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RESEARCH ARTICLE

Key interplay between the co-opted sorting

nexin-BAR proteins and PI3P

phosphoinositide in the formation of the

tombusvirus replicase

Zhike Feng, Nikolay KovalevID, Peter D. NagyID*

Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America

* pdnagy2@uky.edu

Abstract

Positive-strand RNA viruses replicate in host cells by forming large viral replication organ-

elles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite

of its essential role in viral replication, the biogenesis of the VRCs is not fully understood.

The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phos-

phatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endoso-

mal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy

stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting

nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have

membrane-reshaping function during retromer tubular vesicle formation, directly into the

VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided

recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of

PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the

viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in

the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase

reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on

our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately

exploited by tombusviruses to promote VRC formation and to play structural roles and stabi-

lize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-

BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable

VRCs, which provide the essential protection of the viral RNAs against the host antiviral

responses.

Author summary

Positive-stranded RNA viruses are major pathogens of plants, humans and animals. These

viruses hijack and deform intracellular membranes to build viral replication compart-

ments, which support virus replication. In this paper, the authors have identified the
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critical roles of cellular membrane-shaping proteins and a unique lipid in the formation

of the replicase complex for tomato bushy stunt virus (TBSV). TBSV co-opts and retargets

the endosomal sorting nexin-BAR proteins into the large TBSV-induced replication com-

partment. TBSV also promotes the enrichment of PI(3)P phosphoinositide within the sub-

verted membranes. The interplay between the membrane-shaping proteins, PI(3)P and

the viral replication proteins leads to stable membranous structures around the viral repli-

case, which provide the essential protection of the viral RNAs against the host antiviral

responses.

Introduction

RNA virus replication depends on the formation of large intracellular viral replication com-

partments or organelles (VROs), which represent the sites of intensive viral RNA replication.

Biogenesis of VROs for positive-strand (+)RNA viruses requires major membrane remodeling

and proliferation, retargeting of trafficking vesicles, and recruitment of numerous host pro-

teins. [1–5]. The functions of VROs include sequestering and concentrating viral components

and host factors to support efficient viral RNA synthesis. The virus-induced VROs harbor

numerous viral replicase complexes (VRCs). In case of (+)RNA viruses, VRCs are membra-

nous structures, which perform viral RNA synthesis. In addition, VRCs are expected to pro-

vide protection of the viral RNAs from recognition by host antiviral sensors and from

destruction by host ribonucleases.

Many (+)RNA viruses induce the formation of numerous small spherules, which are vesi-

cle-like structures with narrow opening towards the cytosol [6–8]. The spherules represent sin-

gle structural units of viral replication and they harbor the VRCs, which replicate viral RNAs,

thus critical for virus replication. In spite of major advances in our understanding of spherule

formation, the mechanistic and structural insights are still incomplete.

Among plant viruses, tombusviruses are intensively studied to unravel host-virus interac-

tions [9,10]. Tombusviruses have one component (+)RNA genome of ~4.8 kb [11]. They are

members of the large Flavivirus-like supergroup that includes important human, animal and

plant pathogens. Among the five tombusvirus proteins, only p33 and p92pol are essential for

viral replication. p92pol is the RdRp protein and translated from the genomic gRNA via read-

through of the translational stop codon in p33 ORF. The auxiliary p33 replication protein is an

RNA chaperone involved in recruitment of the viral (+)RNA for replication and is the master

regulator of the VRC assembly process [11–13]. The TBSV replicon (rep)RNA, which contains

four non-contiguous segments from the gRNA, can replicate efficiently in yeast and plant cells

expressing p33 and p92pol [14].

Intriguingly, tombusviruses take advantage of various cellular compartments for the bio-

genesis of large VROs, including the formation and assembly of spherule-like VRCs [15].

Tomato bushy stunt virus (TBSV) and the closely related cucumber necrosis virus (CNV) use

peroxisomal membranes, whereas carnation Italian ringspot virus (CIRV) exploits the outer

membranes of mitochondria. The ER also contributes to VRO formation [16–18] and ER

membranes even support TBSV replication efficiently in the absence of peroxisomes [19].

TBSV, similar to other (+)RNA viruses, induces major metabolic and structural changes in the

infected cells, including aggregation of peroxisomal and ER membranes, membrane deforma-

tions by forming hundreds of 40–70 nm spherules that harbor the VRCs [6,20,21]. TBSV co-

opts a large number of host proteins to support various viral functions, including the biogene-

sis of VROs and the formation of VRCs [10]. VRC formation requires the subversion of several
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components of the endosomal sorting complex required for transport (ESCRT) machinery of

the host cells [21,22]. The TBSV-driven recruitment of the ESCRT components facilitates the

invagination of membranes into the peroxisomes, thus promoting spherule formation. TBSV

also hijacks lipid resources, leading to enrichment of sterols at the viral replication sites via sta-

bilizing membrane contact sites [23]. TBSV also retargets phosphatidylethanolamine (PE) to

the replication sites [24] and recruit Vps34 PI3P kinase (PI3K) to produce PI(3)P (phosphati-

dylinositol 3-phosphate) within VROs [25]. In spite of the significance of PI(3)P in TBSV rep-

lication, the actual role and function of PI(3)P in VRO biogenesis is not known. In addition,

we still do not know if PI(3)P might be involved in recruitment of additional host components

to facilitate the formation of functional TBSV VRCs.

PI(3)P is a critical signaling and a minor structural lipid molecule, which is a key player in

endosomal vesicle trafficking by conferring identity to endosomes [26]. Moreover, PI(3)P

plays a crucial role in regulating vesicle fusion and autophagosome formation through its pro-

tein effectors. Many intracellular microbes and parasites exploit the cellular PI(3)P to establish

infections [27], thus highlighting the central role of PI(3)P in microbe-host intracellular inter-

actions. Because TBSV hijacks the early endosomal compartment and it requires Vps34 PI3K

and the production of PI(3)P phosphoinositide within VROs [24,25,28], we have tested if 14

cellular effectors of PI(3)P could affect tombusvirus replication.

In this work, we show key evidence that a family of the PI(3)P effectors, namely the endoso-

mal SNX-BAR (sorting nexin containing Bin/Amphiphysin/Rvs domain) proteins are

recruited by TBSV and this is required for complete VRC formation. SNX-BAR proteins, such

as Vps5p in yeast and SNX1 and SNX2a/b in plants and SNX1 in mammals, are recruited to

specific subdomains of endosomes through binding to PI(3)P via their Phox-homology (PX)

domain and sensing positive membrane-curvature through their banana-shaped BAR

domains [29,30]. SNX-BAR proteins remodel endosome membranes into tubules, via sensing

local membrane curvature and induction of oligomerization [29,31]. SNX-BAR proteins are in

the forefront of cellular research due to their central roles in assembly of the retromer cargo-

recycling complex [29,32,33]. SNXs are also involved in neurodegenerative diseases including

Alzheimer’s Disease, Parkinson’s Disease and Frontotemporal Lobar Degeneration [34]. SNX

proteins are involved in the interactions between hosts and viruses. For example, Cytomegalo-

virus utilizes SNX5 to regulate the localization of the viral glycoprotein [35]. SNX17 is involved

in the cell entry of Papillomavirus [36]. SNX8 is a critical component of the host innate

immune response to the herpes simplex virus 1 [37].

We demonstrate that the yeast Vps5p SNX-BAR protein is required for TBSV replication in

yeast. The p33 replication protein of TBSV re-localizes Vps5p into VROs as a permanent com-

ponent of the viral replicase complex. The PI(3)P binding of Vps5p is required for its recruit-

ment and pro-viral function in yeast. Depletion of SNX-BAR proteins renders the viral

double-stranded (ds)RNA replication intermediate ribonuclease-sensitive within the VRCs in

yeast and plants and also in vitro in replicase reconstitution assays. Based on our results, we

propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tom-

busviruses to stabilize the VRCs during viral replication.

Results

The endosomal sorting nexin-BAR proteins are required for tombusvirus

replication in yeast and plant cells

To test the putative role of the yeast PI(3)P-binding proteins in TBSV replication, we analyzed

the accumulation of TBSV replicon (rep)RNA in yeast lacking one of fourteen known PI(3)P-

effectors (S1 Table). We found that deletion of VPS5 in haploid yeast showed the largest
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inhibitory effect on the accumulation of TBSV among the genes tested (S1 Table). The absence

of Vps5p SNX-BAR protein, which is a PI(3)P-binding endosomal protein, resulted in ~5-fold

inhibition of TBSV repRNA accumulation in vps5Δ yeast (Fig 1A, lanes 16–18 versus 4–6),

confirming that Vps5p SNX-BAR is critical for TBSV replication in yeast. The closely-related

CIRV, which, unlike the peroxisome-associated TBSV, replicates on the boundary membranes

of mitochondria, was inhibited by ~6-fold in vps5Δ yeast (S1A Fig, lanes 16–18). Thus, Vps5p

is required for tombusvirus replication in different subcellular environments.

Complementation through expression of the Flag-tagged Vps5p from a plasmid in vps5Δ
yeast restored efficient replication of both TBSV and CIRV (Fig 1A, lanes 19–21 and S1A Fig).

Over-expression of Vps5p in wt yeast did not increase TBSV or CIRV repRNA accumulation

Fig 1. Pro-viral role of the endosomal SNX-BAR proteins in tombusvirus replication in yeast and plants. (A) Top image: Northern blot analysis shows

decreased TBSV (+)repRNA accumulation in vps5Δ yeast strain. Vps5p and its deletion mutants were expressed from the constitutive TEF1 promoter

from a plasmid. The accumulation level of repRNA was normalized based on 18S rRNA levels (second panel). The accumulation of His6-p33, His6-p92

and Vps5-Flag is measured by western blotting and anti-His or anti-Flag antibodies. (B) VIGS-based knockdown (KD) of both Snx1 and Snx2b mRNA

levels inhibits the accumulation of TBSV RNA in N. benthamiana. Top panel: The accumulation of TBSV gRNA and sgRNAs was measured using

northern blot analysis of total RNA samples obtained from N. benthamiana leaves at 2 dpi. The upper, systemically-silenced leaves were inoculated with

TBSV virions on the 12th day after VIGS. The control experiments included the TRV2-cGFP vector. Second panel: ethidium-bromide stained gels show

ribosomal RNA level. Middle and bottom panels show the semi-quantitative RT-PCR and quantitative real-time PCR analyses of both Snx1 and Snx2b

mRNA levels, whereas tubulin mRNA was used as a control in the VIGS plants. The Y-axis shows the relative levels of the Snx1 and Snx2b mRNAs with

the control treatment (in blue) representing 100%. (C) Lack of phenotype in Snx1 and Snx2b knockdown N. benthamiana. The enlarged images show the

delayed development of symptoms caused by TBSV infection in the silenced plants. The picture was taken 5 dpi. (D) VIGS-based knockdown of both Snx1

and Snx2b mRNA levels inhibits the accumulation of CIRV RNA in N. benthamiana. Samples for RNA extractions were taken 2.5 days post inoculation

from the inoculated leaves. See further details in panel B. Each experiment was performed three times.

https://doi.org/10.1371/journal.ppat.1009120.g001
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(Fig 1A, lanes 7–9 and S1A Fig). Expression of Vps5p lacking either the BAR domain or the

PX domain could not complement the replication of the tombusvirus RNAs in vps5Δ yeast

(Fig 1A, lanes 13–15 and 22–24, and S1A Fig), suggesting that tombusviruses need both

domains of Vps5p for supporting viral replication. Since Vps5p forms either a homodimer or

heterodimer with Vps17 [29], we tested TBSV replication in vps17Δ yeast, which supported

~3-fold less TBSV repRNA accumulation (S1B Fig, lanes 7–9). Thus, both Vps5p and Vps17p

SNX-BAR proteins are important for tombusvirus replication in yeast.

To explore if tombusviruses depend on the Vps5p orthologs in plants, we knocked down

both Snx1 and Snx2b levels via virus-induced gene-silencing (VIGS) in Nicotiana benthami-
ana plants. The sequence of Snx2a is very similar to Snx2b in Arabidopsis (S2, S3 and S4

Tables). Therefore, VIGS of Snx1/2b likely leads to silencing of both Snx2a (only incomplete

sequence is available in N. benthamiana) and Snx2b in N. benthamiana plants. Knock-down of

the SNX-BAR proteins led to ~4-fold reduced accumulation of TBSV genomic (g)RNA and

CIRV gRNA, respectively (Fig 1B and 1D, lanes 4–6). Knocking down Snx1 and Snx2b levels

ameliorated the necrotic symptoms caused by TBSV infection in N. benthamiana (Fig 1C).

Similarly, protoplasts (separate cell wall-free plant cells) supported ~75% less replication of

TBSV and CIRV gRNA when obtained from Snx1/Snx2b-silenced versus control N. benthami-
ana plants (S1C and S1D Fig). The replication of the more-distantly related turnip crinkle

virus (TCV) was also reduced by ~3-fold in protoplasts obtained from Snx1/Snx2b-silenced

versus control N. benthamiana plants (S1E Fig), suggesting that several plant viruses in the

Tombusviridae family could take advantage of the SNX-BAR proteins during their replication.

However, the pro-viral effects of the co-opted SNX-BAR proteins on tombusvirus replication

seem to be specific, because deletion of VPS5 in yeast did not have an adverse effect on the

accumulation of the unrelated insect viruses, namely Nodamura virus (NoV) and Flock house

virus (FHV) (S1G and S1H Fig).

In addition, we analyzed Snx1 and Snx2b mRNA levels in TBSV and CIRV-infected versus

mock-treated N. benthamiana leaves. RT-PCR analysis showed the up-regulation of both Snx1

and Snx2b mRNA levels in tombusvirus-infected leaves (S1F Fig), suggesting that tombusvirus

replication induces the expression of SNX1 and SNX2B genes in plants.

Tombusvirus replication proteins interact with and recruit the endosomal

SNX-BAR proteins into VROs in yeast and plant cells

To test if Vps5p interacts with the viral replication proteins, we performed co-purification

experiments with Flag-tagged viral replication proteins from yeast membranes. The HA-

tagged Vps5p was expressed in yeast from its native promoter and natural chromosomal loca-

tion. Western blot analysis of the purified functional replicase complex identified the co-puri-

fied Vps5p (Fig 2A, lanes 2 and 4). Similarly, we were able to co-purify the myc-tagged TBSV

p33 replication protein with either the Flag-tagged Snx1 or Snx2b from membrane fraction of

plant cells (Fig 2B). Pull-down experiments with purified proteins from E. coli showed the

direct binding of the p33 replication protein with the yeast Vps5p and the plant Snx1 and

Snx2b in vitro (Fig 2C).

To gain insights into the subcellular site of interaction between Snx1, Snx2a and Snx2b with

the replication proteins, we used bimolecular fluorescence complementation (BiFC) assay.

This assay demonstrated that the p33 and p92pol replication proteins interact with Snx1, Snx2a

and Snx2b within the TBSV-induced aggregated peroxisomes, which represent the sites of

TBSV replication (Figs 3A and S2A and S2B). The BiFC assay also showed that the CIRV p36

replication protein interacts with Snx1, Snx2a and Snx2b within the CIRV-induced aggregated

mitochondria, which represent the sites of CIRV replication (S2C Fig). Confocal microscopy
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revealed that both Snx1 and Snx2b are recruited separately (S3A and S3B Fig versus S3C Fig),

or simultaneously (Fig 3B) to the large TBSV VROs in plant cells and the yeast Vps5p in yeast

cells (S3D and S3E Fig). Super-resolution microscopy showed the co-localization of Vps5 with

Fig 2. SNX-BAR proteins are present in the tombusviral replicase complex. (A) Co-purification of the yeast Vps5p

with the TBSV VRCs. Top panel: Western blot analysis of co-purified 3xHA-tagged Vps5p (expressed from the native

promoter in the original chromosomal location) with Flag-affinity purified p33 from membrane fraction of yeast.

Vps5p was detected with anti-HA antibody. The negative control was His6-tagged p33 purified from yeast extracts

using a Flag-affinity column (lanes 1 and 3). The yeast samples were either cross-linked with formaldehyde or not

cross-linked. Second panel: Western blot of purified Flag-p33 detected with anti-Flag antibody. Bottom panels:

Western blots of Vps5-3xHA, Flag-p33 and His6-p33 proteins in the total yeast extracts using anti-HA, anti-Flag and

anti-His antibodies, respectively. (B) Co-purification of the myc-tagged p33 replication protein with the Flag-tagged

Snx1 or Snx2b from detergent-solubilized membrane fraction of N. benthamiana cells. The proteins were co-expressed

from plasmids based on agroinfiltration. The plants were also infected with TBSV. (C) A pull-down assay to test direct

binding between the p33 replication protein and the shown SNX-BAR proteins expressed in E. coli. The MBP-tagged

p33 was immobilized on beads, followed by addition of the affinity-purified GST-tagged SNX-BAR proteins. MBP was

used as a negative control. Western blot analysis with the shown antibodies was used to detect the bound or input

proteins. (D) Vps5p SNX-BAR is a permanent component of the TBSV replicase complex. Cycloheximide was used to

block the formation of new VRCs in wt yeast via inhibition of cellular translation. Top panel: Western blot analysis

shows the co-purified Vps5-3xHA with the viral replicase using Flag-based purification from the membrane fraction at

the shown time points. Second panel: Western blot analysis of the purified Flag-p33 with anti-Flag antibody. Bottom

panels: Western blot analysis of Vps5-3xHA, His6-p33 and Flag-p33 in the total yeast lysates with anti-HA, anti-His

and anti-Flag antibodies, respectively. See further details in panel A. Each experiment was repeated three times.

https://doi.org/10.1371/journal.ppat.1009120.g002
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Fig 3. PI(3)P phosphoinositide is required for recruitment of the endosomal SNX-BAR proteins into the viral replicase. (A) BiFC

assay to detect interaction between p33 replication protein and the SNX-BAR proteins in planta. TBSV p33-cYFP and nYFP-Snx2b,

nYFP-Snx1 or nYFP-Snx2a proteins were co-expressed from the 35S promoter after co-agroinfiltration into N. benthamiana leaves. Note

that the plants were infected with TBSV to induce VROs in cells. Co-localization of RFP-SKL (peroxisomal luminar marker) with the BiFC

signal (see merged image) demonstrates that the interaction between p33 and SNX-BAR proteins occurs in VROs. Scale bars represent

5 μm (top two panels) and 10 μm (bottom panel). (B) Robust co-localization of TBSV p33-BFP with the GFP-tagged Snx1 and RFP-tagged

Snx2b in N. benthamiana cells is detected by confocal laser microscopy. (C) Super-resolution laser microscopic images of yeast cells. The
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the p33 and p92 replication proteins in yeast cells (Fig 3C). Based on these findings, we pro-

pose that TBSV co-opts the SNX-BAR proteins into the VROs through direct interaction with

the viral replication proteins in yeast and plant cells.

Next, we tested if Vps5p is a permanent component of the viral replicase complex by purifi-

cation of the viral replicase from yeast cells at various time points. New VRC formation was

halted via blocking yeast translation through cycloheximide. Interestingly, the co-purified

Vps5p level has not changed in comparison with Flag-p33 through 2.5 hours (Fig 2D). This

finding indicates that Vps5p is a permanent resident in the membrane-bound viral replicase

complex. Similar to Vps5p, we found that other co-opted cellular proteins, such as Hsp70s

(Ssa1/2 in yeast), Vps4 ESCRT protein, and the DDX3-like Ded1 DEAD-box helicase, are also

permanent residents in VRCs [21,38,39]. This is in contrast with other co-opted host factors,

such as Vps34 PI3K, the glycolytic Pgk1, or Pex19, which are not present in the assembled

VRCs [21,25,40].

PI(3)P is required for the recruitment of the SNX-BAR proteins into VROs

in yeast and plant cells

Confocal microscopy of plant protoplasts infected with TBSV revealed the efficient co-localiza-

tion of PI(3)P (detected with anti-PI(3)P antibody or by using a RFP-2xFYVE biosensor,

which specifically binds to PI(3)P in cells) [26,41], and Snx1 and Snx2b with the p33 replica-

tion protein at the replication sites (Figs 3D, S4A and S4B).

To test if PI(3)P affects the recruitment of SNX-BAR proteins into VROs, we performed

BiFC assay with plant cells treated with Wortmannin, an inhibitor of Vps34 PI3K. The recruit-

ment of both Snx1 (S5A–S5C Fig) and Snx2b (Figs 3E and S5C) into VROs was inhibited up

to ~4-to-5 times by the reduced production of PI(3)P in plant cells treated with the PI3K inhib-

itor. Since PI(3)P is required for the endosomal localization of SNX-BAR proteins [42,43], and

the TBSV p33 replication protein drives the recruitment of Rab5-positive endosomes into the

TBSV VROs [24], the Wortmannin treatment likely inhibits the co-targeting of p33 and

SNX-BAR proteins to the endosomes prior to final targeting to the VROs.

A mutagenesis approach was used to test if PI(3)P binding by SNX-BAR is important for

TBSV replication. The conserved YR amino acids in the PI(3)P binding region (PX-domain)

of the yeast Vps5p were mutated to AA to block PI(3)P binding [44]. Expression of Vps5Y321A,

R360A mutant in vps5Δ yeast poorly complemented TBSV replication (Fig 4A, lanes 16–18 ver-

sus 10–12 and S3D and S3E Fig), whereas Vps5Y321A,R360A expression in WT yeast led to

~3-fold inhibition of TBSV replication (Fig 4A, lanes 7–9 versus 1–3), suggesting that

Vps5Y321A,R360A functions as a dominant negative mutant, likely as a component of a

SNX-BAR dimer. Similar mutagenesis of the PI(3)P binding site in the plant Snx1 (Snx1rry)

inhibited the recruitment into VROs by the TBSV p33 and the CIRV p36 replication proteins

in a BiFC assay (Figs 4B and S5D). In addition, phosphorylation mimicking mutant of Snx1

yeast cell replicating TBSV repRNA was imaged based on anti-TBSV p33 antibody and anti-Flag antibody for Vps5-Flag. The bars

represent 1 μm. Arrows point at the co-localized Vps5p and p33 replication protein. The images were obtained by a Nikon N-STORM

Super Resolution Microscope and image processing was performed using NIS-element software. Each experiment was repeated three

times. (D) Co-localization of TBSV p33-BFP with the GFP-tagged Snx1 or GFP-tagged Snx2b and with PI(3)P in N. benthamiana
protoplasts is detected by confocal microscopy. PI(3)P was detected with anti-PI(3)P antibody. Scale bars represent 20 μm. (E) BiFC assay

shows the reduced level of interaction between p33 and the Snx2b protein in N. benthamiana treated with Vps34 PI3K inhibitor,

Wortmannin or DMSO as a negative control. TBSV p33-cYFP and nYFP-Snx2b proteins were co-expressed from the 35S promoter after

co-agroinfiltration into N. benthamiana leaves. RFP-SKL was expressed as a peroxisomal marker to identify VROs. Scale bars represent

10 μm. On the right, we show the quantitative evaluation of the BiFC signal with the Y-axis showing the relative BiFC signal levels with the

control DMSO treatment (in red) representing 100%. The BiFC signals were quantified via Image J. Each experiment was repeated three

times.

https://doi.org/10.1371/journal.ppat.1009120.g003
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Fig 4. Mutations in the endosomal SNX-BAR proteins inhibit TBSV replication and their recruitment into VROs. (A) Vps5p mutant (Vps5yr-AA)

deficient in PI(3)P-binding does not efficiently complement TBSV replication in vps5Δ yeast. Top panels: Northern blot analysis shows reduced TBSV (+)

repRNA accumulation in wt yeast strain expressing Vps5yr-AA, and poor complementation of TBSV replication in vps5Δ yeast expressing Vps5yr-AA. Bottom

images: Western blot analysis of the level of His6-p33 with anti-His antibody and Vps5-Flag with anti-Flag antibody, respectively. (B) Decreased interaction

between TBSV p33-cYFP replication protein and the nYFP-Snx1rry mutant protein, which is deficient in PI(3)P-binding, was detected by BiFC in N.

benthamiana infected with TBSV. Scale bars represent 5 μm. Bottom image: The Western blots show the accumulation levels of the proteins used in these

assays. (C-D) Interaction between TBSV p33-cYFP and the nYFP-Snx1 mutant proteins was detected by BiFC in N. benthamiana infcted with TBSV. Snx1A

is a non-phosphorylation mimicking mutant with high affinity for PI(3)P, whereas Snx1E is a phosphorylation mimicking mutant with low affinity for PI(3)

P. Scale bars represent 5, 5 and 10 μm. In panel D, we show the quantitative evaluation of the BiFC signals seen in panels B and C, with the Y-axis showing

the relative BiFC signal levels with the wt Snx1 (in red) representing 100%. The BiFC signals were quantified via Image J. Each experiment was repeated three

times. (E) Lack of recruitment of Vps5p into the p33-decorated VROs in yeast missing a retromer component. Vps5p was visualized with anti-Flag antibody.

Scale bars represent 5 μm.

https://doi.org/10.1371/journal.ppat.1009120.g004
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[45], termed Snx1E, which has low binding affinity to PI(3)P, also interfered with the

p33-driven recruitment of Snx1 into VROs, whereas nonphosphorylation mimicking mutant

Snx1A, which has high binding affinity to PI(3)P, was recruited by TBSV similar to the case

with wt Snx1 (Fig 4C and 4D). Pull-down experiments with purified recombinant proteins

demonstrated that all the above Snx1 mutants still bound to p33 replication protein in vitro
(S5E Fig). Therefore, the enrichment of PI(3)P is critical for TBSV to co-opt SNX-BAR pro-

teins into VROs.

Since SNX-BAR proteins bind to PI(3)P and sense positive-membrane curvature, we won-

dered if it is possible to substitute the SNX-BAR proteins in the VRCs. We used the C-terminal

domain of RavZ effector protein from Legionella as a fusion partner to p33 replication protein.

RavZCT is known to bind to PI(3)P and senses positive-membrane curvature [46], similar to

SNX-BAR proteins. Expression of RavZCT-p33, however, strongly inhibited TBSV replication

in yeast (S5F Fig). Deletion of the PI(3)P-binding module in RavZCT-P-p33 resulted in fully

functional replication protein (S5F and S5G Fig). These data suggest that the co-opted

SNX-BAR protein—PI(3)P interaction is required for TBSV replication and this interaction

cannot be replaced by p33—PI(3)P interaction in the form of RavZCT-p33.

Next, we tested how Vps5p endosomal protein is delivered to the VROs in wt yeast. Vps5p

functions together with the retromer complex, which consists of three conserved proteins,

Vps26p, Vps29p and Vps35p. Vps5p and the retromer induce the formation of tubular trans-

port carriers from the endosomes to recycle cargos to the Golgi and ER or to the plasma mem-

brane [29,47]. An analysis of Vps5p distribution revealed that the p33-decorated VROs lacked

Vps5p in vps35Δ, vps26Δ or vps29Δ yeasts in contrast with the wt yeast (Fig 4E). We also tested

the recruitment of the Snx2b SNX-BAR protein, the plant homolog of the yeast Vps5, into

VROs in N. benthamiana cells. We found co-localization of Snx2b and the TBSV p33 replica-

tion protein with Vps26, Vps29, and Vps35 retromer complex proteins in the large TBSV

VROs (S6A Fig). Snx2b and the components of the retromer complex are also co-localized in

the absence of TBSV infection in N. benthamiana, but they are not localized in large punctate

structures (S6B Fig). Taken together, it seems that the retromer is involved in facilitating the

p33-driven recruitment of the endosomal SNX-BAR membrane-shaping proteins into the

tombusvirus VROs. The functional roles of the retromer in TBSV replication will be presented

elsewhere.

PI(3)P and the SNX-BAR proteins coordinate the protection of the viral

RNAs from ribonucleases in vitro
Although previous works have shown that the ESCRT machinery is co-opted by TBSV to form

spherules [21,22], the ESCRT factors might not be enough to render the spherules stable

enough for an extended period to provide full protection for the dsRNA replication intermedi-

ate. Because local enrichment of PI(3)P results in positive membrane curvature and the

SNX-BAR proteins sense, bind and reshape membranes into positive curvature (tube-like

forms) [48], these host components are the best candidates to stabilize VRCs, including the

neck structure of the tombusvirus VRCs (see model below). The narrow neck structure is pro-

posed to serve as a gate of the VRCs, preventing ribonucleases to enter the VRCs, while allow-

ing ribonucleotides entry and (+)RNA export out of VRCs during replication [4].

To examine if the membranous VRCs in vps5Δ yeast indeed provide reduced protection to

the viral RNAs against nucleases, we used several cell-free extract (CFE)-based replicase recon-

stitution assays, which can efficiently probe the exposure of the replicating viral RNAs to ribo-

nucleases [49,50]. In assay #1, we expressed p33 and p92pol replication proteins without the

TBSV repRNA to allow the replicase pre-assembly step in vps5Δ yeast and in WT yeast as a
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control (Fig 5A) [50]. Then, we programmed the obtained CFEs with the TBSV (+)repRNA,

followed by addition of the micrococcal nuclease (MNase) at the 20 min time point and inacti-

vation of MNase 15 min latter. At the end of the assay, we measured the level of the TBSV

dsRNA replication intermediate [produced by minus-strand synthesis on the (+)RNA tem-

plate], which is always present in the VRCs [51]. The TBSV dsRNA was more sensitive to

MNase when the CFEs were prepared from either vps5Δ or vps5Δvps17Δ yeast strains in com-

parison with the CFE from WT yeast (Fig 5A).

Additional assay to test the level of protection provided by the VRCs included in vitro repli-

case reconstitution with purified recombinant viral proteins and (+)repRNA transcripts as

schematically shown in Fig 5B. This CFE-based assay supports a single full cycle of RNA repli-

cation, including both (-) and (+)RNA synthesis [49]. The MNase was added at different time

points (as shown) for 15 min to destroy the unprotected viral RNAs, followed by MNase inac-

tivation with EGTA and TBSV repRNA replication on the protected TBSV dsRNAs up to 3

hours (Fig 5B). The in vitro assembled VRC based on the CFE prepared from vps5Δvps17Δ
yeast provided 3-times less protection at the 60 min time point in comparison with the CFE

from WT yeast. In the third assay, we isolated the VRCs replicating TBSV repRNA from vps5Δ
and WT yeasts, followed by in vitro replication assay in the presence or absence of MNase

[52]. The activity of VRC preparation obtained from vps5Δ yeast was inhibited by the MNase

by 2-fold more efficiently than the corresponding preparation from WT yeast (S7A and S7B

Fig). Altogether, the results from three separate in vitro replication assays with VRCs lacking

Vps5p showed that ribonucleases could access the TBSV dsRNA replication intermediate

much more efficiently, likely due to incomplete or unstable VRCs. All these data support the

model that the co-opted SNX-BAR protein—PI(3)P interaction helps stabilizing the VRCs and

protection of the viral dsRNA during TBSV replication.

To obtain additional evidence for the protective role of Vps5p SNX-BAR protein in TBSV

replication, we used a replicase reconstitution assay based on giant unilamellar vesicles

(GUVs) [53]. The artificially made GUVs allow the selection of the particular lipid composi-

tion of membranes, whereas the soluble fraction of the CFE provides the host factors needed

for TBSV replication (Fig 5C). Interestingly, in the absence of Vps5p, the reconstituted TBSV

replicase could not efficiently protect the TBSV dsRNA replication intermediate from the

dsRNA-specific RNase III (Fig 5D, lanes 4 and 6 versus 3 and 5). In contrast, GUVs in combi-

nation with the soluble fraction of the WT yeast CFE provided almost complete protection of

TBSV dsRNA replication intermediate against the dsRNA-specific RNase III (Fig 5D, lanes

1–2). These experiments also illustrate the power of using GUV-based replicase reconstitution

to study the effects of particular lipids in viral replication.

Similar in vitro replicase reconstitution using CFE preparations obtained from vps34Δ
yeast, lacking PI3K, provided lesser protection of dsRNA against MNase than WT CFE did

(Fig 5E). In contrast, in vitro replicase reconstitution using CFE preparations obtained from

ymr1Δ yeast, lacking PI(3)P phosphatase, increased dsRNA protection against MNase in com-

parison with the WT CFE (Fig 5E). Moreover, WT CFE preparations programmed with puri-

fied recombinant viral proteins and (+)repRNA transcripts in the presence of purified

recombinant Ymr1 PI(3)P phosphatase to reduce PI(3)P level in membranes by converting PI

(3)P to PI [54] showed less protection of the dsRNA replication intermediate against MNase

treatment (S7C and S7D Fig). Altogether, all these in vitro data obtained by probing the expo-

sure of the viral dsRNA during viral replication strongly support the protective role of

SNX-BAR protein and PI(3)P phosphoinositide to the TBSV dsRNA replication intermediate

within VRCs.
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Fig 5. Vps5 SNX-BAR protein and PI(3)P are required for TBSV replication and for the protection of the viral dsRNA in replicase

reconstitution assays. (A) Reduced dsRNA and (+)repRNA production and increased nuclease sensitivity by the tombusvirus replicase

assembled in vitro in CFEs prepared from vps5Δ or vps5Δvps17Δ yeast strains. The yeast strains expressed the p33 and p92pol, allowing

the pre-assembly of the replicase complex in yeast. (+)repRNA was used to program the CFEs, which were treated with MNase 20 min

latter, followed by the inactivation of MNase with EGTA after 15 min. Non-denaturing PAGE analysis shows the 32P-labeled TBSV

repRNA products, including the (+)repRNA progeny and the dsRNA replication intermediate, made by the reconstituted replicases. We

also show the relative protection level of the dsRNA replication intermediate from the MNase treatment by adjusting the “no treatment”

to 100% (see numbers in the bottom row). (B) In vitro reconstitution of the TBSV replicase using purified recombinant p33 and p92pol
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Co-opting the SNX-BAR proteins and enrichment of PI(3)P are needed to

build RNAi-insensitive tombusvirus replication complexes

To further test if Vps5p SNX-BAR protein is needed to protect the viral RNA in yeast, we have

used the reconstituted RNAi machinery from S. castellii with the two-component DCR1 and

AGO1 genes [55]. We measured TBSV accumulation when RNAi activity was induced [22] in

WT as well as vps5Δ yeasts. Activation of RNAi in vps5Δ yeast led to ~3-fold less TBSV

repRNA accumulation, suggesting poor protection of the TBSV RNA in comparison with

vps5Δ yeast with suppressed RNAi machinery (Fig 6A, lanes 10–12 versus lanes 7–9). Induc-

tion of the RNAi machinery in WT yeast had a minor effect on TBSV accumulation (Fig 6A,

lanes 4–6). Based on these data, we suggest that Vps5p SNX-BAR protein is involved in pro-

tecting the viral dsRNA replication intermediate within VRCs.

To test the role of PI(3)P phosphoinositide in the protection of the TBSV dsRNA replica-

tion intermediate, we measured vsiRNA abundance in yeast treated with Vps34p PI3K inhibi-

tors in comparison with the DMSO-treated wt yeast expressing Dcr1 (Fig 6B). Interestingly,

the abundance of vsiRNA(-) and vsiRNA(+), the products of Dcr1, did not change in yeast

treated with PI3K inhibitors versus DMSO (Fig 6C lanes 2–3 versus 1). This observation is in

contrast with the ~4-to-6-fold reduction of the target viral RNA level in yeasts treated with

PI3K inhibitors versus DMSO (Fig 6B lanes 4–9 versus 1–3). Altogether, the data suggest that

depletion of PI(3)P in yeast makes the TBSV VRCs highly accessible to Dcr1, resulting in effi-

cient production of vsiRNAs.

To test if Snx1 and Snx2b proteins are needed to protect the viral RNA in plants, we

knocked down Snx1 and Snx2b levels via VIGS and used CNV20Kstop missing the p20 silencing

suppressor to allow for efficient RNAi activity during infection. CNV20Kstop accumulation was

greatly suppressed in the inoculated leaves and CNV20Kstop was close to undetectable in sys-

temic leaves of N. benthamiana (Fig 6D and 6E). Knock down of the Snx1/Snx2b levels in N.

benthamiana had a lesser inhibitory effect on other tombusviruses expressing the p19 suppres-

sor of gene silencing (Fig 1B and 1D). Based on these data, we propose that tombusviruses

require SNX-BAR proteins to protect their replicating RNAs against RNAi response in plants.

The SNX-BAR proteins bind to the viral RNA in tombusvirus replication

complexes

We hypothesized that SNX-BAR proteins would likely contact the viral (+)RNA, while the RNA

passes through the tight neck structure during exit from the spherule/VRC. Therefore, we tested

if SNX-BAR proteins could bind to the viral RNA. In the first test, we used 32P-labeled (+)

repRNA and (-)repRNA of TBSV and purified yeast Vps5p, Snx1 (S7E and S7F Fig) and Snx2b

(Fig 7A and 7B) in a gel mobility shift assay. All three SNX-BAR proteins bound to the (+)RNA

and (-)RNA in vitro, indicating that these host proteins are indeed RNA-binding proteins.

and in vitro transcribed TBSV DI-72 (+)repRNA. The CFEs were prepared from the shown yeast strains. The MNase treatments, which

lasted for 15 min, were done at three different time points as shown. Non-denaturing PAGE analysis was done as in panel A. Note that

we loaded only half of the samples from the wt CFE-based assay. (C) The scheme of the novel GUV-based replicase reconstitution assay.

(D) Both Vps5p SNX-BAR protein and PI(3)P are required to protect the TBSV dsRNA in a replicase reconstitution assay. GUVs were

prepared with ER-like phospholipid composition (see also panel C). The soluble fraction of CFEs prepared from the shown yeast strains

together with purified recombinant p33 and p92pol and TBSV (+)repRNA were added to GUVs to reconstitute the replicase. The

dsRNA-specific RNase III was added at the end of the reaction to destroy the unprotected TBSV dsRNA. Non-denaturing PAGE

analysis was done as in panel A. (E) The Vps34 PI3K and Ymr1 PI(3)P phosphatase affect TBSV replication and the nuclease sensitivity

of the viral dsRNA in vitro. The CFEs were prepared from wt, vps34Δ or ymr1Δ yeast strains to reconstitute the TBSV replicase as shown

in panel B above. The MNase treatment and the RNA product analysis were as described in panel B. The panel on the right shows the

comparable levels of yeast proteins in the obtained CFEs in an SDS-PAGE analysis.

https://doi.org/10.1371/journal.ppat.1009120.g005
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To demonstrate if similar interaction could occur in plant cells, we cross-linked plant sam-

ples replicating the TBSV gRNA, followed by purification of Flag-tagged Snx1 and/or Snx2b.

RT-PCR analysis of the RNAs isolated from purified Snx1, Snx2b and Snx1/Snx2b

Fig 6. Depletion of SNX-BAR proteins or PI(3)P renders tombusvirus RNA sensitive to RNAi-based degradation

in yeast and plants. (A) Co-expression of S. castellii Ago1 and Dcr1 proteins in vps5Δ yeast reduces TBSV repRNA

accumulation to a larger extent than in wt yeast (BY4741). Replication of the TBSV repRNA was measured by northern

blotting 16 h after initiation of TBSV replication. The accumulation level of repRNA was normalized based on the

ribosomal (r)RNA. Each sample is obtained from different yeast colonies. Yeast strain not expressing RNAi

components is chosen as 100%. Each experiment was repeated three times. (B) Inhibition of Vps34 PI3K with chemical

inhibitors reduces TBSV (+)repRNA and (-)repRNA accumulation. Dcr1 was expressed in all yeast in these

experiments. (C) Northern blot detection of vsiRNA(-) and vsiRNA(+) in the combined samples presented in panel B.

The 32P-labeled TBSV DI-72 (+)RNA and (-)RNA, respectively, were used as probes. (D-E) VIGS-based knock-down

of both Snx1 and Snx2b mRNA levels inhibits the accumulation of CNV20Kstop RNA in N. benthamiana. The

accumulation of CNV20Kstop gRNA and sgRNAs was measured using northern blot analysis of total RNA samples

obtained from N. benthamiana inoculated (3 dpi) (D) or systemically-infected (E) leaves (6 dpi). Note that CNV20Kstop

used for infection does not express p20 silencing suppressor protein in these samples, thus allowing the full effect of the

RNAi response. See further details in Fig 1B.

https://doi.org/10.1371/journal.ppat.1009120.g006
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preparations with strand-specific primers showed the presence of the co-purified TBSV (+)

gRNA, but not the (-)RNA (Fig 7C). In the second test, we used a three-component TriFC-

based assay (Fig 7D). The RNA component was a modified repRNA carrying an ssRNA sen-

sor consisting of six repeats of a hairpin RNA (MS2hp) from MS2 bacteriophage, which is

specifically recognized by the MS2 coat protein (MS2-CP) (Fig 7D) [56]. Co-expression of

the repRNA(+)MS2hp and MS2-CP-cYFP and nYFP-Snx1 with TBSV p33 and p92pol repli-

cation proteins leads to replication of the repRNA. If nYFP-Snx1 could bind to the repRNA,

whereas MS2-CP-cYFP could bind to the MS2-hairpins present in the repRNA, then we

expect TriFC signal as shown schematically in Fig 7D. Interestingly, we found many plant

cells (93%) with the TriFC signals, where p33-BFP marked the sites of TBSV replication

(Fig 7E, top panel). In contrast, it was difficult to find TriFC signals when the MS2 hairpins

formed on the (-)repRNA, although a few cells (only 9%) had weak TriFC signals as shown

in Fig 7E. In the control experiments, the TBSV repRNA replaced repRNA(+)MS2hp and

there was no TriFC signal within the plant cell compartments marked by p33-BFP (Fig 7E,

bottom panel). Therefore, we conclude that repRNA(+)MS2hp was required as an “RNA

bridge” to allow the proximal positioning of MS2-CP-cYFP and nYFP-Snx1 within the

membranous TBSV VROs marked by p33-BFP. Therefore, we suggest that either Snx1 is

located in the proximity of the TBSV (+)repRNA or Snx1 binds to the viral (+)RNA during

viral replication.

To confirm that the yeast Vps5p also interacts with the viral RNA in vivo, we co-

expressed repRNA(+)MS2hp with p33 and p92pol replication proteins (to support replica-

tion) and HA-tagged Vps5p in yeast. This was followed by capturing repRNA(+)MS2hp

from yeast with the GST-tagged MS2-CP (S7G Fig). Interestingly, we detected both Vps5p

and the p33 replication protein in the eluate from the GST resin (Fig 7F, lane 2). When we

expressed repRNA(-)MS2hp under the above conditions, then the eluate from the GST

resin with the bound GST-MS2-CP contained only p33, albeit to a lesser amount than that

obtained with repRNA(+)MS2hp (Fig 7F lanes 3 versus 2). In the control experiments,

expression of the replication proteins with the TBSV repRNA, lacking the (+)MS2hp

sequence, did not result in the co-purification of Vps5p and the p33 replication protein

with the GST-MS2-CP (Fig 7F, lane 1). Based on these results, we suggest that Vps5p binds

to the viral (+)RNA within the VRCs, either directly or in complex with the p33 replication

protein, during viral replication in yeast.

Fig 7. The co-opted SNX-BAR proteins bind to the TBSV (+)RNA. (A-B) In vitro RNA binding assay with purified Snx2b using 32P-labeled ssRNA

templates. The assay contained the (-) or (+) DI-72 repRNA (~0.1 pmol) plus increasing amounts (1, 3, 6, 15, and 30 pMol) of purified recombinant

MBP-tagged Snx2b or MBP as a negative control. RNA gel shift analysis was conducted on nondenaturing 5% PAGE that separated the free or Snx2b-

bound ssRNAs. (C) Co-purification of the TBSV (+)gRNA with Snx1 or Snx2b from N. benthamiana replicating TBSV. The membrane fraction of plants

expressing Flag-tagged Snx1 or Snx2b was solubilized with Triton-X100, followed by Flag-affinity purification. The agarose gel image shows the RT-PCR

analysis of the co-purified (+)gRNA (top panel) or (-) gRNA (middle panel). Bottom panel: Western blot analysis of the Flag-affinity purified proteins

from the samples shown above using anti-Flag antibody. (D) Scheme of the trimolecular fluorescence complementation (TriFC)-based Snx1-repRNA

interaction. The repRNA [repRNA(+)MS2hp] carries the MS2 hairpin sequence that is specifically recognized by MS2-CP-cYFP. Binding of nYFP-Snx1

to the repRNA and simultaneous binding of MS2-CP-cYFP to the MS2-hairpins present in the repRNA is expected to generate TriFC signals as shown

schematically. (E) TriFC analysis of Snx1 binding to the repRNA(+)MS2hp or repRNA(-)MS2hp (the MS2 hairpin folds on the minus-stranded

repRNA). Bottom panel: repRNA lacking the MS2 hairpin sequence is used as a negative control. (F) Co-purification of Vps5p SNX-BAR protein with

the help of repRNA(+)MS2hp serving as an RNA bridge. Purified recombinant GST-tagged MS2-CP was immobilized on the GST resin. Then, the

detergent-solubilized yeast lysates containing Flag-p33, Flag-p92 and Vps5-3xHA and the shown repRNA derivatives were applied to the column. Please

find the scheme for this assay in S7G Fig. Western blot analysis was used to document the captured Vps5-3xHA and Flag-p33, respectively. (G) A model

showing the proposed roles of PI(3)P and the SNX-BAR proteins in stabilizing the neck structure of a spherule harboring the TBSV VRC. Enrichment of

PI(3)P by the co-opted Vps34 PI3K in coordination with binding of the SNX-BAR dimer reshapes the membrane area into positive curvature. The body

of the spherule is formed with the help of the co-opted ESCRT proteins. The viral (+)RNA is likely contacted by the SNX-BAR proteins during the exit of

the viral RNA out of the spherule. (H) A model showing the increased ribonuclease sensitivity of the VRC if the neck structure is not stabilized with the

contribution of PI(3)P and the SNX-BAR proteins.

https://doi.org/10.1371/journal.ppat.1009120.g007
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Discussion

Many (+)RNA viruses, including TBSV, induce the formation of large VROs harboring

numerous membranous spherules, small vesicle-like structures during their replication [6–8].

These spherules contain the VRCs, which produce vast amounts of progeny viruses in a short

time period in infected cells [2,4,8,10]. The emerging theme is that the formation of viral

spherules is a complex process that requires viral replication factors, co-opted host factors, and

altered lipid composition of the targeted membranes. However, the actual host proteins and

lipids within individual VRCs/spherules are not completely known.

In this paper, we have identified the critical roles of endosomal SNX-BAR proteins and PI

(3)P phosphoinositide in the formation and function of TBSV VRCs. The yeast Vps5p and the

plant Snx1 and Snx2b SNX-BAR proteins are efficiently co-opted and retargeted into the large

TBSV-induced VROs consisting of aggregated peroxisomes or the CIRV-induced aggregated

mitochondria. The recruitment of SNX-BAR proteins to the sites of viral replication required

PI(3)P, which is produced by the co-opted Vps34p PI3K in yeast and plants, as we have shown

previously [25]. Vps5p SNX-BAR protein is a permanent component of the TBSV VRCs, sug-

gesting that SNX-BAR proteins might have structural functions within the VRCs. This is also

supported by the observations that functionally deficient mutants of SNX-BAR protein could

act as dominant negative during TBSV replication. What could be the structural roles of

SNX-BAR proteins and PI(3)P in the TBSV VRCs?

The spherules consist of two different membranous subdomains: the body, which harbors

the VRC and shows negative curvature, and likely enriched with PE (a negative membrane

curvature-inducing lipid) and sterols (Fig 7G). The second subdomain is the tiny “neck” struc-

ture, which is proposed to operate as a restrictive gate, allowing the entry of ribonucleotides

and the exit of the newly made (+)RNA progeny. However, it keeps the VRC and the dsRNA

replication intermediate inside the spherule body structure. This neck structure is assumed to

provide protection against the host antiviral surveillance apparatus and prevent destruction of

the viral dsRNA by host ribonucleases. TBSV-induced spherule formation depends on the co-

opted ESCRT machinery, which bends the target membrane-domain inward towards the

lumen of the peroxisomes in case of TBSV and CNV, whereas the ESCRT machinery remodel

the outer membrane-domain of mitochondria toward the matrix in case of CIRV [21,22,57].

In the absence of the ESCRT proteins, tombusviruses could only induce the formation of

open, “deep dish-like” structures. Because the neck structure consists of a membrane subdo-

main with high positive curvature, based on our data, we propose that the neck subdomain is

highly enriched with PI(3)P phosphoinositide, which is known to induce positive curvature in

membranes [58]. The presence of PI(3)P would allow the binding of the SNX-BAR proteins

via their PX domain. Also, the BAR domain in the SNX-BAR proteins could sense, induce

and/or stabilize the positive curvature within the neck structure (Fig 7G and 7H). Accordingly,

both domains of the Vps5p SNX-BAR protein were required to for efficient TBSV replication

(Fig 1A). The critical nature of the co-opted SNX-BAR—PI(3)P interaction is supported by

the strong inhibitory effect of the expression of RavZCT-p33, but not RavZCT-P-p33 lacking the

PI(3)P-binding domain. The dominant inhibitory effect of RavZCT-p33 is likely due to compe-

tition with Vps5p SNX-BAR to bind to PI(3)P within VRCs.

Importantly, SNX-BAR—PI(3)P interaction might stabilize VRCs, possibly the neck struc-

ture, which could be important to maintain continuous viral (+)RNA synthesis for several

hours. This model is supported by the in vitro and in vivo data based on probing the extent of

viral RNA protection by VRCs. For example, in vitro reconstitution of the TBSV replicase led

to protective structure for the viral dsRNA against ribonucleases if wt yeast CFE was used. The

reconstituted TBSV replicase was less protective to the dsRNA (i) in the absence of Vps5p
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SNX-BAR protein; (ii) when the amount of PI(3)P in the CFE was reduced by the addition of

Ymr1 PI(3)P phosphatase; (iii) or in the absence of Vps34p PI3K. In contrast, the reconstituted

TBSV replicase was more protective to the dsRNA in the absence of Ymr1 PI(3)P phosphatase.

Moreover, yeast lacking Vps5p SNX-BAR protein provided lesser protection to the TBSV

repRNA than wt yeast when a reconstituted RNAi pathway was activated. In comparison with

the repRNA, the relative amount of vsiRNAs, produced by Dcr1 on dsRNA template, was

increased when Vps34p PI3K was inhibited via chemical inhibitors. Moreover, knock down of

the Snx1/Snx2b levels in N. benthamiana had a more dramatic inhibitory effect on a tombus-

virus lacking the suppressor of gene silencing (Fig 6D and 6E) than on other tombusviruses

expressing the p19 suppressor of gene silencing (Fig 1B–1D). All these data suggest that the

SNX-BAR proteins in connection with PI(3)P are co-opted by tombusviruses, which then lead

to efficient protection of the viral RNAs against cellular nucleases during viral replication.

Altogether, we propose that the SNX-BAR proteins and PI(3)P could be hijacked by tombus-

viruses to stabilize VRCs, and possibly the neck structure within the TBSV-induced spherules.

In the absence of either the SNX-BAR proteins or PI(3)P, the VRC and its neck structure

might become more dynamic and possibly less stable and provide lesser protection of the viral

dsRNAs against cellular nucleases during TBSV replication (Fig 7H).

The neck structure within the TBSV-induced spherules is rather narrow, ~10 nm in

diameter [6,21]. The association of SNX-BAR proteins with the neck structure would make

the actual opening even narrower, thus, placing the SNX-BAR proteins in the proximity of

the exiting (+)RNA from the spherule (Fig 7G). Indeed, we were able to co-purify the viral

(+)RNA, but not the (-)RNA, with Snx1 and Snx2b SNX-BAR proteins from plants. More-

over, capturing the viral (+)RNA also led the co-purification of both Vps5p and the p33 rep-

lication protein from yeast (Fig 7). Also, a novel TriFC-based method detected the

association of the plant Snx1 with the viral RNA in plant cells (Fig 7). Direct binding of the

plant Snx1/2b to the viral RNA was also observed in vitro. All these observations support

the model that the co-opted SNX-BAR proteins are in close association with the viral (+)

RNA, possibly during the temporal passing of the viral (+)RNA through the tight neck

structure in VRCs. Future, ultrahigh-resolution structural studies will be needed to confirm

this model.

The advantage to co-opt the endosomal SNX-BAR proteins to the replicase complex is that

TBSV co-opts the endosomal Rab5-containing vesicles, which are PE-rich, and the endosomal

Vps34 PI3K into VROs [24,25,28]. These early endosomal components contribute to the bio-

genesis of the large VROs in yeast and plant cells. Therefore, the endosomal SNX-BAR pro-

teins should be readily accessible for subversion by the TBSV p33 replication protein.

The use of membrane curvature-sensing proteins during viral infections might be common

among (+)RNA viruses. Accordingly, alphaviruses, semliki forest virus and Sindbis virus, co-

opt the cellular amphiphysins for replication [59]. Brome mosaic virus and several flaviviruses

hijack the ER-resident membrane curvature-sensing reticulons into VRCs [60,61]. Hepatitis C

virus usurps the cellular PSTPIP2 membrane-deforming protein for VRO formation [62],

whereas, HIV subverts PACSIN2 BAR-domain protein for cell-to-cell spread [63].

In conclusion, we have determined the critical roles of endosomal SNX-BAR proteins and

PI(3)P phosphoinositide in the formation and function of TBSV VRCs. By co-opting the

SNX-BAR proteins and enrichment of PI(3)P in VRCs, tombusviruses create a nuclease- and

RNAi-protective microenvironment for viral replication.

Materials and methods

Some of the Materials and Methods are presented in the S1 Text.
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Yeast stains

Parental yeast strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0), and single knock out

strains vps5Δ, vps17Δ, vps34Δ, vps26Δ, vps29Δ, vps35Δ and ymr1Δ were purchased from

Open Biosystems. SC1 (MATa his3Δ1 leu2Δ trp1Δ289 uraΔ52) yeast strain was purchased

from Invitrogen. vps5Δvps17Δ double deletion strain and yeast strain (BY4741: Vps5-3xHA)

with chromosomal HA tagging of Vps5 was created by using yeast toolbox plasmids [64].

Plant and yeast expression plasmids

Plasmids and primers used in this study are described in S5 Table.

Analysis of viral replication in yeast and plant

To identify the function of yeast Vps5 and Vps17 SNX-BAR proteins in the replication of TBSV

and CIRV, yeast strains BY4741, vps5Δ and vps17Δ were transformed with plasmids pESC-His-

p33/DI72, pYES-His-p92 and pRS315-cFlag for TBSV replication, pESC-Strep-p36/DI72,

pYES-Strep-p95 and pRS315-cFlag for CIRV replication. The transformed yeast cells were pre-

grown in synthetic complete medium lacking uracil, leucine and histidine (ULH-) supplemented

with 2% glucose at 29˚C for overnight, then tombusviral repRNA replication was induced by

transferring the yeast to synthetic complete medium (ULH-) supplemented with 2% galactose at

23˚C for 24 h for TBSV or 30 h for CIRV. Yeast total RNA and total protein were isolated and

analyzed by Northern blotting and Western blotting, respectively [14,25]. The functions of yeast

Vps5 mutants in tombusviral replication were tested by using the same methods.

To measure the effect of plant SNX-BAR proteins on virus replication, NbSnx1 and

NbSnx2b gene expression were silenced using tobacco rattle virus (TRV)-mediated virus-

induced gene silencing (VIGS) method in N. benthamiana [65]. The NbSnx1 and NbSnx2b

fragments were ligated together into the pTRV2 vector. The upper NbSnx1/2b-silenced leaves

were inoculated with TBSV, CIRV or CNV20KStop sap 12 day post agroinfiltration. The control

plants were treated the same way, except using TRV-cGFP (The C terminus of GFP ORF was

inserted into pTRV2 vector to prepare this control plasmid). Plant leaf discs from inoculated

leaves and systemic leaves were collected for total RNA extraction and viral RNA detection by

Northern blotting [66].

Plant protoplasts were isolated from NbSnx1/2b-silenced or cGFP-control N. benthamiana
leaves [67]. About 5 x 105 protoplasts were transformed with in vitro transcribed full-length

TBSV, CIRV and TCV genomic RNAs, incubated in 35 x 10 mm petri dishes in dark at room

temperature for 24 h. Total RNAs were extracted from these protoplasts, viral RNA accumula-

tion was detected by Northern blotting [68].

Confocal microscopy analysis of plant and yeast cells

To examine the subcellular localization of plant SNX-BAR proteins upon virus infection, N.

benthamiana leaves were co-infiltrated with agrobacterium carrying plasmids

pGD-AtSnx1-GFP (0.3 OD600) or pGD-AtSnx2b-GFP (0.3 OD600), pGD-RFP-SKL (0.2

OD600) together with pGD-p33-BFP (0.3 OD600) and p19 (0.1 OD600). Alternatively, pGD-

p33-BFP, pGD-AtSnx1-GFP and pGD-AtSnx2b-RFP were co-agroinfiltrated into N.

benthamiana. The agroinfiltrated leaves were inoculated with TBSV sap at 14 h post agroinfil-

tration. After 2 dpi, the agroinfiltrated leaves were subjected to confocal microscopy (FV1200

confocal laser scanning microscope, Olympus) using 405 nm laser for BFP, 488 nm laser for

GFP and 559 nm for RFP. Images were captured successively and merged using the FLUO-

VIEW software [25].

PLOS PATHOGENS Tombusviruses co-opt sorting nexin-BAR proteins and PI3P phosphoinositide into the replicase

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009120 December 28, 2020 19 / 31

https://doi.org/10.1371/journal.ppat.1009120


To examine the co-localization of plant sorting nexins with the retromer complex upon virus

infection, N. benthamiana leaves were co-infiltrated with agrobacterium carrying plasmids

pGD-AtSnx2b-RFP (0.3 OD600), pGD-p33-BFP (0.3 OD600) and p19 (0.1 OD600) together with

pGD-AtVps26-GFP(0.3 OD600) or pGD-AtVps29-GFP(0.3 OD600) or pGD-AtVps35-GFP(0.3

OD600). The agroinfiltrated leaves were subjected to confocal microscopy as above.

To analyze the subcellular localization of Vps5 in yeast cells upon tombusviral replication,

pYes-His-p92, pEsc-GFP-p33/DI72 and pRS315-Vps5-Flag plasmids were transformed into

BY4741 yeast. The transformed yeast cells were pre-grown in synthetic complete medium

(ULH-) supplemented with 2% glucose at 29˚C overnight. Tombusviral repRNA replication

was induced by changing the yeasts to synthetic complete medium (ULH-) supplemented with

2% galactose for 21 h at 23˚C. Yeast cells were collected to isolate spheroplasts for immunoflu-

orescence [25]. Vps5-Flag was visualized with anti-Flag mouse antibody (Sigma-Aldrich,

Cat#F1804), and Alexa 568 secondary antibody (Thermo Fisher Scientific, Cat#A11031). Con-

focal microscopy analysis using 488 nm laser for GFP and 559 nm for Alexa 568 fluorescent

dye in an Olympus FV1200 confocal laser scanning microscope.

To analyze the subcellular localization of Vps5p in yeast retromer deletion stains upon tombus-

viral replication, pYes-His-p92, pEsc-GFP-p33/DI72 and pRS315-Vps5-Flag were transformed

into vps26Δ, vps29Δ and vps35Δ yeast. Immunofluorescence analysis was conducted as above.

Yeast strain BY4741 was transformed with pESC-His-p33/DI72, pYES-His-p92 and

pRS315-Vps5-Flag plasmids. Co-localization between p33 and Vps5 was analyzed by super-

resolution microscopy (N-STORM Super Resolution Microscopy, Nikon). Anti-p33 monoclo-

nal mouse antibody and anti-Flag rabbit antibody (Sigma-Aldrich, Cat#F7435) were used to

visualize p33 and Vps5, respectively [69].

To identify the interaction between SNX-BAR proteins and tombusviral replication pro-

teins in vivo, bimolecular fluorescence complementation (BiFC) assay was performed in N.

benthamiana [24]. The plasmids pGD-p33-cYFP or pGD-p36-cYFP or pGD-p92-cYFP, pGD-

nYFP-GST, pGD-RFP-SKL and pGD-CoxIV-RFP were transformed to Agrobacterium strain

C58C1, as well as pGD-nYFP-AtSnx1, pGD-nYFP-AtSnx2b and SNX-BAR protein mutants.

The obtained Agrobacterium transformants were co-infiltrated (0.3 OD600, each) into the

leaves of four weeks-old N. benthamiana plants. Agroinfiltrated leaves were inoculated with

TBSV or CIRV 14 h after agroinfiltration. Plant samples were subjected to confocal laser

microscopy at 48 h post virus inoculation.

To observe the distribution and association between cellular PI(3)P and SNX-BAR proteins

upon tombusvirus replication in plant cells, pGD-AtSnx1-GFP (0.3 OD600) or pGD-AtSnx2b-

GFP (0.3 OD600), together with pGD-p33-BFP (0.3 OD600) were agroinfiltrated into N.

benthamiana leaves. The agroinfiltrated leaves were inoculated with TBSV sap at 12 h post

agroinfiltration. Protoplasts were isolated from the infiltrated leaves with enzyme solution con-

taining 1.5% (wt/vol) Cellulase R10 (Yakult Pharmaceutical Ind. Co., Ltd., Japan) and 0.4%

(wt/vol) Macerozyme R10 (Yakult Pharmaceutical Ind. Co., Ltd., Japan) 48 h post virus inocu-

lation for immunofluorescence detection of PI(3)P [25]. The permeabilized cells were incu-

bated with purified anti-PI(3)P mouse antibody (Echelon Biosciences Inc. Cat#Z-P003), and

after washing steps, incubated with anti-mouse secondary antibody conjugated with Alexa

Fluor 568 (Thermo Fisher Scientific, Cat#A11031). The images were captured with Olympus

FV1200 confocal laser scanning microscope. RFP-2xFYVE was used as a PI(3)P biosensor to

visualize PI(3)P distribution upon virus replication in plant protoplast system [25].

To investigate the role of PI(3)P in the recruitment of plant SNX-BAR proteins into viral

replication compartments, the plasmids pGD-nYFP-AtSnx1, pGD-nYFP-AtSnx2b, pGD-

p33-cYFP and pGD-RFP-SKL were separately transformed into Agrobacterium strain C58C1.

The obtained Agrobacterium transformants were co-infiltrated (OD600 0.3 for each) into the
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leaves of four week-old N. benthamiana plants. Agroinfiltrated leaves were treated with 66 μM

Wortmannin (an Vps34 PI3K inhibitor) 15 h after agroinfiltration. Plant samples were sub-

jected to confocal laser microscopy at 31 h post inhibitor treatment.

Protein-protein interaction between SNX-BAR proteins and viral

replication protein p33 by co-purification and pull down assays

To test the interaction between p33 and SNX-BAR proteins in plant, TBSV p33-myc was co-

expressed with AtSnx1-Flag or AtSnx2b-Flag or GFP-Flag in plant by agroinfiltration (0.3

OD600, each), followed by TBSV sap inoculation 12 h post agroinfiltration. Membrane fraction

was isolated from the leaves 2 dpi and solubilized with 1% Triton X-100 followed by purifica-

tion of AtSnx1-Flag or AtSnx2b-Flag with anti-Flag M2 agarose (Sigma-Aldrich, Cat#A2220).

The co-purified p33-myc protein was detected by anti-myc antibody [25].

To dissect whether Vps5 SNX-BAR protein is a permanent component of the tombusvirus

replicase complex, pEsc-URA-Vps5-3xHA was transformed into yeasts with pGAD-Cup1-

Flag-p92 and pGBK-Cup1-Flag-p33-Gal1-DI72. pGAD-Cup1-His-p92 and pGBK-Cup1-His-

p33-Gal1-DI72 were transformed into yeast as the negative control. The transformed yeast

cells were pre-grown in synthetic complete medium lacking uracil, leucine and histidine

(ULH-) supplemented with 2% glucose and 100 μM BCS at 29˚C overnight, followed by trans-

ferring the yeasts to synthetic complete medium (ULH-) supplemented with 2% galactose and

100 μM BCS at 29˚C for 24 h. Tombusviral repRNA replication was induced by changing the

media to synthetic complete medium (ULH-) supplemented with 2% galactose and 50 μM

CuSO4 for 3 h at 23˚C, 100 μg/ml cycloheximide was added to the culture to inhibit protein

translation [21]. Yeast samples were collected at 0 h, 1 h and 2.5 h after addition of cyclohexi-

mide. Cross-linking of yeast cells was conducted by suspending yeast pellets with 1x PBS buffer

containing 1% formaldehyde and incubation for 1 h on ice. Then, glycine (to 0.1 M) was

added to quench the extra formaldehyde and the yeasts were washed and collected by centrifu-

gation. Yeast cells were broken with glass beads, membrane fraction was solubilized with 1%

Triton X-100 followed by purification of Flag-p33 with anti-Flag M2 agarose (Sigma-Aldrich,

Cat#A2220). The co-purified protein was detected with anti-HA antibody.

We also performed the co-purification assay using yeast expressing Vps5-3xHA from its

natural promoter and the original chromosomal location in wt yeast. Yeast expressing Vps5-

3xHA was transformed with pGAD-Cup1-Flag-p92 and pGBK-Cup1-Flag-p33-Gal1-DI72.

pGAD-Cup1-His-p92 and pGBK-Cup1-His-p33-Gal1-DI72 were transformed into yeast as

the negative control. The procedure of yeast culture and purification was the same as above.

To investigate whether the association between p33 and SNX-BAR proteins is direct or

indirect, MBP-p33, GST-Vps5, GST-AtSnx1 and GST-AtSnx2b were obtained from E.coli
(BL21 DE3 Codon Plus cells) [70]. First, we incubated 2 μg MBP-p33 with amylose resin (New

England Biolabs, Cat#E8021L) at 4˚C for 2 h. The same amount of MBP protein was used as

the control. The unbound proteins were removed by repeated washing, followed by adding

1 μg GST-Vps5, GST-AtSnx1 and GST-AtSnx2b, respectively, onto amylose resin and rotating

at 4˚C for 4 h. The bound proteins were eluted with maltose elution buffer, and the co-purified

proteins were detected by Western blotting [71].

Analysis of viral replication in yeast expressing Ago1 and Dcr1

To measure if Vps5 contributes to the protection of the viral RNA, we co-expressed Dcr1 and

Ago1 proteins from S. castellii as an intracellular RNAi probe in yeast as described [22]. Details

can be found in S1 Text.
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In vitro cell-free extract-based replicase reconstitution assays

CFEs were prepared from untransformed BY4741, vps5Δ, vps5Δvps17Δ, vps34Δ and ymr1Δ
yeast strains as described previously [15,22,49]. Reaction mixture for the in vitro replication

contained 2 μl of CFE, 0.15 μg DI-72 (+)RNA, 400 ng affinity-purified MBP-p33, 400 ng affin-

ity-purified MBP-p92pol in 20 μl total volume. 0.1 U/μl micrococcal nuclease (MNase, Amer-

sham Biosciences, Cat#E70196Y) was added to the reactions at different time points as shown

in Figures, followed by incubation for 15 min at 25˚C, then, 2.5 mM EGTA was added to the

samples to inactivate the MNase. The CFE reactions were further incubated for a total of 3 h at

25˚C.

The second in vitro replicase reconstitution assay utilized the CFE from wild-type yeast was

pre-treated with purified Ymr1 PI(3)P phosphatase at 25˚C for 50 min [25], then 0.15 μg DI-

72 (+)RNA, 400 ng affinity-purified MBP-p33, 400 ng affinity-purified MBP-p92pol were

added to the reaction mixture in 20 μl total volume, 0.1 U/μl MNase was added to the reactions

at different time points as shown in Figures, the reaction mixtures were incubated for 15 min

at 25˚C, then, 2.5 mM EGTA was added to the samples to inactivate the MNase. The CFE reac-

tions were further incubated for a total of 3 h at 25˚C.

The third in vitro replicase reconstitution assay utilized BY4741, vps5Δ and vps5Δvps17Δ
yeast strains, which were transformed with pGAD-CUP1-His-p92 and pGBK-CUP1-His-p33.

Expression of p33 and p92pol was induced by adding 50 μM CuSO4 for 40 min to the medium.

CFEs were separately prepared from the above yeasts. The CFE-based reaction mixtures were

programmed with 0.5 μg DI-72 (+)RNA transcripts as described previously [22,49]. 0.1 U/μl

MNase was added to the reactions at 20 min post incubation. The reaction mixtures were incu-

bated for 15 min at 25˚C, then, 2.5 mM EGTA was added to the samples to inactivate the

MNase. The CFE-based replication mixtures were incubated at 25˚C for a total of 3 h.

The fourth in vitro assay was based on yeast strains BY4741 and vps5Δ, which were trans-

formed with pGAD-CUP1-His-p92 and pGBK-CUP1-His-p33-GAL1-DI72. CFEs were sepa-

rately prepared from the above yeasts. MNase treatment was performed as describe above. The

CFE-based replication mixtures were incubated at 25˚C for a total of 3 h.

The total RNAs were isolated from the CFE-based reactions, the 32P-labeled RNA products

were separated in 5% semi-denaturing polyacrylamide gel containing 8 M urea [22,49].

Protein-RNA interaction between SNX-BAR proteins and viral RNA in

plant and yeast cells

To investigate the interaction between Vps5 SNX-BAR protein and viral RNA within viral rep-

licase complex in yeast, MS2-tagged RNA affinity purification assay was performed [72].

pGAD-Cup1-Flagp92, pGBK-Cup1-Flagp33, pESC-URA-Vps5-3xHA with pESC-TRP-

repRNA or pESC-TRP-repRNA(+)MS2hp or pESC-TRP-repRNA(-)MS2hp were transformed

into yeast SC1 strain. The transformed yeasts were pre-grown in synthetic complete medium

(ULHT-) supplemented with 2% glucose and 100 μM BCS at 29˚C overnight. This was fol-

lowed by transferring the yeasts to synthetic complete medium (ULHT-) supplemented with

2% galactose and 100 μM BCS at 29˚C for 24 h. Tombusviral repRNA replication was induced

by changing the media to synthetic complete medium (ULHT-) supplemented with 2% galac-

tose and 50 μM CuSO4 for 12 h at 23˚C. The tombusviral repRNA replication in yeasts was

confirmed by Northern blotting. To do the RNA-based purification, yeast cells were broken

with glass beads, membrane fraction was solubilized with 1% Triton X-100 followed by incu-

bation with GST resin coated with GST-MS2-CP (purified from E. coli), and then, the GST res-

ins were washed five times. The co-purified proteins were detected by anti-HA and anti-Flag

antibody for Vps5-3xHA and Flag-p33, respectively.
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To test if SNX-BAR proteins associate with viral RNAs within the viral replicase complex in

plants, trimolecular fluorescence complementation (TriFC) was conducted in N. benthamiana
[73,74]. MS2-CP binding RNA hairpin sequence (MS2hp) was fused with viral repRNA to get

the pGD-35S-repRNA(+)MS2hp and pGD-35S-repRNA(-)MS2hp constructs [75]. MS2-CP

ORF was inserted into pGD-cYFP to make pGD-MS2-CP-cYFP plasmid. All the plasmids

were transformed into Agrobacteria C58C1 strain. pGD-MS2-CP-cYFP (0.1 OD600), pGD-

nYFP-Snx1 (0.1 OD600), pGD-p33-BFP (0.3 OD600), pGD-RFP-SKL (0.2 OD600), pGD-p33

(0.3 OD600), pGD-p92 (0.3 OD600) and pGD-repRNA (0.3 OD600) or pGD-35S-repRNA(+)

MS2hp (0.3 OD600) or pGD-35S-repRNA(-)MS2hp (0.3 OD600) were co-agroinfiltrated into

N. benthamiana. The plant leaves were studied by confocal microscopy 60 h post agroinfiltra-

tion, using confocal laser scanning microscope.

An RNA-based immuno-precipitation method was used to confirm the interaction between

SNX-BAR proteins and viral RNA within the viral replicase complex in planta [76,77]. Agro-

bacterium harboring pGD-AtSnx1-Flag (0.3 OD600) or pGD-AtSnx2b-Flag (0.3 OD600) were

infiltrated into in N. benthamiana leaves, and in parallel, pGD-AtSnx1-Flag (0.3 OD600) and

pGD-AtSnx2b-Flag (0.3 OD600) were co-agroinfiltrated into plant leaves. pGD empty vector

served as the negative control. TBSV sap inoculation was done 12 h post agroinfiltration. The

leaf strips from the agroinfiltrated leaves (2 dpi) were cross-linked with 1% formaldehyde at

23˚C for 1 h, then formaldehyde was quenched by adding 0.1 M glycine. Afterwards, the plant

leaf strips were washed in 1xPBS buffer. The membrane fraction was isolated and solubilized

with 1% Triton X-100. Flag-based purification of AtSnx1-Flag or AtSnx2b-Flag was performed

with anti-Flag M2 agarose. The purified protein was detected with Western blot using anti-

Flag antibody. Total RNAs were extracted from the purified protein-RNA complexes by phe-

nol/chloroform, and then, cDNAs were synthesized for the detection of the co-purified viral

genomic RNAs by RT-PCR. The PCR reactions were conducted with the same amount of sam-

ples and using the same number of PCR cycles for detecting the viral (+)gRNA and (-)gRNA,

respectively [21].
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S1 Fig. Pro-viral roles of the endosomal SNX-BAR proteins in tombusvirus replication in

yeast and plant protoplasts. (A) Top image: Northern blot analysis shows decreased CIRV

(+)repRNA accumulation in vps5Δ yeast strain. Vps5p and its deletion mutants were expressed

from the constitutive TEF1 promoter from a plasmid. The accumulation level of repRNA was
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normalized based on 18S rRNA levels (second panel). The accumulation of Strep-p36, Strep-

p95 and Vps5-Flag is measured by western blotting and anti-Strep or anti-Flag antibodies. See

further details in Fig 1A. (B) Top image: Northern blot analysis shows decreased TBSV (+)

repRNA accumulation in vps17Δ yeast strain. Vps17p SNX-BAR protein was expressed from

the TEF1 promoter from a plasmid. The accumulation level of repRNA was normalized based

on 18S rRNA levels (second panel). (C-D-E) VIGS-based knock-down of both SNX1 and

SNX2b mRNA levels inhibits the accumulation of TBSV, CIRV and the related TCV RNAs in

N. benthamiana protoplasts. Top panel: The accumulation of TBSV, CIRV and TCV gRNA

and sgRNAs was measured using Northern blot analysis of total RNA samples obtained from

N. benthamiana protoplasts. Second panel: ethidium-bromide stained gels show ribosomal

RNA level. Protoplasts were isolated from the upper leaves of SNX1/SNX2b-silenced N.

benthamiana on the 12th day, followed by transformation of TBSV, CIRV and TCV RNA,

respectively. Twenty-four hours later, total RNA was analyzed by Northern blotting. (F) Up-

regulation of Snx1 and Snx2b expression in TBSV and CIRV-infected N. benthamiana leaves.

The mRNA levels for the SNX-BAR proteins were estimated by semi-quantitative RT-PCR in

total RNA samples obtained from TBSV or CIRV-infected versus mock-infected N. benthami-
ana leaves. Tubulin mRNA and ribosomal RNA were used as controls (bottom panels). (G-H)

The endosomal Vps5p SNX-BAR protein is not required for nodavirus replication in yeast.

Top image: Northern blot analysis shows the accumulation level of NoV and FHV (+)RNA1

and the subgenomic RNA3 in vps5Δ yeast strain. The accumulation level of repRNA was nor-

malized based on 18S rRNA levels (second panel). Bottom panel: The flag-tagged Protein A

replication protein expression was measured with western blotting using anti-Flag antibody.

(TIF)

S2 Fig. The TBSV and CIRV replication proteins interact with the endosomal SNX-BAR

proteins in plant cells. (A) Interaction between TBSV p92pol replication protein and the

SNX-BAR proteins was detected by BiFC assay in planta. TBSV p92-cYFP and the

nYFP-Snx2b, nYFP-Snx2a or nYFP-Snx1 proteins were co-expressed from the 35S promoter

after co-agroinfiltration into N. benthamiana leaves. Bottom three panels: negative control was

GST-cYFP and the SNX-BAR proteins analyzed by BiFC assay in planta. Note that the plants

were infected with TBSV to induce the viral replication compartments in cells. Co-localization

of RFP-SKL peroxisomal luminar marker with the BiFC signals demonstrates that the interac-

tion between p92pol and SNX-BAR proteins occurs in the viral replication compartments.

Scale bars represent 10 μm. (B) Western blots show the accumulation levels of the proteins

used in the BiFC assays. Top panel for S2A Fig, bottom panels for Fig 3A. (C) Interactions

between CIRV p36 replication protein and the SNX-BAR proteins were detected by BiFC

assay in planta. CIRV p36-cYFP and nYFP-Snx2b, nYFP-Snx2a or nYFP-Snx1 proteins were

co-expressed from the 35S promoter after co-agroinfiltration into N. benthamiana leaves.

nYFP-GST was co-expressed with p36-cYFP to serve as the negative control for BiFC assay.

Note that the plants were infected with CIRV to induce the viral replication compartments in

cells. Scale bars represent 10 μm.

(TIF)

S3 Fig. Recruitment of the endosomal SNX-BAR proteins into the viral replication com-

partments by tombusviral replication proteins in yeast and plant cells. (A-B) Co-localiza-

tion of TBSV p33-BFP with the GFP-tagged Snx1 and GFP-tagged Snx2b in N. benthamiana
cells is detected by confocal laser microscopy. Scale bars represent 5 μm. (C) Localization pat-

tern of Snx1-GFP in the absence of viral components in N. benthamiana cells is detected by

confocal laser microscopy. (D) Co-localization of TBSV GFP-p33 and CIRV GFP-p36, respec-

tively, with Vps5-Flag SNX-BAR protein in yeast cells replicating repRNA. Vps5-Flag was
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detected with anti-Flag antibody. Each experiment was repeated three times. (E) Absent of

excessive co-localization of TBSV GFP-p33 with Vps5yr-AA-Flag mutant protein in yeast cells

replicating repRNA.

(TIF)

S4 Fig. Both PI(3)P phosphoinositide and endosomal SNX-BAR proteins are co-opted into

the viral replication compartments in plant cells. (A) Co-localization of TBSV p33-BFP with

the GFP-tagged Snx1 and with RFP-2xFYVE protein in N. benthamiana leaf tissues and proto-

plasts is detected by confocal laser microscopy. RFP-2xFYVE protein binds PI(3)P selectively.

Top two panels: Co-localization of TBSV p33-BFP with the GFP-tagged Snx1 and with RFP-

2xFYVE protein in N. benthamiana leaves. Middle panel represents images in the absence of

viral components. Scale bars represent 10 μm. Bottom panel shows the co-localization of

TBSV p33-BFP with the GFP-tagged Snx1 and with RFP-2xFYVE protein in N. benthamiana
protoplasts. Scale bars represent 20 μm. (B) Co-localization of TBSV p33-BFP with the GFP-

tagged Snx2b and with RFP-2xFYVE protein in N. benthamiana leaf tissues and protoplasts is

detected by confocal laser microscopy. Top panel: Co-localization of TBSV p33-BFP with the

GFP-tagged Snx1 and with RFP-2xFYVE protein in N. benthamiana leaves. Second panel rep-

resents images in the absence of viral components. Scale bars represent 10 μm. Third panel

shows the co-localization of TBSV p33-BFP with the GFP-tagged Snx2b and with RFP-

2xFYVE protein in N. benthamiana protoplasts. Bottom panel represents images in the

absence of viral components. Scale bars represent 20 μm.

(TIF)

S5 Fig. PI(3)P phosphoinositide is required for recruitment of Snx1 protein into the viral

replication compartments in plant cells. (A-B) BiFC assay shows the reduced level of interac-

tion between p33 replication protein and the Snx1 protein in N. benthamiana treated with

Wortmannin, a Vps34 PI3K inhibitor, or with DMSO as a negative control. TBSV p33-cYFP

and nYFP-Snx1 proteins were co-expressed from the 35S promoter after co-agroinfiltration

into N. benthamiana leaves. RFP-SKL was expressed as a peroxisomal marker to identify the

viral replication compartments. Scale bars represent 10 μm. The BiFC signals were quantified

via Image J. Each experiment was repeated. (C) Western blot analysis shows the accumulation

level of nYFP-Snx1 and nYFP-Snx2b proteins and p33-cYFP in Wortmannin or DMSO-

treated N. benthamiana leaves. (D) BiFC assay shows that nYFP-Snx1rry protein was not

recruited by CIRV p36-cYFP replication protein into the viral replication compartment in N.

benthamiana infected with CIRV. The CIRV replication compartment was decorated with

CoxIV-RFP mitochondria marker protein. Scale bars represent 10 μm. (E) Pull-down assay

shows direct interaction of TBSV p33 replication protein with the shown Snx1 mutants in
vitro. Top panel: Western blot analysis of the captured GST-Snx1 mutants with the MBP-affin-

ity purified p33 (lanes 1, 3, 5 and 7). The negative control was MBP (lanes 2, 4, 6 and 8). Bot-

tom panel: The captured MBP-p33 and MBP were detected with anti-MBP antibody. Note

that equal amount of each GST fusion protein was incubated with MBP-p33 or MBP. (F)

Expression of RavZCT-p33 fusion protein inhibits TBSV replication in yeast. Reduced repRNA

accumulation by expression of RavZCT-p33 fusion protein in comparison with p33 replication

protein in wt yeast replicating TBSV repRNA. RavZCT-p33 fusion protein lacking the PI(3)P-

binding domain (i.e., RavZCT-P) loses the strong inhibitory effect on TBSV replication. Top

panel shows the northern blot analysis of (+)repRNA accumulation. Middle panel: the 18S

rRNA level. Accumulation of p33 and the fusion proteins was shown in bottom panel. (G) Co-

expression of RavZCT or RavZCT-P with viral p33, p92 and repRNA does not affect TBSV repli-

cation in wt yeast. The accumulation of repRNA was normalized based on 18S rRNA levels
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(second panel). The protein level of RavZCT or RavZCT-P was shown in bottom panel.

(TIF)

S6 Fig. Recruitment of retromer proteins and the endosomal SNX-BAR proteins into

VROs by tombusviral replication proteins in plant cells. (A) Co-localization of TBSV

p33-BFP with the GFP-tagged retromer proteins (Vps26, Vps35 and Vps29) and RFP-tagged

Snx2b in N. benthamiana cells is detected by confocal laser microscopy. The plants were

infected with TBSV. Scale bars represent 10 μm. (B) Different co-localization pattern of the

GFP-tagged retromer proteins (Vps26, Vps35 and Vps29) and RFP-tagged Snx2b in the

absence of viral components in N. benthamiana cells is detected by confocal laser microscopy.

Scale bars represent 10 μm.

(TIF)

S7 Fig. Vps5 SNX-BAR protein and PI(3)P are required for TBSV replication and protec-

tion of the viral dsRNA in vitro. (A-B) Reduced repRNA production by the tombusvirus rep-

licase assembled in vps5Δ yeast strain. The yeast strains expressed the p33 and p92pol

replication proteins and (+)repRNA, allowing for the assembly of the viral replicase complex

in yeast peroxisomal membranes. The CFEs were treated with MNase 20 min latter, followed

by the inactivation of MNase after 15 min with EGTA. Non-denaturing PAGE analysis shows

the 32P-labeled TBSV repRNA products from the in vitro assay. (C-D) In vitro reconstitution

of the TBSV replicase using purified recombinant p33 and p92pol replication proteins and

TBSV (+)repRNA. The CFEs were prepared from wt yeast and were pre-incubated with puri-

fied recombinant Flag-tagged Ymr1 PI(3)P phosphatase to reduce the PI(3)P level in the CFE.

The MNase treatments, which lasted for 15 min, were done at three different time points as

shown. Non-denaturing PAGE analysis was done as in Fig 5. (E-F) In vitro association of Vps5

or Snx1 SNX-BAR proteins with the viral RNAs. In vitro RNA gel mobility shift assay shows

that GST-Vps5 or GST-Snx1 bind to the 32P-labeled (+)repRNA and (-)repRNA, respectively.

Purified GST-Vps5, GST-Snx1 or GST was added in increasing amounts (1, 3, 6, 15 and 30

pMol for GST, 1, 3 and 6 pmol for GST-Vps5, and 6, 15 and 30 pmol for GST-Snx1) to the

assays. The Vps5-repRNA or Snx1-repRNA complex was analyzed on non-denaturing 5%

polyacrylamide gels. Each experiment was repeated. (G) Scheme of the MS2-CP-based RNA

purification assay. Flag-p33, Flag-p92 and Vps5-3xHA and the repRNA derivatives were

expressed in yeast to allow the formation of RNA-protein complexes. This scheme is to explain

the experiments presented in Fig 7.

(TIF)
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