catalan posets

In this section we list a few posets studied in Chapter [2]

321

N

231 312

=]

213 132

~_

123

Figure Al: The Bruhat order on the symmetric group Ss.

Figure A2: The dominance order on Dyck paths with 6 steps.
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321

T

231 312
| |
213 132
\/
123

Figure A3: The weak order on the symmetric group &;.

Figure A4: The Tamari lattice of binary paranthesizations of 4 symbols.

109



4321

4312 4231 3421

4132 4213 3412 2431 3241

4123 1432 2413 3142 2341 3214

1423 1342 2143 3124 2314
1243 1324 2134
1234

Figure A5: The Bruhat order on the symmetric group &;.
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Figure A6: The dominance order on Dyck paths with 8 steps.
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4321

4312 4231 3421
4132 4213 3412 2431 3241
4123 1432 2413 3142 2341 3214
1423 1342 2143 3124 2314
1243 1324 2134
1234

Figure A7: The weak order on the symmetric group &;.
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(@ (z- (- (z-2))))

((@-2)-2)-(z-2)  ((@-2) (z-2)-2) (¢ (z-2)) 2)- 2)

(((z-2) - 2) - 2) - o)

Figure A8: The Tamari lattice of binary paranthesizations of 5 symbols.
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Uncrossing posets

In this section we list the uncrossing posets UC,, for n = 2,3,4,5 and the decompo-
sition into Bruhat intervals from Proposition 2.2.6] See Chapter [2] for details about
the uncrossing posets.

1
4 2
3
1 1
4 2 4 2
3 3
AN

0

Figure A9: The uncrossing poset UC,.
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1
2 6 2 6
3 5 3 5

4
2 6 2 6 2 6
3 5 3 5 3 5

1 1
6 2 6 2 6
5 3 5 3 5
4 4

AN

0

Figure A10: The uncrossing poset UCs.
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Figure A11: The uncrossing poset UCy.
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Figure A12: The Bruhat interval decomposition of the uncrossing poset UC,.
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1 1 1
6 2 6 2 6 2
5 3 5 3 5 3
4 4 4
1 1 1
6 2 6 2 6 2 6 2 6 2 6
5 3 5 3 5 3 5 3 5 3 5

4 4
1

6 2 6

5 3 5
4

Figure A13: The Bruhat interval decomposition of the uncrossing poset UCs.
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Figure A14: The Bruhat interval decomposition of the uncrossing poset UCj.
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Minor posets

In this section we list the 10 generator-enriched lattices with 3 generators along with
their minor posets. See Chapter [4] for details about minor posets.

o € 4

(1) (2) (3) (4)

%Y

(9) (6) (7) (8)

P <D

(9) (10)

Figure A15: The 10 generator-enriched lattices with 3 generators
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0

Figure A17: The minor poset of the generator-enriched lattice depicted in

Figure (2).
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& O 7 A

For 0 0 R0 0 0 A 40 0>

0

Figure A18: The minor poset of the generator-enriched lattice depicted in

Figure (3).
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0

Figure A19: The minor poset of the generator-enriched lattice depicted in

Figure (4).
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ANNANYL

0

Figure A20: The minor poset of the generator-enriched lattice depicted in

Figure (5).
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0

Figure A21: The minor poset of the generator-enriched lattice depicted in

Figure (6).

126



%%

IR

& ) iy Fo

SR,

\ j f /

R

0

Figure A22: The minor poset of the generator-enriched lattice depicted in

Figure (7).
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\ /

0

Figure A23: The minor poset of the generator-enriched lattice depicted in

Figure (8).
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0

Figure A24: The minor poset of the generator-enriched lattice depicted in

Figure (9).
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Figure A25: The minor poset of the generator-enriched lattice depicted in

Figure (10).
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Weak minor posets

In this section we list the weak minor posets of all 10 generator-enriched lattices
with 3 generators as well as the corresponding order complexes. See Chapter [5] for
details about weak minor posets.

)

Figure A26: The weak minor poset of the generator-enriched lattice depicted

in Figure (1).
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0

Figure A27: The weak minor poset of the generator-enriched lattice depicted

in Figure (2).
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Figure A28: The weak minor poset of the generator-enriched lattice depicted
in Figure (3).

133



0

Figure A29: The weak minor poset of the generator-enriched lattice depicted

in Figure (4).
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ANNANYL

0

Figure A30: The weak minor poset of the generator-enriched lattice depicted

in Figure (5).
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0

Figure A31: The weak minor poset of the generator-enriched lattice depicted

in Figure (6).
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0

Figure A32: The weak minor poset of the generator-enriched lattice depicted

in Figure (7).
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\ /

0

Figure A33: The weak minor poset of the generator-enriched lattice depicted

in Figure (8).
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0

Figure A34: The weak minor poset of the generator-enriched lattice depicted

in Figure (9).
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0

Figure A35: The weak minor poset of the generator-enriched lattice depicted

in Figure (10).
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Appendix B: cd-index data

In this appendix we list some data in support of Conjecture [6.1.3] For brevity given
a graph G we denote by M(G) the minor poset M(L,irr(L)) where L is the lattice of
flats of G.

= G=GM) G =G(M)

U([0,7]) = ¢ + ed + 3dc
(@) = c¢* + 3c®d + Tedc + 8dc? + 8d°
U(M(G*)) = c* + 3¢*d + Tede + 8dc? + 8d°

*

Eoteycs

U([0,7]) = c® + 3c*d + 9c’dc + 12cdc? + 14cd? + 11dc?® + 20dcd + 24d°c
U(M(GQ)) = c® + 8c*d + 24cdc + 32cdc? + 48cd” + 22dc® + 64ded + 72d%c
U(M(G*)) = c® + 5¢3d + 15cidce + 24cdc? 4 28cd? + 18dc® + 38dcd + 46d°c
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3 3

([0, 7]) = ¢ + 2¢'d + 6c*de + 12¢?de? + 12¢2d? + 14edc? + 20cded
+ 28cd’c + 12dc’ + 20dc’d + 40dcdc + 32d*c” 4 32d°

U(M(G)) = c® + 10c*d + 42c*dc + 82c*dc? + 112¢?d? 4 88cdc® + 240cdcd
+ 280cd?c + 46dc? + 188dc?d + 364dcdce + 252d°c? + 36843

U(M(G*)) = c® + 5c*d + 17cde + 32¢2dc? + 38c¢2d” + 37cdc® + 78cdced
+ 94cd?c + 24dc? + 68dc?d + 128dcede + 94d%c? + 116d3

M = M(T) G=G(M) G*=G*(M)
10 a2 1 !
5 5
9 3
2 2
8 4
4 4

U([0,7]) = c® + 7c*d + 24c*de + 46¢%de? + 58c?d? + 48cdc? + 114cded
+ 138cd?c + 29dc? + 98dc?d + 186dcedce + 134d%c? + 176d3

U(M(G)) = b + 10c*d + 48c*dc + 100c’dc? 4 130c2d? 4 103cdc® + 270cdcd
+ 334cd?c + 52dc* + 206dc?d + 430dcdce + 306d°c? + 428d°3

U(M(G*)) = c® + 7c*d + 27cde + 56¢*dc?® + 68c*d? + 68cdc® + 152cdced
+ 180cd?c + 38dc* + 122dc?d + 234dcdc + 176d%c? + 22443
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U([0,7]) = c® + 10c*d + 32c*dc + 54c*dc? + 84c*d” + 53cdc? 4 166cdcd
+ 180cd’c + 31dc* + 142dc*d + 244dcdc + 156d°c® + 256d°

U(M(G)) = b + 10c*d + 42c®dc + 82c¢*dc? + 112¢*d? + 88cdc® + 240cdcd
+ 280cd?c + 46dc* + 188dc?d + 364dcdc + 252d°c? + 36843

U(M(G*)) = b + 10c*d + 42c*dc + 82c*dc? + 112¢2d® + 88cdc® + 240cdcd
+ 280cd?c + 46dc? + 188dc?d + 364dcdce + 252d°c? + 36843

143



U([0,7]) = ¢” + 5¢°d + 19¢*dc + 41c*de? + 48¢*d? + 60c2dc® 4 120c2ded
+ 150c?d*c + 56cdc? + 159cdc?d + 313cdedc + 225cd?c? + 274cd?
+ 32dc® + 109dc®d + 269dcdc + 307dcdc? + 370ded® + 172d*c?
+ 360d%cd + 464d°c

U(M(G)) = c” + 9c°d + 37c'dc + 90c®dc? + 114c3d? + 134c*dc® + 318c?ded
4 368c?d*c + 122cdc? + 432cdc’d + 812cdcedc + 564cd?c? 4 768cd?
+ 58dc® + 266dc®*d + 650dc3dc + 744dcedc? + 996ded? + 400d?c3
+1004d%cd + 1208d°c

U(M(G*)) = ¢’ + 12¢’d + 64c*dc + 168c®dc? + 216c*d? + 254c*dc?® + 648c*ded
+ 752¢2d%c + 224cdc* + 864cdc?d + 1664cdede + 1152cd?c? + 1632¢d?
+ 94dc® + 488dc*d + 1280dc’dc + 1488dcdc? + 2064dced? + 772d*c?
+ 2096d%cd + 2528d°c
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U([0,7]) = ¢” + 7c’d + 24cdc + 49c*dc? + 62c*d? + 68c2dc® 4 162c2ded
+ 188c?d*c + 61cdc? + 203cdc?d + 373cdedc + 267cd?c? + 354cd?
+ 34dc® + 141dc*d + 325dc?dce + 365dcdc? + 478dced? + 194d?c3
+ 476d%cd + 568d°c

U(M(G)) = ¢ + 7c’d + 28¢c*dc + 56c*dc? 4 69¢*d? + 76c*dc® + 183c?ded
4 220c*d’c + 66cdc? + 221cdc?d + 423cdedc + 305cd?c? + 400cd®
+ 36dc® + 150dc®*d + 371dc?dc + 417dcdc? + 538dced? + 216d°c3
+ 536d%cd + 656d°c

U(M(G*)) = ¢’ + 12¢’d + 64c*dc + 168c®dc? + 216c*d? + 254c*dc?® + 648c*ded
+ 752¢c%d%c + 224cdc* + 864cdc?d + 1664cdede + 1152cd?c? + 1632¢d?
+ 94dc® + 488dc*d + 1280dc?dc + 1488dcdc? + 2064dced? + 772d*c?
+ 2096d%cd + 2528d°c
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U([0,7]) = ¢” + 7c’d + 24cdc + 49c*dc? + 62c*d? + 68c2dc® 4 162c2ded
+ 188c?d*c + 61cdc? + 203cdc?d + 373cdedc + 267cd?c? + 354cd?
+ 34dc® + 141dc*d + 325dc?dce + 365dcdc? + 478dced? + 194d?c3
+ 476d%cd + 568d°c

U(M(G)) = c” + 12¢°d + 70c*dc + 198c*dc? 4 246¢3d? + 305¢dc® + 750c’ded
4 890c?d*c + 260cdc? + 972cdc?d + 1940cdedc + 1380cd?c? + 1896¢d?
+106dc® + 536dc®d + 1472dc*de + 1776dcdc? + 2388dcd? + 922d%c?
4 2420d%cd + 2996d°c

U(M(G*)) = ¢’ + 7c°d + 29c*dc + 68c3dc? + 82c¢3d? + 103c*dc® + 228c?dcd
+ 268c%d*c + 100cdc* + 308cdc?d + 580cdcdc + 420cd?c? + 536¢d?
4 50dc® + 194dcd + 474dc*dc + 556dedc? + 700dced? + 310d*c?
+ 712d%cd + 864d3c
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U([0,7]) = c® + 4¢°d + 15c’de + 34c’de? + 37¢ d? 4 58cdc® + 108cded
+132¢2d%c + 74cdc? + 180c?dc?d + 342c¢*dedc + 260c¢?d?c?
+294c2d? + 64cdc® + 185cdc®d + 440cdc’dce + 530cdedc?

+ 592cded? + 312cd?c?® 4 598cd?cd + 752cd?®c + 35dc’

+ 112dc'd + 306dc*dc + 462dc*dc? + 512dc?d? + 428dcdc?
+ 814dcded + 1016dced?c + 210d%c? + 522d%c*d + 1012d%cdc
+ 792d%c? + 896d*

U(M(G)) = c® + 9¢®d + 45c°dc + 128c*dc? + 154c*d® + 241c*dc® 4 542cded
+ 626c3d%c + 308c2dc* + 984c2dc?d + 1836c2dedc + 1298¢2d?c?
+1692¢*d® + 252cdc® + 1024cdc?d + 2508cdc?dce + 2892cdcedc?

+ 3712cdcd? + 1556cd?c?® + 3696¢cd?cd + 4472¢cd>c + 102dc’

+ 502dctd + 1494dcdc + 2296dc?dc? + 2900dc?d? + 2038dcdc?
+ 4780dcdcd + 5724ded?c + 920d?c? + 3048d?c?d + 5880d?cdc
+ 4300d°c? + 5624d*

U(M(G*)) = c® + 14c®d + 90c’dc + 288c*dc? + 358¢c*d? + 545c*dc® + 1346c3ded
+ 1554c3d?c 4 644c2dc? + 2404c2dc®d + 4614c*dedce + 3170c*d?c?
+ 4426¢%d? + 453cdc® + 2273cdcd + 5967cdc’de + 6901cdedc?
+ 9438cdcd? + 3501cd?c® + 9342cd?*cd + 11376cd®c + 163dc®
+ 1034dc*d + 3418dc3dc + 5405dc?dc? + 7222dc*d? + 4591dcdc?
+ 12034dcdced + 14484dcd?c + 1872d*c* + 7342d%c?d + 14686d*cdc
+10484d3c? 4 14716d*
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([0, 7]) = ¢® + 11c®d + 52¢’dc + 138¢*dc? + 178¢*d? + 235¢*dc?® + 585¢ded
+ 670c3d?c + 269cdc? + 991c2dc?d + 1857cidedce + 1271c%d*c?
+ 1774c*d? + 200cdc® + 982cdc’d + 2443cdc?dce + 2731cdedc?
+ 3762cdcd? + 1384cd?c?® + 3672cd*cd + 4420cd®c + 84dc
+505dctd + 1512dcde + 2238dc?dc? + 3030dc?d? + 1854dcedc?
+ 4842dcdcd + 5760dcd?c + 774d?c? + 2980d?c?d + 5784d*cdc
+ 4080d*c? + 5724d*

T(M(G)) = c® + 11c8d + 60c’de + 178c*dc? + 218c*d? + 336¢3dc® + 786c*ded
+906c3d?c + 413c2dc* + 1410cdc®d + 2658c*dedc + 1862¢*d?c?
+ 2496¢%d? + 316cdc® + 1412cdc®d + 3548cdc?dc + 4100cdcedc?
+ 5408cdcd? + 2156cd>c?® + 5376cd?cd + 6512cd’c + 122dc®
+ 674dc*d + 2084dcdc + 3240dc?dc? + 4196dc>d? + 2828dcdc?
+ 6948dcdcd + 8324dcd?c + 1218d%c* + 4340d?c?d + 8484d*cdc
+ 6156d3c? + 8288d*

U(M(G")) = c® + 14c®d + 90cdc + 298c*dc? + 368c*d® + 592c*dc? + 1440c*ded
+ 1648c*d?*c + 734c%dc? + 2692¢*dc?d + 5100c*’dede + 3500c2d?c?
+ 4864c*d® + 544cdc® + 2688cdcid + 6912cdc’dce + 7904cdcedc?
+ 10816cdcd? + 4032cd?c® + 10688cd?ed + 12928cd’c + 190dc®
+ 1188dc*d + 3852dc3dc + 6060dcdc? + 8096dc*d? + 5216dcdc?
+ 13568dcdced + 16224dcd?c + 2180d%c? + 8440d>c*d + 16680d*cdc
+ 11880d°c? 4 16640d*

Appendix C: cd-index programs

In this appendix we describe four programs, [cdIndex.pyl [UC_lowerInterval.py,
[LatticeOfFlats.py|and minorPoset.pyl which were used to compute the data pre-
sented in Appendix [Bl Each of the programs is written in the Python language ver-
sion 2.7.
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cdIndex.py

This program is a collection of functions used to calculate the cd-index of a given
poset, it is imported as a module by the programs described in[UC_lowerInterval.py
andminorPoset.pyl The cd-index and the algorithm used in this module to compute
it are described in Section [LAl

In this module graded posets are encoded by a relation matrix and a rank list.
Given a poset P the relation matriz is a square matrix M indexed by P with entries

1 ifi<j,
Mij: —1 1f’l>],

0 otherwise.

The 7th entry of the rank list contains all elements of rank 7. The main function in
this module is calcCdIndex, which returns the cd-index of a given poset. The rest
of the module consists of helper functions.

Various monomials in noncommutative variables a,b,c,d, and e are used. A mono-
mial is encoded as a list whose first element is the coefficient and the second element
is the product of the variables as a string. Polynomials are encoded as lists of mono-
mials. For example, the polynomial ¢ — d is encoded as [[1,’cc’], [-1,°d’]].

A function transClose, which computes the transitive closure of a matrix encod-
ing a poset, is also provided. This is used in [UC_lowerInterval.py| which does not
directly compute the relation matrix but starts by computing a similar matrix en-
coding the cover relations of the poset. This function is also used in minorPoset.py|
for a similar reason.

def multPolys(p, q):
r=[[z[0]*y[0],z[1]+y[1]] for z in p for y in gq]
— #this is the multiplication, we still need
— to collect like terms
ret=1[]
for  in r:
monoms=[y[1] for y in ret]
if z[1] not in monoms:
ret.append(zx)
continue
ret[monoms. index(z[1]1) ] [0]+=2[0]
return ret

def addPolys(p,q):
ret=[z for z in p]
for =z in gq:
temp=[y[1] for y in ret]
if z[1] in temp:
ret[temp. indez(z[1]1) ] [0]+=2[0]
else:
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ret.append(z)
return [z for z in ret if z[0]!=0]

#substitutes the polynomial p in place of
— occurrences of the monomial m in the
— polynomial =z
def subPolyForMonom(z,p,m):
X=[[yl[0],y[1].replace(m,'*x')] for y in =x] #'*'
— is a placeholder for p (* must not be a
— variable in x)

ret=1_]
for y in X:
g=C[lyl0],"'"']]

for 4 in range(0,len(y[1]1)):
if yl1llél=="%":
g=multPolys(q,p)
else:
for j in range(0,len(g)):
gLyl [1]1+=y[1][<]
ret=addPolys(ret, q)
return ret

#converts a polynomial in a and b to a polynomial in
— ¢ and d, assuming this can be done.
#If this cannot be done the ab-index is returned
def abToCd(ab):
if len(ab)==0: return ab
#substitute ar+c+e and b—c—e
#where e=b—a
#we pick up a factor of 2" which we correct for
— before returning
ce=subPolyForMonom(subPolyForMonom(ab,[[1,'c"'
— 1,01,'e'1],'a"),[[1,'c'],[-1,'e']],'D")

#If cd-index exists we get it by substituting
— e?—c?-2d
cd=subPolyForMonom(ce,[[1,'cc'],[-2,'d']],'ee")
for m in cd:
if 'e' in m[1]: #could not convert to c¢ and
— d
return ab

cd.sort(key=lambda z:z[1])

#return cd with coefficients divided by the
— extra factor
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return [[z[0]>>sum([2 if e¢d[0][1][%2]=='d' else 1
«» for ¢ in range(0,len(cd[0]1[1]1))]1),z[11]
< for =z in cd]

#converts a cover matrix into an incidence matrix
def transClose(M):
for 72 in range(0,len(M)):
uot = [z for z in range(0,len(M)) if M[i][z]

— == 1]
while True:
next = [z for z in wo<]

for z in woz:
for y in range(0,len(M)):

if M[z][y] == 1 and y not in
— next: next.append(y)
if wo? == next: break
%07 = next

for = in wo7:
Mli][z] = 1
Mlz]l[Z] = -1

#helper function that calculates the entry of the
— flag f-vector indexed by the set S

#for the poset encoded by M and ranks
def fVectorCalc(ranks,S,M, i, count):

newCount = count

if == []: return 1

for j in ranks[S[0]]:

if M[<][j5] == 1:
newCount += fVectorCalc(ranks, S[1:]1, M,
~ j, count)
return newCount

def makeFlagVectorsTable(M, ranks) :
table = [[[],1,1]]

if len(ranks)<=2: return table

#compute the flag f-vector
for 4 in range(1,1<<(len(ranks)-1)-1): #iterate
— over all subsets of the ranks
#construct the corresponding set
pad = 1
elem = 1
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100
101
102

103
104

105
106

107

108
109
110

111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129

s =1
while pad <= 2:
if pad&<:
S.append(elem)

pad <<= 1
elem += 1
table.append([S, fVectorCalc(ranks,S,M, ranks
- [0][0], 0),0])

#now we compute the flag h-vector using Mobius
— 1inversion.

for 7 in range(l,len(table)):

sign = (2*%(len(tablel[<][0]1)%2)) - 1 #-1 if

— even number of elements
for 7 in range (0, %+1):
if set(tablel7]1[0]).42ssubset(tablel[
— 1[001):
table[<] [2] += sign*x(2x(len(tadblely
— 1001)%2) -1)*tablel[5]1[1]

return table

#returns the ab-index of a poset given the flag

def

— vectors table and rank
abIndex(table, rank):
abIndex = []
for = in table:
v = ['a'l*x(rank-1)
for s in z[0]: wu[s-1] = 'Db’
abIndez.append([z[2],"'"'.join(uw)])

return ablIndezx

#returns the cd-index of a poset encoded in M and

def

— ranks
calcCdIndex (M, ranks, table=None, ab=None):
if table == Nome: table = []
if ab == None: ab = []

table += makeFlagVectorsTable(M, ranks)
ab += abIndexz(table, len(ranks)-1)

cdIndex=abToCd(ab)
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137
138
139

140
141
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143
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152
153
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156
157
158
159
160
161
162
163

164
165
166
167
168
169

cdIndez.sort(key=lambda z:z[1])
return cdIndez

#formats output of calcCdIndex
def cdIndezLatex(cdindex) :
s = "
for 7 in range(0,len(cdindez)):
if cdindex[4][0] == 0: continue
if cdindex[2][0] == -1: s+= '-!
elif cdindex[4][0] '= 1: s += str(cdindexzl[4
— 1[0])
current = ''
power = 0
for ¢ in cdindez[2][1]:
if current == '"':
current = ¢
power = 1
continue
if ¢ == current:
power += 1
continue
s += current
if power != 1: s += '“{' + str(power) +
e '}
current
power =
s += current
if power != 1 and power != 0: s += '"{' +
< str(power) + '}
if power == 0 and current ==

= c
1

if ¢ !'= len(cdindex) -1:
if cdindex[2+1]1[0] >= 0: s += "+"
if s == '': return 'O’
return s

#computes the join of two elements given the
— 1incidence matrix of a poset

#this is used by hinorPoset.py
def join(i,7,M):
if 4==35: return 1

if M[Z][j] == -1: return =<

if M[Z][j] == 1: return j

m = [z for = in range(0,len(M)) if M[<][z] == 1
— and M[j][z] == 1] #the upper bounds for i
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— and j
170 for z in range(0,len(m)):
171 1sJoin = True
172 for y in range(0,len(m)):
173 if z!=y and MImlz]l][mlyl] != 1:
174 tsJoin = False
175 break
176 if isJoin: return ml[zl]
177 return None

UC _lowerInterval.py

This program computes the cd-index of a given lower interval in the uncrossing poset
using functions from [cdIndex.pyl The top element 7 of the lower interval is specified
as a comma separated list in the form iy, 7(i1), @2, 7(d2), . . . , in, 7(in).

Within the program a pairing ¢ is encoded as a list of arcs, with an arc (i, (7))
encoded as the number 2:-1 4 271,

1 |#!/usr/bin/env python2

2 |from cdIndex import

3 |import sys

4

5 |#program entrypoint is on line 83

6

7 |#converts the pairing given in the input into the

— internal format described above

8 |def readPairing(input):

9 input = input.spl<t(',"')

10 t = []

11 for 4 in range(0,len(input)/2):

12 t.append(1<<(int (input [2<<1]) -1) [1<<(int (
< dinput [(4<<1)+1])-1))

13 return sorted(t)

14

15 |#If p represents a pairing 7 then the output

<> represents the pairing (ij)7(ij)

16 |def swap(p,,7):

17 return sorted ([(z~ ((((z&(1<<%))>>%) " ((z&(1<< 7))
> >>7))<<8) T ((((2&(1<<2))>>4) " ((2& (1<<5) ) >> 7)
> )<<7)) for z in p]l)

18
19 |#returns the crossing number for p
20 |def c(p):

21 ret = 0

22 for 4 in range(0,len(p)):
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zi = bin(pl[<]) [::-1]
Nt = zi. find('1")
Ei = zi.rfind('1")

for j in range(<¢+1l,len (p)):

zj = bin(plg]) [::-1]

Nj = zj.find('1")

Ej = zj.rfind('1")

if (N2 - Nj > 0) == (Ei - Ej > 0) == (Nj
— - Ei > 0): ret += 1

return ret

#computes the lower interval generated by the given
— pairing via Lemma
#returns a tuple (P,ranks,M) which is the list of
— elements, the rank list and the cover matrix
def lowerOrderIdeal(t):
if ¢(t)==0: return [t],[[1],([0]],[[0,-1],([1,0]]

P=[t]
ranks = [[0]] #this is built up backwards for
— convenience and reversed before returning

M=[[0]]

num = 1 #index in to P of next element to add

level = [t] #1list of current rank to expand in
— next step

leveli = [0] #indices in to P of the elements of
— level

newLevel = [] #we build level for the next step
— during the current step here

newLeveld = [] #indices in to P for the next
— step

newRank = [] #the new rank indices to add

while len(lewvel) > O:
for 7 in range(0,(len(t)<<1)-1): #iterate
— over all pairs we can uncross
for j in range(¢+1,len(t)<<1):
for k in range(0,len(level)): #do
— the uncross
temp = swap(levellk],i, )
c_temp = c(temp)
if c_temp '= c(levellk])-1:
<> continue
if temp in P:
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M[P. index(temp)] [leveli[k
— 11=1
continue
P.append(temp)
newRank . append (num)
if c_temp > 0: #if not minimal
— continue uncrossing
newLevel . append(temp)
newLevelt.append(num)
num+= 1

for =z in M: z.append(0)

M.append ([0 for z in range (0, len
— (M[01))1)

M[-1][leveli[k]]=1

level = mnewLewvel
newLevel = []

levelt = mnewLevelz
newLeveli = []

ranks. append (newRank)
newRank = []

ranks. reverse()

ranks=[[len (M) ]]+ranks

for » in M: r.append(-1)

M.append ([0]+[1 for % in range(0,len(P))])
return P, ranks,M

input=sys.argv([1]

t = readPairing(input)

P,ranks,M = lowerOrderIdeal (t)
transClose (M)

print cdIndexzLatex(calcCdIndex (M, ranks))

minorPoset.py

This program computes the minor poset of a given generator-enriched lattice as de-
fined in Chapter 4| and outputs the cd-index. The input lattice should be given as
a semicolon and comma separated list specifying the downcovers for each element
except the minimal element 0. The semicolons separate the downcover lists for dif-
ferent elements and the commas separate the elements within a downcover list. For
example, consider the Boolean algebra Bs labeled 0,...,7 via the ordering

0.{13, {2}, {3}, {1, 2}, {1,3},{2,3},{1,2,3}.
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This lattice is specified as “0;0;0;1,2;1,3;2,3;4,5,6;”. Optionally a set of generators
to add may be specified as a comma separated list with the flag -g. When pro-
vided the specified elements are added to the generating set in addition to the join
irreducibles. Specifying no generators indicates a minimally generated lattice. The
minimal element should not be specified as a generator.

#!/usr/bin/env python2
import sys

from cdIndex import * #imports methods from |cdIndex.py

input=sys.argv[1] #the input describing the lattice

L_pre=[[]]1+[[int(2) for % in =z.split(',')] for =z in
~ dinput.splet('; ') [:-1]]

irr = [7 for < in range(0,len(L_pre)) if len(L_prelz
— 1)==1]

genL = sorted(list(set(irr + ([int(z) for z in ([]
— if '-g' not in sys.argv else sys.argvlsys.argv.

— tndex('-g')+1].split(','))1))))

L=[[1 if < in L_prel[j] else 0 for j in range(0,len(
~ L_pre))] for 4 in range(0,len(L_pre))] #This
— matrix encodes covers of the input lattice.
— L[lz][y] is 1 when z is covered by y and
— otherwise O

transClose(L) #computes the transitive closure of L,
— now L[z][ly] is 1 if z<y, is -1 if z >y and
— otherwise 1is O.
joins = [[0 for < in range(0,len(L))]for 5 in range
— (0,1len(L))] #a table of all the joins of two
— elements of the lattice
for 7 in range(0,len(L)):
for 75 in range(%¢,len(L)):
k = jgoin(t,5,L)
if k == None: #The input did not describe a
— lattice
exit ()
joins[i] [j]l=k
joins[j]1[4]l=k
minors = [[0,genL]] #This will be a list of all
— minors of the lattice. A minor is encoded as a
— tuple [2,H] where 2z is the minimal element and
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— H is a sorted 1list of the generators
minors_M = [[0]] #relation matrix for the minor
— poset
minors_ranks = [[] for % in range(0,len(genL)+1)]
minors_ranks[len(genL)]. append (1) #we append 1
< because a minimal element is later added as the
— first element
new = [[0,genL]] #the newly added minors which in
— the next iteration we perform deletions and
— contractions on

#We now iterate performing all deletions and
— contractions by a single generator until we get
— no more new minors in this way.
while len(new) >0:
old = new
new = []
for 1 in old:
r = minors. index (1)
for 4 in range(0,len(l1[1])):
minor=[1[0],0[1][:2]+1[1][%+1:]1] #delete
— ¢ from 1
if minor in minors:
s = minors. index(minor)
else: #add new minor to minors and to
— minors_M

s = len(minors_M)
minors_ranks[len(minor[1])]. append(s
— +1)

minors. append(minor)
for =z in minors_M: z.append(0)
minors_M. append ([0 for z in range (0,

— s+1)1])
#add the new relation from the deletion
minors_M[r][s] = -1
minors_M[s]l[r] = 1

if minor not in new: new.append(minor)

#compute the contraction by %

temp = set([joins[1[1][2]][7] for j in 1
— [111)

temp . remove(l1[1][4])

minor=[1[1] [Z],sorted(list (temp))]

if minor in minors:
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s = minors. index(minor)
else: #add the new minor to minors and
— minors_M
s = len(minors_M)
minors_ranks[len(minor[1])]. append(s
5 +1)
minors.append(minor)
for z in minors_M: z.append(0)
minors_M. append ([0 for z in range
— (-1,s)1)
#add the new relation from the
— contraction
minors_M[r][s] = -1
minors_M[sl[r] = 1
if minor not in new: new.append(minor)
minors_ranks = [[0]]+minors_ranks #prepend a new
< minimum and add the relations for it
for 4 in range(0,len(minors_M)):
minors_M[4] = [-1]l+minors_M[<]
minors_M = [[0]+[1 for % in range(0,len(minors_M))
~ 1l+minors_M
transClose(minors_M)
print cdIndexzLatex(calcCdIndex(minors_M,minors_ranks
)

latticeOfFlats.py

This program computes the lattice of flats of a given graph. The output can be
fed into minorPoset.pyl The graph is input as a comma and space separated list
of edges. The input iy, 71 22,52 ... in,J, represents a graph with edges between
vertices i and j for k =1,... n.

A flat of the graph is viewed as a partition of the vertices 0, ..., n. Partitions are
encoded as lists whose ith element is the block containing 7. A subset S of 0,...,n
is encoded as the number > _2°.

seS

#!/usr/bin/env python2
from sys import argwv

E=[[int(z) for z in a.splzt(',')] for a in arguv[1l:]]
— #edge set
n=max ([max(e) for e in E])

flats=[]
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10
11
12

13
14
15
16
17

18

19

20

21
22

23

#here we iterate over all subsets of edges,
#compute the corresponding partition and add it to
— flats
for S in range(0,1<<len(E)):
F=[1<<%¢ for 4 in range(0,n+1)]
for 4 in [2 for ¢ in range(0,len(E)) if (1<<%)&S
— 1=0]: #iterates over elements of S
b1=F[E[<][0]]
b2=F[E[4][1]]

for j in range(0,n+1):
if (1<<7)&b1!=0: F[j]l|=b2 #if j is in
<~ the block bl add the block b2 to
— the block containing jJ
if (1<<5)&b2!'=0: F[j]|=b1 #likewise with
— bl and b2 exchanged

if F not in flats: flats.append(F)

#This outputs the downcovers of each element except
<» for the minimal element 0 as a comma seperated
— list, with semicolons delimiting the downcover
— lists

print ';'.join([','.join([str(2) for % in range (0,

len(flats)) if len(set(flats[%]))-len(set(F))

==1 and all([F[jl&flats[i]l[jl==flats[4][j] for

7 in range(0,len(F))])]) for F in flats[1:]1])+"

. !

)

FIed

Copyright© William Gustafson, 2023
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