Herbage Accumulation, Nutritive Value and Persistence of Mulato II in Florida

Joao M. B. Vendramini
University of Florida

Lynn E. Sollenberger
University of Florida

Graham C. Lamb
University of Florida

Maria L. Silveira
University of Florida

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/1-2/13

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013.

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Herbage accumulation, nutritive value and persistence of Mulato II in Florida

Joao M B VendraminiA, Lynn E SollenbergerB, Graham C LambC and Maria L SilveiraA

A UF/IFAS Range Cattle Research and Education Center, Ona, FL, USA
B UF/IFAS Agronomy Department, Gainesville, FL, USA
C UF/IFAS North Florida Research and Education Center, FL, USA
Contact email: jv@ufl.edu

Keywords: Mulato II, grazing management, stubble height.

Introduction

Grasses in the \textit{Brachiaria} genus are the most widely grown forages in tropical America, occupying over 80 Mha (Bod-
dey \textit{et al.} 2004). Mulato II is apomictic and a vigorous,
semi-erect cultivar resulting from 3 generations of crosses
including original crosses between ruzigrass and signal-
grass (cv. Basilisk, apomictic tetraploid). According to
Peters \textit{et al.} (2003), Mulato produced 25% more herbage
mass than palisadegrass (\textit{Brachiaria brizantha}) and koroni-
viagrass (\textit{Brachiaria humidicola}) under similar
management practices. Although Mulato II shows promise
as a forage in tropical regions, herbage accumulation and
persistence in subtropical areas is unknown. This publica-
tion summarises results of the research with Mulato II
directed in Florida in the last 5 years.

Methods

South Florida

This experiment was conducted on Mulato II in Ona, FL
(27°26' N, 82°55' W) between August and November in
2007 and 2008. Treatments were the factorial combinations
of 3 stubble heights (2.5, 7.5 and 12.5 cm) and 2 harvest
frequencies (2 and 4 weeks) in a randomised complete
block design with 4 replicates. Plot size was 3 x 2 m with
1-m alley between plots. Samples were analysed for \textit{in vitro}
digestible organic matter (IVDOM) and crude protein (CP)
concentrations.

Central Florida

The study was conducted in Gainesville, FL (29°44’N,
82°16’W) from June 2008 to June 2010. Treatments were
Mulato II treated as an annual (planted in 2008 and 2009),
Mulato II treated as a perennial (planted in 2008 only), Tif-
ton 85 (\textit{Cynodon} hybrid) (planted in 2008), and Tifeleaf 3
pearl millet (\textit{Pennisetum glaucum}) and Hayday sorghum-
sudangrass (\textit{Sorghum bicolor}) (both planted in 2008 and
2009), arranged in a randomised complete block design
with 4 replicates. The annual treatment for Mulato II was
included to compare the use of this grass with the annual
species pearl millet and sorghum-sudangrass, while the
perennial Mulato II treatment was included to compare per-
sistence and productivity over time with Tifton 85
bermudagrass. Plots were 5 x 5 m with a 1-m alley between
plots. Seeded grass was planted on June 2008 and 2009.
Tifton 85 was planted vegetatively using 100 plugs per
plot. In general, perennials were harvested every 5-6 weeks
throughout the summer, with slightly longer intervals dur-
ing cool autumn weather. An area of 2.88 m2 was harvested
with a sickle-bar mower from the centre of the plot to a 10-
cm stubble height. Herbage accumulation, IVDOM, and CP
were determined.

North Florida

The study was conducted in Marianna, FL (30°52’ N
85°11’ W). Treatments were 3 forage species, Tifleaf 3
pearl millet, Hayday sorghum-sudangrass and Mulato II
arranged in a completely randomised design with 3 repli-
cates. Pastures (0.6-ha experimental units) were established
on June 2008 and June 2009 in a prepared seedbed. Pas-
tures were stocked continuously using a variable stocking
rate. Two heifers (Angus crossbred) were assigned as tes-
ters to each experimental unit. Additional heifers of
comparable age and weight to the testers were introduced
or removed to maintain similar forage stubble height (≥ 30
cm) across experimental units. Herbage mass, nutritive val-
ue, stocking rate and average daily gains per head and per
ha were evaluated.

Results

In south Florida, there was a quadratic decrease in herbage
accumulation from 2.0 to 1.6 t/ha with decreasing stubble
height. Conversely, herbage CP increased linearly with de-
creasing stubble height (from 14 to 17%), while IVDOM
was virtually unaffected (66 vs 67%). Mulato II ground
cover increased linearly from 74 to 87% as stubble height
increased from 2.5 to 12.5 cm.

In central Florida, Hayday and Tifleaf 3 established
more rapidly than Mulato II; however, Mulato II had great-
er herbage accumulation later in the fall. The perennial
treatments (Mulato II and Tifton 85) had greater herbage
accumulation overall than the annual treatments and Tifton
85 had greater ground cover than Mulato II in 2009 (73 vs
36%) and 2010 (73 vs 12%).

In north Florida, in year 1, there were no differences in
herbage allowance (0.9 kg DM/kg body weight), average
daily gain (0.5 kg/d) and gain/ha (168 kg) among treat-
ments. However, in year 2, Mulato II had greater herbage
allowance (2.0 vs 0.7 kg DM/kg BW) and ADG (0.78 vs
0.41 kg/d) than Tifleaf 3 and Hayday but similar gain/ha
(302 kg).

Conclusions

In central and north Florida, Mulato II may behave as an
annual or biennial forage and its greater herbage accumula-
tion and nutritive value make it a suitable alternative to
Tifton 85 and warm-season annual forages. In contrast, in
south Florida, Mulato II behaves as a perennial forage and
displays superior nutritive value to the other species. How-
ever, forage production is reduced if it is cut frequently to
short stubble heights. These management strategies should
be avoided.

References

Boddey RM, Macedo R, Tarré RM, Ferreira E, de Oliveira OC,
Rezende CP, Cantarutti RB, Pereira JM, Alves BJR,
Urquiaga S (2004) Nutrient cycling of *Brachiaria* pastures:
the key to understanding the process of pasture decline.

Inyang U, Vendramini JMB, Sollenberger LE, Silveira MLA,
frequency and stubble height affects herbage accumulation,
nutritive value, and persistence of ‘Mulato II’ brachiaria-
grass. *Forage and Grazinglands* doi:10.1094/FG-2010-
0923-01-RS.

pose forage species: Options for producers in Central
America. CIAT Publication # 333. (International Center for
Tropical Agriculture, CIAT: Cali, Colombia)

Vendramini JMB, Sollenberger LE, Lamb GC, Foster JL, Liu K,
Maddox M (2012) Forage accumulation, nutritive value, and
persistence of ‘Mulato II’ brachiariaagrass in northern Florida.