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Abstract

Objective: This study determined whether hypercholesterolemia would contribute to both the initiation and progression of angiotensin (Ang)II-induced 
abdominal aortic aneurysms (AAAs) in mice.

Methods and Results: To determine whether hypercholesterolemia accelerates the initiation of AAAs, male low-density lipoprotein (LDL) receptor -/- mice 
were either fed one week of Western diet prior to starting AngII infusion or initiated Western diet one week after starting AngII infusion. During the first week 
of AngII infusion, mice fed normal diet had less luminal expansion of the suprarenal aorta compared to those initiated Western diet after the first week of AngII 
infusion. The two groups achieved comparable luminal dilation on week 2 through week 6 of AngII infusion as monitored by ultrasound. To determine whether 
hypercholesterolemia contributed to the progression of established AAAs, male LDL receptor -/- mice were fed Western diet and infused with AngII for 4 
weeks. Mice with established AAAs were then stratified into two groups based on luminal diameters measured by ultrasound. While AngII infusion was continued 
for another 8 weeks in both groups, mice in one group were continuously fed Western diet, but diet in the other group was switched to normal laboratory diet. 
In the latter group, plasma cholesterol concentrations were reduced rapidly to approximately 500 mg/dl within one week after the diet was switched from 
Western diet to normal laboratory diet. Luminal expansion progressed constantly in mice continuously fed Western diet, whereas no continuous expansion was 
detected in mice that were switched to normal laboratory diet.

Conclusion: Hypercholesterolemia accelerates both the initiation of AAAs and progression of established AAAs in AngII-infused male LDL receptor -/- 
mice.

Clinical Relevance: Hypercholesterolemia is modestly associated with AAAs in observational or retrospective clinical studies. It is not feasible to study 
whether hypercholesterolemia contributes to the initiation of AAAs or progression of established AAAs in human. This study using AngII-induced AAA mouse 
model provides solid evidence that hypercholesterolemia contributes to both the initiation and progression of AAAs, supporting that statin therapy at any stage 
of AAA development may be beneficial to hypercholesterolemic patients with AAAs.

INTRODUCTION
Hypercholesterolemia augments development of angiotensin 

II (AngII)-induced abdominal aortic aneurysms (AAAs) in male 
mice [1-6]. This has been most commonly demonstrated in male 
low-density lipoprotein (LDL) receptor -/- mice fed a Western 
diet for one week prior to starting AngII infusion [7]. This one 
week of Western diet feeding leads to profound increases of 
plasma cholesterol concentrations to more than 1,000 mg/dl 
[3]. It is unclear whether a pre-existing hypercholesterolemic 

status is important to the initiation of AngII-induced AAAs, or it is 
critical for the progression of pre-existing AAAs.

Plasma total cholesterol concentrations are below 300 mg/
dl in LDL receptor -/- mice fed normal laboratory diet, but 
increase to more than 1,000 mg/dl within a week of Western diet 
feeding [3,8-10]. This LDL receptor -/- mouse in combination 
with diet manipulation provides a model to determine whether 
hypercholesterolemia contributes to the initiation and 
progression of AngII-induced AAAs. In this study using male LDL 
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receptor -/- mice, we determined whether hypercholesterolemia 
would promote the initiation of AngII-induced AAAs, and 
whether maintaining hypercholesterolemia would modulate the 
progression of established AAAs.

MATERIAL AND METHODS
The raw data that support the findings reported in this 

manuscript are available from the corresponding author upon 
reasonable request.

Mice and diet

Male low-density lipoprotein (LDL) receptors -/- mice 
(8 weeks old) were purchased from The Jackson Laboratory 
(Stock # 2207; Bar Harbor, ME, USA). Mice were housed in 
individually vented cages (5 mice/cage) on a light:dark cycle of 
14:10 hours. The cage bedding was Teklad Sani-Chip bedding 
(Cat # 7090A; Envigo, Madison, WI, USA). Mice were fed a 
normal rodent laboratory diet (Diet # 2918; Envigo) and given 
drinking water from a reverse osmosis system ad libitum. To 
induce hypercholesterolemia, mice were fed a Western diet 
supplemented with saturated fat extracted from milk (21% wt/
wt) and cholesterol (0.15% wt/wt supplemented and 0.05% wt/
wt from the fat source; Diet # TD.88137; Envigo). Mice died of 
any reason prior to termination were excluded for data analyses.

In this study, we only used male mice because female LDL 
receptor -/- mice have very low incidence of AngII-induced AAAs 
[3,11,12]. All mouse experiments reported in this manuscript 
were performed with the approval of the University of Kentucky 
Institutional Animal Care and Use Committee (University of 
Kentucky IACUC protocol number: 2006-0009).

Mini Osmotic Pump Implantation and Angiotensin II 
Infusion

To induce AAAs, mice were infused with 1,000 ng/kg/min of 
AngII (Cat # H-1705; Bachem, Torrance, CA, USA) subcutaneously 
via Alzet mini osmotic pumps (Alzet Model # 2006; Durect Corp, 
Cupertino, CA, USA).7 In first study (Figure 1A), one group of 
mice started Western diet one week prior to AngII infusion 
(WD group), whereas the other group started this Western diet 
one week after initiating AngII infusion (ND - WD group). AngII 
infusion duration was 6 weeks for both groups.

In second study (Figure 2A); all mice were fed Western 
diet for one week prior to AngII infusion. Lumen diameters 
of suprarenal aortas were measured using noninvasive high 
frequency ultrasound system (Vevo 2100 with MS550D; FUJIFILM 
VisualSonics, Toronto, ON, Canada) at baseline and on day 28 of 
AngII infusion. AAAs were defined as 50% or more increase of 
the maximal lumen diameter of the suprarenal aorta on day 28 
compared to the baseline (day 0). Based on luminal diameter 
measurements, mice exhibiting AAAs were stratified into two 
groups, and then either continuously fed Western diet (WD 
group) or switched to normal laboratory diet (WD - ND group). 
These two groups were infused with AngII for an additional 
8 weeks. The entire duration of AngII infusion was 12 weeks 
achieved by implanting two mini osmotic pumps separately 
(Alzet Model # 2006): One pump was implanted on day 0 and 
replaced by a second pump on day 43. The second pump was 
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Figure 1 Hypercholesterolemia accelerated the initiation of 
AngII-induced AAAs in male LDL receptor -/- mice. (A) Mice in 
WD group initiated Western diet feeding one week prior to AngII 
infusion, and mice in ND - WD group initiated Western diet one week 
after starting AngII infusion. The duration of AngII infusion was 6 
weeks. (B) Plasma cholesterol concentrations were measured using 
an enzymatic method. * P < 0.001, = 0.007, and < 0.001 between the 
two groups on Week 0, 1, and 2, respectively. (C) Maximal luminal 
diameters of suprarenal aortas were measured using ultrasound.* P = 
0.004 on week 1. The orange arrow in (B) and (C) indicates the start of 
Western diet feeding in ND - WD group. (D) Maximal outer diameters 
of suprarenal aortas were measured using an ex vivo method. (E) 
Atherosclerosis was measured by an en face method. * P = 0.008.  
Triangles are values from individual mice.  Circles represent means 
and error bars represent SEM.

preincubated in saline at 37 ̊C for more than 60 hours to permit 
immediate delivery of AngII after implantation of pumps in mice.

Ultrasonography

Luminal diameters of suprarenal aortas were measured using 
a Vevo 2100 ultrasound imaging system at indicated intervals 
[13]. Mice were anesthetized with isoflurane and restrained in 
a supine position. Short-axis scan was performed from the level 
of left renal artery moving vertically up to the suprarenal region. 
One hundred frames of cine loops were acquired and the maximal 
luminal diameter of the suprarenal aortic region was measured 
on images during aortic dilation phase. Luminal diameters 
were measured by one investigator, and verified by another 
investigator independently who were blind to study groups.

Plasma cholesterol measurements

During each study, mice were bled consciously with 
submandibular bleeding. At termination mice were anesthetized 
using ketamine/xylazine cocktail, and blood samples were 
harvested by right ventricular puncture. All blood samples 
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were collected with EDTA (final concentration: 1.8 mg/ml) and 
centrifuged at 400 g for 20 minutes, 4 ̊C to prepare plasma. Plasma 
cholesterol concentrations were measured using an enzymatic 
kit (Cat # 439-17501; Wako Chemicals USA, Richmond, VA, USA).

Quantification of aortic dilation and atherosclerosis

Aortas were dissected, fixed, cleaned, and pinned. Maximal 
outer diameter of the suprarenal aorta was measured ex vivo as a 
parameter for aortic dilation using Image-Pro software (Version 
7; Media Cybernetics, Bethesda, MD, USA).

Thoracic aortas were cut open and pinned for quantification 
of intimal area and atherosclerotic lesion area in the ascending 
aorta, aortic arch and the proximal descending aorta using an 
en face technique [14,15]. Atherosclerotic lesions, calculated 
as percent lesion area (lesion area/intimal area x 100%), were 
compared between groups following the recommended approach 
described in the AHA statement [16].

Statistical analyses

Data are represented as means ± standard errors of means 
(SEM). To compare two groups on a continuous variable 
after termination, unpaired two-sided Student’s t test was 
performed for normally distributed and equally variant values 
and Mann-Whitney rank sum test was used for variables not 
passing normality or equal variance test. Plasma cholesterol 
concentrations and luminal diameters of suprarenal aortas 
measured by ultrasonography at a series of time points were 
analyzed using linear mixed-effects models to compare trends 
over time among the sub-groups within the cohort, with random 
effects accounting for within-animal correlation. In general, 
unstructured correlation matrix with unequal variances was 
assumed to account for dependence among observations 
over time and within mice. Models were built using R version 
3.3.2 statistical software. P < 0.05 was considered statistically 
significant.

RESULTS

Hypercholesterolemia accelerated the initiation of 
AngII-induced AAAs

Male LDL receptor -/- mice (N = 10/group) were randomized 
into two groups: WD group initiated Western diet one week 
prior to AngII infusion, and ND - WD group initiated this diet 
one week after AngII infusion was started (Figure 1A). Three 
mice in WD group were excluded for data analysis due to aortic 
rupture. Plasma cholesterol concentrations increased rapidly to 
approximately 1,000 mg/dl prior to the start of AngII infusion 
in WD group, whereas plasma cholesterol concentrations 
remained significantly lower within the first two weeks of AngII 
infusion in ND - WD group (Figure 1B). During the first week 
of AngII infusion, maximal luminal diameters of suprarenal 
aortas were smaller in ND - WD group than in WD Group as 
determined by ultrasonography P = 0.004. Luminal diameters 
became comparable between the two groups on 2 - 6 weeks 
of AngII infusion (Figure 1C), as were also validated by ex vivo 
measurements after termination (Figure 1D). Consistent with the 
less duration of hypercholesterolemia, atherosclerotic lesions 
were smaller in ND - WD group than in WD group (Figure 1E).

Hypercholesterolemia augmented the progression of 
established AngII-induced AAAs

Seventy-nine male LDL receptors -/- mice were fed Western 
diet for one week prior to AngII infusion. The interval of AngII 
infusion was 4 weeks when Western diet continued. Eight mice 
died of aortic rupture during the 4 weeks of AngII infusion. Four 
weeks after AngII infusion 33 mice of the remaining 71 mice were 
stratified into two groups based on maximal luminal diameters (≥ 
50% than baseline) of suprarenal aortas measured by ultrasound. 
Mice in WD group were fed Western diet continuously and diet 
for WD - ND group was changed from Western diet to normal 
laboratory diet (Figure 2A). AngII infusion continued for another 
8 weeks among these 33 mice. Two mice were excluded for data 
analysis due to abdominal aortic rupture. Therefore, 16 mice in 
WD group and 15 mice in WD - ND group were included for data 
analyses. Plasma cholesterol concentrations decreased rapidly in 
WD - ND group within one week after diet change and remained 
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Figure 2 Hypercholesterolemia contributed to the progression of 
established AAAs in male LDL receptor -/- mice. (A) Mice in both 
groups started Western diet feeding one week prior to AngII infusion. 
Mice in WD group had been fed Western diet during AngII infusion, 
and diet for mice in WD - ND group was changed to normal laboratory 
diet after 4 weeks of AngII infusion. AngII infusion duration for both 
groups was 12 weeks. (B) Plasma cholesterol concentrations were 
measured using an enzymatic method. * P < 0.001 on week 5, 6, and 
12, respectively.  (C) Maximal luminal diameters of suprarenal aortas 
were measured with ultrasound. * P = 0.02 and <0.001 on week 6 
and 12, respectively. The orange arrow in (B) and (C) indicates diet 
was switched from Western diet to normal laboratory diet in WD - 
ND group. (D) Maximal outer diameters of suprarenal aortas were 
measured using an ex vivo method. * P < 0.001.  (E) Atherosclerosis 
was measured by an en face method. * P < 0.001.  Triangles are 
values from individual mice.  Circles represent means and error bars 
represent SEM.
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low during the remaining interval of AngII infusion (Figure 2B). 
Maximal luminal diameters of suprarenal aortas continuously 
increased in WD group, but remained constant during the rest 
8 weeks of AngII infusion in WD - ND group (Figure 2C). This 
significant effect of aortic diameters detected using ultrasound 
was confirmed after termination by ex vivo measurements 
(Figure 2D). Consistent with attenuation of hypercholesterolemia, 
atherosclerotic lesion sizes were smaller in WD - ND group than 
in WD group (Figure 2E).

DISCUSSION
This study has demonstrated that hypercholesterolemia 

accelerates the initiation of AAAs and augments the progression 
of established AAAs in AngII-infused mice. This was demonstrated 
using male LDL receptor -/- mice fed normal laboratory 
diet or Western diet that rapidly change plasma cholesterol 
concentrations [3]. This study not only confirmed previous 
reports that Western diet feeding quickly increased plasma 
cholesterol concentrations [3,8,10], but also provided evidence 
that plasma cholesterol concentrations reduced promptly after 
Western diet was withdrawn in LDL receptor -/- mice.

In this study, we used atherosclerosis as a “positive” control 
when we compared abdominal aortic dilation between groups 
because atherosclerosis has positive association with the 
magnitude and duration of hypercholesterolemia [3,16,17]. Mice 
with either delayed Western diet feeding or removal of Western 
diet had less atherosclerotic lesions, which were consistent 
with lower plasma cholesterol concentrations or shorter 
period of hypercholesterolemia. In contrast, the magnitude 
of hypercholesterolemia did not affect development of AngII-
induced AAAs, but removal of hypercholesterolemia attenuated 
the progression of established AAAs. These results are consistent 
with our previous findings that hypercholesterolemia augmenting 
AngII-induced AAAs has a threshold effect independent of the 
absolute concentration of plasma total cholesterol [3]. In addition, 
the present study provides evidence that hypercholesterolemia 
accelerates AngII-induced AAAs during both the initiative and 
the progressive stages. These findings support that inhibition of 
hypercholesterolemia is critical to prevent AAA development and 
attenuate the progression of established AAAs.

Many studies used apolipoprotein E deficient mice to explore 
mechanisms of AngII-induced AAAs (a few examples from a large 
number of publications [2,18-22]. This hypercholesterolemic 
mouse strain is modestly hypercholesterolemic and does not 
need Western diet to accelerate AngII-induced AAAs [3]. It 
appears that this mouse strain leads to higher incidence and 
mortality of AAAs, compared to LDL receptor -/- mice, although 
plasma cholesterol concentrations in apolipoprotein E -/- mice 
fed normal laboratory diet are much lower (~ 300 - 400 mg/dl) 
compared to LDL receptor -/- mice fed Western diet (> 1000 mg/
dl),3 implicating more complex mechanisms of AngII-induced 
AAAs in apolipoprotein E -/- mice. Therefore, LDL receptor -/- 
mice have benefits to study contributions of hypercholesterolemia 
and its related mechanisms to AngII-induced AAAs.

The present study provides guide for using AngII-induced AAA 
model: A pre-existing hypercholesterolemic condition accelerates 
AngII-induced AAAs in LDL receptor -/- mice. Therefore, our 

standard protocol to feed mice one week of Western diet prior to 
AngII infusion is optimal.7 Second, to continuously feed Western 
diet in LDL receptor -/- mice during AngII infusion is suggested 
since hypercholesterolemia is important for the progression of 
established AAAs. Dissecting effects of hypercholesterolemia 
in the human disease is a cost, effort, and time-consuming task, 
which involves many uncontrolled compound factors. Beyond 
being a guide how to use this AngII-induced AAA mouse model 
appropriately, this study, combined with our previous studies, 
also provides insights into understanding whether and how 
hypercholesterolemia contributes to AAAs in humans [3,23,24].
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