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ABSTRACT OF DISSERTATION

INFORMATION-THEORETIC SECURE OUTSOURCED COMPUTATION IN
DISTRIBUTED SYSTEMS

Secure multi-party computation (secure MPC) has been established as the de facto
paradigm for protecting privacy in distributed computation. One of the earliest se-
cure MPC primitives is the Shamir’s secret sharing (SSS) scheme. SSS has many
advantages over other popular secure MPC primitives like garbled circuits (GC) – it
provides information-theoretic security guarantee, requires no complex long-integer
operations, and often leads to more efficient protocols. Nonetheless, SSS receives less
attention in the signal processing community because SSS requires a larger number of
honest participants, making it prone to collusion attacks. In this dissertation, I pro-
pose an agent-based computing framework using SSS to protect privacy in distributed
signal processing. There are three main contributions to this dissertation. First, the
proposed computing framework is shown to be significantly more efficient than GC.
Second, a novel game-theoretical framework is proposed to analyze different types
of collusion attacks. Third, using the proposed game-theoretical framework, specific
mechanism designs are developed to deter collusion attacks in a fully distributed man-
ner. Specifically, for a collusion attack with known detectors, I analyze it as games
between secret owners and show that the attack can be effectively deterred by an
explicit retaliation mechanism. For a general attack without detectors, I expand the
scope of the game to include the computing agents and provide deterrence through
deceptive collusion requests. The correctness and privacy of the protocols are proved
under a covert adversarial model. Our experimental results demonstrate the efficiency
of SSS-based protocols and the validity of our mechanism design.
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nism design
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Chapter 1 Introduction

While not explicitly stated in the U.S. Constitution, the rights of privacy for many

aspects of our lives including religious beliefs, personal possession, and personal in-

formation are protected under the Bill of Rights. Nonetheless, news about different

forms of privacy invasion has become a daily affair. From sale of personal informa-

tion to identity theft, from Google and YouTube surrendering user data to the mining

of phone metadata by the National Security Agency, the number of ways that our

privacy can be invaded seems to increase at an alarming rate.

One of the reasons for such erosion is the significant advancement in computing

technologies for collecting, storing, and sharing personal information among individ-

uals, private sectors, and government agencies. Anyone can now carry thousands of

songs, hundreds of pictures and hours of videos in a small smart phone, ready to be

exchanged, sometimes unknowingly, with anyone in the world. The focus of privacy

protection often falls on medical or financial records, but it is the multimedia sig-

nals – audio, images, and videos – that are driving the entire market of distributed

computing while their privacy implications remain poorly understood.

The threats, however, are real. The advance in pattern recognition algorithms

such as searchable surveillance or automatic speech recognition systems have turned

the once labor-intensive processes into powerful automated systems. They can easily

recognize objects of interest like faces, voice, and other biometric signals with high fi-

delity. Correlating such information with location data such as geo-tags or RFID and

other information on social networks allows hackers to easily track activities and asso-

ciations of any individuals. The matter is further complicated by the unprecedented

effort of the government in monitoring activities of private citizens to fight terrorism.

It is thus imperative to develop a comprehensive privacy protection framework for
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personal multimedia data without jeopardizing our homeland security.

While new legislature and policy changes are essential elements of such a frame-

work, technologies are playing an equally pivotal role in safeguarding private informa-

tion. There are two main technical challenges in protecting multimedia data. First,

as signal capturing devices and wireless networks become ubiquitous, diverse applica-

tions from multimedia emails and blogging to large-scale surveillance networks begin

to demand some forms of privacy protection. A comprehensive framework is needed

to identify appropriate sensitive information in different applications, and to provide

different levels of protection depending on the role of each user in the system.

Second, from simple enhancement to sophisticated pattern recognition, multime-

dia data requires various signal-processing operations to become useful. The current

cloud and peer-to-peer (P2P) computing platforms have provided ubiquitous data

storage for multimedia data. The computation by third parties like those cloud and

P2P platforms is called the outsourced computing. Cloud and P2P computing plat-

forms can process large-scale of data from multiple sources in a distributed manner.

The promise of these computing platforms is grounded on its predicted pervasiveness:

Internet customers will contribute their individual data and get useful services from

the computing platforms. Figure 1.1 illustrates the situation of customers utilizing

third parties to process their data, where customers are denoted as User 1, 2, .., N

and the computing agents are operated in either cloud or P2P platforms.

There are a myriad of applications of outsourced computing. Examples include

cloud storage and back up services, like Amazon Simple Storage Service (Amazon

S3) [4], Dropbox [45], MEGA [90], and Carbonite [25]. In the United States of Amer-

ica, the Affordable Care Act (ACA) leverages cloud-based solutions heavily [85]. Due

to the fact that human DNA sequences are very large data sets, computing personally

tailored drugs and personalized medical treatments according to an individual’s DNA

sequence requires huge computing resources which are obtainable from the cloud plat-

2



Figure 1.1: Outsourced Computing Scenario

form. A mobile application was presented for the electronic healthcare data storage,

update and retrieval using Cloud Computing [44]. GraphLab, a framework for ma-

chine learning and data mining in the cloud, was proposed and implemented [86].

To achieve a high quality of service (QoS) provisioning for multimedia service, a

media-edge cloud (MEC) architecture was proposed [140].

1.1 Application Scenario and Privacy Concerns

In the future, software developers will undoubtedly take advantage of the enormous

power of various distributed computing platforms in offering various types of software

services to process data. We consider a distributed computing task to have at least

two participants: a user with a private input requires a service from a vendor with

a proprietary software algorithm. It is easy to see why privacy is needed in any

distributed multimedia processing service platform – the user may want to enhance

or process a video taken using a smart phone but lacks the required capability and

algorithms. The multimedia software vendor offers proprietary software for the job

and charges the user based on the duration of the video needed to be processed.

For simplicity, we assume that the vendor’s secrets are the key parameters used in an

3



otherwise well-known algorithm. For example, the parameters could be the tap values

of a sophisticated filter or thresholds and weights in a neural network. The privacy

objective is as follows: the user and the vendor do not trust each other and would

like to prevent each other from knowing anything about their own secret information.

The two parties come to the cloud server and take advantage of its enormous power

and storage. The user clearly wants to protect any private information in his/her

video while the software vendor needs to prevent theft of its proprietary algorithm.

Outsourced computing can fulfill its promise only if it provides a wide range of

computation tasks while guaranteeing security and privacy for customers’ input data.

The key challenge is to design an appropriate privacy protection scheme so that it

will not compromise any legitimate processing of the data.

Current privacy violation in the outsourced computing is serious. From time to

time, there are reports of cloud platforms being hacked and customers’ sensitive data

compromised. Cloudminr.io, a Bitcoin Cloud Mining service, has been hacked. Its

whole database of users is on sale for 1 Bitcoin [98]. In June 2015, LastPass, the

cloud-based password manager, announced that its network was hacked and sensitive

user information was stolen [121]. The concerns of patient privacy and information

security of the ACA remain high [49]. It will be a disastrous result when the ACA

medical records stored in the cloud are breached. If people’s private medical records

are exposed, victims with some types of diseases may be denied jobs.

1.2 Provable Security Approaches

To overcome the concerns of privacy while utilizing powerful computing resources

from third party platforms, there are two mainstream approaches for distributed

computations on sensitive data with provable security and privacy. They are the

differential privacy framework and the secure multi-party computation (secure MPC)

framework [46, 34]. In the sequel, we provide a brief review of each framework and

4



evaluate their appropriateness as an outsourcing platform for multimedia data.

Differential Privacy

There is a strong need to quantify privacy in the outsourced scenario. Contributors of

data to third-party platforms face several threats to their privacy [114]. Take a person

participating in a large-scale health care study for example. First, the patient’s data

may be recorded and exposed by a malicious application as part of the study. The

malicious application could stealthily write the stolen data into a file and put it on the

Internet. Then the file could be indexed by a search engine and thus further exposed

to the public. Second, even if all computations are done correctly and securely, the

final result itself, such as those common statistics computed in the study, may leak

sensitive information about the patient’s personal medical record. To address the

aforementioned concerns, traditional approaches to data privacy are to sanitize the

data by syntactic anonymization, in which personally identifiable information such as

names, ages, and Social Security numbers are removed. Unfortunately, the approach

of anonymization does not provide provable privacy guarantees. For example, public

releases of anonymized individual datasets, including AOL search logs [1] and the

movie rating records of Netflix subscribers [95], eventually reveal customers’ private

information. They are evidence that näıve anonymization was easy to reverse in

many cases. These incidents motivate a new approach called diferential privacy to

protecting data privacy quantitatively [114].

Differential privacy was proposed for the purpose of enabling systems to draw

inferences from datasets while preserving the privacy and security of the data and

individual identities. Suppose there are n records in a dataset D = (x1, ...,xn), where

each xi is a vector in Rd and represents the data collected from an individual i. The

number of elements, d, in xi can be understood as the d features of an individual.

Differential privacy is defined as follows [118].
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Definition 1.2.1. An algorithmApriv(·) taking values in a set T provides ε-differential

privacy if

P(Apriv(D) ∈ S) ≤ eε · P(Apriv(D
′
) ∈ S) (1.1)

for all measurable S ⊆ T and all datasets D and D′ differing in a single entry. The

algorithm Apriv(·) provides (ε, δ)-differential privacy if

P(Apriv(D) ∈ S) ≤ eε · P(Apriv(D
′
) ∈ S) + δ (1.2)

for all measurable S ⊆ T and all datasets D and D′ differing in a single entry.

Privacy parameters are ε and δ. The smaller ε and δ are , the more privacy Apriv(·)

would ensure [47, 135]. The computation under the differential privacy framework is

in the interactive query model. There are two roles in the computation, one is the

user and the other is the curator of the database D. The user submits queries to the

curator and the latter replies approximate answers.

For the application of the differential privacy framework in signal processing prob-

lems, there has been some progress recently. Rastogi and Nath proposed the first

differential private data aggregation algorithm for distributed time-series data that

offers good practical utility without relying on any trusted server [110]. To ensure

differential privacy while overcoming the poor performance for time-series data by

standard differential privacy techniques, they proposed the Fourier Perturbation Al-

gorithm. FAST, an adaptive system to release real-time aggregate statistics under

the differential privacy framework, was proposed using Kalman filter to improve the

accuracy of data release per time stamp [51].

However, there are some open problems in the area of differential privacy that

makes it inappropriate for the application scenario described in Section 1.1. First,

the differential privacy framework provides approximate results [118], which is not

satisfactory in many signal processing tasks. Second, the choice of the privacy pa-

rameters ε and δ has little consensus. While there is heuristics on choosing ε, the
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problem of choosing δ for the (ε, δ) differential privacy defined in 1.2 is poorly under-

stood [48, 54]. Third, there are no differential privacy systems developed for the joint

computation carried out by distrusted parties using their respective private inputs.

Despite the fact that Proserpio et al. proposed distributed algorithms for publication

for graph topologies [108], and McSherry and Mahajan considered the network trace

problem [89], research on the networked information systems in differential privacy is

still at its early stage. Thus, the general scenario in Section 1.1 is not yet ready to

be deployed in the differential privacy framework.

Our focus is on two or more data owners computing jointly to obtain precise

answers. While the differential privacy framework lacks mature joint computation

solutions and provides only approximate results to computing tasks, the secure MPC

framework provides exact outputs. Hence, we are most interested in the approach of

secure MPC.

Secure Multi-Party Computation

Privacy protection in distributed computing enables distrusting parties to participate

in joint computation without revealing their secret data. For example, a small com-

pany can process its confidential customer data using a proprietary software from a

vendor. The standard approach to protect the secrecy of data from all parties in a

joint computation is to use secure multiparty computation or secure MPC protocols.

The goal of secure MPC is to enable multiple distrusted parties, in the absence

of any trusted third parties, to jointly compute a pre-agreed functionality based on

each party’s private input. Many protocols for secure MPC have been proposed

since 1982 [13]. There has been work on various secure MPC protocols for image

denoising [115], joint computation among social network members [58], linear pro-

gramming [127], auction [22], etc.

The simplest form of a secure MPC is a two-party secure computation shown
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in Figure 1.2. The model has two participants, User and Vendor, each has his/her

secret input. They encrypt their respective input using some secure MPC technique,

with the most commonly-used one being the homomorphic encryption (HE) [103] and

the garbled circuits (GC) [138]. Hence, the information exchanged between the two

parties does not disclose any information about the secrets. This is the model used

in encrypted-domain techniques. Data processing operations are to be performed

directly on encrypted signals.

Figure 1.2: Two-party Secure Computation Scenario

Nevertheless, despite being actively researched for more than 30 years, and signif-

icant advancement in the last few years [83, 123, 77], secure MPC protocols are still

rarely used in practical systems since its invention by Yao [138]. The only reported

large-scale application of secure MPC is the Danish sugar beet auction in January

2008 where over 1200 farmers and three servers participated [22]. The execution of

the secure MPC ensured that each bid from a farmer submitted to the auction was

kept secret from the time it left the bidder’s computer. The goal of the secure MPC

system is to efficiently compute the price at which contracts should be traded without

direct access to the actual bidding prices.

One key reason of the lack of practical secure MPC systems is the high compu-

tational costs secure MPC protocols required, especially among those that rely on

encrypted-domain processing. These protocols, classified as computationally secure

multi-party computation (CS-MPC) protocols, achieve their security against any

adversary limited to polynomial computing time. The encrypted-domain algorithms

compute the desired output using only the encrypted input signals. Such techniques
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have garnered much attention in recent years due to their potentials in various secu-

rity and privacy applications such as biometric matching and privacy-preserving data

mining [106, 82].

The key challenge facing most encrypted-domain DSP systems is the significant

increase in the computational complexity. For example, Yao’s garbled circuits [138]

with its variants is one of the most popular approaches for encrypted-domain DSP.

The best result to-date on the performance of garbled circuit is about 1.6µs per

garble gate or 625000 gates per second [83]. This is minuscule compared to most

modern micro-processors, where even the slowest ones can easily execute billions of

instructions per second.

There are two reasons for the enormous gap between computation in plaintext

and in ciphertext: first, the protection of ciphertext relies on the computational

hardness of certain mathematical problems. To ensure even a short-term protection

against adversaries, a large security parameter needs to be used which results in a

hundred to a thousand-fold increase in the data size. Second, the particular choice

of cryptographic primitives used in the system strongly affects the implementation

complexity of various basic operations. While the performance of certain operations

can be optimized, most other basic operations require more complex procedures and

interaction with secret owners.

An alternative is to use information-theoretic secure MPC (ITS-MPC) protocols.

In these protocols, information exchanged between different parties are statistically

independent of the secret data. As ITS-MPC protocols do not depend on the hardness

of specific computational problems, they often admit faster implementations using a

smaller prime field for data representations [134, 116, 42]. Typical baseline proto-

cols for ITS-MPC include linear secret sharing [84], additive secret sharing [21], and

Shamir’s secret sharing (SSS) [119]. Secret sharing schemes are schemes that decom-

pose a secret number into multiple shares distributed to different parties. Individual

9



shares should not reveal any information about the secret but can be combined to

recreate it.

SSS is among the earliest and most commonly-used ITS-MPC primitives. In SSS,

secret information is first decomposed into multiple random shares using a polynomial

secret sharing scheme. Similar to garbled circuits and homomorphic encryption, SSS

is also homomorphic - computation with respect to addition and multiplication on se-

cret numbers can be carried out through manipulation of the shares. Compared with

encrypted-domain approaches, SSS does not require long keys and its implementa-

tions of basic arithmetic operations are usually much simpler. Unlike those encrypted-

domain approaches, protocols based on SSS can achieve information-theoretic security

– they guarantee security against an adversary with infinite computing power. Di-

rect computation on shares is ideally suitable for privacy and security enhancement

of high data-rate applications such as multimedia processing and data mining. It

has been applied in many areas from typical privacy-enhanced applications such as

auction [22] and private information retrieval [42], to signal-processing applications

including medical data visualization [91], image processing [116] and video surveil-

lance [126].

A drawback of SSS is the need to maintain a fraction of the computational parties

non-colluding [16]. Specifically for SSS, computation is only feasible with at least

three non-colluding semi-honest shareholders. Researchers have long pointed out the

danger of collusion attacks in outsourced computation [40]. In fact, these attacks are

significant real-life problems and occur in many networked applications. In online

Poker and P2P file sharing, cheaters collude to have advantage over other honest

players [59, 80]. PokerStars, one of the the largest online poker cardrooms in the

world, recruits special security personnel to manually investigate special play patterns

to uncover collusion patterns [59], and prohibits players from the same country to be

in the same game [5]. Colluding communication usually exists in two different forms:
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it can occur in side-channels external to the protocols, or as hidden data within,

otherwise known as subliminal communication [2]. Algorithmically, it is impossible

to design protocols to curtail communications over unknown side-channels. Existing

anti-collusion techniques focus on eliminating subliminal communication by relying

on either a semi-honest/trusted centralized server [2, 3] or a specially-designed ballot

box [73]. These require heavy computation at a fortified centralized server, which

defeats the efficiency goal of using SSS based ITS-MPC techniques.

1.3 Contributions

In this dissertation, our main contribution is the collusion deterrence for the ITS-

MPC framework. We propose a collusion-deterred outsourced computing platform

using SSS as a building block. This platform consists of a set of computing agents

that provide computing services for secret-data owners to collaborate on joint com-

putation using secret shares. Collusion, modeled as a covert adversarial behavior, can

occur between one of the data owners and a portion of computing agents, or among

the computing agents themselves. Unlike existing approaches, we model collusion as

games and propose various mechanism designs that lead to honesty as stable strate-

gies. The advantage of our approach is that no centralized server or computationally-

intensive protocols are needed, making our solutions ideal for high-throughput signal

processing applications. Our treatment is also comprehensive because the proposed

models can handle different types of collusion attacks including those that may not

be detected at all by the participants. In this dissertation, we further apply Bayesian

games to better model the uncertainty in data owners’ privacy preference, propose

a new censorship scheme to thwart collusion among computing agents, and provide

additional experimental results to show the efficiency of SSS-based algorithms over

other state-of-the-arts CS-MPC protocols.
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1.4 Dissertation Organization

This dissertation is structured as follows. In Chapter 2 we present the information of

related work for secure MPC, collusion deterrence, and secret sharing. In Chapter 3,

we summarize general operations of signal processing in the secret sharing domain,

specifically, using the Shamir’s secret sharing (SSS). We also describe the secure MPC

based on SSS in terms of its security model, its classification according to the com-

putational power of the adversary, and the computational techniques for building

arithmetic operations. To demonstrate the usefulness of secret sharing domain signal

processing, we propose an application of image denoising through wavelets trans-

form. In Chapter 4 we discuss the collusion attacks under our proposed framework.

In Chapter 5 we propose and analyze our game-theoretic mechanism designs for the

collusion deterrence between customers. In Chapter 6 we describe analyze further

mechanism designs as well as a censorship scheme for the collusion deterrence for

computing agents. Experimental results are presented in Chapter 7. Finally, Chap-

ter 8 concludes this dissertation and points out future directions.
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Chapter 2 Related Work

In this chapter, we provide a review for the area of secure MPC. We survey existing

tools for both computational secure MPC (CS-MPC) and information-theoretic secure

MPC (ITS-MPC). After that, we summarize previous efforts on counter-measuring

collusion attacks in secure MPC protocols. Then we provide an overview of existing

game-theoretic perspectives on secure MPC, which are relevant but different from our

approach. Finally, we finish our review with a discussion of secret sharing schemes.

2.1 Secure MPC Review

The study of secure multiparty computation started in the 1980s [138]. There are four

main types of secure MPC primitives: Garbled Circuits (GC) [138], Homomorphic

Encryption (HE) [111, 57], GMW protocol [61], and BGW protocol [12]. GC is one

of the most well-developed secure MPC protocols. It provides a generic two-party

implementation of any binary function by having one party prepare an encrypted

Boolean circuit, and another party evaluate the circuit using the public-key based

oblivious transfer protocol [75]. In recent years, there have been significant advances

in optimizing the basic GC protocols [70, 77, 123], and in developing novel efficient

hybrid circuits [83, 97].

Homomorphic encryption is a special kind of public-key encryption where some al-

gebraic manipulations on plaintext numbers can be realized in the encrypted domain.

Earlier homomorphic encryption such as RSA [112], ElGamal [50], and Paillier [104]

are only partially homomorphic. Fully homomorphic encryption or FHE was proposed

in [57] but remained highly complex and impractical for realistic computations [92].

Nevertheless, recent work [39, 23] has demonstrated efficient implementations of small

circuits using the so-called somewhat homomorphic encryption (SHE).
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Compared with the original plaintext computation circuit, the reliance on public-

key protocols like oblivious transfer and homomorphic encryption significantly in-

creases the size of the encrypted circuit. Instead of public-key based representations,

the protocol proposed by O. Goldreich, S. Micali, and A. Wigderson, or the GMW

protocol [62], and the protocol by M. Ben-Or, S. Goldwasser, and A. Wigderson, oe

the BGW protocol [12], use secret sharing schemes such as Shamir’s Secret Sharing

(SSS) scheme [119] to protect the secrecy of the operands. While GMW still re-

quires oblivious transfer to protect against malicious adversaries, the BGW protocol

is free of any expensive public-key operations and can use any prime field to achieve

information-theoretic security (ITS). The efficiency of the BGW protocol makes it

the basis of some ITS-MPC platforms including FairplayMP [11] and Sharemind [21],

the latter being used by the Estonian Government in studying the linkage of tax and

education records [20]. The focus of this dissertation is on building the application

framework for the BGW protocol, specifically with the SSS building block, for signal

processing.

The use of secure MPC in signal processing has a late start due to the sub-

stantial challenges in adapting the complex protocols to handle the high data rate

and real-time response demanded by typical signal processing applications. One of

the earliest projects, SPED (Signal Processing in the Encrypted Domain) and its

follow-on research were products of joint efforts between the applied cryptography

and signal processing communities, resulting in a number of homomorphic encryp-

tion based implementations of fundamental algorithms such as Fourier Transform

and filtering [41, 107, 18, 19]. Since then, there have been many other privacy en-

hanced applications from audio processing to biometric matching developed using

both GC and HE. Interested readers should consult survey papers in this area such

as [87, 52, 105]. Recently, efficient SSS-based protocols started to emerge in dif-

ferent signal-processing applications including medical data visualization [91], image
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denoising [116], video surveillance [126], and outsourced image enhancement [78].

2.2 Adversarial Model and Collusion Attacks in ITS-MPC Protocols

A key weakness of the BGW protocol is its susceptibility to collusion attacks. In SSS,

the secret can be reconstructed using shares from a subset of the computational par-

ties. The smallest size of such a subset is called the threshold of the SSS scheme and

it has been shown that the threshold cannot be smaller than half of the total number

of parties [12]. A collusion attack occurs when an adversary with malicious intent

controls the threshold or more parties in a joint computation. In the most general

case, when parties are connected by pairwise communication channels, collusion-free

protocols for computing non-trivial functions are impossible [3]. For our target ap-

plication of outsourced computation, we provide a detailed analysis of different col-

lusion attack scenarios in Section 4.2. Typical cryptographic approaches to counter

collusion include the use of centralized trusted mediators [2, 3] and complex crypto-

graphical constructions [12, 73]. These computationally intensive constructions are

incompatible with our efficiency goal in applying secure MPC techniques for high-rate

distributed signal processing applications.

Our focus on solving collusion attacks in outsourced computation stems from its

significant differences from other types of adversarial attacks. General consideration

of attacks on secure MPC protocols include two different aspects: 1) how parties are

identified and corrupted by an adversary, and 2) how corrupt parties behave under the

control of an adversary. For the first aspect, existing classifications typically focus on

whether an honest party becomes corrupted during the course of the computation [67].

For collusion attacks, this question is less important than how an honest party is

corrupted by an adversary to collude in stealing a secret - is it due to information

received in-band as part of the defined protocol or out-of-band through side channels?

The first kind is termed a local adversary attack as it is based on local information
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anticipated by the protocol. The local adversarial model has been used to model

collusion attacks before [24] and will be assumed in our protocol design.

As for the second question, adversarial behaviors are typically classified into semi-

honest and malicious. Semi-honest refers to behaviors that do not deviate from the

protocols but attempts to extract useful information from received data. The SSS

protocols described in Section 4.1 are secure under a semi-honest model. The semi-

honest model is quite limited in practice - it certainly cannot capture an attempt of a

corrupted party to persuade others to collude. The other end of the spectrum is the

malicious model which puts no restriction on the behaviors of a corrupted party, which

can disrupt and terminate the protocol at any time. Classical feasibility results have

already demonstrated that IT security can be achieved by an addition of a broadcast

channel and the use of verifiable secret sharing [109]. These additions, however,

significantly limit their applications due to a much higher computation complexity.

More importantly, the malicious model does not model colluding activities ad-

equately. First, in the presence of side channels, collusion can occur entirely out-

of-band and it is impossible to counter using only protocol design. Second, it does

not address the dynamic nature of collusion in which an honest participant agrees or

refuses to collude. Assuming that there is a rational being behind each participant,

there must be an external reason behind this decision such as a higher reward or a

non-negligible probability of getting caught. Such behaviors can be modeled with a

covert adversarial model in which a malicious attack can be deterred if the adversary

can be caught with high probability [8]. Many work have used this security notion

to design protocols that are more practical and efficient than those based on the no-

tion of malicious adversary. They achieve computational security using the building

blocks of oblivious transfer and homomorphic encryption [96, 7]. In [37], the authors

showed a general procedure to compile a protocol robust against the passive adver-

sary into a protocol against the covert adversary with cheating behavior being caught

16



at a probability of 1
4

or higher. Their benchmark on an AES cipher demonstrated a

significant performance enhancement over the baseline protocol that is secure against

the malicious adversary [38].

2.3 Game-Theoretic Analysis for Secure MPC

More fundamental to the protocol design is to address the rationality behind adversar-

ial behaviors. The use of game theory nicely captures the rationality of adversaries in

many commercial, political, and social settings: weighing the gain of cheating against

the risk and loss of being caught [66, 120]. The seminal work on rational secret sharing

and secure MPC by Halpern and Teague first took into account the rational decision

making process of the participants [65]. Since then, there has been several work focus-

ing on various aspects of rational secure MPC including mixed-behavior models [88],

rational ITS-MPC over broadcast channels [76], and computationally efficient rational

secret sharing [53]. Other work attempts to recast the secure MPC problem from a

game-theoretic perspective. In [6], the authors investigated two-party computation in

the context of a fail-stop game and extended the notions of privacy, correctness, and

fairness through equilibrium definitions from game theory. Recently, rational secret

sharing has also been extended to incorporate perfect Bayesian equilibrium to model

imperfect designs [131].

However, the problem addressed by the work[6, 131] is different from ours. They

provide solutions on how to encourage all agents to honestly carry out the computa-

tion so that the agents themselves can benefit from knowing the final answers. Such

formulation is not suitable for the computation outsourcing scenarios that we are

addressing. For outsourcing, the computational agents have no stake on the actual

secrets as they are simply carrying out a pre-defined computation in exchange for

some kind of reward. Also, the active involvement of an agent in a collusion at-

tack does not necessarily disrupt the computational process and the customers can
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still obtain the correct final results. As a result, our work primarily focuses on the

mechanism designed to cope with the heterogeneous nature of the games involving

both customers and computational agents as well as imperfect knowledge behind their

utility functions.

2.4 Secret Sharing Schemes

A secret sharing scheme serves as a procedure that involves two types of roles: the

secret owner and the share holding parties. The secret owner acts as a dealer to dis-

tribute shares to parties so that only authorized subsets of parties can reconstruct the

secret. Secret sharing schemes are important building blocks in cryptography and they

are used in many secure protocols. They have found a broad range of important ap-

plications. For example, general protocol for multi-party computation [14], Byzantine

agreement [109], threshold cryptography [56, 74], access control [93], attribute-based

encryption [63], and generalized oblivious transfer [71, 124].

Here we briefly review some of the most interesting constructions of secret sharing

schemes that are linear, that is, the distribution scheme is a linear mapping. We are

most interested in Shamir’s Secret Sharing (SSS), which is the building block for the

system proposed in this dissertation. It enjoys the property of homomorphism – that

addition and multiplication can be carried out directly on the shares [16]. SSS belongs

to the category of threshold secret sharing schemes, where the authorized sets, or the

access structure, are all sets whose size is bigger than some threshold. A (t, n) SSS has

the threshold being t and there are a total of n parties. Both t and n are integers and

1 ≤ t ≤ n. The access structure can be defined as At = {B ⊆ {p1, ..., pn} : |B| ≥ t},

where pi, i ∈ {1, ..., n} is the i−th party. The secret is hidden as the constant term

of a polynomial with random coefficients chosen by the secret owner. The shares are

evaluated at different points of the polynomial. A detailed review and discussion of

SSS can be found in Section 3.1. Benaloh and Rudich constructed a secret-sharing
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scheme that has its access structure corresponding to edges of a complete undirected

graph with m vertices v1, ..., vm. A secret bit k is shared into (m − 2) bits. Each

of the (m − 2) parties will have a bit calculated based on the generated bits [10].

Ito et al. defined secret sharing schemes for general access structures. They showed

the construction of such schemes for every monotone access structure. Let A be any

monotone access structure. The secret owner shares the secret independently for each

authorized set B ∈ A [72]. Generalizing the construction of [72], Benaloh and Leichter

proposed a construction of secret-sharing schemes for any monotone formulae access

structure. The length of the shares becomes exponential in the number of parties [15].

There is another category of secret sharing used for visual cryptography. It allows

secret visual information to be embedded and encrypted in a cover image such that a

well defined subset of the shared cover image could be overlapped to reconstruct the

secret visual information [30].
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Chapter 3 Encrypted Domain Signal Processing

In this chapter, we extend the basic homomorphic properties of Shamir’s sharing

scheme to handle common signal processing operations such as filtering and thresh-

olding. Based on these building blocks, we design an information-theoretically secure

protocol for distributed wavelet denoising. The operational setting of the protocol

described in Section 1.1 is repeated here as follows: a user U has an image which

he/she wants to keep private but requires denoising. A software provider called V

the Vendor holds a proprietary wavelet filter and a denoising threshold. After de-

composing their secret data into random shares, the shares are transmitted to three

computing parties in a network which provides point-to-point secure communication.

We assume that all three parties do not collude on their shares, and we will demon-

strate that the received data contain no information about the image nor the filter.

Once the computation is complete, the resulting shares are transmitted back to the

user to reassemble the denoised image. The key contributions of our work include the

development of information-theoretic secure signal processing building blocks with

secret shares and the demonstration of a realistic image processing algorithm using

the proposed framework. The organization of the Chapter is as follows: Section 3.1

reviews the Shamir’s secret sharing scheme and defines notations used in the rest

of the chapter. Section 3.2 shows how fundamental operations for signal processing

can be implemented with secret sharing. Section 3.3 describes our secure image de-

noising protocol and analyzes its complexity. We provide implementation details and

experimental results in Section 3.4, and conclude the chapter in Section 3.5.
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3.1 Shamir’s Secret Sharing

Let x be a number in a prime field Fm with m prime. Let n be the number of

parties and t, called the threshold, be a positive integer between 1 and n. A (t, n)

secret-sharing scheme of a secret number x produces n shares [x]ti, i = 1, 2, . . . , n such

that any group of t or more shares can be used to reconstruct x. Any group of less

than t shares, however, provides no information about x. Shamir’s secret sharing

scheme hides the secret as the constant term of a random degree (t− 1) polynomial.

The polynomial coefficients αj’s are uniformly random numbers selected by the secret

owner. The secret owner generates the ith share by evaluating the polynomial at a

public constant ki which usually is agreed to be the identity number of the ith party:

[x]ti ,
t−1∑
j=1

αjk
j
i + x mod m. (3.1)

The fact that αj’s are uniformly random in a prime field implies that the shares must

also be uniformly random, thereby providing no information about x. Given at least

t shares, the secret number x can be reconstructed with Lagrange interpolation

x =
∑
i∈K

γi[x]ti mod m (3.2)

where γi ,
∏

j∈K,j 6=i
−kj
ki−kj and K is any subset of {1, . . . , n} with at least t elements.

Let x, y ∈ Fm be secret numbers and a, b ∈ Fm be constants. The following

properties of Shamir’s scheme are well known [16]:

(P1) [x+ a mod m]ti = [x]ti + a mod m

(P2) [ax mod m]ti = a[x]ti mod m

(P3) [x+ y mod m]
max(s,t)
i = [x]si + [y]ti mod m

(P4) [xy mod m]
(s+t)−1
i = [x]si [y]ti mod m
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(P5) Assume x, y ∈ {0, 1} and ⊕ denotes xor.

[x⊕ y]
(s+t)−1
i = [x]si + [y]ti − 2[x]si [y]ti mod m

(P6) [x]ti =
∑n

j=1 γj[[x]
(s+t)−1
j ]ti mod m

P1 through P5 form the foundation of computation in secret shares – they show

that performing certain operations on each share of secret numbers is equivalent to

applying those operations first on the secret numbers and then creating the shares.

These operations include addition and multiplication with constants, with other se-

cret numbers, and exclusive-or on secret bits. These operations are universal in the

sense that any computation on a digital computer can be composed by successive

applications of these fundamental operations. Since the original shares do not reveal

any information about the secret numbers, no successive operations on the shares can

gain further knowledge. At the end of the operations, the secret owner can collect

enough shares to reveal the result.

There are however hidden communication cost associated with some of these op-

erations. Multiplication and exclusive-or operations (P4 and P5) produce results in

a sharing scheme with a higher threshold (s + t) − 2, where s and t are the original

thresholds of the two secret operands. Repeated applications of such operations will

eventually arrive at a threshold larger than the number of parties n and the final result

cannot be reconstructed even if all the shares are available. We can solve this prob-

lem by renormalizing the threshold using P6: each party further breaks his/her share

into separate shares and sends a share to its corresponding party. The final share

at each party is computed by a weighted summation of these newly received shares

from other parties. Since each party receives only one share from any other party, no

secret information is leaked. This threshold reduction requires n(n− 1) logm bits to

be exchanged among the n parties. Denote computing parties as Pk for k = 1, ..., n.

To highlight the communication between two computing parties Pi and Pj, we use

the arrow notation “−→”:
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(P6’) Pj : [[expr(x)]qj ]
t
i −→ Pi : [x]ti for i 6= j

The expr(·) operator in P6’ can include a composition of different operations which

increase the threshold to be q > t that may result in one or more steps of renormaliza-

tion. After those steps of renormalization, the new share will again has the threshold

to be t.

An obvious omission from the above properties is division between two secret

numbers. To compute xy−1 mod m, y−1 must exist in Fm. We denote the inverse

operation as follows:

(P7) INVERSE ([y]ti all i) −→ Pi : ([y−1]ti)

INVERSE can be implemented by repeated multiplications according to the Carmichael’s

theorem [113]: y−1 = yλ(m)−1 mod m, where λ(m) is the (reduced) totient function.

Notice that with this equation, the inverse of 0 is defined and is equal to 0. For prime

m, λ(m) = m − 1. For large λ(m) − 1, the inverse operation is expensive as every

multiplication requires a renormalization step. To reduce the number of multiplica-

tions, we can first express λ(m)− 1 as a sum of powers of two, say λ(m)− 1 = 1011

base 2 which implies yλ(m)−1 = y4y2y. We can then recursively compute [y2]ti and

[y4]ti before multiplying them together to get the final answer. The communication

complexity will be O(log λ(m)) rather than O(λ(m)) in the sequential multiplication.

3.2 Signal Processing on Random Shares

Armed with the basic properties, many commonly used signal processing operations

can be implemented. For example, in a linear convolution operation, two parties

holding a secret signal x(t) and a filter h(t) can create n shares independently and

distribute them to n parties to perform a privacy-protected linear filtering:[∑
τ

x(t− τ)h(τ)

]2t−1
i

=
∑
τ

[x(t− τ)]ti[h(τ)]ti (3.3)
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In this section, we survey a set of state-of-art arithmetic operations implemented

in the secret sharing domain. These protocols can form the toolbox for privacy

protecting signal processing tasks. These protocols are designed for integer and fixed

point numbers. They achieve perfect privacy or statistical privacy.

With the domain and range in a prime field Zm, a function can be represented

in the form of an arithmetic circuit or in the form of a Boolean circuit. While the

basic addition and multiplication of shares can be computed in an arithmetic circuit,

non-linear operations such as equality test and comparison are more easily done in

the Boolean circuit. Thus a first step to process shares will be to decompose them

into bit representations. To simplify our notation for a share, we drop the subscripts

i and t which stand for the ith party and the threshold. Suppose a secret x has l bits.

The share of x is denoted by [x]. The bitwise sharing of x is denoted as [x]B. The goal

is to get [xl−1], ..., [x0] which satisfies x =
∑l−1

i=0 2ixi, i.e. [x]B = [xl−1], ..., [x0]. Denote

a random number from Zm as r. We use several primitive protocols to simplify

our descriptions. They are Rand(Zm) which generates a random element from the

prime field Zm, Output([x]) which reveals the number x from its shares [x], and

[x < y?1 : 0]← Bitlt([x]B, [y]B) which carries out bit-wise comparison of x and y in

shares and outputs 1 if x < y, otherwise 0 [36].

Bit Decomposition

Damg̊ard et al. proposed bit decomposition with unconditional security with con-

stant rounds [36]. Nishide and Ohta improved upon Damg̊ard’s work to achieve less

complexity [99]. Their bit decomposition protocol is summarized in Protocol 1.
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Require: [x]
Ensure: [x]B

1. [r]B ← Rand(Zm)

2. [r]← [r]B

3. [c] = [x]− [r]

4. c← Output([c]). If c = 0 done, because [r]B = [x]B by a coincidence.

5. If c 6= 0, compute [q] = [m ≤ r + c]← 1− Bitlt([r]B, [m− c]B)

6. Compute di for i = 0, ..., l−1 that satisfies 2l+c−m =
∑l−1

i=0 2idi, and compute

fi for i = 0, ..., l − 1 that satisfies c =
∑l−1

i=0 2ifi.

7. Compute [gi] = (di − fi)[q] + fi for i = 0, ..., l − 1, i.e. [g]B.

8. Compute [h]B = [r]B + [g]B.

9. Discard [hl] from [h]B to obtain [x]B.

Protocol 1: DECOMPOSITION [x]→ [x]B

Truncation

The truncation operation is a core component in the fixed-point arithmetic. Denote

signed integers as Z〈k〉 = {x̄ ∈ Z|−2k−1 ≤ x̄ ≤ 2k−1−1}. Signed integers are encoded

in the prime field Zm by x = x mod m,m > 2k where m is a prime. The truncation

protocol computes d̄ = bx̄/2s + uc, where x̄ ∈ Z〈k〉 and s ∈ [1, ..., k − 1]. The bit u

depends on the rounding method. Catrina and Hoogh proposed a truncation protocol

that achieves statistical privacy [27]. Their protocol is summarized in Protocol 2.

Equality Test

Given two secret numbers x, y ∈ Zm, the equality test protocol computes [(x ==

y?1 : 0)]. The problem of deciding whether x = y is equivalent to whether x− y = 0.

Let a = x− y, and c = a+ r where r is a random number. Note that c = r if a = 0.

Nishide and Ohta proposed an equality test protocol without decomposing the secret
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Require: [x], k, s
Ensure: [d]

1. [r′′]← Rand(Z〈k〉), [r′]← Rand(Z〈k〉)

2. [r′]B ← Decomposition([r′])

3. c← Output(2k−1 + [x] + 2s[r′′] + [r′])

4. c′ ← c mod 2s

5. [d]← ([x]− c′ + [r′])(2−s mod m)

Protocol 2: TRUNCATION [d]← Trunc([x], k, s)

d into bits. Their protocol is summarized in Protocol 3.

Require: [x], [y]
Ensure: [w] = [(x == y)?1 : 0]

1. [r]B ← Rand(Zm)

2. [r]← [r]B

3. [a] = [x− y], [c] = [a] + [r]

4. c← Output([c])

5. Represent c bitwise as cl−1, ..., c0, and denote new variable [c′i] for i = 0, ..., l−1.

If ci = 1, [c′i] = [ri].

Else if ci = 0, [c′i] = 1− [ri]. Note that c′i = 1 iff ci = ri.

6. [w] =
∧l−1
i=0[c

′
i].

Protocol 3: EQUALITY-TEST [w]← EqualityTest([x], [y])

Interval Test

The interval test protocol is to decide whether a secret element x ∈ Zm is within the

interval [c1, c2] or not, where public constants c1, c2 ∈ Zm and c1 < c2. Nishide and

Ohta proposed an interval testing protocol without decomposing the secret x into

bits. Their protocol is summarized in Protocol 4.
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Require: [x], c1, c2
Ensure: [d] = [([c1 < x < c2])?1 : 0]

1. [r]B ← Rand(Zm)

2. [r]← [r]B

3. [c] = [a] + [r]

4. c← Output([c])

5. If c1 < c < c2 is not true,

If c2 ≤ c,

[d1] = Bitlt([c− c2]B, [r]B), [d2] = Bitlt([c− c1]B, [r]B),

[d] = [d1]× [d2].

If c ≤ c1,

[d1] = Bitlt([c+m− c2]B, [r]B), [d2] = Bitlt([c+m− c1]B, [r]B),

[d] = [d1]× [d2].

6. If c1 < c < c2 is not true,

[d1] = Bitlt([c− c1 − 1]B, [r]B), [d2] = Bitlt([c+m− c2 + 1]B, [r]B),

[d3] = [d1]× [d2],

[d] = 1− [d3].

Protocol 4: INTERVAL-TEST [d]← IntervalTest([x], c1, c2)

Exponentiation

Given a public constant a ∈ Zm and the secret x ∈ Z, the secure MPC protocol

of exponentiation calculates xa mod m ∈ Zm. Damg̊ard et al. proposed a private

exponentiation protocol with perfect privacy summarized as follows in Protocol 5 [36].

Comparison

Comparison is central to non-linear signal processing. To implement comparison, we

first need to clarify its semantics in the prime field Fm. We allow negative secret
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Require: [x], a
Ensure: [xa]

1. [r]← Rand(Zm), compute [ra].

2. Compute [xr], and reveal xr ← Output([xr]).

3. Compute y = (xr)a = xara.

4. [xa] = y[r−a] = y[(ra)−1].

Protocol 5: EXPONENTIATION Exp([x], a)

number −x to be represented by m − x in Fm. Thus, a comparison of x > 0 is

equivalent to x mod m < dm/2e. Second, we need to select m to be at least twice

as big as the dynamic range of any intermediate and final values in the target signal

processing algorithm. This is necessary to ensure that we can represent both xmax −

xmin and xmin−xmax in Fm where xmax and xmin are the largest and smallest numbers.

To handle the non-linear nature of comparison, we rely on the radix-2 representations

of the numbers. Let us start with a simpler version of comparison that compares two

secret numbers v and w in plaintext stored at two different parties. To simplify the

description of the protocol, we assume a three-party computation, i.e. n = 3 and

t = 2. The notation of this comparison protocol is as follows:

(P8) COMPARE2 (v at P1, w at P2) −→ Pi : [v > w]2i

where the binary predicate v > w is 1 if true and 0 if false. Notice the binary output

is represented in F5, which is the smallest prime field one can use to represent a secret

among three parties. We use such a small prime field to minimize the communication

overhead. The details of the protocol are given in Protocol 6 [117].

Correctness: Steps 1 and 2 create shares for each bit in v and w. Step 3 computes

the expression (v0 − w0 + 1), which is 2 if v0 > w0, 0 if v0 < w0, and 1 otherwise.

For the subsequent bits, bj at step 4 is 1 until the corresponding bits from v and w

begin to differ, and all the subsequent bj’s will be 0. (vj −wj + 2− bj) will be 1 until
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Require: v at P1, w at P2, and [b0]
2
i , [1]2i

Ensure: [c]2i at party Pi for i = 1, 2, 3 where c , (v > w).

1. P1,2 : v , v0 . . . vl−1 base 2, w , w0 . . . wl−1 base 2

2. P1,2 : [vj]
2
i , [wj]

2
i −→ Pi for j = 0, . . . , l − 1.

3. Pi : [c]2i , [v0 − w0 + 1]2i

4. for k = 1 to 3 and j = 1 to l − 1

Pk : [[bj−1(1− vj−1 ⊕ wj−1)]3k]
2

i −→ Pi : [bj]
2
i

Pk : [[c(vj − wj + 2− bj)]3k]2i −→ Pi : [c]2i

5. Pk : [[c4]k]
2
i −→ Pi : [c]2i

Protocol 6: COMPARE2(v, w)

the bits start to differ – it will be 0 if v < w and 2 if w > v. This leads to c = 0

if v < w. The subsequent steps inside the loop will not produce another 0 because

bj = 0 and vj − wj + 2− bj can only be 1 or 3. As such, c is 0 if and only if v < w.

At step 5, we invoke the Carmichael’s theorem to ensure that the output can only be

0 or 1. Security & Complexity: Communications occur at steps 2, 4, and 5. Step 2 is

the initial distribution of shares and the rest are all renormalization steps. As such,

none of them provide any additional information. The protocol is thus secure. The

communication complexity of COMPARE2 is (20l − 6) log 5 bits.

COMPARE2 requires the plaintext of the secret numbers while a proper COM-

PARE function should assume that each party has access to only a share of the secret

numbers. We will take the difference between the two secret numbers as [x]ti and

develop the COMPARE function to determine if x < dm/2e as follows:

(P9) COMPARE ([x]2i all i) −→ Pi : [x < dm/2e]ti

Correctness: Steps 1 through 4 creates plaintext numbers v and w at party 2 and 3

to represent x using (3.2) such that

x = (v mod m+ w mod m) mod m.
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Require: [x]2i at party Pi for i = 1, 2, 3
Ensure: [d]2i at party Pi for i = 1, 2, 3 where d , (x < dm/2e).

1. P1 : a random r −→ P2.

2. P1 : u , γ1[x]21 − r −→ P3.

3. P2 : v , γ2[x]22 + r

4. P3 : w , γ3[x]23 + u

5. COMPARE2(m− v, bm/2c+ w) −→ [a]2i

6. COMPARE2(v,m− w) −→ [b]2i

7. COMPARE2(m+ dm/2e − v, w) −→ [c]2i

8. Pk : [[a⊕ (bc)]k]
2
i −→ Pi : [d]2i

Protocol 7: COMPARE
(
[x]ti for i = 1, 2, 3

)
If x < dm/2e, then one of the following two statements must hold:

v mod m+ w mod m < dm/2e (3.4)

m ≤ v mod m+ w mod m < m+ dm/2e (3.5)

Step 5 checks the inequality in (3.4), and steps 6 and 7 check (3.5). Since the two

steps cannot both return 1, the output can be computed using an exclusive-or as in

step 8. Security & Complexity: Since r is random, party 2 and 3 cannot gain any

knowledge about the original share of party 1. The security of the rest of the protocol

is guaranteed by that of COMPARE2. The communication complexity of COMPARE

is 2l + (60l − 6) log 5 bits.

3.3 Privacy-Protected Image Denoising

This section describes the adaptation of wavelet denoising into secret shares. As

described in Section 1.1, two customers, User U and a software provider Vendor

V come to a third party computing platform for a joint task. U owns a secret

image and V owns the filters and the denoising parameters. All secret data will be
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decomposed into random shares which are distributed to three non-colluding semi-

honest computational parties to execute the algorithm.

Discrete Wavelet Transform (DWT)

DWT is the first step of many important image processing functions including de-

noising, compression, and enhancement. The most common implementation of DWT

is via a dyadic tree, shown in Figure 3.1 (a). Such an implementation involves the

repeated application of linear filtering. In order to preserve the homomorphism, a

renormalization step needs to be applied after each level of filtering. Let’s consider

the communication complexity of implementing a 2-level 2D-DWT. Suppose the size

of the initial secret share is l bits per pixel for the image. We ignore the contribu-

tions from the filters which are small compared with the image. Initial dissemination

creates 3l bits per pixel. After horizontal filtering, the first renormalization gener-

ates an additional 6l bits per pixel. As the second level of DWT applies only to the

lowest frequency subband, it generates an addition 6 · l
4

= 3l
2

bits per pixel for each

of the vertical and horizontal filtering. The overall communication overhead is thus

3l + 6l + 3l = 12l bits per pixel. Alternatively, we can flatten the dyadic tree into

a filter bank of seven subband filters as shown in Figure 3.1 (b). The filter bank

itself can be computed by passing a single impulse as an input signal to the dyadic

DWT. As the input has only 1 pixel, the communication overhead is negligible. The

subsequent processing on the random shares of the image does not need any commu-

nication beyond the initial distribution of the shares, which amount to only 3l bits

per pixel or 1
4

of that required by a dyadic tree implementation. The computation

complexity increases slightly due to the use of 2-D filters.
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Figure 3.1: Two implementations of DWT: (a) via a dyadic tree, (b) the flattened version of (a)

Wavelet shrinkage

In this section, we describe our implementation of a popular wavelet shrinkage denois-

ing technique called BayesShrink [29]. While keeping the wavelet coefficients from the

lowest frequency subband yL intact, coefficients from the high frequency subbands yH

are shrunk by a threshold λ if their absolute values are bigger than λ or set to zero if

smaller. In the share domain, this shrinkage function can be implemented with the

COMPARE protocol from Section 3.2:

δλ(yH(i)) , COMPARE(yH(i), λ)(yH(i)− λ) +

COMPARE(−λ, yH(i))(yH(i) + λ) (3.6)
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There are many different approaches to determine λ and we use λ = σ2
y/σw, where

σy is the estimated noise variance of the image:

σy =

∑N
i=1 |yHH(i)|
0.6745N

(3.7)

with yHH denoting the highest diagonal frequency subband andN its size. σw estimate

the noise variance of the particular subband to be denoised:

σw =

[
max

(
1

Nw

Nw∑
i=1

yw(i)2 − σ2
y, 0

)]1/2
(3.8)

with yw denoting the subband and Nw denoting the number of coefficients in yw. This

implementation is a slight variation of that described in [29].

While it is possible to implement these equations entirely in the secret share

domain, the protocol will reveal the threshold calculation process – a key step which

the software provider may want to keep as a secret. To keep this step proprietary,

we compute subband statistics including
∑

i |yHH(i)| and
∑

i yw(i)2 in shares but

reconstruct the final statistics into plaintext for the software provider to determine λ.

Such statistics reveal little information about the details of the image but enable the

software provider the flexibility in determining the threshold in private. Finally, the

provider will create 3 shares of λ and send them back to the computational agents to

complete the shrinkage from Equation (3.6). A final remark about the calculations

of the two subband statistics: to prevent possible overflow, we use multiple words to

keep track of overflow digits. For example, if we want to hold the running sum in two

words S0 and S1, we will first compute the carry bit C = COMPARE(S0, Rmax − x)

where Rmax is the range for one word and x < Rmax is the next number to be added.

Then, we store the results in two words: S1 , S1 + C and S0 , S0 − CRmax + x.

3.4 System Implementation and Experiments

We implement our protocols in MATLAB on five different machines on the same

LAN. Machines representing the user and the filter owner carry out the simple tasks
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generating shares and assembling the final results. The bulk of the computation are

done at the three machines corresponding to the computational agents. They all run

windows 7 with 4 GB RAM on Intel Core 2 Quad CPU Q9650 @ 3 GHz. For the

wavelet filters, we use the rationalized version of the 9/7 biorthogonal pair of Co-

hen, Daubechies, and Feauveau [125]. We chose the modulus m to be the prime just

greater than 231 and evaluate the shares at ki = 1, 2, and 3. Table 3.1 provides time

measurements including data transmission time of the proposed algorithms using a

9/7 wavelet filter on a 128 × 128 image. RENORMALIZATION is essentially the

Table 3.1: Time measurements of different protocols

Algorithm Time (per pixel)

SHARE CREATION 3.600 us
RENORMALIZATION 5.587 us

COMPARE2 1.126 ms
COMPARE 3.425 ms

1-Level DENOISING 30.406 ms

same as SHARE CREATION plus network time in distributing shares. Their differ-

ence highlights the fact that a significant portion of time is devoted for networking.

COMPARE2 represents a significant increase in complexity compared with the more

elementary functions. Even though we execute each step of our protocol over the

entire image so that we can accumulate enough information for better network uti-

lization, the repeated usage of renormalization in COMPARE2 significantly increases

the time spent on data transmission. For a 1-level denoising scheme, roughly 10

COMPARE operations are used per pixel – two are for shrinkage while the remaining

eight are for statistics computation.

3.5 Summary

In this chapter, we have presented information-theoretic secure protocols for privacy-

protected signal processing. Using the classical Shamir’s secret sharing scheme, we
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have developed algorithms to handle various fundamental signal processing opera-

tions. These operations are used to build a realistic wavelet denoising system over

three non-colluding computing agents and performance numbers are measured. Other

signal processing applications on secret shares and network protocols to deter collu-

sion in a distributed environment will be described in details in the remaining of this

dissertation.
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Chapter 4 Collusion Attacks in the Outsourced Computing

In this chapter, we begin with an overview of our computing framework. We then

provide a background review on game theoretic mechanisms in Section 4.1 which is

needed for the remainder of the dissertation. Section 4.2 presents our collusion attack

model.

4.1 Background

Outsource Computation

Our computing framework is composed of two types of participants: the computing

platform agents and the platform customers, i.e. the secret-data owners. Denote any

pair of platform customers as U and V who want to cooperate in a joint computation.

We focus our discussions on two parties but the scheme is general enough for arbitrary

number of parties. U and V do not trust each other with their secret data and they

do not possess the necessary resources for the computation. As such, they outsource

their computation to the computing platform by means of the SSS protocols.

At the heart of any SSS protocols is the assumption of the availability of multiple

computing agents. Compared with other encrypted-domain techniques, SSS is par-

ticularly suitable for protecting privacy in distributed signal processing because it is

information-theoretic secure and does not require computation in a large prime field.

We denote a computing agent in the computing platform as Ai where i ∈ {1, 2, . . .}.

To coordinate different agents, we assume that there is a coordinator C who is re-

sponsible for keeping records of the IDs of participants but does not handle any actual

secret data. This architecture is illustrated in Figure 4.1. Note that U and V do not

trust Ai’s and C with their data either. The agents Ais are localized covert adver-
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saries. Details of the adversarial model for Ai’s and C will be discussed in Section

4.2.

Figure 4.1: Outsourced Computation Framework

Despite its simplicity, this computational framework is an abstraction of many

practical scenarios. For example, in the context of cloud computing, Ai provides

platform as a service (PaaS) while U can be a user with sensitive data and V is a

proprietary software vendor providing software as a service (SaaS) [128]. Another

example is privacy-preserving data mining in which a data mining algorithm running

at Ai’s are applied on a large dataset comprising of private data from both U and

V [81]. It is also important to note that our emphasis is on protecting privacy of

data, rather than the programming instructions. In general, we assume that U and

V are fully aware of the intention and flow of the program as they need to prepare

their data in the appropriate form. The actual program is carried out at each of the

agents Ai. However, Ai has access only to encrypted data so the actual program it is

executing could be obfuscated to hide data communication patterns that might reveal

important information about the data. More discussions on this issue can be found

in Section 4.2.
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Renormalization for Multiplication in Shamir’s Secret Sharing

Shamir’s Secret Sharing (SSS) protects privacy by decomposing a secret into input

shares. It is information theoretic secure: an adversary has no knowledge of the secret

at all regardless of its computing power if the number of input shares it obtained does

not satisfy the pre-defined access structure of the underlying sharing scheme [35]. For

the (t, n)-SSS scheme where n is the number of computing agents and t < n is a

designed parameter called threshold, the access structure is for any entity holding at

least t shares. The details of the SSS has been review in Section 3.1.

Assume that there are n computing agents and U has a private input x from a

prime field Fm, where m is a prime number. U hides x as the constant term of a

random (t − 1)-degree polynomial, and generates n shares, [x]ti for i = 1, 2, . . . , n.

The second party, V , follows the same procedure in using a random (t − 1)-degree

polynomial of his/her choice to break his/her secret number y ∈ Fm into shares [y]ti

for i = 1, 2, . . . , n. The i-th shares of both x and y are sent to agent i for processing.

SSS is homomorphic in addition, scaling (by a known factor) and multiplication,

which are universal in building any arithmetic circuit [12]. For multiplication of

shares, the resulting polynomial has a higher degree of 2t− 2:

[xy mod m]2t−1i = [x]ti[y]ti mod m. (4.1)

Notice that the degree of the product polynomial increases to 2t − 2. Thus, the

threshold for reconstruction will also increase to 2t−1, requiring almost twice as many

shares, or equivalently agents, to reconstruct the product. There are two solutions to

this problem: the first solution is to increase the number of parties n to guarantee

that n is large enough to accommodate all multiplication operations. The second

solution is to apply a “renormalization” procedure to reduce the threshold back to

t [16]: each agent breaks its product share into n separate shares, and sends one

share to each of the corresponding agents. The final share at each agent is computed
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as a weighted summation of these newly received shares from other agents as shown

below:

[xy mod m]ti =
n∑
j=1

γj[[xy mod m]2t−1j ]ti mod m. (4.2)

It can be shown that the renormalization process is information-theoretic secure [16].

The first approach is less flexible because a large n must be used throughout the

entire computation process. In fact, it can be shown that the renormalization is more

scalable than adding more agents. Suppose there are η multiplications in a procedure

with shares generated at the original threshold t. The first solution will require at least

η(t− 1) + 1 agents. All secret numbers used in the calculations must be decomposed

into η(t− 1) + 1 shares and the final reconstruction must require collection of all the

shares. Assuming a new secret number is used in each multiplication, there will be

η + 2 rounds of shares dissemination including the initial secret and final collection.

The total bandwidth required is proportional to (η + 2) · (η(t− 1) + 1) = O(η2).

For the second approach, the number of agents n is independent of the number of

multiplication operations and can be set to the smallest value of n = 2t− 1. For each

renormalization step, each agent needs to send shares to every other agent, resulting

in (2t − 1)(2t − 2) = 4t2 − 6t + 2 shares being exchanged. Taking into account the

share generation of all η+ 1 secret numbers, η− 1 renormalization steps and the final

reconstruction, the total bandwidth is proportional to (η+2)·(2t−1)+(η−1)·(4t2−6t+

2) = O(η). It is thus expected that the second approach is more scalable to complex

signal processing algorithms. With the use of renormalization, we concentrate our

discussions on the simplest access structure with t = 2 and n = 2t − 1 = 3 agents

which is adequate for any computation procedure. Nevertheless, all of our proposed

algorithms apply equally well to general access structures.

39



Game Theory

Game theory provides a mathematical foundation to analyze situations where two

or more participants or players make rational decisions that influence one another’s

welfare. The interactions may include both conflict and cooperation. There are many

categories of games in the literature. In our work, we adopt strategic form games to

model collusion attacks as non-cooperative games. Specifically, we utilize the strategic

form games in the context of population evolution to demonstrate that the proposed

games indeed have stable solutions. Game-theoretic concepts used in our framework

are summarized below and we refer readers to the excellent coverage of the topics in

[136] and [94] for details.

Definition 4.1.1. A strategic form game Γ is defined as a tuple 〈N, (Si)i∈N , (ui)i∈N〉,

where N = {1, 2, ..., n} is a finite set of players, Si is the set containing all available

strategies of player i, and ui : S1× ...× Sn → R for i = 1, 2, ..., n are mappings called

the utility functions or payoff functions.

Then a game between two players could be described in a table where the entries

of the first column stand for the strategies of the row player and the entries of the

first row stand for the strategies of the column player. Each combination of a row

strategy and a column strategy determines a utility to a player.

In game theory, players are assumed to be interested in maximizing his/her utility.

A celebrated solution concept is the Nash Equilibrium. We describe the two-player

case here.

Definition 4.1.2. A Nash Equilibrium (NE) for two player games is a pair of strate-

gies (s∗1, s
∗
2) such that u1(s

∗
1, s
∗
2) ≥ u1(s1, s

∗
2),∀s1 ∈ S1 and u2(s

∗
1, s
∗
2) ≥ u2(s

∗
1, s2),∀s2 ∈

S2.
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Another solution concept is the Dominant Strategy Equilibrium (DSE). The num-

ber of players N could be bigger than 2. We denote the strategy of player i as si

and the strategy profile of i’s opponent players as si. We present the strong sense of

dominance here:

Definition 4.1.3. Given a game Γ = 〈N, (Si)i∈N , (ui)i∈N〉, a strategy si ∈ Si is said

to strongly dominate another strategy s′i ∈ Si if ui(si, s−i) > ui(s
′
i, s−i),∀s−i ∈ S−i

Definition 4.1.4. A strategy s∗i ∈ Si is said to be a strongly dominant strategy for

player i if it strongly dominates every other strategy si ∈ Si.

Definition 4.1.5. In a n-person game, a strategy profile (s∗1, ..., s
∗
n) is a strongly

dominant strategy equilibrium of the game Γ = 〈N, (Si)i∈N , (ui)i∈N〉 if s∗i is a strongly

dominant strategy for all i.

It is easy to see that any (strongly) DSE is also a NE but the converse is not true.

The conditions for DSE are very strong and many games do not even have a DSE.

On the other hand, NE always exists in a finite game [136]. In Section 5.1, we will

consider collusion and honesty as possible strategies in our secure MPC games, and

derive conditions under which honesty is part of these different solution concepts.

In a distributed systems, agents usually have additional private information that

affects their decision making. For example, in an auction, each bidder may have

his/her own private valuation of the item that is kept secret to themselves, but the

actual bid they submit could be different than their valuation. Similarly, in secure

MPC, each user may value their secrets differently. When players have their private

information about the game that other players do not know, the game can be analyzed

using Bayesian Game theory.

Definition 4.1.6. A Bayesian Game Γ is defined as a tuple

〈N, (Θi)i∈N , (Si)i∈N , (αi)i∈N , (ui)i∈N〉,
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where

• N = {1, 2, ..., n} is a finite set of players.

• Θi is the set of private information, or types, of player i where i ∈ N = {1, ..., n}.

Denote Θ = Θ1 × . . .×ΘN .

• Si is the strategy set of player i. Denote S = S1 × . . .× SN .

• The probability function αi specifies a probability distribution αi(.|θi) over the

set Θ−i. It represents the belief of player i on the types of other players, denoted

as Θ−i, if his/her own type is θi.

• ui : Θ × S → R for i = 1, 2, ..., n are utility functions.

The solution concepts of NE and DSE can be easily extended to Bayesian games [94].

The computation of Bayesian NE depends on the knowledge of the prior belief func-

tions αi, which can be difficult to obtain in many practical applications. As such, it

is generally preferable to use DSE to analyze Bayesian games as their analysis does

not require the belief functions [129]. We will follow this practice in our work by first

using NE to analyze the simpler case where all players have the same privacy prefer-

ence, and then switching to DSE when we use Bayesian games to analyze uncertainty

in privacy preference.

To study large distributed systems, we need to map game theoretic analysis to

a population of similar players playing the same strategic form game with different

strategies over a period of time. The framework to analyze such games is called the

Evolutionary Game Theory (EGT). EGT does not assume the players to be hyper-

rational as in the case of traditional GT. Instead, the players can learn from their

previous payoffs and update their strategies accordingly. Besides its origin in modeling

biological processes [136], EGT is also suitable to analyze situations where many

autonomous agents with conflicting interests interact with each others in a distributed
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system to achieve specific goals. For example, EGT has been used to model P2P

streaming [31], wireless network selection [100], spectrum sharing [101], and social

networks [102]. In this dissertation, we use EGT in Section 7.2 to demonstrate the

effectiveness of our countermeasures while treating collusion as a strategic form game.

The alternative to NE in EGT is the possible existence of an evolutionary end-

point of adopting a specific strategy s∗, called the evolutionary stable strategy (ESS).

Given a 2-player strategic form game, suppose the game is played between any pair of

players from a population. We define a population profile x such that x(s) for s ∈ S

denotes the fraction of the population playing s. To consider if a particular strategy

s∗ is evolutionary stable, we specialize the notation xε to mean x(s∗) = 1 − ε and∑
s 6=s∗ x(s) = ε for ε ∈ [0, 1]. The second term is typically referred to as the mutant

population. Then, we have the following definition of ESS:

Definition 4.1.7. The strategy s∗ is an evolutionary stable strategy or ESS if there

exists an ε such that for every 0 < ε < ε and u(s∗,xε) > u(s,xε),∀s ∈ S \ {s∗} where

u(s,x) =
∑

s′∈S x(s′)u(s, s′).

In other words, u(s,xε) denotes the average payoff of a new player entering the

population playing strategy s against a random player from population profile xε.

As this new player is more likely to choose s∗, the mutant population will diminish,

further strengthening the condition in the definition. The population profile when

no further evolution occurs anymore is called evolutionary stable state. It is also

important to note that ESS is a stronger concept than NE. In fact, an ESS must also

be a NE but a NE is not necessarily evolutionary stable [94].

In addition to ESS, another core concept in EGT is the evolutionary game dynam-

ics. It describes how the population profile changes over time based on the fitness of

each strategy [69]. The most common approach to model the dynamics is through a
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set of replicator equations for each strategy in the form of

d

dt
x(s) = x(s) ·

(
u(s,x)−

∑
s′∈S

x(s′)u(s′,x)

)
(4.3)

where x is the population profile. Equation (4.3) describes a simple exponential

growth model. This is generally applicable to autonomous agent systems where there

is inertia in staying with the same strategy and the rate of change of the population

using a particular strategy depends on the difference between the utility of that

strategy and the average utility. In Section 7.2, we will use replicator dynamics to

simulate our mechanisms to validate the theoretical analysis.

4.2 Collusion Attack Models

Unlike two-party garbled circuits and homomorphic encryption, SSS-based protocols

are prone to collusion attacks (CA). We now describe the different types of collusion

attacks that can occur under the SSS-based outsourced computation framework. We

will continue to use the same notations as defined in Sections 3.1 and 4.1.

A1: Side-channels among agents for collusion

If an adversary controls t or more computing agents involved in the computation, they

can exchange their secret shares freely through their pre-established side channels to

reconstruct the secret numbers x and y. As the communication through the side

channels is independent from the information exchanged within the protocol, such

attacks cannot be detected within the protocol and must be tackled at the architecture

level. One possible approach to deter such attacks is by obfuscating the computing

task to make it difficult for an adversary to identify the computing agents involved in a

specific task and determine their functions. A classical example is the aforementioned

online gambling – poker room companies assign players from certain countries to be

at different tables to reduce the possibility of pre-existing side channels [5]. The exact
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approach when applied in the context of distributed computation will depend on the

infrastructure behind the computing platform, P . We consider two scenarios:

(i) P2P: P is formed by amassing a large number of independent computing agents

on the internet that contribute their CPU cycles in exchange for small payments. To

deter an adversary from identifying the set of agents involved in a task, we can rely on

the coordinator C that randomly assigns agents to a task. C is assumed to be trusted

with keeping the mapping secret. Since C is not involved in the actual computation,

the additional measure required to secure C should not significantly affect the scala-

bility of the platform. Such a hybrid approach of mixing computation/communication

peers with coordinators is quite common among peer-to-peer systems [122]. The use

of anonymity network protocols such as Tor [43] can also prevent the formation of the

side channels and force the communication to the assigned communication channels.

(ii) Enterprise Cloud: P is centrally managed by an enterprise system. The solution

is to obfuscate the computation process so that different agents on the same cloud

would not be able to recognize that their processes originate from the same task.

All identifiable information, such as IP addresses of the user and vendor, must be

obfuscated while dummy instructions and data should be added to mask the traffic

pattern [9].

Nevertheless, these approaches on system architecture cannot provide any guar-

antee on preventing the formation of side channels. The detailed implementation

of these approaches are system oriented and beyond the scope of our work. In the

sequel, we will assume that no such side channels exist among agents and model the

adversaries as localized or restricted to the assigned communication channels [24].

A2: Collusion between agents and U or V

We will focus on the agents’ collusion with U , as the case for V is identical. As each

agent possesses secret shares from both U and V , it is possible for U to collude with t
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or more agents to reconstruct y from V . No changes in infrastructure can block such

an attack as it is necessary for U to communicate with the agents. Neither can the

collusion be detected from the communication between V and the agents. To deter

such an attack, we propose a retaliation mechanism such that a heavy penalty can

be levied on U if V can provide convincing evidence of the leakage of his/her secret

through U . In Section 5.1, we study the choice to collude or to stay honest under

retaliation as a game between U and V . We show that being honest is the solution,

provided that there exist effective tools to collect evidence of theft.

On the other hand, it is not always possible to collect any evidence or it may

be too costly to go through with the retaliation process. To cope with such an

“undetectable” theft, we observe that enough agents must be involved in a collusion

attack for it to be successful. Thus, collusion can be deterred by having undercover

police officers disguised as corrupted users/vendors in catching agents who are willing

to collude. In Section 6.1, we formulate such an interaction as an evolutionary game

and show that if there are enough police officers, being honest is indeed an NE for

the agents.

A3: Collusion attack by computing agents

The direct communication among agents is essential as it is needed in the renormal-

ization procedure and the reconstruction of necessary intermediate values in more

complicated protocols. On the other hand, it also opens doors for them to collude.

The difference between A1 and A3 is that the communication is localized in that

the coalition of agents in A3 forms after the random assignment of agents to U and

V . As such, it is possible for U and V to thwart this collusion by inspecting the

communication among agents. Note that the communications among agents consists

of random secret shares so it is challenging to identify if they actually contain sub-

liminal data for collusion. Also, uncontrolled examination by U (or V) may reveal
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information about the original secret data from other parties. In Section 5.1, we

suggest a censorship scheme in which U and V collect the data from each agent and

randomize them before sending them back to the agents. Subliminal communication

becomes impossible due to the injection of random noise known only to U and V.
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Chapter 5 Anti-collusion for Customers

In this section, we use game-theoretic techniques to model A2 collusion attacks as

described in Section 4.2, identify conditions and propose countermeasures to deter

such attacks. Collusion attacks A2 refer to the collusion formed between the agents

and either U or V to steal the other’s secret. In Section 5.1, we first study the strategy

of either U or V in participating in a collusion attack to steal the other’s secret as a

game called User-Vendor Game. Then, in Section 6.1, we will consider the influence

of the agents and propose countermeasures in a game called Customer-Agent Game.

5.1 User-Vendor Game

We assume that, before starting the joint computation, there exists a legally-binding

contract in place so that U and V both understand that they should not collude with

agents in stealing each other’s secrets. This contract would stipulate that if one party,

say V , finds out that U tried to steal V ’s secret, U would be liable to pay for the

damages based on charges brought by V . In retaliation, U could countercharge V

with similar accusations. The judgement in resolving such a conflict would need to

be carried out by proper authority, possibly after a long proceeding in evaluating the

legitimacy of evidence provided by both parties. We call this strategy undertaken by

U and V retaliation.

With the initial strategy of staying honest or cheating and the follow-up strategy

of possible retaliation, there are four possible combinations for each player or a total

of 16 different interaction outcomes between both of them. All possible cases are

listed in Table 5.1 with CU , CV = 1 represent cheating and RU , RV = 1 represents

retaliation.

Among the different combinations, there are cases that we believe are unlikely. We

48



Table 5.1: Different Outcomes in User-Vendor Games

Case CU CV RU RV Outcome

1 0 0 0 0 D
2 0 0 0 1 X
3 0 0 1 0 X
4 0 0 1 1 A
5 0 1 0 0 E
6 0 1 0 1 X
7 0 1 1 0 X
8 0 1 1 1 A
9 1 0 0 0 C
10 1 0 0 1 X
11 1 0 1 0 X
12 1 0 1 1 A
13 1 1 0 0 B
14 1 1 0 1 X
15 1 1 1 0 X
16 1 1 1 1 A

mark these unlikely cases with outcome X based on the an-eye-for-an-eye assumption:

if one party retaliates by filing charges for a suspected cheating offense, the other party

will retaliate with a counter-lawsuit. This simplistic world-view is based on the fact

that a player must be made aware of the retaliation action from the other and the only

rational reaction to protect oneself is to countersue. This is also supported in real life

by the large number of litigation, especially in the United States, from simple small-

claim charges to multinational patent infringement lawsuits between companies [33].

Based on this assumption, case 2, 3, 6, 7, 10, 11, 14, 15 from Table 5.1 are excluded

from further considerations.

For the remaining cases, the goal is to investigate the preference of different out-

comes in order to derive the optimal strategies [136]. We group the remaining cases

into five possible classes of outcomes from A through E. Case 4, 8, 12 and 16 all

involve mutual retaliation with outcomes ultimately decided by an external entity

(court). Since the process is likely to be long, tedious and highly uncertain, we make

the assumption that any case with mutual retaliation always results in the least desir-
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able outcome and collectively label these outcomes A. The assumption that retaliation

is undesirable does not imply that cheater can ignore such a possibility. Rather, it

means that both players will either avoid this outcome by staying honest or retaliating

if the evidence against the other is overwhelming and the value of the secret is higher

than the cost of retaliation. The decision to retaliate is at the heart of our mechanism

design. Its mathematical underpinning will be discussed later in this section.

The remaining four outcomes do not involve any retaliation, which means that

the computation completes successfully and each party gets rewarded for carrying

out his/her task. To study the preference ranking of these outcomes, we assume the

perspective of U because the case for V is identical. To consider possible preference

orders, we first use a cost and benefit analysis to eliminate unlikely orders and then

analyze the remaining ones using different games to study the equilibrium strategies.

From the perspective of U , a rational judgement on the preference would be based

on the relative values between the two secrets and the additional cost associated with

cheating. While U clearly knows the value of his secret, his estimate of V ’s secret is

imprecise. In addition, the value of the secret depends on whether the secret holder

decides to collude and cheat – it is unlikely that a cheater will put forth a genuine

secret in the joint computation. The cost of cheating would include additional cost

to get the majority of the computing agents into a collusion.

While outcome A is the least desirable, outcome C is the most desirable because

U also successfully steals V ’s secret and suffers no consequence. As V is honest, V ’s

secret should be of high enough value to cover U ’s cost in collusion if this collusion

attack is a rational act. All the other outcomes are not as good: outcome D represents

the case when U is honest without any additional gain, though it is the socially optimal

behavior; outcome E represents the case when U is honest and suffers a loss as his

secret was stolen by V ; outcome B represents the case when both U and V cheat and

steal each other’s secret. Note that for this case V ’s secret may not be of high enough
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value to cover U ’s cost because V cheats. While it is clear that outcome D should be

ranked higher than E, it is unclear where outcome B should be. In summary, there

are three preference orders we need to consider:

C � D � E � B � A (5.1)

C � D � B � E � A (5.2)

and

C � B � D � E � A (5.3)

where the symbol � denotes “is preferred over”. The three preference orders differ in

the ranking of outcome B. A useful way to understand these orders is based on the

cost of collusion. The first order (5.1) ranks B the lowest because the high cost of

collusion exceeds even the damage of losing one’s own secret in E. On the other hand,

the last order (5.3) implies that the collusion cost is lower that the gain of stealing

the secret from the dishonest V and results in a net gain for U . From the viewpoint

of mechanism design, it is intuitive to make collusion cost as high as possible for

deterrence, which will be the subject of Sections 6.1 and 6.2. In the remainder of this

section, we study how retaliation impacts the strategies of honesty versus cheating

for different preference orders.

Symmetric Games

In this subsection, we study the initial strategy of staying honest versus cheating under

possible retaliation, assuming that all the players have the same preference order. The

follow-on strategy of retaliation involves complicated factors including the detection

of collusion attacks and the availability of evidence in support of retaliation. Due to

the difficulty in modeling the payoff utility for retaliation, we instead model it as a

parameter q and study its relationship with other factors. Specifically, we define q as
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the “non-retaliate” probability for both U and V , conditioned on the other’s cheating

behavior. The extreme value q = 1 means that no one retaliates while q = 0 means

that one always retaliates if his/her secret is stolen. A useful alternative interpretation

of q is to view it as the normalized reward for cheating, which is only worthwhile if the

cheater can get away with the retaliation. We are ignoring the scenario of retaliation

in the absence of cheating behaviors (case 4 in Table 5.1) – we believe that this is

an extremely unlikely situation considering that retaliation is the most undesirable

outcome.

As we have five outcomes to consider, we denote the normalized utility values

for these outcomes as 0 = p0 < p1 < p2 < p3 < p4 = 1. For the three preference

orders corresponding to high collusion cost (5.1), medium collusion cost (5.2) to low

collusion cost (5.3), the mappings of the utility values to the three cases can be easily

deduced and are shown in Table 5.2.

Table 5.2: Normalized Utility of Different Outcomes in User-Vendor Games

U ’s Preference
Strategies High cost (5.1) Mid cost (5.2) Low cost (5.3)

Retaliate (A) p0 p0 p0
Both cheat (B) p1 p2 p3
U cheats only (C) p4 p4 p4
No one cheats (D) p3 p3 p2
V cheats only (E) p2 p1 p1

Each of the three assignments can form a two-player, two-strategy symmetric

strategic form game. There are many possible solutions to such games. In this section,

we consider their solutions under Nash Equilibrium and derive the conditions that

lead to honesty being the stable strategy for both players. The detailed proof can be

found in Section 5.1.

Theorem 5.1.1. (honest, honest) is a Nash Equilibrium if

1. p3 ≥ q for order (5.1);

2. p3 > q, or p3 = q and p1 > qp2 for order (5.2);
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3. p2 > q, or p2 = q and p1 > qp3 for order (5.3).

Theorem 5.1.1 can be interpreted as follows: it can be shown that (p3, p3, p2)

represents the payoff for both players being honest with preference order (5.1), (5.2)

and (5.3) respectively. On the other hand, the average payoff of a successful cheating

can be shown as q for all three orders, i.e. one player cheating without any retaliation.

Thus, the strict inequality in all three orders implies that honesty is stable if both

players being honest has strictly higher payoff than the successful stealing of other’s

secret. Theorem 5.1.1 is important because making p3 high by providing and paying

for high-quality services, and providing state-of-the-art theft tracking technology such

as watermarking to make q small are both reasonable mechanisms in maintaining a

viable market. There are situations when thefts of secrets are hard to prove because

the stolen secret is never resold, but merely provides knowledge to the thief, such as

the case of a software vendor trying to find out new technology from a competitor.

Such undetectable thefts make it difficult to keep q small. Additional mechanisms to

tackle such scenarios will be described in Section 6.1.

As the payoffs are real values, all the equality cases are of marginal interest.

However, due to the symmetric nature of the game, the conditions become very

important if cheating behavior is already rampant:

Theorem 5.1.2. (cheat, cheat) is a Nash Equilibrium if

1. qp2 > p1, or qp2 = p1 and q > p3 for (5.2);

2. qp3 > p1, of qp3 = p1 and q > p2 for (5.3).

(Cheat, cheat) is not a Nash Equilibrium for (5.1).

For (5.2) and (5.3), qp2 and qp3 respectively represent the average payoff of mutual

theft while p1 represents the payoff of both players losing their secrets. Thus, cheating

is a NE if mutual theft has strictly higher utility than losing one’s secret. If the two
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utilities are equal, cheating is still a NE if a successful theft has higher utility than

both being honest.

For a poorly developed and managed market, it is quite possible that the majority

of the population has already engaged in dishonest behaviors. Theorem 5.1.2 shows

that it is very difficult to turn things around because the condition to maintain the

cheating behaviors is easily satisfied: the sole reason of the existence of a marketplace

in providing privacy-preserving computation is that the participants value the privacy

of their data. This means that losing those data can cause significant harm and p1

must be very small. Despite efforts of making q small, the low to medium costs of

collusion could keep p3 for (5.2) or p2 for (5.3) significantly higher than p1. There

are two lessons to be learned from the point of view of mechanism design: first,

it is important to maintain honesty as majority by growing the initial market with

substantial subsidy. Second, additional mechanisms are required to make collusion

harder and they will be discussed in Sections 6.1 and 6.2.

Finally, when none of the above conditions are met, as in the case when the value

of a secret cannot be a-priori determined, there could be a robust fraction of cheating

behaviors in the population based on the following Corollary.

Corollary 5.1.3. If none of the conditions in Theorems 5.1.1 and 5.1.2 are met, the

NE is a mixed strategy.

The proofs of Theorems 5.1.1 and 5.1.2 as well as Corollary 5.1.3 can be found

in the Appendix. Simulation results demonstrating different NE’s can be found in

Section 7.2.
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Proofs of Theorems 5.1.1, 5.1.2, and 5.1.3

Preference order (5.1)

We first consider the case of C � D � E � B � A. The normal form game can be

described by the payoff matix 5.3.

Table 5.3: Payoff matrix for order (5.1)

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p2, p4)
= (qp2, q)

Cheat
(1− q)(p0, p0)

+q(p4, p2)
= (q, qp2)

(1− q2)(p0, p0)
+q2(p1, p1)

= (q2p1, q
2p1)

The two-tuple in each entry indicates the average payoffs of U and V when adopt-

ing the row and column strategies respectively. In the context of a population game,

cheating would be a NE if (a) q2p1 > qp2 or (b) q2p1 = qp2 and q > p3. As

0 ≤ p1, q ≤ 1, neither condition is valid and cheating can never be a NE. Hon-

esty would be a NE if (c) p3 > q or (d) p3 = q and qp2 > q2p1. As qp2 > q2p1 is

always true, we have the following conclusion: Honesty is a NE for both U and

V if p3 ≥ q. When the theft is undetectable, i.e. p3 < q, it can be shown that the

following mixed strategy constitutes a NE:

hu = hv =
1

q−p3
q(p2−qp1) + 1

(5.4)

where hu and hv are the honest fraction of U and V respectively. Unfortunately,

this situation will undoubtedly occur in real life. It is thus important to incorporate

additional mechanisms to deter cheating behaviors.

Preference order (5.2)

In this subsection we examine the case of C � D � B � E � A. Actually we

need to examine only the interpretation of B � E, as others remain the same. The
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motivation behind such an order is that U now gets more information – the secret

of V – in outcome “B” than in outcome “E”, although in both cases U loses his/her

own secret. The payoff matrix is described in Table 5.4.

Table 5.4: Payoff matrix for order (5.2)

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p2, p2)

= (q2p2, q
2p2)

To make the honest strategy a NE, we must have either (a) p3 > q, or (b) p3 = q

and qp1 > q2p2, i.e. p1 > qp2 = p2p3. For cheating to be a NE, either (c) q2p2 > qp1,

i.e. qp2 > p1, or (d) q2p2 = qp1 and q > p3, i.e. p1 > p2p3 and q > p3. While the

equality constraints may be hard to achieve in real-life, condition (c) is possible with

a high enough q. Thus, cheating is still possible. If none of the above conditions are

satisfied, the NE is a mixed strategy with the honest fraction as follows:

hu = hv =
1

q−p3
q(p1−qp2) + 1

(5.5)

Preference order (5.3)

In this subsection we examine the case of C � B � D � E � A. With B � D, we

have the situation that both cheating is preferred over both being honest. The payoff

matrix is shown in Table 5.5.

Table 5.5: Payoff matrix for order (5.3)

V

U

Honest Cheat

Honest (p2, p2)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p3, p3)

= (q2p3, q
2p3)
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To make the honest strategy a NE, either (a) p2 > q, or (b) p2 = q and qp1 > q2p3,

i.e. p1 > qp3 = p2p3, which are possible to obtain. For cheating to be a NE, either

(c) q2p3 > qp1, i.e. qp3 > p1, or (d) q2p3 = qp1 and q > p2, i.e. p1 = qp3 > p2p3. Note

that conditions (b) and (d) are the same except that (b) requires p2 = q which is

difficult to sustain, so the situation is that both populations of honesty and cheating

coexist. The honest fraction is expressed in the general solution:

hu = hv =
1

q−p2
q(p1−qp3) + 1

(5.6)

5.2 User-Vendor Bayesian Games

In the previous section, we assume both players share the same preference order.

This assumption enables us to use relatively straightforward analysis to compute the

Nash Equilibrium. However, in many situations, customers U and V may not be

able to tell the other player’s preferences. The preference order of a player may

change depending on the secret data used in the computation. A player open to the

possibility of cheating may also adopt a different preference order, and wants to keep

this information private. Such unknown private information of the opponent can be

viewed as the opponent’s type used in the Bayesian game as described in Section 4.1.

Of course, a player knows his/her own type, or in this case, the preference order.

Interactions between players with private types known only to him/herself should

be taken into account in designing anti-collusion mechanisms. This is especially

necessary during the initial stage of the secure MPC marketplace in question where

customers are mostly new.

In this section, we analyze all possible Bayesian Games between U and V derived

from our framework from the perspective of U , since V ’s conclusion is analogous.

There are a total of three Bayesian Games according to U ’s three different possible

preference orders, i.e. (5.1), (5.2), and (5.3). Instead of Nash Equilibrium, the analysis
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will focus on strongly dominant equilibria as they are independent of the prior belief

of the opponent’s type. Recall that 0 = p0 < p1 < p2 < p3 < p4 = 1 stands for the

five different utilities for the five outcomes in a specific preference order. Using the

solution concept of dominant strategy equilibrium introduced in Definition 4.1.4 and

4.1.5, we obtained the following results.

Theorem 5.2.1. For the Bayesian User-Vendor game, the conditions for honesty to

be a strongly dominant strategy for a player regardless of his preference order are

{
p1 > qp3

p2 > q. (5.7)

The detailed proof of Theorem 5.2.1 can be found in Appendix 5.2. Simulation

results demonstrating different Bayesian Games can be found in Section 7.2. Com-

pared with the symmetric case in Theorem 5.1.1, we can see that the Bayesian result

is dominated by the conditions required by the preference order 5.3. The reason is

that this preference order represents the lowest collusion cost and the conditions of a

strongly dominant strategy must consider the worst case scenarios. Once again, the

key to deterring collusion is to keep q as low as possible or to make detection of a

theft highly robust. However, as pointed out earlier, some collusion attacks may not

be detectable at all and as such, retaliation mechanism alone is insufficient. Thus,

we have designed further mechanisms to reinforce the anti-collusion efforts, which are

described in the following sections. Finally, we skip the Bayesian analysis for cheat-

ing as a dominant strategy because it is very similar but of less interest in building a

sustainable market.

Proofs of User-Vendor Bayesian Games

We describe the first User-Vendor Bayesian Games in details, since the other two

Bayesian Games are to be analyzed in a very similar way. Let us denote preferences
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(5.1), (5.2), and (5.3) as x, y, and, z in this section. Denote ΘU as the private type of

player U . The private type in our framework is the choice of one’s preference order.

U has type ΘU = x

First, suppose the type of U is ΘU = x. To U , V ’s type set is ΘV = {x, y, z},

which records all three possible types of V . The remaining problem for U is to

guess a priori how likely each type of V will be. Given U ’s own type ΘU = x,

denote U ’s belief probabilities over V ’s possible types as α(x|x) = r, α(y|x) = s, and

α(z|x) = 1− r− s = t, where 0 ≤ r, s ≤ 1. The utility functions for Bayesian Games

when U has type x are defined by three type games, formulated in Tables 5.6, 5.7,

5.8. They represent interactions between ΘU = x and ΘV = x, ΘU = x and ΘV = y,

and ΘU = x and ΘV = z, respectively.

Table 5.6: Bayesian Game for ΘU = x against ΘV = x

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p2, p4)
= (qp2, q)

Cheat
(1− q)(p0, p0)

+q(p4, p2)
= (q, qp2)

(1− q2)(p0, p0)
+q2(p1, p1)

= (q2p1, q
2p1)

Table 5.7: Bayesian Game for ΘU = x against ΘV = y

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p2, p4)
= (qp2, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p1, p2)

= (q2p1, q
2p2)

The utilities for U are denoted as UU,ΘU=x(SU ;SV ). It is the total expected utility

for U under his/her type x when U plays his/her strategy SU against V ’s various

strategy profile SV . SV has three component strategies (SVx , SVy , SVz), each repre-

senting a strategy for a type of V . For example, UU,ΘU=x(H;H,H,H) means U plays
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Table 5.8: Bayesian Game for ΘU = x against ΘV = z

V

U

Honest Cheat

Honest (p3, p2)
(1− q)(p0, p0)

+q(p2, p4)
= (qp2, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p1, p3)

= (q2p1, q
2p3)

H and V plays strategy H for type x, H for type y, and H for type z. Then the

utility of U under the above strategies is calculated as follows,

UU,ΘU=x(H;H,H,H) = ruU(x, x;H,H)

+ suU(x, y;H,H)

+ tuU(x, z;H,H)

= (r + s+ t)p3 = p3 (5.8)

where uU(x, x;H,H) means the utility for U in the type game ΘU = x against ΘV = x,

when the matching strategies are (H,H).

Similarly, we can proceed to calculate all utilities for the Bayesian Games of

ΘU = x, summarized in Table 5.9.

Table 5.9: Utilities in Bayesian Games of ΘU = x

Strategy Profile UU,ΘU=x(SU = H;SV ) UU,ΘU=x(SU = C;SV )

(SU ;H,H,H) p3 q
(SU ;H,H,C) rp3 + sp3 + tqp2 rq + sq + tq2p1
(SU ;H,C,H) rp3 + sqp2 + tp3 rq + sq2p1 + tq
(SU ;H,C,C) rp3 + sqp2 + tqp2 rq + sq2p1 + tq2p1
(SU ;C,H,H) rqp2 + sp3 + tp3 rq2p1 + sq + tq
(SU ;C,H,C) rqp2 + sp3 + tqp2 rq2p1 + sq + tq2p1
(SU ;C,C,H) rqp2 + sqp2 + tp3 rq2p1 + sq2p1 + tq
(SU ;C,C,C) rqp2 + sqp2 + tqp2 rq2p1 + sq2p1 + tq2p1

The solution concept we are to use is the strong dominant strategy equilibrium,

introduced in Definitions 4.1.4 and 4.1.5. The solution is in such a strong sense that it

results in a stable choice of strategy of one player regardless of what the other player
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chooses to play. Specifically for our User-Vendor Bayesian Games, the ideal strong

dominant strategy would be staying honest, summarized in Table 5.10.

Table 5.10: Ideal Solutions for Bayesian Games for All Possible ΘU

Honesty vs Cheating

UU,ΘU
(H;H,H,H) > UU,ΘU

(C;H,H,H)
UU,ΘU

(H;H,H,C) > UU,ΘU
(C;H,H,C)

UU,ΘU
(H;H,C,H) > UU,ΘU

(C;H,C,H)
UU,ΘU

(H;H,C,C) > UU,ΘU
(C;H,C,C)

UU,ΘU
(H;C,H,H) > UU,ΘU

(C;C,H,H)
UU,ΘU

(H;C,H,C) > UU,ΘU
(C;C,H,C)

UU,ΘU
(H;C,C,H) > UU,ΘU

(C;C,C,H)
UU,ΘU

(H;C,C,C) > UU,ΘU
(C;C,C,C)

Recall 0 ≤ r, s ≤ 1, t = 1− r− s, and 0 = p0 < p1 < p2 < p3 < p4 = 1. To achieve

the goal of making the pure honest strategy dominant expressed in Table 5.10, the

condition would be to have p3 > q. This can be verified by comparing the utilities of

the two strategies, “H” and “C”, for U under all possible opponent strategy profiles

in the two columns in Table 5.9.

Analogously, we can find conditions for the honest strategy under U ’s two remain-

ing Bayesian Games when U ’s types are y and z.

U has type ΘU = y

For the Bayesian Games of ΘU = y, the three type of games are listed in Tables 5.11,

5.12, and 5.13.

Table 5.11: Bayesian Game for ΘU = y against ΘV = x

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p2)
= (q, qp2)

(1− q2)(p0, p0)
+q2(p2, p1)

= (q2p2, q
2p1)

The utilities for U under ΘU = y are summarized in Table 5.14.
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Table 5.12: Bayesian Game for ΘU = y against ΘV = y

V

U

Honest Cheat

Honest (p3, p3)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p2, p2)

= (q2p2, q
2p2)

Table 5.13: Bayesian Game for ΘU = y against ΘV = z

V

U

Honest Cheat

Honest (p3, p2)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p2, p3)

= (q2p2, q
2p3)

Table 5.14: Utilities in Bayesian Game, ΘU = y

Strategy Profile UU,ΘU=y(SU = H;SV ) UU,ΘU=y(SU = C;SV )

(SU ;H,H,H) p3 q
(SU ;H,H,C) rp3 + sp3 + tqp1 rq + sq + tq2p2
(SU ;H,C,H) rp3 + sqp1 + tp3 rq + sq2p2 + tq
(SU ;H,C,C) rp3 + sqp1 + tqp1 rq + sq2p2 + tq2p2
(SU ;C,H,H) rqp1 + sp3 + tp3 rq2p2 + sq + tq
(SU ;C,H,C) rqp1 + sp3 + tqp1 rq2p2 + sq + tq2p2
(SU ;C,C,H) rqp1 + sqp1 + tp3 rq2p2 + sq2p2 + tq
(SU ;C,C,C) rqp1 + sqp1 + tqp1 rq2p2 + sq2p2 + tq2p2

It is when p3 > q and p1 > qp2 that the honest strategy becomes dominant

against all possible strategy profiles of V . As such, the goal of making the pure

honest strategy dominant expressed in Table 5.10 is fulfilled. This can be verified by

comparing the utilities of the two strategies, “H” and “C”, for U under all possible

opponent strategy profiles in the two columns in Table 5.14.

U has type ΘU = z

Lastly, let’s examine the Bayesian Games of ΘU = z. The three type games are

presented in Tables 5.15, 5.16, and 5.17.
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Table 5.15: Bayesian Game for ΘU = z against ΘV = x

V

U

Honest Cheat

Honest (p2, p3)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p2)
= (q, qp2)

(1− q2)(p0, p0)
+q2(p3, p1)

= (q2p3, q
2p1)

Table 5.16: Bayesian Game for ΘU = z against ΘV = y

V

U

Honest Cheat

Honest (p2, p3)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p3, p2)

= (q2p3, q
2p2)

Table 5.17: Bayesian Game for ΘU = z against ΘV = z

V

U

Honest Cheat

Honest (p2, p2)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p3, p3)

= (q2p3, q
2p3)

The utilities for U under ΘU = z are summarized in Table 5.18.

Table 5.18: Utilities in Bayesian Game, ΘU = z

Strategy Profile UU,ΘU=y(SU = H;SV ) UU,ΘU=y(SU = C;SV )

(SU ;H,H,H) p2 q
(SU ;H,H,C) rp2 + sp2 + tqp1 rq + sq + tq2p3
(SU ;H,C,H) rp2 + sqp1 + tp2 rq + sq2p3 + tq
(SU ;H,C,C) rp2 + sqp1 + tqp1 rq + sq2p3 + tq2p3
(SU ;C,H,H) rqp1 + sp2 + tp2 rq2p3 + sq + tq
(SU ;C,H,C) rqp1 + sp2 + tqp1 rq2p3 + sq + tq2p3
(SU ;C,C,H) rqp1 + sqp1 + tp2 rq2p3 + sq2p3 + tq
(SU ;C,C,C) rqp1 + sqp1 + tqp1 rq2p3 + sq2p3 + tq2p3

The conditions p2 > q and p1 > qp3 makes the honest strategy the dominant

one against all possible strategy profiles of V . Hence, the goal of making the pure
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honest strategy dominant expressed in Table 5.10 is fulfilled. This can be verified by

comparing the utilities of the two strategies, “H” and “C”, for U under all possible

opponent strategy profiles in the two columns in Table 5.18.

In conclusion, for all three possible types of U and all possible strategy profiles of

V , the conditions for honesty to be dominant are


p1 > qp2

p1 > qp3

p3 > p2 > q (5.9)

It can be simplified as {
p1 > qp3

p2 > q. (5.10)
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Chapter 6 Collusion Deterrence Mechanisms for Computing Agents

6.1 Customer-Agent Game

For U to be successful in stealing V ’s secret, U must be able to convince t or more

agents to collude with him/her. A collusion attack can thus be avoided if the agents

refuse to collude. Such a collusion avoidance tactic is highly desirable as it does not

rely on after-the-fact retaliation that hinges on the detection of the theft. To deter

agents from colluding with customers, we introduce honest undercover customers (po-

lice) that attempt to collude with agents. A cheating agent who is reported by either

a police customer or an honest customer will be paid nothing and will be banned from

the system. This worst outcome is denoted by v0. Let λ be the conditional probabil-

ity of encountering police given a colluding request from the customer. For the case

when there is no colluding request from the customer, the conditional probability of

encountering police is 0 as a police customer is assumed to always attempt to collude

with the agents. The payoff matrix for the customer-agent game is given in Table

6.1.

Table 6.1: Customer-Agent Game

A

U

Honest Cheat
Honest (v1, v1) (v0, v0)

Cheat
λ · (v1, v1)+
(1− λ)(v1, v1)
= (v1, v1)

λ · (v0, v0)+
(1− λ)(v2, v2)
= (1− λ, 1− λ)

The normalized payoffs are represented as 0 = v0 < v1 < v2 = 1, and are assumed,

for simplicity, to be the same for both user and agents. (honest, honest) is clearly

a NE of this game. In fact, honesty becomes a strongly dominant strategy for the

agent if v1 > 1− λ. This is the most desirable outcome, brought on by a large λ or a

significant presence of police. On the other hand, v1 ≤ 1−λ will make (cheat, cheat)
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another NE of the game. Such an unfortunate situation will occur when there are

not enough police or the payoff for an honest agent is significantly smaller than that

of collusion.

The suggested strategy of inserting police to track dishonest agents finds its par-

allel in real life. In network security, honeypot servers are routinely used to decoy

network attacks towards a well-isolated and monitored area so as to collect infor-

mation that may lead to ultimate apprehension of the attackers. In fact, game the-

ory has been routinely used in analyzing the strategic use and placement of honey-

pots [55, 139, 130, 79, 26]. Using the hierarchical structure of today’s internet, some

researchers argued that only a small number of honeypot servers at network core can

thwart most network attacks [139]. This points to the interesting possibility of in-

corporating network topology into our agent-based secure MPC framework to further

reduce the number of police customers, a subject worthy of further investigation.

6.2 Censorship

The collusion deterrence games in Chapter 5 focuses on strategies to promote honest

behavior among users. However, even if all the users are honest, the computing agents

themselves can collude to steal secrets as described the A3 attacks scenario in Sec-

tion 4.2. During reconstruction or renormalization, agents are supposed to exchange

information with each other. Unlike the A1 attacks, agents do not have any pre-

existing side-channels and as such, they might try to collude by sending subliminal

messages within the protocol. A trivial solution is to simply prohibit communica-

tion among agents. This solution works for only simple computation protocols in

which renormalization is not necessary. Verifiable secret sharing [32] does not work

for renormalization either, as the dishonest agent has the freedom in setting a few

semantically meaningful new shares (say to its IP address) while maintaining perfect

reconstruction of its original share.
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In this section, we propose a simple censorship scheme to delegate the task of

renormalization to a more “trusted” entity. With a properly designed game-based

mechanism as described in Sections 5.1 and 5.2, we assume that the customers U

and V are deterred from colluding with the agents and use the semi-honest model for

their possible adversarial behaviors. However, they still have a strong incentive to

safeguard their secrets and keep all of the agents honest. As such, U (or V ) can carry

out the task of renormalization by injecting fresh noise into the shares to destroy

any subliminal messages. The proposed censorship scheme requires processing and

routing messages of agents through U and V . Suppose the underlying protocol is the

(t, n) SSS where n is the number of computing agents and t is the original threshold

of the SSS. The censorship scheme is described in Protocol 1.

Protocol 1 frenormalize

1: Each agent Ai for i = 1, . . . , n has a secret share [u]pi based on a random p-degree
polynomial with t− 1 ≤ p ≤ n− 1.

2: U selects a uniformly random number rU and sends its shares [rU ]ti to Ai.
3: V selects a uniformly random number rV and sends its shares [rV ]ti to Ai.
4: Ai computes [u]pi + [rU ]ti + [rV ]ti mod m = [u+ rU + rV ]pi and sends to U .
5: For each i, U computes mi,j = [[u + rU + rV ]pi ]

t
j and sends them to Aj for j =

1, . . . , n.
6: Ai receives mi,j from U for j = 1, . . . , n and compute si =

∑n
j=1 γjmi,j − [rU ]ti −

[rU ]ti mod m where γj’s are the Lagrange interpolation coefficient for polynomial
of degree p.

Before presenting the security proof, we discuss the complexity of this protocol.

Our protocol has 4n invocations of communication in each renormalization compared

to n(n − 1) in the original one without any collusion-deterrence. The reduction in

the number of invocations (for n > 5) is due to the fact that the centralization of the

responsibility to U enables multiple messages to the same agents be combined in Step

5. Our scheme is different from the mediator solution in [3] as we are using a building

block that is different from a secure two-party protocol. While it does involve the

participation of a secret holder, our scheme is of much lower complexity as it is only
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needed for steps like renormalization and output.

Correctness

The correctness of Protocol 3 can be shown as follows: by our covert adversary

assumption, the agents will only deviate from the protocol if there is a non-zero

probability of launching a successful collusion attack. We will demonstrate later in

our security proof that it is impossible to do so. As such, we focus here on the correct

execution of the protocol. In step 4, the equation [u]pi + [rU ]ti + [rV ]ti mod m =

[u + rU + rV ]pi holds because p ≥ t − 1. Thus, the polynomials used to share rU

and rV can be considered to have degree p with zero leading terms so the additive

homomorphism holds. In step 5, U carries out the renormalization step to reduce the

degree of the polynomial back to t. In step 6, the first term reconstructs the noisy

share based on the renormalization formula (4.2):

n∑
j=1

γjmi,j =
n∑
j=1

γj[[u+ rU + rV ]pi ]
t
i

=

[
n∑
j=1

γj[u+ rU + rV ]pi

]t
i

= [u+ rU + rV ]ti

Then, using additive homomorphism, Ai obtains si = [u + rU + rV ]ti − [rU ]ti − [rU ]ti

mod m = [u]ti, which is the desired output of renormalization.

Security

The security proof of Protocol 1 is as follows: we assume that U and V are semi-

honest with the explicit goal of detecting any irregularities in agent traffic. The agents

hope to achieve collusion by deviating from the protocol and changing the outbound

messages, but will only do so if there is a non-zero probability of success. We assume

the worst case scenario in that all agents are interested in a collusion attack and are

aware of a common preamble to signal subliminal communication of information such
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their own IP addresses. The proof follows the well-known simulation paradigm [60]

in which the distribution of any inbound messages at each party can be computed

based on the party’s knowledge obtained through the ideal functionality. Since U

and V are not involved in the ideal functionality of renormalization, they should not

gain any additional information about the underlying secret. As for the agents, the

ideal functionality should result in uniformly random shares of the same secret hidden

inside a t − 1 degree polynomial, or termination as a result of malicious behaviors

from some agents. Let us analyze the inbound messages received by each party as

described in Protocol 3.

V does not receive any messages so there is no security concern. All the agents

receive two rounds of independent uniformly random shares - first round are the

random shares from U and V and the second round are the renormalized shares

from U . They are independent uniformly random shares because no agent receives

more than t shares of any secret and it is assumed that both U and V carry out

the protocol faithfully. Lastly, U receives inbound messages from all agents. There

are two scenarios. For the first scenario, we assume all agents carry out the protocol

faithfully and U receives all the random shares of u+ rU + rV . While U can certainly

carry out the reconstruction, U cannot learn anything about u due to the presence

of uniformly random rV unknown to U . For the second scenario, all the agents may

decide to replace their messages with subliminal messages. While preambles known

to all agents can certainly be sent undetected by U , it is impossible for a single agent

to send an unique message because U will be able to detect inconsistency among

reconstructions based on different subgroups of t shares received. Even if U does

not check for any inconsistency, subliminal messages will be destroyed as they are

replaced by uniformly generated random shares in Step 5. In either scenario, U does

not gain any new knowledge about V ’s secret. As all the inbound messages to U and

the agents are statistically indistinguishable from those from the ideal functionality,
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we conclude that Protocol 3 is secure.
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Chapter 7 Experiments

In this chapter, we first present a comparison in computation efficiency between our

Collusion-Deterred SSS (CD-SSS) and other state-of-the-arts computationally secure

SMC techniques. Then, we simulate how different strategies might evolve under

different conditions in the user-vendor games and the customer-agent game.

7.1 Computational Efficiency of CD-SSS versus GC

We first test the hypothesis that our CD-SSS system provides a more computationally-

efficient secure MPC system than other state-of-the-arts GC implementations, includ-

ing both TASTY [68] and ObliVM [83]. The choice of TASTY and ObliVM is based

on their performance and the availability of software. GC is primarily a 2-party secure

MPC scheme while our CD-SSS system requires at least 3 agents and 2 customers,

user and vendor. As the extra computing resources are not used for parallelization

but rather for matching the security access structure, we measure the performance

based on the actual wall clock time needed to complete the entire computation.

For the benchmark operations, we have chosen addition, multiplication, and com-

parison of two encrypted numbers. These three operations are universal and com-

monly used in literature as benchmarks. For our CD-SSS system, we assume that

the input numbers are already in shares and the operations complete with a recon-

struction. The implementations of addition and multiplication are straightforward

and based on the GNU MP library [64]. While we only use one-level deep multipli-

cation, we have included a renormalization step so that the number is representative

for arbitrary number of levels.

Comparison is more complicated and our algorithm is based on our earlier work in

[116]. Here we briefly review the procedure. Suppose v and w are two l-bit numbers
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to be compared and we rely on the radix-2 representations of the numbers. So the

bits of v and w are denoted as vi and wi for i = 0, 1, ..., l − 1. The computation is

performed bit by bit from the most significant bit. All the bits are already in shares

and the share computation is performed in the prime field F5. The algorithm uses

two state variables b and c to accumulate the intermediate result. Initially, b := 1 and

c := v0 − w0 + 1, which would be 2 if v0 > w0, 0 if v0 < w0, and 1 otherwise. For the

subsequent bits, we perform b := b·(1−vj−1⊕wj−1) followed by c := c·(vj−wj+2−b).

b is 1 until the corresponding bits from v and w begin to differ, and all the subsequent

b’s will be 0. vj−wj+2−b is 1 until the bits start to differ – it will be 0 if v < w and 2

if w > v. This leads to the final output c = 0 if and only if v < w. The above protocol

involves multiple random number generations, multiplications, renormalization, and

additions.

In the proposed CD-SSS, the user or vendor is responsible for renormalization and

reconstructions as discussed in Section 6.2, while the agents perform all the remaining

computation. We adopt a number of strategies to expedite the calculations. First, all

shared random numbers are pre-generated and distributed among the agents. Sec-

ond, as communication and synchronization are needed after comparing each bit, we

amortize the measurements over a large number of comparison operations in a bit-

wise fashion so as to minimize the communication overhead. To promote reproducible

research, we have made our CD-SSS implementation publicly available at our website.

We compare different techniques in two testbeds. The first testbed is on a virtual

1-Gbps LAN with up to 5 Linux nodes (1G Hz Dual-Core AMD Opteron with 2GB

RAM) on Deterlab [17]. The available TASTY software is unable to support the

Table 7.1: Deterlab Experiment

Time per operation CD-SSS ObliVM TASTY
Addition (1024 bits) 0.32 ms 806.4 ms 25.56 ms
Multiplication (1024 bits) 1.17 ms 1.587 s 8.602 s
Compare (16384 bit) 2.50 ms 7.671 s -
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comparison operations on such a wide operand. Table 7.1 shows that CD-SSS is 2

to 3 orders of magnitude faster than the two other GC methods. We also notice

that our measurements for ObliVM are significantly slower than the ones reported

in the original paper. As such, we attempt to normalize the platform by running

CD-SSS on Amazon EC2 computing nodes of types c4.8xlarge, the same computation

platform used in ObliVM. The results of ObliVM are directly cited from their original

paper [83]. The results are summarized in Table 7.2. CD-SSS remains significantly

Table 7.2: Amazon EC2 Experiment

Time per operation CD-SSS ObliVM
Addition (1024 bits) 8.1 µs 1.7 ms
Multiplication (1024 bits) 19.9 µs 833 ms
Comparison (16384 bits) 57.3 µs 26 ms

faster than ObliVM in addition and multiplication. However, the heavy network cost

on a shared network, as opposed to the dedicated network in Deterlab, has taken a

toll on comparison and the two schemes are much closer. As such, a key goal to design

a practical CD-SSS system is the minimization of the number of network invocations.

7.2 Simulations of Strategic Behaviors

In this section, we validate the conditions of different games studied in Section 5.1.

Instead of Nash Equilibria (NE), we focus our experiments on simulating the evolu-

tionary stable strategy (ESS). While these two solution concepts are based on different

conditions, an ESS, if it exists, must coincide with a NE. Also, we believe that this

is an appropriate approach because, for the distributed computing platform to be

economically viable, it will need to have a large number of customers. Among the

customers, those that provide proprietary software services are likely to be reviewed

by their clients and dishonest behaviors can result in poor customer ratings, lead-

ing to their ultimate demise. Typical consumers who want computing services on

their private information will need to use their credit cards to pay for the services.
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Again, any suspected cheating behaviors can ruin their credit scores. In other words,

while we model cheating versus staying honest as rational behaviors, bad behaviors

on a highly-social, well-connected distributed computing marketplace can affect the

decisions of other players. As such, we use EGT to model the population of all the

customers in this marketplace that are seeking and providing privacy-protected com-

puting services. The goal is to study how pervasive cheating behaviors can be in such

a marketplace. In our simulation, we use the replicator dynamic (RD) to simulate

the evolution from a given population profile under different conditions. Under RD,

the growth rate of the agents using each strategy is proportional to the excess of the

strategy’s payoff over the average payoff [136]. Our implementations are based on the

GameBug simulator [137].

We first illustrate how the system evolves over time for different User-Vendor

Games. Each user in the system is randomly matched with a vendor from the same

population for cooperations. Recall that q is the non-retaliation probability and pi is

the i-th ranked payoff. At the beginning of the simulation, 90% of the populations are

honest. We first test the scenario of preference ranking (5.1), with q ≤ p3. The initial

population profile evolves very quickly toward the pure-honesty ESS as depicted in

Fig. 7.1. In sharp contrast, q > p3 leads to a mixed ESS with hu = hv = 0.8. Fig. 7.2

shows this evolution in the population whose profile gradually converges to the mixed

ESS as marked by the black solid line. Second, we test the scenario using preference

ranking (5.2). Under the condition p3 > q, the honest strategy prevails quickly as

depicted in Fig. 7.3. Under the alternative honest condition p1 > p2p3 and p3 = q,

however, the honest behavior evolves very slowly as depicted in Fig. 7.4. Both the

conditions qp2 > p1 and p1 > p2p3 and q > p3 lead to the population evolve to

cheating, as depicted in Fig. 7.5. Third, we simulate preference ranking (5.3). The

honest condition p2 > q yields a relatively slow system evolution compared to the

previous two games, and the condition p1 > p2p3 and p2 = q has a even much slower
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evolution, as depicted in Fig. 7.6 and 7.7 respectively. The cheating conditions qp3 >

p1 or p1 > p2p3 and q > p2 have very similar effects, as depicted in Fig. 7.8.

The Bayesian Game when U is with preference order (5.1) is illustrated in Fig-

ure 7.9 under the condition p3 > q. The initial population is divided 50% against

50%, each playing “H” and “C”. The belief probabilities are set as r = s = t = 1/3.

They can be set arbitrarily and do not much affect the result. The system evolves

quickly to honest. For the other possible types of U , the honest conditions yields very

similar evolution.

Next, we simulate the Customer-Agent Game. Consider the case when v1 > 1−λ.

Setting 50% of the users and agents as honest initially, Fig. 7.10 shows that agents

evolve to honesty while users stay at a mixed strategy over time as predicted by the

non-strict NE. Second, for the case of v1 < 1−λ, Fig. 7.11 shows that the same initial

population composition of half cheating and half honest is gradually taken over by

cheating which is an ESS.

Figure 7.1: Emergent Behavior in User-Vendor Game One when q < p3
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Figure 7.2: Emergent Behavior in User-Vendor Game One when q > p3

Figure 7.3: Emergent Behavior in User-Vendor Game Two when q < p3

Figure 7.4: Emergent Behavior in User-Vendor Game Two when p1 > p2p3 and p3 = q
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Figure 7.5: Emergent Behavior in User-Vendor Game Two when either qp2 > p1 or
p1 > p2p3 and q > p3

Figure 7.6: Emergent Behavior in User-Vendor Game Three when q < p2

Figure 7.7: Emergent Behavior in User-Vendor Game Three when p1 > p2p3 and p2 = q
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Figure 7.8: Emergent Behavior in User-Vendor Game Three when either qp3 > p1 or
p1 > p2p3 and q > p2

Figure 7.9: Emergent Behavior in Bayesian Game Three when p3 > q

Figure 7.10: Emergent Behavior in the User-Agent game when p1 > 1− λ
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Figure 7.11: Emergent Behavior in the User-Agent game when p1 < 1− λ
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Chapter 8 Conclusion and Future Directions

In our construction of the censorship scheme, one of the customers, U or V , is re-

sponsible for censoring the messages among computing agents. While the proposed

scheme achieves information-theoretic security, it relies on U or V to carry out the

part of censorship that is necessary to the whole task. We would like to further reduce

the computing load of U and V in an outsourced scenario. This motivates our investi-

gations for new mechanisms that deter collusion among agents while further relieving

the burden of U and V . Specifically, we are interested in the outsourced computation

where there is only one secret owner U who gives the input to a computing platform.

In this chapter, we briefly describe our initial results of new collusion-deterrence

mechanisms as the starting point of future explorations. The basic idea is to have

multiple layers of computing agents. The upper level agents can communicate with

the immediate lower level agents, but the communication in the reverse direction

should be very difficult, thus making all communications one directional. We call it

Message Routing Mechanism and analyze its collusion deterrence using the coalition

game theory. Finally, we summarize this dissertation and point out future directions.

8.1 Message Routing Mechanism

In order to destroy collusions, we break down the collusion channels between agents.

The idea is to isolate agents so that whoever has the input secret shares cannot

communicate directly with another agent who also holds a secret input share. Specif-

ically, those who have secret shares do not know each other and whoever routes the

communication messages does not know anything of the secret shares. We designed

two schemes, called “Proxy” and “Relay”, from the above principle, in the following

two subsections respectively. We are interested in the task of Foutput (output a re-
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constructed value as described in (3.2)) and Frenorm (renormalization as described in

(4.2)). Since these two tasks involves communications among agents, they directly

correspond to the possible attacks described in Section 4.2. The reason is that by

the completeness theorems from [16] there are only three types of gates necessary

for SSS-based protocols: addition, scaling, and multiplication. All of the three gates

would lead to an output of a value, captured in Foutput, and for the multiplication

gate a reduce of degree is necessary which is captured by Frenorm. We now describe

two types of future Message Routing Mechanisms. The first is called Proxy and the

second is called Relay.

Proxy

The Proxy scheme has a set of computing agents Si for i = 1, ..., n and two other

agents P1 and P2 acting as proxies. Initially, U distributes input secret shares [a]i

to Si and P1 and P2 have no secret inputs but are responsible for routing messages

between Si whenever needed. Only two proxies are sufficient. Suppose we use a (t, n)

SSS. A well-known fact is that t ≤ dn/2e. In whatever step involving the proxies, P1

gets (t− 1) shares and P2 gets the remaining shares, so neither of them can learn the

secret. First, whenever the agents need an intermediate public value to be revealed,

they call Protocol of Output, described in Protocol (2). Second, suppose at each Si

some intermediate answer [x]di has reached a threshold d > dn
2
e, so a renormalization

is needed. The computation of the final answer cannot be performed by these two

protocols. In fact, when all the computation is done, each Si sends back the share

of result [r]i to U who then use (3.2) to reconstruct the result. Then agents run

Protocol of Renormalization, described in Protocol (3). The computational case of

three agents with two proxies is depicted in Fig 8.1.
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Figure 8.1: Network topology for the Proxy scheme in the operation of renormalization: S1,2 send
shares to P1 while S3 sends to P2; then P1,2 distribute new shares back to all agents.

Protocol 2 Foutput implemented in Proxy

1: Si has a share of a public value [c]i, i ∈ {1, ..., n};

2: Si, i ∈ {1, ..., t}, sends [c]i to P1

3: P1 outputs c using Eq. (3.2)

4: P1 sends c to every Si;

5: S1,...,n continue to run the remaining program if any.

Protocol 3 Frenorm implemented in Proxy

1: [x]di for i = 1, . . . , dn
2
e are sent to P1 and the rest to P2;

2: P1 and P2 generate the renormalized shares as follows:

[[x]di ]
t
j =

t−1∑
k=1

αkj
k + [x]di mod m, (8.1)

where αk are random numbers unknown to any Si;

3: [[x]di ]
t
j are then sent to Sj for i, j = 1, 2, . . . , n;

4: Sj computes the new [x]tj using Eq. (3.2);

5: S1,...,n continue to run the remaining program if any.

In the Proxy process, Si knows the shares [a]i but does not know IP of any Sj for

i 6= j. Pi does not have the initial [a]i. By virtue of the underlying SSS scheme, all

data at any participants are random numbers.
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Relay

The scheme of Proxy is suitable for cloud computing where three computing agents

and two proxies are sufficient. If we deploy the P2P setting where millions of peers

acting as computing agents, we can implement the Relay scheme. The following Relay

deploys three agents in parallel at a time, and it can be extended to the situation of

n agents at a time straightforwardly.

Suppose agents S1, S2, and S3 get initial input secret shares [a]i for i = 1, 2, 3

from U . First, for outputting a public number c for the task Foutput, the agents call

Protocol (4). The computational model and data flow is depicted in Fig. 8.2. Note

that all S4, S5, and S6 get are random shares [c]i but no initial secret shares [a]i,

hence the direct interactions among S4, S5, and S6 do not matter.

Second, Protocol (5) describes computing Frenorm, with the data flow and the

computational model in Fig. (8.3). Here again S1, S2, and S3 who has the initial

secret shares cannot communicate with each other for collusion, nor can S4, S5, and

S6. Note that Si for i = 4, ..., 9 does not have secret shares but only random numbers.

Finally, U gets shares of the final result from a final set of agents and reconstructs

the result. Note that if S1, S2, and S3 do not possess any secret shares, they can

do any renormalization and output without resorting to a next set of agents. This

observation can be used to simply specific SOC protocols.

Protocol 4 Foutput implemented in Relay

1: Si has a share of a public value [c]i, i ∈ {1, 2, 3};

2: [c]i, i ∈ {1, 2, 3}, is sent to Si for i ∈ {4, 5, 6} respectively;

3: S4,5,6 communicate to reconstruct c using Eq. (3.2);

4: S4,5,6 continue to run the remaining program if any.
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Figure 8.2: Network topology for the operation
of output

Figure 8.3: Network topology for the operation
of renormalization

Protocol 5 Frenorm implemented in Relay

1: S1,2,3 have [x]di for i ∈ {1, 2, 3} and d > dn
2
e;

2: Si sends [x]di for i ∈ {1, 2, 3} to S4,5,6 respectively;

3: S4,5,6 use Eq. (8.1) to generate new shares which are received by S7,8,9;

4: S7,8,9 use Eq. (3.2) to get the renormalized [x]ti;

5: S7,8,9 continue to run the remaining program if any.

Regarding the complexity of our schemes compared with the original non-collusion-

deterred n−agent SSS, the Proxy will introduce 2n more invocations of communica-

tion in parallel in each round of renormalization, and two more invocations of com-

munication in parallel in each round of output. For Relay, it will incur 2n more

invocations of communication in parallel for each round of renormalization and n

more in perallel for each output. Compared to SSS with collusion-deterrence [134],

Proxy has the same communication complexity and Relay has (n − 2) more invoca-

tions in parallel in each output. At a first glance, Relay is more complex than Proxy.

However, the anti-collusion analysis in Section 8.1 will show it is more difficult for
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Table 8.1: Coalition Game in Proxy

Coalition Value
{S1, P1, S2} 1

All other T ⊆ N 0

agents in Relay to collude..

An example SOC task using our proposed schemes is to compute LTZ, the “com-

parison with zero” protocol [28]. Comparison is a performance bottleneck for SSS-

based protocols [28]. The LTZ algorithm for the Relay is modified from [28] so as

to adapt to our Relay. For Proxy, LTZ is the same as that for [134] except that

the proxies now take place for renormalizations and reconstructions of intermediate

values.

Coalition Game

First, we analyze the situation in Proxy. There is a game GP = (N,v) defined by a set

of players N = {S1, P1, S2}. Refer to Fig. 8.1 for the connections. Denote T ⊆ N as

any subset of players. S1,2 have the secret shares but no idea of the IP of each other.

If P1 is ignorant of the collusion request from S1,2 or refuses the request, then the

collusion chain is broken. So P1 is the veto player in GP . The characteristic function v

of GP is defined as shown in Tab. 8.1. The value has been normalized where “1” means

the highest possible value of collusion (for example, by selling the secret and then

divide the revenue among colluders) and “0” means nothing is achieved. Regarding

the solution of GP , denote the payoff vector as υ = (υS1 , υP1 , υS2). Hence, the core is

υc = (0, 1, 0), the nucleolus is υn = (0, 1, 0), and the SV is υS = (1/3, 1/3, 1/3).

The interpretation of GP from S1’s point of view includes: (1) S1 must pay to P1

what ever price P1 asks as suggested by the core and the nucleolus. (2) Isolated from

each other, S1 has no information of the coordination of actions of S2 and both are

advised to be honest because of the zero payoff from the core and the nucleolus. (3)
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Table 8.2: Coalition Game in Output of Relay

Coalition Value
{S1, S2, S4, S5} 1
All other I ⊆ J 0

Table 8.3: Coalition Game in Renormalization of Relay

Coalition Value
{S1, S2, S4, S5, S7} 1
All other H ⊆ K 0

The only cooperation solution is SV. If S2 also joins, it is fair to give P1 only 1/3 of

the value according to the SV. This thought will be a key point of future direction.

Second, let’s turn to the Relay scheme. There are two games, one for output and

another for renormalization.

Refer to Fig. 8.2 of output and consider the potential collusion between S1, S2,

since the situation is the same for any pair of agents from S1,2,3. Denote the game in

output as GO = (J,w) where J = {S1, S2, S4, S5}. The S4, S5 are veto players because

of their midway positions in the collusion chain. The characteristic function w is

defined in Tab 8.2. Denote the payoff vector for GO as τ = (τS1 , τS2 , τS4 , τS5). Hence,

the core is τ c = {(0, 0, x, 1−x); 0 ≤ x ≤ 1}, the nucleolus is τn = (0, 0, 1/2, 1/2), and

the SV is τS = (1/4, 1/4, 1/4, 1/4).

Refer to Fig. 8.3 for the renormalization in Relay. The collusion between S1 and S2

is even harder because now 3 veto players {S4, S5, S7} are in the setK = {S1,2,4,5,7,8} to

which the game GR = (K,x) will be defined, as shown in Tab. 8.3. Denote the payoff

vector for GR as ζ = (ζS1 , ζS2 , ζS4 , ζS5 , ζS7). Hence, the core is ζc = {(0, 0, x, y, 1−x−

y); 0 ≤ x, y ≤ 1 and x+ y = 1}, the nucleolus is ζn = (0, 0, 1/3, 1/3, 1/3), and the SV

is ζS = (1/5, 1/5, 1/5, 1/5, 1/5).

The interpretation of GO and GR from S1’s point of view is very similar to that in

GP . The core and the nucleolus suggest that S1 has nothing beneficial from collusion.

The SV basically says that S1 at most has a share of value of 1/4 and 1/5 for games
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GO and GR respectively. The SV in games in Relay also show that cheating gets

lower payoff than in Proxy. Intuitively this is because in Relay the collusion channel

is “longer” than that in Proxy, so it is more difficult to cheat in Relay.

It is possible that S1 may still try to persuade his/her next agent into collusion.

This problem is one of our future investigations.

8.2 Conclusion

Secure multi-party computation (secure MPC) has been established as the de facto

paradigm for protecting privacy in distributed computation. One of the earliest MPC

primitives is the Shamir’s secret sharing (SSS) scheme. SSS has many advantages over

other secure MPC primitives like garbled circuits and homomorphic encryption – it

provides an information-theoretic security (ITS) guarantee, requires no complex long-

integer operations, and often leads to more efficient protocols. We have provided a

summary of signal processing operations based on SSS as well as an example appli-

cation of image denoising in the SSS domain to demonstrate the usefulness of SSS in

protecting privacy in an outsourced environment. Nonetheless, ITS-MPC protocols

built from SSS receive less attention in the signal processing community because SSS

requires a larger number of honest participants, making it prone to collusion attacks.

In this dissertation, we have proposed an outsourced distributed computation

framework on secret data based on Shamir’s secret sharing. The key innovation is

a comprehensive modeling of different collusion attacks and countermeasures using

game-theoretic approaches. Two types of games, user-vendor and customer-agent,

have been studied. We provide a detailed analysis of possible outcomes under dif-

ferent privacy preferences based on the relative cost of collusion attacks over loss of

privacy. User-vendor games model the intention to commit collusion attacks with the

possibility of retaliation from the perspective of a customer. Using both symmetric

strategic form games and Bayesian games to model uncertainty in privacy preference,
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we have concluded that honesty is a stable strategy if it is possible to reliably detect

thefts, thereby keeping the cost of collusion high. For undetectable theft, we have

proposed a deception design to inject police customers into the framework. Using the

customer-agent game, we have concluded that honesty is a stable strategy for agents

under a significant presence of police. A cryptographic censorship protocol has also

been proposed to sanitize traffic so as to eliminate any collusion among agents under

a covert adversarial model. Our collusion deterred ITS-MPC framework based on

SSS is called CD-SSS. Experimental results have been provided to demonstrate the

efficiency of our proposed system over state-of-the-arts Garbled Circuit systems and

the validity of our game-theoretic constructions. Further investigations are needed

to confirm whether the proposed mechanisms accurately reflect practical applications

through the use of social computing experiments. Another important area of exten-

sion is to incorporate suitable network topology of agents into the framework. We

have already conducted preliminary studies on using network of agents in reducing

customers’ load in the censorship protocol [133]. Further extension of game-theoretic

designs to network could potentially relax conditions for honesty strategy.
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