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Abstract: Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density re-
placement for nickel-based superalloys in the aerospace industry due to its high specific strength,
which is retained at temperatures above 800 ◦C. However, low damage tolerance, i.e., brittle material
behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any
cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl
components, making the workpiece surface’s quality from finish machining a critical component to
product quality and performance. To address this issue and enable more widespread use of γ-TiAl,
this research aims to develop a real-time non-destructive evaluation (NDE) quality monitoring tech-
nique based on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN).
Previous efforts have opted for traditional approaches to AE signal analysis, using statistical feature
extraction and classification, which face challenges such as the extraction of good/relevant features
and low classification accuracy. Hence, this work proposes a novel AI-enabled method that uses a
convolutional neural network (CNN) to extract rich and relevant features from a two-dimensional
image representation of 1D time-domain AE signals (known as scalograms), subsequently classifying
the AE signature based on pedigreed experimental data and finally predicting the process-induced
surface quality. The results of the present work show good classification accuracy of 80.83% using
scalogram images, in-situ experimental data, and a VGG-19 pre-trained neural network, establishing
the significant potential for real-time quality monitoring in manufacturing processes.

Keywords: aerospace; manufacturing; titanium aluminide; surface integrity; NDE

1. Introduction

Intermetallic titanium aluminide alloys such as TiAl, Ti3Al, Al3Ti, and Ti2AlNb are
currently gaining ground in the aerospace, biomedical, and automotive industry, due
to their low density, high strength, and suitability for high-temperature applications.
Over the years, TiAl has been grouped under three categories, namely alpha-2 (α2-Ti3Al),
gamma (γ-TiAl), and alpha-2/gamma (α2/γ) phases. Among these, gamma titanium
aluminide (γ-TiAl) features unique physical and mechanical properties: high melting
point, low density, high strength, resistance to oxidation, and corrosion. Compared to
conventional titanium, steel, and nickel-based (super)alloys, the low density offered by
γ-TiAl provides improved specific strength in high-temperature performance. To date,
there have been three commercially developed generations of TiAl alloys [1]. In the first
and second generations of Ti (42–48%)Al, elements such as Cr, V, and Mn were added
to produce ternary alloys, which were further heat-treated to improve the ductility. The
addition of elements such as Ta, Mo, and W enhances the oxidation and creep properties
at high temperatures. The third and fourth generations of TiAl alloys have high Mo and
Nb content. The fourth generation of TiAl are often referred to as TNM alloys and possess
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high oxidation resistance due to the addition of Nb and Ta. The addition of elements
such as Mo and Nb enhances precipitation hardening and makes the final alloy highly
suitable for high-temperature applications. Additionally, Zr elements act as β-stabilizers
and promote the compression strength of binary TiAl alloys. For this reason, gamma
titanium aluminide alloys have been proposed as a higher-performance replacement for
Ni-based superalloys [2,3]. These unique properties of titanium aluminide have made
it of interest during the manufacturing of next-generation rotating parts in gas turbine
engines for the automotive and aeronautical industry. This study deals with a proprietary
second-generation (near-gamma) TiAl alloy used by a major turbine manufacturer.

Commercially, γ-TiAl is adopted in the manufacturing of low-pressure turbines of the
GEnX engine [1,4], turbocharger rotors [5,6], and rocket fins [7,8]. However, a full-scale
adoption of these alloys in the aeronautical sector hinges on passing the industry’s high
dimensional accuracy and surface integrity standard. On the downside, the high strength of
γ-TiAl adversely affects its ductility, making it a brittle material with low fracture toughness
near room temperature. This major drawback makes titanium aluminide highly susceptible
to damage through the brittle fracture. Consequently, mechanical machining of titanium
aluminide is highly challenging, especially at room temperature (i.e., without laser/heat
assistance to promote thermal softening and increased ductility). While titanium aluminide
studies span over 30 years, its application in the aerospace industry has been somewhat
limited due to its low damage tolerance and poor machinability, even when compared to
other difficult-to-cut aerospace alloys such as Ni-based superalloy Inconel 718 and titanium
alloy Ti-6Al4V.

Existing research studies dealing with cutting to γ-TiAl have focused on surface in-
tegrity characterization [9–13], cutting parameter selection [13–16], tool wear [11,13,17,18],
and machining environment, specifically coolants and lubricants [17,18]. According to
Zhang, et al. [19], titanium aluminide has a lower thermal expansion coefficient and specific
heat comparable to engineering materials, such as Ni- and Ti-based alloys. The poor ductil-
ity of γ-TiAl has been attributed to its low dislocation density and cleavage/intergranular
fracture propensity [14]. As reported in various literature studies, the orientation and
lamellae boundary micro-cracks along grain boundaries contribute to the machining frac-
ture mode [20,21]. The formation of cracks during the machining of titanium aluminide
adversely affects the workpiece fatigue life during application [22,23]. According to the lit-
erature, poor surface integrity is attributable to lamella plate failure (sub-surface cracks) [22]
and deformed grains [10,17,24] due to excessive cutting depth/feed [25] and cutting tool
wear or improper edge geometry/hone [13,18].

Achieving high-quality (i.e., damage-free) surface integrity is crucial in aerospace
and automotive applications [24,26]. Extensive work by Beranoagirre explored the brittle
mechanical response in third-generation titanium aluminide milling and electrical dis-
charge machining [16,27–29]. Notably, such non-traditional (non-mechanical) machining
approaches are being used in the industry to process a variety of difficult-to-cut alloys.
However, conventional (mechanical) machining continues to be applied for final finishing
operations due to the cost/efficiency and quality (e.g., residual stress and surface finish). Be-
ranoagirre and Lopez de Lacalle [29] recommended an optimal cutting time and conditions
for industrial milling of titanium aluminide. Several other studies [16,30,31] have focused
on improving the surface integrity of machined titanium aluminide components, with
metrics such as surface cracks, thermal damage, residual stresses, and surface finish being
the primary focus. This study emphasizes sensor- and data-based methodologies that allow
for detecting the (near-)surface crack formation during second-generation gamma-titanium
aluminide machining. A novel approach is proposed for crack quantification and cutting
mode classification.

Existing methods focused on monitoring and analyzing the crack formation during
titanium aluminide machining are performed post-mortem. However, since a release of
energy typically accompanies crack formation, the authors propose that the crack forma-
tion in titanium aluminide machining can be monitored with an acoustic emission sensor.
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The extracted acoustic emission signal data can then be analyzed for pattern recognition,
damage quantification, process monitoring, and control, an approach applied in various
fields of study [30–32]. As described above, an informed sensor selection for process charac-
terization is known as ‘smart’ or ‘physics-informed’ sensors and sensor data. This approach
contrasts with the ‘big data’ methodology, which is often without physical correlation
to material behavior and causal mechanisms. For accurate process characterization, it is
imperative to select sensors whose data correlate to the real-world material’s behavior.

Acoustic emission (AE) involves the rapid release of energy in a structure or body
undergoing loading or deformation conditions. The ability to pick the deformation stress
wave frequency with a piezoelectric sensor can be traced to redistributing local strain
energy associated with respective deformation conditions. This technique provides an in
situ or non-destructive approach for process monitoring and characterization [33]. Not
only does it have substantial practical relevance to the field of non-destructive testing, but
it is also often used in seismology.

The main limitation of AE as a method of non-destructive testing and tool condition
monitoring is the lack of a rigid formula or set of models that apply to every use case,
specifically varied materials and failure modes. AE is essentially a qualitative measurement
tool, and in order to produce quantitative feedback, other non-destructive tests or calibra-
tion/correlation trials are necessary. However, for machining purposes, some of the benefits
of AE include high sensitivity, continuous online measurement, bulk volume monitoring,
and determining the location of damaged regions. AE signals can be application functions,
sensor type, propagation medium, coupling efficiency, sensor sensitivity, amplifier gain,
and threshold voltage. Additionally, testing and developing a baseline for comparison
costs money and time. Most AE studies in machining have focused heavily on machine
condition and tool wear monitoring. In both approaches, relevant features such as AE
energy, counts, RMS values, and count distributions were extracted for correlation with
selected quality metrics. However, only a few efforts have attempted to correlate the AE
signals with the workpiece surface finish.

Extracted AE signals contain process- or material-specific information useful for
the signal source detection, location, and severity. AE signals can be categorized under
burst, continuous, and mixed signals. Burst signals are due to defect emergence during
deformation. In contrast, continuous signals consist of overlapping transients (noise
included) from varying emission sources, and mixed AE signals consist of both burst and
continuous signals overlaid with environmental noise. According to Terchi and Au [27],
the post-utilization of AE signals for process monitoring involves three critical steps: signal
enhancement, signal separation, and signal analysis. The signal enhancement step involves
the optimal removal of embedded noise, preceding the segmentation of crucial burst signals
or critical events. The signal analysis subsequently attempts to identify or correlate the
wave source and appropriately characterize its magnitude, severity, and propagation.

The acoustic emission technique has been studied and found several applications in
material science research, with its scope spanning damage initiation detection, dynamic
loading, composite materials’ crack propagation, and definition of damage and fracture
mechanisms. The application of AE signals has focused extensively on machine and tool
condition monitoring, friction analysis, and fault detection in machining. It is also a well-
established sensor for detecting fracture and fracture/deformation mode. In recent years,
modern advancements in signal processing and pattern recognition analysis have driven
several AE signal characterization and adoption fields.

One of the many tools that researchers use when investigating the AE signals is
Artificial Neural Networks. Rather than applying statistical tools such as using the center
frequency, peak frequency, average frequency, or weighted frequency, one can apply a
machine-learning algorithm to the data. Integration of sensors via neural networks for wear
detection has been adopted for some time, even in the early 1990s [9]. However, the authors
reiterated that the output of neural networks has many of the same limitations as standard
acoustic emission data, namely, variations in machining conditions, material properties, and
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geometry. Artificial Intelligence (AI) tools and algorithms have been applied extensively
to correlate AE waveforms with induced damage or cracks. AI tools such as Principal
Component Analysis and K-means clustering are efficient in AE signal classification using
unique feature characteristics. Wavelet transformation lends itself to this process quite
easily. A time-frequency image representation of the signal, such as scalograms, can be
passed to a convolutional neural network for layer-by-layer deep feature extraction and,
ultimately, event classification. However, the AE signals must be denoised by applying
a multilevel wavelet decomposition to generate accurate scalograms. Using repeated
low- and high-pass filters, “approximation level” and “detail level” coefficients A and
D can be found [8]. The multilevel wavelet decomposition separates the signal into new
layers, where thresholding techniques filter external noise sources. This study presents a
novel approach to detect crack formation during gamma-titanium aluminide machining
by integrating scalograms generated from wavelet transformation of AE signals into CNN
models used for training and classifying different cutting modes.

2. Materials and Methods
2.1. Acoustic Emission Signal Denoising

A major problem faced during AE signal analysis is noise, primarily due to environ-
mental conditions. These conditions are difficult to eliminate due to the internal vibration
generated by the servo motors while moving or holding position. To address this challenge,
the AE signals extracted from the cuts must first undergo a denoising step before being
analyzed. While there are several denoising approaches, we adopted the wavelet interval-
dependent denoising technique in the MATLAB wavelet toolbox. An alternative Fourier
transform approach could be applied so long as the extraneous signals do not vary over time.

Within the 1D Wavelet Toolbox app, the reference wavelet of db1, or Daubechies 1,
was used. It is a type of wavelet helpful in analyzing signals with sharp peaks that
typically occur during fracture events. Eight decomposition levels were used during signal
processing, and the signal was then denoised. Threshold values for each of the eight
decomposed levels were selected based on the signal acquired outside the testing region.
The method used for determining the threshold values can be summarized as selecting
the ‘lowest trough’ for each level or the smallest signal amplitude. The eight levels range
from lower to higher frequency content so that the various external signals can be filtered
over the frequency ranges. After excluding the minimum acquired signal for each of the
eight levels, the signal was cropped to the testing region. A later comparison between this
method and reversing the order of denoising, then cropping, showed little difference in the
final output signal. However, the minimum threshold values were easier to spot when the
tool was not engaged with the workpiece. Figure 1 shows a sample of the raw and denoise
acoustic emission signal. The denoised signal can be further analyzed via scalograms
through a convolutional neural network and traditional signal analysis techniques. One
observation made during this process is that the deeper and more aggressive the cut, the
more the servo must operate to maintain the cutting depth, and therefore the more ringing
and vibrations. This phenomenon causes the relative need for denoising to increase for a
larger depth of cut.
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2.2. Continuous Wavelet Transform (CWT)

Fourier transform captures the frequency information over an entire signal using only
sine and cosine basis functions. However, this approach is unsuitable for signals with
short intervals of characteristic oscillations, such as in Electrocardiography (ECG). Wavelet
transform can address this limitation by decomposing functions into sets of infinite wavelet
basis functions, ideal for non-stationary and non-linear signal analysis. Wavelet transform
also has variable windows, providing more accurate signal data information [30].

Wavelets are wave-like oscillations localized in time. There are two types of wavelet
transform: continuous and discrete wavelet transform. Continuous wavelet transform
(CWT) uses all the possible wavelets over a range of locations and scales, while discontinu-
ous wavelet transform (DWT) is confined to specific location and scale sets. The differences
between these two methods include scale parameter discretization, transient localization
of non-stationary signals, and the time resolution in the frequency band. CWT has better
scale discretization and is more suitable for transient localization in non-stationary sig-
nals than DWT. CWT is displacement-insensitive while DWT is displacement-dependent;
overall, CWT is the most suitable for non-stationary signals. CWT methods transform
one-dimensional time signals to a two-dimensional time-frequency domain and are highly
useful in time-frequency location, multi-resolution of signals.

CWT is mathematically represented as follows:

CWT(a, τ) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(
t− τ

a

)
dt (1)

where a is the wavelet scale, ψ∗ represents the mother wavelet (ψ) conjugate, τ is the
wavelet time localization, and 1√

a maintains the wavelet energy constant at varying scales.
Signal representation with CWT allows better visualization and analysis of signal data
extracted from machining processes. There are different types of CWT, of which Mexican,
Morlet, and Gaussian wavelets are the most common (respective shapes are shown in
Figure 2). The Morlet wavelet is more suitable for wideband signals with time-based
frequency and scale attributes [34].

A spectrogram is the frequency spectrum representation of an audio signal as a func-
tion of time. It is generated when the signals are windowed with a constant length window
adjusted with time and frequency. Similarly, the application of CWT on signals affords a
2D time-frequency spectrum known as scalograms. Scalograms represent a continuous
wavelet transform (CWT), whose color code represents the wavelet coefficient magnitude,
a dimensionless estimate that localizes the AE energy in both time and frequency. Scalo-
grams are obtained from wavelets shifted in time and are particularly useful for short
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sound signals with high frequency. In this study, we used the analytical Morlet wavelet as
the wavelet basis function for the scalogram generation of the AE signals.
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2.3. Convolutional Neural Network

Deep learning is a machine learning tool where several linear and non-linear pro-
cessing units are structured in a deep architecture to extract high-level abstraction in data.
Deep learning techniques include auto-encoders, convolutional neural networks (CNNs),
deep belief networks (DBNs), and multi-layer perceptron. CNN is a unique deep learning
technique tailored for image classification. It consists of variants of multi-layer perceptron,
which detects visual trends on images.

A typical CNN architecture consists of an input image, a feature extraction block
(comprising convolution, activation, and pooling layers), fully connected layers, and a
classification layer. There are various variants of the CNN architecture, such as LeNet,
AlexNet, GoogleNet, and ResNet. For instance, AlexNet is a deep learning structure whose
architecture consists of five convolutional layers, three max-pooling layers, two normal-
ization layers, two fully connected layers, and one softmax layer, as shown in Figure 3.
The AlexNet architecture was introduced in 2012, similar to the 1998 LeNEt architecture.
However, it is a deeper structure and uses a Rectified Linear Unit (ReLU) activation instead
of a sigmoid function. The first convolutional layer comprises an 11 × 11 window shape
to fully capture the input image. This window is followed by a 5 × 5 window size in
the second layer and a 3 × 3 window size in the remaining convolutional layers. The
choice of ReLU as the activation function in AlexNet makes the computation and model
training easier when adopting different parameter initialization methods. AlexNet adopts
a drop-out approach to control model complexity, while LeNet only uses weight decay.
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Efficient integration of machine learning techniques with signal analysis often com-
prises a three-phase process: signal collection, feature selection/extraction, and model
training [35]. The signal collection phase involves a holistic experiment design, collection,
and accurate data labeling. The feature extraction phase involves detecting key signal
characteristics and matching them with their corresponding data labels. The model training
phase matches the extracted features with their respective process states. Manual feature
extraction involves a human selection of crucial data characteristics suitable for the problem
at hand.

However, the selected features are only suitable for that specific problem and might
not be relevant in a different scenario. Additionally, it might be challenging to decide
between features of similar performance. As highlighted above, AE signals are one-
dimensional; however, recent research efforts have represented the 1D AE signals as
2D CWT images [30,32]. This method is often preferred as the images represent informa-
tion better than one-dimensional signal charts. The application of CNN extends across
object tracking and recognition, text tracking and recognition, action recognition, and
scene labeling.

2.4. Experimental Setup

Schoop, Adeniji, and Brown [36] developed a state-of-the-art high-speed in situ testbed
to study cutting of advanced engineering materials, such as γ-TiAl (patents: [37,38]). The
setup comprises a high-speed linear servo motor stage and various integrated sensors, such
as strain gages, thermocouples, acoustic emission sensors, and accelerometers. Figure 4
provides an overview of the custom-built in situ testbed.
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The primary cutting stroke (1 m travel length), powered by a proprietary linear servo
motor by Yaskawa (experimental series SLGFW2), can achieve up to 4.2 m/s (~250 m/min)
travel speed with 5Gs of acceleration and a peak force above 5 kN. The vertical axis, which
controls the uncut chip thickness in 2D cutting (could also be considered the depth of cut
or feed), features positional repeatability of better than 0.4 microns. Integrated foil strain
gauges capture cutting forces (Futek LLB300 series), which typically achieve better than



J. Manuf. Mater. Process. 2022, 6, 18 8 of 18

0.2 N force measurement accuracy at a sampling bandwidth of 50 kHz (Futek’s IAA300
differential amplifier).

For the present study, an AE sensor by KISTLER, model 8152C with a 5125C AE coupler,
featuring a bandwidth of 100–900 kHz, was used along with a National Instruments USB-
6361 data acquisition system (DAQ), featuring a peak sampling rate of 2 Ms/ch. The AE
sensor was integrated into the cutting tool holder using a rigid M6 screw connection per the
manufacturer’s specification to maintain constant signal attenuation during cutting. The
distance of the AE sensor to the cutting tool tip was approximately 20 mm, with the solid
steel tool holder shank (grade AISI 4350) separating the tungsten carbide cutting insert
(NB2R geometry, K68 grade) and the AE sensor.

A custom coaxially illuminated microscope based on a Thorlabs ITL200 infinity-
corrected tube lens was constructed for vertical surface analysis, using a Mitutoyo M-plan
10× long working distance objective lens. Images were acquired using a ViewWorks
VC-25MC 25-megapixel machine vision camera and Karbon-CL KBN-CL4-2.7-SP frame
grabber, along with MATLAB image acquisition software. Three-dimensional scans of the
machined surface morphology were captured using a ZYGO New View 7300 white light
profilometer at 20×magnification.

3. Results and Discussion
3.1. Surface Crack Evaluation

Surface crack formation is one of the prevalent drawbacks and challenges in γ-TiAl
machining. In conventional machining practices, this problem is often solved or avoided
by raising the process cutting temperature via an increase in cutting speeds, improving the
alloy ductility, and reducing the chances of crack initiation. However, the downside of this
approach is the concurrent increase in thermal load and accumulation at the cutting edge,
which results in rapid tool wear or low tool life. Additionally, this approach is challenging
to adopt in titanium aluminide machining since the cutting temperature must exceed the
brittle to ductile transition temperature of 600–700 ◦C. The estimated cutting temperature
at the cutting tool–workpiece interface using high-speed machining is around 420 ◦C,
which is below the brittle to ductile transition temperature expected in gamma titanium
aluminum machining. Uhlmann, et al. [39] proposed a workpiece preheating approach
to overcome this limitation in γ-TiAl machining. They established that preheating the
workpiece to about 300 ◦C significantly reduced the size and density of surface cracks as
compared to room temperature machining, while increasing the preheating temperature to
700 ◦C reduced the macro-cracks to micro-cracks and the >800 ◦C preheating temperature
eliminated the surface cracks after machining.

In addition, the correlation between surface cracks and tool wear was confirmed by
Priarone, Rizzuti, Rotella and Settineri [18], showing that the ability of PCBN and diamond
cutting tools to maintain a sharp cutting edge during cutting helps in reducing the crack
density. A low crack density was also reported when low cutting forces were adopted in
operations such as grinding [28]. It has been established that the cutting tool wears out
concurrently as the surface defect occurs. Turning tests on the Titanium 45-2-2-0.8 alloy
by Sharman, Aspinwall, Dewes and Bowen [25] showed that the depth of cuts influenced
the surface crack density by 67% when a low cutting speed and depth of cut between 0.05
and 0.1 mm were adopted. The lowest crack geometry (50 µm width and 5 µm depth) was
observed in the smallest depth of cut (0.05 mm), while the 0.1 mm depth of cut had a crack
geometry of 150 µm width and 15 µm depth. Studies by Mantle and Aspinwall [22] on
gamma XDTM titanium aluminide (Ti-45Al-2Nb-2Mn-0.8% TiB2) turning at a low cutting
speed of 25 m/min, 0.1 m/rev feed rate, and 0.7 mm depth of cut correlated the surface
cracks to the flank wear and cutting time. It was concluded that the interlamellar plate
failure shown in Figure 5a results from the low ductility of titanium aluminide.
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Figure 5. Surface cracks observed (a) during turning of Ti-45Al-2Nb-2Mn-0.8 vol% TiB2 [22]
and (b) at a 21 µm chip thickness and 60 m/min, with the authors’ experimental setup (top view).

We studied the formation of surface cracks during machining using the experimental
setup described above. Figure 5b shows the top view image of the surface segments
obtained at a cutting speed of 60 m/min and a 21 µm depth of cut. The dark spots on
the image are traceable to the surface cracks formed due to the mechanical effects of the
machining process.

We developed a MATLAB script to evaluate the percentage of cracked machined
surface area by accounting for the black spots/cracks on the surface images. The algorithm
converts the grayscale surface images captured by the upright Nikon microscope to black
and white images using a specified threshold. The threshold value ranges between 0.27 and
0.32 depending on the image brightness and feed mark intensity, and is thereby manually
adjusted as needed. The algorithm computes the number of black pixels and divides them
by the total number of image pixels, representing the gross crack percentage.

However, the gross crack percentage is not corrected for the feed marks, which some-
times have the same color intensity as the surface cracks. The crack algorithm processes a
baseline surface image with zero cracks and uses the resulting crack percentage (due to
feed marks) as a correction factor to account for feed marks. The baseline surface crack per-
centage is subtracted from subsequent images, thereby accounting for the feed marks. The
surface crack output and crack estimate algorithm’s flowchart are displayed in Figure 6a–c.
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We captured data for a total of six trials at each depth of cut. Due to camera limitations,
the overall surface image from each of these cuts was divided into 50 segments. The
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surface images’ segments were processed with the developed MATLAB script, and the
crack percentage of each segmented image was computed and averaged per depth.

Figure 7 shows the plot of the average surface cracks against chip thickness (1, 3, 5, 7,
9, 14, 21 µm) for a sharp carbide tool cut at a 60 m/min cutting speed.
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Figure 7. Average surface cracks against chip thickness plot with respective optical images using a
sharp carbide tool.

The crack trend and representative surface images are shown in Figure 7, which shows
that the surface crack percentage and measurement deviation tend to increase with the
depth of cut. From this observation, ductile cuts with few or no micro-cracks were recorded
for a cut depth of less than 5 µm, and the surface cracks from 5 µm upward exhibited a
brittle cutting mode with pronounced micro- and macro-cracks. These cracks resulted from
the mechanical effect on the surface during machining.

The final surface quality from each trial was categorized into three groups: good,
marginal, and poor quality, considering the average surface crack percentage shown in
Figure 7. Data from trials with a surface crack percentage of less than 2.5% were grouped as
good quality. In comparison, trials with crack percentages above 2.5% but lower than 3.6%
were grouped as marginal quality. The remaining trials with a higher crack percentage
(above 3.6%) were grouped as poor quality.

3.2. Surface Crack Percentage and Depth Evaluation

The images of the final surface were captured using a white light profilometer, ZYGO
New View 7300. The average crack depth observed at each depth of cut was recorded.
Figure 8a–c show the experimental fracture average depth (in microns) data for sharp and worn
tools, with their respective log-fitted models. It was observed that for chip thickness <5 µm,
only cuts made with a sharp tool resulted in a significant mechanical fracture depth. The lack
of an evident fracture depth in worn tools at a low chip thickness is hypothesized to be due
to reduced stress intensity in the machined sub-surface. Increased wear spreads the process
forces and results in workpiece stresses over a larger area. This phenomenon reduces local
stress intensity and thus the likelihood of fracture. The observed fracture depth increases due
to chip thicknesses greater than 7 µm under the worn tool conditions and follows a similar
pattern as the sharp tool scenario at increasing uncut chip thickness values.
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Figure 8. Plot of fracture depth vs. chip thickness for: (a) sharp tool, (b) worn tool, VB = 25 µm, and
(c) worn tool, VB = 50 µm.

Based on the data displayed in Figure 8, an empirical model of critical chip thickness
and associated fracture depths was constructed (see red dashed best-fit log functions).
These relationships can be used for process planning, e.g., setting a maximum feed rate or
depth of cut for a given tool wear level. In the present study, Figure 8 and the traditional
(2D) surface images were used to inform the depth and severity of fractures and classify
the machined surfaces’ quality (i.e., good, marginal, or poor quality).

3.3. Scalogram Generation and Analysis

Following the acoustic emission signal denoising and pre-processing, the local time-
frequency attributes or scalograms of the AE signals were generated using the wavelet
time-frequency analysis, a unique class of analytic wavelets known as Morse wavelets in
MATLAB. The cwtfilterbank in MATLAB was used to segment the time bandwidth to 1.7 ms
mini-signals and tune the Morse wavelet as needed. The segmented signals were converted
to scalogram images and grouped into their respective quality groups as described above.
Figures 9 and 10 show the 2D and 3D scalogram outputs for 1 and 21 µm depths of cut
using a sharp carbide tool. The 2D scalograms show the signal frequency as high as
65 to 100 kHz. Figure 9 shows a low wavelet coefficient magnitude and high frequency for
the 1 µm/ductile cut, while a higher magnitude at lower frequency was recorded for the
21 µm/brittle depth of cut, as shown in Figure 10. This difference in magnitude and shift
in frequency resulted from the cracks/fracture on the specimen surface at a higher depth of
cut, as displayed in Figure 10c. The wavelet coefficient magnitude for the 1 µm cut with a
fine surface finish concentrated around 100 kHz, while the 21 µm cut with a poor surface
finish is concentrated around the 20–55 kHz range, as shown in Figure 10a. The surface
images in Figures 9c and 10c have been time-matched to the scalograms to clearly show the
workpiece surface state at the specific instance on the scalogram representation.
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Figure 10. (a) 2D scalogram, (b) 3D scalogram, and (c) surface image for 21 um depth of cut at
60 m/min.

Figure 11 shows a pictorial representation of the acoustic emission wavelet analysis
data observations, showing the ductile cutting mode with fewer surface cracks, high signal
frequency, and low magnitude. The mixed/transition cutting mode is concurrent with the
ductile and brittle cutting mode (BCM). The BCM occurs at a lower signal frequency with a
higher magnitude.
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Figure 11. Qualitative illustration of the observed trend in gamma-titanium aluminide cutting mode.

3.4. CNN for Fracture Detection (Feature Extraction and Classification)

In this section, the scalograms generated from the acoustic emission signals were
passed through a convolutional neural network for image or signal classification. We
created three data categories (good, marginal, and poor surface quality) considering the
computed surface crack percentage for each cut. For instance, for the sharp tool cuts,
the 1, 3, and 5 µm depths of cut comprising of 18 AE signals were categorized as good
quality, the 7 and 9 µm depths of cut comprising of 12 AE signals as marginal quality,
and the 14 and 21 µm depth of cut scalograms consisting of 12 AE signals as poor quality
(selected samples shown in Figure 12). Since the same workpiece sample and cutting speed
were used for these trials, each of the captured AE signals had a length of 80 ms. After
converting the AE signal data, each trial dataset had only about 270 scalogram images
of 227 x 227 pixels, displayed in Figure 13. Passing this small amount of data into CNN
models would result in overfitting due to the small size. The features can be extracted by
passing the scalogram images to a pre-trained deep neural network (DNN) to overcome
this challenge. A pre-trained network is a CNN model trained on a large dataset whose
learning can then be transferred to smaller datasets. The typical pre-trained architecture
includes VGG, AlexNet, ResNet50, and InceptionV3. In this work, VGG19 and ResNet50
architectures previously trained on more than a million images were used as the pre-trained
network to extract the scalogram features. The purpose of using these three models for
classification is to compare their respective performances and select the best classifier for
further analysis. Table 1 shows the total number of segmented scalogram images for each
of the categories and datasets.

Table 1. Number of segmented images for respective categories and datasets.

Dataset A Dataset B Dataset C

Categories Training Testing Training Testing Training Testing

Good 679 129 720 158 1035 332
Marginal 440 100 500 115 774 200

Poor 440 100 540 130 1041 558
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The experimental trials with a sharp tool were performed at a 1 m/s cutting speed
for varying depths of cut: 1, 3, 5, 7, 9, 14, and 21 µm. The worn tool trials were captured at
0.2 and 1 m/s cutting speeds for only the 3 and 21 µm depths of cut. The worn tool chip
thickness was limited to 21 µm due to the fatal surface damage (thermal and mechanical
cracks) observed above the 21 µm depth of cut. The extracted scalograms for both sharp and
worn tool cuts were grouped into Dataset A, Dataset B, and Dataset C. Dataset A consists of
only sharp tool scalograms, grouped into training and testing datasets. Dataset B consists
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of both sharp and worn tool scalograms; however, only the sharp tool scalograms are used
for training, while the worn tool scalograms are used for testing. The rationale behind this
approach is to evaluate whether the sharp tool cutting data can adequately predict the worn
tool cutting condition. Similarly, Dataset C consists of all the scalograms, but the training
and testing data include an adequate proportion of sharp and worn tool scalograms.

In this work, we adopted both the accuracy and F1-score to evaluate the perfor-
mance of the proposed models. The accuracy indicates the correct classification rate. The
F1-score is computed from precision and recall, with precision representing the value of
true positives divided by the cumulation of true and false positives. In contrast, recall
is the value of true positives divided by aggregating true positives and false negatives.
Table 2 shows the accuracy and F1-score of different classifiers. The result shows that a
scalogram is an effective way of representing the acoustic emission signal. The lowest
accuracy recorded for Dataset B is traceable because the models were trained with sharp
tool scalograms and tested on worn tool scalograms. The poor performance in this dataset
establishes the theory that machine/process dynamics differ and cannot be transferred
between different tool geometries. The confusion matrix for the best models is shown in
Tables 3 and 4 for Datasets A and C, respectively. The confusion matrix for Dataset B was
excluded due to its poor performance. Table 2 shows that the accuracy of VGG19 makes it
the best performing model across all datasets, with emphasis on Datasets A and C. The
accuracy of the “good” surface quality signals had the highest performance in the confusion
matrix in both datasets. It is also shown that there is repeated misclassification between the
“marginal” surface quality scalograms and that of both good and poor category scalograms.
The convergence of the training and validation process of VGG19 is shown in Figure 14.
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Table 2. The accuracy and F1-score of the selected models.

Dataset A Dataset B Dataset C

Classifier Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score

VGG19 76.78 0.75 39.27 0.33 80.83 0.78
ResNet50 78.64 0.78 51.64 0.40 50.92 0.60
AlexNet 75.00 0.70 46.25 0.35 60.52 0.65

Table 3. The confusion matrix of the best performing model (VGG19) for Dataset A.

Labels Good (%) Marginal (%) Poor (%)

Good 93.02 6.98 0.00
Marginal 21.65 72.16 6.20

Poor 1.03 39.18 59.79

Table 4. The confusion matrix of the best performing model (VGG19) for Dataset C.

Labels Good (%) Marginal (%) Poor (%)

Good 89.76 3.61 6.63
Marginal 26.00 62.00 12.00

Poor 10.75 6.98 82.26

4. Conclusions

The main contribution of this work is the presentation of a novel approach for convert-
ing AE signals extracted during machining to time-frequency scalograms and executing
further analysis with classification into different cutting modes using CNN models. This
approach offers new possibilities for real-time, low-cost, and non-destructive (NDE) quality
monitoring of critical surface features when manufacturing high-value components.

• The CNN model developed in this work successfully classified the cutting mode of
titanium aluminide into three different quality categories: good, marginal, and poor
quality, created using the crack depth information.

• A total of 42 AE signals of 80 ms each were generated from 7 different depths of cut
(1, 3, 5, 7, 9, 14, 21 µm). These AE signals were then segmented into a sequence of
40 signals with 2 ms each and converted to scalograms of 227 × 227 pixels. These
images were passed to the CNN algorithm and split using a ratio of 60:20:20 for the
training, evaluation, and testing datasets, respectively.

• The results show that the scalogram-CNN model achieved a state-of-the-art accu-
racy. Additionally, the segmented scalogram and transfer learning approach provide
flexibility to the amount of data needed for adequate model training and validation.

• Ultimately, the wear condition during titanium aluminide machining can be estimated
with acoustic emission and machine learning integration, with a predictive accuracy
of 80.83%.

In summary, the proposed approach provides a straightforward but accurate process
monitoring and potential process control capability. While the present work dealt with
second-generation TiAl alloys, our technique can be extended to future material variants of
TiAl alloys, such as the third-generation alloys studied by Beranoagirre [40]. It is worth
noting that the future industrial implementation of the proposed paradigm will require
custom sensor-integrated tool holders or fixtures to ensure consistent signal quality and
attenuation. Nevertheless, the technique is not limited to monitoring the surface finish
during titanium aluminide machining, but could, in principle, be adopted for a wide
variety of manufacturing processes and material systems that exhibit physical mechanisms
(e.g., energy release during crack formation or tribological phenomena) that correlate with
the quality and performance of the manufactured components. This furthermore includes
potential future applications for use-stage asset condition monitoring, such as real-time
detection of cracks during the operation of turbines.
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