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ABSTRACT OF DISSERTATION

Surjectivity of the Wahl Map on Cubic Graphs

Much of algebraic geometry is the study of curves. One tool we use to study curves is
whether they can be embedded in a K3 surface or not. If the Wahl map is surjective
on a curve, that curve cannot be embedded in a K3 surface. Therefore, studying if the
Wahl map is surjective for a particular curve gives us more insight into the properties
of that curve. We simplify this problem by converting graph curves to dual graphs.
Then the information for graphs can be used to study the underlying curves. We will
discuss conditions for the Wahl map to be surjective on a cubic graph. The Wahl
map on a cubic graph has two parts, one map onto the vertices and another onto the
edges. We found that if the cubic graph is 3-edge-connected and non-planar, then
the map on the vertices is surjective. Surjectivity of the map on the edges is not as
clear. However, if the Wahl map is surjective on a cubic graph, the girth of the graph
must be at least 5. Finally, based on data collected, we have observed that as the
size of cubic graphs of girth at least 5 increases, the probability that the Wahl map
is surjective on those graphs appears to approach 1.
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Chapter 1 Introduction

1.1 The Wahl Map WC on a Curve

One way that we study a curve C is by determining if C can be embedded in a K3
surface. Non-surjectivity of the Wahl map W is a necessary condition for an algebraic
curve to be embedded in a K3 surface:

Theorem 1.1.1. [Wah87] If a smooth algebraic curve C can be embedded in a K3
surface, then W cannot be surjective on C.

Therefore, studying when the Wahl map is surjective helps us better understand
curve embeddings in K3 surfaces and, consequently, the curves themselves.

The Wahl map is a special case of the Gauss map. For a line bundle L on a curve
C and the canonical line bundle K on C, the Gauss map

ΦL :
2∧
H0(C,L)→ H0(C,K ⊗ L2)

is defined by ΦL(σ ∧ τ) = σ ⊗ dτ − τ ⊗ dσ and extending linearly. The Wahl map
is W = ΦK . Since the Wahl map depends on the choice of curve, we will use WC to
denote the Wahl map for a particular curve C.

One of the earliest results about surjectivity of the Wahl map comes from Cilib-
erto, Harris, and Miranda:

Theorem 1.1.2. [CHM88] If C is a general curve of genus g ≥ 10 and g 6= 11, then
WC is surjective.

Notice that this result is only for general curves and not for all curves. The proof
of Theorem 1.1.2 uses graph theory but only looks at a particular family of graphs
that are a generalization of the Petersen graph. Our goal is to expand these results
to a larger class of graphs.

1.2 Primary Results

We study when WC is surjective by specializing to graphs, an approach motivated by
the work of Ciliberto, Harris, and Miranda. For a graph curve C, we can convert C
to a graph G, as described in Section 2.1. Then we define WG and study when it is
surjective to better understand when WC is.

Let Cat0(G,C) denote the |V (G)|-dimensional C-vector space CV (G) of 0-chains
with coefficients in C on the graph G. An element of Cat0(G,C) can be written as∑

v∈V (G) cvv with cv ∈ C. Similarly, let Cat1(G,C) denote the |E(G)|-dimensional

1



C-vector space CE(G) of 1-chains with coefficients in C on the graph G. An element
of Cat1(G,C) can be written as

∑
e∈E(G) cee with ce ∈ C. The Wahl map on graphs

WG :
2∧
H1(G,C)→ Cat0(G,C)⊕ Cat1(G,C)

takes in a linear combination of wedge products of cycles from a cubic graph G and
returns a linear combination of the vertices and edges of G. We explicitly define this
map in Section 2.2. It is worth noting that this definition depends on a choice of
vertex and edge orientations which is not clear from the notation. However, we will
show in Section 2.3 that the rank of WG is independent of this choice.

Since the codomain of WG is a direct sum, the map WG decomposes as WG =
W0

G ⊕W1
G, where the codomain of W0

G is generated by the vertices of the graph and
the codomain of W1

G is generated by the edges of the graph. The important take-away
is that we can consider our problem in two pieces:

1. When is W0
G surjective?

2. When is WG|kerW0
G

surjective?

In Chapter 3, we attempt to find necessary and sufficient graphic criteria to answer
the first question. We have some conditions from Miranda.

Theorem 1.2.1. [Mir89] Let G be a cubic, 3-edge-connected graph. If G is planar,
then W0

G is not surjective.

In Section 3.1, we build the tools needed to prove the converse:

Theorem 1.2.2. Let G be a cubic, 3-edge-connected graph. If G is non-planar, then
W0

G is surjective.

In order to prove this result, we use that surjectivity of W0
G is preserved under re-

finement:

Theorem 1.2.3. Let G and H be cubic graphs. Suppose G is 3-edge-connected and
H is a topological minor of G. If W0

H is surjective, then W0
G is also surjective.

Note that when H is a topological minor of G, G contains a subgraph H ′ that is
isomorphic to a refinement of H. For cubic graphs, containing a refinement of K3,3

is equivalent to being non-planar. Thus by Theorem 1.2.3 and surjectivity of W0
K3,3

,
we prove Theorem 1.2.2 in Section 3.2.

It remains to determine for which graphs G the map WG restricted to ker(W0
G) is

surjective. In Section 4.1, we discuss how this question relates to the girth of G.

Theorem 1.2.4. If WG is surjective, then girth(G) ≥ 5.

The heart of the argument for Theorem 1.2.4 is that WG is not locally surjective
on 2-cycles, 3-cycles, or 4-cycles. Unfortunately, the converse of Theorem 1.2.4 is not
true. For example, the Heawood graph H14 is a cubic, 3-edge-connected, non-planar

2



graph of girth 6, but WH14 is not surjective. In Section 4.2, we provide experimental
data suggesting that the Wahl map is surjective for many cubic graphs of girth at
least 5, despite some counterexamples.

Conjecture 1.2.5. Let Fg be the event that WG is surjective for a random cubic
graph G of genus g and girth(G) ≥ 5. Then we have

lim
g→∞

P (Fg) = 1.

Copyright© Angela C. Hanson, 2023.
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Chapter 2 The Wahl Map WG on Cubic Graphs

2.1 Specialization to Graphs

Like Ciliberto, Harris, and Miranda, we will examine the Wahl on graph curves
[CHM88].

Definition 2.1.1. A graph curve is a connected curve C that is a union of projective
lines satisfying the following conditions:

• Each line meets exactly three others,

• The intersection of two lines is a single point, and

• At most two lines intersect at a given point.

Graph curves can then be converted to graphs, which we will use in our study of
the Wahl map.

Definition 2.1.2. For a graph curve C, the dual graph G of C is constructed in
the following way:

• Each line in C corresponds to a vertex in G.

• If two lines in C intersect, there is an edge between the corresponding vertices
in G.

Example 2.1.3. See Figure 2.1 for an example graph curve C and its dual graph G.
The orange, vertical lines of C are parallel, so the corresponding vertices do not have
edges between them in G. Similarly, the blue, horizontal lines of C are parallel, and
the corresponding vertices do not have edges between them in G. For every point
where an orange line intersects a blue line, we have a corresponding edge in G.

graph curve C dual graph G

Figure 2.1: An example of a graph curve C and its dual graph G.

Observation 2.1.4. In a graph curve, each line intersects three others, so the dual
graph is always cubic.

We define the Wahl map on these dual graphs in the next section.

4



2.2 Graphic Definition of the Wahl Map

For any finite graph G, we label the n vertices of G with vi for i = 0, . . . , n− 1. We
fix such a vertex labeling for the remainder of our discussion. Let eij denote an edge
between vi and vj, regardless of orientation. That is eij = eji.

In order to consider the Wahl map on a cubic graph G, we first need to define
edge and vertex orientations on G.

Definition 2.2.1. For a graph G, an edge orientation ω is an assignment of a
direction for each edge in G from one endpoint to another.

If an edge eij is directed from vertex vi to vertex vj in an edge orientation ω, we
will denote this with ω(eij) = vi → vj.

Definition 2.2.2. Let ω direct the edges of G in ascending order according to vertex
index, so for edge eij = (vi, vj) we have ω(eij) = vi → vj if i < j and ω(eij) = vj → vi
otherwise. We call ω the ascending orientation.

Since the vertex labels are distinct and indexed with the natural numbers, they
have a proper ordering, so the ascending orientation is an edge orientation.

Definition 2.2.3. For each vertex v in a graph G, choose a cyclic permutation ϕv

of the edges adjacent to v. A vertex orientation ϕ is the collection of such ϕv over
all vertices v in G.

For a cyclic permutation ϕv on the edges adjacent to vertex v, we will use ϕv(e)
to denote the edge that follows e in the permutation of edges adjacent to v.

Definition 2.2.4. Let G be a cubic graph and let vertex vi have adjacent edges
eij, eik, eim where j < k < m. Define ϕvi in the following way:

• ϕvi(eij) = eik

• ϕvi(eik) = eim

• ϕvi(eim) = eij.

Then we call the set {ϕvi}n−1i=0 , defined this way, the (123)-orientation.

For all vertices v in G, (123) is a cyclic permutation on the edges adjacent to v.
Hence the (123)-orientation is a vertex orientation.

Example 2.2.5. Consider an explicit example on K3,3, as depicted in Figure 2.2,
with the ascending and (123)-orientations. The arrows on each edge indicate the
ascending orientation and the circular arrows to the side of each vertex indicate the
(123)-orientation. For the neighbors of v0, we have ϕv0(e01) = e03, ϕv0(e03) = e05,
ϕv0(e05) = e01.

5



ϕv0

� v0
ϕv1

	v1

ϕv2

� v2
ϕv3

	v3

ϕv4

� v4
ϕv5

	v5

Figure 2.2: The ascending orientation ω and (123)-orientation ϕ on K3,3.

Consider the boundary map

∂ : Cat1(G,C)→ Cat0(G,C)

defined with the edge orientation ω by

∂(eij) =

{
vj − vi if ω(ei,j) = vi → vj

vi − vj if ω(ei,j) = vj → vi
.

We use ∂v(e) to denote the coefficient of v in ∂(e). If e is oriented from v1 to v2, then
∂(e) = v2 − v1 so

∂v(e) =


−1 if v = v1

1 if v = v2

0 otherwise

.

Definition 2.2.6. An element σ ∈ Cat1(G,C) is in H1(G,C) if and only if ∂(σ) = 0.
We call σ ∈ H1(G,C) a homology cycle.

Example 2.2.7. Consider

σ = e12 + e24 − e34 − e13

under the ascending orientation. Then we have

∂(σ) = v2 − v1 + v4 − v2 − v4 + v3 − v3 + v1 = 0

so σ is a homology cycle. We use σe to denote the coefficient of e in σ, so for

σ = e12 + e24 − e34 − e13

we have σe12 = 1, σe34 = −1, and σe14 = 0.

Definition 2.2.8. Consider a sequence c of edges that connect a sequence of vertices
in a graph G. We call c a graph cycle if the following are satisfied:

• Each edge in c is distinct, and

6



v1

v2 v3

v4

Figure 2.3: The graph cycle c = (e12, e24, e34, e13) in graph K3,3.

• Only the first and last vertices of c are equal.

Example 2.2.9. Consider
c = (e12, e24, e34, e13)

connecting vertices
v1, v2, v4, v3, v1.

No edge repeats in this sequence, and vertex v1 is where the sequence starts and ends.
Then c is a graph cycle, as shown in Figure 2.3.

Given the edges of a graph cycle c in graph G, we can form a linear combination
σc ∈ H1(G,C) of those edges in the following way. The coefficient of eij ∈ c in
the linear combination σc is determined by edge orientation ω so that ∂(σc) = 0.
Therefore, once an edge orientation ω is fixed, we can form homology cycles from
graph cycles.

Now we provide a definition for the Wahl map on a cubic graph G with edge and
vertex orientations ω, ϕ.

Definition 2.2.10. [CF92] Let G be a cubic graph with edge orientation ω and vertex
orientation ϕ. Let v be a vertex of G that is adjacent to edges e1, e2, e3. Without loss
of generality, index the edges so that ϕv(e1) = e2, ϕv(e2) = e3, and ϕv(e3) = e1 (See
Figure 2.4). Then we define a map on the vertices

W0
G :

2∧
H1(G,C)→ Cat0(G,C)

by

W0
G(σ ∧ τ)v = ∂v(e1)∂v(e2)det

(
σe1 τe1
σe2 τe2

)
and extending linearly.

This map effectively takes pairs of homology cycles of G and returns values on
the vertices of G. There is a similar map that effectively takes pairs of cycles in G
and returns values on the edges of G.

7



v �
ϕ

e2e1

e3

Figure 2.4: A visual depiction of the notation in the definition of W0
G.

Definition 2.2.11. [CF92] For a cubic graph G with edge orientation ω and vertex
orientation ϕ, let e be an edge of G that is adjacent to vertices v1, v2. Label the
remaining edges adjacent to v1 with e1, e3 and the remaining edges adjacent to v2
with e2, e4, where we have indexed the edges so that ϕv1(e) = e1, ϕv1(e1) = e3,
ϕv2(e) = e2, and ϕv2(e2) = e4 (See Figure 2.5). Then we define a map on the edges

W1
G :

2∧
H1(G,C)→ Cat1(G,C)

by

W1
G(σ ∧ τ)e = ∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
and extending linearly.

v1 v2
e

e3

e4e1

e2

�
ϕ

Figure 2.5: A visual depiction of the notation in the definition of W1
G.

Note that we abuse notation in Definitions 2.2.10 and 2.2.11. The map W0
G

depends on a choice of which edge is labeled e1, vertex orientation ϕ, and edge
orientation ω. The map W1

G depends on a choice of vertex and edge orientations
ϕ, ω. However, we will show in Section 2.3 that rk(WG) is independent of these
choices.

Example 2.2.12. Let’s continue with our earlier example on K3,3, Example 2.2.5,
with the ascending edge orientation and (123)-vertex orientation. For W0

K3,3
, consider

v = v0,

e1 = e0,1,

e2 = e0,3.

By the ascending orientation, ∂v0(e0,1) = −1 and ∂v0(e0,3) = −1.
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For W1
K3,3

, consider

e = e0,1,

e1 = e0,3,

e2 = e1,2.

Then ∂v0(e0,3) = −1 and ∂v1(e1,2) = −1 by the ascending orientation.
Given homology cycles

σ = e01 + e14 + e45 − e05

and
τ = e03 + e34 + e45 − e05

in H1(K3,3,C), we can calculate W0
K3,3

(σ ∧ τ)v0 and W1
K3,3

(σ ∧ τ)e0,1 as follows:

W0
K3,3

(σ ∧ τ)v0 = (−1)(−1)det

(
1 0
0 1

)
= 1

W1
K3,3

(σ ∧ τ)e0,1 = (−1)(−1)det

(
0 1
0 0

)
= 0.

For a homology cycle σ ∈ H1(G,C), let SuppV (σ) be the set of vertices in G
adjacent to the edges with nonzero coefficients in σ and AdE(σ) be the set of edges
with nonzero coefficients in σ and the edges adjacent to those in G.

Observation 2.2.13. [CF92] If a vertex v is not covered by the edges with nonzero
coefficients in σ and τ , then σe = 0 or τe = 0 for any edge e adjacent to v in G.
Therefore, we have the following:

1. W0
G(σ ∧ τ)v = 0 if v 6∈ SuppV (σ) ∩ SuppV (τ)

2. W1
G(σ ∧ τ)e = 0 if e 6∈ AdE(σ) ∩ AdE(τ)

We combine the definitions for W0
G and W1

G to define the Wahl map on a cubic
graph:

Definition 2.2.14. [CF92] For a cubic graph G with edge orientation ω and vertex
orientation ϕ, the Wahl map on G is defined as

WG :
2∧
H1(G,C)→ Cat0(G,C)⊕ Cat1(G,C)

where WG = W0
G ⊕W1

G.

While the definition of WG depends on orientations ω, ϕ, the rank of WG is inde-
pendent of the choice of edge and vertex orientations. We will prove this in Section
2.3.
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2.3 Rank Independence

In this section, we will discuss how changing our choice of edge or vertex orientations
affects the image of WG and how this ultimately affects the rank of WG.

Note 2.3.1. For a homology cycle σ ∈ H1(G,C),

∂v(σ) =
∑
e3v

σe∂v(e) = 0

for all v ∈ σ because ∂(σ) = 0.

Recall from Section 2.1 that a graph G must be cubic to define WG. Then by
Note 2.3.1, we know

∂v(σ) = σe1∂v(e1) + σe2∂v(e2) + σe2∂v(e2) = 0 (2.1)

for any v ∈ V (G) with edges e1, e2, e3 adjacent to v. We will use Equation 2.1
numerous times in the subsequent proofs.

The argument for rank independence is a translation of an Italian paper by Cilib-
erto and Franchetta [CF92]. First, we want to show that for v ∈ V (G), the value
W0

G(σ∧ τ)v is independent of our choice of e1 in Definition 2.2.10. Then we will show
that rk(W0

G) is independent of vertex orientation ϕ. Next, we will see how changing
vertex orientation ϕ affects im(W1

G). Finally, we will show the effects on W0
G and W1

G

when we change edge orientation ω.

Lemma 2.3.2. [CF92] Let v ∈ V (G) and let ϕ be a vertex orientation on G. Then
W0

G(σ ∧ τ)v is independent of our choice of initial edge in the vertex orientation in
Definition 2.2.10.

Proof. Consider the following:

∂v(e3)det

(
σe2 τe2
σe3 τe3

)
+ ∂v(e1)det

(
σe2 τe2
σe1 τe1

)
= ∂v(e3)σe2τe3 − ∂v(e3)σe3τe2 + ∂v(e1)σe2τe1 − ∂v(e1)σe1τe2

= −τe2
(
∂v(e3)σe3 + ∂v(e1)σe1

)
+ σe2

(
∂v(e3)τe3 + ∂v(e1)τe1

)
.

By (2.1), this is equal to

= −τe2(−∂v(e2)σe2) + σe2(−∂v(e2)τe2)

= ∂v(e2)σe2τe2 − ∂v(e2)σe2τe2 = 0.

Hence

∂v(e3)det

(
σe2 τe2
σe3 τe3

)
= −∂v(e1)det

(
σe2 τe2
σe1 τe1

)
= ∂v(e1)det

(
σe1 τe1
σe2 τe2

)
(2.2)
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by row swapping in the final determinant. Thus

∂v(e1)∂v(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v(e2)∂v(e3)det

(
σe2 τe2
σe3 τe3

)
= ∂v(e3)∂v(e1)det

(
σe3 τe3
σe1 τe1

)
.

�

Now we will show that rk(W0
G) is independent of the vertex orientation ϕ. We

will do this by showing that changing ϕ changes all the signs in im(W0
G) consistently.

Lemma 2.3.3. [CF92] Let v be a vertex in G, let e1, e2, e3 be the edges adjacent to
v in some fixed order, and let ϕ, ϕ′ be two vertex orientations on G. Let ϕv(e1) = e
and ϕ′v(e1) = e′. Then

∂v(e)det

(
σe1 τe1
σe τe

)
= ∂v(e

′)det

(
σe1 τe1
σe′ τe′

)
if and only if ϕ = ϕ′ on v. Otherwise,

∂v(e)det

(
σe1 τe1
σe τe

)
= −∂v(e′)det

(
σe1 τe1
σe′ τe′

)
.

Proof. Since G is cubic, either ϕv(e1) = e2 or ϕv(e1) = e3 for any vertex orientation
ϕ. Therefore, by (2.2), we have the desired equalities. �

Unlike with W0
G, we are not able to say that the rank of W1

G is independent of ver-
tex orientation ϕ. In the following lemma, we show how changing vertex orientations
affects im(W1

G).

Lemma 2.3.4. [CF92] Let e = (v1, v2) be an edge in G and let ϕ, ϕ′ be two vertex
orientations on G. Let ϕv1(e) = e1, ϕ

′
v1

(e) = e′1, ϕv2(e) = e2, and ϕ′v1(e) = e′2.

1. If ϕv1 = ϕ′v1 and ϕv2 = ϕ′v2:

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v1(e

′
1)∂v2(e

′
2)det

(
σe′1 τe′1
σe′2 τe′2

)
.

2. If ϕv1 6= ϕ′v1 and ϕv2 = ϕ′v2:

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
=− ∂v1(e′1)∂v2(e′2)det

(
σe′1 τe′1
σe′2 τe′2

)
+ ∂v2(e)∂v2(e

′
2)det

(
σe τe
σe′2 τe′2

)
.

3. If ϕv1 = ϕ′v1 and ϕv2 6= ϕ′v2:

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
=− ∂v1(e′1)∂v2(e′2)det

(
σe′1 τe′1
σe′2 τe′2

)
+ ∂v1(e)∂v1(e

′
1)det

(
σe τe
σe′1 τe′1

)
.
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4. If ϕv1 6= ϕ′v1 and ϕv2 6= ϕ′v2:

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v1(e

′
1)∂v2(e

′
2)det

(
σe′1 τe′1
σe′2 τe′2

)
+ ∂v2(e)∂v2(e

′
2)det

(
σe τe
σe′2 τe′2

)
+ ∂v1(e)∂v1(e

′
1)det

(
σe τe
σe′1 τe′1

)
.

Proof. We will address one case at a time.

1. Since ϕvi = ϕ′vi for i = 1, 2, we have ei = e′i for i = 1, 2. Then by substitution,
we get the desired equality.

2. Since ϕv2 = ϕ′v2 , we have e2 = e′2. By this substitution,

− ∂v1(e′1)∂v2(e′2)det

(
σe′1 τe′1
σe′2 τe′2

)
+ ∂v2(e)∂v2(e

′
2)det

(
σe τe
σe′2 τe′2

)
= −∂v1(e′1)∂v2(e2)det

(
σe′1 τe′1
σe2 τe2

)
+ ∂v2(e)∂v2(e2)det

(
σe τe
σe2 τe2

)
= ∂v2(e2)

[
− σe′1τe2∂v1(e

′
1) + σe2τe′1∂v1(e

′
1) + σeτe2∂v2(e)− σe2τe∂v2(e)

]
= ∂v2(e2)

[
− τe2

(
σe′1∂v1(e

′
1)− σe∂v2(e)

)
+ σe2

(
τe′1∂v1(e

′
1)− τe∂v2(e)

)]
.

Since v1, v2 are the endpoints of e, ∂v1(e)σe = −∂v2(e)σe and ∂v1(e)τe = −∂v2(e)τe.
With this substitution, we have

∂v2(e2)
[
− τe2

(
σe′1∂v1(e

′
1)− σe∂v2(e)

)
+ σe2

(
τe′1∂v1(e

′
1)− τe∂v2(e)

)]
= ∂v2(e2)

[
− τe2

(
σe′1∂v1(e

′
1) + σe∂v1(e)

)
+ σe2

(
τe′1∂v1(e

′
1) + τe∂v1(e)

)]
= ∂v2(e2)

[
− τe2

(
− σϕv1 (e

′
1)
∂v1(ϕv1(e

′
1))
)

+ σe2

(
− τϕv1 (e

′
1)
∂v1(ϕv1(e

′
1))
)]

by (2.1).

Since ϕv1 6= ϕ′v1 , we have e1 6= e′1, but ϕv1 , ϕ
′
v1

are cyclic permutations on
three elements that both start at edge e. This means that ϕv1(e1) = e′1 and
ϕ′v1(e

′
1) = e1. Then the above equals

∂v2(e2)
[
− τe2

(
− σe1∂v1(e1)

)
+ σe2

(
− τe1∂v1(e1)

)]
= ∂v2(e2)

[
τe2σe1∂v1(e1)− σe2τe1∂v1(e1)

]
= ∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
.

3. By a similar argument to Case 2, swapping indices, we get the desired equality.
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4. Consider the following:

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v1(e1)∂v2(e2)σe1τe2 − ∂v1(e1)∂v2(e2)σe2τe1
=
(
∂v1(e1)σe1

)(
∂v2(e2)τe2

)
−
(
∂v1(e1)τe1

)(
∂v2(e2)σe2

)
.

By (2.1), we can substitute to get(
− ∂v1(e)σe − ∂v1(ϕv1(e1))σϕv1 (e1)

)(
− ∂v2(e)τe − ∂v2(ϕv2(e2))τϕv2 (e2)

)
= −

[
− ∂v1(e)τe − ∂v1

(
ϕv1(e1)

)
τϕv1 (e1)

][
− ∂v2(e)σe − ∂v2

(
ϕv2(e2)

)
σϕv2 (e2)

]
.

Since ϕvi 6= ϕ′vi for i = 1, 2, we have ei 6= e′i, but ϕvi , ϕ
′
vi

are cyclic permutations
on three elements that all start at edge e. This means that ϕvi(ei) = e′i and
ϕ′vi(e

′
i) = ei for i = 1, 2. By these substitutions,

−
[
− ∂v1(e)τe − ∂v1

(
ϕv1(e1)

)
τϕv1 (e1)

][
− ∂v2(e)σe − ∂v2

(
ϕv2(e2)

)
σϕv2 (e2)

]
=
[
− ∂v1(e)σe − ∂v1(e′1)σe′1

][
− ∂v2(e)τe − ∂v2(e′2)τe′2

]
−
[
− ∂v1(e)τe − ∂v1(e′1)τe′1

][
− ∂v2(e)σe − ∂v2(e′2)σe′2

]
=
[
∂v1(e)σe + ∂v1(e

′
1)σe′1

][
∂v2(e)τe + ∂v2(e

′
2)τe′2

]
−
[
∂v1(e)τe + ∂v1(e

′
1)τe′1

][
∂v2(e)σe + ∂v2(e

′
2)σe′2

]
= ∂v1(e)σe∂v2(e)τe + ∂v1(e)σe∂v2(e

′
2)τe′2 + ∂v1(e

′
1)σe′1∂v2(e)τe + ∂v1(e

′
1)σe′1∂v2(e

′
2)τe′2

− ∂v1(e)τe∂v2(e)σe − ∂v1(e)τe∂v2(e′2)σe′2 − ∂v1(e
′
1)τe′1∂v2(e)σe − ∂v1(e

′
1)τe′1∂v2(e

′
2)σe′2 .

Since v1, v2 are the endpoints of e, ∂v1(e)σe = −∂v2(e)σe and ∂v1(e)τe = −∂v2(e)τe.
By substitution in the first and fifth terms, the above statement equals

− ∂v1(e)σe∂v1(e)τe + ∂v1(e)σe∂v2(e
′
2)τe′2 + ∂v1(e

′
1)σe′1∂v2(e)τe + ∂v1(e

′
1)σe′1∂v2(e

′
2)τe′2

+ ∂v1(e)τe∂v1(e)σe − ∂v1(e)τe∂v2(e′2)σe′2 − ∂v1(e
′
1)τe′1∂v2(e)σe − ∂v1(e

′
1)τe′1∂v2(e

′
2)σe′2

= ∂v1(e)σe∂v2(e
′
2)τe′2 + ∂v1(e

′
1)σe′1∂v2(e)τe + ∂v1(e

′
1)σe′1∂v2(e

′
2)τe′2

− ∂v1(e)τe∂v2(e′2)σe′2 − ∂v1(e
′
1)τe′1∂v2(e)σe − ∂v1(e

′
1)τe′1∂v2(e

′
2)σe′2

= ∂v2(e)∂v2(e
′
2)det

(
σe τe
σe′2 τe′2

)
+ ∂v1(e)∂v1(e

′
1)det

(
σe τe
σe′1 τe′1

)
+ ∂v1(e

′
1)∂v2(e

′
2)det

(
σe′1 τe′1
σe′2 τe′2

)
.

�

Corollary 2.3.5. [CF92] The rank of WG is independent of vertex orientation ϕ.
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Proof. Let ϕ, ϕ′ be two vertex orientations on G. Consider the image of WG as
coefficient vectors. Then we can form a matrix where a row is the coefficient vector
for the image of a particular wedge product of homology cycles and a column is the
vector of coefficients for a particular vertex or edge in the image.

The matrix of vectors in the image of WG defined by ϕ′ is therefore obtained from
the matrix of vectors in the image of WG defined by ϕ by standard column operations,
in the following way.

Let c′v be the column corresponding to vertex v under orientation ϕ′ and cv be
the column corresponding to v under orientation ϕ. By Lemma 2.3.3,

c′v =

{
cv if ϕv = ϕ′v
−cv otherwise .

Let ce be the column corresponding to edge e = (u, v) under orientation ϕ′ and c′e
be the column corresponding to e under orientation ϕ. By Lemma 2.3.4,

c′e =


ce if ϕu = ϕ′u, ϕv = ϕ′v
−ce + cv if ϕu 6= ϕ′u, ϕv = ϕ′v
−ce + cu otherwise .

�

Now let’s consider how changing the edge orientation ω affects the rank of WG.

Lemma 2.3.6. [CF92] The image of WG is independent of edge orientation ω.

Proof. Let ω, ω′ be two edge orientation on G. Denote the boundary map defined
by ω with ∂ and the boundary map defined by ω′ with ∂′. Let σ, τ ∈ H1(G,C) be
homology cycles under the orientation ω. Then let σ′, τ ′ be homology cycles such
that, for each edge e in G,

σ′e =

{
σe if ω = ω′ on e

−σe if ω 6= ω′ on e

and

τ ′e =

{
τe if ω = ω′ on e

−τe if ω 6= ω′ on e
.

For an edge e in G,

∂′v(e) =

{
∂v(e) if ω = ω′ on e

−∂v(e) if ω 6= ω′ on e

because there are only two orientations an edge can have. Therefore, we can conclude
that ∂v(e)σe = ∂′v(e)σ

′
e and ∂v(e)τe = ∂′v(e)τ

′
e. By substitution,
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∂v(e1)∂v(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v(e1)∂v(e2)σe1τe2 − ∂v(e1)∂v(e2)σe2τe1

= ∂′v(e1)∂
′
v(e2)σ

′
e1
τ ′e2 − ∂

′
v(e1)∂

′
v(e2)σ

′
e2
τ ′e1

= ∂′v(e1)∂
′
v(e2)det

(
σ′e1 τ ′e1
σ′e2 τ ′e2

)
for the map W0

G and

∂v1(e1)∂v2(e2)det

(
σe1 τe1
σe2 τe2

)
= ∂v1(e1)∂v2(e2)σe1τe2 − ∂v1(e1)∂v2(e2)σe2τe1

= ∂′v1(e1)∂
′
v2

(e2)σ
′
e1
τ ′e2 − ∂

′
v1

(e1)∂
′
v2

(e2)σ
′
e2
τ ′e1

= ∂′v1(e1)∂
′
v2

(e2)det

(
σ′e1 τ ′e1
σ′e2 τ ′e2

)
for the map W1

G. �

Combining Corollary 2.3.5 and Lemma 2.3.6, we get the following independence:

Corollary 2.3.7. [CF92] The rank of WG is independent of the choice of orientations
ω, ϕ.

As a result of Proposition 2.3.7, we will fix the orientations ω, ϕ to be the ascending
and (123)-orientations for the remainder of our discussion.

Copyright© Angela C. Hanson, 2023.
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Chapter 3 Surjectivity of the Vertex Map W0
G

3.1 Properties of Cubic Graphs

Since the Wahl map is only defined for cubic graphs, we can use some properties and
results for cubic graphs to study WG. We begin with some results about connectivity.

Menger’s Theorem. [Men27] Let G be a graph. Then G is k-edge-connected if and
only if there are k edge-disjoint paths between any two vertices of G.

For the purposes of cubic graphs, we are particularly interested in when k = 3.

Corollary 3.1.1. For a graph cycle c in G, let SuppE(c) be the set of edges in c.
Let G be a cubic, 3-edge-connected graph. For any edge e in G, there exist two graph
cycles c1, c2 in G such that e = SuppE(c1) ∩ SuppE(c2).

Proof. Let e = {a, b} be an edge of G. Since G is cubic, a, b each have exactly
three neighboring vertices b, a1, a2 and a, b1, b2, respectively. By Menger’s Theorem,
there are three edge-disjoint paths p1, p2, p3 between a, b. Since there are exactly
three edges out of a and out of b and three paths between them, e is one of those
paths. Without loss of generality, p3 = e. Then, up to relabeling of the neighbors,
p1 goes through a1, b1 and p2 goes through a2, b2, as shown in Figure 3.1. Since
p1, p2, p3 are edge-disjoint, c1 = p1 ∪ p3 and c2 = p2 ∪ p3 are graph cycles where
SuppE(c1) ∩ SuppE(c2) = e. �

e

p3

p3

a b

a1

a2

b1

b2

p1

p2

Figure 3.1: Three disjoint paths forming a pair of graph cycles c1, c2 that overlap
precisely on edge e.

Observation 3.1.2. Let e = (a, b) be an edge in G. Since G is 3-edge-connected
there exists a pair of graph cycles c1, c2, by Corollary 3.1.1, where e is the only edge
in SuppE(c1) ∩ SuppE(c2). By our discussion in Section 2.2, we can form homology
cycles σc1 , σc2 from c1, c2. Therefore, by Observation 2.2.13, W0

G(σc1 ∧ σc2)v 6= 0 if
and only if v = a, b.

In addition to results about connectivity, we need results about planarity.
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Kuratowski’s Theorem. [Kur30] A graph is planar if and only if it does not contain
a subgraph that is a refinement of K5 or K3,3.

Since K5 has valence 4 vertices and refinements preserve valence, cubic graphs
cannot contain a refinement of K5. However, K3,3 is a cubic graph, so any refinement
of K3,3 has vertices of valence at most 3. Hence planarity of cubic graphs depends
only on refinements of K3,3. We use this and the subsequent results in our surjectivity
proof for W0

G in Section 3.2.
Let G be a graph with subgraph H ′. Then let

projCat0(H′,C) : Cat0(G,C)→ Cat0(H
′,C)

be the projection map and

incH1(G,C) :
2∧
H1(H

′,C)→
2∧
H1(G,C)

be the inclusion map. We define the map

W0
G,H′ :

2∧
H1(G,C)→ Cat0(H

′,C)

by W0
G,H′ = projCat0(H′,C)◦W0

G. Then we have W0
H′ = W0

G,H′ ◦ incH1(G,C) by definition.
See Figure 3.2 for a diagram of these maps.

∧2H1(G,C) Cat0(G,C)

∧2H1(H,C)
∧2H1(H

′,C) Cat0(H
′,C)

W0
G

W0
G,H′

projCat0(H
′,C)

∼= W0
H′

incH1(G,C)

Figure 3.2: The maps defined for Theorem 3.1.3.

Theorem 3.1.3. Let G,H be cubic graphs. Suppose G is 3-edge-connected and con-
tains a subgraph H ′ that is isomorphic to a refinement of H. If W0

H is surjective,
then W0

G,H′ is also surjective.

Proof. Let H,H ′ be as in the statement of the Theorem. If H = H ′, then W0
G,H′ is

surjective because W0
H = W0

H′ = W0
G,H′ ◦ incH1(G,C). Otherwise, let H ′′ be the graph

obtained from H ′ by smoothing one vertex of valence 2. Let w be that vertex and
suppose it is adjacent to vertices a, b, as shown in Figure 3.3.

By induction, we assume that W0
G,H′′ is surjective. Since w 6∈ Cat0(H

′′,C), it
suffices to find a pair of cycles σ, τ ∈ H1(G,C) such that W0

G(σ ∧ τ)w 6= 0 and
W0

G(σ ∧ τ)v = 0 for all vertices v not in H ′.
Recall that G is 3-edge-connected, so by Observation 3.1.2, there exist σ, τ ∈

H1(G,C) that overlap precisely on e = (a, w), and W0
G(σ ∧ τ)v 6= 0 if and only if

v = a, w. �
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a
w

b a b

H ′ H ′′

Figure 3.3: Smoothing vertex w to form H ′′.

Theorem 3.1.4. Let G,H be cubic graphs. Suppose G is 3-edge-connected and H is
a topological minor of G. If W0

H is surjective, then W0
G is also surjective.

Proof. Since H is a topological minor of G, G contains a subgraph H ′ that is iso-
morphic to a refinement of H. By Theorem 3.1.3, W0

G,H′ is surjective. Now let K be
a subgraph of G containing H ′ such that W0

G,K is surjective. We prove that W0
G is

surjective by induction on |V (K)\V (H ′)| where V (K) is the set of vertices in K and
V (H ′) is the set of vertices in H ′.

Let w ∈ V (K)\V (H ′) be connected to a vertex a in H ′ by an edge e. It suffices to
find a pair of cycles σ, τ ∈ H1(G,C) such that W0

G(σ ∧ τ)w 6= 0 and W0
G(σ ∧ τ)v = 0

for all vertices v not in V (H ′)∪{w}. By Observation 3.1.2 there exist σ, τ ∈ H1(G,C)
such that

W0
G(σ ∧ τ)v 6= 0

if and only if v = a, w. �

3.2 Surjectivity Criteria

Given that a graph G is cubic and 3-edge-connected, Miranda finds the following
result about surjectivity of W0

G:

Theorem 3.2.1. [Mir89] Let G be a cubic, 3-edge-connected graph. If G is planar,
then W0

G is not surjective.

We prove that the converse also holds, using results from Section 3.1.

Theorem 3.2.2. Let G be a cubic, 3-edge-connected graph. If G is non-planar, then
W0

G is surjective.

Proof. By Kuratowski’s Theorem, G contains a subgraph that is a refinement of K3,3.
Therefore, by Theorem 3.1.4 it suffices to show that W0

K3,3
is surjective.

Since the rank of W0
G is independent of vertex or edge orientations, we choose the

ascending and (123)-orientations. Consider the cycle set

B = {σ1 = e1,4 + e4,5 + e0,5 − e0,1
σ2 = e3,4 + e4,5 + e0,5 − e0,3
σ3 = e1,2 + e2,5 + e0,5 − e0,1
σ4 = e2,3 + e2,5 + e0,5 − e0,3}
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v0 v1

v2 v3

v4 v5

Figure 3.4: This is the vertex labeling of K3,3 used in this proof.

on K3,3 where the vertices of K3,3 are labeled as in Figure 3.4. Then

W0
G(σ1 ∧ σ2) = v0 + v4

W0
G(σ1 ∧ σ3) = v1 − v5

W0
G(σ1 ∧ σ4) = v0 − v5

W0
G(σ2 ∧ σ3) = −v0 − v5

W0
G(σ2 ∧ σ4) = −v3 − v5

W0
G(σ3 ∧ σ4) = v0 − v2.

Note that v1, v2, v3, v4 appear exactly once and W0
G(σ1 ∧ σ4),W0

G(σ2 ∧ σ3) have the
same vertices with nonzero coefficients but with opposite signs. Hence this is a linearly
independent set, so W0

K3,3
is surjective. �

Copyright© Angela C. Hanson, 2023.
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Chapter 4 Surjectivity of the Overall Map WG

4.1 Girth of Graphs

We found in Section 2.3 that im(WG) depends on the choice of vertex orientation ϕ.
Therefore, it is difficult to study the image of WG|kerW0 with a fixed vertex orientation,
like the (123)-orientation. Instead, we return to the work of Ciliberto and Franchetta
[CF92]. They find a family of graphs for which the Wahl map is surjective. One of
the properties of these graphs is that they all have girth at least 5. We show that
this condition is necessary for the Wahl map to be surjective.

Theorem 4.1.1. If WG is surjective, then girth(G) ≥ 5.

Proof. Let G be a graph of girth k. Consider a k-cycle σ in G with vertices v1, . . . , vk
and edges

e1 = (v1, v2),

. . .

ek−1 = (vk−1, vk),

ek = (v1, vk).

Let Tk =
⋃k

i=1{ei, vi} and

projTk
: Cat0(G)⊕ Cat1(G)→ Cat0(Tk)⊕ Cat1(Tk)

be the projection map. It suffices to show that the composition projTk
◦WG is not

surjective for k ≤ 4.
Since G is cubic, each of v1, . . . , vk have one additional neighbor not in Tk. We

label those neighbors w1, . . . , wk with

ek+1 = (v1, w1),

. . .

e2k = (vk, wk).

Consider the 1-chains of the form

τi = ek+i + ei − ek+i+1

for 1 ≤ i ≤ k − 1 and τk = e2k + ek − ek+1. Then the restrictions of any cycle to Tk
can be written as a linear combination of the τi. This is because τi covers exactly
one edge, ei, in Tk and the edges adjacent to ei in G that connect Tk to the rest of
G. Thus

rk(projTk
◦WG) ≤

(
k

2

)
.

Since dim(Cat0(Tk) ⊕ Cat1(Tk)) = 2k, the composition projTk
◦WG cannot be

surjective if
(
k
2

)
< 2k. Hence if k < 5, the map WG is not surjective. �
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Example 4.1.2. Suppose G contains a 3-cycle σ with vertices v1, v2, v3 and edges
e1 = (v1, v2), e2 = (v2, v3), e3 = (v1, v3). Let T3 = {e1, e2, e3, v1, v2, v3}. Since G
is cubic, each of v1, v2, v3 have one additional neighbor not in T3. We label those
neighbors w1, w2, w3 with e4 = (v1, w1), e5 = (v2, w2), e6 = (v3, w3), as shown in
Figure 4.1.

σ

v1

v2v3

w1

w2w3

Figure 4.1: The 3-cycle σ and its neighbors as labeled in the proof.

There are seven different ways that a cycle τi can go through T as shown in Figure
4.2:

σ through e1, e2, e3

τ1 through e4, e1, e2, e6

τ2 through e5, e2, e3, e4

τ3 through e6, e3, e1, e5

τ4 through e6, e3, e4

τ5 through e4, e1, e5

and τ6 through e5, e2, e6.

Notice that the cycles σ, τ1, . . . , τ6 are linear combinations of τ4, τ5, τ6, as demon-
strated in Figure 4.3. Then there are

(
3
2

)
= 3 ways to form cycle wedge pairs from

τ4, τ5, τ6. Hence, the rank of WG on T3 is at most 3 < 6 = dim(Cat0(T3)⊕Cat1(T3)).

The converse of Theorem 4.1.1 is not true. For example, the Heawood graph H14

(Figure 4.4) is a cubic, 3-edge-connected, non-planar graph of girth 6, but WH14 is
not surjective. Note that H14 has genus 8, so

dim(
2∧
H1(H14,C)) =

(
8

2

)
= 28

and
dim(Cat0(H14,C)⊕ Cat1(H14,C)) = 5 ∗ 8− 5 = 35.

Therefore, since 35 > 28, no map
∧2H1(H14,C)→ Cat0(H14,C)⊕ Cat1(H14,C) can

be surjective, particularly WH14 . Despite this, we will see in the next section that
most cubic graphs seem to be surjective if they are girth at least 5 and are sufficiently
large.
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τ1v1

v2
v3

w1

w2w3 τ2

v1

v2
v3

w1

w2w3

τ3

v1

v2v3

w1

w2w3

τ4

v1

v2
v3

w1

w2w3

τ5v1

v2
v3

w1

w2w3 τ6

v1

v2v3

w1

w2w3

Figure 4.2: The cycles through T3.

4.2 Programming Results

If we generate a random, cubic graph G with girth at least 5, how likely is it that
WG is surjective? I wrote a program in SageMath to help answer this question. See
Appendix A for more details. We have the following data in Table 4.1 from this
program.

Table 4.1: A sampling of random cubic graphs with girth at least 5, of various sizes.

Number of Number of Number for which Proportion
Vertices Samples WG is Surjective

50 100 90 0.90
100 100 96 0.96
150 100 96 0.96
200 100 97 0.97
250 100 99 0.99
300 100 99 0.99
350 100 100 1.00
400 100 100 1.00

This data that suggests the following conjecture:

Conjecture 4.2.1. Let Fg be the event that WG is surjective for a random cubic
graph G of genus g and girth(G) ≥ 5. Then we have

lim
g→∞

P (Fg) = 1.

Since cubic graphs are almost always 3-edge-connected [RW92], there is a high
probability that this criterion is met. Similarly, as the number of vertices grows, the
chance that a graph is planar goes to zero [BB01].
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σ

v1

v2v3

w1

w2w3

τ4

τ5

τ6

v1

v2v3

w1

w2w3

τ1v1

v2v3

w1

w2w3

τ5

τ6

v1

v2
v3

w1

w2w3

τ2

v1

v2v3

w1

w2w3

τ4

τ6

v1

v2

v3

w1

w2w3

τ3

v1

v2v3

w1

w2w3

τ4

τ5
v1

v2v3

w1

w2w3

Figure 4.3: The linear combinations of τ4, τ5, τ6 to form σ, τ1, τ2, τ3.

It is important to note that while the probability in Conjecture 4.2.1 may approach
1, it will never equal 1. This is because WG is not surjective for a planar graph G,
so we can always produce a counterexample.

Copyright© Angela C. Hanson, 2023.
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Figure 4.4: The Heawood graph.
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Appendices

Appendix A: SageMath Program

I wrote the following program to evaluate the Wahl map on a given cubic graph and
to generate random cubic graphs of girth at least 5. The code can be accessed and
run at the following link: https://github.com/hansonac13/Wahl_map.git

All graphs should be entered as Graph({vertex1:[list of v1 neighbors],
vertex2:[list of v2 neighbors], . . . }) or some other acceptable graph object according
to SageMath.

To evaluate the Wahl map on a graph G, use build matrix(G). This outputs a
matrix where the rows correspond to cycle wedge pairs and the columns correspond
to each vertex in ascending order and then each edge in lexicographic order. To
check if WG surjective, use is surj(G). The output to is surj() is a printed statement.
Similarly, you can check if W0

G is surjective with is V surj(G). It will also print a
statement.

In order to generate n non-isomorphic, random cubic graphs with m vertices of
girth at least 5, run the command sample random girth5(n,m). If you want to make
these graphs truly random for probabilistic purposes, add the entry noniso=False at
the end of the input list. The output will be a list of graphs.

To test and store examples, run add to files(examples) where examples is a list of
graphs.

from f u t u r e import abso lu te impor t
from sympy import ∗
import sys
from sage . a l l import ∗
from sage . graphs import graph
from sage . graphs . g ene r i c g raph import ∗

###### This s e c t i on o f the code e v a l u a t e s the Wahl map on a g iven
###### graph .
def pa i r up c y c l e s ( cy c l eS e t ) :

’ ’ ’ This w i l l produce pa i r s o f c y c l e s from the s e t o f c y c l e s
in the order in which they appear in the s e t . The pa i r s are
re turned as a l i s t o f pa i r s where each pa i r i s a l i s t o f two
c y c l e s . Cyc les are repre sen t ed as a l i s t o f i n t e g e r s which
correspond to v e r t e x l a b e l s . ’ ’ ’
pa i r s=l i s t ( )

for i in range ( len ( cy c l eS e t ) ) :
for j in range ( i +1 ,( len ( cy c l eS e t ) ) ) :

p a i r s . append ( [ c y c l eS e t [ i ] , c y c l eS e t [ j ] ] )
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return ( p a i r s )

def c y c l e o r i e n t a t i o n (v , ne ighbor pt , c y c l e ) :
’ ’ ’ This w i l l t ake a v e r t e x v and one o f i t s ne i ghbor s
( ne i g h bo r p t ) and c a l c u l a t e s whether the c y c l e runs in to
v e r t e x v a long t ha t ne ighbor or out o f the v e r t e x a long t ha t
ne ighbor . The output o f t h i s f unc t i on i s 1 ( in t o ) or −1
( out o f ) . ’ ’ ’

i f cy c l e . index (v ) == 0 and cy c l e . index ( ne ighbor pt ) == len ( c y c l e )−1:
’ ’ ’ This accounts f o r i f the ne ighbor i s the l a s t po in t in
the c y c l e l i s t and v i s the f i r s t in the c y c l e l i s t , so
ne i g h bo r p t comes b e f o r e v . ’ ’ ’
return (1 )

e l i f cy c l e . index (v ) == len ( c y c l e )−1 and cy c l e . index ( ne ighbor pt ) == 0 :
’ ’ ’ This accounts f o r i f the ne ighbor i s the f i r s t po in t
in the c y c l e l i s t and v i s the l a s t in the c y c l e l i s t ,
so ne i g h bo r p t comes a f t e r v . ’ ’ ’
return(−1)

e l i f cy c l e . index (v ) == cyc l e . index ( ne ighbor pt )−1:
’ ’ ’ Here v and i t s ne ighbor are not at the end or
beg inn ing o f the c y c l e l i s t , and v comes b e f o r e
ne i g h bo r p t . ’ ’ ’
return(−1)

e l i f cy c l e . index (v)−1 == cyc l e . index ( ne ighbor pt ) :
’ ’ ’ Here v and i t s ne ighbor are not at the end or
beg inn ing o f the c y c l e l i s t , and v comes a f t e r
ne i g h bo r p t . ’ ’ ’
return (1 )

else :
’ ’ ’ This i s a catch−a l l in case ne i g h bo r p t and v are not
a c t u a l l y both in t h i s c y c l e c on s e c u t i v e l y . ’ ’ ’
return (0 )

def edg e o r i e n t a t i o n (v , ne ighbor pt ) :
’ ’ ’ This w i l l t ake a v e r t e x v and one o f i t s ne i ghbor s
( ne i g h bo r p t ) and c a l c u l a t e s whether the edge o r i e n t a t i on runs
in t o v e r t e x v a long the ne ighbor or out o f the v e r t e x a long
the ne ighbor . The output o f t h i s f unc t i on i s 1 ( in t o ) or −1
( out o f ) . The edge o r i e n t a t i on i s , by d e f au l t , d i r e c t e d from
lowes t v e r t e x l a b e l to h i g h e s t . Since v e r t i c e s are l a b e l l e d
by the na tura l numbers wi thout r e p e t i t i o n , t h i s o r i e n t a t i on
i s we l l−de f ined . ’ ’ ’
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i f v < ne ighbor pt :
’ ’ ’ Since v i s sma l l e r than ne i ghbor p t , i t comes be fore ,
so the edge between them i s o r i en t ed out o f v . ’ ’ ’
return(−1)

e l i f v > ne ighbor pt :
’ ’ ’ Since v i s l a r g e r than ne i ghbor p t , i t comes a f t e r ,
so the edge between them i s o r i en t ed in to v . ’ ’ ’
return (1 )

else :
print ( ”Error with f i nd i n g neighbor edge value . Check input . ” )

def w vertex (v , cyc le1 , cyc le2 , theGraph ) :
’ ’ ’ This t a k e s a v e r t e x v and pa i r o f cyc l e s , c y c l e 1 and
cyc le2 , and c a l c u l a t e s the Wahl map o f the wedge o f those
two c y c l e s on v . This i n v o l v e s c a l c u l a t i n g the determinant
o f a 2x2 matrix where the f i r s t row corresponds to cyc l e1
and the second to cyc l e2 and then the columns correspond
to two o f the ne i ghbor ing v e r t i c e s to v . Since t h e s e
graphs are cubic , t h e r e are e x a c t l y t h r e e ne i ghbor s to
each v e r t e x . We w i l l s e l e c t two ne i ghbor s accord ing to
the permutat ion phi which i s (123) , where 1 , 2 , and 3
correspond to the f i r s t , second , and t h i r d ne i ghbor s o f v
in ascending order . This does not e f f e c t the rank o f the
Wahl map because rank i s independent o f v e r t e x o r i e n t a t i on .
I t r e tu rns the determinant va lue t imes the edge o r i e n t a t i on
va l u e s f o r each ne i ghbor ing edge used in the determinant
c a l c u l a t i o n . This product can equa l −1, 0 , or 1 . ’ ’ ’
n e i g h b o r l i s t = theGraph . ne ighbors ( v )
n1 = min( n e i g h b o r l i s t [ 0 ] , n e i g h b o r l i s t [ 1 ] , n e i g h b o r l i s t [ 2 ] )

’ ’ ’ Here we f i nd the second ne ighbor based on the v e r t e x
o r i e n t a t i on phi . Since phi has th r ee e lements f o r the
t h r ee neighbors , we want the next ne ighbor to be next in
the l i s t modulo 3 . ’ ’ ’
index1 = n e i g h b o r l i s t . index ( n1 )
index2 = Mod( index1+1 ,3)
n2 = n e i g h b o r l i s t [ index2 ]

’ ’ ’ This s t a r t s the determinant c a l c u l a t i o n where a i j i s the
i t h row and j t h column entry . The va lue comes from the c y c l e
o r i e n t a t i on from v to i t s ne ighbor . So a12 i s the
o r i e n t a t i on va lue from v to n2 in cyc l e 1 . I f the r e l e v an t
ne ighbor i s not in the r e l e v an t cyc l e , t h a t matrix entry i s
0 . ’ ’ ’
i f ( v in cyc l e 1 ) and ( v in cyc l e 2 ) :

i f ( n1 in cyc l e 1 ) :
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a11 = c y c l e o r i e n t a t i o n (v , n1 , cyc l e 1 )
else :

a11 = 0
i f ( n2 in cyc l e 1 ) :

a12 = c y c l e o r i e n t a t i o n (v , n2 , cyc l e 1 )
else :

a12 = 0
i f ( n1 in cyc l e 2 ) :

a21 = c y c l e o r i e n t a t i o n (v , n1 , cyc l e 2 )
else :

a21 = 0
i f ( n2 in cyc l e 2 ) :

a22 = c y c l e o r i e n t a t i o n (v , n2 , cyc l e 2 )
else :

a22 = 0

’ ’ ’ This i s where we c a l c u l a t e the edge o r i e n t a t i on va lue
o f 1 or −1 f o r towards or away from v , r e s p e c t i v e l y . ’ ’ ’
de l ta1 = edg e o r i e n t a t i o n (v , n1 )
de l t a2 = edg e o r i e n t a t i o n (v , n2 )
det = de l ta1 ∗ de l ta2 ∗( a11∗a22 − a12∗a21 )

else :
’ ’ ’ I f v i s in ne i t h e r cy c l e1 nor cyc le2 , then the
matrix determinant i s t r i v i a l l y 0 . ’ ’ ’
det = 0

return ( det )

def w edge ( edge , cyc le1 , cyc le2 , theGraph ) :
’ ’ ’ This t a k e s an edge=(v1 and v2 ) and pa i r o f cyc l e s ,
c y c l e 1 and cyc le2 , and c a l c u l a t e s the Wahl map o f the
wedge o f those two c y c l e s on t ha t edge . This i n v o l v e s
c a l c u l a t i n g the determinant o f a 2x2 matrix where the
f i r s t row corresponds to cyc l e1 and the second to
cyc l e2 and then the f i r s t column corresponds to a
ne i ghbor ing edge to v1 o f edge and the second column
to a ne i ghbor ing edge o f v2 o f edge . Since t he s e graphs
are cubic , t h e r e are two ne ighbor s to each v e r t e x . We
w i l l s e l e c t the ne ighbor wi th minimal v e r t e x l a b e l f o r
cons i s t ency . This does not e f f e c t the rank o f the Wahl
map s ince i t i s the same as the cho ice o f v e r t e x
o r i e n t a t i on . I t r e tu rns the determinant va lue t imes the
edge o r i e n t a t i on va l u e s f o r each ne i ghbor ing edge used
in the determinant c a l c u l a t i o n . This product can equa l
−2, −1, 0 , 1 , or 2 . ’ ’ ’
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endpoints = l i s t ( edge )
v1 = endpoints [ 0 ]
v2 = endpoints [ 1 ]

’ ’ ’ Here we f i nd the ne i ghbor s o f each endpoint , v1 and v2 ,
i n c l ud i n g the o ther endpoint o f the g iven edge . Since t h e s e
graphs are t r i v a l e n t , t h e r e are t h r ee v e r t e x ne i ghbor s . ’ ’ ’
n e i g hb o r l i s t 1 = theGraph . ne ighbors ( v1 )
n e i g hb o r l i s t 2 = theGraph . ne ighbors ( v2 )

’ ’ ’ This chooses the ne i ghbors n1 f o r v1 and n2 f o r v2
accord ing to the permutat ion phi . To make sure the
permutat ion does not re turn the o ther endpoint o f the edge
we are re f e renc ing , we make the o ther endpoint the s t a r t i n g
v e r t e x in the permutat ion and choose the ne ighbor t ha t i s
next in the o r i e n t a t i on . ’ ’ ’
index1 = ne i g hb o r l i s t 1 . index ( v2 )
index2 = ne i g hb o r l i s t 2 . index ( v1 )
’ ’ ’ Here we f i nd the next ne ighbor o f v1 , a f t e r v2 , based on
the v e r t e x o r i e n t a t i on phi . Since phi has t h r ee e lements f o r
the t h r ee neighbors , we want the next ne ighbor to be next in
the l i s t modulo 3 . ’ ’ ’
index3 = Mod( index1+1 ,3)
n1 = ne i g hb o r l i s t 1 [ index3 ]
’ ’ ’ Here we f i nd the next ne ighbor o f v2 , a f t e r v1 , based on
the v e r t e x o r i e n t a t i on phi . Since phi has t h r ee e lements f o r
the t h r ee neighbors , we want the next ne ighbor to be next in
the l i s t modulo 3 . ’ ’ ’
index4 = Mod( index2+1 ,3)
n2 = ne i g hb o r l i s t 2 [ index4 ]

’ ’ ’ This s t a r t s the determinant c a l c u l a t i o n where a i j i s the
i t h row and j t h column entry . The va lue comes from the c y c l e
o r i e n t a t i on from v1 to n1 and from v2 to n2 . So a12 i s the
o r i e n t a t i on va lue from v2 to n2 in cyc l e 1 . I f the r e l e v an t
ne ighbor i s not in the r e l e v an t cyc l e , t h a t matrix entry i s
0 . ’ ’ ’
i f ( v1 in cyc l e 1 ) and ( n1 in cyc l e 1 ) :

a11 = c y c l e o r i e n t a t i o n ( v1 , n1 , cyc l e 1 )
else :

a11 = 0
i f ( v2 in cyc l e 1 ) and ( n2 in cyc l e 1 ) :

a12 = c y c l e o r i e n t a t i o n ( v2 , n2 , cyc l e 1 )
else :

a12 = 0
i f ( v1 in cyc l e 2 ) and ( n1 in cyc l e 2 ) :

a21 = c y c l e o r i e n t a t i o n ( v1 , n1 , cyc l e 2 )
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else :
a21 = 0

i f ( v2 in cyc l e 2 ) and ( n2 in cyc l e 2 ) :
a22 = c y c l e o r i e n t a t i o n ( v2 , n2 , cyc l e 2 )

else :
a22 = 0

’ ’ ’ This i s where we c a l c u l a t e the edge o r i e n t a t i on va lue o f
1 or −1 f o r towards or away from v1 and v2 , r e s p e c t i v e l y . ’ ’ ’
de l ta1 = edg e o r i e n t a t i o n ( v1 , n1 )
de l t a2 = edg e o r i e n t a t i o n ( v2 , n2 )

return ( de l t a1 ∗ de l ta2 ∗( a11∗a22 − a12∗a21 ) )

def generate row ( cyc le1 , cyc le2 , theGraph ) :
’ ’ ’ This f unc t i on take s in two cyc l e s , c y c l e 1 and cyc le2 ,
and re turns a vec to r which conta ins the Wahl map va l u e s
on each v e r t e x in ascending order and then on each edge
in l e x i c o g r a p h i c order . ’ ’ ’
vect=l i s t ( )

for v in theGraph . v e r t i c e s ( ) :
entry = w vertex (v , cyc le1 , cyc le2 , theGraph )
vect . append ( entry )

for e in theGraph . edges ( ) :
entry = w edge ( e , cyc le1 , cyc le2 , theGraph )
vect . append ( entry )

return ( vec to r (ZZ , vect ) )

def bu i ld mat r ix (G) :
’ ’ ’ Here the the graph G i s used to c a l c u l a t e the matrix o f
Wahl map va lue v e c t o r s f o r a l l c y c l e wedge pa i r s . ’ ’ ’

’ ’ ’ The l i s t o f c y c l e s we use i s the c y c l e b a s i s determined
by SageMath . ’ ’ ’
pa i r s=pa i r up c y c l e s (G. c y c l e b a s i s ( ) )

’ ’ ’We need an empty matrix o f the proper dimension to f i l l
w i th Wahl map va l u e s . This matrix has as many rows as c y c l e
pa i r s and as many columns as v e r t i c e s and edges . ’ ’ ’
edgeMatrix=matrix (ZZ , len ( p a i r s ) , len (G. v e r t i c e s ())+ len (G. edges ( ) ) )

’ ’ ’ Here we f i nd the vec to r o f Wahl map va l u e s f o r each
c y c l e wedge pa i r and i n s e r t them in the matrix as rows . ’ ’ ’
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for i in range ( len ( p a i r s ) ) :
edgeMatrix . s e t row ( i , generate row ( pa i r s [ i ] [ 0 ] , p a i r s [ i ] [ 1 ] ,G) )

return ( edgeMatrix )

def i s s u r j (G) :
’ ’ ’ This t a k e s in a graph and p r i n t s whether or not the
Wahl map i s s u r j e c t i v e on t ha t graph . ’ ’ ’
M=bui ld mat r ix (G)

i f M. rank ( ) == M. nco l s ( ) :
print ( ”The Wahl map i s s u r j e c t i v e on t h i s graph . ” )

else :
print ( ”The Wahl map i s NOT s u r j e c t i v e on t h i s graph . ” )
print (M. rank ( ) , M. nco l s ( ) )

def i s V s u r j (G) :
’ ’ ’ This t a k e s in a graph and p r i n t s whether or not the v e r t e x
map V i s s u r j e c t i v e on t ha t graph . Note t ha t the Wahl map on
a graph equa l s V+E where V i s the map r e s t r i c t e d to ac t i n g on
the v e r t i c e s , and E i s the map r e s t r i c t e d to ac t i n g on the
edges . ’ ’ ’
M=bui ld mat r ix (G)

’ ’ ’ Here we b u i l d a l i s t o f i n d i c e s f o r the rows and columns
o f the image o f V. ’ ’ ’
r = l i s t ( )
for i in range (M. nrows ( ) ) :

r . append ( i )
c = l i s t ( )
for j in range ( len (G. v e r t i c e s ( ) ) ) :

c . append ( j )

’ ’ ’ This b u i l d s a submatr ix o f the Wahl matrix o f va l u e s to
on ly keep the columns corresponding to v e r t e x va l u e s . ’ ’ ’
vM = M. matr ix from rows and columns ( r , c )

i f vM. rank ( ) == vM. nco l s ( ) :
print ( ”The ver tex map i s s u r j e c t i v e on t h i s graph . ” )

else :
print ( ”The ver tex map i s NOT s u r j e c t i v e on t h i s graph . ” )
print (vM. rank ( ) , vM. nco l s ( ) )

###### This s e c t i on o f the code w i l l genera te random cub ic
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###### graphs o f minimum g i r t h 5 .
def generate ( numVertices , g i r t h =5):

’ ’ ’ This f unc t i on i n t a k e s the number o f v e r t i c e s d e s i r ed and
re turns a cub i c graph o f wi th t ha t many v e r t i c e s and g i r t h
at l e a s t 5 . ’ ’ ’
n = numVertices
’ ’ ’We need an empty graph to add edges and v e r t i c e s to . ’ ’ ’
G = Graph ( )

’ ’ ’ This doub le checks t ha t t h e r e are at l e a s t the g i r t h
number o f v e r t i c e s . ’ ’ ’
i f n < g i r t h :

print ( ”You have not g iven enough v e r t i c e s . ” )
else :

’ ’ ’ Here we b u i l d the v e r t e x s e t l a b e l e d 0 to n−1 and
form the primary c y c l e 0 up to n−1 and back to 0 . This
makes a l l v e r t i c e s va l ence 2 so we add e x a c t l y more
edge per v e r t e x in the next s t ep to be cub i c . ’ ’ ’
for v in range (n−1):

G. add edge (v , v+1)
G. add edge (n−1 ,0)

r ema i n i n g v e r t i c e s = [ i for i in range (0 , n ) ]
for v1 in r ema i n i n g v e r t i c e s :

’ ’ ’ This s t op s any i n f i n i t e l oops l o o k in g f o r g i r t h
b i g enough when i t i s not p o s s i b l e . We do t h i s by
working from a l i s t s p e c i f i c to v1 . ’ ’ ’
po s s i b l e = r ema in i n g v e r t i c e s . copy ( )

’ ’ ’We remove v e r t i c e s ad jacen t to v1 in the o r i g i n a l
c y c l e so t ha t we remain s imple . We a l s o remove
v e r t i c e s w i th in g i r t h −1 o f v1 to avoid obv ious g i r t h
v i o l a t i o n s . ’ ’ ’
for j in range ( g i r t h ) :

i f Mod( v1+j , n) in po s s i b l e :
p o s s i b l e . remove (Mod( v1+j , n ) )

i f Mod(v1−j , n ) in po s s i b l e :
p o s s i b l e . remove (Mod(v1−j , n ) )

’ ’ ’We want to keep l oo k in g f o r a ne ighbor f o r v1
u n t i l i t i s degree 3 or we run out o f v e r t i c e s to
pa i r wi th i t . ’ ’ ’
while G. degree ( v1 ) < 3 and len ( p o s s i b l e ) > 0 :

’ ’ ’Now we p i ck the second v e r t e x to form an edge wi th . ’ ’ ’
v2 index = sage . misc . prandom . rand int (0 , len ( p o s s i b l e )−1)
v2 = po s s i b l e [ v2 index ]
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G. add edge ( v1 , v2 )
i f G. g i r t h ( ) < g i r t h or G. degree ( v2 ) > 3 :

’ ’ ’ I f g i r t h i s too smal l , we remove the edge and
drop v2 from the p o t e n t i a l ne i ghbor s o f v1 . ’ ’ ’
G. de l e t e edg e ( v1 , v2 )
p o s s i b l e . remove ( v2 )

else :
’ ’ ’ I f g i r t h i s h igh enough , we remove v2 from the
v e r t e x l i s t so t ha t va l ence o f v2 s t a y s at 3 . ’ ’ ’
r ema i n i n g v e r t i c e s . remove ( v2 )

i f G. i s r e g u l a r ( ) and G. g i r t h ()==5:
return (G)

else :
return (Graph ( ) )

def sample random girth5 (n , vcount , ch e ck p l ana r i t y=False , c h e c k t r i=Fal se ) :
’ ’ ’ Here we choose a number n o f random cub i c graphs we want to
t e s t , and i t r e tu rns a l i s t o f n cub i c graphs . I f noniso=True ,
then the s e graphs w i l l be non−i somorphic . Otherwise ,
the graphs w i l l be t r u l y random , wi th p o s s i b l e r e p e t i t i o n .
We can s p e c i f y the number o f v e r t i c e s or have a number s e l e c t e d
at random . We a l s o have the opt ion to check f o r non−planar ,
3−ver tex−connected graphs or not . By d e f a u l t t h i s f unc t i on does
not make those checks . ’ ’ ’
sample = l i s t ( )
graphset = l i s t ( )
tota l number = 0

while tota l number < n :
G = generate ( vcount )
new = True
i f G != Graph ( ) :

’ ’ ’ This s k i p s graphs t ha t are the same up to isomorphism
as ones we seen be f o r e in a s i n g l e t e s t run ’ ’ ’
i f noniso :

for H in sample :
i f H. i s i s omo rph i c (G) :

new = False

i f new == True :
sample . append (G)
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i f che ck p l ana r i t y and c h e c k t r i :
i f G. i s p l a n a r ( ) == False and G. i s t r i ( ) :

’ ’ ’ These are 3−ver tex−connected and non−p lanar
graphs which we g en e r a l l y want . They are a l s o
o f g i r t h at l e a s t 5 which seems to be
necessary f o r s u r j e c t i v i t y . ’ ’ ’
graphset . append (G)
tota l number += 1

e l i f che ck p l ana r i t y :
i f G. i s p l a n a r ( ) == False :

’ ’ ’ These are g i r t h at l e a s t 5 , non−p lanar
graphs , but they may not be 3−connected . ’ ’ ’
graphset . append (G)
tota l number += 1

e l i f c h e c k t r i :
i f G. i s t r i ( ) :

’ ’ ’ These are g i r t h at l e a s t 5 , 3−connected
graphs , but they may not be non−p lanar . ’ ’ ’
graphset . append (G)
tota l number += 1

else :
’ ’ ’ These are graphs o f g i r t h at l e a s t 5 . ’ ’ ’
graphset . append (G)
tota l number += 1

return ( graphset )

def a d d t o f i l e ( examples ) :
’ ’ ’ This f unc t i on c r ea t e s a f i l e and s t o r e s the graphs in the l i s t
o f examples . I t a l s o records which o f them the Wahl map i s
s u r j e c t i v e on . ’ ’ ’
l i n e s = l i s t ( )

’ ’ ’ Here we b u i l d a l i s t o f which o f the graphs the Wahl map i s
s u r j e c t i v e on . ’ ’ ’
i s S e t = l i s t ( )
for g in examples :

M=bu i ld mat r ix ( g )
i f M. rank ( ) == M. nco l s ( ) :

i s S e t . append ( examples . index ( g ) )

print ( str ( len ( i s S e t ) ) , ” out o f ” , str ( len ( examples ) ) )
’ ’ ’ This puts how many graphs the Wahl map i s s u r j e c t i v e on , how
many are in the example l i s t , and the indexes o f the graphs the
Wahl map i s s u r j e c t i v e on . ’ ’ ’
l i n e s . append ( str ( len ( i s S e t ) ) )
l i n e s . append ( str ( len ( examples ) ) )
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l i n e s . append ( str ( i s S e t ) )

for ex in examples :
’ ’ ’ This i s where the examples are recorded as an index , i t s
g i r t h , and i t s l i s t o f edges . ’ ’ ’
l i n e s . append ( str ( examples . index ( ex ) ) )
l i n e s . append ( str ( ex . g i r t h ( ) ) )
l i n e s . append ( str ( ex . edges ( ) ) )

with open( ’RandomExamples . sagews ’ , ’w ’ ) as f :
’ ’ ’ Here i s where the f i l e i s c rea t ed and wr i t t en in wi th the
in format ion above . ’ ’ ’
f . wr i t e ( ’ \n ’ . j o i n ( l i n e s ) )
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