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ABSTRACT OF THESIS 

 

IDENTIFICATION OF THE CAUSES AND EXTENT OF ELEVATED METHANE 
CONCENTRATIONS IN THE GROUNDWATER OF EASTERN KENTUCKY 

 
Recent development of unconventional oil and gas (UOG) resources has prompted 

concerns about its potential impact on public health and the quality of water and air 
resources. Elevated dissolved methane concentrations (> 1 mg/L) have been associated 
with proximity to UOG development and stray gas, but also with natural microbial activity. 
Baseline gas data, local hydrogeology and geochemistry context can aid assessment of 
methane sources and interactions. Methane concentrations in eastern Kentucky 
groundwater are above the “immediate action” level in some private/domestic water wells, 
show wide variations over small distances, and have been hypothesized to have different 
relationships to mining. This study suggests that groundwater in areas with extensive coal 
mining often has low methane concentrations due to sulfate production by pyrite oxidation. 
Microbial production of methane is common in groundwater, but sulfate-rich groundwater 
can limit methane production and sulfate-reducing conditions can be coupled with methane 
oxidation. Areas with a high density of oil and gas wells appear to be more likely to 
introduce thermogenic methane in groundwater. These results suggest that anthropogenic 
activities directly and indirectly influence geochemical conditions and methane 
distribution in groundwater in eastern Kentucky. Similar effects would be expected 
throughout the Appalachian Basin and in areas with different levels of mining and oil and 
gas development. 
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1. INTRODUCTION  

Horizontal drilling and high-volume hydraulic fracturing (HVHF, i.e. fracking) 

technology has transformed the energy industry by enabling the development of 

unconventional oil and gas (UOG) resources. Yet, the rapid implementation of this 

technique that induces fractures has generated concerns about its potential impact on water 

quality (Vengosh et al., 2014; Vidic et al., 2013), air quality (Colborn et al., 2014), and 

public health (Adgate et al., 2014). Numerous studies have been conducted to assess 

methane (CH4), the main component of natural gas, and groundwater quality in relation to 

UOG activity in the continental USA (Claire Botner et al., 2018; Darrah et al., 2014; 

Humez et al., 2016; Jackson et al., 2013; LeDoux et al., 2016; Li et al., 2016; McIntosh et 

al., 2019; Osborn et al., 2011; Siegel et al., 2015; Wolfe and Wilkin, 2017; Zhu et al., 

2018). These studies have considered datasets with 10s to 10,000s of water wells and have 

been focused in areas with tight and shale gas reservoirs such as the Marcellus and Utica 

shales in the Appalachian Basin, and underlying coalbed methane such as the Raton Basin 

in Colorado.  

Concentrations and isotopic composition of dissolved hydrocarbon gases and noble 

gases in groundwater have been used in combination with modeling, geospatial, and 

statistical analysis to assess natural methane levels and anthropogenic influences. 

However, methane can be influenced by several factors and assessment of fossil fuel 

development influences requires an understanding of local and regional controls. For 

example, some studies have shown a positive correlation between methane concentrations 

in drinking water wells and proximity to areas with active drilling and hydraulic fracturing 

(Jackson et al., 2013; Osborn et al., 2011). Other studies, however, have shown no such 
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correlation (LeDoux et al., 2016; Siegel et al., 2015; Zhu et al., 2018). Characterizing and 

understanding groundwater conditions before drilling provides a baseline reference for 

monitoring subsequent changes during and after fossil fuel development.  

Methane dissolved in groundwater is an important health and safety concern as 

elevated concentrations of methane in groundwater can lead to accumulation of methane 

in enclosed areas and result in explosive environments (Eltschlager et al., 2001). 

Additionally, water quality in areas with stray gas contamination could be impacted in the 

long-term by brine and hydraulic fracturing fluids (Vengosh et al., 2014). Dissolved 

methane in groundwater and water quality is an issue particularly relevant in eastern 

Kentucky, where the Devonian Berea Sandstone oil play has been developed in recent 

years with small-scale hydraulic fracturing at relatively shallow depths (<600 m) (Zhu et 

al., 2018). An additional potential UOG development in eastern Kentucky is the Cambrian 

Rogersville Shale. Large-scale hydraulic fracturing at depths of 2,000 to 4,000 m is 

expected to be similar to other large scale UOG plays in North America (Zhu et al., 2018) 

and could pose a risk to groundwater and water quality.  

This study aimed to: 1) identify the spatial distribution of groundwater with 

elevated methane concentrations; 2) analyze the geochemical conditions possibly 

influencing that distribution; and 3) assess any influence from coal mining and oil and gas 

development in methane occurrence. To meet these objectives, bulk chemistry and isotopic 

composition of water from 24 private wells in eastern Kentucky have been analyzed. 

Methane composition is particularly investigated in relation to methanogenesis, methane 

oxidation, and bacterial sulfate reduction (BSR). Floyd, Knott, and Magoffin Counties 

were targeted for sampling to fill a geographic data gap of dissolved methane 
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concentrations in groundwater, where no background/baseline data have been reported for 

dissolved gases. Geochemical and anthropogenic influences on methane occurrence has 

been assessed in a ~1600 km2 region bounded by Zhu et al. (2018) and LeDoux et al. (2016) 

to the north and south of this study, respectively. This study establishes a better 

understanding of the geochemical conditions and anthropogenic factors (e.g. mining, and 

oil and gas development) associated with methane occurrence in groundwater in this region 

of the Appalachian Basin of eastern Kentucky. 

1.1 Background 

In 2014, LeDoux et al. (2016) sampled domestic water wells in Letcher County in 

southeastern Kentucky to determine dissolved methane sources and evaluate any influence 

from hydraulic fracturing in the Devonian Chattanooga Shale. A total of 59 domestic wells 

were sampled, 20 wells during winter (January to March) and 39 wells during summer 

(June to August). No water wells were observed with methane above 10 mg/L. Carbon and 

hydrogen isotopes for methane in these wells suggested a low-maturity thermogenic and 

mixed thermogenic/biogenic origin.  

From March through April 2016, the Kentucky Geological Survey (KGS) 

conducted sampling events as part of a study to assess baseline groundwater chemistry in 

relation to UOG development, water quality and methane sources in groundwater. To 

identify groundwater methane contamination, Zhu et al. (2018) analyzed 51 domestic wells 

in six counties in northeastern Kentucky within the Berea Sandstone oil play region. They 

identified 14 wells with dissolved methane above 10 mg/L (the action level of “warning, 

investigation” according to the US Department of the Interior Office of Surface Mining), 

including six wells with methane above 28 mg/L (“immediate action” level) (Eltschlager 
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et al., 2001). Based on isotopic analysis, this methane was dominantly produced by 

microbial carbonate reduction (Zhu et al., 2018). 

While groundwater methane data in eastern Kentucky are sparse, studies by 

LeDoux et al. (2016) and Zhu et al. (2018) showed elevated methane levels (> 1 mg/L) in 

seven counties. Methane concentrations suggest no correlation with distance to oil and gas 

wells in either study. However, these studies found differing relationships between high 

methane concentrations and coal-mining activities. Whereas LeDoux et al. (2016) observed 

low methane concentrations near mining in southeastern Kentucky, Zhu et al. (2018) 

observed high methane concentrations near mining in northeastern Kentucky. LeDoux et 

al. (2016) argued that surface coal mining could increase secondary permeability by 

fracturing bedrock and enhance the oxygenation of groundwater via meteoric water 

recharge, consequently oxidizing methane and lowering its concentration. Zhu et al. (2018) 

interpreted elevated quantities of methane in groundwater to be derived from microbial 

sources via the carbon dioxide reduction pathway. Understanding the causes of different 

geochemical drivers, some of which may be anthropogenic, may provide guidelines to 

prevent future groundwater methane contamination.   

1.2 Relevant Anthropogenic/Industrial Influences 

1.2.1 Oil and Gas Production  

Technological development in oil and gas drilling techniques in the last few 

decades has enabled the profitable extraction of hydrocarbons from shale and other 

organic-rich reservoirs with low permeability (Vengosh et al., 2014; Vidic et al., 2013). 

This can be accomplished through hydraulic fracturing, a process where fluids are injected 

under high pressure to develop networks of fractures connecting small pores filled with oil 
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and gas. The composition of the injection fluids varies, but can include water, sand, 

biocides and other chemical additives that increase fracturing, prevent well casing 

problems, and enhance extraction (Vidic et al., 2013). Horizontal drilling technology is 

frequently used along with HVHF and allows producers to access resources not directly 

below the drilling sites.  

Shallow groundwater can be contaminated with thermogenic methane through 

leaking gas wells and inadequate well casings (Hammond et al., 2020; McMahon et al., 

2018; Sherwood et al., 2016). Aquifer vulnerability to hydrocarbon migration from 

development and leakage can be estimated through the characterization of multiphase 

(liquid and vapor) parameters of the formations between freshwater aquifers and 

production zones (Rice et al., 2018). However, groundwater flow in the geologic 

formations in eastern Kentucky is complex due to topography, stream incision, reservoir 

heterogeneity, and open fractures (Minns, 1993). Additionally, the long history of coal 

mining and hydrocarbon resource extraction and exploitation limits the identification of 

areas not disturbed by these (Wunsch, 1993).  

Oil and gas development techniques in eastern Kentucky vary. The Berea 

Sandstone was developed with vertical wells as a gas play starting in the early 1900s (Parris 

and Nuttall, 2020). Hydraulic fracturing in the Chattanooga Shale in Letcher County has 

been recently completed at depths of 1000–1500 m using liquid nitrogen foam and vertical 

wells (LeDoux et al., 2016). In contrast, the Berea Sandstone has been mainly developed 

as an oil play in the last decade at shallow depths (<600 m) with horizontal drilling and 

small-scale hydraulic fracturing using slickwater, fracturing fluid that does not contain 

viscosity modifiers (Parris and Nuttall, 2020; Zhu et al., 2018). The area of development 
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for the Berea oil play has been focused in four to five counties and is relatively small, 

compared to development of the Marcellus Shale, a major UOG play in Pennsylvania, and 

other UOG plays elsewhere in the United States. Unconventional development in the 

Marcellus play consumes tens of millions of liters of fresh water and more than a million 

kilograms of sand per well (Jiang et al., 2014; King, 2012), whereas in the Berea oil play 

extraction has involved hundreds of thousands of liters of fluid and tens to hundreds of 

thousands of kilograms of sand (Zhu et al., 2018).  

While dissolved methane data in eastern Kentucky have been collected following 

conventional fossil fuel development, data collection in this study and in Zhu et al. (2018) 

occurred during early unconventional development of the Berea oil play, and would be 

representative of pre-drilling conditions in relation to the Rogersville play. Economic 

viability of Cambrian Rogersville Formation development is being evaluated (Harris et al., 

2016). Extraction would employ HVHF at depths of 2000–4000 m with magnitude similar 

to stimulations in the Marcellus Shale.  

Alvarez et al. (2018) argued that methane emissions to the atmosphere from the oil 

and gas industry, particularly from abnormal operating conditions in the production sector, 

are higher than reported by the U.S. Environmental Protection Agency. This discrepancy 

in emissions from abnormal conditions could potentially include gas migration to 

groundwater. Therefore, it is essential to identify unrecognized or underestimated sources 

and migration of methane. Extensive baseline geochemical sampling and water-quality 

analysis will improve understanding of methane sources and pathways. 
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1.2.2 Coal Mining 

The eastern and western parts of Kentucky contain the central Appalachian and 

Illinois Basins, respectively. Both basins contain economically important coal deposits 

from the Pennsylvanian period (320 to 280 million years old). Mineable coal is greater than 

28 inches (71 cm), has a bituminous rank and contains less than 15% ash content after 

processing (Ellis et al., 2016). Mining operations can take place on the surface or 

underground and can employ different approaches depending on the local conditions such 

as geography and hydrogeology. Kentucky produced 36.1 million metric tons of coal in 

2018, 43% coming from eastern Kentucky. Surface mining operations in eastern Kentucky 

accounted for 54% of coal produced, where mining commonly employs drift, contour, and 

auger mining. As of 2014, the Eastern Kentucky Coal Field was estimated to have ~16.5 

billion metric tons remaining from the original coal resources >14 inches (36 cm) estimated 

at ~40.3 billion metric tons (Ellis et al., 2016). Only ~6.7 billion metric tons are mineable 

and > 28 inches (71 cm).  

The Eastern Kentucky Coal Field extends over an area of ~27,000 km2. While 

mining is only actively occurring in some zones, it has disturbed most of the coal field area 

(Wunsch, 1993). Eastern Kentucky coals have very low maturity, low concentrations of 

coalbed methane, relatively high heat content (~24.6 MMBtu per ton), and low sulfur 

content (0.98%) (Ellis et al., 2016; Hower and Rimmer, 1991). However, the composition 

of methane in coal in eastern Kentucky has not been analyzed. Methane from coal seams 

can be associated with microbial and thermogenic methane depending on thermal maturity 

(Strąpoć et al., 2011). 
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1.3 Geochemistry, Hydrogeology and Methane Dynamics 

Studies at national and regional scales (McMahon et al., 2017; Molofsky et al., 

2013), have identified elevated methane concentrations in groundwater to be largely 

controlled by local hydrogeological and geochemical interactions. In the Appalachian 

Basin, microbial methane has been recognized as a prevalent phenomenon (Molofsky et 

al., 2016a). High methane concentrations are often associated with sodium-rich waters, old 

groundwater (>60 years), and low concentrations of oxygen, nitrate-N, and sulfate (<0.5 

mg/L) (McMahon et al., 2017). Similar associations of elevated methane concentrations 

with hydrogeological and geochemical controls are observed in groundwater in eastern 

Kentucky (LeDoux et al., 2016; Zhu et al., 2018).  

Water wells in this study are in the western limb of the Appalachian Basin and 

underlying geology indicates a slight structural dip towards the southeast (Figure 1). 

Aquifers are predominantly located in Pennsylvanian clastic units from the Lee, Breathitt, 

and Conemaugh formations (Rice, 2001). Groundwater flow in eastern Kentucky is 

controlled by climate, topography, heterogeneity of geological units, coal beds, fracture 

zones, and underground and surface anthropogenic alterations, such as mining and oil and 

gas development (Minns, 1993). These aquifer attributes mainly support local flow systems 

within a shallow-fracture zone, and a regional system with downward flow beneath ridges 

or upland areas. The lateral extent of Pennsylvanian aquifers is poorly defined but appears 

to be laterally discontinuous. Limited hydrological communication can result in large 

variations in chemical and isotopic composition over short distances (Zhu et al., 2018). 

Therefore, correlations over large distances can be challenging. In addition, spatial and 
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temporal variations in the natural concentrations of methane can have huge effects in 

studies trying to identify impacts from anthropogenic activities (Rivard et al., 2018).  

 

Figure 1. Map of eastern Kentucky with the locations of the 24 water wells in this 
study and wells in Zhu et al. (2018) and LeDoux et al. (2016). The outline of the Rogersville 
play, mined-out areas, surficial geology, and faults are shown.  

Methane can be produced by methanogens by the reduction of CO2 or organic 

compounds such as acetate or methanol, and through the catagenesis of organic kerogens 

in source rocks:  

CO2-reduction:   CO2 + 8 H+ + 8 e- → CH4 (aq) + 2 H2O, or 

HCO3- + H+ + 4 H2 (aq) → CH4 (aq) + 3 H2O 
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Acetate fermentation:  CH3COO- + H+ → CH4 (aq) + CO2, or 

    CH3COO- + H2O → CH4 (aq) + HCO3-  

The microbial reduction of CO2 or organic matter is associated with a kinetic isotope effect 

(KIE) in which fractionation of C and H in CH4 delineates fields with different isotopic 

signatures for each pathway (Figure 2) (Milkov and Etiope, 2018; Whiticar, 1999). The 

reduction of CO2 to CH4 produces δ13C-CH4 values as negative as -110‰ (vs. PDB) and 

δ2H-CH4 values from -250‰ to -100‰ (vs. SMOW). The fermentation of methylated 

substrates leads to slightly more positive δ13C-CH4 values (from -90‰ to -50‰) and δ2H-

CH4 values as negative as -531‰.  

  

Figure 2. Schematic diagram of the relevant sources and sinks of methane defined in 
Whiticar (1999). Solid lines represent relevant processes, and dashed line represents a 

secondary process.  
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In contrast, the production of thermogenic methane leads to δ13C-CH4 values 

extending from -70‰ to -15‰, and δ2H-CH4 values from -350‰ to -95‰. The 

identification of methane sources and pathways from its isotopic composition can hence 

be used to differentiate between microbial and thermogenic fluxes of methane (Osborn et 

al., 2011). The δ13C-CH4 and δ2H-CH4 values in thermogenic gases are significantly more 

positive than in microbial gases due to a more positive parent material (kerogen or oil) and 

higher generation temperatures, where fractionation is smaller. Similarly, methane 

consumption can be distinguished from methanogenesis by examining δ13C-CH4 and δ13C-

CO2 values.  

In mixing and transition areas, δ13C-CH4 values and gas ratio between methane and 

the sum of ethane (C2H6) and propane (C3H8), CH4/(C2H6+C3H8) or C1/ (C2+C3), can be 

used to further differentiate between sources. Also known as gas wetness, the gas ratio is 

typically < 100 for thermogenic gases due to higher concentrations of ethane and propane, 

oil associated gases. The compositional ranges for thermogenic and microbial methane 

have been recently revised based on worldwide dataset with thousands of samples (Milkov 

and Etiope, 2018).  

Microorganisms can mediate electron transfer in chemical reactions to consume 

some of the released energy. They can oxidize reduced species such as acetate (CH3COO-

) or dihydrogen (H2) and reduce oxidized species like nitrate (NO3-), ferric iron (Fe3+) and 

sulfate, depending on the availability of solutes (Bethke et al., 2011). Sulfate-reducing 

bacteria (SRB), which reduce sulfate while oxidizing organic matter or H2, may compete 

with methanogens for substrates depending on their concentrations (Schlegel et al., 2011). 

Microbial activity, especially methanogenesis, can be negatively affected by trace metals 
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such as copper at high concentrations, extreme pH conditions (<4 and >9), and the pore 

size of growth locations and pathways (Schlegel et al., 2011). However, methanogens can 

also be resistant to high temperatures and extreme salinity, and are enhanced by phosphate 

(Schlegel et al., 2011).  

2. METHODS  

2.1 Field Sampling  

A total of 24 private water wells were sampled in 2019; 13 wells are in Knott 

County, nine wells in Floyd County, and two wells in Magoffin County (Figure 1). Samples 

from 18 private water wells were collected in April and May 2019 in two sampling trips. 

In October 2019, samples were collected from six additional wells and three previously 

analyzed wells in a third trip. The Kentucky Groundwater Data Repository was used to 

find well records based on the map coordinates of wells. Only four AKGWA (Assembled 

Kentucky Ground Water Database) records matched the approximate field coordinates, and 

two of these records matched the well owner names. In the absence of a well record, 

information was gathered from nearby wells. Nineteen wells were identified without an 

AKGWA record. 

Water-well owners were generally unaware of the depths of their wells and the 

estimated well depths were between 5 and 100 m. Wells with unknown depths are thought 

to be relatively shallow (< 20 m) due to the pumping systems observed. Five wells did not 

have pumping systems and were sampled using a Grundfos® two-inch submersible water 

pump; three of these were shallow hand-dug wells and two were drilled wells. Water levels 

were recorded before and after for wells without established pumping systems.  



13 
 

Sample collection followed recommendations in Molofsky et al. (2018) to avoid 

sample degassing and significant changes in methane concentrations when possible. If 

accessible, water samples were preferentially collected at the outlet of pressure tanks, and 

prior to filtration and water treatment systems. When this was not possible, samples were 

taken from the faucet closest to the pressure tank.  Water wells were purged at a pumping 

rate of 3 gallons per min (11.4 L/min) to remove standing water in pressure tanks and water 

lines. Field parameters (oxidation-reduction potential (ORP), dissolved oxygen (DO), 

specific conductance (SC), pH, and temperature) were monitored using a YSI 

multiparameter meter connected to a flow-through cell and recorded every 3-5 minutes 

once purging started. Sampling started after field parameters stabilized, which was 

assumed to happen after at least three well volumes. All field parameters were calibrated 

for the YSI meter every day before sampling. The same procedures were performed for all 

samples, with a few exceptions due to lab availability and sample suitability. Water 

samples were kept on ice immediately after collection, during transport, and stored at 4oC 

before laboratory analyses.  

Additional analyses were conducted in the field and in the lab for some of the 

sampling trips. Samples from the third trip were analyzed for dissolved inorganic carbon 

(DIC) concentrations, organic anions, δ13C-DOC (dissolved organic carbon), and gases 

collected in IsoFlaskTM containers and analyzed by Isotech. Samples from the second and 

third trip were analyzed for sulfate in the field. Isotopic data are not available for all 

samples because of low analyte concentrations.  
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2.2 Chemical Analysis 

Alkalinity was measured in the field with a HACH test kit using a digital titrator. 

Instrumental test kits (CHEMetrics) were used to estimate dissolved ferrous iron (Fe2+), 

sulfide (S2-), and sulfate (SO42-) concentrations in the field. The sulfide test kit follows a 

methylene blue measuring method with a 0–6 mg/L range; expected accuracy is <0.3 mg/L 

at 0 mg/L and ±30% at 0.6 mg/L. The ferrous iron test kit follows the phenanthroline 

method with a 0–6 mg/L range; expected accuracy is <0.08 mg/L at 0 mg/L, ±30% at 0.3 

mg/L, ±20% at 1.5 mg/L, and ±10% at 4.5 mg/L. The sulfate test kit follows the 

turbidimetric method with a 0–100 mg/L range; expected accuracy is ±30% at 10 mg/L, 

±20% at 25 mg/L, and ±15% at 75 mg/L.  

Concentrations of total metals were measured by inductively coupled plasma 

optical emission spectrometry (ICP-OES) at KGS. A 250-mL TraceCleanTM HDPE bottle 

was collected and preserved in the field with concentrated nitric acid. If the turbidity before 

sampling was >10 NTU, an extra bottle was collected and analyzed after being filtered 

through a 0.45-µm filter in the field. Concentrations of inorganic anions (Br-, Cl-, F-, NO3-

-N, and SO42-) were measured by ion chromatography at KGS. A subset of samples was 

also analyzed for some inorganic (F-, NO3-, PO43-, SO42-) and organic (acetate, formate and 

oxalate) anions in the University of Kentucky Department of Plant and Soil Sciences. DIC 

concentration was measured at KGS. Alkalinity was measured by acid titration in the lab 

following method EPA 310.1. A bulk sample collected in a 100-mL TraceCleanTM HDPE 

bottle was used for anion and alkalinity analyses. 

Four 40-mL, crimp-top, borosilicate-glass bottles with bromobutyl rubber stoppers 

were collected for analysis of dissolved gases. Dissolved methane, ethane and propane 
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concentrations were measured using an SRI 8610C gas chromatograph (GC) equipped with 

a flame ionization detector (FID) at KGS. Headspace was generated in the laboratory by 

displacing ~10% of water with high-purity (99.999% pure) helium. Samples were agitated 

and allowed to equilibrate with the headspace for at least 1 hour before analyzing.  

2.3 Isotopic Analysis 

Samples for gas isotopic analyses were collected in the same manner as for 

dissolved gas concentration analyses. Unpreserved samples were collected for all water 

wells, and samples from the third sampling trip were also preserved with HCl or 

benzalkonium chloride. After attaining equilibrium, the headspace was injected onto a GC 

column where the gaseous components were separated, combusted or pyrolyzed, and 

measured. The δ13C and δ2H of dissolved CH4 were determined using a Thermo Trace GC 

IsoLink interfaced with a Thermo MAT 253 isotope ratio mass spectrometer (IRMS). Gas 

samples were introduced via manual injection into the internal volume of a Valco 6-port 

valve with fixed volume loops. A 30-m × 0.32 i.d. Carboxen 1010 PLOT GC column was 

used for gas separation. Additionally, a subset of samples was collected in IsoFlask™ 

sample containers and analyzed by Isotech.  

Sample collection for δ34S-SO4 analysis followed Carmody et al. (1998) except 

samples with SO42- concentrations < 20 mg/L were also collected in 1-L bottles. Samples 

were filtered through a 0.45-µm filter in the field and then allowed to react by adding a 

BaCl2-HCl solution. After ~5 minutes, the samples were filtered through 0.45-µm filters 

and the filters and precipitates were stored. The BaSO4 precipitate was oven-dried at ~50ºC 

overnight and analyzed for δ18O-SO4 (using a Thermo TC/EA and DELTAplus XP isotope-
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ratio mass spectrometer [IRMS]) and δ34S-SO4 (using a Thermo EA Isolink and MAT 253) 

at the Kentucky Stable Isotope Geochemistry Laboratory (KSIGL).  

One 20-mL amber-glass bottle was collected for analysis of δ13C-DIC and δ13C-

DOC in zero-headspace vials. δ13C-DIC was measured following methods in Torres et al. 

(2005). Samples were injected into autosampler vials filled with ultra-high purity (99.999% 

pure) helium and reacted with phosphoric acid (H3PO4). The reaction with DIC releases 

CO2, which is then injected into the system for isotopic characterization. δ13C-DOC was 

measured following methods described in Wilson et al. (2020), modified from Lang et al. 

(2012) and Zhou et al. (2015). DOC was oxidized to CO2, through the reaction with sodium 

persulfate. Both δ13C-DIC and δ13C-DOC were analyzed using a Thermo Finnigan 

GasBench II and DELTAplus XP IRMS at KSIGL. 

Samples for δ18O and δ2H were collected in the field through 0.45-µm filters into 

zero-headspace 20-mL plastic bottles. δ2H and δ18O in water were measured by isotope-

ratio infrared spectroscopy using a Los Gatos Research T-LWIA-45-EP at KSIGL. 

2.4 Quality Assurance/Quality Control 

Stable isotope ratios are reported in standard δ-notation in units per mil (‰) relative 

to VPDB (Vienna Peedee Belemnite) for δ13C values, VCDT (Vienna Canyon Diablo 

Troilite) for δ34S values, and VSMOW (Vienna Standard Mean Ocean Water) for δ2H and 

δ18O values. 

Field blanks and replicates were collected for all analyses at least once per sampling 

trip, resulting in at least one per 10 samples. Descriptive measures such as mean and 

median values and inferential measures such as confidence intervals were used to assess 

variability in the environmental samples. Moreover, the associations between methane 
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concentrations and water chemistry were further explored with box-and-whisker plots and 

Spearman’s rank correlation. Spearman’s correlation coefficient ρ was chosen to measure 

the degree of association between pairs of variables because it is a non-parametric 

correlation method not affected by the distribution of the data. 

3. RESULTS  

3.1 Water Chemistry  

3.1.1 Field Parameters 

Apart from temperature, field parameters varied over relatively broad ranges (Table 

1). Temperature ranged from 12.6°C to 16.1°C (median 14.7°C), SC from 48.6 µS/cm to 

1287 µS/cm (median 459.3 µS/cm), Eh from 22 mV to 382 mV (median  186.5 mV), DO 

from 0.15 mg/L to 8.1 mg/L (median 0.5 mg/L), and pH from 5.32 to 9.01 (median 6.5). 

Eh values were adjusted relative to the standard H electrode from observed ORP following 

Wood (1976). Turbidity ranged from 1 NTU to 130 NTU (median 5 NTU), although only 

five samples were above 10 NTU. Alkalinity measured in the field ranged from 8.9 to 272 

mg/L as CaCO3 (median 112 mg/L as CaCO3).  

 

Table 1. Field parameters and sampling information of water wells 

Site ID Latitude Longitude Sampling 
Date Temp pH SC Eh DO 

Units DD DD m/d/yyyy oC n/a µS/cm mV mg/L 

A01 37.53504 -82.66463 4/17/2019 15.0 6.54 516 278 0.7 

A02 37.63811 -82.82655 4/17/2019 15.4 6.53 553 171 1.98 
A03 37.46925 -82.91434 4/18/2019 14.6 7.73 459 79 0.47 

A04 37.46847 -82.91301 4/18/2019 13.7 6.76 352 216 0.54 
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Table 1. Field parameters and sampling information of water wells (cont.) 

Site ID Latitude Longitude Sampling 
Date Temp pH SC Eh DO 

Units DD DD m/d/yyyy oC n/a µS/cm mV mg/L 

A05 37.48390 -82.83305 4/18/2019 15.7 7.36 1261 74 0.53 

A06 37.56112 -82.81756 4/19/2019 13.8 6.49 415 353 4.77 

A07 37.56459 -82.79870 4/19/2019 14.2 6.84 310 128 0.54 

A08 37.44989 -82.72532 4/22/2019 14.9 5.32 49 382 5.58 
A09 37.68989 -82.76185 4/23/2019 12.5 5.88 62 358 8.05 
A10 37.50522 -82.77895 4/23/2019 15.6 6.44 1129 187 0.43 
A11 37.58085 -82.86566 4/23/2019 16.1 6.87 1145 93 0.3 
A12 37.46455 -82.91467 4/24/2019 12.6 5.48 74 370 7.67 

A13 37.31510 -82.93391 4/29/2019 14.4 9.01 985 22 0.25 

A14 37.35790 -82.98955 4/30/2019 14.2 6.49 463 144 0.45 

A15 37.38018 -82.97216 4/30/2019 15.6 5.94 207 225 0.26 

A16 37.35752 -82.91108 4/30/2019 15.3 6.43 223 207 0.4 

A17 37.37225 -82.93622 5/1/2019 14.5 6.3 187 329 1.17 

A18 37.70234 -83.08558 5/1/2019 14.4 6.36 406 209 0.54 
A19 37.76513 -83.15900 10/28/2019 14.8 6.61 355 206 1.81 
A02B 37.63811 -82.82655 10/28/2019 15.1 6.5 551 161 2.34 
A13B 37.31510 -82.93391 10/29/2019 14.1 8.87 1078 41 0.2 

A20 37.31557 -82.93404 10/29/2019 15.1 8.76 868 35 0.15 

A21 37.31561 -83.10973 10/29/2019 14.1 7.42 593 339 0.28 

A22 37.39641 -82.90697 10/30/2019 14.2 6.49 274 122 0.3 

A23 37.26196 -82.93532 10/30/2019 14.7 6.34 221 329 4.71 

A24 37.32885 -83.01457 10/30/2019 15.1 7.44 828 107 0.21 

A05B 37.48390 -82.83305 10/31/2019 15.7 7.45 1287 122 0.26 
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Table 1. Field parameters and sampling information of water wells (cont.) 

Site ID Turbidity 
Field 

Alk. as 
CaCO3 

Lab 
Alk. as 
CaCO3 

Field 
Fe2+ 

Field 
S2- 

Field 
SO42- 

Total 
Depth 

Water 
Use 

Units NTU mg/L mg/L mg/L mg/L mg/L m n/a 

A01 5 202 212 0.20 0.23 – – Domestic 
primary 

A02 7 104 130 > 6 0.04 – 19.8 None 
A03 2 167 182 0.03 0.17 – – None 

A04 2 112 125 0.00 0.11 – – Domestic 
primary 

A05 3 253 289 1.80 0.17 – < 8 Domestic 
secondary 

A06 28 92 151 0.06 0.09 – – Domestic 
primary 

A07 1 42 153 1.41 0.09 – – Domestic 
primary 

A08 6 8.9 15 0.04 0.18 10.0 4.5 Gardening 
A09 8 14.4 16 0.10 0.20 19.7 7.0 None 
A10 7 76 50 > 6 0.19 > 100 10.5 None 
A11 130 223 164 > 6 0.03 14.8 18.3 None 
A12 7 24.4 24 0.14 0.15 18.7 2.3 None 

A13 4 272 462 0.16 0.04 2.8 ~40-60 Domestic 
primary 

A14 1 155 144 > 6 0.16 12.4 – Domestic 
primary 

A15 8 87 61 > 6 0.28 29.5 – Industrial 
primary 

A16 16 103 111 0.72 0.07 22.3 – Domestic 
primary 

A17 12 72 89 0.30 0.14 13.8 – Domestic 
primary 

A18 8 180 169 3.95 0.22 25.5 30.5 Gardening 
A19 20 170 182 0.50 0.42 17.9 < 8 Gardening 
A02B 4 85 105 > 6 0.35 2.9 (above) (above) 
A13B 1 246 358 0.12 0.48 1.5 (above) (above) 

A20 6 254 336 0.00 0.54 1.5 – Domestic 
primary 

A21 3 167 247 0.11 0.41 0.6 – Domestic 
primary 
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Table 1. Field parameters and sampling information of water wells (cont.) 

Site ID Turbidity 
Field 

Alk. as 
CaCO3 

Lab 
Alk. as 
CaCO3 

Field 
Fe2+ 

Field 
S2- 

Field 
SO42- 

Total 
Depth 

Water 
Use 

Units NTU mg/L mg/L mg/L mg/L mg/L m n/a 

A22 2 53 87 > 6 0.37 0.2 – Domestic 
primary 

A23 1 55 56 0.02 0.37 50.4 ~91 Domestic 
primary 

A24 2 226 293 < 0 0.37 < 0 – Domestic 
secondary 

A05B 3 162 282 0.00 0.53 0.0 (above) (above) 
Notes:    --  No data  

n/a  Not applicable 

Dissolved Fe2+ concentrations measured in the field were over the measurable range 

(>6 mg/L) in six wells and the remaining 18 wells ranged from 0.0 to 4.0 mg/L (median 

0.1 mg/L). Sulfide concentrations were below 0.3 mg/L for all samples collected in May 

but ranged from 0.3 to 0.5 mg/L in samples collected in November. Sulfate concentrations 

ranged from 0 to 50 mg/L (median 13.1 mg/L) and one sample measured > 100 mg/L.  

Water depths were known for seven of the wells and ranged from 7.6 ft to 100 ft 

(2.3–30.5 m) (median 34.6 ft (10.5 m)), two wells had estimated depths between 200–300 

ft (60–90 m), and one well was estimated < 25 ft (<7.6 m). Thirteen water wells were 

actively used by their residents as primary drinking water sources, six wells were not 

currently in use, three wells were used for gardening, and two were used as secondary water 

sources not for consumption.  

3.1.2 Total Metals and Anions  

Concentrations of major cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-, Cl-, 

SO42-) are shown in Table 2. Concentrations of minor metals (Al, Ba, Cr, Co, Cu, Fe, Pb, 

Li, Mn, Ni, Sr, V, Zn) and metalloids (B, Si, As) are shown in Table 3, and concentrations 
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of minor anions (Br-, F-, NO3-N, acetate) are shown in Table 4. Bicarbonate (HCO3-) 

concentrations were calculated by multiplying field alkalinity as CaCO3 by 1.22 and 

assume that all alkalinity is present as HCO3- in the pH range observed. Formate and 

oxalate concentrations were below the detection limit or similar to field blanks and are not 

shown. No major differences were seen in the two samples collected after treatment 

systems, one after a water softener (A04), and another one after a sulfate filter (A23). 

Sample A04 had close to no calcium and magnesium, whereas sample A23 still had sulfate. 

Hand-dug wells (A08, A09 and A12) had the lowest TDS values. The milliequivalent 

concentrations of major ions were used to determine water type using a Piper diagram 

(Deutsch, 1997) (Figure 3). The most prominent water type is Ca-HCO3 (n=7), followed 

by Na-HCO3 (n=5), Ca-HCO3-Cl (n=4), Na-HCO3-Cl (n=3), Ca-Na-HCO3 (n=3), Ca-Na-

HCO3-Cl (n=1), and Ca-Cl (n=1). 
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Table 2. Concentrations of major cations and anions in water wells 
Site ID Ca2+ Mg2+ Na1+ K+ Cl- Br- HCO3- SO42- 
Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
MDL 0.002 0.001 0.058 0.191 1.0 0.1 1.5 5.00 
RL 0.006 0.003 0.032 0.035 0.076 0.003 4.77 0.045 
NPDWR, 
NSDWR 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
250 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
250 

A01 55.2 20.5 28.4 2.71 7.53 <MDL 246.44 69.7 
A02 29.6 4.53 69.1 2.73 103 0.39 126.88 <MDL 
A03 16.9 4.2 78.4 2.62 40.1 <MDL 203.74 <MDL 
A04 0.03 <MDL 82.4 0.32 11.1 <MDL 136.64 49 
A05 37.1 12.4 199 3.15 212 0.54 308.66 <MDL 
A06 53.4 8.96 23.6 2.07 1.95 <MDL 112.24 74.2 
A07 32.4 10.8 17.7 2.48 9.35 <MDL 186.66 <MDL 
A08 4.84 1.93 1.37 1.78 <MDL <MDL 10.86 5.4 
A09 6 2.92 1.92 1.03 <MDL <MDL 17.57 13.8 
A10 102 52.9 39.9 5.18 1.61 <MDL 92.72 566 
A11 62.2 23.2 141 4.99 268 0.68 272.06 5.79 
A12 6.39 2.76 2.01 4.67 1.02 <MDL 29.77 12.5 
A13 0.92 0.2 223 1.74 114 <MDL 331.84 <MDL 
A14 45.7 9.11 24.9 2.18 42.9 <MDL 189.10 10.7 
A15 18.1 6.19 7.58 1.41 9.7 <MDL 106.14 24.7 
A16 28.1 5.48 11 1.96 2.65 <MDL 125.66 8.33 
A17 21.7 7.27 5.86 2.2 1.32 <MDL 87.84 10.4 
A18 30.9 16.3 28 2.89 13.1 <MDL 219.60 20.3 
A19 31.1 10.7 28.9 2.55 1.8 <MDL 207.40 10.561 
A02B 27.5 4.09 63.6 2.67 101 0.34 103.70 0.56 
A13B 1.01 0.21 217 2.07 134 0.17 300.12 0.493 
A20 0.85 0.16 182 1.53 67.8 <MDL 309.88 2.915 
A21 7.67 0.32 119 1.45 39 <MDL 203.74 0.559 
A22 15.9 4.81 15.6 1.39 19.5 <MDL 64.66 1.674 
A23 18.8 9.22 6.11 3.23 1.33 <MDL 67.10 52.038 
A24 28.5 7.675 183.5 3.115 165.5 0.27 275.72 0.763 
A05B 0.06 0.01 245 0.65 215 0.67 197.64 0.474 

Notes:    MDL   Method Detection Limit 
RL   Reporting Limit 

  NPDWR National Primary Drinking Water Regulations 
  NSDWR National Secondary Drinking Water Regulations 
  red  Concentration exceeding NPDWR or NSDWR 
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Table 3. Concentrations of minor metals and metalloids in water wells 
Site ID Al As B Ba Cr Co Cu Fe 
Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
MDL 0.061 0.014 0.008 0.003 0.024 0.001 0.005 0.002 
RL 0.194 0.045 0.025 0.010 0.076 0.003 0.016 0.006 
NPDWR, 
NSDWR 

n/a, 
0.2 

0.01, 
n/a 

n/a, 
n/a 

2.0, 
n/a 

0.10, 
n/a 

n/a, 
n/a 

1.3, 
1.0 

n/a, 
0.30 

A01 <MDL <MDL 0.03 0.47 <MDL <MDL <MDL 0.9 
A02 <MDL 0.05 0.05 0.16 <MDL <MDL <MDL 8.67 
A03 <MDL <MDL 0.05 0.67 <MDL <MDL <MDL <MDL 
A04 <MDL <MDL <MDL <MDL <MDL <MDL <MDL <MDL 
A05 <MDL <MDL 0.08 0.79 <MDL <MDL <MDL 2.11 
A06 0.4 <MDL 0.014 0.06 <MDL <MDL 0.02 0.66 
A07 <MDL <MDL 0.05 0.43 <MDL <MDL <MDL 1.57 
A08 0.15 <MDL 0.04 0.02 <MDL <MDL <MDL 0.04 
A09 0.3 <MDL 0.1 0.02 <MDL <MDL <MDL 0.18 
A10 0.17 <MDL 0.09 0.04 <MDL <MDL 0.005 44.5 
A11 <MDL <MDL 0.05 1.66 <MDL <MDL <MDL 9.62 
A12 0.34 <MDL 0.02 0.04 <MDL <MDL <MDL 0.37 
A13 <MDL <MDL 0.08 0.09 <MDL <MDL <MDL <MDL 
A14 <MDL <MDL 0.07 0.81 <MDL <MDL <MDL 11.9 
A15 <MDL <MDL 0.03 0.06 <MDL <MDL 0.01 8.12 
A16 <MDL <MDL <MDL 0.63 <MDL <MDL <MDL 7.88 
A17 0.11 <MDL 0.04 0.18 <MDL <MDL 0.02 0.08 
A18 <MDL <MDL 0.04 0.21 <MDL <MDL 0.008 4.37 
A19 <MDL <MDL 0.05 0.17 <MDL <MDL <MDL 2.2 
A02B <MDL 0.02 <MDL 0.16 <MDL <MDL <MDL 9.63 
A13B <MDL <MDL 0.1 0.09 <MDL <MDL <MDL <MDL 
A20 <MDL <MDL 0.08 0.06 <MDL <MDL <MDL 0.01 
A21 <MDL <MDL 0.04 0.09 <MDL <MDL 0.01 0.15 
A22 <MDL <MDL 0.03 0.24 <MDL <MDL <MDL 19.3 
A23 <MDL <MDL 0.03 0.06 <MDL <MDL <MDL <MDL 
A24 <MDL <MDL 0.055 1.075 <MDL <MDL <MDL 0.35 
A05B <MDL <MDL 0.07 <MDL <MDL <MDL <MDL 0.11 
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Table 3. Concentrations of minor metals and metalloids in water wells (cont.) 
Site ID Pb Li Mn Ni Si Sr V Zn 
Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
MDL 0.010 0.001 0.001 0.002 0.009 0.010 0.008 0.002 
RL 0.032 0.003 0.003 0.006 0.029 0.032 0.025 0.006 
NPDWR, 
NSDWR 

0.02, 
n/a 

n/a, 
n/a 

n/a, 
0.050 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
n/a 

n/a, 
5.0 

A01 <MDL 0.02 0.49 <MDL 13.7 0.76 <MDL 0.02 
A02 <MDL 0.004 0.19 0.006 10.4 0.26 <MDL 0.23 
A03 <MDL 0.02 0.02 <MDL 7.94 0.92 <MDL <MDL 
A04 <MDL <MDL <MDL <MDL 9.32 <MDL <MDL 0.003 
A05 <MDL 0.01 0.14 <MDL 6.87 0.85 <MDL 0.02 
A06 <MDL 0.01 0.03 0.003 7.39 0.29 <MDL 0.02 
A07 <MDL 0.01 0.15 <MDL 13.2 0.41 <MDL 0.002 
A08 <MDL 0.004 0.007 <MDL 3.83 0.04 <MDL 0.04 
A09 <MDL 0.001 0.004 <MDL 4.91 0.04 <MDL 0.008 
A10 <MDL 0.006 2.13 0.005 8.45 0.78 <MDL 0.14 
A11 <MDL 0.02 0.43 <MDL 7.16 1.52 <MDL 0.31 
A12 <MDL 0.003 0.006 <MDL 5.44 0.04 <MDL 0.02 
A13 <MDL 0.05 0.002 <MDL 4.62 0.1 <MDL <MDL 
A14 <MDL 0.01 0.33 <MDL 11.2 0.73 <MDL 0.003 
A15 <MDL 0.003 0.78 0.005 9.39 0.09 <MDL 0.02 
A16 <MDL 0.01 0.09 <MDL 11.9 0.61 <MDL 0.002 
A17 <MDL 0.002 0.02 0.002 4.23 0.3 <MDL 0.03 
A18 <MDL 0.01 0.43 0.003 8.83 0.23 <MDL 0.03 
A19 <MDL 0.03 0.09 <MDL 9.33 0.23 <MDL 0.007 
A02B <MDL 0.02 0.15 <MDL 11 0.24 <MDL 0.25 
A13B <MDL 0.09 0.002 <MDL 3.95 0.11 <MDL <MDL 
A20 <MDL 0.06 0.003 <MDL 4.14 0.07 <MDL 0.04 
A21 <MDL 0.06 0.03 <MDL 5.8 0.2 <MDL 0.006 
A22 <MDL 0.01 0.27 <MDL 10.3 0.15 <MDL 0.01 
A23 <MDL 0.03 0.03 <MDL 4.9 0.64 <MDL 0.008 
A24 <MDL 0.095 0.04 <MDL 7.68 1.06 <MDL 0.002 
A05B <MDL 0.02 <MDL <MDL 6.26 <MDL <MDL 0.01 
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Table 4. Concentrations of minor anions in water wells 
Site ID Br- F- NO3--N Acetate 
Units mg/L mg/L mg/L mg/L 
MDL 0.1 0.1 0.02 0.013 
RL 0.32 0.32 0.06 – 
NPDWR, 
NSDWR 

n/a, 
n/a 

4.0, 
2.0 

10,    
n/a 

n/a,     
n/a 

A01 <MDL 0.23 0.032 – 
A02 0.39 0.15 <MDL – 
A03 <MDL 0.33 <MDL – 
A04 <MDL <MDL <MDL – 
A05 0.54 0.1 <MDL – 
A06 <MDL 0.25 <MDL – 
A07 <MDL 0.28 <MDL – 
A08 <MDL <MDL 2.87 – 
A09 <MDL <MDL 0.757 – 
A10 <MDL <MDL <MDL – 
A11 0.68 <MDL <MDL – 
A12 <MDL <MDL 1.202 – 
A13 <MDL 1.62 <MDL – 
A14 <MDL 0.13 <MDL – 
A15 <MDL 0.13 <MDL – 
A16 <MDL 0.13 0.346 – 
A17 <MDL <MDL 0.14 – 
A18 <MDL 0.16 <MDL – 
A19 <MDL 0.3 <MDL 0.31 
A02B 0.34 0.21 <MDL – 
A13B 0.17 2.21 <MDL <MDL 
A20 <MDL 1.62 <MDL 0.25 
A21 <MDL 0.89 <MDL 0.34 
A22 <MDL 0.18 <MDL – 
A23 <MDL 0.13 0.226 0.29 
A24 0.27 0.95 <MDL <MDL 
A05B 0.67 1.11 <MDL 0.22 
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Figure 3. Modified Piper diagram of sampled water wells. Circle size is proportional to 
methane concentration.  

3.1.3 Dissolved Methane and Ethane Concentrations 

Dissolved methane shows a wide range of concentrations in water wells (Table 5). 

Twelve (50%) water wells have dissolved methane > 1 mg/L, including six wells > 10 

mg/L, where the highest methane concentration measured was 50 mg/L. Five wells have 

methane concentrations between 0.1 and 1 mg/L, and seven wells have concentrations < 

0.1 mg/L. The water type of most samples with methane > 1 mg/L is Na-HCO3 (n=4), 

followed by Na-HCO3-Cl (n=3), Ca-Na-HCO3 (n=2), Ca-HCO3 (n=2), and Ca-Na-HCO3-



27 
 

Cl (n=1) (Figures 3 and 4). Spearman’s ρ correlation analysis test was performed between 

water chemistry variables and methane concentrations (Table 6).  

Table 5. Dissolved gas concentrations and stable isotope composition of water wells 

Site 
ID CH4 C2H6 C3H8 C1/ 

(C2+C3) δ13C-CH4 δ2H-CH4 δ13C-
C2H6 

  mg/L mg/L mg/L n/a ‰ VPDB ‰ VSMOW ‰ VPDB 
A01 0.027 – – – – – – 
A02 19 0.028 – 681 -66.395 -238.6* – 
A03 11 0.042 – 265 -62.835 – – 
A04 0.035 – – – – – – 
A05 7.2 0.022 – 329 -71.75 -222.6* – 
A06 0.000 – – – – – – 
A07 2.1 0.002 – 1261 -69.425 – – 
A08 0.000 – – – – – – 
A09 0.000 – – – – – – 
A10 0.10 – – – – – – 
A11 1.9 0.0001 – 17056 -64.26 – – 
A12 0.001 – – – – – – 
A13 36 0.535 – 67 -67.545 -238.8 – 
A14 2.1 – – – -81.555 – – 
A15 0.013 – – – – – – 
A16 0.13 0.0002 – 642 – – – 
A17 0.000 – – – – – – 
A18 0.008 – – – – – – 
A19 3.3 0.002 < 0.0005 1737 -76.79 -225.1 – 
A02B 16 0.072 < 0.0004 222 -65.71 -238.6 -35.9 
A13B 37 0.700 < 0.0005 53 -65.61 -238.8 -17.9 
A20 50 0.630 0.0007 79 -62.19 -235.9 – 
A21 48 0.450 < 0.0007 107 -54.25 -239.5 – 
A22 1.5 0.003 < 0.0004 441 -89.29 -257.6 – 
A23 0.004 < 0.0004 < 0.0005 – – – – 
A24 26 0.490 < 0.0004 53 -57.32 -225.8 – 
A05B 8.8 0.039 < 0.0004 226 -67.33 -222.6 – 

Notes:    gray fill  Value reported by Isotech Labs 
*   Value estimated from second sampling event 
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Table 5. Dissolved gas concentrations and stable isotope composition (cont.) 

Site 
ID DIC δ13C-

DIC 
δ13C-
CO2 

δ13C-
DOC δ34S-SO4 δ18O-SO4 ẟ2H δ18O 

  mg/L ‰ VPDB ‰ VPDB ‰ VCDT ‰ VSMOW ‰ VSMOW 
A01 – -16.4 -25.4 – 15.7 12.6 -43.8 -7.0 
A02 – -6.9 -15.9 – – – -44.2 -7.1 
A03 – -13.9 -23.0 – – – -42.3 -7.0 
A04 – -16.4 -25.6 – 11.9 12.3 -41.0 -6.8 
A05 – -14.7 -23.6 – – – -42.4 -6.7 
A06 – -12.3 -21.5 – -16.7 3.2 -43.6 -7.1 
A07 – -21.5 -30.7 – – – -42.9 -6.8 
A08 – -19.0 -28.1 – 2.3 7.3 -53.4 -7.8 
A09 – -19.9 -29.2 – -1.1 4.0 -45.9 -7.5 
A10 – -20.8 -29.8 – 2.0 -0.1 -38.3 -6.4 
A11 – -12.6 -21.5 – 54.7 16.7 -44.5 -7.2 
A12 – -20.7 -30.0 – 2.4 3.3 -45.0 -7.2 
A13 – -0.5 -9.6 – – – -43.1 -6.9 
A14 – -19.3 -28.5 – 13.1 14.1 -42.3 -6.9 
A15 – -19.9 -28.9 – -3.0 6.0 -43.1 -7.0 
A16 – -18.6 -27.6 – 19.6 14.3 -43.6 -7.1 
A17 – -10.1 -19.2 – 2.6 3.2 -48.6 -7.8 
A18 – – – – 4.3 9.6 -41.1 -6.7 
A19 49 -11.6 -20.7 – 0.7 – -43.7 -7.0 
A02B 32 -8.6 -17.7 -36.1 – – -42.1 -6.6 
A13B 78 -0.8 -9.9 -30.6 – – -43.0 -7.0 
A20 80 6.1 -2.9 -27.3 – – -43.4 -7.1 
A21 62 4.3 -4.9 -27.5 – – -41.8 -6.8 
A22 28 -18.6 -27.7 -26.0 – – -45.3 -7.3 
A23 18 -9.1 -18.2 – 0.9 – -44.3 -7.1 
A24 74.5 0.2 -8.9 – – – -42.2 -6.9 
A05B 70 -14.7 -23.7 -25.2 – – -42.8 -6.9 
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Table 6. Correlations between water chemistry parameters and methane concentrations. 
Asterisk (*) highlights correlations that are not statistically significant (p>0.05). 

Parameter Spearman’s ρ p-value of Spearman 
Ca -0.16 4.18E-01* 
Na 0.82 1.59E-07 
Mg 0.29 1.36E-01* 
Cl 0.78 1.62E-06 
K -0.04 8.47E-01* 
HCO3 0.70 4.11E-05 
SO4 -0.66 8.06E-04 
pH 0.86 9.52E-09 
Eh -0.77 2.39E-06 
SC 0.72 2.00E-05 
DO -0.68 9.67E-05 

 

 

Figure 4. Concentration of methane compared to water type in box-and-whisker diagram.  

Ethane was detected in 15 samples and in concentrations up to 0.70 mg/L, whereas 

propane was only measurable in one sample (A20) at 0.0007 mg/L. The molecular ratio of 

gases (C1/ (C2+C3)) ranged from ~53 to 17000.  

3.2 Isotopic Composition 

3.2.1 Methane Isotopes 

Measurements of δ13C-CH4 were performed on 15 samples and ranged from -

89.3‰ to -54.3‰ (median -66.4‰) (Table 5). δ2H-CH4 was measured on eight samples 
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and ranged from -257.6‰ to -222.6‰ (median 238.6‰). δ13C-C2H6 was only measurable 

in 2 samples (A02 and A13) and had values of -35.9‰ and -17.9‰.  

3.2.2 Sulfate Isotopes  

Measurements of δ34S-SO4, which were possible on samples with SO4 

concentrations > 5 mg/L (n=15), ranged from -16.7‰ to 54.7‰ (median 2.4‰) (Table 5). 

The δ18O-SO4 values on 13 samples ranged from -0.1‰ to 16.7‰ (median 7.3‰).   

3.2.3 δ13C DIC & DOC isotopes 

DIC concentrations, measured for nine wells, ranged from 18 to 80 mg/L (median 

62.0 mg/L). DIC concentrations were strongly (ρ = 0.98) and significantly (p = 1.94E-6) 

correlated with lab alkalinity, and similarly, though slightly less, correlated (ρ = 0.92, p = 

5.07E-4) with field alkalinity (Figure 5). Measurements of δ13C-DIC were possible in all 

except one sample and ranged from -21.5‰ to 6.1‰ (median -14.3‰) (Table 5) (Figure 

6). Values of δ13C-DIC were used to estimate δ13C-CO2 values using the equation (Clark 

and Fritz, 1997; Mook et al., 1974):  

ε HCO3-CO2 = 1000 ln α HCO3-CO2 = [9.552*(1000/T)] - 24.1   

Measurements for δ13C-DOC were possible in six samples and values ranged from -36.1‰ 

to -25.2‰ (median -27.4‰).   
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Figure 5. DIC concentrations in nine water samples compared to alkalinity measured in the 
field and in the lab. 

 

Figure 6. DIC concentrations compared to δ13C-DIC values. 
3.2.4 Water Isotopes 

The ẟ2H values of groundwater ranged from -53.4‰ to -38.3‰ (median -43.1‰), 

and the ẟ18O values from -7.8‰ to -6.4‰ (median -7.0‰) (Figure 7). A linear regression 

of these values produced a slope of 7.8 and intercept of 11.3, whereas a linear regression 

of the data in Letcher County (LeDoux et al., 2016) produced a slope of 6.7 and an intercept 

of 3.6. The values of ẟ2H are more positive, and the values of ẟ18O are more negative than 

the Global Meteoric Water Line (GMWL) defined in Craig (1961), with a slope of 8 and 

intercept of 10. The values of ẟ2H and ẟ18O fall near the Kentucky Meteoric Water Line 

(KMWL) calculated in Kendall and Coplen (2001), with a slope of 6.4 and intercept of 1.2. 
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Two samples, however, fall noticeably outside this line. One well (A08) with a 

significantly more negative ẟ2H value was reported by the lab as being below the dynamic 

range of the instrument. Another well (A10) has a more positive ẟ2H value or more negative 

ẟ18O value in relation to the KMWL. This water well was meters away from an orange 

creek, which was possibly contaminated by acid mine drainage.  

 

Figure 7. Bivariate plot of δ2H vs. δ18O data for this study and LeDoux et al. (2016). Blue 
and red lines are linear regressions of each study. Black line illustrates GMWL, gray line 
illustrates KMWL. 

4. DISCUSSION 

4.1 Water Chemistry 

4.1.1 Geochemical Analysis 

Saturation indexes (SI) were calculated in PHREEQC (Table 7) (Parkhurst and 

Appelo, 2013) using temperature, pH, and concentrations of sulfide (Table 1), cations 

(Table 2 and 3) (except As and Ni), and anions (Table 4). Goethite, hematite, pyrite, 

sphalerite, and sulfur are supersaturated mineral phases in most water wells. Barite, 

siderite, rhodochrosite, FeS, SiO2, and Fe(OH)3 minerals are at or near equilibrium in most 
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wells. Anhydrite, gypsum, calcite, dolomite, fluorite, halite, sylvite and talc are 

undersaturated in most wells. Seven wells (A03, A04, A13, A23, and the three hand-dug 

wells) are undersaturated in most minerals. 
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Table 7. Mineral saturation indexes (SI) in water samples 
Mineral Formula A01 A02 A03 A04 A05 A06 
Anhydrite CaSO4 -2.25 – – -5.52 – -2.19 
Aragonite CaCO3 -1.1 -1.62 -0.46 -4.36 -0.37 -1.5 
Barite BaSO4 0.88 – – – – 0.07 
Calcite CaCO3 -0.95 -1.46 -0.31 -4.21 -0.22 -1.35 
Celestite SrSO4 -2.01 – – – – -2.36 
Chalcedony SiO2 0.03 -0.09 -0.2 -0.12 -0.28 -0.22 
Chrysotile Mg3Si2O5(OH)4 -11.3 -13.4 -6.63 – -7.6 -13.3 
Dolomite CaMg(CO3)2 -2.12 -3.53 -1.02 – -0.69 -3.29 
Fe(OH)3(a) Fe(OH)3 0.39 1.43 – – 3.05 0.14 
FeS(ppt) FeS -0.47 -1.27 – – 0.83 -1.34 
Fluorite CaF2 -2.27 -2.84 -2.38 – -3.2 -3 
Goethite FeOOH 5.91 6.97 – – 8.6 5.62 
Gypsum CaSO4:2H2O -1.83 – – -5.09 – -1.76 
Halite NaCl -8.22 -6.69 -7.04 -7.57 -5.95 -8.88 
Hausmannite Mn3O4 -19.2 -20.2 -14.15 – -14.4 -23.4 
Hematite Fe2O3 13.78 15.9 – – 19.17 13.2 
Jarosite-K KFe3(SO4)2(OH)6 -6.3 – – – – -6.98 
Mackinawite FeS 0.27 -0.54 – – 1.56 -0.61 
Manganite MnOOH -7.04 -7.41 -4.91 – -5.22 -8.34 
Melanterite FeSO4:7H2O -6.1 – – – – -6.09 
Pyrite FeS2 23.08 20.39 – – 25.46 21.42 
Pyrochroite Mn(OH)2 -7.44 -7.8 -6.5 – -6.44 -8.69 
Pyrolusite MnO2:H2O -14.2 -14.5 -10.95 – -11.4 -15.8 
Quartz SiO2 0.49 0.37 0.26 0.34 0.18 0.24 
Rhodochrosite MnCO3 -0.56 -1.18 -0.89 – -0.27 -2.11 
Sepiolite Mg2Si3O7.5OH:3H2O -7.32 -8.93 -4.57 – -5.39 -9.04 
Sepiolite(d) Mg2Si3O7.5OH:3H2O -9.95 -11.6 -7.19 – -8.03 -11.6 
Siderite FeCO3 -0.58 0.2 – – 0.53 -1.05 
SiO2(a) SiO2 -0.84 -0.97 -1.08 -1 -1.15 -1.1 
Smithsonite ZnCO3 -6.2 -2.49 – -6.78 -5.85 -5.11 
Sphalerite ZnS 2.76 4.88 – 2.33 3.28 3.49 
Strontianite SrCO3 -2.31 -3.02 -1.06 – -1.36 -3.11 
Sulfur S 10.65 8.79 12.29 10.72 11.77 9.83 
Sylvite KCl -8.76 -7.61 -8.03 -9.49 -7.27 -9.45 
Talc Mg3Si4O10(OH)2 -7.7 -10 -3.48 – -4.58 -10.2 
Willemite Zn2SiO4 -13.2 -5.3 – -13.65 -11.3 -10.7 
Witherite BaCO3 -3.43 -4.1 -2.07 – -2.26 -4.7 
Zn(OH)2(e) Zn(OH)2 -8.18 -4.2 – -8.27 -7.11 -6.77 

Notes:   Fill Color of cells is set to yellow at a SI of 0, positive values are shades of 
green, and negative values are shades of red. 

 



35 
 

Table 7. Mineral saturation indexes (SI) in water samples (cont.) 
Mineral Formula A07 A08 A09 A10 A11 A12 
Anhydrite CaSO4 – -4.12 -3.67 -1.31 -3.34 -3.69 
Aragonite CaCO3 -1.64 -4.57 -3.79 -1.53 -0.7 -3.92 
Barite BaSO4 – -1.27 -0.87 0.35 0.3 -0.62 
Calcite CaCO3 -1.48 -4.42 -3.63 -1.38 -0.55 -3.76 
Celestite SrSO4 – -4.11 -3.74 -1.34 -2.86 -3.79 
Chalcedony SiO2 0.02 -0.52 -0.38 -0.19 -0.26 -0.34 
Chrysotile Mg3Si2O5(OH)4 -10.3 -22.44 -18.68 -11.5 -9.65 -21.07 
Dolomite CaMg(CO3)2 -3.25 -9.03 -7.42 -2.84 -1.3 -7.73 
Fe(OH)3(a) Fe(OH)3 1.65 -4.41 -2.15 1.73 2.4 -3.05 
FeS(ppt) FeS 0.03 -4.08 -2.27 0.35 -1.07 -2.91 
Fluorite CaF2 -2.2 – – – – – 
Goethite FeOOH 7.14 1.11 3.28 7.28 7.96 2.38 
Gypsum CaSO4:2H2O – -3.7 -3.22 -0.9 -2.94 -3.25 
Halite NaCl -8.31 - - -8.79 -6 -10.19 
Hausmannite Mn3O4 -18.2 -33.93 -30.86 -18.2 -16.6 -33.54 
Hematite Fe2O3 16.23 4.18 8.5 16.52 17.89 6.72 
Jarosite-K KFe3(SO4)2(OH)6 – -19.09 -13.65 -0.05 -3.19 -14.57 
Mackinawite FeS 0.77 -3.35 -1.53 1.09 -0.34 -2.17 
Manganite MnOOH -6.52 -12.34 -10.91 -6.77 -6.15 -11.95 
Melanterite FeSO4:7H2O – -8.18 -7.12 -3.68 -6.26 -6.87 
Pyrite FeS2 23.72 16.98 20.05 23.07 20.84 18.46 
Pyrochroite Mn(OH)2 -7.22 -11.52 -10.65 -7.07 -6.88 -11.29 
Pyrolusite MnO2:H2O -13.5 -20.73 -19.16 -13.9 -12.8 -20.58 
Quartz SiO2 0.49 -0.06 0.08 0.27 0.19 0.13 
Rhodochrosite MnCO3 -1.32 -4.74 -4.29 -0.55 -0.29 -4.28 
Sepiolite Mg2Si3O7.5OH… -6.59 -15.66 -12.83 -7.81 -6.75 -14.35 
Sepiolite(d) Mg2Si3O7.5OH… -9.2 -18.28 -15.38 -10.5 -9.41 -16.91 
Siderite FeCO3 -0.58 -4.26 -2.92 0.5 0.79 -2.77 
SiO2(a) SiO2 -0.85 -1.4 -1.27 -1.06 -1.13 -1.22 
Smithsonite ZnCO3 -7.23 -6.01 -7.17 -4.5 -1.8 -5.9 
Sphalerite ZnS 2.26 3.02 2.4 4.19 5.16 2.87 
Strontianite SrCO3 -2.87 -6 -5.29 -3 -1.66 -5.45 
Sulfur S 10.77 8.17 9.33 9.85 9.07 8.38 
Sylvite KCl -8.68 – – -9.2 -6.97 -9.33 
Talc Mg3Si4O10(OH)2 -6.66 -19.92 -15.93 -8.26 -6.61 -18.22 
Willemite Zn2SiO4 -13.4 -13.14 -14.72 -9.24 -4.02 -13.42 
Witherite BaCO3 -3.72 -7.18 -6.47 -5.32 -2.51 -6.32 
Zn(OH)2(e) Zn(OH)2 -8.23 -7.88 -8.61 -6.13 -3.51 -7.99 
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Table 7. Mineral saturation indexes (SI) in water samples (cont.) 
Mineral Formula A13 A14 A15 A16 A17 
Anhydrite CaSO4 – -3.09 -3.02 -3.31 -3.31 
Aragonite CaCO3 -0.39 -1.32 -2.46 -1.71 -2.1 
Barite BaSO4 – 0.41 -0.29 0.26 -0.15 
Calcite CaCO3 -0.24 -1.17 -2.31 -1.56 -1.95 
Celestite SrSO4 – -2.78 -3.23 -2.89 -3.07 
Chalcedony SiO2 -0.48 -0.05 -0.14 -0.04 -0.47 
Chrysotile Mg3Si2O5(OH)4 -3.73 -12.8 -16.5 -13.6 -14.9 
Dolomite CaMg(CO3)2 -0.91 -2.85 -4.87 -3.62 -4.18 
Fe(OH)3(a) Fe(OH)3 – 1.39 -0.33 1.11 -1.26 
FeS(ppt) FeS – 0.47 -0.44 -0.1 -2.24 
Fluorite CaF2 -2.38 -2.77 -3.14 -2.95 – 
Goethite FeOOH – 6.88 5.22 6.65 4.24 
Gypsum CaSO4:2H2O – -2.66 -2.61 -2.9 -2.88 
Halite NaCl -6.15 -7.52 -8.66 -9.06 -9.63 
Hausmannite Mn3O4 -9.52 -20.2 -22.9 -21.9 -25.1 
Hematite Fe2O3 – 15.72 12.4 15.26 10.44 
Jarosite-K KFe3(SO4)2(OH)6 – -4.87 -7.6 -5.6 -12.1 
Mackinawite FeS – 1.2 0.3 0.63 -1.5 
Manganite MnOOH -2.93 -7.32 -8.53 -8.01 -9.02 
Melanterite FeSO4:7H2O – -5.71 -5.41 -5.91 -7.75 
Pyrite FeS2 – 23.79 22.05 22.75 20.47 
Pyrochroite Mn(OH)2 -5.8 -7.67 -8.33 -8.3 -9.18 
Pyrolusite MnO2:H2O -7.72 -14.7 -16.2 -15.2 -16.5 
Quartz SiO2 -0.02 0.42 0.32 0.43 -0.01 
Rhodochrosite MnCO3 -1.31 -0.86 -1.19 -1.58 -2.5 
Sepiolite Mg2Si3O7.5OH:3H2O -3.09 -8.44 -11.1 -8.94 -10.6 
Sepiolite(d) Mg2Si3O7.5OH:3H2O -5.7 -11 -13.8 -11.6 -13.2 
Siderite FeCO3 – 0.42 -0.45 0.09 -2.17 
SiO2(a) SiO2 -1.36 -0.92 -1.01 -0.91 -1.35 
Smithsonite ZnCO3 – -6.83 -6.26 -6.44 -5.49 
Sphalerite ZnS – 2.09 2.58 2.21 3.31 
Strontianite SrCO3 -0.65 -2.46 -4.11 -2.72 -3.3 
Sulfur S 13.01 10.41 9.62 9.97 9.8 
Sylvite KCl -7.78 -8.09 -8.91 -9.33 -9.57 
Talc Mg3Si4O10(OH)2 -1.14 -9.39 -13.2 -10.1 -12.3 
Willemite Zn2SiO4 – -14.4 -13.9 -13.4 -11.9 
Witherite BaCO3 -1.56 -3.29 -5.18 -3.58 -4.4 
Zn(OH)2(e) Zn(OH)2 – -8.72 -8.5 -8.26 -7.26 
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Table 7. Mineral saturation indexes (SI) in water samples (cont.) 
Mineral Formula A18 A19 A02B A13B A20 
Anhydrite CaSO4 -2.97 -3.22 -4.54 -6.13 -5.39 
Aragonite CaCO3 -1.55 -1.3 -1.77 -0.5 -0.63 
Barite BaSO4 0.1 -0.24 -1.54 -1.89 -1.28 
Calcite CaCO3 -1.4 -1.15 -1.61 -0.35 -0.48 
Celestite SrSO4 -3 -3.25 -4.51 -4.97 -4.36 
Chalcedony SiO2 -0.15 -0.13 -0.07 -0.53 -0.52 
Chrysotile Mg3Si2O5(OH)4 -13.1 -12 -13.7 -4.62 -5.4 
Dolomite CaMg(CO3)2 -2.88 -2.56 -3.85 -1.17 -1.46 
Fe(OH)3(a) Fe(OH)3 0.56 1.03 1.4 – 1.4 
FeS(ppt) FeS -0.14 0.37 0.28 – -2.9 
Fluorite CaF2 -2.78 -2.21 -2.57 -2.04 -2.38 
Goethite FeOOH 6.06 6.55 6.92 – 6.93 
Gypsum CaSO4:2H2O -2.54 -2.8 -4.12 -5.7 -4.98 
Halite NaCl -7.98 -8.82 -6.73 -6.09 -6.46 
Hausmannite Mn3O4 -20.9 -20.8 -20.8 -10.27 -10.2 
Hematite Fe2O3 14.07 15.05 15.8 – 15.81 
Jarosite-K KFe3(SO4)2(OH)6 -6.27 -6.16 -7.24 – -12.8 
Mackinawite FeS 0.59 1.11 1.01 – -2.17 
Manganite MnOOH -7.6 -7.52 -7.59 -3.2 -3.29 
Melanterite FeSO4:7H2O -5.87 -6.43 -7.02 – -13.1 
Pyrite FeS2 23.01 24.33 23.45 – 23.85 
Pyrochroite Mn(OH)2 -7.82 -7.99 -7.95 -5.93 -5.91 
Pyrolusite MnO2:H2O -15 -14.6 -14.8 -8.18 -8.21 
Quartz SiO2 0.31 0.33 0.39 -0.07 -0.06 
Rhodochrosite MnCO3 -0.81 -1.25 -1.4 -1.33 -1.16 
Sepiolite Mg2Si3O7.5OH:3H2O -8.76 -8.02 -9.07 -3.76 -4.3 
Sepiolite(d) Mg2Si3O7.5OH:3H2O -11.4 -10.6 -11.7 -6.36 -6.93 
Siderite FeCO3 -0.09 -0.14 0.14 – -3.93 
SiO2(a) SiO2 -1.03 -1.01 -0.94 -1.41 -1.39 
Smithsonite ZnCO3 -5.81 -7.32 -4.84 – -5.58 
Sphalerite ZnS 2.99 2.05 4.15 – 4.29 
Strontianite SrCO3 -3.02 -2.77 -3.17 -0.77 -1.03 
Sulfur S 10.24 11.06 10.28 13.95 13.87 
Sylvite KCl -8.48 -9.39 -7.63 -7.63 -8.05 
Talc Mg3Si4O10(OH)2 -9.8 -8.67 -10.3 -2.13 -2.88 
Willemite Zn2SiO4 -12.9 -15.3 -9.89 – -8.21 
Witherite BaCO3 -3.94 -3.78 -4.22 -1.73 -1.97 
Zn(OH)2(e) Zn(OH)2 -7.92 -9.16 -6.49 – -5.42 
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Table 7. Mineral saturation indexes (SI) in water samples (cont.) 
Mineral Formula A21 A22 A23 A24 A05B 
Anhydrite CaSO4 -5.08 -4.24 -2.7 -4.49 -7.32 
Aragonite CaCO3 -1.12 -2.19 -2.26 -0.44 -3.23 
Barite BaSO4 -1.75 -0.81 0.01 -0.67 – 
Calcite CaCO3 -0.96 -2.04 -2.11 -0.29 -3.08 
Celestite SrSO4 -4.56 -4.17 -2.07 -3.82 – 
Chalcedony SiO2 -0.33 -0.08 -0.41 -0.22 -0.32 
Chrysotile Mg3Si2O5(OH)4 -12.2 -13.6 -14.32 -7.68 -16.4 
Dolomite CaMg(CO3)2 -3.12 -4.41 -4.33 -0.94 -6.72 
Fe(OH)3(a) Fe(OH)3 2.09 1.69 – 2.46 1.98 
FeS(ppt) FeS 0.24 1.08 – 0.51 0.16 
Fluorite CaF2 -1.85 -2.88 -3.13 -1.32 -3.85 
Goethite FeOOH 7.58 7.19 – 7.98 7.53 
Gypsum CaSO4:2H2O -4.65 -3.82 -2.28 -4.07 -6.91 
Halite NaCl -6.87 -8.04 -9.62 -6.08 -5.84 
Hausmannite Mn3O4 -16.1 -20.2 -24.21 -15.5 – 
Hematite Fe2O3 17.12 16.33 – 17.93 17.03 
Jarosite-K KFe3(SO4)2(OH)6 -8.2 -5.64 – -6.64 -9.07 
Mackinawite FeS 0.97 1.81 – 1.24 0.89 
Manganite MnOOH -5.62 -7.31 -8.74 -5.51 – 
Melanterite FeSO4:7H2O -9.02 -6.15 – -8.69 -9.39 
Pyrite FeS2 25.42 24.72 – 25.66 25.47 
Pyrochroite Mn(OH)2 -6.9 -7.66 -8.94 -6.81 – 
Pyrolusite MnO2:H2O -12.1 -14.7 -16.15 -11.8 – 
Quartz SiO2 0.13 0.38 0.05 0.24 0.14 
Rhodochrosite MnCO3 -0.98 -1.32 -2.41 -0.78 – 
Sepiolite Mg2Si3O7.5OH:3H2O -8.47 -9.01 -10.05 -5.33 -11.3 
Sepiolite(d) Mg2Si3O7.5OH:3H2O -11.1 -11.6 -12.67 -7.96 -13.9 
Siderite FeCO3 -0.7 0.26 – -0.27 -0.9 
SiO2(a) SiO2 -1.21 -0.96 -1.29 -1.1 -1.19 
Smithsonite ZnCO3 -7.41 -7.39 -7.5 -7.67 -7.41 
Sphalerite ZnS 2.4 2.3 2.09 1.95 2.49 
Strontianite SrCO3 -2.04 -3.56 -3.07 -1.22 – 
Sulfur S 12.26 10.72 10.53 12.26 12.44 
Sylvite KCl -8.3 -8.6 -9.41 -7.37 -7.94 
Talc Mg3Si4O10(OH)2 -9.3 -10.2 -11.59 -4.57 -13.4 
Willemite Zn2SiO4 -14.1 -14.7 -15.55 -14.7 -13.9 
Witherite BaCO3 -3.25 -4.22 -5.01 -2.08 – 
Zn(OH)2(e) Zn(OH)2 -8.41 -8.83 -9.13 -8.8 -8.4 
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4.1.2 Water-Quality Assessment 

Only eight of the sampled water wells had no trace metals exceeding the EPA 

Primary or Secondary Drinking Water Regulations (Table 3). Concentrations of analytes 

exceeded these limits for three elements in three wells, two elements in eleven wells, and 

one element in two wells. Arsenic concentrations were above the Primary Drinking Water 

Regulations in one well during both the spring and fall sampling events. Secondary 

Drinking Water Regulations were surpassed for iron in 15 wells, manganese in 12 wells, 

aluminum in three wells, chloride in one well, and sulfate in one well. 

High methane concentrations (> 1 mg/L; McMahon et al. (2017)) were found in 12 

wells. Three wells were within the “Warning, Investigate” level (10 mg/L < CH4 < 28 

mg/L), and at least three wells had dissolved methane concentrations above the “Immediate 

Action” level (> 28 mg/L) (Eltschlager et al., 2001). The method of collection may impact 

methane concentration results (Molofsky et al., 2016b). A comparison of nine pairs of 

samples collected through the direct fill-method in glass bottles and measured at KGS and 

collected in IsoflaskTM containers and measured at Isotech suggests that methane 

concentrations of samples measured by the first method might be underreported, especially 

at high concentrations. Therefore, Isotech results were used for methane data when 

available (Table 5). A linear regression suggests that some of the samples only measured 

at KGS might have methane concentrations up to ~25% higher than measured (Figure 8). 

IsoFlaskTM containers have been previously identified to yield more accurate results, 

particularly at methane concentrations > 20 mg/L and in samples showing degassing 

(bubbling) (Molofsky et al., 2016b). However, analysis of temporal variations of methane 

in groundwater suggests that natural fluctuations in concentrations can range from 2.5 up 
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to 6 times relative to the lowest recorded values (Rivard et al., 2018), adding additional 

sources of potential variability.  

 

Figure 8. Comparison of methane concentrations between nine pairs of samples collected 
in glass bottles through the direct-fill method and analyzed at KGS and collected in 
IsoflaskTM containers and analyzed at Isotech. Black line represents 1:1 relationship, 
whereas dark blue line shows data trendline. 

Interestingly, the record for a well <200 m from sampled well A03 contained a site 

investigation report for an incident in 2011 when a methane concentration of 54.9 mg/L 

was measured. In that investigation, problematic concentrations of iron related bacteria, 

SRB, and slime forming bacteria were found (KGS, 2020). 

4.1.3 Geochemical Conditions Associated with Dissolved Methane  

Even though the most common water type sampled was Ca-HCO3, the most 

common water type of samples with high methane concentrations (> 1 mg/L) was Na-

HCO3 (Figures 3 and 4), with high sodium, high chloride, high bicarbonate, and low sulfate 

concentrations. This is consistent with previous studies showing Na-HCO3, Na-HCO3-Cl, 

and Na-Cl groundwaters are more likely to have elevated methane (Humez et al., 2016; 

Molofsky et al., 2013; Zhu et al., 2018). Groundwaters with high sodium and chloride 

concentrations have been associated, based on chemical and isotopic composition, with 

longer and deeper flowpaths, higher cation exchange, sulfate reduction, mixing with brines 
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and locations close to valley bottoms (Molofsky et al., 2016a; Wunsch, 1993). In contrast, 

groundwaters with high calcium and magnesium concentrations have been associated with 

dissolution of calcite, oxidation of pyrite, and locations close to ridgetops (Wunsch, 1993; 

Zhu et al., 2018). Methane concentrations have been associated with topography of 

ridgetops more than valleys in the Appalachian Basin (Molofsky et al., 2016a).  

As expected from microbial processes, samples with elevated methane have no 

sulfate because the occurrence of sulfate inhibits methanogenesis. In samples with sulfate, 

the most likely sulfate source is the oxidation of sulfide minerals, such as pyrite, which 

releases sulfate and hydrogen ions to groundwater and precipitates amorphous iron 

hydroxide:  

Pyrite oxidation:   FeS2(s) + 3.75 O2 → Fe(OH)3 (s) + 2 SO42- + 4H+     

Other potential sulfate sources, such as evaporites, are not present in eastern Kentucky 

(Wunsch, 1993). 

4.2 Isotopic Composition and Geochemical Processes  

4.2.1 Methane Sources, Methanogenesis and Oxidation of Methane 

Assessment of methane sources and interactions follows binary genetic diagrams 

defined in Milkov and Etiope (2018) among δ13C-CH4, δ2H-CH4, δ13C-CO2, and gas ratios, 

C1/ (C2+C3). These diagrams (Figures 9, 10 and 11) define the genetic fields for methane 

sources (primary microbial–CO2 reduction, primary microbial–fermentation, thermogenic, 

secondary microbial, and abiotic) and identify processes affecting isotopic composition 

(biodegradation, maturity, migration, mixing, oxidation, and thermochemical sulfate 

reduction). Most wells have a methane signature consistent with a microbial source, and 

the rest might have a thermogenic influence or have been affected by a secondary process 
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in at least one of the genetic diagrams. No water well shows an abiotic signature in either 

of the genetic diagrams.  

  

Figure 9. Genetic diagram of δ13C-CH4 vs δ2H-CH4 for eleven samples from seven wells, 
including data for three wells sampled in two sampling events shown with blue arrows. 
The blue dashed lines represent microbial-thermogenic transition/mixing. The red dashed 
line represents the change in composition with increasing thermal maturity. 

 

Figure 10. Genetic diagram of δ13C-CH4 vs C1/ (C2 +C3) for fourteen samples from 
eleven wells, including data for three wells sampled in two sampling events. Blue dashed 
line represents microbial-thermogenic transition/mixing.  
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Figure 11. Genetic diagram of δ13C-CH4 vs. ẟ13C-CO2 values for fifteen samples from 
twelve wells, including data for three wells sampled in two sampling events.  

The δ13C-CH4 vs. δ2H-CH4 genetic diagram (Figure 9) suggests that six out of eight 

wells with data have a “primary microbial–CO2 reduction” (CR) source of methane (blue 

field). Similarly, the gas ratios (C1/ (C2+C3)) and δ13C-CH4 values (Figure 10) suggest a 

CR source (blue field) for seven out of 11 wells with data. Most samples (10 out of 12) in 

the genetic diagram of δ13C-CO2 and δ13C-CH4 (Figure 11) show a CR source signature 

(blue field). A few samples also coincide with a “primary microbial–fermentation” source 

of methane (light blue field). However, none of those samples have δ2H-CH4 values 

indicative of a fermentation signature. Five of these wells fall in both the CR and early 

mature thermogenic (EMT) source fields. However, they are likely to be only or mainly 

from a CR source, as these samples overlap the CR source signature in the genetic diagrams 

for δ13C-CH4 vs. δ2H-CH4 (Figure 9) (for the three samples with data available) and C1/ 

(C2+C3) vs. δ13C-CH4 (Figure 10) (all five samples). Two samples had signatures consistent 

with an EMT source on all genetic diagrams, and two other samples were indicative of a 

CR source on two genetic diagrams and of an EMT source on one genetic diagram. The 

two samples with signatures of both EMT and CR sources (A13 and A20) could be the 

product of a secondary process such as mixing of a biogenic source with a thermogenic 
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source that increased the concentrations of ethane and propane and decreased the gas ratios 

(C1/ (C2+C3)) without affecting the δ13C-CH4 and δ2H-CH4 values.  

Two wells (A21 and A24) have δ13C-CH4 and δ2H-CH4 values that overlap with 

the signatures for EMT and secondary microbial (SM) sources (red and black fields, 

respectively, in Figure 9). However, gases from SM sources have δ13C-CO2 values > +2‰ 

(Milkov and Etiope, 2018) and no sample in this study shows a δ13C-CO2 value > -2.9‰. 

Therefore, these two samples are likely from an EMT source. On a C1/ (C2+C3) vs. δ13C-

CH4 genetic diagram, they have a slightly lower ratio compared to gases from CR, 

consistent with the EMT source signature (red field on Figure 10) where ethane and 

propane occur in greater concentrations than in gas produced by CR. The observed values 

are isotopically lighter as compared to late mature thermogenic (LMT) gas. Increasing 

values for δ13C-CH4, δ2H-CH4, and δ13C-CO2 suggest increasing maturity, as more positive 

values from the kerogen are incorporated (Milkov and Etiope, 2018; Whiticar, 1999). 

These two samples fall between the fields of CR and EMT sources on the δ13C-CO2 vs. 

δ13C-CH4 genetic diagram (Figure 11). Therefore, methane could reflect mixing of CR and 

EMT sources and a secondary process affecting the isotopic signature of methane, such as 

methane oxidation: 

Methane oxidation:  CH4 (aq) + 3 H2O -> HCO3-+ 9 H+ + 8 e-  

Methane concentrations and δ13C-DIC values were used to further characterize 

possible influences on gas composition in wells showing methanogenesis. As CO2 is 

consumed to produce methane, the remaining DIC becomes enriched in δ13C due to 

preferential use of 12C. Therefore, δ13C-DIC values should be positively correlated with 

methane concentrations. Most wells with methane > 1 mg/L follow a trendline consistent 
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with methanogenesis through CR (blue arrow on Figure 12). However, four samples from 

three wells (A13, A20, and A21), including data for one well sampled in two sampling 

events, fall above this trendline (red arrow on Figure 12) and two wells (A11 and A19) fall 

below (gray arrow on Figure 12). A steeper relationship between methane concentrations 

and δ13C-DIC could be evidence for methanogenesis mixing with an additional 

thermogenic methane source that does not change δ13C-DIC values, whereas a reduced 

slope could reflect the oxidation of methane. The three wells above the trendline were 

identified as thermogenic on the C1/ (C2+C3) vs. δ13C-CH4 genetic diagram (Figure 10), 

supporting the concept of a mixed influence from a thermogenic source. The two wells 

below the trendline have microbial signatures on the genetic diagrams and contain sulfate, 

which could be evidence of a dynamic system where methane oxidation follows 

methanogenesis. Mixing and oxidation processes appear to be occurring to some extent in 

at least some of these wells.  

 

Figure 12. CH4 concentrations vs. ẟ13C-DIC values. A trend of increasing methane 
concentration with increasing ẟ13C-DIC, possibly due to methanogenesis, can be pointed 
out in a subset of samples (blue arrow). Three wells appear to follow a steeper trend (red 
arrow), and two wells a shallower one (gray arrow), possibly due to an extra input of 
methane and methane oxidation, respectively. 
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4.2.2 Sulfate Sources and Bacterial Sulfate Reduction 

Predominant redox processes in groundwater can be inferred from the 

concentrations of electron acceptors, and products (Chapelle et al., 2009; McMahon and 

Chapelle, 2008). Methanogenesis occurs primarily in environments with zero to little 

sulfate (Flynn et al., 2013; Humez et al., 2016; Molofsky et al., 2016a). Therefore, 

complementary redox processes and zones can be inferred from the distribution of methane 

or sulfate in groundwater where chemistry is dominated by microbial metabolism. Given 

the antithetic relationship, the distribution of sulfate, its sources, and geochemical 

interactions were also investigated using δ34S-SO4, δ18O-SO4, and sulfate concentrations. 

The values of δ34S-SO4 and δ18O-SO4 in wells with sulfate coincide with commonly 

observed ranges for industrial/atmospheric deposition in three wells, sulfate derived from 

the oxidation of sulfur in four wells, and soil sulfate in one well (Figure 13) (Krouse and 

Mayer, 2000). Four wells overlap an evaporite signature (Figure 13). However, evaporite 

deposits are not common in this area. Another well (A11), which does not correspond to 

any source, has the most positive δ34S-SO4 and δ18O-SO4 values. Samples from these last 

five wells (dark red circle in Figure 13) likely reflect BSR, a process that results in a 

simultaneous enrichment of ẟ34S-SO4 and ẟ18O-SO4 as the remaining sulfate becomes 

enriched in the heavier isotopes (Krouse and Mayer, 2000). Both the positive correlation 

of ẟ34S-SO4 and ẟ18O-SO4 (Figure 13) and the increase in ẟ34S-SO4 with decreasing sulfate 

concentrations (dark arrows in Figure 14) support the inference of BSR for these wells.  
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Figure 13. δ34S-SO4 vs. δ18O-SO4 values. Boxes represent common δ34S and δ18O values 
for sulfate sources (Krouse and Mayer, 2000). Red dashed line is a representation of the 
trend observed for bacterial sulfate reduction. 

 

Figure 14. ẟ34S-SO4 vs. the inverse concentration of sulfate. Samples with a single source 
of sulfate have the same signature regardless of concentration (black box), whereas 
samples that have gone through bacterial sulfate reduction follow a trend of more positive 
ẟ34S-SO4 values with decreasing sulfate concentrations (dark red arrows). 

Sulfate sources can be refined by considering the regional geology. Pyrite oxidation 

is the only readily available sulfate source in eastern Kentucky; pyrite can often be found 

in coals and other sedimentary rocks and gypsum deposits are not common (Wunsch, 

1993). Coal in eastern Kentucky has a low to medium sulfur content (0.7 to 3.1%)  with a 

wide range of pyrite δ34S-SO4 values (-16.6‰ to 28.6‰)  (Elswick et al., 2007). This range 
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is consistent with most values observed in this study (Table 5, Figure 13), though the δ34S-

SO4 values do not unequivocally define a distinctive sulfate source. Little (~-0.7‰) to no 

fractionation of sulfur isotopes has been identified from pyrite oxidation under anaerobic 

or aerobic conditions (Balci et al., 2007; Krouse and Mayer, 2000). Additionally, 

anthropogenic activities (combustion and refining processes of coal, oil, and gas) emit SO2 

gas and can introduce atmospheric/anthropogenic sulfate into groundwater through 

recharge from precipitation (Krouse and Mayer, 2000). Anthropogenic/industrial sources 

can represent more than two-thirds of the sulfate in atmospheric deposition in industrialized 

regions (Krouse and Mayer, 2000).  

4.3 Redox Geochemical Interactions Between Methane and Sulfate  

Methanogenesis and BSR have been generally considered competing processes 

following a thermodynamic hierarchy, in which the latter is preferentially catalyzed by 

microorganisms due to having a higher energy output—assuming sulfate availability—as 

compared to the former. The two reactions are part of a series of possible redox reactions 

with each having its own release of energy and therefore favorability. However, microbial 

reactions in the subsurface are controlled by several factors beyond the thermodynamic 

concept; more than one redox process can happen at a time and location given the right 

chemical and environmental conditions (Bethke et al., 2011).  

Values of δ13C-DIC, sulfate and methane concentrations can be used to identify 

BSR and methanogenic processes. As sulfate is reduced, its concentration decreases and 

δ13C-DIC would become more negative (dark red arrow in Figure 15): 

Sulfate reduction:  SO42- + CH3COO- -> HS- + 2 HCO3- 
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Once wells have no sulfate, a methanogenic trend with increasing concentrations of 

methane and more positive δ13C-DIC values is established (blue arrow in Figure 15). Wells 

between these trends with methane or sulfate would be representative of the addition of 

sulfate intermittently with methanogenesis. This could potentially occur due to increased 

weathering of pyrite and other sulfide minerals from mining activities. 

 

Figure 15. Evolution of δ13C-DIC values compared to sulfate concentrations. Blue dashed 
line represents methanogenesis trend. Red dashed line represents the trend of sulfate 
reduction. Samples in between these trendlines potentially have mixed processes. 

Two wells (A11 and A19) had both dissolved gas and sulfate, with methane from a 

microbial source according to a genetic diagram (Figure 10), and are suspected to show 

methane oxidation due to lower concentrations of methane compared to δ13C-DIC (Figure 

12). These wells plot between the identified trends for sulfate reduction and 

methanogenesis in Figure 15, and one of these wells (A11) also showed the most reduced 

signature for sulfate in the plots of ẟ34S-SO4 vs. inverse concentration of sulfate (Figure 

14) and of ẟ34S-SO4 vs. ẟ18O-SO4 (Figure 13). Therefore, in at least one well (A11), the 

predominant redox process is likely local methane oxidation (MO) coupled with BSR:  

MO + BSR:    CH4 (aq) + SO42- → HCO3- + HS- +H2O 
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This coupling has been hypothesized to reflect a syntrophic partnership with 

methanogens in a pristine heterogeneous aquifer with microenvironments with varying 

redox conditions (Flynn et al., 2013). Additionally, it occurs in areas affected by fugitive 

gas from oil and gas wells and the migration of methane from coalbed methane operations 

(Flynn et al., 2013; Van Stempvoort et al., 2005; Wolfe and Wilkin, 2017). The coupling 

of methane oxidation and BSR could also potentially explain the observation of a H2S smell 

in two wells (A13 and A21) with high methane concentrations and close to no sulfate.  

4.4 Spatial and Environmental Conditions Associated with Dissolved Methane  

As one of the main goals of this study was to understand the role of mining and oil 

and gas development in groundwater methane occurrence, the area within a 1-km radius 

surrounding each water well sampled was assessed for extent of mining and oil and gas 

development. Mining was divided into categories based on the percentage of area covered, 

where low influence is < 33% and high influence is >67%. The number of oil and gas wells 

were counted and grouped into three groups with <10 wells, 10–20 wells, and >20 wells. 

Box-and-whisker plots were plotted to analyze water chemistry as a function of mining or 

oil and gas influence (Figure 16).  
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Figure 16. Box-and-whisker plot of the distribution of water chemistry in areas with mining 
influence and oil and gas wells. The box contains the second and third quartiles and the 
bold middle line represents the median. Lower and upper error lines represent maximum 
and minimum values excluding potential outliers. Data points are scattered within each 
category. 

Sulfate concentrations appear to be associated more with nearby mining, whereas 

methane appears to be associated with both nearby mining and oil and gas (Figures 16 and 

17. Wells in areas with high mining influence (>67%) have a median sulfate concentration 

higher than areas with low to medium influence, which is consistent with mining being the 

main source of sulfate through the oxidation of pyrite. On the other hand, areas with low 

mining influence (< 33%) have a higher median methane concentration and more positive 
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δ13C-DIC values than areas with medium or high mining influence. Water wells in areas 

with a high density of oil and gas (> 20 wells) appear to have slightly higher methane 

concentrations than water wells in areas with low or medium density. These water wells 

have a microbial source signature in at least two genetic diagrams (Figures 9 and 10). 

However, two of these wells (A13 and A20) also appeared to show a mixture of methane 

sources by intersecting a thermogenic signature in the genetic diagram of gas ratios (C1/ 

(C2+C3)) and δ13C-CH4 (Figure 10), as well as following a steeper trend for methane 

concentrations compared to δ13C-DIC values (Figure 12). Similarly, the two water wells 

(A21 and A24) with the highest methane concentrations in the area with medium density 

of oil and gas (10–20 wells) are consistent with both CR and EMT sources (Figures 9, 10 

and 11). Therefore, mixing of microbial methane with thermogenic methane appears to be 

more likely in areas with medium to high density of oil and gas development (> 10 wells 

within a 1-km radius).   
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Figure 17. Water chemistry maps of the sampled wells. 

5. CONCLUSIONS  

Geochemical conditions for methanogenesis and sulfate reduction appear to be 

prevalent and interconnected in eastern Kentucky groundwater. High methane 
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concentrations (> 1 mg/L) were detected in 12 out of 24 wells sampled, and the main 

methane source has been identified as CO2-reduction methanogenesis by using bivariate 

plots with δ13C-CH4, δ2H-CH4, δ13C-CO2, and gas ratios C1/ (C2+C3) as variables. Methane 

concentrations are reduced in areas with high sulfate concentrations, which are associated 

with pyrite oxidation. Decreasing sulfate concentrations associated with more positive 

ẟ34S-SO4 and ẟ18O-SO4 values in groundwater provide evidence of sulfate-reducing 

conditions in some areas. One well with a high methane concentration (1.9 mg/L) and some 

sulfate (5.8 mg/L) shows evidence of both sulfate reduction and methane oxidation. 

Additionally, at least two wells appear to have a thermogenic influence on top of microbial 

methanogenesis due to methane concentrations exceeding concentrations expected from a 

methanogenesis-only trend when compared with δ13C-CO2 values. Figure 18 illustrates the 

potential migration pathways leading to the methane compositions observed in this area. 

  

Figure 18. Schematic cross-section of the geochemical processes most relevant to methane 
in eastern Kentucky in relation to fossil fuel development influences. Methane pathways 
are indicated by arrows and color indicates source, where blue is microbial, red is 
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thermogenic, and gray is other. Blue dashed line represents groundwater table. Well A 
shows CR methanogenesis, and it also considers a secondary source from coal. Well B 
shows a mixture of CR methanogenesis and thermogenic sources. Well C shows no 
methane in the well, while BSR and methane oxidation can occur nearby. 

This study identifies how the distribution of methane and sulfate in groundwater 

and the geochemical processes affecting their distribution relate to the spatial distribution 

of mining and oil and gas development in eastern Kentucky. Derived primarily from 

microbial sources, methane in groundwater is a common occurrence. However, methane 

can be oxidized in sulfate-reducing conditions where mining has created sulfate-rich 

waters. The oxidation of methane is perhaps most evident in southeastern Kentucky, an 

area with high mining influence, where methane concentrations are < 10 mg/L (LeDoux et 

al., 2016). In contrast, northeastern Kentucky has limited mining and methane 

concentrations can be up to 78 mg/L (Zhu et al., 2018). The study area for this project 

encompasses zones with different degrees of mining influence, and methane concentrations 

were up to 50 mg/L. Areas with a high mining influence have low methane concentrations 

and geochemical processes similar to the ones identified in LeDoux et al. (2016). On the 

other hand, areas with a low mining influence have high methane concentrations controlled 

by CO2-reduction methanogenesis, and resemble observations in  Zhu et al. (2018). 

Areas with higher oil and gas development appear to be more likely to introduce 

thermogenic methane and stimulate mixing with microbial methane. This is consistent with 

observations of increased methane concentrations close to oil and gas development in the 

Marcellus Shale (Jackson et al., 2013; Osborn et al., 2011). Therefore, future fossil fuel 

development in eastern Kentucky should record pre-drilling concentrations of dissolved 

gases and their isotopic composition (δ13C-CH4, δ2H-CH4, δ13C-CO2) to investigate 

possible methane leakage. In addition, the record of mining and oil and gas development 
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should be considered, as it appears to have a significant effect on the active geochemical 

and redox processes affecting environmental conditions. 

This study expands baseline data for groundwater geochemistry and dissolved 

methane in eastern Kentucky. Combined with previous work (e.g. LeDoux et al, 2016; Zhu 

et al., 2018), a broad fairway of groundwater characterization now extends from northeast 

to southeast Kentucky. Further insights into data from this and previous studies could 

benefit from a closer examination of the local hydrogeology, particularly as it relates to 

sulfur sources in Pennsylvanian aquifers. Redox interactions involving intermediate sulfur 

species should be investigated. Future groundwater sampling should target areas with data 

gaps, and monitor wells where more than one redox process or methane source has been 

identified to further differentiate the spatial distribution of redox environments in the 

subsurface, and the transport of sulfate and methane. Bacterial and archaeal microbial 

populations in sediments and groundwater should be investigated along with water 

chemistry to corroborate reducing and oxidizing processes recognized through chemical 

and isotopic signatures.  
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