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Abstract: Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage
and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein
that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator
of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in
the inflammatory response of immune cells in obesity is untested. Our objective was to determine
how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox
homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were
activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory
palmitate and/or non-inflammatory oleate. Palmitate decreased immune cell expression of NNT,
NADPH, and anti-oxidant glutathione, but increased reactive oxygen and proinflammatory Th17
cytokines. Oleate had no effect on these outcomes. Genetic inhibition of NNT recapitulated the
effects of palmitate. PBMCs from obese (BMI >30) compared to lean subjects had lower NNT and
glutathione expression, and higher Th17 cytokine expression, none of which were changed by
exogenous palmitate. Our data identify NNT as a palmitate-regulated rheostat of redox balance that
regulates immune cell function in obesity and suggest that dietary or therapeutic strategies aimed at
increasing NNT expression may restore redox balance to ameliorate obesity-associated inflammation.

Keywords: mitochondria; nicotinamide nucleotide transhydrogenase; oleate; palmitate; peripheral
blood mononuclear cells, reactive oxygen species, Th17 cytokines

1. Introduction

Metabolic diseases like obesity are characterized by mitochondrial dysfunction, redox imbalance,
and chronic inflammation. However, the relationships amongst these physiological changes and how
they promote metabolic dysfunction in obesity [1,2] is not well understood. Mitochondria generate
cellular reactive oxygen species (ROS) mainly due to respiration-linked electron leakage that generates
superoxide anion and other redox changes. These changes are kept in check by anti-oxidants under
homeostatic conditions that are required for normal immune function [3]. Excess ROS, generated
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by over-exuberant mitochondria amidst deficiencies in anti-oxidants such as nicotinamide adenine
dinucleotide phosphate (NADPH) and reduced glutathione (GSH), can trigger aberrant cellular
signaling and other measures of damage that may upregulate pro-inflammatory cytokine expression [4]
to pathogenic levels. Such mechanisms may support the unresolved inflammation that associates with
obesity complications like type 2 diabetes (T2D) [5].

Nicotinamide nucleotide transhydrogenase (NNT) is an inner mitochondrial membrane protein
that catalyzes the reduction of NADP+ by NADH and the conversion of NADH to NAD+ [6–9]. NNT
has been implicated in redox balance and inflammation. Knockdown of NNT in human adrenocortical
cells resulted in impaired redox potential, increased mitochondrial ROS and apoptosis [10]. Liver
mitochondria from C57BL/6J mice, which lack NNT due to a spontaneous mutation, have major redox
alterations including higher H2O2, spontaneous NADPH oxidation and lower GSH compared to a
BL/6J sub-strain with a functional NNT gene [11]. Similarly, macrophages from C57BL/6J mice with
an NNT transgene have lower ROS and less cytokine production than non-transgenic counterparts [12].
Whether ROS from specific organelle sources and/or antioxidant regulation by NNT simply parallels
or directly causes pro-inflammatory cytokine production was not addressed by these studies. However,
these data raise the possibility that obesity-associated mitochondrial dysfunction interpreted in the
context of dyslipidemia perturb NNT, redox balance, and downstream outcomes like inflammation.

The objective of our study was to assess causal links amongst obesity-associated lipid shifts,
NNT/ROS expression, and inflammation in peripheral blood mononuclear cells (PBMCs) from
lean subjects to determine whether this pathway triggers the chronic inflammation that promotes
obesity-associated metabolic decline. We used a combination of saturated and monounsaturated fatty
acids, T cell-targeted stimuli, and genetic inhibition of NNT to show that palmitate decreases NNT
and GSH to promote redox imbalance and thereby the Th17 cytokines that characterize inflammation
in T2D [5]. PBMCs from obese subjects had lower expression of NNT and GSH compared to lean
age-matched subjects that did not further change in response to palmitate ex vivo, consistent with
the interpretation that this in vitro-induced pathway is active in people. Collectively these data
indicate that dietary or therapeutic strategies aimed at increasing NNT expression may be beneficial
for modulating mitochondrial redox balance to ameliorate obesity-associated inflammation.

2. Materials and Methods

2.1. Human Subjects Sample Collection

In accordance with the Declaration of Helsinki, informed consent for all human samples was
obtained following Institutional Review Board-approved protocols at Boston University, University of
Kentucky, and The Forsyth Institute (Ethical code numbers H27007, 44131, and 00000037, respectively).
Peripheral blood was obtained from normoglycemic subjects who were lean (avg: 33 years; BMI
22.71 kg/m2) or obese (avg: 39.6 years; BMI 34.15 kg/m2), with additional characteristics shown in
Table 1. Exclusion criteria were smoking, recent use of antibiotics or anti-inflammatory medications
i.e., NSAIDs/steroids, recent (within two weeks) colds or flu, diabetes or diabetes medications, and
any history of cancer, hyperglycemia, and auto-immune diseases.

Table 1. Description of research subjects.

Lean Obese

Total N 12 8
Age, years [mean (range)] 33 (28–45) 39.6 (30–47)

A1c, % [mean (range)] 5.1 (4.5–5.6) 5.3 (5–5.5)
BMI, kg m−2 [mean (range)] * 22.71 (21.1–24.4.) 33.94 (30.4–40.8)

Females [N (%)] 7 (58.33%) 4 (50%)
Males [N (%)] 5 (41.66%) 4 (50%)

* p < 0.05 compared to lean.
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2.2. Isolation of PBMCs and T Cells

Fifty milliliters of peripheral blood were collected into acid/citrate/dextrose containing tubes by
venous puncture. PBMCs were purified by histopaque 1077 then frozen at −80 ◦C under controlled
cooling conditions in a Mr. Frosty apparatus (Nalgene, Sigma Aldrich, St Louis, MO, USA). For
multi-week storage, cells were moved to −170 ◦C following 1–7 days at −80 ◦C. PBMCs from the
subjects were stimulated in vitro for 40 h with T cell-targeted αCD3/αCD28 Dynabeads (Thermo Fisher
Scientific, 11132D, Waltham, MA, USA) at 2 µL Dynabeads per 100k cells. In some cultures, cells were
co-treated with 400 µM palmitate (pal) (C16:0) coupled to fatty acid-free Bovine Serum Albumin (BSA)
at a ratio of 2 mol palmitate to 1 mole BSA, or 400 µM oleate, or a combination of palmitate and oleate.
These fatty acid concentrations mimic concentrations achievable in serum [13]. Control cells were
treated with 1% BSA. The mitochondrial ROS scavenger MitoTempo (mito)(10 µM) or a general ROS
scavenger N-acetyl cysteine (NAC) was added for the last 20 h of incubation (20 h post-stimulation)
for some cultures. All treatments were done in RPMI media with 5 mM glucose (normoglycemic).
Supernatants were collected and stored at −80 ◦C. Cells were assayed as outlined below.

2.3. Immunoblotting

Immunoblotting was used to quantify protein expression as we published [14,15]. The procedure
was modified according to the cell type from which the proteins were extracted. Thirty µL of 1X cell
lysis buffer (Cell Signaling Technology, Danvers, MA, USA) was added to 1 × 106 cells and incubated
on ice for 20 min. Cells were then centrifuged at 13,000 rpm for 20 min and supernatant was collected.
A Bicinchoninic Assay (Thermo Fisher Scientific, Waltham, MA, USA) assessed protein concentration.
Twenty µg protein was loaded in polyacrylamide gels and electrophoresis was performed at 100 V for
1 h. Transfer of protein to polyvinylidene difluoride (PVDF) membrane was performed at 45 V for 5 h.
The membrane was blocked for 30 min at room temperature (RT) in blocking buffer containing 2%
bovine serum albumin in TBST followed by overnight incubation at 4 ◦C in the respective primary
antibodies. The membrane was washed 3X with 1X TBST and incubated with secondary antibodies
for 2 h at RT, then imaged. Table 2 lists the antibodies used in this study. All antibodies were
used at a dilution of 1:500 except β-actin which was used at 1:10,000. We quantified NNT, isocitrate
dehydrogenase 2 (IDH2), malic enzyme 2 (ME2), glutamate cysteine ligase catalytic subunit (GCLC),
heat shock protein 60 (Hsp60) and mitochondrial aconitase (m-aconitase) expression on western blots
using Image studio lite (Licor, Lincoln, NE, USA) [16].

Table 2. Antibodies used in this study.

Protein Catalog # Company

NNT ab110352 Abcam
m-aconitase ARP40390_P050 Aviva biologicals

Hsp60 12165S Cell signaling technology
GCLC ARP54577_P050 Aviva biologicals
IDH2 ab131263 Abcam

B-Actin 3700 Cell signaling technology
Malic enzyme 12399S Cell signaling technology

All antibodies were used at a dilution of 1:500 except β-actin (1:10,000).

2.4. ROS Quantification

ROS was quantified using 2′,7′ –dichlorofluorescin diacetate (DCFDA) fluorescence
(Sigma-Aldrich, D6883, St Louis, MO, USA) normalized to cell number [14,17]. Twenty-five mM
glucose (Sigma Aldrich, D8270) and 50 µM tert-butyl hydrogen peroxide (TBHP) (Sigma Aldrich,
416665) were used as positive controls. The free radical scavenger Tempol (50 µM; Sigma Aldrich
SML0737) was used to manipulate ROS generation and served as a control [14].
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2.5. Mitochondrial Measures

Mitochondrial mass was quantified in PBMCs after stimulation +/− fatty acids using Mitotracker
green fluorescence. PBMCs were incubated with αCD3/αCD28 ± 400 µM palmitate and/or oleate for
40 h then were washed twice with 1X PBS and incubated with 40 nM Mitotracker green (9074S, Cell
Signaling Technology, Danvers, MA, USA) in 5 mM glucose-containing RPMI for 30 min. Mitotracker
green fluorescence was assessed via fluorescence spectrophotometry (Biotek, Winooski, VT, USA) and
the results were normalized to cell numbers.

2.6. Mitochondrial Membrane Potential

αCD3/αCD28-stimulated PBMCS ± palmitate and/or oleate were incubated with 400 nM
tetramethylrhodamine, ethyl ester (TMRE), a cell-permeable positively-charged dye that accumulates
in mitochondria with high membrane potential, for 30 min. The cells were assayed using microplate
spectrophotometry (Biotek). Fifty µM FCCP was the positive control.

2.7. Measurement of Cellular Antioxidants

Cellular GSH was measured using a colorimetric assay (BioVision, Milpitas, CA, USA) according
to manufacturer’s protocol. Cellular NADPH was quantitated with a colorimetric assay according to
manufacturer’s instructions (BioVision).

2.8. Measurement of Plasma Free Fatty Acid

Plasma free fatty acids were quantitated using EnzyChrome free fatty acid assay kit (BioAssay
Systems, EFFA 100, Hayward, CA, USA) according to manufacturer’s instructions.

2.9. Cytokine Analysis

The Milliplex Th17 cytokine multiplex kit (Millipore, Burlington, MA, USA) was used to
assess protein accumulation in all supernatants in technical duplicate on a Luminex FlexMAP 3D
instrument (Luminex, Austin, TX, USA). Alternatively, we quantified IL-17A/F and IL-23 using
the Legend Max human ELISA kit (Biolegend, San Diego, CA, USA), performed according to
manufacturer’s instructions. The IL-17A/F ELISA does not distinguish between the two isotypes,
which heterodimerize to mediate a large portion of “IL-17” activity [18].

2.10. Small Interference RNA

Small interference RNA (siRNA)-mediated knockdown of NNT was performed using Accell
siRNA (Dharmacon, Lafayette, CO, USA) following manufacturer’s guidelines. Scrambled sequences
were used as controls. The siRNA (1 µM) was diluted in Accell siRNA delivery medium and added to
PBMCs with 2% FBS and 300 IU of IL-2. Cells were incubated ~40 h prior to assessing knockdown
efficiency via immunoblotting and subsequent analysis.

2.11. Statistical Analyses

Data are presented as mean ± standard error of the mean (SEM). For comparison among three or
more groups a one-way ANOVA and a Tukey’s post hoc test was used to identify differences. Unpaired
2-tailed t-tests compared means of two values. Significance was accepted when p < 0.05.

3. Results

3.1. Palmitate Decreased PBMC Membrane Potential

Fatty acid oxidation by T cell mitochondria regulates T cell function [19], but the impact of free
fatty acids (FFAs) on mitochondrial membrane potential and mass, as preliminary indicators of T cell
function, is untested. We activated PBMCs from lean subjects with T cell-specific αCD3/αCD28 in the
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presence of 400 µM palmitate or oleate alone or in combination, then quantified membrane potential
and mitochondrial content. Palmitate alone or in combination with oleate decreased membrane
potential, but oleate alone had no effect, as measured by TMRE fluorescence (Figure 1A). Mitochondrial
content was similar amongst treatments, as measured by Mitotracker green fluorescence and expression
of the inner mitochondrial proteins Hsp60 and m-aconitase on Western blots (Figure 1B–D). We
conclude that palmitate dissipates PBMC mitochondrial membrane potential without changing
mitochondrial mass, and that oleate cannot restore baseline membrane potential in the presence
of palmitate.
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Figure 1. Palmitate decreased peripheral blood mononuclear cells (PBMC) membrane potential without
altering mitochondrial mass: PBMCs isolated from normoglycemic, lean subjects (ave: 33 years; BMI
22.71 kg/m2) were treated with 400 µM palmitate (pal) or oleate (ole) or a mixture of palmitate and
oleate (pal + ole) prior to measuring (A) Mitochondrial membrane potential with tetramethylrhodamine
ethyl ester (TMRE); (B) Mitochondrial mass with mitotracker green fluorescence, or mitochondrial
inner membrane proteins (C) Hsp60 and (D) m-aconitase. N = 5 each treatment. Each N represents
cells from one subject. * p < 0.05 vs. control (con).

3.2. Palmitate Altered the Cellular Redox Balance

The observation that palmitate lowered membrane potential in PBMCs suggested that palmitate
may change redox status to lower ROS generation by these cells. To the contrary, palmitate alone or
in combination with oleate increased ROS generation compared to cultures lacking exogenous FFAs,
although oleate effects were time-dependent (Figure 2A,B). Glutathione (GSH), a dominant cellular
antioxidant/redox regulator, and NADPH were dramatically decreased by palmitate alone or in
combination with oleate (Figure 2C,D). NADP concentrations were highly variable, thus interpretation
was tenuous. We conclude palmitate significantly disrupts redox homeostasis of immune cells from
lean subjects, while early effects of oleate on ROS may be moderated over time.
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Figure 2. Palmitate treatment of PBMCs altered cellular redox balance: Cellular reactive oxygen species
(ROS) at (A) 20 h post activation or (B) 40 h post activation in the presence or absence of palmitate
(pal) and oleate (ole) per Figure 1. Y axis is mean fluorescence intensity (MFI), an approximation of
the number of molecules of ROS in the cells. (C) reduced glutathione (GSH), and (D) NADPH were
measured at 40 h post-stimulation +/− pal/ole. N = 6–8 per treatment. Each N represents cells from
one subject. * p < 0.05 vs. control (con).

3.3. Palmitate Lowered the Expression of Nicotinamide Nucleotide Transhydrogenase

GSH generation requires NADPH, which is regulated by several mitochondrial proteins including
NNT, isocitrate dehydrogenase (IDH2), malic enzyme (ME2) and glutamate cysteine ligase (GCL).
We quantified the effect of palmitate alone or in combination with oleate on these four indirect
regulators of redox balance. NNT was significantly decreased by palmitate, but not oleate, in
αCD3/αCD28-stimulated PBMCs (Figure 3A). IDH2, ME2 and GCLC were unchanged by palmitate
(Figure 3B–D), but oleate significantly increased IDH2 and decreased GCLC protein expression
(Figure 3B–D). These findings support the conclusion that palmitate-mediated decreases in NNT,
but not IDH2, ME2 or GCLC, are associated with lower mitochondrial membrane potential and redox
disruption in PBMCs. Furthermore, oleate-mediated changes in other potential GSH regulators did
not associate with ROS differences, indicating oleate failed to alter multiple mitochondrial proteins
critical for redox homeostasis.
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Figure 3. Palmitate lowers nicotinamide nucleotide transhydrogenase (NNT) protein expression:
Cellular (A) NNT, (B) isocitrate dehydrogenase 2 (IDH2), (C) malic enzyme 2 (ME2), or (D) the
glutamate cysteine ligase catalytic subunit were measured relative to the β actin loading control on
Western blots to assess the redox regulators in PBMCs stimulated with αCD2/αCD28 in the presence
or absence of palmitate (pal) and oleate (ole) per Figure 1. In panel A, N = 7–8. For Panels B,C&D,
N = 5. Each N represents cells from one subject. * p < 0.05 vs. control (con).

3.4. Palmitate Increased Proinflammatory Cytokine Production by PBMCs

T cell cytokines promote insulin resistance in animal models of obesity [20,21], while Th1 and
Th17 cytokines mathematically predict glycemic control and type 2 diabetes, respectively, in people [5].
To identify links between palmitate-induced redox/mitochondrial changes and obesity-associated
inflammation, we stimulated PBMCs with αCD3/αCD28 in the presence of palmitate and quantified
cytokines. Palmitate increased production of multiple (but not all) Th17-associated cytokines (IL-17A,
-17F, and -23, but not IL-21) with insignificant/variable effects on Th1 (IL-6, IL-12, IFNγ) and Th2
(IL-4) cytokines (Figure 4). Oleate treatment had no effect on classically defined Th17 cytokines, but
increased GMCSF and IL-9 (Figure 4 D,E), which have multiple cellular origins [22–24] and pleotropic
effects on inflammation. Unstimulated PBMCs produced low/unmeasurable amounts of all cytokines
measured (data not shown). We conclude that palmitate-associated changes in mitochondrial function
and redox balance parallel Th17 cytokine activation in immune cells from lean subjects.
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different treatments (not shown). N = 9-10 in each treatment. Each N represents cells from one subject. 
* p < 0.05 vs control (con). Interleukin (IL), Tumor Necrosis Factor α (TNFα), Tumor Necrosis Factor 
β (TNFβ), Interferon γ(IFNγ), Chemokine (C-C motif) ligand 20 (CCL20)/ Macrophage Inflammatory 
Protein-3 (CCL20/MIP3A), Granulocyte Macrophage Colony Stimulating Factor (GM-CSF). 

3.5. NNT Protein Knockdown Recapitulated Palmitate-Induced Changes in PBMCs 

To establish cause/effect relationships between palmitate-mediated decrease in NNT expression 
and the Th17 inflammation that characterizes obesity-associated type 2 diabetes [5], we treated 
PBMCs from lean subjects with NNT-specific siRNA and analyzed redox and cytokine outcomes. We 
confirmed NNT siRNA decreased NNT protein ~75% relative to a scrambled siRNA control (Figure 
5A). Analysis of ROS and NADPH in the NNT knock-down showed the predicted changes (Figure 
5B,C). Both IL-17A/F and IL-23 expression were significantly higher in NNT knockdown cells 
compared to control cells (Figure 5D,E). We conclude that experimental NNT knockdown 
recapitulates palmitate-downstream redox imbalance and Th17 cytokine up-regulation. 

Th17 cytokines require 32–40 h for detectable expression, raising the possibility that ROS from 
either mitochondrial and/or non-mitochondrial sources may be required at multiple points along this 
relatively long timeline for NNT-mediated inflammation. To test the importance of ROS in 
maintenance of the events that culminate in Th17 cytokine production many hours later, we added 
MitoTempo(mito) or a general ROS scavenger N-acetyl cysteine (NAC) at 20 h post-stimulation, and 
quantified cytokines by ELISA at 40 h. MitoTempo failed to impact IL-17A/F production under 
palmitate +/ oleate co-treatment (Figure 5F), supporting the interpretation that palmitate/NNT-
triggered mitochondrial ROS is not required for maintenance of cytokine production. Although NAC 
significantly blunted IL-17A/F production, interpretation is confounded by the ability of NAC to 
activate the proteasome and thus affect multiple NF-κB regulated inflammatory genes [25]. Addition 
of MitoTempo at time zero significantly compromised cell viability, making interpretations of the 
role of early mitochondrial ROS on the palmitate-NNT-Th17 pathway uncertain. We conclude that 
an initial burst of mitochondrial ROS in the first 20 h post-stimulation, perhaps in combination with 
the ROS-induced ROS generation likely induced at later time points, is sufficient to support Th17 
cytokine production in response to palmitate. 

 

Figure 4. Palmitate promotes production of characteristic Th17 cytokines. Cytokine production from
cells stimulated in the presence or absence of palmitate (pal) and oleate (ole) per Figure 1 and assessed
via multiplex. The concentrations of other cytokines assessed by the multiplex assay (IL-10, IL-13,
IL-15, IL-22, IL-33, IL-2, IL-5, IL-17E, IL-27, IL-31, TNFα, TNF-β, IL-28A) remained unchanged after the
different treatments (not shown). N = 9–10 in each treatment. Each N represents cells from one subject.
* p < 0.05 vs. control (con). Interleukin (IL), Tumor Necrosis Factor α (TNFα), Tumor Necrosis Factor β
(TNFβ), Interferon γ(IFNγ), Chemokine (C-C motif) ligand 20 (CCL20)/ Macrophage Inflammatory
Protein-3 (CCL20/MIP3A), Granulocyte Macrophage Colony Stimulating Factor (GM-CSF).

3.5. NNT Protein Knockdown Recapitulated Palmitate-Induced Changes in PBMCs

To establish cause/effect relationships between palmitate-mediated decrease in NNT expression
and the Th17 inflammation that characterizes obesity-associated type 2 diabetes [5], we treated
PBMCs from lean subjects with NNT-specific siRNA and analyzed redox and cytokine outcomes.
We confirmed NNT siRNA decreased NNT protein ~75% relative to a scrambled siRNA control
(Figure 5A). Analysis of ROS and NADPH in the NNT knock-down showed the predicted changes
(Figure 5B,C). Both IL-17A/F and IL-23 expression were significantly higher in NNT knockdown cells
compared to control cells (Figure 5D,E). We conclude that experimental NNT knockdown recapitulates
palmitate-downstream redox imbalance and Th17 cytokine up-regulation.

Th17 cytokines require 32–40 h for detectable expression, raising the possibility that ROS from
either mitochondrial and/or non-mitochondrial sources may be required at multiple points along this
relatively long timeline for NNT-mediated inflammation. To test the importance of ROS in maintenance
of the events that culminate in Th17 cytokine production many hours later, we added MitoTempo(mito)
or a general ROS scavenger N-acetyl cysteine (NAC) at 20 h post-stimulation, and quantified cytokines
by ELISA at 40 h. MitoTempo failed to impact IL-17A/F production under palmitate +/ oleate
co-treatment (Figure 5F), supporting the interpretation that palmitate/NNT-triggered mitochondrial
ROS is not required for maintenance of cytokine production. Although NAC significantly blunted
IL-17A/F production, interpretation is confounded by the ability of NAC to activate the proteasome
and thus affect multiple NF-κB regulated inflammatory genes [25]. Addition of MitoTempo at time
zero significantly compromised cell viability, making interpretations of the role of early mitochondrial
ROS on the palmitate-NNT-Th17 pathway uncertain. We conclude that an initial burst of mitochondrial
ROS in the first 20 h post-stimulation, perhaps in combination with the ROS-induced ROS generation
likely induced at later time points, is sufficient to support Th17 cytokine production in response
to palmitate.
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The known increase in circulating FFAs in obesity [26,27] was recapitulated in our obese cohort 
(Figure 6A). These data raise the question of whether the palmitate-sensitive redox regulators 
revealed by our analyses of cells from lean people is mirrored in cells from the obese cohort. Both 
NNT and GSH expression were lower in αCD3/αCD28-stimulated PBMCs from obese compared to 
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inflammation in cells from obese subjects (Figure 6 F-H), suggesting redundant regulatory pathways. 
MitoTempo had no impact on IL-17A/F, GSH or NNT in cells from obese subjects, indicating that 
non-mitochondrial sources of ROS added a layer of regulation absent in palmitate-treated cells from 
lean subjects. These findings support the interpretation that higher circulating palmitate in obese 
subjects supports redox imbalance that stems from both mitochondrial and non-mitochondrial 
sources and culminates in increased production of T2D-associated Th17 cytokines [5]. 

Figure 5. NNT knockdown promotes ROS and Th17 cytokine production: (A) NNT protein measured
following knockdown with scrambled (scr) or NNT-targeted siRNA. Amounts of cellular (B) ROS
(DCFDA), (C) NADPH (measured using a commercial kit), (D) IL-17A/F (in ELISA) and (E) IL-23
(in ELISA). (F) IL-17A/F quantified after stimulation in the presence of the indicated additives:
palmitate (pal), oleate (ole), MitoTempo (mito) (10 µM) or N-acetyl cysteine (NAC, 20 µM). A,B,C,F
N = 5, D&E N = 7–8 in each treatment. Each N represents cells from one subject. * p < 0.05 vs. scr
siRNA treated cells (A–E) or pal in F.

3.6. PBMCs from Subjects with Obesity Mimicked Characteristics of Redox Imbalance Caused by Palmitate

The known increase in circulating FFAs in obesity [26,27] was recapitulated in our obese cohort
(Figure 6A). These data raise the question of whether the palmitate-sensitive redox regulators revealed
by our analyses of cells from lean people is mirrored in cells from the obese cohort. Both NNT and
GSH expression were lower in αCD3/αCD28-stimulated PBMCs from obese compared to lean subjects
(Figure 6B,C), and ROS was higher at both time points tested (Figure 6D), as was IL-17A/F (Figure 6E).
Exogenous palmitate did not change any measures of redox imbalance or inflammation in cells from
obese subjects (Figure 6F–H), suggesting redundant regulatory pathways. MitoTempo had no impact
on IL-17A/F, GSH or NNT in cells from obese subjects, indicating that non-mitochondrial sources of
ROS added a layer of regulation absent in palmitate-treated cells from lean subjects. These findings
support the interpretation that higher circulating palmitate in obese subjects supports redox imbalance
that stems from both mitochondrial and non-mitochondrial sources and culminates in increased
production of T2D-associated Th17 cytokines [5].
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obese/normoglycemic to obese/metabolically compromised remains an important outstanding 
question with significant clinical impact. Identifying nutrient-sensitive mechanisms that activate 
inflammation alone or in the presence of generally non-inflammatory nutrients (oleate) will aid 
experimental design for clinical trials on nutrients as sustainable mediators of the events that fuel 
obesity co-morbidities. Our work links multiple previous studies on FFAs, mitochondrial 
(dys)function and inflammation to support the conclusion that saturated FFAs like palmitate down-
regulate the mitochondrial protein NNT to trigger a cascade of events leading to the Th17 
inflammation that associates with T2D. Our data do not eliminate the possibility of NNT-
independent pathways despite elimination of bioenergetically complex regulators like ME2 [28,29], 
but instead, define a previously unappreciated pathway from a dietary nutrient to inflammation. 

Several lines of evidence are consistent with the model generated from our results (Figure 7). In 
addition to outcomes from C57BL/6 mice that have a breeding-generated NNT mutation and cellular 
redox imbalance compared to NNT-expressing mice [11,12], NNT also appears to regulate redox in 
people. Demonstrations that NNT regulates redox balance in clinically relevant settings include an 
NNT mutation in patients with familial glucocorticoid deficiency [10], who develop organ 
pathologies related to impaired anti-oxidant defense mechanisms. Altered redox following NNT 
silencing in human adrenocortical or PC12 cells confirmed this connection ex vivo [10,30]. NNT may 
also protect MnSOD-deficient mitochondria [31], further linking NNT to redox balance. 

NNT has also been identified as a regulator of metabolic health in multiple studies. Quantitative 
trait locus mapping highlighted NNT as important for glycemic control and insulin secretion in 
C57BL/6 mice, although the investigators assumed NNT function was mainly in the pancreatic beta 
cells [32,33]. Comparison of C57BL/6 mice +/- functional NNT showed NNT protected against glucose 

Figure 6. NNT expression was blunted in PBMCs from obese non-diabetic subjects. Circulatory free
fatty acid levels were assessed in the plasma of lean and obese subjects (A) PBMCS from lean or obese
subjects (Table 1) were analyzed for (B) NNT on Western blots (C) glutathione (D)ROS production
20 h and 40 h post activation and (E) IL-17A/F production. The production of (F) IL-17A/F (G) GSH
and (H) NNT expression was assessed after palmitate +/− the mitochondrial free radical scavenger
MMitoTempo (mito). A N = 6, B&D N = 5, C,E,F,G,H N = 7–8. Each N represents one subject. * p < 0.05
vs. lean. # p < 0.05 vs. obese.

4. Discussion

How obesity in people triggers the chronic inflammation that promotes the transition from
obese/normoglycemic to obese/metabolically compromised remains an important outstanding
question with significant clinical impact. Identifying nutrient-sensitive mechanisms that activate
inflammation alone or in the presence of generally non-inflammatory nutrients (oleate) will aid
experimental design for clinical trials on nutrients as sustainable mediators of the events that fuel
obesity co-morbidities. Our work links multiple previous studies on FFAs, mitochondrial (dys)function
and inflammation to support the conclusion that saturated FFAs like palmitate down-regulate the
mitochondrial protein NNT to trigger a cascade of events leading to the Th17 inflammation that
associates with T2D. Our data do not eliminate the possibility of NNT-independent pathways despite
elimination of bioenergetically complex regulators like ME2 [28,29], but instead, define a previously
unappreciated pathway from a dietary nutrient to inflammation.

Several lines of evidence are consistent with the model generated from our results (Figure 7).
In addition to outcomes from C57BL/6 mice that have a breeding-generated NNT mutation and
cellular redox imbalance compared to NNT-expressing mice [11,12], NNT also appears to regulate
redox in people. Demonstrations that NNT regulates redox balance in clinically relevant settings
include an NNT mutation in patients with familial glucocorticoid deficiency [10], who develop organ
pathologies related to impaired anti-oxidant defense mechanisms. Altered redox following NNT
silencing in human adrenocortical or PC12 cells confirmed this connection ex vivo [10,30]. NNT may
also protect MnSOD-deficient mitochondria [31], further linking NNT to redox balance.
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intolerance upon high fat diet feeding, though the underlying cause of greater weight gain (which 
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of obese subjects and positively correlated with BMI, body weight, percent body fat, waist to hip 
circumference and fasting plasma insulin [35]. The authors raise the possibility that higher NNT 
resulted in feed forward loops that culminate in beta cell “burn out” amongst other explanations for 
this unexpected finding. Another study reported that NNT and GSH mRNA, among other indicators 
of mitochondrial function, increase in subcutaneous and visceral adipose tissue 12 months after 
sleeve gastrectomy along with a decrease in adipokine mRNAs (a measure of inflammation) [36]. It 
is important to note that the impact of bariatric surgery on inflammation is variable across studies 
[37] The results from these studies disagree indicating that further work is needed to determine 
whether technical differences (mRNA vs. protein quantification), cell type differences (total visceral 
adipose tissue vs. circulating immune cells), or species differences (mouse vs. human) explain the 
apparent discrepancies amongst these findings. Newly appreciated links from FFA excess to 
NNT/redox imbalance terminating in obesity-associated Th17 inflammation may more broadly 
represent a regulatory pathway that drives functions of other cell types in obesity through similar 
mitochondrial machinery. NNT-targeted interventions may therefore normalize multiple cellular 
functions that perpetuate obesity-associated complications. 

The T2D-associated Th17 profile was derived from a comparison of obese subjects with and 
without T2D [5]. It is difficult to say whether partial recapitulation of this profile (IL-17A, -17F, -23) 
by palmitate treatment of cells from lean subjects herein is more modeling the obese/normoglycemic 
status tested here, or the obese/T2D status that was tested by our profiling work. Partial recapitulation 
of the profile by palmitate could mimic the physiology somewhere along the continuum of 
progression from obesity to obesity-associated T2D, a speculation that would require substantial 
additional investigation. 

 
Figure 7. Schematic description of the findings. The saturated fatty acid palmitate blunts the 
expression of the mitochondrial redox regulator NNT. This leads to decreased cellular NADPH and 
glutathione anti-oxidant, resulting in a redox imbalance, more mitochondrial ROS, and higher 
concentrations of proinflammatory Th17 cytokines. These events become mitochondrial ROS-
independent following 20 h of stimulation, and partially recapitulate the T2D-associated Th17 
cytokine profile. Knock-down of NNT by siRNA recapitulates the effects of palmitate. 
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Figure 7. Schematic description of the findings. The saturated fatty acid palmitate blunts the expression
of the mitochondrial redox regulator NNT. This leads to decreased cellular NADPH and glutathione
anti-oxidant, resulting in a redox imbalance, more mitochondrial ROS, and higher concentrations of
proinflammatory Th17 cytokines. These events become mitochondrial ROS-independent following
20 h of stimulation, and partially recapitulate the T2D-associated Th17 cytokine profile. Knock-down
of NNT by siRNA recapitulates the effects of palmitate.

NNT has also been identified as a regulator of metabolic health in multiple studies. Quantitative
trait locus mapping highlighted NNT as important for glycemic control and insulin secretion in
C57BL/6 mice, although the investigators assumed NNT function was mainly in the pancreatic beta
cells [32,33]. Comparison of C57BL/6 mice +/- functional NNT showed NNT protected against glucose
intolerance upon high fat diet feeding, though the underlying cause of greater weight gain (which
generally challenges euglycemia) in the absence of NNT was not investigated [34]. NNT mRNA
expression was assessed in visceral and subcutaneous adipose tissues of 221 human subjects of wide
range of BMI, insulin sensitivity and glucose tolerance. The study concluded that, in contrast to findings
herein and to published work in mice, NNT mRNA expression was higher in the visceral fat of obese
subjects and positively correlated with BMI, body weight, percent body fat, waist to hip circumference
and fasting plasma insulin [35]. The authors raise the possibility that higher NNT resulted in feed
forward loops that culminate in beta cell “burn out” amongst other explanations for this unexpected
finding. Another study reported that NNT and GSH mRNA, among other indicators of mitochondrial
function, increase in subcutaneous and visceral adipose tissue 12 months after sleeve gastrectomy along
with a decrease in adipokine mRNAs (a measure of inflammation) [36]. It is important to note that the
impact of bariatric surgery on inflammation is variable across studies [37] The results from these studies
disagree indicating that further work is needed to determine whether technical differences (mRNA vs.
protein quantification), cell type differences (total visceral adipose tissue vs. circulating immune cells),
or species differences (mouse vs. human) explain the apparent discrepancies amongst these findings.
Newly appreciated links from FFA excess to NNT/redox imbalance terminating in obesity-associated
Th17 inflammation may more broadly represent a regulatory pathway that drives functions of other cell
types in obesity through similar mitochondrial machinery. NNT-targeted interventions may therefore
normalize multiple cellular functions that perpetuate obesity-associated complications.

The T2D-associated Th17 profile was derived from a comparison of obese subjects with and
without T2D [5]. It is difficult to say whether partial recapitulation of this profile (IL-17A, -17F, -23) by
palmitate treatment of cells from lean subjects herein is more modeling the obese/normoglycemic status
tested here, or the obese/T2D status that was tested by our profiling work. Partial recapitulation of the
profile by palmitate could mimic the physiology somewhere along the continuum of progression from
obesity to obesity-associated T2D, a speculation that would require substantial additional investigation.
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