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Amplitude and wavelength scaling of sinusoidal
roughness effects in turbulent channel flow at
fixed Reτ = 720

Sparsh Ganju1,2,†, Sean C.C. Bailey1 and Christoph Brehm1,2

1Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
2Department of Aerospace Engineering, University of Maryland, College Park, MD 20740, USA

(Received 14 April 2021; revised 11 December 2021; accepted 25 January 2022)

Direct numerical simulations are performed for incompressible, turbulent channel flow
over a smooth wall and different sinusoidal wall roughness configurations at a constant
Reτ = 720. Sinusoidal walls are used to study the effects of well-defined geometric
features of roughness-amplitude, a, and wavelength, λ, on the flow. The flow in the
near-wall region is strongly influenced by both a and λ. Establishing appropriate scaling
laws will aid in understanding the effects of roughness and identifying the relevant
physical mechanisms. Using inner variables and the roughness function to scale the flow
quantities provides support for Townsend’s hypothesis, but inner scaling is unable to
capture the flow physics in the near-wall region. We provide modified scaling relations
considering the dynamics of the shear layer and its interaction with the roughness.
Although not a particularly surprising observation, this study provides clear evidence
of the dependence of flow features on both a and λ. With these relations, we are able
to collapse and/or align peaks for some flow quantities and, thus, capture the effects
of surface roughness on turbulent flows even in the near-wall region. The shear-layer
scaling supports the hypothesis that the physical mechanisms responsible for turbulent
kinetic energy production in turbulent flows over rough walls are greatly influenced by
the shear layer and its interaction with the roughness elements. Finally, a semiempirical
model is developed to predict the contribution of pressure and skin friction drag on
the roughness element based purely on its geometric parameters and the corresponding
shear-layer velocity scale.
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S. Ganju, S.C.C. Bailey and C. Brehm

1. Introduction

Wall-bounded turbulent flows over rough surfaces are among the most common examples
of turbulent flows found in nature and engineering. Examples include pipe flows (e.g.
Langelandsvik, Kunkel & Smits 2008), geophysical flows (e.g. Lin et al. 1997), flows
around ships (e.g. Schultz 2007), aircraft (e.g. Kundu, Raghunathan & Cooper 2000)
and re-entry vehicles (e.g. Finson & Clarke 1980), flows within turbomachinery (e.g.
Bons et al. 2001), etc. The characteristics of turbulent flows over hydraulically rough
surfaces are significantly different than for flows over surfaces that are considered
hydraulically smooth, with the mechanisms responsible for these characteristics exhibiting
strong dependence on the roughness geometry. Observed effects of surface roughness on
wall-bounded turbulent flows include increased wall shear stress (Cardillo et al. 2013),
modification of the energy spectrum (Hong, Katz & Schultz 2011) and length scales
(Cardillo et al. 2013) of turbulence, creation of additional vortical structures (Ikeda &
Durbin 2007), modification of velocity and Reynolds stress profiles (Krogstad, Antonia
& Browne 1992; Krogstadt & Antonia 1999; Keirsbulck et al. 2002; Lee & Sung 2007;
Burattini et al. 2008; Cardillo et al. 2013) and changes to turbulent kinetic energy
production (Ikeda & Durbin 2007; Burattini et al. 2008).

The earliest effort to understand the effects of surface roughness can be traced back
to the pipe flow measurements of Nikuradse (1933). These experiments were used to
characterise the dependence of wall shear stress, τw, based on a uniform sand grain
roughness height. To make the effects of wall roughness widely available to the scientific
and engineering community, Moody (1944), continuing the work of Colebrook (1939),
developed the Moody chart to predict pressure losses in smooth and rough pipe flows.
The ensuing years saw a significant effort aimed at characterising and understanding the
effects of arbitrary surface roughness on the scaling of the profile for the mean streamwise
velocity component, ū, as a function of distance from the wall, y. Here the overline is
used to indicate a time-averaged quantity. As with smooth-walled flows, the mean velocity
profile is commonly expressed using inner scaling, which reflects dependence on the
wall shear stress, τw, and kinematic viscosity, ν. The velocity scale for inner scaling is
therefore uτ = (τw/ρ)1/2, and the length scale is ν/uτ , with ρ being the density of the
fluid. Throughout this article quantities scaled using these inner variables will be expressed
using a superscripted +, for example ū+ = ū/uτ and y+ = yuτ /ν.

For flows over rough walls where the roughness height exceeds the depth of the
corresponding smooth-walled viscous sublayer thickness, there exists a ‘roughness
sublayer’ containing the dynamics of the roughness elements. Outside the roughness
sublayer, the effect of the roughness is contained within the enhancement of τw and the
mean profile follows the inner-scaled mean velocity scaling of Clauser (1954) and Hama
(1954). They found independently, and almost simultaneously, that the mean velocity
profile could be described using a modification to the log law in the form of

ū+ = κ−1 ln
(

y+ − y+
0
)+ B + Πκ−1W( y/δ) − �U+. (1.1)

In (1.1), κ is the Kármán constant and B is an additive constant. The outer-layer
contribution to the mean flow is represented through profile parameter Π and wake
function W( y/δ) (Coles 1956). Here δ indicates the thickness of the wall-bounded flow.
The impact of surface roughness to the mean flow is introduced through the roughness
function �U+ and y+

0 , the roughness offset which preserves the logarithmic scaling.
For fully rough flows, i.e. for flows where the skin-friction coefficient plateaus (becomes
essentially constant), the roughness function for uniform sand-grain roughness was found
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Sinusoidal roughness effects in turbulent channel flow

to be
�U+ = κ−1 ln k+ + B − B′, (1.2)

where k is the roughness height and B′ is a constant for fully rough flow. Arising from
Nikuradse (1933), the behaviour of the mean streamwise velocity in the log layer for
sand-grain roughness, ks, was found to be

ū+ = κ−1 ln
y
ks

+ 8.5, (1.3)

leading to B′ = 8.5. An in-depth discussion of the various factors affecting �U+ can be
found in the recent review article by Chung et al. (2021).

Despite the roughness function providing some characterisation of the rough surface, it
fails to be universally valid across different roughness types (Schultz & Flack 2009; Flack
& Schultz 2014). Schultz & Flack (2009) have characterised this non-universality based
on a functional relation given by

�U+ = f (k+), (1.4)

where f depends on both the nature of the roughness and the Reynolds number and can
vary among different roughness types especially when studying flows in the transitionally
rough regime. Hence, it is common to characterise a surface using its ‘equivalent sand
grain roughness’, ks, which is the value of k that results in the mean velocity profile
following (1.1), (1.2) and (1.3). For transitionally rough flow, the dependence of mean
properties on the roughness geometry is particularly exacerbated, as the transition between
viscous and pressure drag on the roughness elements is highly dependent on the element
geometry.

For turbulence statistics, Townsend (1976) hypothesised that for sufficiently high
Reynolds numbers, the roughness-geometry-dependent behaviour is confined to within
a few roughness heights of the wall and the flow in the outer region scales following
smooth-wall scaling. Raupach, Antonia & Rjagopalan (1991) and Jiménez (2004) provide
good reviews of the effects of surface roughness on turbulent flows while providing
support for Townsend’s outer-layer similarity hypothesis. Several experimental (e.g. Perry,
Lim & Henbest 1987; Schultz & Flack 2003; Bakken et al. 2005; Connelly, Schultz &
Flack 2006; Kunkel & Marusic 2006; Schultz & Flack 2007) as well as numerical studies
(e.g. Lee 2002; Ashrafian, Andersson & Manhart 2004; Ashrafian & Andersson 2006a,
b; Ikeda & Durbin 2007; Burattini et al. 2008) have shown agreement with Townsend’s
outer-layer similarity hypothesis for boundary layer, pipe and channel flows. However,
several studies have also shown that the effects of wall roughness can be found in the
outer layer (e.g. Brzek et al. 2008; Cal et al. 2009; Hong et al. 2011; Cardillo et al.
2013), particularly within the behaviour of the turbulence itself, providing evidence that
roughness does indeed affect the flow in the outer layer. In some cases (e.g. Krogstad et al.
1992; Krogstadt & Antonia 1999; Keirsbulck et al. 2002; Smalley et al. 2002; Leonardi
et al. 2003; Lee & Sung 2007) evidence has been presented showing the non-universality
of Townsend’s outer-layer similarity hypothesis.

Amongst the observations contradicting Townsend’s outer-layer similarity hypothesis
are those of Hong et al. (2011) who found that traces of roughness effects in the
outer layer can be found through propagation of roughness-length scaled eddies from
the inner layer. Cardillo et al. (2013) also comment on the influence of the roughness
extending well beyond the inner region of boundary layer flow. Effects of roughness were
visible in the outer layer for the turbulent stress tensor as found by Lee & Sung (2007).
However, there was a smaller effect on the anisotropic stress tensor in the outer layer
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with the same trend observed for third-order moments of the velocity fluctuations as well.
In contrast, experimental studies from Krogstadt & Antonia (1999) and Keirsbulck et al.
(2002) show significant changes in the Reynolds stress tensor within turbulent boundary
layer flows over rough walls.

Jiménez (2004) noted that in many cases, the non-conformity of these flows with
Taylor’s hypothesis was dependent on the ratio of the roughness height to that of the
boundary layer thickness, specifically dependent on whether or not k protruded into the
outer-scaled region, suggesting that k/δ should be less than 1/50. Brzek et al. (2008)
postulated that in the case that the scale separation is not large, a mesolayer can be
found between the inner and outer layers. This mesolayer diminishes with increasing
Reynolds number but at lower Reynolds numbers can lead to the propagation of the viscous
stresses from the inner layer to the outer layer. It was also hypothesised that in addition
to having a small roughness height when compared with the boundary layer height,
the momentum thickness Reynolds number must be greater than 10 000 for Townsend’s
outer-layer similarity hypothesis to be valid.

Another topic of debate is the choice of the appropriate length scale associated with the
wall roughness. While Jiménez (2004) proposed the use of the ratio of roughness height
to that of the boundary layer thickness, k/δ, Flack, Schultz & Shapiro (2005) and Schultz
& Flack (2005) suggest using the ratio of the effective sand grain roughness to that of
the boundary layer thickness, ks/δ. More recently, efforts are being made to quantify the
effects of three-dimensional (e.g. MacDonald et al. 2016; Wu, Christensen & Pantano
2020) and increasingly irregular roughness on turbulent flows (e.g. Busse, Lützner &
Sandham 2015; Busse, Thakkar & Sandham 2017; Forooghi et al. 2017; Pathikonda &
Christensen 2017; Thakkar, Busse & Sandham 2017, 2018) aimed at analysing roughness
characteristics which resemble naturally occurring roughness. However, the uncertainty
and opposing observations associated with the behaviour of turbulent flows over even
relatively simple roughness shapes requires further study to provide a better understanding
of these flows.

The simplest parameterisation of surface roughness would be through the previously
discussed roughness height, k, and a wavelength, λ, describing the distance between
roughness peaks. Thus, here we examine the scaling behaviour of the roughness sublayer
using turbulent channel flow with two-dimensional sinusoidal roughness – the simplest
geometry containing both k and λ. We also restrict our examination to channel flows, as
performing numerical simulations for channel flows is relatively simple compared with
that of boundary layer flows due to the convenience of using periodic boundary conditions
without rescaling the flow or using any turbulence generation mechanisms (e.g. Lund, Wu
& Squires 1998; Klein, Sadiki & Janicka 2003; Xie & Castro 2008; Wu 2017; Dhamankar,
Blaisdell & Lyrintzis 2018).

Direct numerical simulations (DNS) by Ikeda & Durbin (2007) observed that the rough
wall serves as an energy source or sink for the turbulent kinetic energy flux through
irregular spanwise vortex shedding. This observation was in agreement with what had been
previously observed in experiments by Hanjalić & Launder (1972) and Hudson, Dykhno &
Hanratty (1996) on the effect of two-dimensional roughness elements on turbulent channel
flows. Additional DNS of sinusoidal turbulent channel flows by De Angelis, Lombardi
& Banerjee (1997) provided support for Townsend’s outer-layer similarity hypothesis
and showed redistribution of turbulent kinetic energy in the spanwise direction in close
proximity to the wave troughs. Direct numerical simulations conducted by Orlandi,
Leonardi & Antonia (2006) showed a weak dependence of the roughness function on
the geometry of the roughness element unless the statistics were normalised by the wall
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Sinusoidal roughness effects in turbulent channel flow

normal Reynolds stress component, particularly for three-dimensional geometries (Orlandi
& Leonardi 2006).

The primary objective of this work is to quantitatively examine the roughness sublayer
within sinusoidal roughness distributions on wall-bounded flows by comparing DNS of
turbulent channel flows over smooth walls and walls with sinusoidal roughness shapes
at matched friction Reynolds number. By analysing these simulations we intend to build
on the previous work in this field and also try to find answers to the questions posed
in Flack (2018). Comparisons of different roughness geometries are accomplished by
varying the amplitude and wavelength of the sinusoidal wall to quantify the individual
effects of varying one of these parameters independent of the other. We begin by
analysing the first-order mean flow quantities to study the effects of wavelength and
amplitude modification. A new set of reference scales based on the strength and diffusion
characteristics of the shear layer are introduced to better capture the flow physics in the
vicinity of the roughness elements. This scaling is used to extend the analysis of the
first-order mean flow quantities to include higher-order quantities such as the components
of the Reynolds stress tensor as well as the terms of the turbulent kinetic energy budget
equation. We end this article by providing a heuristic model to estimate the pressure and
skin drag acting on the roughness elements.

2. Computational methods

2.1. Computational methods and solver
A higher-order accurate, incompressible, spectral-element-based Navier–Stokes solver,
Nek5000 (Fischer et al. 2016), was used to perform the DNS for this study. It uses
a spectral-element method for spatial discretisation and the message passing interface
for parallelisation making it well-suited for such large-scale turbulence computations
(Offermans et al. 2016). The suitability of Nek5000 for performing such scale-resolved
simulations has also been recently demonstrated by Rezaeiravesh, Vinuesa & Schlatter
(2021).

2.2. Flow conditions and parameters
The bulk Reynolds number

Re = Ubδ

ν
, (2.1)

where Ub is the volume averaged or ‘bulk’ velocity and δ the channel half-height, was
adjusted by modifying the kinematic viscosity to achieve a constant effective friction
Reynolds number of

Reτ = δuτ

ν
≈ 720, (2.2)

for all cases. Having a constant Reτ ensures that the ratio between the geometric length
scale, δ, and viscous length scale, ν/uτ , is identical for all cases despite each case having
significantly different Re. Note that here we define uτ as the effective friction velocity
using the total drag acting on the wall, i.e. contributions from both viscous and pressure
drag are incorporated into uτ such that

uτ =
√

τν + τp

ρ
=
√

δ(−dP/dx)
ρ

, (2.3)
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where τν is the viscous shear stress at the wall, τp is the component of pressure stress
acting on the roughness elements parallel to the mean flow direction and dP/dx is the
mean-pressure gradient along the channel. It should also be noted that this definition of uτ

was used to follow the implementation in experimental studies where it is not possible to
discriminate between viscous and pressure contributions to the wall shear stress.

The different roughness cases considered, including their Re, Reτ , uτ and wall steepness,
σ = 2a/λ, have been provided in table 1. Note that the use of approximately constant Reτ

means that comparison of cases using inner scaling will also act as a comparison in outer
scaling. Topographical parameters such as the frontal solidity, Λ, and streamwise effective
slope are also provided. Frontal solidity, originally introduced by Schlichting (1936), is
defined as the ratio of the total frontal projected area of the roughness in the direction
perpendicular to the flow to the total plan area of the roughness in the direction parallel
to the flow. For the cases being considered in this study, it is observed that the frontal
solidity is equal to the steepness of the roughness element. Napoli, Armenio & De Marchis
(2008) proposed an alternative to frontal solidity known as the streamwise effective slope,
ESx, which depends on the gradient of the wall roughness element and is mathematically
defined as

ESx = 1
LxLz

∫ Lz

0

∫ Lx

0

∣∣∣∣∂yw(x, z)
∂x

∣∣∣∣ dx dz, (2.4)

where, Lx and Lz are the streamwise and spanwise domain lengths, respectively, and yw is
the wall location. It has been previously shown by Napoli et al. (2008) and MacDonald
et al. (2016) that

Λ = ESx/2. (2.5)

It can also be shown that for the roughness configurations being considered in this study
all three parameters Λ, ESx and σ are related as

Λ = ESx/2 = σ. (2.6)

The present study shows a non-negligible dependence of the drag acting on the
roughness element on the roughness wavelength in the sparse and nominally dense regimes
which have not been analysed previously in the literature at such high Reτ . Interestingly,
simulations by MacDonald et al. (2018) and Forooghi et al. (2017) have also shown a
dependence on roughness wavelength for the dense roughness regime, indicating that
this behaviour might not be regime specific. While previous studies have explored the
possibility that the roughness wavelength is an important length scale when analysing
flows past roughness, these studies have been at relatively low Reynolds numbers. Previous
studies have looked at the effects of roughness on the wall shear stress and roughness
function in the sparse regime (e.g. Chan et al. 2015, 2018; Placidi & Ganapathisubramani
2015; MacDonald et al. 2016) but the relationship between the dynamics of the shear layer
interacting with the roughness has been largely unexplored.

2.3. Computational set-up
Figure 1(a) gives a schematic representation of the computational domain with figure 1(b)
showing an enlarged view of the computational mesh. The top and bottom walls are
symmetric around the midplane, i.e. y = δ. This enables averaging of the data across the
top and bottom halves of the domain. Figure 1(a) also provides information about the
various geometric parameters used to define the channel and surface roughness geometries.
In general x, y and z are used to indicate streamwise, vertical (wall-normal for smooth
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Case Number Wall Type a/δ (a+) λ/δ (λ+) σ (×102) Λ (×102) ESx (×102) Re Reτ uτ /Ub (×102) T∗

1 Smooth — — — — — 13 684 715.84 5.23 2.1
2 Sinusoidal 0.0125 (9) π/8 (283) 6.37 6.37 12.73 11 000 722.16 6.57 0.8
3 Sinusoidal 0.0125 (9) π/16 (142) 12.73 12.73 25.46 10 400 724.34 6.96 0.85
4 Sinusoidal 0.0125 (9) π/32 (70) 25.46 25.46 50.93 9800 706.59 7.21 0.5
5 Sinusoidal 0.025 (18) π/8 (284) 12.73 12.73 25.46 8750 723.33 8.27 1.5
6 Sinusoidal 0.05 (36) π/8 (281) 25.46 25.46 50.93 7300 715.47 9.80 0.5

Table 1. Summary of simulations (values in parentheses denote the corresponding inner-scaled values for amplitude, a and wavelength, λ). The bulk Reynolds number (Re),
friction Reynolds number (Reτ ) and friction velocity (uτ ) are listed for all cases. Additional topographical parameters such as steepness (σ = 2a/λ), streamwise effective
slope (ESx) and frontal solidity (Λ) are also provided. Here T∗ = Tuτ /δ is the non-dimensional sampling period over which the averages have been collected for each of the
runs; δ and Ub denote the channel half-height and the bulk velocity, respectively.
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(a) (b)

y

x

Lx

Ub

z

2δ

2a

Wavy wall

λ

Figure 1. (a) Computational domain for turbulent channel flow simulation with sinusoidal walls at the top
and bottom boundaries. (b) Enlarged view of the computational mesh in the x–y plane showing the spectral
elements for the a+ = 18, λ = π/8 case. Each spectral element contains eight GLL points each in the x and y
directions.

Lx × Ly × Lz Case Number Nel,x × Nel,y × Nel,z Nx × Ny × Nz �x+
min �x+

max

2πδ × 2δ × πδ 1, 2, 3, 5, 6 128 × 118 × 64 1024 × 944 × 512 2.27 7.40
2πδ × 2δ × πδ 4 320 × 118 × 64 2560 × 944 × 512 0.91 2.96

Table 2. Details of the computational grid for the DNS runs being presented in this study. The case numbers
represent the corresponding runs from table 1. Here Li indicates the mean domain extent in the ith coordinate
direction, with Nel,i and Ni referring to the number of grid elements and the total number of grid points in the
ith coordinate direction; �xmin and �xmax denote the minimum and maximum grid spacing in the streamwise
(x) direction. The minimum and maximum grid spacings in the y and z directions are the same for all cases.
The minimum and maximum grid spacings in inner units for the y direction are 0.29 and 1.9, respectively.
Similarly, for the z direction the corresponding inner-scaled values are 2.27 and 7.40, respectively.

wall) and spanwise directions with the corresponding velocity components being u, v and
w, respectively.

The fully developed turbulent channel flow is considered homogeneous in the
streamwise and spanwise directions, enabling the use of periodic boundary conditions
to increase the computational efficiency. No-slip wall boundary conditions are applied at
the top and bottom walls. Identical domain sizes are used for all simulations in this study.
All cases except case 4 use the exact same grid with the exception of the shape of the
sinusoidal roughness. Case 4 uses a grid with more points in the streamwise direction to
increase the number of points available to resolve each individual sinusoidal roughness
element. The details of the grids are given in table 2.

Although not long enough to capture the long wavelength outer-layer structures
(Kim & Adrian 1999; Adrian, Meinhart & Tomkins 2000; Monty et al. 2007; Smits,
McKeon & Marusic 2011) the domain length in the streamwise direction is sufficient to
correctly capture the near-wall low-frequency longitudinal streaks (Aubry et al. 1988) and
preliminary simulations run for the smooth-wall mesh at Reτ = 590 matched the results
of Moser, Kim & Mansour (1999).

For the smooth-wall turbulent channel case, the simulation was conducted at a
sub-Kolmogorov grid resolution with the Kolmogorov length scale, η = ν3/4/ε̄1/4, where
ε̄ is the temporally averaged dissipation rate of turbulent kinetic energy. The variation of
the Kolmogorov scale relative to the grid spacing in the y direction is given in figure 2.
The smallest distance between two grid points, given by the Gauss–Legendre–Lobatto
(GLL) quadrature, occurred at the wall with a value of 4.051 × 10−4δ (0.2899 in inner
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Smooth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

�y/η

a+ = 9, λ = π/8

a+ = 9, λ = π/16

a+ = 9, λ = π/32
a+ = 18, λ = π/8
a+ = 36, λ = π/8

y/δ
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Figure 2. Ratio of element averaged wall-normal grid-spacing, �y, to that of the element averaged
Kolmogorov length scale, η.

units). Similarly, the largest distance between two GLL points in the grid occurred at the
centreline and was 2.643 × 10−3δ (1.892 in inner units).

Direct numerical simulations were performed for a total of six channel cases with one
smooth-wall case and five wavy-wall cases where the amplitude, a, and wavelength, λ,
of the roughness was varied to generate different roughness profiles and examine the
effect of these parameters on mean flow quantities and turbulence statistics. The vertical
displacement of the sinusoidal surface at the bottom wall, yw, relative to the surface of a
smooth wall is given by

yw(x) = −a sin (2πx̃) , (2.7)

where x̃ = mod(x, λ). A summary of the geometric as well as flow parameters for all
geometries which are a part of this study has been provided in table 1. To resolve each
roughness element adequately, at least 32 points have been used to capture the individual
elements in the streamwise direction. The short wavelength associated with the roughness
element in case 4 made it necessary to employ a more resolved grid for this case. Care
was taken to ensure that the maximum streamwise grid-spacing was always below 10 wall
units, as shown in table 1.

The computational approach consisted of two main simulation stages. In the first
stage, the flow was initialised using a laminar channel flow solution with some initial
perturbations to accelerate the transition to turbulence. The skin friction values were
monitored as a function of time to determine the statistical convergence of the fully
turbulent flow. Once the flow was past the initial transient phase and had reached
statistical convergence of the wall shear stress, a second stage was initiated in which in
situ time-averaging of the flow field was performed to extract mean flow and turbulent
statistics. These statistics were then monitored to ensure that statistical convergence was
achieved for the entire flow field.

2.4. Averaging of flow data
The velocity components of the turbulent flow, e.g. u, were decomposed into their
time-averaged flow component ū and a fluctuating part u′, so that

u = ū + u′, (2.8)

following Reynolds decomposition. Homogeneity in the x and z directions for
the smooth-wall case enabled spatial averaging of all flow quantities leading to
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one-dimensional distributions which only depend on the y coordinate. For the sinusoidal
rough-wall cases, the statistics remain homogeneous in the z direction while becoming
periodic in the x direction with a wavelength of λ. Thus the two-dimensional flow field
was averaged in the spanwise direction and averaged for each value of yw across a
wavelength giving one-dimensional profiles varying with ỹw = y − yw. In general, an
over-bar here indicates temporal averaging of a given quantity and 〈·〉 indicates additional
wavelength averaging that has been performed on the time-averaged quantities. The
λ-periodicity of the wavy-wall cases also enables us to define x̃ = mod(x, λ), which acts
as a non-dimensional distance ranging from 0 to 1.

One-dimensional profiles of wavelength-averaged quantities were obtained by averaging
points at a constant vertical distance from the wall, specifically at constant ỹ = y − yw. The
non-dimensional sampling period, T∗ = Tuτ /δ for each of the cases has been provided in
table 1. Each of the cases have been spatially and temporally averaged for at least one flow
through time, Tf = Lx/Ub.

3. Results

3.1. Instantaneous velocity fields
Figure 3(a–l) present example instantaneous fields of u/Ub and v/Ub for each of the cases.
As expected, increasing the amplitude of roughness corresponds to an increase in u/Ub
due to the increased confinement of the flow, however, otherwise there is little qualitative
difference in u/Ub, as can be seen from figure 3(a,c,e,g,k). Compared with the smooth-wall
case, there is a corresponding increase in the granularity of the v component near the
wall, as shown in figure 3(b,d, f,h,j,l), which is particularly noticeable with an increase in
a. There also appears to be a qualitative increase in the scale of v fluctuations near the
centreline with increased a. However, quantitative investigation of such flow features by,
for example, employing coherence analysis is beyond the scope of the present paper.

3.2. Mean velocity
The spatially averaged one-dimensional profiles of the mean streamwise velocity, 〈u〉+,
for all cases are shown in figure 4(a). There are noticeable effects of wavelength and
amplitude on these profiles that are consistent with well-established effects of roughness
on the mean streamwise velocity. In particular, the increase in the total drag force acting
on the wall due to the pressure drag on the surface area normal to the flow results in a
corresponding reduction in the magnitude of 〈u〉+ profiles; an effect represented by the
roughness function defined in (1.2). Note that the Reynolds numbers considered in these
simulations were not large enough to obtain a fully logarithmic overlap layer. However,
there is an approximately logarithmic region evident in figure 4(a) initiating at a ỹ+
location that is dependent on the dimensions of the roughness elements. The slope of
this approximately logarithmic region is also affected by the presence of the roughness.
The change in the slope is most prominently seen for the green curve (a+ = 36, λ = π/8
case) in figure 4(a).

The influence of the surface roughness on the scaling of the mean streamwise velocity is,
therefore, well encapsulated by (1.1) with the roughness effect described by the parameters
�U+ and y0, which manifest as the vertical shift in the approximately log layer and
change of steepness of the mean velocity profile, respectively. For the present simulations,
it was found that the roughness function values tabulated in table 3 provided the best
agreement of the mean velocity profiles in the outer layer. It was also found that expressing
y0 = y′

0 + a∗ provides the best results, where y′
0 is an amplitude-dependent length scale
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

(k) (l)

0 0.3 0.6 0.9 1.2 –0.075 0.0750

u/Ub ν /Ub

Figure 3. Colour contours of fully developed streamwise (a,c,e,g,i,k) and vertical (b,d, f,h,j,l) velocity
fields for the six cases being analysed in this study. The colour bars at the top of (a,c,e,g,i,k) and
(b,d, f,h,j,l) are for the streamwise and vertical velocity, respectively. (a) Smooth wall; (b) smooth wall;
(c) a+ = 9, λ = π/8; (d) a+ = 9, λ = π/8; (e) a+ = 9, λ = π/16; ( f ) a+ = 9, λ = π/16; (g) a+ = 9,
λ = π/32; (h) a+ = 9, λ = π/32; (i) a+ = 18, λ = π/8; (j) a+ = 18, λ = π/8; (k) a+ = 36, λ = π/8;
(l) a+ = 36, λ = π/8.
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Figure 4. Analysis of streamwise and wall-normal mean velocity components for all cases: (a) spatially
averaged one-dimensional profiles of the mean streamwise velocity, 〈u〉+; (b) modified scaling for 〈u〉+
following (1.2); (c) spatially averaged one-dimensional profiles of the mean velocity component in the ỹ
direction, 〈v〉+; (d) effect of steepness on 〈v〉+. The vertical lines in (b) indicate the wall-normal locations
corresponding to (ỹ − a)/λ = 0.3 based on (d) after which the effect of the roughness is negligible and all
profiles collapse. The filled-in square, triangle and diamond shapes on the x-axis in (a) and (b) show the
location of the viscous scaled semiamplitude in the corresponding coordinate scale for a+ = 9, a+ = 18 and
a+ = 36 cases, respectively.

and a∗ is a constant which provides a shift in the virtual origin to account for the
depth of the smooth-wall viscous sublayer which must be exceeded by a for the flow
to start exhibiting roughness effects. Using y′

0 = a/3 and a∗ = 5ν/uτ brought the most
consistent agreement amongst the profiles within the approximately logarithmic region.
The roughness function was determined by finding the value of �U+ which provided the
closest collapse of the data with the smooth-wall case once the virtual offset y0 has been
applied to the wall-normal coordinate.

This resulting agreement is shown in figure 4(b), which shows collapse of the scaled
profiles for ỹ+ − y+

0 � 100. Below this point, the agreement of the rough-wall profiles
with the smooth-wall profile becomes dependent on the geometry of the roughness.

A more contemporary approach to study the effect of surface roughness is to correlate
the frontal solidity values for the roughness elements with the roughness function based on
the density of roughness elements. Using the criterion that any roughness with Λ < 0.15
belongs to the sparse regime and roughness with Λ > 0.15 belongs to the dense regime,
cases 2, 3 and 5 correspond to the sparse regime, whereas cases 4 and 6 belong to the dense
regime (see table 1). Jiménez (2004) and Flack & Schultz (2014) have previously observed

937 A22-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.118


Sinusoidal roughness effects in turbulent channel flow

Case a (a+) λ (λ+) σ (×102) �U+ ks (k+
s ) ks/a uτ (×102) Skin Drag (%) Pressure Drag (%)

2 0.0125 (9) π/8 (283) 6.37 3.83 0.019 (13.95) 1.55 6.57 60.7 39.3
3 0.0125 (9) π/16 (142) 12.73 4.89 0.032 (23.35) 2.58 6.96 40.1 59.9
4 0.0125 (9) δ3/32 (70) 25.46 5.20 0.040 (26.94) 3.04 7.21 26.7 73.3
5 0.025 (18) π/8 (284) 12.73 7.06 0.084 (60.94) 3.37 8.27 29.1 70.9
6 0.050 (36) π/8 (281) 25.46 9.06 0.196 (140.33) 3.92 9.80 9.9 90.10

Table 3. Values of roughness parameters for each of the five roughness configurations.

that the roughness function increases with the solidity in the sparse regime and decreases
with the solidity in the dense regime. More recently, Placidi & Ganapathisubramani (2015)
and MacDonald et al. (2016) reported that the distinction between the sparse and dense
roughness regimes might not be at Λ = 0.15. While Placidi & Ganapathisubramani (2015)
observed that Λ ≥ 0.21 marked the start of the dense regime, MacDonald et al. (2016)
noticed that Λ ≥ 0.18 indicated the transition between these regimes. This distinction
is even more uncertain when considering non-uniform surface roughness configurations
(Napoli et al. 2008), wherein the start of the dense regime can occur at Λ values as high
as 0.275. The wide range of Λ values which mark the beginning of the dense regime,
would mean that any uniform roughness with 0.15 ≤ Λ ≤ 0.25 can be in either of the
two regimes. In their recent review paper, Chung et al. (2021) mention that the transition
to the dense regime (indicated by a peak in the drag), can lie in a very broad range, i.e.
0.1 ≤ Λ ≤ 0.3.

While cases 2, 3 and 5 are most certainly in the sparse regime, cases 4 and 6 can be
considered nominally dense, since the Λ values for these cases (Λ = 0.2546) are very
close to the limiting values discussed above. The observed trends in �U+ for cases 2, 3
and 5 agree well with the previous literature (Jiménez 2004; Napoli et al. 2008; Flack
& Schultz 2014; Placidi & Ganapathisubramani 2015; MacDonald et al. 2016; Chung
et al. 2021) showing an increase in �U+ with increasing Λ. For roughness in the dense
regime, the roughness function is expected to decrease with increasing Λ, but this trend
is not observed for cases 4 and 6. The roughness function still increases despite the
frontal solidity being above the conventional threshold value of Λ = 0.15. It should be
noted that this is a relatively small sample size that was used, and it would be very
difficult to generalise these trends based on only five cases. However, keeping in view
with conventional estimates, cases 4 and 6 will be referred to as being nominally dense
hereafter.

Another important observation is that despite having the same Λ the values of �U+ are
vastly different for cases 3 and 5, and cases 4 and 6, indicating that Λ alone is not sufficient
to completely capture the effects of surface roughness. The present study provides an
analysis of a limited set of roughness element configurations due to the extremely high
computational costs associated with these simulations, however, these results reinforce
what has previously been observed in the literature. It is extremely difficult to quantify the
effects of surface roughness on turbulent flows without considering a combined effect of
the geometrical parameters of the roughness. Cases 2, 3, 4 and 5 have shown that regardless
of the roughness regime, roughness configurations having the same Λ (or σ ) values can
have different roughness functions and drag values.

Although the value of y0 appears to be a function of a, the increase in �U+ was related
to both decreasing λ and increasing a. We can also examine ks, commonly described as
a fraction of a (hence a function of only a). To find ks, we first note that the values of
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�U+ reflect that the flow was transitionally rough for the majority of the cases examined.
Therefore, the ks and k+

s values for the various rough-wall cases were estimated using
Colebrook’s interpolation formula (Colebrook 1939)

�U+ = κ−1 ln(1 + 0.26k+
s ), (3.1)

and the corresponding values are included in table 3. It should, however, be pointed out
that case 6 is in the nominally dense regime, and using Colebrook’s interpolation formula
might not be the best way to obtain k+

s . For fully rough flows, (1.2) is used to estimate k+
s by

substituting k+
s for k+. Using (1.2) for case 6 with κ = 0.40 and B = 5.3, we obtain k+

s =
134.83, which is within 5 % of the value obtained using (3.1), further providing evidence
that this case lies at the edge of the transitionally rough and fully rough regimes and can
be considered nominally rough. As expected, ks is dependent on both a and λ, and not just
on the steepness, σ . Specifically, the same values of either a, λ or σ can produce different
values of ks depending on the values of the other topographical parameters. This then
defines the scaling problem addressed in the remainder of the paper. Namely, identifying
which roughness effects can be attributed to which geometrical parameter.

One effect the surface roughness will have is the introduction of a non-zero wall-normal
mean velocity, 〈v〉. The 〈v〉+ profiles are presented in figure 4(c). The presence of a
non-zero 〈v〉 constitutes a deviation from the smooth-wall case and, therefore, reflects
the influence of surface roughness and can be used to define the extent of the roughness
sublayer. Notably, figure 4(c) illustrates that the wall-normal location at which 〈v〉
becomes zero does not appear to correlate with an increase in drag (and �U+).

To examine the geometric dependence of the location of vanishing 〈v〉, figure 4(d) shows
the dependence of the profiles of 〈v〉+ on λ relative to the distance above the peak of
the roughness, (ỹ − a)/λ. These coordinates reflect the role of steepness in production
of the roughness sublayer as it becomes apparent that, for all cases, the influence of
roughness is largely confined to 0.3λ above the peak of the roughness amplitude with
the greatest deviation from the smooth-walled case occurring for (ỹ − a) � 0.1λ. It
therefore appears that the extent of the roughness sublayer depends on λ, rather than
a, as one would intuitively expect. MacDonald et al. (2018) showed a clear dependence
of the roughness function on the wavelength of the roughness element, albeit for very
dense two-dimensional roughness geometries (0.25 < Λ < 3.0). This dependence of the
roughness function on not just the roughness amplitude and steepness (solidity) but also
on the roughness wavelength for sparse and dense regimes makes it very important to
consider the role of roughness wavelength in determining the appropriate length scales for
roughness affected turbulent flows. The effect of the roughness wavelength on the flow
structures is explored in greater detail in the following sections. To further illustrate this
point, the location corresponding to (ỹ − a) = 0.3λ indicated by vertical lines are shown
in figure 4(b), and can be seen to closely correspond to the location where each roughness
case begins to approximately deviate from the smooth-walled case.

3.3. Mean vorticity within the roughness
To assess the region of influence for the roughness elements in more detail, figure 5
presents streamtraces of the two-dimensional mean velocity overlaid on contours of the
time-averaged spanwise normalised vorticity

〈ω〉 = ∂ 〈v〉
∂x

− ∂ 〈u〉
∂y

, (3.2)
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Figure 5. Contours of normalised mean vorticity, 〈ω〉λ/uτ superimposed with streamtraces of the velocity
field for: (a) a+ = 9, λ = π/8; (b) a+ = 9, λ = π/16; (c) a+ = 9, λ = π/32; (d) a+ = 18, λ = π/8; and
(e) a+ = 36, λ = π/8. Negative contour levels are indicated by dashed contour lines and the location of y′′

0 for
each case is indicated by a dashed blue line. The white line near the roughness trough indicates the contour of
zero-vorticity.

presented as isocontours of 〈ω〉λ/uτ . The flow field around a large-amplitude wavy surface
has previously been observed to consist of three regions (Buckles, Hanratty & Adrian
1984; Hudson et al. 1996) which were evident in all cases shown in figure 5: (1) a pocket
of recirculating flow in the wake of the crest; (2) a boundary layer over the crest; and (3)
a shear layer separating from the recirculation region from the flow above the cavity. The
shear layer extending across the cavity thickens in the downstream direction and impinges
onto the windward portion of the roughness element. With increasing steepness, the shear
layer thickens relative to the wavelength and spanwise vorticity near the crest increases in
intensity.

A corresponding increase in the size of the recirculation regions can also be observed
in the streamline visualisations in figure 5 reflecting the transition from k-type to d-type
roughness with both increasing a and decreasing λ, i.e. correlated to the increase in
steepness of the elements. The demarcation between k- and d-type roughness regimes
is not very well defined; however, it has been linked to the relative contributions of the
pressure drag and the skin drag to the total drag acting on the wall in a study by Leonardi,
Orlandi & Antonia (2007). Figure 6 provides the roughness function for flows in the fully
rough regime over a range of roughness geometries obtained using DNS by Leonardi et al.
(2007). The filled-in red squares indicate a d-type roughness since the roughness function
is independent of the roughness height. Although the cases being considered in the present
study are not in the fully rough regime, the dependence of roughness function on amplitude
(and steepness) indicates the presence of a k-type roughness.

Flow separation can be identified for all wavelengths and wave amplitudes. At lower
steepness, the streamlines are diverted lower into the cavity with a corresponding lower
reattachment point of the recirculation region. As steepness increases, the reattachment
point moves closer to the peak in the surface. These results are consistent with the general
observation that the flow inside the recirculation regions with larger steepness appears to
be more isolated from the flow above the cavities. The effects of the two-dimensional
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0
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�U+
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Figure 6. The variation of roughness function for different roughness geometries using different roughness
height to width ratios for flows in the fully rough regime plotted against the inner-scaled roughness height
(or amplitude). The filled-in data points have been adapted from Leonardi et al. (2007) with the solid straight
lines following (1.2). The roughness function for the cases considered in the current study have been plotted as
individual symbols. The square, triangle and circle symbols indicate cases with the same roughness amplitude
(a+ = 9) and wavelengths corresponding to λ = π/8, λ = π/16 and λ = π/32, respectively. Similarly, the plus
and asterisk symbols are used to indicate cases at a constant wavelength (λ = π/8) with amplitude a+ = 18
and a+ = 36, respectively.

roughness diminish by ( y − a) ∼ 0.3λ (see figure 5) which is consistent with the
observations for the mean 〈v〉+ in figure 4(d). Now, y′

0 is defined in the context of ỹ which
represents a fixed distance a/3 units above the wall in the terrain-following coordinates
given by ỹ. However, in two dimensions, using a similar procedure to define the roughness
offset is not straightforward. Instead, we used the location at which the mean spanwise
vorticity ω switches sign to define the roughness offset. Coincidentally, this location was
found to occur approximately a/3 units above the trough of the roughness element. This
distance will henceforth be denoted as y′′

0 = −2a/3. The location of y′′
0 is marked in all

plots of figure 5 with corresponding dashed horizontal lines and it is found to roughly
correspond to the lowest location at which the vorticity is negative, or the lowest extent
of the vorticity layer as shown by the solid white line in figure 5. Although the depth of
the roughness sublayer in the mean flow scales with λ, within the roughness sublayer, the
statistics and shear stress display a dependence on both a and λ which has been attributed
to the predominance of the shear layer within the roughness elements (Hudson et al.
1996). We thus introduce a shear velocity scale, Usl, and shear length scale, �sl, intended
to describe the strength and thickness of the separated shear layer within the roughness
elements.

To approximate Usl, we use the value of 〈u〉 of the undisturbed (i.e. smooth-wall) flow
at a distance from the wall corresponding to trough-to-peak amplitude of the roughness
element. We also compensate for the roughness offset, y′

0 or y′′
0 in two dimensions.

Thus, Usl is defined as the value of 〈u〉 from the smooth-wall case at y+ = 5a+/3. It should
be noted that as a → 0, Usl also approaches 0. This inherently adds limitations on using
Usl for normalising physical quantities such as vorticity or other higher-order turbulent
statistics. Therefore, its suitability as a scaling parameter is unlikely for roughness
geometries lying well within the viscous sublayer, i.e. a+ � 5.

To approximate �sl, which we expect to be related to a mixture of both a and λ and
influences the spreading rate of the shear layer, we use the form �sl = aβλ1−β , where β

is an empirically determined parameter. This expression can also be written as �sl = σβλ,
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Figure 7. Contours of 〈ω〉sl superimposed with streamtraces of the velocity field for: (a) a+ = 9, λ = π/8;
(b) a+ = 9, λ = π/16; (c) a+ = 9, λ = π/32; (d) a+ = 18, λ = π/8; and (e) a+ = 36, λ = π/8.

where the spreading rate of the shear layer is purely a function of the steepness, σ , and
wavelength, λ. The magnitude of the shear-layer vorticity was found to be much more
uniform and similar across all cases when β = 0.6. Hereafter, we use the subscript sl to
indicate a parameter normalised by these shear-layer parameters.

Figure 7 shows the wavelength-averaged 〈ω〉sl = 〈ω〉�sl/Usl field. Also, ysl = y/�sl is
the non-dimensional value of y obtained using the corresponding shear-layer variable. The
results show that the magnitude of the vorticity within the shear layer (marked by the
region shown in green) is approximately constant. Notably, the boundary layers forming
just downstream of the shear-layer impingement location do not scale with these length
and velocity scales.

The validity of this scaling is further examined in the one-dimensional profiles of 〈ω〉sl
shown in figure 8(a). Two distinct regions are observed and are marked as regions I
and II in figure 8(a). Region I corresponds to the layer below the roughness offset that
is influenced by the viscous shear stress at the peak of the roughness elements, and
reversed flow within the trough of the roughness elements. This region is responsible
for the generation of skin friction and is linked to the high gradients occurring at the
wall. To better understand the behaviour of peak vorticity (which occurs at the wall), we
extract the peak values for each of the sinusoidal wall cases, |〈ω〉sl|wall, and examine its
dependence on the geometrical parameters of the roughness. We found that instead of
having a dependence on amplitude or wavelength alone, the magnitude of peak vorticity
scales with the steepness of the roughness element and is given by

|〈ω〉sl|wall = 0.336
(

2a
λ

)−0.75

. (3.3)

A comparison of the shear-scaled vorticity at the wall obtained using DNS and using
(3.3) is shown in figure 8(b). Region II corresponds to the layer where the shear layer
influences the statistics. Specifically, there is the emergence of a secondary peak in 〈ω〉sl
at (ỹ − y′

0 − a∗)/a ≈ 0.55, corresponding to the impingement of the shear layer on the
roughness element. This peak becomes increasingly evident with increasing �U+, i.e. as
the roughness transitions towards the fully rough condition. Moving farther away from
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Figure 8. (a) Shear-scaled profiles of vorticity, 〈ω〉sl. The dashed vertical lines (red) divide the plot into three
different regions and the vertical dash–dotted line (pink) shows the approximate location of the secondary peak
in vorticity due to the presence of the shear layer. The colours and patterns for the profiles are the same as given
by the legend in figure 4. (b) Comparisons between the steepness-based model and DNS for the shear-scaled
vorticity at the wall. The symbols used to indicate the different cases remain unchanged from figure 6 with the
straight line indicating a perfect match.

the roughness element, the effects of the roughness on the flow diminish and the vorticity
drops to zero similar to flow over a smooth wall as observed in region III.

3.4. Pressure distribution within the roughness
Noting that for most cases (cases 3–6) the increase in �U+ due to roughness is primarily
caused by pressure drag on the roughness elements (see table 3), we now examine the
changes in the pressure field within the roughness elements. We begin with modelling
the increase in pressure due to stagnation on the roughness element as Pstag = ρU2

stag/2,
where Ustag is the velocity of the stagnation streamline and is derived using the shear-layer
velocity introduced in § 3.3.

The stagnation velocity was obtained by assuming the diffusion of Usl along the length
of the shear layer. This diffusion was found to be poorly modelled by either a diffusing
wake or a free shear layer, prohibiting the use of either geometry’s established similarity
models to predict the diffusion characteristics. We instead begin with a generalised model
for the stagnation velocity given by

Ustag = Usl − δU, (3.4)

where δU is the reduction in shear-layer strength due to diffusion of the shear layer. Hence,
the introduction of δU captures the λ-dependent effects of the shear-layer diffusion arising
from the streamwise diffusion shear layer, whereas the a-dependent effects are contained
within Usl.

Since the diffusion of the shear layer does not follow any standard similarity-based
diffusion model, we introduce an exponent, m to account for the diffusing wake based on
the wavelength. This leads to an expression for the velocity deficit of the form

δU = cUsl

(
λ

δ

)m

. (3.5)

We found that the values of 0.47 and −0.085 for c and m, respectively, provided the best
agreement with the DNS results for stagnation pressure, as shown in figure 9. This model
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Figure 9. Comparisons between the stagnation pressure value obtained from DNS and the proposed model.
The symbols used to indicate the different cases remain unchanged from figure 6 with the straight line indicating
a perfect match.
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Figure 10. Contours of pressure coefficient, CPstag , overlaid by the streamtraces of the velocity field for the:
(a) a+ = 9, λ = π/8; (b) a+ = 9, λ = π/16; (c) a+ = 9, λ = π/32; (d) a+ = 18, λ = π/8; and (e) a+ = 36,
λ = π/8 cases.

for the stagnation pressure was able to predict the stagnation pressure for all cases with a
root mean square error of less than 3 %.

Isocontours of the wavelength-averaged pressure field are shown in figure 10. It was
found that the pressure field within the roughness elements did not scale well with uτ .
Instead, noting the importance of the shear layer on the pressure field and the stagnation
pressure, the pressure fields for the sinusoidal wall cases in figure 10 are presented as a
pressure coefficient based on Ustag,

CPstag = 〈P〉
1
2ρU2

stag
. (3.6)

The pressure fields shown in figure 10 consistently display two strong positive and
negative regions of pressure, both scaling well with ρU2

stag/2. The positive pressure
region corresponds to the stagnation point where the separated shear-layer impinges on
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the windward face, and will have the strongest contribution to pressure drag. The location
of this stagnation point depends on the steepness of the roughness elements, moving closer
to the crest of the elements with increasing steepness.

A region of low pressure of equivalent magnitude occurs just downstream of the crest
and is attributed to the acceleration of the flow immediately following the impingement
location on the windward side of the roughness element. Since the low pressure region
only acts over a small portion near the crest of the surface roughness, its contribution to
pressure drag will be much smaller than the positive pressure region on the windward face
of the roughness element. For the high steepness cases, there is an additional negative
pressure region that forms within the roughness trough due to the stronger recirculation
for these cases.

Table 3 provides the resulting relative contributions of skin friction and pressure (form)
drag to the total drag for the rough-wall cases. Comparing the (a = 0.0125, λ = π/32)
and (a = 0.025, λ = π/8) cases, it can be seen that although �U+ increases between the
two cases, both ks/a and proportion of pressure drag decreases, reflecting the dependence
of ks/a on details of the roughness sublayer. Similarly, as evident from figure 10, the
magnitude of CPstag at the stagnation point is similar for all cases. However, there is still
some dependence on the steepness of the roughness, as this affects the impingement point
and diffusion of the shear layer when it separates from the upstream element crest and
impinges on the downstream element face. These will be revisited in § 4 to develop a
model for the pressure (form) and viscous (skin) drag components.

3.5. Turbulent kinetic energy and Reynolds stresses
We now move on to a discussion of second-order turbulent statistics, i.e. turbulent kinetic
energy and the Reynolds stresses. While we were able to identify rough scaling laws for the
mean flow profiles, scaling turbulent statistics will be more challenging. Profiles of mean
turbulent kinetic energy, K = (〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉)/2 are presented in figure 11(a)
using inner scaling. A collapse of profiles in the outer region consistent with Townsend’s
outer-layer similarity hypothesis was observed for the inner-scaled turbulence statistics
as shown in figure 11(a–e) (recall that since all cases are at equivalent Reτ , the same
ỹ+ location for each case will also correspond to the same ỹ/δ location). Hence, as was
observed with the mean velocity profiles, the effects of differing roughness geometries
are confined to the near-wall region of the flow, with this region of influence depending
on both the amplitude and wavelength of the surface roughness. Unlike the mean-flow
statistics for which the roughness sublayer appeared to scale with λ, for the turbulence
statistics the depth of this region of influence was found to be affected more by a, which
can be attributed to the shear layer being displaced away from the surface with increasing
a.

Also evident in figure 11(a) is the variability in the location of the near-wall peak in
K. For the smooth-wall case this peak corresponds to the near-wall production cycle and
occurs at a y+ ≈ 12. For the wavy-wall cases, this peak can be attributed to turbulence
production within the shear layer and its reduced prominence at larger a also reflects a
decreased contribution to K coming from the 〈u′u′〉 normal Reynolds stress, shown to
decrease with increasing a in figure 11(b). A direct consequence of these changes in the
distribution of Reynolds stresses is an increasing separation of the inner (close to the
surface roughness) and outer (towards the centre of the channel) flow regions as is also
observed in the streamwise velocity flow visualisations from figure 3.

Despite significant deviations of the components of the Reynolds stress tensor, i.e. 〈u′u′〉,
〈v′v′〉, 〈w′w′〉 and 〈u′v′〉 from the smooth wall cases in the near wall regions, the profiles
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of 〈v′v′〉, 〈w′w′〉 and 〈u′v′〉 remain largely unaffected, as shown in figure 11(c,d). The
peak magnitude and locations for these quantities were almost unchanged across all cases
unlike for 〈u′u′〉, which has a much more prominent effect of the roughness showing a
clear a-dependent peak location reflecting its dependence on the shear-layer location.

The effect of the shear layer is also apparent in the profiles of 〈u′v′〉+ shown in
figure 11(e). This effect is especially prominent in the cases with different amplitudes,
where a secondary peak is developing below the region where the rough-wall cases
collapse with the smooth-wall case.

The a-dependence of the Reynolds stresses is summarised in figure 11( f ), which
displays the a-dependence of the peak in K, which for all rough-wall cases was found
to occur close to (ỹ − y′

0 − a∗)/a = 1.6, which we attribute to the displacement of the
shear layer due to the roughness height. However, the magnitude of the peak values of Ksl
demonstrate dependence on a and λ, suggesting that the shear layer alone is not responsible
for the distribution of K near the wall. Further insight into the effects of the roughness on
the characteristics of turbulent flow can be obtained by examining the turbulent kinetic
energy transport budget

∂K
∂t︸︷︷︸

Rate of change
of K

= −
〈
u

′
iu

′
j

〉 ∂ 〈ui〉
∂xj︸ ︷︷ ︸

Production

− 〈ε〉︸︷︷︸
Turbulent
dissipation

− ∂

∂xj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈K〉 〈uj
〉︸ ︷︷ ︸

Convection
by meanflow

+
〈
u

′
j

(
K + p

ρ

)〉
− ν

〈
u

′
i

(
∂u

′
i

∂xj
+

∂u
′
j

∂xi

)〉
︸ ︷︷ ︸

Diffusion

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭︸ ︷︷ ︸

Transfer of turbulent energy

, (3.7)

where we have used index notation for compactness such that (u1, u2, u3) corresponds to
the Cartesian velocity components (u, v, w), and likewise (x1, x2, x3) corresponds to the
(x, y, z) directions, respectively. Each of the terms in (3.7) represents a mechanism by
which K can either be locally produced, dissipated and/or redistributed. In the stationary
turbulent flow considered here, the time rate of change of K is identically zero and the flow
can be considered homogeneous in the z direction so that the time-averaged quantities are
independent of the z direction.

All terms from (3.7) are presented as one dimensional profiles in figure 12, normalised
using shear-layer scaling, i.e. normalised by U3

sl/�sl. The profiles of shear-scaled
production, Psl, shown in figure 12(a) are found to scale extremely well with the shear-layer
scaling and collapse onto each other with peak production occurring at (ỹ − y′

0 − a∗)/a ≈
1.25. This location closely corresponds to the peak location of the shear-scaled K in
figure 11( f ). The similar locations for the peak Ksl and peak Psl provides support
to the strong influence of the shear-layer dynamics on the characteristics of turbulent
flows affected by surface roughness. Consequently, using shear-layer scaling provides a
mechanism which was used to characterise the behaviour of K. More importantly, this
characterisation was based solely on the geometric parameters of the roughness and the
mean velocity profile from the smooth wall case at the given Reτ .

Interestingly, similar behaviour is observed for 〈ε〉sl. As with the profiles of 〈ω〉sl shown
in figure 8(a), there is increased influence of the boundary layer region for small ỹ.
Although the profiles of turbulent diffusion, TDsl, pressure diffusion, PDsl and viscous
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Figure 11. One-dimensional profiles of: (a) inner-scaled turbulent kinetic energy, K+; (b) 〈u′u′〉+; (c) 〈v′v′〉+;
(d) 〈w′w′〉+; (e) 〈u′v′〉+; and ( f ) turbulent kinetic energy in shear scaling. The vertical dash–dotted line (pink)
in (f ) shows the approximate location of the maxima for the shear-scaled K. The colours and patterns for the
profiles are the same as given by the legend in figure 4 with the vertical lines showing the location at which
the v component of velocity collapses in figure 4(d). The filled-in square, triangle and diamond shapes on the
x-axis show the location of the viscous scaled semiamplitude in the corresponding coordinate scale for a+ = 9,
a+ = 18 and a+ = 36 cases, respectively.

diffusion VDsl do not show the same level of agreement as those of Psl and 〈ε〉sl, local
minima in these values correspond to the location at which the peak occurs for Psl
(figures 12d–f ). Conversely, the distributions of convection by the mean flow, MCsl, do
not appear to show the same alignment with the shear layer, as shown in figure 12(c).

Despite considering a much higher Reynolds number here when compared with previous
experimental (Hudson et al. 1996) and computational studies (De Angelis et al. 1997),
the general trends for the production and dissipation terms remain largely unchanged
with peak production occurring close to the separation point in the vicinity of the wall.
Further insight into the mechanisms responsible for the production of K can be obtained
by considering the constituent terms of the production

P = −
〈
u

′
iu

′
j

〉 ∂ 〈ui〉
∂xj

= −

⎛
⎜⎜⎜⎝〈u′u′〉∂〈u〉

∂x︸ ︷︷ ︸
P11

+〈u′v′〉∂〈u〉
∂y︸ ︷︷ ︸

P12

+〈u′v′〉∂〈v〉
∂x︸ ︷︷ ︸

P21

+〈v′v′〉∂〈v〉
∂y︸ ︷︷ ︸

P22

⎞
⎟⎟⎟⎠ . (3.8)

For the rough-walled cases, additional mean velocity gradients are introduced relative
to the smooth-wall case, along with a corresponding deviation in the Reynolds stress
distributions. Notably, these distributions are heavily dependent on the dynamics of the
shear layer near the surface roughness. We can obtain some additional insight into the
flow physics around the roughness by looking at the individual terms from (3.8). The
contribution of the individual terms from (3.8), i.e. P11, P12, P21 and P22, are displayed
in figure 13(a–d), for the a+ = 9, λ = π/8 case. As expected, the major contribution to
turbulence production can be attributed to P12 and is localised in the shear layer. Now
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Figure 12. One-dimensional profiles of shear-layer-scaled terms from the turbulent kinetic energy transport
equation: (a) production, Psl; (b) dissipation, 〈ε〉sl; (c) convection by mean flow, MCsl; (d) turbulent diffusion,
TDsl; (e) pressure diffusion, PDsl; and ( f ) viscous diffusion, VDsl. The dash–dotted line (pink) shows the
approximate location of peak turbulence production in each of the plots. The colours and patterns for the
profiles are the same as given by the legend in figure 4 with the vertical lines showing the location at which
the v component of velocity collapses in figure 4(d). The filled-in square, triangle and diamond shapes on the
x-axis show the location of the viscous scaled semiamplitude in the corresponding coordinate scale for a+ = 9,
a+ = 18 and a+ = 36 cases, respectively.

P11 has a slightly smaller contribution, largely concentrated in the boundary layer due
to the significantly large value of 〈u′u′〉 coupled with a non-diminishing mean velocity
gradient in the streamwise direction introduced by the roughness. It was found that the
combined contribution of P11 and P12 was more than an order of magnitude larger than
that of P21 and P22, as can also be observed from figure 13. Furthermore, the contributions
from the P11 and P12 terms were found to mostly show opposite signs throughout the
domain, effectively cancelling each other. The trends observed for the constituent terms
of K production are consistent with what has been previously observed experimentally by
Hudson et al. (1996).

As the production and dissipation of turbulence are going to be dominated by the
impingement of the shear layer separating from the roughness elements, it is not
unexpected that the magnitude of these quantities will scale with Usl and �sl, with the peak
location following the trajectory of the shear layer, which will itself depend on a. However,
as shown in figure 14, the distributions of the combined diffusion terms are more complex.
Generally, the same structure is present near the shear layer. This structure has two major
regions where K diffusion is present. The two regions from which diffusion occurs have
been marked using arrows in figure 14(a). In the first region turbulence is diffusing away
from the high K region around the shear layer into the trough of the roughness, and in
the second region K diffuses towards the impingement point from the shear layer. These
regions are formed by the high K diffusing away from its peak in the shear layer, as shown
by the contour lines of K in figure 14(a–e).
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Noticeable, however, is also the presence of an additional layer above the shear layer,
with the distance of these regions away from the surface no longer scaling with a. For the
low steepness case, figure 14(a), regions of positive and negative diffusion extend to ( y +
y′′

0 − a∗)/a ≈ 5, whereas the high steepness cases of figure 14(d–e) show evidence of these
same structures at ( y + y′′

0 − a∗)/a ≈ 3. Furthermore, the secondary layer can be seen to
be occurring much farther away from the surface roughness for the cases with smaller
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Figure 15. Distributions of MCsl for: (a) a+ = 9, λ = π/8; (b) a+ = 9, λ = π/16; (c) a+ = 9, λ = π/32;
(d) a+ = 18, λ = π/8; and (e) a+ = 36, λ = π/8.

wavelengths, i.e. figure 14(b,c). This behaviour reflects the influence of advection from
upstream roughness elements and hence introduces a dependence on λ, thereby providing
rationale for why the depth of the roughness sublayer displays dependence on λ as shown
in the contour plots for vorticity in figure 5.

Similar to the diffusion terms, λ-dependence can also be observed in the MCsl
distributions shown in figure 15 and further reflecting the advection of turbulence produced
by upstream roughness elements. We also see that the role of the shear layer is quite small
for the low steepness case of figure 15(a), indicating that the mean advection for this case
is dominated by the advection from upstream elements. Conversely, for the high steepness
case of figure 15(e), the shear layer displays increased importance in the mean advection.

The mixed role of a and λ in scaling the extent and behaviour within the roughness
sublayer thus reflects the conflicting importance of local shear-layer dynamics and
non-local diffusion and advection from upstream elements. In addition, the dependence
of advected and diffused K illustrates why the profiles of K in figure 11(e) do not scale
with shear-layer properties alone. Although not a particularly surprising observation, these
results provide clear evidence of the relative dependence of this behaviour, and suggests
that even in very simple roughness, one cannot neglect the role of λ in the scaling of the
roughness behaviour.

4. Characterisation of drag

4.1. Pressure drag
The previous sections illustrated how the shear layer is the predominant feature within the
roughness elements, and establishes that Usl characterises the strength of the shear layer.
Here, we use this information to develop a semiempirical model to predict the drag on the
sinusoidal roughness elements, i.e. the effective wall shear stress.

We first recognise that the pressure drag is almost entirely driven by the stagnation
pressure on the windward face of the roughness element. Hence, to predict the pressure
drag, we require estimates of the location of the stagnation point, the stagnation pressure,
Pstag, and the distribution of pressure around the stagnation point.
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Figure 16. (a) Comparison of the location of the stagnation point obtained using DNS and the model from
(4.1). These locations are also indicated in plots (b–f ) using vertical dashed–dotted lines (black). The symbols
used to indicate the different cases remain unchanged from figure 8 with the straight line indicating a perfect
match. Distribution of the streamwise component of the pressure force acting over one wavelength, d〈F̃x〉p,
obtained from DNS shown using a solid line (blue), and its corresponding Gaussian reconstruction shown using
a dashed line (red) for the: (b) a+ = 9, λ = π/8; (c) a+ = 9, λ = π/16; (d)a+ = 9, λ = π/32; (e) a+ = 18,
λ = π/8; and ( f ) a+ = 36, λ = π/8 cases.

The reconstruction of the pressure drag acting on the roughness element is comprised
of two main steps: (i) modelling the distribution of pressure due to stagnation Pstag on
the windward side of the roughness element; and (ii) integrating this distribution along
the surface to obtain the pressure drag. The increase in pressure due to stagnation on the
roughness element was quantified in § 3.4 using Ustag. To convert the stagnation pressure
into pressure drag requires additional modelling of the distribution of the streamwise
component of pressure force on the upstream face of the roughness elements. It was
found (see figure 10) that the pressure distributions around the impingement point closely
resembles a Gaussian distribution once multiplied by the streamwise component of the
unit surface normal vector due to the uniform (sinusoidal) shape of the surface roughness.
This is illustrated in figure 16, which shows the distributed streamwise force acting over
one wavelength per unit width of the surface roughness, d〈F̃x〉p.

The Gaussian approximation requires first identifying the point of maximum d〈F̃x〉p,
x̃max (refer to contour plots of the pressure distribution in figure 10). The location of the
stagnation was empirically found to be weakly dependent on the steepness of the roughness
and is well approximated by

x̃max = 0.65σ 0.12. (4.1)

A comparison of the location of the stagnation point for the different cases obtained using
DNS and (4.1) is given in figure 16(a). It should be noted that x̃max can fall between x̃ =
0.25 to x̃ = 0.75. However, (4.1) poses no such constraint on x̃max. To exceed these limits
the steepness for the corresponding cases would need to be 3.3 × 10−4 and 3.1 for x̃max =
0.25 and x̃max = 0.75, respectively, which would correspond to amplitudes or wavelengths
that differ by at least an order of magnitude for cases with realistic roughness geometries.
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Figure 17. Comparisons between model and DNS predictions for: (a) streamwise pressure force per unit width
per wavelength (〈F̃x〉p); (b) streamwise viscous force per unit width per wavelength (〈F̃x〉ν ); and (c) the total
streamwise force per unit width per wavelength (〈F̃x〉). The symbols used to indicate the different cases remain
unchanged from figure 8 with the straight line indicating a perfect match.

The weak steepness dependence of x̃max on the steepness from (4.1) meant that reasonable,
although less accurate, estimates of pressure drag could be found using x̃max ≈ 0.65, which
may be more valid for steepness cases outside the scope of the present DNS.

With the location of the maximum streamwise pressure contribution known, the
magnitude of d〈F̃x〉P at that location is then Pstagn̂x dx̃ where

n̂x = −2πa cos(2πx̃max)/
[
1 + (2πa cos 2πx̃max)

2
]0.5

, (4.2)

is the unit normal vector to the surface at x̃max. Finally, the root mean square width of the
Gaussian function, �x̃, can be found from x̃max by using the distance between this location
and the crest of the surface roughness, i.e. �x̃ = 0.35(0.75 − x̃max), which ensures the
horizontal component of the pressure force is near zero at peak of the roughness element.
This leads to the horizontal component of force per unit width as

d〈F̃x〉p = Pstagn̂x exp

(
−1

2

(
x̃ − x̃max

�x̃

)2
)

dx̃. (4.3)

Finally, (4.3) was integrated from x̃ = 0 to x̃ = 1 to obtain an equation for the pressure
force in the x direction per wavelength per unit width

〈F̃x〉p =
∫ 1

0
d〈F̃x〉p ≈

∫ ∞

−∞
d〈F̃x〉p =

√
2πPstagn̂x�x̃. (4.4)

As shown in figure 17(a), excellent agreement is obtained between the pressure force
obtained using (4.4) and the value determined from DNS.

4.2. Viscous drag
Having modelled the contribution of the pressure drag, we now derive a semiempirical
model for the viscous wall shear. Instead of estimating the viscous wall shear stress
directly, we express the viscous wall shear for the rough-wall cases as a ratio with respect to
the smooth-wall case, τν,r/τν,s, subject to a few constraints. These constraints are obtained
by considering limiting cases where we consider extremely large and small roughness
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amplitudes, and extremely large and small wavelengths. These limiting cases can be
mathematically expressed as

lim
a→0

τν,r(a, λ)

τν,s
= 1, lim

a→∞
τν,r(a, λ)

τν,s
= 0,

lim
λ→∞

τν,r(a, λ)

τν,s
= 1 and lim

λ→0

τν,r(a, λ)

τν,s
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

The rationale behind these constraints is that when the amplitude of the roughness
becomes large or the wavelength becomes small, the flow field would move towards
the fully rough regime and be dominated by the pressure drag. Conversely, for small
amplitudes or large wavelengths, the flow should act like flow over a smooth wall and
have a negligible contribution to the pressure drag. A simple functional relationship which
can be derived that satisfies the properties listed above in (4.5) is of the form

τν,r

τν,s
= 1 − e−f (a,λ), (4.6)

where f (a, λ) is a function which would depend on the amplitude as well as the wavelength
of the roughness. Also, f would also be subject to a set of constraints which can be obtained
from (4.5) and considering the relationship in (4.6). These constraints are then given by

lim
a→0

f (a, λ) = ∞, lim
a→∞ f (a, λ) = 0,

lim
λ→∞

f (a, λ) = ∞ and lim
λ→0

f (a, λ) = 0.

⎫⎬
⎭ (4.7)

It was demonstrated in § 3.3 that the vorticity at the wall (see figure 8), which is a
measure of the gradient at the wall, follows a scaling based on the steepness of the
roughness element. Since the skin friction is directly related to the gradient at the wall,
we express f (a, λ) as a function of steepness, i.e. f = f (σ ). Using this functional form for
f it was found that

f (σ ) = 0.081σ−1.35, (4.8)

which provided good agreement with the DNS data.
The values of viscous wall shear for the wavy cases obtained using (4.6) and (4.8) are

expressed as a viscous force per unit width per wavelength, 〈F̃〉ν , and are compared with
the corresponding DNS values in figure 17(b), where we obtain good agreement between
the predicted and actual values.

Combining the contribution of the pressure drag and the viscous drag, we can now
estimate the total drag acting over each wavelength per unit width of the channel.
Figure 17(c) combines these two constituent contributions and compares them with the
corresponding DNS values. Unsurprisingly, we obtain an excellent match with a root mean
square error of less than 10 %.

It should be mentioned that this model is only valid for two-dimensional sinusoidal
roughness geometries in the sparse or nominally dense regimes. However, the number of
such studies available in the literature is fairly small. For a thorough validation of the
proposed drag model, we have extended this model to three dimensions. Appendix A
provides a detailed description of the procedure used to extend the model to three
dimensions and compares the total drag obtained using this model with that available
in the literature.
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5. Conclusions

Direct numerical simulations for turbulent channels having sinusoidal walls were
performed as a prototype for uniformly distributed wall roughness with the aim of
obtaining a better understanding of the effects of surface roughness on turbulent flows. In
this study, several wall roughness profiles were investigated by changing the amplitude,
a, and/or the wavelength, λ. These simulations were conducted at a constant friction
Reynolds number, Reτ ≈ 720, to provide equivalent comparisons in inner as well as outer
scaling. The impact of the surface roughness parameters on statistical quantities, such as
the mean velocity profiles, Reynolds stresses and the turbulent kinetic energy budgets were
analysed. The main theme of this work is on identifying appropriate scaling laws of the
statistical quantities based on the key geometric features, such as wavelength, amplitude or
height, and steepness, as well as smooth wall properties, such as the velocity at the height
of the roughness element and smooth wall skin friction.

The effects of sinusoidal wall roughness were found to be consistent with that of
any generalised roughness on the mean streamwise velocity, wherein a downward shift
in the logarithmic region was observed. This downward shift can be attributed to an
increase in total drag arising from an increased contribution of the pressure drag caused
by the interaction of the flow with a non-smooth or rough wall. Despite the significant
changes in flow structures near the rough wall and relatively low Reynolds numbers,
an approximate log layer is formed. The characteristics of the log layer were captured
reasonably well by applying a virtual offset of y0 = a/3 + a∗, and by using the roughness
function, �U+, to account for the displacement of the log layer. While y0 was only
dependent on a, the variation of �U+ was a- and λ-dependent. Similarly, the effects
of the sinusoidal wall on the turbulent flow extends until a finite distance from the
wall which is dependent on both a and λ when considering the y-velocity variations
of different flow quantities. The dependence on a and λ complicates the development
of scaling relationships for more complicated roughness shapes as these relationships
need to account for different statistical distributions of roughness amplitude and
wavelength.

The frontal solidity values considered in this study are fairly similar for all cases varying
from approximately 0.06–0.25, in addition to the Reynolds numbers being relatively low,
which puts these cases in the transitional and nominally rough regimes based on the �U+
in the Colebrook curve (Colebrook 1939). As would be expected for these conditions,
the pressure drag dominates the total drag with a 9 : 1 pressure to viscous drag ratio for
case 6 with a+ = 36, λ = π/8. The values of effective sand grain roughness obtained
for the different cases indicated that no geometrical parameter from among a, λ or the
steepness (σ ) can individually be used to characterise and reconcile the different scales
being observed for turbulent flows affected by sinusoidal surface roughness. A major part
of this study was dedicated to analysing the different flow quantities and formulating an
appropriate scaling based on the geometry of the surface roughness. However, generalising
these observations for arbitrary roughness would require inclusion of additional cases at
different roughness amplitudes and wavelengths, along with different values of frontal
solidity.

The contour plots of spanwise vorticity demonstrated the presence of three prominent
flow features for all cases: (1) a recirculation region; (2) a boundary layer developing
downstream of the shear-layer impingement location; and (3) a separating shear-layer.
The diffusing shear-layer was identified as one of the most important features affecting
the structure of near wall-turbulence in the presence of roughness. Additionally, the
independence of some flow quantities such as the mean streamwise velocity and the
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pressure distribution within the roughness element on the total drag acting at the wall
made it necessary to look for new scaling parameters. This led to the introduction of a set of
characteristic scales (Usl and �sl) based on the features of the shear layer. These shear-layer
scales were shown to appropriately scale the vorticity profiles and identify distinct regions
in the flow including a near-wall turbulent mixing region. To capture the dynamics of the
diffusing shear-layer which cannot be accurately captured by approximating the diffusing
shear layer as either a diffusing wake or a shear layer, a generalised diffusion model based
on the characteristic shear-layer velocity scale, Usl, was used. By employing this model,
we were able to obtain close agreement of the stagnation pressure on the windward side of
the roughness element.

Significant changes in the near-wall region were observed for all cases when turbulent
kinetic energy and terms of the Reynolds stress tensor were scaled using traditional inner
variables. Consistent with Townsend’s outer-layer similarity hypothesis (Townsend 1976)
these effects were limited to a region close to the wall. Using the shear-layer-based scaling,
we observed that the location of the turbulent kinetic energy peak depends solely on
the amplitude of the roughness and the roughness offset. Upon extending the shear-layer
scaling to the terms of the turbulent kinetic energy budget transport equation, an almost
perfect collapse of the profiles for K production was observed. Interestingly, the locations
at which K production peaked was found to be approximately the same as that of the
peak in K. This location also indicated a region below which the K dissipation remained
constant for all cases. The other terms in the K budget equation displayed some changes
in the trends at the location where the peak of K and P occur which are, however, less
prominent and clear as for K production and dissipation.

Contour plots of the constituent terms of K production provide more evidence of the
importance of the shear layer on K production. The most significant contribution to the
production of K comes from within the shear layer with a smaller contribution from
shear stress just downstream of the impingement region explaining the good scaling of
K production profiles when scaled using shear-layer variables. Despite having quantified
the effects of the surface roughness based on the shear-layer dynamics of the flow, there are
still some effects which cannot be explained with this scaling and display a more complex
dependence on a and λ. An analysis of the diffusion terms of the K transport equation
shows that this dichotomy occurs due to the relative importance of local contributions
concentrated on the shear layer from the individual elements as opposed to advected
contributions from upstream elements. The diffusion of K was found to occur away
from the peak of the K in the shear layer into the recirculating region and towards the
impingement location, providing support to the theory that the roughness effects emanate
from these two regions.

Following the scaling arguments previously developed to capture the most dominant
flow features in this flow we were able to construct a model for estimation of the pressure
and viscous drag for two as well as three dimensions. The pressure drag acting on the
roughness element was evaluated by assuming a Gaussian distribution of the streamwise
component of the pressure force acting over the surface element. A set of limiting
constraints was used to develop a semiempirical functional relationship to estimate the
ratio between the viscous drag for a sinusoidal wall case and the viscous drag from the
smooth wall case. The results obtained from the model were able to closely predict the
pressure and skin drag based on the geometric parameters of the roughness using a set of
simple expressions and functional relationships. The model has only been validated for the
sparse and the nominally dense regions, however, the validity of the model for extremely
dense and sparse regimes is yet to be examined.
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The findings from this carefully designed study with a constant Reτ provide strong
evidence in support of Townsend’s outer-layer similarity hypothesis (Townsend 1976)
especially for flows where the roughness height is very small relative to the channel
height (a/δ < 5 %). This study has also demonstrated that the characteristics of turbulent
flow influenced by surface roughness greatly depend on the dynamics of the shear layer
and its interaction with the following roughness element. While it is possible to capture
some important flow features using a single geometrical parameter, such as the amplitude
(equivalent to a mean roughness height), flows affected by more complex roughness shapes
would certainly require dependence on an additional parameter such as wavelength to
accurately capture the flow physics. In addition to establishing a dependence on a and λ,
we were able to link the effects of surface roughness on turbulent flow to a characteristic
velocity scale based on the shear layer, which was shown to depend on the corresponding
smooth wall case. This scaling was also successfully used to predict the pressure and skin
drag on the roughness elements. The repertoire of the six cases presented in this study
is a good indication of the effects of surface roughness on wall-bounded turbulent flows
and lays the groundwork for several additional studies providing further analyses of such
systems.
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Appendix A. Extension of drag model to three dimensions

Most studies in the literature report the increase in drag in terms of �U+, but the drag
model derived in § 4 gives the absolute values of the skin and pressure drag acting at the
wall. To convert these values into the corresponding roughness function values we use the
relation provided by Schultz & Flack (2009). This relation converts the total drag at the
wall to the roughness function given the centreline velocities for the rough-wall and the
corresponding smooth-wall flow at the same Reτ and is expressed as

�U+(Reτ ) ≈
√

2
Cf ,s(Reτ )

−
√

2
Cf ,r(Reτ )

, (A1)

where the subscripts s and r are used to denote the smooth- and rough-wall flows, and
Cf = 2τw/U2

h is the skin-friction coefficient based on the streamwise centreline velocity,
Uh.

To validate the drag model derived in § 4 with existing data in the literature, drag data
from turbulent flows affected by sinusoidally rough surfaces containing a single mode are
required. Several studies in the literature analyse the effects of two-dimensional roughness
elements on the characteristics of turbulent flows. However, these studies typically use
roughness shapes consisting of transverse bars or staggered cubes (e.g. Krogstadt &
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Antonia 1999; Orlandi et al. 2006; Volino, Schultz & Flack 2011; MacDonald et al. 2018)
or use irregular surfaces obtained by superimposing several sinusoidal functions with
random amplitudes (e.g. De Marchis & Napoli 2012). Studies such as those by Hudson
et al. (1996) and De Angelis et al. (1997) do analyse two-dimensional flows which would
be conducive for the validation of the drag model, but do not provide enough information
to be able to reconstruct the pressure and viscous drag for these cases.

However, several recent studies have examined roughness effects on turbulent flows
using three-dimensional sinusoidal roughness shapes (e.g. Chan et al. 2015; MacDonald
et al. 2016; Chan et al. 2018) as well as by using more realistic roughness patterns
(e.g. Yuan & Piomelli 2014; Busse et al. 2017; Ma, Alamé & Mahesh 2021). Thus,
comparing the proposed drag model with the studies required extending the model to
three dimensions. In particular, Chan et al. (2015) provide a large number of simulations
at Reτ = 180 where the effects of three-dimensional sinusoidal roughness are studied for
pipe flow (in the sparse and nominally dense regimes). They also provide the complete set
of parameters to convert the surface drag values to the roughness function based on (A1)
making these cases a suitable choice for additional validation of the proposed drag model
(and its three-dimensional extension).

In the three-dimensional cases being considered for validation, in addition to a variation
of the roughness amplitude in the streamwise (x) direction, a spanwise variation (in the
z direction) of the roughness is also present. To account for this spanwise variation, we
introduce a spanwise averaging operator across a single spanwise wavelength λz, where we
let Φ(λ,z) indicate spanwise averaging across a wavelength for a given arbitrary quantity
Φ. This spanwise averaging operator is defined as

Φ(λ,z) = 1
λz

∫ λz

0
Φ(z) dz. (A2)

For flows affected by three-dimensional roughness elements, the flow experiences a
smaller resistance from the roughness due to a larger net flow area in the spanwise
direction. For such cases, an effective steepness (based on a constant mass flux), σeff can
be defined as

σeff = A2D

A3D
σ, (A3)

where σ is the steepness as defined for a case with two-dimensional roughness, A3D is the
effective area available for the fluid to flow through in the presence of three-dimensional
roughness and A2D is the total area of the plane normal to the spanwise direction.
For a sinusoidal roughness, it can easily be shown that A2D/A3D = 1/2, giving σeff = σ/2.
The spanwise variation of the roughness is thus modelled by replacing σ with σeff in all
functional relationships containing σ . The quantities which do not explicitly depend on σ

are spanwise averaged based on (A2).
Having introduced Φ(λ,z) and σeff to model the effects of three-dimensional roughness

elements, we now describe the procedure to extend the two-dimensional drag model to
predict the drag for three-dimensional sinusoidal roughness elements. The first step in
the two-dimensional drag model, as described in § 3.4, was the estimation of Pstag =
ρU2

stag/2, where, Ustag is modelled as a velocity reduction of the shear-layer velocity,
Usl for the diffusing shear layer. Since this term does not have an explicit dependence
on σ , Pstag is spanwise averaged, giving a modification of the stagnation pressure for a
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Figure 18. Comparison of the roughness function values obtained from DNS of turbulent pipe flow over
three-dimensional roughness (Chan et al. 2015) and the three-dimensional extension of the proposed drag
model. Subscript ‘M’ denotes the values obtained by the model. The straight line indicates a perfect match.

three-dimensional roughness element as

Pstag(λ,z) = 1
2
ρ

{
1 − c

(
λ

δ

)m}
U2

sl(z)(λ,z), (A4)

where Usl(z) is the shear-layer velocity expressed as a function of the local spanwise
amplitude of the roughness element, aloc, i.e. the velocity obtained at a distance of 5aloc/3
from a corresponding smooth-wall case at the same Reτ .

For the second step, the streamwise component of the pressure force acting on the
roughness element due to Pstag is converted to an approximately Gaussian pressure
distribution and integrated to obtain an expression for the pressure drag acting on the
roughness element as described earlier in § 4.1. The location where the stagnation pressure
acts, x̃max was shown to be proportional to σ 0.12, with the exact functional form of this
dependence given in (4.1). To account for the three-dimensional variation of this location,
we replace σ with σeff , to get

x̃max = 0.65σ 0.12
eff . (A5)

The last unknown in (4.4), to compute the pressure drag, is the streamwise component
of the normal vector, n̂x, given by (4.2). To incorporate the three-dimensional variation
of n̂x, we spanwise averaged the expression, where the amplitude of the roughness at any
spanwise location is aloc and the value of x̃max given by (A5). Finally, to compute the skin
friction, we use (4.6) and replace σ with σeff for computing the function f in (4.8). Once
the pressure drag and skin friction have been obtained, they can easily be converted to
a total wall shear and a corresponding roughness function using (A1) and the centreline
velocity for the given case.

Figure 18 shows the �U+ values obtained from the extended drag model. These values
are plotted against the corresponding values at Reτ = 180 from table 3 in Chan et al.
(2015). It should be noted that based on the criterion that Λ > 0.15 indicates a dense
roughness regime, most of the cases analysed here are considered sparse or nominally
sparse. It should also be pointed out that the validity of the model for cases in the dense
(Λ > 0.3) or extremely sparse regime (Λ < 0.01) has not been validated. Additionally,
the model assumes that the effects of roughness amplitudes which are contained within
the roughness sublayer, i.e. a+ ≤ 5, behave very closely to smooth-wall flows at a similar
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Reτ . However, the addition of a very short roughness wavelength or as Λ → ∞ leads to
a negligible flow within the roughness element. The flow is then considered equivalent to
a smooth-wall flow, with the wall located at the roughness crests as shown by MacDonald
et al. (2016). Thus, figure 18 only provides comparisons for cases where a+ ≥ 5 (the
roughness is contained within the viscous sublayer) and λ+ ≥ 20 (the distance between
the peak and the mean position is larger than the roughness sublayer). The good agreement
of the estimated roughness function �U+

est with the values in the literature provides further
support to the validity of the proposed drag model and this three-dimensional extension.
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