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Overcoming Hurdles to Development of
a Vaccine against Pneumocystis jirovecii

Beth A. Garvy

Department of Microbiology, Immunology and Molecular Genetics and Division of Infectious Diseases,
University of Kentucky College of Medicine, Lexington, Kentucky, USA

ABSTRACT Development of Pneumocystis pneumonia (PCP) is a common problem
among immunosuppressed individuals. There are windows of opportunity in which
vaccination would be beneficial, but to date, no vaccines have made it to clinical tri-
als. Significant hurdles to vaccine development include host range specificity, mak-
ing it difficult to translate from animal models to humans. Discovery of cross-
reactive epitopes is critical to moving vaccine candidates from preclinical animal
studies to clinical trials.

KEYWORDS Pneumocystis carinii, vaccines

n this issue of Infection and Immunity, Tesini and colleagues report that immuniza-

tion of mice with the N-terminal half of a protein termed Pneumocystis cross-
reactive antigen 1 (Pcal) protected against Pneumocystis pneumonia (PCP) in a
model of CD4* T cell depletion (1). They further found that antibodies produced in
response to immunization in mice were able to recognize Pneumocystis murina,
Pneumocystis carinii, and Pneumocystis jirovecii, the fungal species that infect mice,
rats, and humans, respectively (1). This is the latest of a >30-year string of papers
looking at immunization against Pneumocystis species using a number of animal
models. However, this study is distinct as it demonstrates that a peptide cross-
reactive with P. jirovecii is not only immunogenic but protective in immunosup-
pressed animals. The authors suggest that Pcal could be used as a vaccine
candidate in humans or as an immunogen for generating Pneumocystis-specific
intravenous immunoglobulin (IVIG) for treatment of PCP.

Pneumocystis is an opportunistic fungal pathogen that was first identified as a
parasite in the early 20th century. Pneumonia caused by Pneumocystis was first re-
ported in premature or debilitated infants in Europe and was termed interstitial plasma
cell pneumonia (2). Since then, PCP has been diagnosed in patients that have been
immunocompromised as part of chemotherapy, transplant regimens, steroid treatment,
and new biologics, including anti-tumor necrosis factor (anti-TNF) therapy for autoim-
mune diseases (3-6). PCP really came to prominence during the early days of the
acquired immunodeficiency disease syndrome (AIDS) epidemic when it was one of
the first indications that there was some sort of disease spreading that compromised
the immune systems of previously healthy individuals (7). More recently, it has been
appreciated that Pneumocystis is able to colonize the lungs, particularly in those who
have chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) (8).
Though one might argue that development of a vaccine against an opportunistic
pathogen is not cost-effective, modern medicine has led to many immunosuppressing
agents that put patients at risk for PCP. These patients would benefit from an effective
vaccine against Pneumocystis.

Over the past 35 years since the first reports describing PCP in AIDS patients, there
have been a number of papers demonstrating that specific antibody can be protective
against Pneumocystis infection. This is important since it is possible that circulating
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antibody can be maintained long after CD4 T cells have been compromised. In fact,
Gingo et al. found that elevated antibodies specific for the P. jirovecii kexin protein
(KEX1) were associated with reduced risk for developing PCP in human immunodefi-
ciency virus (HIV)-infected individuals (9). Most papers addressing immunization or
vaccine development have utilized animal models of infection, including mice, rats,
ferrets, and nonhuman primates. Early on, it was recognized that Pneumocystis species
have host ranges such that organisms that infect one mammalian species do not cross
over to other mammalian hosts. These species are now recognized as different species
of Pneumocystis, with the species names murina, carinii, and jirovecii reserved for
organisms that infect mice, rats, and humans, respectively. It was shown that immu-
nization of mice with ferret-derived organisms was not protective against challenge
with P. murina, indicating that organisms from other mammals cannot be used for
human vaccines (10). Moreover, until recently, there have been few cross-reactive
epitopes discovered between the Pneumocystis species. Though it has been shown that
immunization with whole organisms isolated from a host can be protective in that
same host species, using killed P. jirovecii as a vaccine is not tenable. There is no way
to obtain sufficient P. jirovecii organisms, as no viable culture system is available to
adequately expand the organisms for use in a commercial vaccine. This leaves us with
finding a protective subunit vaccine which must be developed in animal models and
then translated to humans.

The major surface glycoprotein (Msg, or glycoprotein A [gpAl) expressed by the
organisms is encoded by a large multicopy gene family, with P. jirovecii having more
than 3 times the copies that P. murina has. A large amount of diversity was found
among the genes in the gpA gene family, and it is thought that this plays an important
role in evasion of host defenses through antigenic variation (11). Vaccination against
gpA in animal models has resulted in variable results, with some, but not complete,
protection observed in a rat model of infection (12). In a mouse model of infection, it
was shown that immunization with Msg resulted in an immune response but not
protection against PCP (13). This is due to antigenic variation, since it was shown that
passive immunization with monoclonal antibodies against one variant of gpA in severe
combined immunodeficient (SCID) mice forced the emergence of organisms expressing
a different gpA variant (14). A more recent paper indicated that immunization with
recombinant variant Msg resulted in cross-reactive antibody responses to other Msg
variants, but cross-reactive T cell responses were not frequently found, suggesting that
Msg variation is used to escape T cell responses, rather than antibody responses (15).
As a result of these studies, gpA has not been recently pursued as a viable vaccine
candidate.

The search for viable vaccine candidates has evolved as more has been learned
about Pneumocystis organisms. Several groups have reported that immunization of
mice with sonicated or freeze-thawed Pneumocystis organisms resulted in IgA and IgG
antibodies predominantly reactive to a 55- to 60-kDa antigen (16, 17). In one study, the
antigen was loaded onto dendritic cells for vaccination, and the other study used
antigen and cholera toxin B as an adjuvant, and both demonstrated protection from
PCP when CD4* T cells were depleted from mice (16, 17). Several groups have
examined the use of the Pneumocystis protease kexin (KEX1) as a potential vaccine
target (18). Zheng et al. (2005) used DNA expressing the P. murina kexin and CD40
ligand (CD40L) in CD4 T cell-depleted mice to demonstrate that kexin-specific antibod-
ies were produced corresponding to about a 100-fold reduction in P. murina lung
burden (19). Interestingly, the antibodies recognized a 55-kDa protein on Western blots
that was likely the same protein recognized by immunization with protein preparations
from whole organisms (16, 17, 19). This group also demonstrated that antibodies raised
to kexin in mice cross-reacted with Pneumocystis isolated from nonhuman primates
(19). This past year, Kling and Norris demonstrated that immunization of nonhuman
primates with KEX1 resulted in high titers of specific antibody and protection against
PCP for almost 36 weeks after immunosuppression using infection with simian immu-
nodeficiency virus (SIV) or HIV and exposure to Pneumocystis (20). Together, these
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studies indicate that kexin has potential as a vaccine candidate. Direct demonstration
of cross-reactivity with P. jirovecii has not yet been established for kexin.

Because Pneumocystis is an opportunistic pathogen, it is critical to demonstrate that
vaccination results in protection during an immunosuppressed state. Animal models
have been critical for this. Most models have utilized mice depleted of CD4 T cells using
infusion of specific antibody. In these models, mice are vaccinated and then depleted
of CD4 T cells prior to exposure to Pneumocystis. This is the approach taken by Tesini
et al. (1), who demonstrated protection for 3 weeks and protective antibody titers for
9 weeks after immunosuppression. Further studies should be performed to demon-
strate how long protection would last and whether vaccination would be effective in
individuals with partially compromised CD4 T cell counts, as one might encounter with
a patient infected with HIV treated with antiretroviral drugs. These studies are actually
hard to perform in animal models, though nonhuman primates infected with SIV have
proven to be a good option. There have been studies in which dendritic cells loaded
with Pneumocystis antigen or DNA vaccines have been used in already CD4-depleted
mice with positive results (17, 19). However, these types of approaches for infectious
diseases, though promising, have not been approved for use in humans in the United
States (21). For now, the most direct way to market is an adjuvanted vaccine delivered
by injection or intranasally.

An important hurdle to developing vaccines to Pneumocystis has been the lack of a
system for genetically manipulating the organisms. There is currently no reliable system
for maintaining organisms in long-term culture, so understanding the genetics of
Pneumocystis has been very difficult and slow going. Ruan et al. recently used a
chemical labeling and proteomic approach to identify a putative surface protein from
P. murina named SPD1 (22). Vaccination with the C-terminal portion of SPD1 resulted
in antibody responses that corresponded with significant reduction in Pneumocystis
lung burden in CD4 T cell-depleted mice (22). Serum antibody from SIV/HIV-infected
rhesus macaques exposed to Pneumocystis recognized SPD1 (22). Identification of
surface proteins using proteomic approaches will undoubtedly lead to identification of
more vaccine candidates (23). The Gigliotti group took the approach some time ago
of developing monoclonal antibodies against Pneumocystis organisms and using those
antibodies for identifying surface epitopes that could be exploited for vaccination.
Tesini et al. used a monoclonal antibody, 4F11, to identify the antigen Pcal for use as
an immunogen (1). This monoclonal antibody is one of only a couple that have been
shown to cross-react with different Pneumocystis species, including P. jirovecii. A
previously published paper demonstrated that the C-terminal portion of the protein,
then called A12, was protective against PCP in CD4 T cell-depleted mice (24). The
antiserum from those protected mice was able to recognize Pneumocystis murina, P.
carinii, and P. jirovecii, making this a viable new vaccine target for PCP in humans.

CONCLUSIONS

There have been many hurdles to developing a vaccine against Pneumocystis. In
addition to the question of whether a vaccine to an opportunistic pathogen would
be profitable enough to entice pharmaceutical companies to invest in it, there are
technical issues that make development very difficult. These issues include the
Pneumocystis species barrier resulting in difficulty translating to humans, lack of a
tractable genetic system, and inability to culture the organisms. All of these things
make vaccine development slow going. Tesini et al. have made a leap forward by
identifying a cross-reactive epitope that is protective in immunosuppressed mice
depleted of CD4 T cells (1). Future work needs to determine whether the vaccine
candidate is able to protect humans from PCP. With the publishing of the P. jirovecii
genome and new approaches to recognize surface proteins, there may finally be a
viable vaccine candidate that could soon leave the preclinical stage and go to
clinical trials.

April 2017 Volume 85 Issue 4 e00035-17

Infection and Immunity

iaiasm.org 3

1sanb Agq 8T0Z ‘6T Ateniga- uo /Bl1o wse el//:dny wolj papeojumog


http://iai.asm.org
http://iai.asm.org/

Commentary

ACKNOWLEDGMENT
This work was supported in part by grant AI118818 from the National Institute of
Allergy and Infectious Diseases (NIAID), National Institutes of Health, U.S. Department
of Health and Human Services.

REFERENCES

1.

10.

11.

April 2017 Volume 85

Tesini BL, Wright TW, Malone JE, Haidaris CG, Harber M, Sant AJ, Nayak
JL, Gigliotti F. 2017. Immunization with Pneumocystis cross-reactive an-
tigen 1 (Pcal) protects mice against Pneumocystis pneumonia and gen-
erates antibody to Pneumocystis jirovecii. Infect Immun 85:e00850-16.
https://doi.org/10.1128/IA1.00850-16.

. Gajdusek DC. 1957. Pneumocystis carinii; etiologic agent of interstitial

plasma cell pneumonia of premature and young infants. Pediatrics
19:543-565.

. Anderson KC, Soiffer R, DelLage R, Takvorian T, Freedman AS, Rabinowe

SL, Nadler LM, Dear K, Heflin L, Mauch P. 1990. T-cell-depleted autolo-
gous bone marrow transplantation therapy: analysis of immune defi-
ciency and late complications. Blood 76:235-244.

. Murphy JL, Kano HL, Chenaille PJ, Makker SP. 1993. Fatal Pneumocystis

pneumonia in a child treated for focal segmental glomerulosclerosis.
Pediatr Nephrol 7:444-445. https://doi.org/10.1007/BF00857565.

. Siegel SE, Nesbit ME, Baehner R, Sather H, Hammond GD. 1980. Pneu-

monia during therapy for childhood acute lymphoblastic leukemia. Am
J Dis Child 134:28-34.

. Martin-Garrido I, Camona EM, Specks U, Limper AH. 2013. Pneumocystis

pneumonia in patients treated with rituximab. Chest 144:258-265.
https://doi.org/10.1378/chest.12-0477.

. Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Wolf RA,

Saxon A. 1981. Pneumocystis carinii pneumonia and mucosal candidiasis
in previously healthy homosexual men: evidence of a new acquired
cellular immunodeficiency. N Engl J Med 305:1425-1431. https://doi.org/
10.1056/NEJM198112103052401.

. Morris A, Sciurba FC, Lebedeva IP, Githaiga A, Elliott WM, Hogg JC,

Huang L, Norris KA. 2004. Association of chronic obstructive pulmonary
disease severity and Pneumocystis colonization. Am J Respir Crit Care
Med 170:408-413. https://doi.org/10.1164/rccm.200401-0940C.

. Gingo MR, Lucht L, Daly KR, Djawe K, Palella FJ, Abraham AG, Bream

JH, Witt MD, Kingsley LA, Norris KA, Walzer PD, Morris A. 2011.
Serologic responses to Pneumocystis proteins in human immunode-
ficiency virus patients with and without Pneumocystis jirovecii pneu-
monia. J Acquir Immune Defic Syndr 57:190-196. https://doi.org/
10.1097/QAI.0b013e3182167516.

Gigliotti F, Harmsen AG. 1997. Pneumocystis carinii host origin defines
the antibody specificity and protective response induced by immuniza-
tion. J Infect Dis 176:1322-1326. https://doi.org/10.1086/514128.

Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A,
Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M,
Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K,
Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT,
Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng
X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA,
Kovacs JA. 2016. Genome analysis of three Pneumocystis species reveals
adaptation mechanisms to life exclusively in mammalian hosts. Nat
Commun 7:10740. https://doi.org/10.1038/ncomms10740.

Issue 4 e00035-17

20.

21,

22.

23.

24,

Infection and Immunity

. Theus SA, Smulian AG, Steele P, Linke MJ, Walzer PD. 1998. Immuniza-

tion with the major surface glycoprotein of Pneumocystis carinii elicits a
protective response. Vaccine 16:1149-1157. https://doi.org/10.1016/
50264-410X(98)80113-8.

. Gigliotti F, Wiley JA, Harmsen AG. 1998. Immunization with Pneumocystis

carinii gpA is immunogenic but not protective in a mouse model of P.
carinii pneumonia. Infect Immun 66:3179-3182.

. Gigliotti F, Garvy BA, Harmsen AG. 1996. Antibody-mediated shift in the

profile of glycoprotein A phenotypes observed in a mouse model of
Pneumocystis carinii pneumonia. Infect Immun 64:1892-1899.

. Bishop LR, Helman D, Kovacs JA. 2012. Discordant antibody and cellular

responses to Pneumocystis major surface glycoprotein variants in mice.
BMC Immunol 13:39. https://doi.org/10.1186/1471-2172-13-39.

. Pascale JM, Shaw MM, Durant PJ, Amador AA, Bartlett MS, Smith JW,

Gregorty RL, McLaughlin GL. 1999. Intranasal immunization confers
protection against murine Pneumocystis carinii lung infection. Infect
Immun 67:805-809.

. Zheng M, Shellito JE, Marrero L, Zhong Q, Julian S, Ye P, Wallace V,

Schwarzenberger P, Kolls JK. 2001. CD4* T cell-independent vaccination
against Pneumocystis carinii in mice. J Clin Invest 108:1469 -1474. https://
doi.org/10.1172/JCI13826.

. Lee LH, Gigliotti F, Wright TW, Simpson-Haidaris PJ, Weinberg GA,

Haidaris CG. 2000. Molecular characterization of KEX1, a kexin-like pro-
tease in mouse Pneumocystis carinii. Gene 242:141-150. https://doi.org/
10.1016/50378-1119(99)00533-8.

. Zheng M, Ramsay AJ, Robichaux MB, Norris KA, Kliment C, Crowe C,

Rapaka RR, Steele C, McAllister F, Shellito JE, Marrero L, Schwarzenberger
P, Zhong Q, Kolls JK. 2005. CD4+ T cell-independent DNA vaccination
against opportunistic infections. J Clin Invest 115:3536-3544. https://
doi.org/10.1172/JCI26306.

Kling HM, Norris KA. 2016. Vaccine-induced immunogenicity and pro-
tection against Pneumocystis pneumonia in a nonhuman primate model
of HIV and Pneumocystis coinfection. J Infect Dis 213:1586-1595.
https://doi.org/10.1093/infdis/jiw032.

Ulmer JB, Geall AJ. 2016. Recent innovations in mRNA vaccines. Curr
Opin Immunol 41:18-22. https://doi.org/10.1016/j.c0i.2016.05.008.
Ruan S, Cai Y, Ramsay AJ, Welsh DA, Norris KA, Shellito JE. 2017. B cell
and antibody responses in mice induced by a putative cell surface
peptidase of Pneumocystis murina protect against experimental infec-
tion. Vaccine 35:672-679. https://doi.org/10.1016/j.vaccine.2016.11.073.
Zheng M, Cai Y, Eddens T, Ricks DM, Kolls JK. 2014. Novel Pneumocystis
antigen discovery using fungal surface proteomics. Infect Immun 82:
2417-2423. https://doi.org/10.1128/IA1.01678-13.

Wells J, Haidaris CG, Wright TW, Gigliotti F. 2006. Active immunization
against Pneumocystis carinii with a recombinant P. carinii antigen. Infect
Immun 74:2446-2448. https://doi.org/10.1128/IA1.74.4.2446-2448.2006.

iaiasm.org 4

1sanb Agq 8T0Z ‘6T Ateniga- uo /Bl1o wse el//:dny wolj papeojumog


https://doi.org/10.1128/IAI.00850-16
https://doi.org/10.1007/BF00857565
https://doi.org/10.1378/chest.12-0477
https://doi.org/10.1056/NEJM198112103052401
https://doi.org/10.1056/NEJM198112103052401
https://doi.org/10.1164/rccm.200401-094OC
https://doi.org/10.1097/QAI.0b013e3182167516
https://doi.org/10.1097/QAI.0b013e3182167516
https://doi.org/10.1086/514128
https://doi.org/10.1038/ncomms10740
https://doi.org/10.1016/S0264-410X(98)80113-8
https://doi.org/10.1016/S0264-410X(98)80113-8
https://doi.org/10.1186/1471-2172-13-39
https://doi.org/10.1172/JCI13826
https://doi.org/10.1172/JCI13826
https://doi.org/10.1016/S0378-1119(99)00533-8
https://doi.org/10.1016/S0378-1119(99)00533-8
https://doi.org/10.1172/JCI26306
https://doi.org/10.1172/JCI26306
https://doi.org/10.1093/infdis/jiw032
https://doi.org/10.1016/j.coi.2016.05.008
https://doi.org/10.1016/j.vaccine.2016.11.073
https://doi.org/10.1128/IAI.01678-13
https://doi.org/10.1128/IAI.74.4.2446-2448.2006
http://iai.asm.org
http://iai.asm.org/

	Overcoming Hurdles to Development of a Vaccine Against Pneumocystis jirovecii
	Repository Citation

	Overcoming Hurdles to Development of a Vaccine Against Pneumocystis jirovecii
	Digital Object Identifier (DOI)
	Notes/Citation Information

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

