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Neurobiology of Disease

Calcineurin/NFAT Signaling in Activated Astrocytes Drives
Network Hyperexcitability in A�-Bearing Mice

Pradoldej Sompol,1 Jennifer L. Furman,2 Melanie M. Pleiss,2 X Susan D. Kraner,1 Irina A. Artiushin,1 Seth R. Batten,3,4

Jorge E. Quintero,3,4 Linda A. Simmerman,5 Tina L. Beckett,1 Mark A. Lovell,1,6 M. Paul Murphy,1,7 Greg A. Gerhardt,3,4

and Christopher M. Norris1,2

1Sanders-Brown Center on Aging, Departments of 2Pharmacology and Nutritional Sciences 3Neuroscience, and 4Center for Microelectrode Technology,
University of Kentucky College of Medicine, Lexington, Kentucky 40536, 5Spinal Cord and Brain Injury Research Center, and Departments of 6Chemistry
and 7Molecular and Cellular Biochemistry, University of Kentucky College of Arts and Sciences, Lexington, Kentucky 40536

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer’s disease (AD). Astro-
cytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that
activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and
the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal
injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT
reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain
slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter
GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal
astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.

Key words: Alzheimer’s disease; astrocytes; calcineurin; dementia; glutamate; hyperexcitability

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia.
Similar to other neurodegenerative diseases, AD is accompanied

by profound glial activation (Bouvier and Murai, 2015; Heneka et
al., 2015). Though most conspicuous around amyloid-� (A�)
deposits at late disease stages, activated glial cells (i.e., microglia
and astrocytes) also appear at the outset of clinical symptoms
(Carter et al., 2012; Schöll et al., 2015; Yokokura et al., 2016),
suggesting that glial modulation strategies could slow the pro-
gression of AD. However, the phenotype of activated glial cells is
very complex (Oberheim et al., 2012; Prokop et al., 2013; Pekny et
al., 2014; Malm et al., 2015; Andreasson et al., 2016; Liddelow et
al., 2017), and more work is required to elucidate their functional
impact in neurodegeneration.
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Significance Statement

Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and
dementia associated with Alzheimer’s disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to
regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate
transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte
activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors
normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of
neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism
involving aberrant CN/NFAT signaling and impaired glutamate transport.
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In healthy brain, astrocytes fine-tune synaptic function and
preserve neurite integrity by removing excitotoxic glutamate
from the extracellular milieu (Huang and Bergles, 2004; Schous-
boe et al., 2004; Sattler and Rothstein, 2006). Genetic deletion or
inhibition of astrocyte glutamate transporters in rodents causes
hyperexcitability and/or excitotoxicity (Rothstein et al., 1996;
Rao et al., 2001; Selkirk et al., 2005; Petr et al., 2015; Moidunny et
al., 2016), while the promotion of glutamate-uptake imparts neu-
roprotection (Prow and Irani, 2008; Harvey et al., 2011; Zumkehr
et al., 2015; Karklin Fontana et al., 2016). Network hyperexcit-
ability is commonly observed in AD brain and AD mouse models
(Palop et al., 2007; Busche et al., 2008; Minkeviciene et al., 2009;
Noebels, 2011; Putcha et al., 2011; Bakker et al., 2012; Grien-
berger et al., 2012; Bomben et al., 2014; Kellner et al., 2014;
Šišková et al., 2014; Vossel et al., 2016; Fontana et al., 2017) where
it is thought to contribute to excitotoxic damage and cognitive
loss. Diminished expression and/or functional impairment of as-
trocyte glutamate transporters is similarly associated with AD
and AD-related pathology (Masliah et al., 1996, 2000; Abdul et
al., 2009; Mookherjee et al., 2011; Schallier et al., 2011; Scimemi
et al., 2013; Meeker et al., 2015; Audrain et al., 2016; Hefendehl et
al., 2016; Xu et al., 2016), suggesting that impaired glutamate
regulation is a key phenotypic trait of activated astrocytes and a
primary mechanism for AD-related neurodegeneration.

Numerous intracellular mechanisms, including the Ca 2�/
calmodulin-dependent phosphatase calcineurin (CN), have been
implicated in the phenotypic switching of glial cells with injury
and disease (Furman and Norris, 2014; Pekny et al., 2016). CN is
rapidly activated/inactivated by fluctuating Ca 2� levels within
healthy cells but can become proteolyzed and irreversibly acti-
vated following neural damage (Wu et al., 2004, 2010; Huang et
al., 2005; Liu et al., 2005; Shioda et al., 2006; Mohmmad Abdul et
al., 2011). Proteolysis of CN is especially pronounced in astro-
cytes associated with A� pathology (Pleiss et al., 2016), leading to
the hyperactivation of key substrates, such as the nuclear factor of
activated T cells (NFATs; Mohmmad Abdul et al., 2011). NFAT
activation is increased at early stages of AD-related cognitive decline
(Abdul et al., 2009) and linked to altered glial phenotypes and neu-
roinflammation (Fernandez et al., 2007; Nagamoto-Combs and
Combs, 2010; Serrano-Pérez et al., 2011; Rojanathammanee et al.,
2015). Selective inhibition of astrocytic CN/NFATs normalizes the
basal function and plasticity of glutamatergic synapses in mouse
models of AD and brain injury (Furman et al., 2012; Furman et al.,
2016), suggesting that at least some detrimental phenotypic traits of
activated astrocytes arise from aberrant CN/NFAT signaling.

Here, we used in vivo and ex vivo measures to determine
whether astrocytic CN/NFATs underlie glutamate dysregulation
and possibly excitotoxicity in a highly aggressive AD mouse
model. Adeno-associated virus (AAV)-mediated expression of an
NFAT inhibitory peptide in hippocampal astrocytes of 5xFAD
mice reduced the frequency of spontaneous glutamate transients
and synaptic events, increased GLT-1 expression, prevented den-
dritic derangement, and normalized NMDA-to-AMPA receptor
activity ratios. The results suggest that hyperexcitability in AD
arises from the loss of critical glutamate regulatory properties in
activated astrocytes due to aberrant CN/NFAT signaling.

Materials and Methods
Animals. 5xFAD mice (Oakley et al., 2006) and wild-type (B6/SJL) litter-
mates were bred in a pathogen-free environment in accordance with
University of Kentucky guidelines. Mice of either sex were used in this
study and held in standard laboratory cages under 12 h light/dark cycles.
The animals had access to food and water ad libitum. All animal proce-

dures were conducted in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were ap-
proved by University of Kentucky Institutional Animal Care and Use
Committees.

Hippocampal protein measures. For CN protein measures, fresh-frozen
hippocampus was thawed on ice for 10 min and then homogenized in
sucrose buffer (0.25 M sucrose, 20 mM EDTA, pH 8.0, 20 mM EGTA, pH
8.0, 100 mM Tris, pH 7.4), supplemented with a protease and phospha-
tase inhibitor mix (catalog #Calbiochem 524625, catalog #Calbiochem
208733, and catalog #Calbiochem 539134, EMD Millipore). Resulting
homogenate was aliquoted (150 �l) and then combined and gently
mixed with an equal volume of RIPA buffer (Sigma-Aldrich) and incu-
bated on ice for 45 min. Samples were then centrifuged at 13,000 rpm for
10 min, and the supernatant was stored at �80°C until use for Western
blot analyses. For GLT-1 protein measures, hippocampal tissue was homog-
enized in ice-cold PBS supplemented with protease inhibitor mixture, phos-
phatase inhibitor mixture, and calpain inhibitor (all from Calbiochem) and
then centrifuged at 20,800 � g for 30 min at 4°C. The resultant pellet was
re-extracted by sonication in 2% SDS containing protease, phosphatase, and
calpain inhibitors and centrifuged at 20,800 � g for 30 min. The supernatant
was stored at �80°C until use.

Approximately 10–60 �g of protein (dependent on the antigen blotted)
were resolved on 4–20% Criterion gradient gels (Bio-Rad) and transferred
to Immobilon-FL PVDF membranes (Millipore). After washing and block-
ing in Odyssey protein blocking reagent (LI-COR), the primary antibodies
were incubated with the blots overnight at 4°C as follows: calcineurin
(anti-CN-A�, catalog #07-1492, Millipore; RRID: AB_10563965); GFAP
(catalog #13-0300, Invitrogen; RRID: AB_2532994); EAAT2/GLT-1
(catalog #ab41621, Abcam; RRID: 941782); and GAPDH (catalog
#ab9484, Abcam; RRID: AB_307274). Following washes and incubating
with secondary antibodies to mouse (800) or rabbit (700) primaries,
blots were imaged on an Odyssey Scanner (LI-COR) and the quantifica-
tion was performed using Image Studio 3.1 Software (LI-COR; RRID:
SCR_013715).

Brain section preparation. Brains were collected and fixed in 4% para-
formaldehyde in phosphate buffer, pH 7.4, and then saturated with 30%
sucrose buffer. Coronal sections at 40 �m thickness were prepared using
a microtome (Leica) and kept at �20°C in cryoprotectant solution con-
taining 25% ethylene glycol and 25% glycerin in 0.05 M phosphate buffer.

Immunofluorescent labeling and NeuN immunohistochemistry. Brain
sections were labeled following the free-floating protocol using the fol-
lowing primary antibodies: anti-GFAP (1:500; catalog #12389, Cell
Signaling Technology; RRID: 28066914), anti-NFAT4 (1:50; catalog #sc-
8405, Santa Cruz Biotechnology; RRID: AB_628014); anti-NeuN (1:1000;
catalog #MAB377, EMD Millipore; RRID: AB_2298772); anti-MAP2 (1:500;
catalog #4542, Cell Signaling Technology; RRID: AB_2144160); anti-
EAAT2/GLT-1 (1:200; catalog #ab41621, Abcam; RRID: AB_941782);
anti-A� (1:200; catalog #803007, BioLegend; RRID: AB_2564657); and anti-
�CN (1:50). The anti-�CN is a rabbit polyclonal antibody custom-made in
our laboratory to identify a 45–48 kDa proteolyzed CN fragment, based on
the Lys 424 calpain-dependent cleavage site (Wu et al., 2004). This antibody
was recently characterized using negative controls and peptide competitors
as described by Pleiss et al., 2016. Secondary antibodies conjugated with
fluorescence dye were obtained from Life Technologies. Specificity of pri-
mary antibody was confirmed by omitting primary antibodies or changing
the fluorescence probe of the secondary antibodies. To enhance NFAT4
immunofluorescence, we used Teramide signal amplification kit (catalog
#T20915, Life Technologies). After secondary antibody incubation, we
washed the sections and performed the signal enhancement system accord-
ing to the protocol of the kit. Sections were mounted with ProLong Antifade
Mounting Medium (catalog #P36970, Life Technologies). Fluorescent con-
focal microscopic images were obtained from a Nikon Eclipse Ti microscope
across a linear range to avoid undersaturated or oversaturated pixels.
Changes in brightness and contrast were matched across images from differ-
ent treatment conditions, and all images/fields used for quantification were
randomly acquired to avoid experimenter bias. Nuclear NFAT4 localization
images were obtained with a 100� objective in a Z-series (0.5 �m steps), and
image analyses were performed using NIS Element software (Nikon; RRID:
SCR_014329) and 3D reconstructions performed using Imaris 8.1.2 soft-
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ware (RRID: SCR_007370). For dendritic diameter measures, all images
were acquired from a 100� objective in a Z-series (0.3 �m steps), and image
analysis was performed via NIS Element software. For A� and GFAP label
volume measures, all images were acquired at 40�. GLT-1 labeling intensity
measures were performed at 40� with 2� digital magnification. Plaque
volume, GFAP volume, and GLT-1 intensities were quantified by Imaris
8.1.2 software (RRID: SCR_007370).

For NeuN immunohistochemistry and neuron counting, every sixth
coronal section from each mouse (8 –10 sections/animal) was stained
with anti-NeuN antibody (1:1000; EMD Millipore) using a free-floating
protocol. Briefly, sections were incubated with 3% hydrogen peroxide in
methanol for 30 min to block endogenous peroxidase. Background was
blocked by incubating sections in a solution containing 3% bovine serum
albumin (BSA), 0.5% Triton X-100, and 0.01 M PBS for 1 h. Sections were
then incubated overnight in blocking solution containing primary anti-
body and then rinsed with 0.01 M PBS followed by incubation in biotin-
ylated secondary antibody ( Vector Laboratories) for 1 h, and incubation
in biotin amplification solution (ABC Elite kit, Vector Laboratories) for
another hour. After a PBS rinse, staining was developed with a DAB
peroxidase (HRP) substrate kit (Vector Laboratories). Stained sections
were mounted on glass slides, dehydrated in ethanol, cleared in Safeclear
solution and coverslipped with Permount (Fisher Scientific). Slides were
scanned using a ScanScope XT Scanner (Aperio) at 20� magnification,
and positive pixels were visualized in ImageScope Software (Aperio).
NeuN-positive cells were counted within a 300 �m region of the CA1
pyramidal neuron layer, which was selected randomly. Sample decoding
was done after counting process to avoid bias between samples.

AAV vectors. cDNA encoding enhanced green fluorescent protein
(EGFP) from the pEGFPn1 vector (Clontech Laboratories), and VIVIT-
EGFP (a gift from Dr. Anjana Rao, Harvard University, Cambridge, MA)
was extracted and inserted into modified pAdlink vectors downstream of
the human GFAP promoter Gfa2 (a gift from Dr. Michael Brenner, Uni-
versity of Alabama, Tuscaloosa, AL), as described previously (Abdul et
al., 2009). pGfa2-EGFP and pGfa2-VIVIT-EGFP constructs were then
inserted into pENN.AAV2/5 vectors for the creation of high-titer (10 12

inclusion forming units/ml) AAV2/5 vectors at the University of Penn-
sylvania Viral Vector Core (Philadelphia, PA). Our previous work shows
that AAV-Gfa2 vectors drive transgene expression selectively in astro-
cytes with no transgene expression observed in nonastrocyte cell types
(Furman et al., 2012, 2016).

AAV delivery. Wild-type and 5xFAD mice at 1.5–2 months of age were
placed in a stereotaxic frame and anesthetized with isoflurane (2.5%)
throughout the surgery process. AAV vectors or vehicle (5% glycerol)
were loaded into a microinjector and delivered bilaterally into the hip-
pocampus at a rate of 0.2 �l/min (total 4 �l; Furman et al., 2012). Hip-
pocampal coordinates for this injection were �2.0 mm anteroposterior,
�1.5 mm mediolateral relative to bregma, and �1.5 mm dorsoventral
relative to dura.

Radial arm water maze. At 4 months postinjection, mice were assessed
for hippocampal-dependent cognitive function on the radial-arm water
maze (RAWM; Alamed et al., 2006). Mice were trained to find an escape
platform located at the end of one of six arms. On the first day, mice were
trained over four blocks of three trials/block with blocks alternating be-
tween visible and hidden platform. For the second day, mice were tested
over four training blocks on the hidden platform task. On any given trial,
entry to the incorrect arm was recorded as a single error.

The total number of errors committed on each trial (60 s/trial) were
averaged across blocks and used for statistical comparisons. To compen-
sate for slight differences in error performance at the outset of training,
average error scores for each block were normalized to block one perfor-
mance for each mouse and used for statistical analyses. The learning curve
slope was calculated for each genotype/AAV group across all eight training
blocks and used to estimate learning rate. Total errors committed on day 1
versus day 2 of training, across all blocks, were also compared.

In vivo glutamate signaling measures. High-speed measures of fluctu-
ating L-glutamate levels in intact mice were performed using ceramic-
based microelectrode arrays (MEAs) as previously described (Hascup et
al., 2007, 2011; Hinzman et al., 2012; Miller et al., 2015). The W4 type
MEAs (see Fig. 3A) contain four platinum recording sites consisting of

two glutamate-sensitive channels and two self-referencing “sentinel”
channels with a tip diameter of �100 �m. Glutamate-sensing channels
were coated with 1% BSA (Sigma-Aldrich), 0.125% glutaraldehyde
(Sigma-Aldrich), and 1% glutamate oxidase (US Biological), which con-
verts free glutamate to �-ketoglutarate and the reporter molecule H2O2.
Sentinel channels were coated with BSA/glutaraldehyde. Currents gener-
ated by H2O2 production at the glutamate-sensing channels were self-
referenced to current activity at the sentinels by subtraction of the signals.
The rise time, amplitude, and decay of differential currents were directly
proportional to changes in the local glutamate concentration and insen-
sitive to changes in other neurotransmitters and factors (e.g., dopamine
and ascorbic acid; data not shown).

Before recording, each MEA was calibrated using the FAST-16 mkIII
System (Quanteon) to verify glutamate selectivity, limit of detection, and
sensitivity. Mice were anesthetized and placed in a stereotaxic frame and
a 3- to 4-mm-diameter craniotomy was performed over both hemi-
spheres. Under continuous inhalation isoflurane (2%) anesthesia, MEAs
were lowered into the CA1 region of the hippocampus and a miniature
Ag/AgCl reference electrode was placed into the frontal cortex contralat-
eral to the glutamate MEA. Body temperature was maintained at 37°C
throughout recording using a water pad connected to a circulating water
bath. Final MEA placement coordinates were as follows: �2.3 mm an-
teroposterior and �1.7 mm mediolateral relative to bregma, and �1.5
mm dorsoventral relative to dura. Once MEAs were in place, a stable
20 –30 min baseline was collected at a final recording display rate of 4 Hz.
Basal glutamate levels were calculated and averaged during the last 10
min of the baseline. Spontaneous glutamate spikes were then recorded
over an additional 5 min window. Transients recorded at glutamate-
sensing sites were subtracted from current activity at the sentinel sites.
Maximal amplitude for each transient (in micrometers) was calculated
by taking the difference between the transient peak and the baseline
glutamate level immediately before the transient. After glutamate record-
ing, brain tissues were collected and cresyl violet staining was used to
confirm the location of the MEA for each mouse.

Data acquisition was controlled by the Fast Analytical Sensing Technology
(FAST-16) mkIII system (Quanteon) consisting of a control box, headstage,
and an analog-to-digital board (National Instruments) and FAST mkIII
Windows-based software. Glutamate signaling parameters, including rise
and decay times (e.g., T50, T80, and T100 parameters), amplitudes, and
frequencies of spontaneous glutamate spikes (see Fig. 4E,H) were analyzed
off-line using MATLAB-based FAST analysis software.

Soluble A� peptide measures. Methods for quantifying soluble A�(1– 42)

peptide levels using ELISA were nearly identical to those used in our
previous work (McGowan et al., 2005; Murphy et al., 2007; Furman et al.,
2012). Tissue was homogenized in ice-cold PBS containing protease and
phosphatase inhibitor cocktails and calpain I and II inhibitors (Calbio-
chem) and then centrifuged at 20,800 � g for 30 min at 4°C. The pellet
was extracted by sonication in 2% SDS and spun again at 20,800 � g for
30 min. The supernatant was collected and diluted in antigen capture
(AC) buffer that contained 20 mM Na3PO4, 0.4% Block Ace (AbD Sero-
tec), 0.05% NaN3, 2 mM EDTA, 0.4 M NaCl, 0.2% BSA, and 0.05%
CHAPS, pH 7. Immulon 4HBX plates were coated with 2.1.3 (end spe-
cific for A�(1– 42)) capture antibody (0.5 �g/well) and blocked with Syn-
block (AbD Serotec), as per the instructions of the manufacturer.
Synthetic human A�(1-– 42) was diluted in AC buffer and used to con-
struct a standard curve. Protein standards and sample extracts were
loaded at least in duplicate, and antigen was detected with 4G8 (A�(17–24);
Covance) biotinylated antibody. Reactions were developed with
3,3�,5,5�-tetramethylbenzidine reagent, stopped with 6% o-phosphoric
acid, and read at 450 nm using a multiwell plate reader. A� levels were
calculated relative to the standard curve.

Glutamate transport currents in primary astrocytes. Primary astrocyte
cultures were prepared from P7 Sprague Dawley rat pups. Cerebral cor-
tices were collected and washed in HBSS then trypsinized and triturated.
Isolated cells were washed and seeded in culture flasks in MEM com-
pleted with NaHCO3, L-glutamine, 1% antibiotics/antimycotics, and
10% fetal bovine serum. These cultures were grown for 10 –12 d and then
trypsinized and plated on plastic inserts within 35 mm culture dishes
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until electrophysiological recordings. Approximately 48 h before electro-
physiological recording, cultures were infected with adenovirus vectors
[100 multiplicity of infection (MOI)] expressing LacZ-IRES-GFP [con-
trol (CT)], �CN-IRES-DsRed2, and VIVIT-EGFP, as described previ-
ously (Sama et al., 2008).

Astrocyte-containing inserts were washed once in recording solution
and then transferred to a Siskiyou recording chamber and perfused (3–5
ml/min) with additional recording solution containing the following (in
mM): 150 NaCl, 5 KCl, 2 MgCl2, 10 HEPES, 2 CaCl2, and 10 D-glucose,
pH. 7.4). Whole-cell astrocyte patch clamp was performed as previously
described (Dallas et al., 2007). Briefly, high-resistance membrane seals
(	1 G
) on individual astrocytes were made with fire-polished glass pi-
pettes (�4–5 M
), filled with the following solution (in mM): 140 KSCN, 5
EGTA, 1 MgCl2, 0.5 CaCl2, 10 HEPES, 3 MgATP, and 0.3 NaGTP, pH 7.25).
The whole-cell recording configuration was obtained with gentle suction,
and the astrocyte membrane potential was held at �70 mV. To induce ex-
citatory amino acid transporter (EAAT)-dependent inward currents, we ap-
plied 10 �M L-glutamate to the perfusion media. To confirm that inward
currents were mediated by EAATs, some astrocyte-containing inserts were
perfused with the glutamate transport inhibitor TBOA (100 �M; Tocris Bio-
science) 15 min before and during perfusion with glutamate. Data acquisi-
tion was controlled using a Multiclamp 700B amplifier, Digidata 1332a, and
pClamp software (Molecular Devices; RRID: SCR_011323). All currents
were filtered at 2 kH and digitized at 10 kHz.

Acute brain slice preparation. Brain slices were prepared as described in
our previously published work (Mathis et al., 2011; Bachstetter et al.,
2012; Furman et al., 2012). Mice were deeply anesthetized with CO2 and
decapitated. Brains were removed and stored briefly in Ca 2�-free, ice-
cold, oxygenated (95% O2, 5% CO2) artificial CSF (aCSF) containing the
following (in mm): 124 NaCl, 2 KCl, 1.25 KH2PO4, 2 MgSO4, 26
NaHCO3, and 10 dextrose, pH 7.4. Four hundred-micrometer-thick sec-
tions from one hemisphere, chosen at random, were cut on a vibratome
(Leica). Slices were then quickly transferred to netting in a custom Plexi-
glas holding chamber and maintained in CaCl2-containing (2 mm) aCSF
at an interface with warm (32°C), humidified air. Slices were permitted to
equilibrate for at least 1.5 h before beginning electrophysiological analy-
sis. These slices were used for whole-cell patch-clamp and synaptic
strength analyses.

Spontaneous EPSC measures in brain slices. Slices were transferred to an
RC-27 recording chamber (Warner Instruments) and continuously per-
fused with aCSF (2 ml/min) heated to 32°C and saturated with 95%
O2/5%CO2. Whole-cell patch-clamp recordings were obtained from in-
dividual CA1 pyramidal neurons visualized under infrared microscopy
using a Nikon E600 microscope. The patch pipette solution contained
the following (in mM): 120 CH3CsO3S, 10 CsCl, 5 NaCl, 10 HEPES, 0.5
EGTA, 5 TEA-Cl, 4 Mg-ATP, and 0.3 GTP, pH 7.35 adjusted with CsOH,
osmolarity 290 mOsm. The pipette solution also contained QX-314 (1
mM) to block voltage-gated Na � channel currents, as described previ-
ously (Norris et al., 2006; Sama et al., 2008). The average pipette tip
resistance was 4.66 � 1.0 M
 and did not differ across groups. Sponta-
neous AMPA receptor-mediated EPSCs were recorded for 3 min at a �80
mV membrane potential. Data acquisition was performed using a Mul-
ticlamp 700B amplifier, Digidata 1332a, and pClamp software (Molecu-
lar Devices; RRID: SCR_011323). All currents were filtered at 2 kHz and
digitized at 10 kHz. Spontaneous EPSC events were detected and ana-
lyzed off-line using Minianalysis software (Synaptosoft).

Population synaptic strength measures. For analysis of hippocampal
synaptic strength, slices were transferred to a Kerr Tissue Recording sys-
tem (Kerr Scientific Instruments) and submerged in warmed (�32°C)
oxygenated aCSF containing 2 mM CaCl2 and 2 mM MgSO4. Schaffer
collaterals were activated with a bipolar stainless steel electrode located in
stratum radiatum. Stimulus intensity was controlled by a constant cur-
rent stimulus isolation unit (World Precision Instruments), and stimulus
timing was controlled by LabChart 8 software (ADInstruments; RRID:
SCR_001620). Field potentials were recorded in CA1 stratum radiatum
using a Ag/AgCl wire located �1–2 mm from the stimulating electrode.
Field potentials were amplified 100� and digitized at 10 kHz using the
Kerr Tissue Recording System amplifier and a 4/35 PowerLab analog-to-
digital converter (ADInstruments). To assess basal synaptic strength, 100

�s stimulus pulses were given at 12 intensity levels (range, 25–500 �A) at
a rate of 0.1 Hz. Five field potentials at each level were averaged, and
measurements of fiber volley (FV) amplitude (in millivolts) and EPSP
slope (millivolts per millisecond) were performed off-line using LabChart 8
software. FV amplitudes were plotted across stimulation intensity levels to
generate FV curves. Synaptic strength curves were constructed by plotting
EPSP slope values against FV amplitudes for each stimulus level. Curves were
fit with a three parameter sigmoidal equation using GraphPad Prism
(GraphPad Software; RRID: SCR_002798) as described previously (Norris
and Scheff, 2009; Norris et al., 2016). Curve parameters included maximum
curve amplitude, half-maximal activation, and curve slope. The maximal
synaptic strength for each slice was also estimated by taking the maximal
EPSP slope amplitude during the input/output curve and dividing by the
corresponding FV amplitude. To estimate population spike (PS) threshold,
the EPSP slope amplitude at which a PS first appeared in the ascending phase
of the field potential was calculated and averaged across five successive trials
at the spike threshold stimulation level.

Silent synapse measures. CA1 neurons were patched, as described
above, and minimal stimulation techniques were performed in acute
brain slices as previously described (Isaac et al., 1995; Liao et al., 1995;
Sametsky et al., 2010). Briefly, the stimulating electrode was positioned in
CA1 stratum radiatum �100 –150 �m away from the patched neuron.
The average stimulation intensity was 89.24 � 36.69 �A, which pro-
duced detectable postsynaptic responses that alternated with failures.
Inward- and outward-going EPSCs were recorded under minimal stim-
ulation at �80 and �40 mV holding potentials, respectively. Ro-25-6981
(1 �M), a specific NR2B antagonist, was applied for some cells to confirm
that outward-going EPSCs were partially dependent on NMDA recep-
tors. Minimally evoked EPSCs were filtered at 2 kH and digitized at 10
kHz using a Multiclamp 700B amplifier and Digidata 1320 digitizer (Mo-
lecular Devices). Stimulus timing and acquisition was controlled by
Clampfit 9.2 software (Molecular Devices). Synaptic transmission failure
rates were measured at �80 mV and �40 mV holding potentials for each
cell. A reduction in the failure rate at �40 versus �80 mV within the
same cell was considered as an indication of functionally silent synapses
(Isaac et al., 1995; Liao et al., 1995; Sametsky et al., 2010).

Isolation of NMDAR-dependent field potentials. The CA3 region was
dissected away with a scalpel blade, and slices were transferred to a Kerr
Recording system and perfused (1–2 ml/min) with oxygenated prewarmed
(�30°C) aCSF as described above. Field potentials were recorded in CA1
stratum radiatum in response to electrical stimulation of CA3 Schaffer col-
laterals at a rate of 0.033 Hz. After a stable baseline was obtained (�20 min),
the AMPAR antagonist CNQX (10 �m) and the GABAA receptor antagonist
picrotoxin (50 �M) were added to the perfusion media to isolate NMDAR-
dependent EPSPs. The NR2B-dependent component was further isolated by
adding 3-phenoxy-3-phenylpropan-1-amine (PPPA; 0.5 �M), while the
NR2A component was isolated using Ro-25-6981 (1 �M). Ten consecutive
EPSPs were collected at 20–30 min post-drug washin and averaged, and then
compared with EPSPs averaged immediately before drug washin. Field po-
tentials were amplified 100� and digitized at 10 kHz using the Kerr Tissue
Recording System amplifier and a 4/35 PowerLab analog-to-digital con-
verter (ADInstruments). Stimulus timing and data acquisition were con-
trolled by LabChart 8 Software.

Drugs. CNQX, picrotoxin, and QX-314 were obtained from Sigma-
Aldrich. Threo-�-benzyloxyaspartate (TBOA), Ro-25-6981, and PPPA
were obtained from Tocris Bioscience.

Statistical analyses. As outlined in the Results section, genotype and
AAV treatment effects on biobehavioral markers were determined using
a variety of parametric and nonparametric tests, including t tests,
ANOVA, repeated-measures ANOVA (rmANOVA), Fisher’s exact test,
and Kolmogorov–Smirnov test. For parametric tests, post hoc compari-
sons were performed using Fisher’s LSD. All statistical comparisons were
made with GraphPad Prism version 7 software (RRID: SCR_002798),
except for three-way repeated-measures ANOVAs, which were per-
formed with StatView version 5 software. Statistical significance for all
comparisons was set at p � 0.05.
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Results
CN/NFAT4 expression/activity in 5xFAD mice is associated
with astrocyte activation
The CN/NFAT pathway becomes excessively activated in astro-
cytes in multiple forms of injury and disease. Figure 1A–C shows
hippocampal protein levels for full-length CN (�60 kDa) and a
high-activity CN proteolytic fragment (�CN, �48 kDa) in
8-month-old WT (n � 15) and 5xFAD (n � 16) mice. Although
levels for full-length CN did not differ significantly between ge-
notype groups (Fig. 1B), �CN appeared almost exclusively in
5xFAD mice (Fig. 1C; t(29) � 7.35, p � 4.3 � 10�8) characterized
by significantly elevated GFAP expression (Fig. 1D; t(29) � 14.4,
p � 1.0 � 10�14), indicative of astrocyte activation. Within the
5xFAD group, �CN levels increased directly in proportion to
GFAP levels (Fig. 1E; r � 0.82, p � 0.0001). A similar �CN
fragment has been previously linked to neuronal damage associ-
ated with excitotoxicity (Wu et al., 2004), acute injury (Shioda et

al., 2006; Furman et al., 2016), and A� pathology (Wu et al., 2010;
Mohmmad Abdul et al., 2011). The direct association of �CN
with activated astrocytes was further demonstrated using confocal
microscopy and a custom-made antibody that detects �CN, but not
full-length CN (Pleiss et al., 2016). As shown in Figure 1, F and G,
�CN labeling was associated with numerous GFAP-positive astro-
cytes throughout the hippocampus of 5xFAD mice but did not ap-
pear at high levels in the neuronal cell layers. Similar to �CN, the
NFAT4 isoform, previously identified in activated astrocytes of acute
injury models (Serrano-Pérez et al., 2011; Furman et al., 2016), was
also colocalized to GFAP-positive astrocytes in 5xFAD mice (Fig.
1H). NFAT4 was found at elevated levels in astrocytes (t(14) � 2.94,
p � 0.01) and astrocyte nuclei (t(14) � 2.84, p � 0.01) of 5xFAD mice
(n � 8), relative to WT mice (n � 8), which is consistent with in-
creased NFAT activation (Fig. 1I,J). Together, these results confirm
the presence of aberrant CN/NFAT signaling in activated astrocytes
of the 5xFAD mouse model.

Figure 1. Astrocyte activation in 5xFAD mice is associated with increased CN/NFAT signaling. A, Representative Western blots for CN, GFAP, and GAPDH loading control in three WT and three
5xFAD mice. Full-length CN (CN-FL) is an �60 kDa band, and the hyperactive �CN fragment falls at �48 kDa (arrow). B–D, Mean � SEM hippocampal protein levels [in arbitrary units (A.U.)] for
CN-FL, �CN, and GFAP in WT (n � 15) and 5xFAD (n � 16) mice. E, Scatter plot showing the correlation between �CN and GFAP levels in 5xFAD mice. F, G, Confocal micrographs showing
immunolabeling of GFAP and �CN in the dentate gyrus (F ) and CA1 (G) of WT and 5xFAD mice. H, Confocal micrographs showing immunolabeling of GFAP and NFAT4 in CA1 of WT and 5xFAD mice.
DAPI labeling of cell nuclei is in blue. I, J, Mean � SEM NFAT4 labeling intensity in astrocytes (I, total) and astrocyte nuclei (J ) in WT mice (n � 8) and 5xFAD mice (n � 8). NFAT4 labeling was
compared across genotypes using Student’s t test.
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AAV-Gfa2-VIVIT inhibits NFAT nuclear localization and
improves cognition in 5xFAD mice
At 1 to 2 months of age, before 5xFAD mice develop extracellular
A� deposits (Oakley et al., 2006), mice in both transgene groups
received intrahippocampal injections of vehicle or AAV vectors
expressing EGFP (control AAV) or the NFAT inhibitor VIVIT
(tagged to EGFP). Transgene expression was limited to astrocytes
using a human GFAP promoter (Gfa2; Fig. 2A–C), as described
previously (Furman et al., 2012, 2016). Similar to our previous
work, vehicle-treated and AAV-Gfa2-EGFP-treated mice were
statistically comparable on every biomarker investigated (data
not shown) and were therefore combined into a single control
(CT) group for each transgene group (i.e., WT-CT or 5xFAD-
CT). Mice were then examined at 6 – 8 months post-AAV injec-
tion, when A� pathology and glial activation are widespread in
5xFAD mice (Oakley et al., 2006).

To assess the impact of VIVIT on astrocytic NFAT activation,
we quantified the nuclear localization of NFAT4 exclusively in

individual EGFP-positive astrocytes of 8-month-old 5xFAD mice
(EGFP control, n � 6; VIVIT-EGFP, n � 6) using confocal mi-
croscopy. Representative three-dimensional reconstructions of
NFAT4 labeling in EGFP- and VIVIT-EGFP-positive astrocytes
are shown in Figure 2D. NFAT4 present in DAPI-labeled nuclei
was significantly reduced by 	30% in VIVIT-EGFP-positive as-
trocytes (Fig. 2E; t(10) � 2.3, p � 0.04), demonstrating VIVIT-
mediated inhibition of NFAT4.

Figure 2F–H shows the effects of genotype and AAV on rela-
tive learning rates (Figs. 2F,G) and the total number of errors
committed (Fig. 2H) on the 2 d version of a radial arm water
maze task (WT-CT group, 28 mice/group; WT-VIVIT group, 15
mice/group; 5xFAD-CT group, 22 mice/group; 5xFAD-VIVIT
group, 10 mice/group). ANOVA detected a significant geno-
type � AAV treatment interaction for learning rate (F(1,71) �
5.261, p � 0.02), with post hoc tests showing a reduced learning
rate in 5xFAD-CT mice versus WT-CT mice (p � 0.02, Fisher’s
LSD) and in 5xFAD-CT mice versus 5xFAD-VIVIT mice (p �

Figure 2. AAV-Gfa2-VIVIT reduces astrocytic NFAT activation and improves cognition in 5xFAD mice. A, B, Experimental treatments and timeline. Mice received intrahippocampal injections of
AAV-Gfa2-EGFP control or AAV-Gfa2-VIVIT-EGFP at 1.5–2 months of age. Behavioral, glutamate signaling, and/or electrophysiology endpoint measures were collected at 6 – 8 months of age.
C, Transverse hippocampal section from an AAV-Gfa2-EGFP-treated mouse at 8 months of age showing extensive EGFP labeling. D, Confocal micrographs of EGFP (green), NFAT4 (red), and DAPI in
5xFAD mice treated with AAV-Gfa2-EGFP or AAV-Gfa2-VIVIT-EGFP. Left panels are 2-D confocal micrographs, and right panels are 3-D reconstructed images of �15 �m z-stacks (0.5 �m sections).
E, Mean � SEM NFAT4 activity levels (ratio of nuclear NFAT4 to total NFAT4 labeling) in EGFP-positive astrocytes of 5xFAD mice treated with AAV-Gfa2-EGFP (n � 6) or AAV-Gfa2-VIVIT-EGFP (n �
6). Nuclear NFAT4 levels were compared across AAV treatment groups using Student’s t test. F, G, Mean � SEM error rate (percentage of total errors on block 1) on the 2 d RAWM task in WT mice
(F ) and 5xFAD mice (G) treated with AAV-Gfa2-EGFP (CT) or AAV-Gfa2-VIVIT-EGFP. Genotype and AAV treatment effects on learning rates were determined with ANOVA and Fisher’s LSD test. H, Mean�SEM
total errors committed on days 1 and 2 of the RAWM task. WT-CT group, 28 mice/group; WT-VIVIT group, 15 mice/group; 5xFAD-CT group, 22 mice/group; 5xFAD-VIVIT group, 10 mice/group. Genotype, AAV,
and training day effects (along with significant interactions) were determined with a three-way rmANOVA and follow-up one-way rmANOVAs within each experimental group.
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0.04, Fisher’s LSD). No differences were observed between
5xFAD-VIVIT mice and either WT AAV treatment group. By the
last training block on day 2, 5xFAD-VIVIT mice made signifi-
cantly fewer errors than 5xFAD-CT mice (Fig. 2G; p � 0.03,
Student’s t test). When the total number of errors was compared
across training days using a three-way rmANOVA, a significant
genotype by AAV treatment by training day interaction was ob-
served (Fig. 2H; F(1,71) � 6.2, p � 0.02). Within both genotype
groups, there was a significant effect of training day, indicating that
errors were reduced on day 2 for both genotype groups (WT mice:
F(1,41) � 35.28, p � 0.0001; 5xFAD mice: F(1,30) � 20.49, p � 0.001).
However, for the 5xFAD group, a significant AAV treatment by
training day interaction was also found (F(1,30) � 5.46, p � 0.03). A
follow-up rmANOVA in each AAV treatment condition within the
5xFAD group revealed a significant training effect only for 5xFAD-
VIVIT mice (F(1,9) � 20.76, p � 0.002). Thus, all groups exhibited
significant improvement on day 2 of the RAWM task except for
5xFAD-CT mice. Together, the results demonstrate that blockade of
astrocytic CN/NFAT signaling before AD pathology helps stabilize
cognitive function in 5xFAD mice.

AAV-Gfa2-VIVIT normalizes spontaneous glutamate
transients in 5xFAD mice
Signs of neuronal hyperexcitability and/or excitotoxicity have
been reported in AD (Putcha et al., 2011; Bakker et al., 2012) and
can occur in conjunction with increasing amyloid pathology in
transgenic mice (Palop et al., 2007; Busche et al., 2008; Grien-
berger et al., 2012; Bomben et al., 2014; Kellner et al., 2014;
Šišková et al., 2014; Busche and Konnerth, 2015; Fontana et al.,
2017). Though glutamate dysregulation is key to excitotoxic
damage, dynamic levels of glutamate have only rarely been di-
rectly examined in common AD mouse models. Using ceramic-
based, enzyme-coated (i.e., glutamate oxidase) MEAs (Hascup et
al., 2007; Miller et al., 2014; Hunsberger et al., 2015; Fig. 3A–C),
we measured multiple glutamate signaling parameters in CA1 of
anesthetized WT and 5xFAD mice treated with AAV vectors
(WT-CT group, 10 mice/group; WT-VIVIT group, 4 mice/group;
5xFAD-CT group, 8 mice/group, 5xFAD-VIVIT group, 5 mice/
group). Similar to previous work (Matveeva et al., 2012), basal glu-
tamate levels were highly variable (Fig. 3D) and no significant effects
of genotype or AAV were found. Mice also exhibited spontaneously
generated glutamate transients (Fig. 3E) that varied in frequency,
amplitude, and duration (Fig. 3F–I). The average glutamate tran-
sient amplitude did not differ significantly across groups (Fig. 3G),
although VIVIT tended to have opposing effects in WT and 5xFAD
mice (i.e., transient amplitude was increased in WT mice but was
decreased in 5xFAD mice treated with VIVIT).

In contrast to amplitude, both the frequency and duration of
glutamate transients differed significantly depending on geno-
type and AAV treatment (Fig. 3F–I). For transient frequency,
ANOVA detected a significant genotype by AAV treatment inter-
action (Fig. 3F; F(1,23) � 3.92, p � 0.05), which was characterized
by a greater response rate in 5xFAD-CT mice relative to WT-CT
mice (p � 0.02, Fisher’s LSD test) and to 5xFAD-VIVIT mice
(p � 0.02, Fisher’s LSD). No differences were found among WT-
CT, WT-VIVIT, and 5xFAD-VIVIT groups. To calculate tran-
sient duration (measured in seconds), glutamate levels were
calculated along the descending phase of the transient at three
different points: T50 (50% decay from peak amplitude), T80
(80% decay), and T100 (100% decay; Fig. 3H). Decay times were
then compared across genotype and AAV treatments using a
three-way rmANOVA, which detected a significant AAV treat-
ment by time point interaction (Fig. 3I; F(2,20) � 3.71, p � 0.03).

A two-way rmANOVA performed within each genotype group
revealed a similar AAV by time point interaction within 5xFAD
mice (F(2,10) � 3.78, p � 0.04) but not within the WT group. Post
hoc tests showed significantly longer decay times for 5xFAD-CT
mice relative to both WT-CT mice (T100; p � 0.02, Fisher’s LSD)
and 5xFAD-VIVIT mice (T100; p � 0.02, Fisher’s LSD). The
results demonstrate an increase in the frequency and duration of
spontaneous glutamate transients in 5xFAD mice due, in part, to
elevated astrocytic CN/NFAT activity.

AAV-Gfa2-VIVIT reduces A� pathology and increases
GLT-1 expression
Previous work has shown that the levels and/or function of
EAAT2 (rodent analog, GLT-1), the most abundantly expressed
glutamate transporter in hippocampal astrocytes (Maragakis and
Rothstein, 2006) are reduced in conjunction with A� pathology
and/or glial activation (Masliah et al., 1996; Abdul et al., 2009;
Simpson et al., 2010; Tian et al., 2010; Scimemi et al., 2013; He-
fendehl et al., 2016). AAV-mediated delivery of VIVIT to 5xFAD
mice reduced both A� plaque load in CA1 (Fig. 4A,B; 5xFAD-CT
group, 6 mice/group; 5xFAD-VIVIT group, 7 mice/group; t(10) �
2.41, p � 0.04) and soluble A�42 peptide levels in whole hip-
pocampus (Fig. 4C; 5xFAD-CT group, 4 mice/group, 5xFAD-
VIVIT, 5 mice/group; t(7) � 3.1, p � 0.02). Furthermore, GFAP
labeling around A� deposits was significantly reduced in VIVIT-
treated 5xFAD mice (Fig. 4A,D; t(10) � 2.28, p � 0.04). GLT-1
showed diffuse labeling across the hippocampus (Fig. 4E,F) as
reported in other studies (Hefendehl et al., 2016). VIVIT in-
creased GLT-1 labeling in 5xFAD mice (Fig. 4E,G; 5xFAD-CT
group, 6 mice/group; 5xFAD-VIVIT group, 6 mice/group; t(10) �
2.29, p � 0.04), especially around A� deposits (Fig. 4F,H; t(10) �
5.8, p � 0.0002), and was associated with an overall increase in
hippocampal GLT-1 protein (Fig. 4I,J; 5xFAD-CT group, 3 mice/
group; 5xFAD-VIVIT group, 3 mice/group; t(4) � 5.1, p � 0.007).

To determine whether hyperactive astrocytic CN/NFAT sig-
naling directly affects glutamate uptake, we used whole-cell volt-
age clamp (Fig. 4K) to measure glutamate transport currents in
primary rat astrocytes expressing an activated CN proteolytic
fragment (�CN), similar to that found in 5xFAD astrocytes (Fig.
1C,F,G). Astrocytes were infected with control adenovirus (Ad-
LacZ-GFP, n � 8) or adenoviruses expressing �CN or VIVIT
(Ad-CMV-�CN-Ds-Red2, n � 9; Ad-CMV-VIVIT-EGFP, n �
4) at an MOI of 100, as described previously (Sama et al., 2008).
Perfusion of primary astrocytes with L-glutamate (10 �M) re-
sulted in an inward current that was largely mediated by TBOA-
sensitive glutamate transporters (Fig. 4L). ANOVA detected a
significant effect of virus treatment (F(2,18) � 6.25, p � 0.009).
Inward currents were significantly reduced in astrocytes express-
ing �CN (p � 0.03, Fisher’s LSD vs CT), but not VIVIT (Fig.
4M). The results suggest that glutamate dysregulation in 5xFAD
mice is attributable to the CN/NFAT-mediated downregulation
of GLT-1-dependent glutamate uptake in astrocytes.

AAV-Gfa2-VIVIT normalizes spontaneous synaptic activity
in 5xFAD mice
We next determined whether astrocytic CN/NFATs were in-
volved in hyperexcitability at the synaptic level. Brain slices were
prepared from AAV-treated WT and 5xFAD mice, and sponta-
neous EPSCs were recorded across a 3 min period from individ-
ual CA1 neurons held at �80 mV using whole-cell voltage clamp
(Fig. 5A,B; WT-CT group, 39 cells from 16 mice; WT-VIVIT
group, 28 cells from 10 mice; 5xFAD-CT group, 33 cells from 11
mice; 5xFAD-VIVIT group, 14 cells from 7 mice). Under these
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conditions, neurons exhibited highly variable activity rates (Fig.
5B), which could be sorted into four broad categories: low (0 –
499 events), low-normal (500 –999 events), high-normal (1000 –
1499 events), and high (	1500 events). As shown in Figure 5C, a
significantly greater proportion of cells in the 5xFAD-CT group
exhibited normal-high to high activity rates compared with
WT-CT mice (p � 0.0007, Fisher’s exact test) and 5xFAD mice
(p � 0.004, Fisher’s exact test). Amplitude histograms (Fig. 5D)
showed that the majority of EPSCs occurred within the 10 –20 �A
range across all groups, suggesting that miniature EPSC ampli-

tudes were unaffected by genotype or virus treatment. However,
relative to both WT groups, 5xFAD-CT mice exhibited a higher
peak and a broader distribution, which is indicative of overall
greater activity. Similarly, the cumulative EPSC frequency distri-
bution (Fig. 5E) for 5xFAD-CT mice exhibited a significant right-
ward shift compared with WT-CT mice (p � 1 � 10�15,
Kolmogorov–Smirnov test) and 5xFAD-VIVIT mice (p � 1 �
10�15, Kolmogorov–Smirnov test). When the total number of
EPSCs was counted (regardless of amplitude), ANOVA detected
a significant AAV treatment effect (Fig. 5F; F(1,36) � 7.11, p �

Figure 3. AAV-Gfa2-VIVIT normalizes spontaneous glutamate transients in 5xFAD mice in vivo. A, B, Self-referencing MEAs were used to measure glutamate transients in CA1 of anesthetized WT
and 5xFAD mice treated with AAV-Gfa2-EGFP (CT) or AAV-Gfa2-VIVIT-EGFP. A micrograph of the MEA is shown in A. Glutamate-sensing sites were coated with glutamate oxidase (GluOx). “Sentinel”
indicates self-referencing sites (for details, see Materials and Methods). C, Hippocampus of a WT-CT mouse labeled with cresyl violet to confirm MEA localization to CA1 stratum radiatum (red
arrowhead). D, Mean � SEM basal glutamate levels in WT and 5xFAD mice under CT and VIVIT conditions. n.s. � nonsignificant. WT-CT group, 10 mice/group; WT-VIVIT group 4 mice/group;
5xFAD-CT group, 8 mice/group; 5xFAD-VIVIT group, 5 mice/group. E, Representative traces of spontaneous glutamate transients in WT and 5xFAD mice. Inset is a higher-magnification view of a
single transient. F, G, Mean � SEM frequency (F ) and amplitude (G) of glutamate transients across treatment groups. H, Parameters for measuring glutamate transient duration. Representative
transients in 5xFAD-CT and 5xFAD-VIVIT mice are shown. Transients were matched for maximum amplitude then were fit with nonlinear Lorentzian functions (dotted line). Relative glutamate levels
are indicated along the descending limb when transients fell to 50% (T50), 20% (T80), and 0% (T100) of the maximum amplitude. I, Transient duration expressed as the time at which T50, T80, and
T100 thresholds were reached (mean � SEM; see H ) in each group. Time is relative to the peak glutamate transient amplitude. Genotype and AAV effects in D, F, G, and I were determined with
ANOVA and Fisher’s LSD test.
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0.02). Post hoc tests showed a significantly higher activity rate in
5xFAD-CT mice relative to WT-CT mice (p � 0.05, Fisher’s LSD
test) and 5xFAD-VIVIT mice (p � 0.03, Fisher’s LSD test). EPSC
distributions (Fig. 5D) and frequency (Fig. 5E,F) in 5xFAD-

VIVIT mice were statistically comparable to those of WT-CT
mice. Together, the results suggest that astrocytic CN/NFAT
helps to drive hyperactive spontaneous synaptic activity associ-
ated with AD-like pathology.

Figure 4. AAV-Gfa2-VIVIT-EGFP reduces A� levels and increases GLT-1 labeling in 5xFAD mice. A, Confocal micrographs of CA1 in CT- and VIVIT-treated 5xFAD mice showing immunolabeling of
A� (red) and GFAP (blue). B–D, Mean � SEM A� plaque load (B), A� peptide levels (C), and GFAP labeling (volume-�m 3; D) in CA1 of AAV-treated 5xFAD mice. 5xFAD-CT group, 6 mice/group;
5xFAD-VIVIT group, 7 mice/group. E, F, 3-D reconstructions of GLT-1 labeling (blue) in hippocampal area CA1. A� deposits are shown in red at low (E) and high (F ) magnification. G, H, Mean � SEM GLT-1
labelingintensity[arbitraryunits(A.U.)/tissuevolume-�m 3)acrosstotalhippocampus(G)andintheimmediatevicinity(H )ofA�depositsofAAV-treated5xFADmice. I, J,RepresentativeWesternblots(I )and
mean�SEM hippocampal protein levels (J, in A.U.) for GLT-1 in CT mice and VIVIT-treated 5xFAD mice. (n�3/group). K, Fluorescent (Fluo) and phase contrast micrographs of a whole-cell patch micropipette
sealed to a primary astrocyte infected with adenovirus expressing �CN-DsRed2. L, Representative inward currents recorded in primary astrocytes (voltage clamped to �70 mV) during extracellular perfusion
with 10 �M L-glutamate. Treatment conditions: CT (Ad-CMV-LacZ-GFP), �CN (Ad-CMV-�CN-DsRed); VIVIT (Ad-CMV-VIVIT-EGFP); and TBOA (glutamate transporter inhibitor). M, Mean � SEM glutamate-
mediated inward current density (pA/pF) in astrocytes treated with control adenovirus (Ad-LacZ) or with adenovirus expressing�CN and VIVIT. CT group, 8 cells/group; �CN group, 9 cells/group; VIVIT group,
4 cells/group. AAV effects in B–D and G–J were determined with Student’s t test. Adenovirus treatment effects in M were determined with ANOVA and Fisher’s LSD test.
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AAV-Gfa2-VIVIT prevents dendritic degeneration and
improves basal synaptic strength
CA1 neuronal loss and dendritic abnormalities commonly arise
with AD (Spires and Hyman, 2004; Padurariu et al., 2012), sim-
ilar to what is observed following glutamate dysregulation asso-
ciated with excitotoxic insults (Andrew and MacVicar, 1994;
Hasbani et al., 1998; Greenwood et al., 2007). To determine
whether changes in the number and/or structural integrity of hip-
pocampal neurons is altered in 5xFAD mice, we counted NeuN-
positive CA1 pyramidal neurons (Fig. 6A,B; WT-CT group, 9 mice/
group, WT-VIVIT group, 7 mice/group; 5xFAD-CT group, 11
mice/group; 5xFAD-VIVIT group, 6 mice/group) and investigated
the morphology of proximal apical dendrites in postmortem tissue
from the same mice (n � 6 mice/group) used in MEA studies (Fig.
3). Although no genotype- or AAV-dependent differences were ob-
served for the number of CA1 neurons (Fig. 6B), there were differ-
ences in dendritic morphology (detected via MAP2b-labeling; Fig.
6C,D). The average dendrite diameter showed considerable diversity
within each group (range, �1 to 	3 �m) but did not differ across
groups (data not shown). However, dendrites from the 5xFAD-CT
group were less uniform in diameter, showing signs of swelling and
atrophy (Fig. 6C, yellow arrows and arrowheads). When apical den-
drites across CA1 were sorted based on diameter, Gaussian distribu-
tion parameters differed significantly across groups (Fig. 6D). The
distribution for the 5xFAD-CT group (Fig. 6D) was broader, with a
smaller peak, compared with that of both WT-CT mice (p � 3 �
10�13, Kolmogorov–Smirnov test) and 5xFAD-VIVIT mice (p �
7.8 � 10�10, Kolmogorov–Smirnov test), which is indicative of a

greater number of very wide (	3 �m) and very narrow (�1.2 �m)
dendrites, consistent with dendrite swelling and atrophy. In contrast,
the distribution of dendrite diameters in the 5xFAD-VIVIT group
was statistically comparable to that in the WT groups.

Many disease models that exhibit neuronal/dendritic degenera-
tion also exhibit deficits in evoked synaptic transmission. Previously,
we found that AAV-Gfa2-VIVIT protected against synaptic deficits
in a double-transgenic (APP/PS1) mouse model of AD (Furman et
al., 2012). To determine whether VIVIT is associated with similar
synaptoprotection in the more aggressive 5xFAD model of AD, we
investigated basal CA3–CA1 synaptic strength curves in acutely pre-
pared slices from AAV-treated WT and 5xFAD mice (Fig. 6E,F;
WT-CT group, 10 mice/group; WT-VIVIT group, 9 mice/group;
5xFAD-CT group, 11 mice/group 5xFAD-VIVIT group, 8 mice/
group). Curves were calculated by plotting the field EPSP versus the
corresponding presynaptic FV amplitude across a series of increas-
ing stimulus intensities. A three-parameter sigmoidal equation was
used to fit FV curves (data not shown) and synaptic strength curves
(Fig. 6E,F) for each slice.

In WT mice, VIVIT treatment was associated with a small
downward shift in the synaptic strength curve (Fig. 6E), which
was attributable to a modest reduction in the CA3 FV amplitude
(data not shown). However, the maximal EPSP/FV ratio in WT-
VIVIT-treated mice was statistically comparable to that in
WT-CT mice, suggesting that VIVIT effects on basal synaptic
strength in WT mice were minimal (Fig. 6G). While FV ampli-
tudes were similar in WT-CT and 5xFAD mice, 5xFAD-CT mice
exhibited a marked downward shift in the synaptic strength curve

Figure 5. AAV-Gfa2-VIVIT-EGFP quells synaptic hyperexcitability in 5xFAD mice. A, Schematic illustration showing whole-cell voltage-clamp recordings from individual CA1 neurons in ex vivo
brain slices. B, Representative traces showing spontaneous EPSCs recorded from CA1 neurons held at �80 mV. Traces are from cells that showed low, normal, and high (hyperactive) levels of
spontaneous synaptic activity. C, Pie charts of the percentage of cells in each treatment group sorted by activity levels (i.e., number of EPSCs) during the 3 min recording window: low (0 – 499, dark
green), low-normal (500 –999, light green); high-normal (1000 –1499, yellow), and high (	1500, red). The proportion of cells at each activity level was compared across genotype/AAV groups
using Fisher’s exact test. D, Mean EPSC amplitude histograms from WT (left) and 5xFAD mice (right) treated with AAV-Gfa2-EGFP (CT) or AAV-Gfa2-VIVIT-EGFP (VIVIT). E, Mean cumulative frequency
distributions for WT mice (left) and 5xFAD mice (right) under CT and VIVIT treatment conditions. Significant shifts in the frequency distributions between 5xFAD-CT vs WT-CT cells (*) and 5xFAD-VIVIT
vs 5xFAD-CT cells (#) were determined using the Kolmogorov–Smirnov test. F, Mean � SEM EPSC frequency (events/min) in AAV-treated WT and 5xFAD mice. WT-CT group, 39 cells from 16 mice;
WT-VIVIT group, 28 cells from 10 mice; 5xFAD-CT group, 33 cells from 11 mice; 5xFAD-VIVIT group, 14 cells from 7 mice. Genotype and AAV effects in F were determined with ANOVA and Fisher’s LSD test.
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amplitude (Fig. 6F). For the EPSP/FV ratio, ANOVA detected a
significant interaction between genotype and AAV treatment
(F(1,39) � 6.8, p � 0.001). Post hoc tests revealed a significant
(	60%) reduction in 5xFAD-CT mice relative to WT-CT mice
(p � 0.0002, Fisher’s LSD test). In contrast, the EPSP/FV ratio for
5xFAD-VIVIT mice did not differ from that for WT-CT mice but
was significantly elevated by 	90% compared with that for
5xFAD-CT mice (p � 0.007, Fisher’s LSD test). A significant
transgene by AAV treatment interaction was also observed for the
evoked PS threshold, which is a measure of overall neuronal ex-
citability (Fig. 6H; F(1,39) � 9.9, p � 0.003). In most slices, an
upward-going PS (indicative of a synchronous population action
potential in CA1) appeared in the ascending limb of the field
potential with increasing stimulus intensities (Fig. 6H, inset, ar-
row). Relative to WT-CT mice, the PS for 5xFAD-CT mice oc-
curred in response to significantly lower levels of postsynaptic
activation (i.e., smaller EPSP slopes; p � 1.1 � 10�5, Fisher’s LSD

test), suggesting that CA1 neurons from 5xFAD-CT mice are
hyperexcitable, even though evoked synaptic responses are re-
duced. Although the PS threshold was also reduced in 5xFAD-
VIVIT mice relative to WT-CT mice (Fig. 6H; p � 0.02, Fisher’s
LSD), VIVIT treatment resulted in a significant elevation in the
PS threshold relative to the 5xFAD-CT control group (p � 0.04,
Fisher’s LSD test), indicative of reduced excitability. Together,
the results suggest that inhibition of astrocytic CN/NFAT signal-
ing helps protect against neurite abnormalities and basal synaptic
strength deficits in 5xFAD mice.

AAV-Gfa2-VIVIT normalizes NMDAR/AMPAR activity in
CA1 pyramidal neurons in 5xFAD mice, but does not prevent
synapse silencing
Reductions in the CA1 field potential in 5xFAD mice may be
attributable to functional deficits at individual synapses and/or to
the silencing of individual synapses. To test these possibilities,

Figure 6. AAV-Gfa2-VIVIT-EGFP reduces dendritic degeneration and population synaptic deficits in 5xFAD mice. A, Photomicrographs showing NeuN immunolabeling in hippocampus of a WT
mouse. Left panel is a low-power micrograph of the CA1 pyramidal cell layer. The right panel shows a high-power micrograph of CA1. B, Mean�SEM CA1 neuron count in AAV-treated WT and 5xFAD
mice (CT and VIVIT). n.s., Nonsignificant. WT-CT group, 9 mice/group; WT-VIVIT group, 7 mice/group; 5xFAD-CT group, 11 mice/group; 5xFAD-VIVIT group, 6 mice/group. C, High-power fluorescent
photomicrographs of MAP2 immunolabeling in CA1 pyramidal neurons and apical dendrites from AAV-treated WT and 5xFAD mice. In the 5xFAD-CT panel, dendrites are clearly swollen (yellow
arrow) or atrophied (yellow arrowheads). D, Mean Gaussian distributions of dendrite diameters in AAV-treated WT mice and 5xFAD mice (n � 6/group). Significant shifts in the dendrite diameter
distributions between the 5xFAD-CT and WT-CT groups (*) and 5xFAD-VIVIT vs 5xFAD-CT groups (#) were determined using the Kolmogorov–Smirnov test. E, F, Synaptic strength curves in WT mice
(E) and 5xFAD mice (F ) shown as the mean � SEM field EPSP slope amplitudes (vertical error bars) plotted against the mean � SEM FV amplitudes (horizontal error bars) across 12 stimulus
intensities. Insets, Representative field potentials recorded from each treatment condition. Within each genotype, waveforms are matched to similar FV amplitudes. Calibration: 0.5 mV, 5 ms. G,
Mean � SEM maximal EPSP to FV ratio in AAV-treated WT mice and 5xFAD mice. (H ) Mean � SEM PS threshold in AAV-treated WT and 5xFAD mice. The PS threshold is defined as the EPSP slope
measured during the first appearance of a PS in the ascending limb of the field potential. Inset, Representative field potential from a 5xFAD-CT mouse. Arrow points to an upward-going PS in the
ascending limb of the field potential. Calibration: 0.5 mV, 5 ms. For E–H: WT-CT group, 10 mice/group; WT-VIVIT group, 9 mice/group; 5xFAD-CT group, 11 mice/group; 5xFAD-VIVIT group, 8
mice/group. For B and E–H, genotype and AAV treatment effects were determined with ANOVA and Fisher’s LSD test.
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EPSC amplitudes and synaptic failure rates were investigated us-
ing a minimal stimulation paradigm and whole-cell voltage
clamp (see Materials and Methods; Isaac et al., 1995; Liao et al.,
1995). Inward-going EPSCs were orthodromically elicited from
CA1 pyramidal neurons held at �80 mV (i.e., 120 stimulus pulses,
five second interpulse interval). Stimulation intensity was lowered
until transmission failures were observed on at least 50% of stimulus
trials. Because of the voltage-dependent Mg2� block, NMDA recep-
tor (NMDAR) currents are negligible at �80 mV, resulting in a
purely AMPA-driven EPSC. The membrane potential was then
stepped to �40 mV and outward-going EPSCs, consisting of both
AMPA and NMDAR-mediated currents (due to relief of the voltage-
dependent Mg2� block), were elicited across 120 additional trials at
the same stimulus intensity.

Figure 7A shows a representative time plot of the minimal
stimulation paradigm. For some cells, the NMDAR antagonist,
Ro-25-6981, or APV, was washed in �10 –20 min after stepping
to �40 mV to confirm that outward going-EPSCs were depen-
dent on functional NMDARs. No effects of genotype or AAV
were observed for the average amplitude of evoked inward-going
EPSCs recorded at �80 mV (Fig. 7B,C; WT-CT group, 16 cells from
15 mice; WT-VIVIT group, 10 cells from 9 mice; 5xFAD-CT group,
16 cells from 11 mice; 5xFAD-VIVIT group, 9 cells from 7 mice).
This result suggests that unitary AMPAR currents are intact at sur-
viving synapses of 5xFAD mice and insensitive to astrocytic CN/
NFAT activity. In contrast, ANOVA detected a significant genotype
by AAV treatment interaction for outward-going EPSC amplitudes
recorded at �40 mV (Fig. 7B,C; F(1,47) � 4.08, p � 0.04). Post hoc

Figure 7. AAV-Gfa2-VIVIT-EGFP normalizes NMDAR activation in 5xFAD mice but does not affect the appearance of functionally silent synapses. A, Time plot of EPSCs recorded from a CA1
pyramidal neuron in response to minimal electrical stimulation of CA3 Schaffer collaterals. EPSCs were downward going when the cell was voltage clamped to �80 mV but were outward-going
when the holding potential was switched to �40 mV. Application of the NR2B inhibitor Ro-25-6981 (0.5 �M) reduced the amplitude of outward-going EPSCs, confirming that these events included
a strong NMDAR-dependent component. B, Representative EPSCs recorded at �80 mV (inward-going currents) and �40 mV (outward-going currents) in AAV-treated WT and 5xFAD mice.
C, Mean � SEM EPSC amplitudes recorded at �80 mV (inward) and �40 mV (outward) in AAV-treated WT and 5xFAD mice. WT-CT group, 16 cells from 15 mice; WT-VIVIT group, 10 cells from 9
mice; 5xFAD-CT group, 16 cells from 11 mice; 5xFAD-VIVIT, 9 cells from 7 mice. D, Change in the synaptic transmission failure rate (%) in individual cells held at �80 vs �40 mV from AAV-treated
WT and 5xFAD mice. E, Mean � SEM change in the failure rate in cells held at �80 vs �40 mV from AAV-treated WT and 5xFAD mice. F–I, Time plots and bar graphs illustrate genotype/AAV
differences in isolated NMDAR potentials. Time plots in F and H show normalized field EPSP recordings during washin of CNQX, picrotoxin, and the NR2A blocker PPPA to isolate NR2B EPSPs (F ) or
CNQX, picrotoxin, and the NR2B blocker Ro-25-6981 to isolate NR2A EPSPs (H ). Bar graphs show the mean � SEM amplitude of NR2B (G) and NR2A (I ) EPSPs (measured at time point 2 in F and H )
as a proportion (%) of the corresponding drug-free EPSP (measured at time point 1 in F and H ). WT-CT group, 11 mice/group; WT-VIVIT group, 10 mice/group; 5xFAD-CT group, 12 mice/group;
5xFAD-VIVIT group, 10 mice/group. F, H, Insets, Representative field potentials recorded before (1) and after (2) drug washin. Calibration: 1 mV, 5 ms. For C, G, and I, genotype and AAV treatment
effects were determined with ANOVA and Fisher’s LSD test. For E, genotype and AAV treatment effects were determined with rmANOVA and Fisher’s LSD test.
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tests showed that 5xFAD-CT exhibited elevated outward currents
relative WT-CTs (p � 0.005, Fisher’s LSD test) and 5xFAD-VIVIT
mice (p � 0.04, Fisher’s LSD test) consistent with a proportional
increase in NMDAR function. The 5xFAD-VIVIT group was statis-
tically comparable to both WT groups.

ANOVA also detected a genotype effect for synaptic transmis-
sion failure rate at �40 mV vs �80 mV (Fig. 7D,E; F(1,47) � 7.82,
p � 0.008). Post hoc tests showed a significant decrease in the
failure rate for both 5xFAD-CT and 5xFAD-VIVIT mice relative
to WT-CT mice (5xFAD-CT vs WT-CT p � 0.03; 5xFAD-VIVIT vs
WT-CT p � 0.03, Fisher’s LSD test) indicative of a higher propor-
tion of functionally silent synapses (Isaac et al., 1995; Liao et al.,
1995) in 5xFAD mice. No effect of VIVIT treatment within the
5xFAD group was observed. The results suggest that population syn-
aptic deficits in 5xFAD-CT mice are at least partially due to the
silencing of functional synapses, but, this silencing appears to be
independent of hyperactive CN/NFAT signaling in astrocytes.

The increased amplitude of outward-going EPSCs in 5xFAD-
CT, but not 5xFAD-VIVIT mice (Fig. 7C), suggests that NMDAR
function at surviving synapses is proportionally increased in a
CN/NFAT-dependent manner. To test this possibility, field
EPSPs were recorded in CA1 stratum radiatum under normal
perfusion conditions and 10 –20 min after the pharmacological
isolation of NMDAR potentials (Fig. 7F–I; WT-CT, 11 mice/
group; WT-VIVIT, 10 mice/group; 5xFAD-CT, 12 mice/group;
5xFAD-VIVIT, 9 mice/group). NMDAR-dependent EPSPs were
isolated by including AMPAR and GABAR blockers (CNQX and
picrotoxin) in the perfusion media. The NR2A antagonist
(PPPA) or the NR2B antagonist (Ro-25-6981) were also added to
further isolate the NR2B (Fig. 7F,G) and NR2A (Fig. 7H, I) com-
ponents of the NMDAR-mediated EPSP. For WT mice, both the
NR2B and NR2A components were �20% of the baseline field
EPSP (Figs. 7G,I). There were no genotype or AAV treatment
effects for NR2B-dependent EPSPs (Fig. 7G). In contrast, there
were significant effects of both genotype and AAV treatment on
the isolated NR2A-mediated EPSP (Fig. 7I; genotype: F(1,38) �
6.7, p � 0.01; AAV: F(1,38) � 3.9, p � 0.05). Post hoc tests revealed
a proportional increase in the NR2A-dependent EPSP in
5xFAD-CT mice relative to WT-CT mice (p � 0.009, Fisher’s
LSD test). In contrast, the NR2A EPSP in 5xFAD-VIVIT mice was
statistically comparable to that in WT-CT mice and was signifi-
cantly reduced relative to that in the 5xFAD-CT group (p � 0.04,
Fisher’s LSD test). Thus, astrocytic CN/NFAT signaling appears
to alter the balance of NMDAR sensitivity in CA1, which could
further contribute to excitotoxic damage.

Discussion
Our results directly implicate activated astrocytes in the emergence
of pathologic glutamate signaling in AD. Neuronal hyperexcitability
in 5xFAD mice was revealed using several independent approaches,
including in vivo glutamate sampling, in situ whole-cell patch-clamp
analysis of spontaneous EPSCs, and in situ field recordings of
NMDA-dependent EPSPs. For each approach, the blockade of as-
trocytic CN/NFAT activity normalized glutamate signaling, provid-
ing critical insights into the mechanisms that drive neuronal
dysfunction/deterioration during the progression of AD.

Activated astrocytes are permissive for hyperactive
CN signaling
Although featured prominently in nearly every neurodegenera-
tive disorder, activated astrocytes have a complex phenotype, and
their roles in pathophysiology remain unclear. However, the ap-
pearance of activated astrocytes at early stages of AD (Carter et al.,

2012; Schöll et al., 2015) suggests an important role in the emer-
gence of later pathophysiological changes. We have exploited
specific changes in the CN/NFAT pathway to determine how
activated astrocyte signaling specifically affects neural function
(Furman et al., 2012, 2016; Pleiss et al., 2016). Several lines of
evidence in human AD and AD mouse models suggest that CN/
NFAT signaling is elevated during disease progression (Liu et al.,
2005; Norris et al., 2005; Reese et al., 2008; Abdul et al., 2009; Wu
et al., 2010; Lim et al., 2013). Levels of cytosolic Ca 2�, the primary
endogenous activator of CN, show higher and more rapid fluc-
tuations in astrocytes of amyloidogenic mice (Kuchibhotla et al.,
2009). Moreover, Ca 2�-dependent proteases, which show in-
creased expression in activated astrocytes (Gray et al., 2006; Kim
et al., 2016), can cleave CN into highly active proteolytic frag-
ments (Wu et al., 2004). Thus, activated astrocytes seemingly
provide a very permissive environment for hyperactive CN sig-
naling. In the present study, CN proteolysis occurred almost ex-
clusively in 5xFAD mice and increased in direct proportion with
GFAP levels. Similar observations were recently made for acti-
vated astrocytes associated with A� deposits and microinfarcts in
humans (Pleiss et al., 2016). NFAT4 expression in 5xFAD mice
paralleled that of �CN, confirming that the NFAT4 isoform is an
excellent marker for activated astrocytes (Lim et al., 2013; Fur-
man et al., 2016). NFATs are well known for their pivotal roles in
phenotype switching in a variety of tissues (Furman and Norris,
2014). The present results suggest that �CN/NFAT4 is central to
a deleterious astrocyte phenotype that is responsible for gluta-
mate dysregulation.

Activated astrocytes, CN/NFATs, and network excitability
Glutamate is an essential neurotransmitter but can cause hyper-
excitability and excitotoxic damage if key regulatory mechanisms
are disrupted. Symptoms of neuronal hyperexcitability develop
in up to 40% of patients in whom AD has been diagnosed (e.g.,
subclinical epileptiform activity), and patients with AD and epi-
leptiform comorbidities show accelerated cognitive decline
(Vossel et al., 2016). Moreover, therapeutics that reduce excit-
ability, including the NMDAR blocker memantine, slow the pro-
gression of dementia when administered to subjects with mild,
moderate, or severe AD (Reisberg et al., 2003; Tariot et al., 2004;
Peskind et al., 2006). Hyperexcitability is also a key phenotypic
feature of many common AD mouse models (Palop et al., 2007;
Busche et al., 2008; Grienberger et al., 2012; Bomben et al., 2014;
Kellner et al., 2014; Šišková et al., 2014; Hefendehl et al., 2016;
Fontana et al., 2017). Although we did not see genotype- or AAV-
dependent changes in basal glutamate in CA1, other dynamic
properties of glutamate regulation/signaling, including gluta-
mate transient rate and duration in vivo and spontaneous synap-
tic activity ex vivo, showed significant elevations in 5xFAD mice.
Further signs of hyperexcitability included a reduced PS thresh-
old and a proportional increase in NMDAR function. The deliv-
ery of VIVIT to astrocytes significantly ameliorated nearly all of
these changes, suggesting that alterations in astrocyte signaling
play a major role in the development of hyperactive neuronal
circuits during AD.

Critical glutamate regulatory mechanisms in astrocytes are
lost and/or disrupted with AD, in parallel with astrocyte activa-
tion (Masliah et al., 1996; Abdul et al., 2009; Simpson et al., 2010).
Levels and/or function of the astrocytic glutamate transporter
EAAT2/GLT-1 decline in human hippocampus at the onset of
cognitive dysfunction (Abdul et al., 2009) and are similarly dis-
rupted in numerous AD mouse models (Masliah et al., 2000;
Mookherjee et al., 2011; Schallier et al., 2011; Scimemi et al., 2013;
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Meeker et al., 2015; Audrain et al., 2016; Hefendehl et al., 2016;
Xu et al., 2016). Reduced EAAT2/GLT-1 levels have also been
linked to excitotoxicity via increased activation/sensitivity of
NMDARs (Fleming et al., 2011; Aida et al., 2012; Armbruster et
al., 2016; Gong et al., 2016). Moreover, several reports have
shown that network excitability in AD mouse models (Zumkehr
et al., 2015; Hefendehl et al., 2016) and other disease models
(Prow and Irani, 2008; Harvey et al., 2011; Karklin Fontana et al.,
2016) are greatly reduced by increasing the expression and/or
function of EAAT2/GLT-1.

The EAAT2/GLT-1 promoter has multiple putative binding
sites for NFATs and other transcription factors linked to glial
activation and neuroinflammation (Kim et al., 2003; Su et al.,
2003; Mallolas et al., 2006). Transcription of EAAT2/GLT-1 may
be upregulated or downregulated by these factors, depending on
the conditions involved in cellular activation (Su et al., 2003). We
previously found that GLT-1 levels were reduced in primary rat
astrocytes in a CN/NFAT-dependent manner during treatment
with IL-1� (Sama et al., 2008) or A� (Abdul et al., 2009), both of
which are found at high levels in human AD and many AD mouse
models. Here, we found that the inhibition of astrocytic CN/
NFATs in astrocytes with VIVIT led to elevated GLT-1 expression
in 5xFAD mice, particularly in the vicinity of A� deposits. The
results suggest that astrocytic CN/NFATs, and their impact on
EAAT2/GLT-1 expression, is a major mechanism for glutamate
dysregulation and hyperexcitability arising with AD.

Astrocytic CN/NFAT and synaptic deficits
Excess glutamate causes dendritic degeneration and synapse loss
in numerous injury and disease models. Consistent with gluta-
mate toxicity, 5xFAD mice showed signs of dendritic degenera-
tion, in parallel with reduced population EPSPs in CA1 stratum
radiatum. While the amplitude of miniature AMPAR currents
was not reduced in 5xFAD mice, we did observe a significant drop
in the synaptic transmission failure rate when EPSCs were mini-
mally evoked at �40 vs �80 mV, suggesting a higher proportion
of functionally silent synapses (Isaac et al., 1995; Liao et al., 1995).
To our knowledge, this evidence is the first to directly implicate
synapse silencing as a mechanism for synapse loss/dysfunction
with AD. Astrocytic CN/NFATs do not appear to be involved in
the conversion of functional-to-silent synapses in 5xFAD mice
because transmission failure rates were not significantly affected
by AAV treatment. The beneficial effects of AAV-Gfa2-VIVIT on
evoked population EPSPs, therefore, most likely reflect the struc-
tural preservation of dendrites and synapses.

Interestingly, 5xFAD-CT mice exhibited a proportional increase
in NR2A function, and this effect was significantly reduced by
VIVIT. This increase may reflect a compensatory response to syn-
apse loss or impaired synaptic efficacy (Nudmamud-Thanoi et al.,
2006; Lacey et al., 2012), which nonetheless could ultimately lead to
synapse instability. For instance, earlier work reported that A�
triggers dendritic spine loss and synapse dysfunction specifically
through the increased activation of NR2A receptors (Tackenberg et
al., 2013). NR2A receptors also appear to be highly sensitive to
glutamate transport at the synapse and exhibit greater func-
tion when GLT-1-mediated transport is reduced (Armbruster
et al., 2016), which is consistent with the present findings.
Together, the results suggest that the CN/NFAT-dependent
loss of GLT-1, and the impaired uptake of synaptic glutamate,
could adversely augment NR2A function, leading to dendritic
damage and synapse dysfunction.

Effects of VIVIT in other cell types during progression of
AD-related pathology
In addition to astrocytes, hyperactive NFAT signaling linked to
AD pathology has also been targeted in microglia and neurons
using VIVIT. In primary microglia, where NFATs 1 and 2 play a
predominant role, VIVIT reduced the expression of several cyto-
kines linked to chronic neuroinflammation, including TNF-�
and monocyte chemoattractant protein-1 (Nagamoto-Combs
and Combs, 2010). Follow-up studies from the Combs labora-
tory showed that intraventricular delivery of VIVIT peptide sup-
pressed microglial activation and reduced A� plaque load in
intact APP/PS1 mice (Rojanathammanee et al., 2015), similar to
what we have observed following VIVIT delivery to astrocytes
(Furman et al., 2012; Fig. 4A–C). However, unlike the present
findings and our earlier work, intraventricular delivery of VIVIT
did not improve cognition in the study by Rojanathammanee et
al. (2015), perhaps because of the timing (post-A� pathology vs
pre-A� pathology) and/or duration of treatment (1 month treat-
ment vs multiple months). In neurons, targeted delivery of a
constitutively active form of NFAT3, which is upregulated with
human AD (Abdul et al., 2009; Wu et al., 2010), recapitulated
dendritic spine loss and dendritic degeneration, typically associ-
ated with elevated A� levels (Hudry et al., 2012). Conversely,
AAV-mediated delivery of VIVIT directly to neurons of an intact
mouse model of AD reduced dendritic spine loss, particularly in
the vicinity of A� deposits. Thus, VIVIT appears to protect the
integrity of neurites whether targeted to astrocytes or neurons.
Together, these results suggest that pharmacologic agents specif-
ically targeting NFAT activity—regardless of cell type— could
provide clinical efficacy in cases of human AD, either as an indi-
vidual therapy or when given in conjunction with newly devel-
oped A�-inhibiting treatments.
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N, Cartier N, Braudeau J (2016) Alzheimer’s disease-like APP process-
ing in wild-type mice identifies synaptic defects as initial steps of disease
progression. Mol Neurodegener 11:5. CrossRef Medline

Bachstetter AD, Norris CM, Sompol P, Wilcock DM, Goulding D, Neltner
JH, St Clair D, Watterson DM, Van Eldik LJ (2012) Early stage drug
treatment that normalizes proinflammatory cytokine production attenu-
ates synaptic dysfunction in a mouse model that exhibits age-dependent

Sompol et al. • Astrocytic CN/NFATs and Neuronal Hyperexcitability J. Neurosci., June 21, 2017 • 37(25):6132– 6148 • 6145

http://dx.doi.org/10.1523/JNEUROSCI.1064-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19828810
http://dx.doi.org/10.1371/journal.pone.0036853
http://www.ncbi.nlm.nih.gov/pubmed/22606296
http://dx.doi.org/10.1038/nprot.2006.275
http://www.ncbi.nlm.nih.gov/pubmed/17487150
http://dx.doi.org/10.1111/jnc.13667
http://www.ncbi.nlm.nih.gov/pubmed/27248001
http://dx.doi.org/10.1016/0306-4522(94)90372-7
http://www.ncbi.nlm.nih.gov/pubmed/7830884
http://dx.doi.org/10.1523/JNEUROSCI.2066-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27707974
http://dx.doi.org/10.1186/s13024-016-0070-y
http://www.ncbi.nlm.nih.gov/pubmed/26759118


progression of Alzheimer’s disease-related pathology. J Neurosci 32:
10201–10210. CrossRef Medline

Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA,
Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal
hyperactivity improves cognition in amnestic mild cognitive impairment.
Neuron 74:467– 474. CrossRef Medline

Bomben V, Holth J, Reed J, Cramer P, Landreth G, Noebels J (2014) Bex-
arotene reduces network excitability in models of Alzheimer’s disease and
epilepsy. Neurobiol Aging 35:2091–2095. CrossRef Medline

Bouvier DS, Murai KK (2015) Synergistic actions of microglia and astro-
cytes in the progression of Alzheimer’s disease. J Alzheimers Dis 45:1001–
1014. CrossRef Medline

Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH,
Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of
hyperactive neurons near amyloid plaques in a mouse model of Alzhei-
mer’s disease. Science 321:1686 –1689. CrossRef Medline

Busche MA, Konnerth A (2015) Neuronal hyperactivity–a key defect in
Alzheimer’s disease? Bioessays 37:624 – 632. CrossRef Medline
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Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J,
Schoch S, Becker A, von der Kammer H, Remy S (2014) Dendritic struc-
tural degeneration is functionally linked to cellular hyperexcitability in a
mouse model of Alzheimer’s disease. Neuron 84:1023–1033. CrossRef
Medline

Spires TL, Hyman BT (2004) Neuronal structure is altered by amyloid
plaques. Rev Neurosci 15:267–278. CrossRef Medline

Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB
(2003) Insights into glutamate transport regulation in human astrocytes:
cloning of the promoter for excitatory amino acid transporter 2 (EAAT2).
Proc Natl Acad Sci U S A 100:1955–1960. CrossRef Medline

Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko
U, Grimm J, Brandt R, Nitsch RM (2013) NMDA receptor subunit com-
position determines beta-amyloid-induced neurodegeneration and syn-
aptic loss. Cell Death Dis 4:e608. CrossRef Medline

Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I
(2004) Memantine treatment in patients with moderate to severe Alzhei-
mer disease already receiving donepezil: a randomized controlled trial.
JAMA 291:317–324. CrossRef Medline

Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM, Gold-
man JE (2010) Alexander disease mutant glial fibrillary acidic protein
compromises glutamate transport in astrocytes. J Neuropathol Exp Neu-
rol 69:335–345. CrossRef Medline

Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF,
Darwish SM, Van Berlo V, Barnes DE, Mantle M, Karydas AM, Coppola
G, Roberson ED, Miller BL, Garcia PA, Kirsch HE, Mucke L, Nagarajan SS
(2016) Incidence and impact of subclinical epileptiform activity in Alz-
heimer’s disease. Ann Neurol 80:858 – 870. CrossRef Medline

Wu HY, Tomizawa K, Oda Y, Wei FY, Lu YF, Matsushita M, Li ST, Moriwaki
A, Matsui H (2004) Critical role of calpain-mediated cleavage of cal-
cineurin in excitotoxic neurodegeneration. J Biol Chem 279:4929 – 4940.
CrossRef Medline

Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-
Jones T, Xie H, Arbel-Ornath M, Grosskreutz CL, Bacskai BJ, Hyman BT
(2010) Amyloid beta induces the morphological neurodegenerative triad
of spine loss, dendritic simplification, and neuritic dystrophies through
calcineurin activation. J Neurosci 30:2636 –2649. CrossRef Medline

Xu M, Dong Y, Wan S, Yan T, Cao J, Wu L, Bi K, Jia Y (2016) Schisantherin
B ameliorates Abeta1-42-induced cognitive decline via restoration of
GLT-1 in a mouse model of Alzheimer’s disease. Physiol Behav 167:265–
273. CrossRef Medline

Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y,
Yoshikawa E, Futatsubashi M, Suzuki K, Mori N, Ouchi Y (2017) De-
piction of microglial activation in aging and dementia: positron emission
tomography with [11C]DPA713 versus [11C](R)PK11195. J Cereb Blood
Flow Metab 37:877– 889. CrossRef Medline

Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, Kilian
J, Lim SL, Medeiros R, Kitazawa M (2015) Ceftriaxone ameliorates tau
pathology and cognitive decline via restoration of glial glutamate trans-
porter in a mouse model of Alzheimer’s disease. Neurobiol Aging 36:
2260 –2271. CrossRef Medline

6148 • J. Neurosci., June 21, 2017 • 37(25):6132– 6148 Sompol et al. • Astrocytic CN/NFATs and Neuronal Hyperexcitability

http://dx.doi.org/10.1111/j.1474-9726.2008.00434.x
http://www.ncbi.nlm.nih.gov/pubmed/18782350
http://dx.doi.org/10.1056/NEJMoa013128
http://www.ncbi.nlm.nih.gov/pubmed/12672860
http://dx.doi.org/10.1186/s12974-015-0255-2
http://www.ncbi.nlm.nih.gov/pubmed/25889879
http://dx.doi.org/10.1016/S0896-6273(00)80086-0
http://www.ncbi.nlm.nih.gov/pubmed/8785064
http://dx.doi.org/10.1074/jbc.M800148200
http://www.ncbi.nlm.nih.gov/pubmed/18541537
http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.029
http://www.ncbi.nlm.nih.gov/pubmed/18620783
http://www.ncbi.nlm.nih.gov/pubmed/16722241
http://dx.doi.org/10.3233/JAD-2011-101005
http://www.ncbi.nlm.nih.gov/pubmed/21297271
http://dx.doi.org/10.1038/srep16404
http://www.ncbi.nlm.nih.gov/pubmed/26553227
http://dx.doi.org/10.1016/j.neuint.2003.11.001
http://www.ncbi.nlm.nih.gov/pubmed/15186918
http://dx.doi.org/10.1523/JNEUROSCI.5274-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23516295
http://dx.doi.org/10.1111/j.1460-9568.2005.04162.x
http://www.ncbi.nlm.nih.gov/pubmed/16026460
http://dx.doi.org/10.1002/glia.21079
http://www.ncbi.nlm.nih.gov/pubmed/20967884
http://dx.doi.org/10.1111/j.1471-4159.2006.03874.x
http://www.ncbi.nlm.nih.gov/pubmed/16805817
http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.015
http://www.ncbi.nlm.nih.gov/pubmed/18586353
http://dx.doi.org/10.1016/j.neuron.2014.10.024
http://www.ncbi.nlm.nih.gov/pubmed/25456500
http://dx.doi.org/10.1515/REVNEURO.2004.15.4.267
http://www.ncbi.nlm.nih.gov/pubmed/15526551
http://dx.doi.org/10.1073/pnas.0136555100
http://www.ncbi.nlm.nih.gov/pubmed/12578975
http://dx.doi.org/10.1038/cddis.2013.129
http://www.ncbi.nlm.nih.gov/pubmed/23618906
http://dx.doi.org/10.1001/jama.291.3.317
http://www.ncbi.nlm.nih.gov/pubmed/14734594
http://dx.doi.org/10.1097/NEN.0b013e3181d3cb52
http://www.ncbi.nlm.nih.gov/pubmed/20448479
http://dx.doi.org/10.1002/ana.24794
http://www.ncbi.nlm.nih.gov/pubmed/27696483
http://dx.doi.org/10.1074/jbc.M309767200
http://www.ncbi.nlm.nih.gov/pubmed/14627704
http://dx.doi.org/10.1523/JNEUROSCI.4456-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20164348
http://dx.doi.org/10.1016/j.physbeh.2016.09.018
http://www.ncbi.nlm.nih.gov/pubmed/27660034
http://dx.doi.org/10.1177/0271678X16646788
http://www.ncbi.nlm.nih.gov/pubmed/27117856
http://dx.doi.org/10.1016/j.neurobiolaging.2015.04.005
http://www.ncbi.nlm.nih.gov/pubmed/25964214

	Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice
	Repository Citation

	Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in A-Bearing Mice
	Introduction
	Materials and Methods
	Results
	Discussion
	References


