
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Mathematics Mathematics 

2022 

The vThe v11-Periodic Region in Complex Motivic Ext And a Real Motivic -Periodic Region in Complex Motivic Ext And a Real Motivic 

vv11-Selfmap -Selfmap 

Ang Li 
University of Kentucky, mini1414201@gmail.com 
Digital Object Identifier: https://doi.org/10.13023/etd.2022.186 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Li, Ang, "The v1-Periodic Region in Complex Motivic Ext And a Real Motivic v1-Selfmap" (2022). Theses 

and Dissertations--Mathematics. 92. 
https://uknowledge.uky.edu/math_etds/92 

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Ang Li, Student 

Dr. Bertrand Guillou, Major Professor 

Dr. Benjamin Braun, Director of Graduate Studies 



The v1-Periodic Region in C-Motivic Ext And an R-Motivic v1-Selfmap

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Ang Li

Lexington, Kentucky

Director: Dr. Bertrand Guillou, Professor of Mathematics
Lexington, Kentucky

2022

Copyright© Ang Li 2022



ABSTRACT OF DISSERTATION

The v1-Periodic Region in C-Motivic Ext And an R-Motivic v1-Selfmap

My thesis work consists of two main projects with some connections. In the first
project we establish a v1 periodicity theorem in Ext over the C-motivic Steenrod
algebra. The element h1 of Ext, which detects the homotopy class η in the motivic
Adams spectral sequence, is non-nilpotent and therefore generates h1-towers. Our
result is that, apart from these h1-towers, v1 periodicity operators give isomorphisms
in a range near the top of the Adams chart. This result generalizes well-known
classical behavior.

In the second project we consider a nontrivial action of C2 on the type 1 spectrum
Y , which is well-known for admitting a v1 selfmap. The resultant finite C2-equivariant
spectrum can also be viewed as the complex points of a finite R-motivic spectrum.
We show that one of the v1 selfmaps of Y can be lifted to a selfmap in the real
motivic case. Further, the cofiber of the real motivic selfmap is a realization of the
subalgebra AR(1) of the R-motivic Steenrod algebra. The finite subalgebra AR(1),
generated by Sq1 and Sq2, of the R-motivic Steenrod algebra AR can be given 128
different AR-module structures. We also show that all of these AR-modules can be
realized as the cohomology of a 2-local finite R-motivic spectrum. The realization
results are obtained using an R-motivic analogue of the Toda realization theorem. We
notice that each realization of AR(1) can be expressed as a cofiber of an R-motivic
v1 selfmap. The C2-equivariant analogue of the above results then follows because of
the Betti realization functor. We identify a relationship between the RO(C2)-graded
Steenrod operations on a C2-equivariant space and the classical Steenrod operations
on both its underlying space and its fixed-points. The second project is joint work
with Prasit Bhattacharya and Bertrand Guillou.

KEYWORDS: Steenrod algebra, v1 selfmap, C and R motivic homotopy theory, C2

equivariant homotopy theory

Ang Li
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Chapter 1 Introduction

The calculation of homotopy groups of topological spaces and spectra is a major focus
in algebraic topology. While the homotopy groups of spaces are hard to compute,
stabilization into the realm of spectra makes homotopy calculations more accessible.
The stable homotopy category, or homotopy category of spectra, is therefore a good
context for homotopy calculations.

Motivic homotopy theory, also known as A1-homotopy theory, is a way to apply
the techniques of algebraic topology, specifically homotopy, to algebraic varieties and,
more generally, to schemes. The theory was formulated by Morel and Voevodsky [46].
Equivariant homotopy theory studies spaces with group actions and homotopy classes
of equivariant maps between them. Let C2 denote the cyclic group of order 2. In
the stable context, there are many connections between the classical, the complex or
real motivic, and the C2-equivariant stable homotopy categories. As a consequence,
many difficult questions located in the classical stable homotopy category can be
reconsidered and solved in the motivic and C2-equivariant contexts. For instance, the
Kervaire invariant one problem occurs classically, but is answered via a computation
in the C2-equivariant environment by Hill, Hopkins and Ravenel [33].

One of the primary tools for computing stable homotopy groups of spheres is the
Adams spectral sequence. The E2-page of the Adams spectral sequence is given by
Ext∗,∗A (F2,F2) = H∗,∗(A), which we denote by Ext, where A is the classical Steenrod
algebra. Adams [2] showed that there is a vanishing line of slope 1

2
and intercept 3

2
,

and J. P. May showed there is a periodicity line of slope 1
5
and intercept 12

5
, where

the periodicity operation is defined by the Massey product Pr(−) := ⟨hr+1, h
2r

0 ,−⟩.
In classical stable homotopy theory, the interest in periodic vn-selfmaps of finite

spectra lies in the fact that one can associate to each vn-selfmap an infinite family in
the chromatic layer n stable homotopy groups of spheres. Therefore, interest lies in
constructing type n spectra and finding vn-selfmaps of lowest possible periodicity on
a given type n spectrum. This, in general, is a difficult problem, though progress has
been made sporadically throughout the history of the subject [53, 19, 10, 9, 47, 15, 14].
With the modern development of motivic stable homotopy theory, one may ask if
there are similar periodic selfmaps of finite motivic spectra.

In this thesis, we establish a v1-periodicity region in the E2-page of the analogous
C-motivic Adams spectral sequence. With the modern development of motivic stable
homotopy theory, we study analogous periodic self-maps of finite motivic spectra. In
particular, we develop a notion of type (n, k) R-motivic spectra parallel to the classical
chromatic type n spectra. We construct an R-motivic spectrum Y and show that it
admits a v1,nil-selfmap. Let AR denote the R-motivic Steenrod algebra and AR(1) be
the R-motivic Steenrod subalgebra generated by Sq1 and Sq2. We prove that AR(1)
admits 128 AR-module structures. We also analyze the 128 AR-module structures,
and identify one of them as the cohomology of the cofiber of the v1,nil-selfmap of Y .

Chapter 2 provides background on the Steenrod algebra and the stable homotopy
category. We review the C-motivic, R-motivic and C2-equivariant stable homotopy

1



categories, as well as the restriction and the geometric fixed points functors. We
construct the equivariant Steenrod operations using the equivariant extended power
construction, which establishes comparisons with the classical Steenrod operations.
We also review the R-motivic Steenrod algebra AR, discuss the structure of its sub-
algebra AR(n), and give a freeness criterion.

In Chapter 3, we discuss a v1-periodicity region in the C-motivic Ext groups.
The C-motivic Adams spectral sequence, introduced by Morel and developed by
Dugger and Isaksen in [24], is a tri-graded spectral sequence that converges to the
p-completion of the C-motivic stable homotopy groups of spheres. Voevodsky also
developed an analogous C-motivic Steenrod algebra. In the case p = 2, there is a
vanishing line in ExtC of slope 1 and intercept 0. This result was obtained by Guillou
and Isaksen in [29]. Quigley has a partial result that ExtC has a periodicity line of
slope 1

3
under the condition s ≤ w in the case r = 2 [49, Corollary 5.4].

Krause used a different approach to obtain the classical periodicity line in his
thesis [36]. We adapted this approach for ExtC. The obstruction is that classical Ext
and ExtC have different vanishing lines. The vanishing line of ExtC is elevated by
the h1-towers, a collection of rays of slope 1. Collecting all the parts except those
h1-towers, i.e. the h1-torsion part, we get a subgroup of ExtC.

Let AC
∗ denote the dual C-motivic Steenrod algebra. For ExtC, we can work

over AC
∗ instead of AC. We first reduce our periodicity question to establishing the

vanishing region of certain ExtC groups. Then we make an explicit computation
for these ExtC groups over the dual Steenrod subalgebra AC(1)∗ to get a starting
vanishing region. We transport this vanishing region using the Cartan-Eilenberg
spectral sequence along normal extensions of Hopf algebras and obtain the vanishing
region of these groups over AC(2)∗, which is the same as the vanishing region of these
ExtC groups over AC

∗ . The h1-torsion part has a periodicity region that coincides with
the classical case. i.e. above the line of slope 1

5
and intercept 12

5
we have a v1-periodic

pattern if we ignore h1-towers.
In Chapter 4, we analyze in detail the question of realizing AR(1) as an R-motivic

spectrum. Given an A-module M , we say M is realized by X if there is a spectrum
X such that H∗(X) ∼= M as an A-module. Classically, A(1) has 4 different A-module
structures, which are distinguished by the action of Sq4 (as in Figure 1.1, where we
depict a singly-generated free A(1)-module, where each • represents a F2-generator.
The black and blue lines represent the action of Sq1 and Sq2, respectively. The red
boxed lines represent the action of Sq4. Whether or not the dotted red lines exist gives
the 4 different A-module structures). And each can be realized as the cohomology of
a spectrum.

The existence and uniqueness of a realization is guaranteed by the R-motivic
Toda realization theorem. The classical Toda realization theorem [53] (see also [14,
Theorem 3.1]), is recast in the modern literature as a special case of Goerss-Hopkins
obstruction theory [25] (when the chosen operad is trivial). This obstruction theory
can be generalized to the R-motivic setting [43], and 4.1 would then be a special case
of such a generalization.

We describe all the 128 AR-module structures on AR(1). The R-motivic Toda
realization theorem indicates that all of them can be realized.

2



Figure 1.1: The 4 A-module structures of classical A(1)

We then construct one specific realization AR
1 of the subalgebra AR(1) using a

method of Smith(outlined in [50, Appendix C]), which constructs new finite spectra
from known ones. The idea is as follows. If X is a p-local finite spectrum then the
permutation group Σn acts on X∧n. One may then use an idempotent e ∈ Z(p)[Σn]
to obtain a split summand of the spectrum X∧n. As explained in [50, Appendix C],
Young tableaux provide a rich source of such idempotents. For a judicious choice of
e and X, the spectrum e(X∧n) can be interesting.

We exploit the relation that h · η1,1 = 0 in π∗,∗(SR) [45] to construct an R-motivic
analogue of the question mark complex QR. The cell-diagram of QR is as described
in the picture below. For a choice of idempotent element e in the group ring Z(2)[Σ3],

QR =

h

η1,1

.

Figure 1.2: Cell-diagram of the R-motivic question mark complex

we observe that e(H∗,∗(QR)
⊗3) is a free AR(1)-module. This is the cohomology of

an R-motivic spectrum ẽ(Q∧3
R ), which we call Σ1,0AR

1 (see (4.3.5) for details). The
freeness criterion gives that the cohomology of AR

1 is free over AR(1).
We analyze the properties of the image of AR

1 , denoted AC2
1 , under the Betti

realization functor, by applying the comparison theorem. We provide the A-module
structures of the underlying and the geometric fixed points for some selected module
structures of AC2

1 .
Chapter 5 describes a v1-selfmap in the R-motivic setting. There requires a new

notion of the chromatic layers. Classically any non-contractible finite p-local spectrum
admits a periodic vn-selfmap for some n ≥ 0. This is a consequence of the thick-
subcategory theorem [34, Theorem 7], aided by a vanishing line argument [34, §4.2].
In the classical case all the thick tensor ideals of Spp,fin (the homotopy category of
finite p-local spectra) are also prime (in the sense of [4]). The thick tensor-ideals of
the homotopy category of cellular motivic spectra over C or R are not completely
known (but see [31, 36]). However, one can gather some knowledge about the prime
thick tensor-ideals in Ho(SpR

2,fin) (the homotopy category of 2-local cellular R-motivic

3



spectra) through the Betti realization functor

β : Ho(SpR
2,fin) Ho(SpC2

2,fin)

using the complete knowledge of prime thick subcategories of Ho(SpC2
2,fin) [5].

The prime thick tensor-ideals of Ho(SpC2
2,fin) are essentially the pull-back of the

classical thick subcategories along the two functors, the geometric fixed-point functor

ΦC2 : Ho(SpC2
2,fin) Ho(Sp2,fin)

and the forgetful functor

Φe : Ho(SpC2
2,fin) Ho(Sp2,fin).

Let Cn denote the thick subcategory of Ho(Sp2,fin) consisting of spectra of type at
least n. The prime thick subcategories,

C(e, n) = (Φe)−1(Cn) and C(C2, n) = (ΦC2)−1(Cn),
are the only prime thick subcategories of Ho(SpC2

2,fin).

Definition 1.0.3. We say a spectrum X ∈ Ho(SpC2
2,fin) is of type (n,m) if Φe(X) is

of type n and ΦC2(X) is of type m.

For a type (n,m) spectrum X, a self-map f : X → X is periodic if and only if at
least one of {Φe(f),ΦC2(f)} are periodic (see [6, Proposition 3.17]).

Definition 1.0.4. Let X ∈ Ho(SpC2
2,fin) be of type (n,m). We say a self-map f : X →

X is

(i) a v(n,m)-selfmap of mixed periodicity (i, j) if Φe(f) is a vn-selfmap of periodicity
i and ΦC2(f) is a vm-selfmap of periodicity j,

(ii) a v(n,nil)-selfmap of periodicity i if Φe(f) is a vn-selfmap of periodicity i and
ΦC2(f) is nilpotent, and,

(iii) a v(nil,m)-selfmap of periodicity j if Φe(f) is a nilpotent self-map and ΦC2(f) is
a vm-selfmap of periodicity j.

Under this notion, we consider the classical spectrum

Y := M2(1) ∧ C(η)

that admits, up to homotopy, 8 different v1-selfmaps of periodicity 1 [19, Section 2]
(see also [15]). Here M2(1) is the Moore spectrum and C(η) is the cone on η. We
ask ourselves if the v1-selfmaps are equivariant upon providing Y with interesting C2-
equivariant structures. There are two C2-equivairant lifts of classical multiplication
by 2: 2 and h = 1 − ϵ [20], where ϵ : S1,1 ∧ S1,1 → S1,1 ∧ S1,1 is the twist map.
Similarly, η1,0 and η1,1 are the C2-equivariant lifts of classical Hopf map η.

We will consider four C2-equivariant lifts of the spectrum Y ,

4



(i) YC2
triv, where the action of C2 is trivial,

(ii) YC2

(2,1) := CC2(2) ∧ CC2(η1,1), with ΦC2(YC2

(2,1)) = M2(1) ∧M2(1),

(iii) YC2

(h,0) := CC2(h) ∧ CC2(η1,0), with ΦC2(YC2

(h,0)) = ΣC(η) ∨ C(η), and,

(iv) YC2

(h,1) := CC2(h) ∧ CC2(η1,1), with ΦC2(YC2

(h,1)) = ΣM2(1) ∨M2(1).

The C2-spectra YC2
triv, YC2

(2,1) and YC2

(h,1) are of type (1, 1), and YC2

(h,0) is of type (1, 0).
There are unique R-motivic lifts of the classes 2, h, η1,0, and η1,1, and therefore we
have unique R-motivic lifts of YC2

triv, YC2

(2,1), YC2

(h,0), and YC2

(h,1) which we will simply

denote by YR
triv, YR

(2,1), YR
(h,0), and YR

(h,1), respectively.
Using an Atiyah-Hirzebruch like spectral sequence, we show that every map

v : Σ2,1YR
(h,1) −→ YR

(h,1)

is a non zero permanent cycle, and is necessarily a v(1,nil)-selfmap. We also identify
its cofiber as one of the 128 AR-module structure on AR(1).

We then show the non-existence of a v(1,0)-selfmap on CR(h) and YR
(h,0). Classically,

the Moore spectrum M2(1) does admit a v1-selfmap. But the v1-selfmaps of M2(1)
are not in the image of the underlying homomorphism

Φe ◦ β : [Σ8k,8kCR(h),CR(h)]R −→ [Σ8kM2(1),M2(1)].

Similarly, the v1-selfmaps of Y are not in the image of the underlying homomorphism

Φe ◦ β : [Σ2k,2kYR
(h,0),YR

(h,0)]
R −→ [Σ8kY ,Y ].

However, these results do not preclude the existence of a v(1,0)-selfmap on CC2(h) and

YC2

(h,0). Forthcoming work [27] of Guillou and Isaksen shows that 8σ is in the image

of Φe : π7,8(SC2) −→ π7(S) and suggests that CC2(h) supports a v(1,0)-selfmap.

Copyright© Ang Li, 2022.
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Chapter 2 The Steenrod algebra and the squaring operation

The stable homotopy category Ho(Sp) is the category of spectra and homotopy classes
of morphisms between them. If we use the (C or R-) motivic spectra or the C2-
equivariant spectra, we obtain the (C or R-) motivic stable homotopy category or the
C2-equivariant stable homotopy category (see [46] and [33]). They all have the notion
of Eilenberg-Mac Lane spectra and satisfy the Brown’s representability theorem.

Ho(Sp)R

BeR
��

C⊗R(−)// Ho(Sp)C

BeC

��
Ho(Sp)C2

Φe
// Ho(Sp)

The vertical functors are called the Betti realization functors.
For any C2-equivariant space X ∈ TopC2

∗ we can functorially assign two non-
equivariant spaces – the underlying space Φe(X), which is obtained by restricting the
action of C2 to the trivial group, and the space of C2-fixed-points XC2 . For a C2-
equivariant spectrum E ∈ SpC2 , restricting the action to the trivial subgroup results
in a monoidal functor

Φe : SpC2 Sp

that identifies the underlying spectrum. However, there are two different notions of
fixed-point spectrum – the categorial fixed-points and the geometric fixed-points.

The categorical fixed-points functor is a lax monodial functor

(−)C2 : SpC2 Sp,

which is defined so that πk(E
C2) ∼= πC2

k (E), but it does not interact well with infi-
nite suspensions. The correction term is explained by the tom Dieck splitting [37,
Theorem V.11.1]:

(Σ∞
C2
X)C2 ≃ Σ∞(XC2) ∨ Σ∞(XhC2), (2.0.1)

where XhC2 is the homotopy orbit space. Let ẼC2 := Cof(EC2+ → S). The geometric
fixed-point functor

ΦC2 : SpC2 Sp,

is a symmetric monoidal functor given by ΦC2E := (E ∧ ẼC2)
C2 . When E ∈ SpC2 ,

ΦC2(Σ∞
C2
E) ≃ Σ∞EC2 (2.0.2)

is the first component in (2.0.1). For any E ∈ SpC2 , there is a natural map of spectra

ιE : EC2 ΦC2E

6



induced by the map S → ẼC2.
The Eilenberg-Mac Lane spectrum HF2 is an EC2

∞ -ring ([37, VII]), i.e. a commuta-
tive monoid as a genuine C2-spectrum. The restriction ΦeHF2 ≃ HF2, the categorical

fixed-points HF2
C2 ≃ HF2 and the geometric fixed-points ΦC2HF2 ≃ HF2[t] are E∞-

rings. It follows from the knowledge of MC2
2 := πC2

⋆ HF2 that for n ≥ 0

(ΣnσHF2)
C2 ≃ ∨n

i=0 Σ
iHF2 ΦC2HF2 ≃ colim

n→∞
(ΣnσHF2)

C2 ≃ HF2[t]

is the inclusion of the first (n + 1) components. The above map clearly splits. One
can endow (ΣnσHF2)

C2 with an E∞-structure isomorphic to the truncated polynomial
algebra HF2[t]/(t

n+1) so that the splitting map

π
(n)
F2

: ΦC2HF2 ≃ HF2[t] (ΣnσHF2)
C2 ≃ HF2[t]/(t

n+1)

is an E∞-map. Alternatively, π
(n)
F2

can be obtained as an E∞-map by applying the
functor H to the map of commutative rings F2[t] ↠ F2[t]/(t

n+1). The composition

HF2
C2 ΦC2HF2 HF2

C2
ιF2

π
(0)
F2 (2.0.3)

is the identity and exhibits ΦC2HF2 as an augmented HF2-algebra.

For any C2-space X ∈ TopC2
∗ , the restriction functor induces a natural transfor-

mation

Φe
∗ : H

i,j
C2
(X+) Hi(Φe(X)+).

To compare the cohomology of XC2 with the RO(C2)-graded cohomology of X, we
make use of the splitting (2.0.3) to define the natural ring map

Φ̂C2∗ : H
i,j
C2
(X+) Hi−j(XC2

+ ),

which sends u ∈ Hi,j
C2
(X+) to the composite (as defined in [11, 2.7])

Σ∞XC2 Σi−jΦC2HF2 Σi−jHF2.
ΦC2u

π
(0)
F2

2.1 Squaring operation

For prime p = 2, the classical squaring operations are natural transformations of the
classical cohomology groups.

Sqn : H∗(−) → H∗+n(−)

They commute with the suspension. The classical Steenrod algebra A is the graded
Hopf algebra generated by the Steenrod squares. If we truncate on the squaring
operations generation A, we get the Steenrod subalgebra.

7



Example 2.1.1. • The Steenrod subalgebra A(0) is generated by Sq1. The black
line represents the action of Sq1.

• The Steenrod subalgebra A(1) is generated by Sq1 and Sq2. The black and blue
lines represent the action of Sq1 and Sq2, respectively.

If we replace the classical cohomology groups with the C or R-motivic coho-
mologies or the C2-equivariant cohomology (also known as the RO(C2)-graded co-
homology), we obtain the notions of the C or R-motivic Steenrod algebras and the
C2-equivariant Steenrod algebra. We denote them as AC, AR and AC2 , respectively.

Remark 2.1.2. In contrast with the names, the R-motivic Steenrod algebra and the
C2-equivariant Steenrod algebra are not Hopf algebras. Their duals, both have a left
and a right units, are Hopf algebroids. (See [50] for detail definitions.)

2.1.1 Power operation construction

The construction of the classical mod 2 Steenrod algebra, which is the algebra of
stable cohomology operations for ordinary cohomology with F2-coefficients, involves
the E∞-structure1 of HF2 and the fact that the tautological line bundle γ over RP∞

is HF2-orientable. We review here how the mod 2 Steenrod operations are derived
from that structure. A similar discussion can be found in [16, Section VIII.2].

Notation 2.1.3. For any space or spectrum X and n ≥ 1, we let

Dn(X) := (EΣn)+ ∧Σn (X∧n),

where Σn acts by permuting the factors of X∧n. By convention, D0(X) = S.

An E∞-ring structure on a spectrum R gives a collection of maps of the form

ΘR
n : Dn(R) R

for each n ≥ 0, which satisfy the usual coherence conditions (see [42]). By assumption,
ΘR

0 is the unit map of R and ΘR
1 is the identity map.

1Technically, we only make use of the H∞-ring structure that underlies the E∞-structure of HF2
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The HF2-orientibility of γ implies the existence of an HF2-Thom class

un : Th(γ⊕n) ≃ RP∞
n ΣnHF2 (2.1.4)

for each n ≥ 0. These are compatible as n varies, in the sense that the following
diagram commutes:

Th(γ⊕(m+n)) Th(γ⊕m) ∧ Th(γ⊕n) ΣmHF2 ∧ ΣnHF2

HF2.um+n

um∧un

µF2 (2.1.5)

For any spectra E and F, there is a natural map

δn : Dn(E ∧ F) Dn(E) ∧Dn(F)

induced by the diagonal on EΣn and the isomorphism (E∧ F)∧n ∼= E∧n ∧ F∧n. Thus,
we may define the map τn as the composition

D2(Σ
nHF2) Σ2nHF2

D2(S
n) ∧D2(HF2) ΣnRP∞

n ∧D2(HF2) Σ2nHF2 ∧ HF2.

δ2

τn

≃ Σnun∧Θ
F2
2

µF2 (2.1.6)

Definition 2.1.7. The power operation is the natural transformation

P2 : H
n(−) H2n(D2(−))

which takes a class u ∈ Hn(E) to the composite class

P2(u) : D2(E) D2(Σ
nHF2) ΣnHF2

D2(u) τn

for any E ∈ Sp.

From (2.1.5), we deduce the commutativity of the diagram

D2(Σ
nHF2 ∧ ΣmHF2) D2(Σ

nHF2) ∧D2(Σ
mHF2) Σ2nHF2 ∧ Σ2mHF2

D2(Σ
n+mHF2) Σ2n+2mHF2.

D2(µF2 )

τn∧τm

µF2

τn+m

(2.1.8)
As a result, we have

δ∗2(P2(u)⊗ P2(v)) = P2(u⊗ v)

which leads to the Cartan formula for the Steenrod algebra.
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If X ∈ Top∗ is given the trivial Σ2-action and X ∧X the permutation action, the
diagonal map X → X ∧ X is Σ2-equivariant. Consequently, we have an induced map

∆X : (BΣ2)+ ∧ X ≃ (EΣ2)+ ∧Σ2 X D2(X).

Since H∗(BΣ2) ∼= F2[t], we may write (using the Kunneth isomorphism)

∆∗
X(P2(u)) =

n∑

i=0

tn−i ⊗ Sqi(u), (2.1.9)

which defines the natural transformations Sqi : Hn(−) −→ Hn+i(−).

Remark 2.1.10. The squaring operation Sqi(u) for any class u ∈ Hn(X) is deter-
mined by Sqi(ιn), where ιn ∈ H∗(K(F2, n)) is the fundamental class, because of the
universal property of K(F2, n). A priori, Sqi(u) depends on the cohomological degree
of u. However, this dependence is eradicated by the fact that the squaring operations
are stable, i.e. for any u ∈ H∗(X)

Sqi(σ∗(u)) = σ∗(Sq
i(u)),

where σ∗ : H
∗(X) ∼= H∗+1(ΣX) is the suspension isomorphism. The HF2-orientibility

of γ implies Sq0(ι) = ι for the generator ι ∈ H1(S1), which, along with Cartan
formula, implies stability.

2.1.2 The C2-equivairant squaring operation

The construction of the classical squaring operations can be adapted to construct
squaring operations on the RO(C2)-graded cohomology of a C2-space.

Remark 2.1.11. Our ideas are closely related to the construction of the R-motivic
squaring operations due to Voevodsky [54]. Certain parts, such as the construction of
the power operation Definition 2.1.20, though different, can be compared to [56, 57],
where the author studies C2-equivariant power operations on the homology of spaces.

Notation 2.1.12. For any group G and a family of subgroups F closed under sub-
conjugacy, there exists a space EF determined up to a G-weak equivalence by its
universal property

EFH ≃
{

∗ if H ∈ F ,
∅ otherwise.

When G = C2 × Σn and Fn = {H ⊂ G : H ∩ Σn = 1}, we denote EFn by EC2Σn.
Note that there is a natural C2-equivariant map EΣn −→ EC2Σn.

Notation 2.1.13. For a based C2-space or a C2-spectrum X, we let

DC2
n (X) := (EC2Σn)+ ∧Σn (X∧n)
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the n-th equivariant extended power construction on X. There is a natural C2-
equivariant map

δC2
n : DC2

n (X ∧ Y) DC2
n (X) ∧DC2

n (Y)

induced by the diagonal map of EC2Σn for any pair X and Y of C2 space or spectra.

For a C2-equivariant space X ∈ TopC2
∗ , the inclusions XC2 ↪→ X and EΣn −→

EC2Σn together induce a natural map

λX : D2(X
C2) DC2

2 (X)C2 (2.1.14)

which is usually not an equivalence.

Example 2.1.15. When X ≃ S0, λS0 : (BΣ2)+ (BC2Σ2)
C2 ≃ BΣ2 ∧ S0

+ is the

inclusion of a summand.

Likewise, when E ∈ SpC2 , the map EC2 ↪→ E induces a natural map

λE : D2(E
C2) DC2

2 (E)C2 .

Using the fact that ẼC2 is an E∞-ring C2-spectrum we define a map λΦ
E as the

composition

D2(Φ
C2E) ΦC2DC2

2 (E)

(D2(ẼC2 ∧ E))C2 (D2(ẼC2) ∧D2(E))
C2 (ẼC2 ∧D2(E))

C2 ∼= ΦC2D2(E)

λΦE

λ
ẼC2∧E

(2.1.16)
By definition, an EC2

∞ -ring structure on a spectrum R consists of a system of maps

ΘR
n : DC2

n (R) R

for each n ≥ 0, which satisfy certain compatibility criteria [37, §VII.2]. The categor-
ical fixed-point spectrum RC2 as well as the geometric-fixed point spectrum ΦC2R of
an EC2

∞ -ring spectrum R are E∞-ring spectra with structure maps

ΘRC2

n : D2(R
C2) DC2

2 (R)C2 RC2
λR (ΘR

n )C2

and

ΘΦC2R
n : D2(Φ

C2R) ΦC2DC2
2 (R) ΦC2R,

λΦ
R ΦC2ΘR

n

respectively. Further, the natural map

ιR : RC2 ΦC2R
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is an E∞-ring map.
Let ω denote the sign representation of Σ2. The equivariant Eilenberg-Mac Lane

spectrum HF2 does not distinguish between the C2-equivariant bundles

ϵ : EC2Σ2 ×Σ2 (ρ) BC2Σ2

γ : EC2Σ2 ×Σ2 (ρ⊗ω) BC2Σ2,

i.e. there exists a C2-equivariant Thom isomorphism (see Remark 2.1.19)

Th(γ) ∧ HF2 ≃ Th(ϵ) ∧ HF2 ≃ Σρ(BC2Σ2)+ ∧ HF2. (2.1.17)

The above Thom isomorphism results in an HF2-Thom class

un : Th(γ⊕n) ΣnρHF2

for each n ≥ 0, and these Thom classes can be used to define the C2-equivariant
power operations. Since

DC2
2 (Snρ) ≃ Th(nρ⊕ n(ρ⊗ω)) ≃ ΣnρTh(γ⊕n),

we define the map τn as the composition

D2(Σ
nρHF2) Σ2nρHF2

DC2
2 (Snρ) ∧DC2

2 (HF2) ΣnρTh(γ⊕n) ∧DC2
2 (HF2) Σ2nρHF2 ∧ HF2.

τn

≃ Σnun∧Θ
F2
2

µF2

(2.1.18)

Remark 2.1.19. The Thom isomorphism (2.1.17) does not follow immediately from
the general theory of equivariant Thom isomorphisms [18] because the basespace BC2Σ2

is not C2-connected. In such cases, there is no guarantee of an HF2-Thom class;
instead an HF2-orientation is encoded by a family of classes (see [41]). However,
there is a map of C2-equivariant R-vector bundles from γ to the tautological Atiyah
Real line bundle over BSσ = BUR(1), which is C2-connected. Further, the tautological
Atiyah Real line bundle admits a single HF2-Thom class as HF×

2 is C2-equivariantly
contractible. Therefore, γ also admits a single HF2-Thom class which leads to (2.1.17)
using a standard argument involving the Thom diagonal map.

Definition 2.1.20. The equivariant power operation is the natural transformation

PC2
2 : Hnρ

C2
(−) H2nρ

C2
(DC2

2 (−))

which takes a class u ∈ Hnρ
C2
(E) to the composite class

PC2
2 (u) : DC2

2 (E) DC2
2 (ΣnρHF2) Σ2nρHF2

D
C2
2 (u) τn

for any E ∈ SpC2.
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When X ∈ TopC2
∗ is given the trivial Σ2-action and X∧X is given the permutation

action, the diagonal map X → X ∧ X is a C2 × Σ2-equivariant map. Consequently,
we have a C2-equivariant map

∆C2
X : (BC2Σ2)+ ∧ X ≃ (EC2Σ2)+ ∧Σ2 X DC2

2 (X).

By [35, Lemma 6.27] (also see [56, Proposition 3.2]),

H⋆
C2
((BC2Σ2)+) ∼= MC2

2 [y, x]/(y2 = aσy+ uσx),

where |y| = (1, 1) and |x| = (2, 1). Since H⋆
C2
((BC2Σ2)+) is MC2

2 -free, we also have a
Kunneth isomorphism

H⋆
C2
((BC2Σ2)+ ∧ X) ∼= H⋆

C2
((BC2Σ2)+)⊗MC2

2
H⋆

C2
(X).

Thus, for any u ∈ Hnρ
C2
(X), we may write (∆C2

X )∗(PC2
2 (u)) using the formula

(∆C2
X )∗(PC2

2 (u)) =
n∑

i=0

xn−i ⊗ Sq2i(u) +
n∑

i=0

yxn−i−1 ⊗ Sq2i+1(u), (2.1.21)

which defines the equivariant squaring operations Sqi for all i ≥ 0. These can be
extended to operations on the entire RO(C2)-graded cohomology ring as in [54,
Prop 2.6]).

Remark 2.1.22. Just like the classical case, one can easily deduce that the RO(C2)-
graded squaring operations defined this way are natural, stable and obey the Cartan
formula. In fact, Voevodsky [54] uses a similar approach to establish these properties
for the R-motivic Steenrod algebra, which can be emulated in the C2-equivariant case
using the Betti realization functor.

2.1.3 Comparison theorem

The purpose of this section is to compare the RO(C2)-graded squaring operations

with the classical squaring operations along the maps Φe
∗ and Φ̂C2∗, which renders the

following theorems.

Theorem 2.1.23. For E ∈ SpC2
2,fin and any class u ∈ H⋆

C2
(E), Φe

∗(Sq
n(u)) = Sqn(Φe

∗(u)).

Theorem 2.1.24. For E ∈ SpC2
2,fin and any class u ∈ H⋆

C2
(E),

Φ̂C2∗(Sq
2n(u)) = Sqn(Φ̂C2∗(u)).

Since the restriction functor is monoidal, it induces a ring map

Φe
∗ : H

⋆
C2
(X+) H∗(Φe(X)+)

for any X ∈ TopC2
∗ .
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Example 2.1.25. When X = ∗, the map

Φe
∗ : π

C2
⋆ HF2 π∗HF2

∼= F2

sends uσ 7→ 1, aσ 7→ 0, and Θ 7→ 0. This follows from the fact that the cofiber
sequence C2+ −→ S0 aσ−→ Sσ shows that the kernel of Φe

∗ consists of precisely the
aσ-divisible elements.

Proposition 2.1.26. For any X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X)

Φe
∗(PC2

2 (u)) = P2(Φ
e
∗(u)).

Proof. Since, Φe(γ) = 2γ, it follows that Φe
∗(un) = u2n. This, along with the fact

that Φe(Θ
F2

2 ) = ΘF2
2 shows Φe(τn) = τ2n, and the result follows.

Proof of Theorem 2.1.23. Let X ∈ TopC2
∗ and u ∈ Hnρ

C2
(X). Since Φe(BC2Σ2) ≃ BΣ2,

Φe(∆C2) = ∆, Φe
∗(y) = t and Φe

∗(x) = t2, it follows that

∆∗
Φe(X)(P2(Φ

e
∗(u))) =

n∑

i=−n

tn−i ⊗ Sqi(Φe
∗(u))

must equal

Φe
∗((∆

C2
X )∗(PC2

2 (u))) = Φe
∗(

n∑

i=−n

xn−i ⊗ Sq2i(u) +
n∑

i=−n

yxn−i−1 ⊗ Sq2i+1(u))

=
n∑

i=−n

t2n−2i ⊗ Φe
∗(Sq

2i(u))

+
n∑

i=−n

t2n−2i−1 ⊗ Φe
∗(Sq

2i+1(u)).

Thus, the result is true for cohomology classes u ∈ Hnρ
C2
(X) for any space X ∈ TopC2

∗ .
Since the squaring operations are stable, the result extends to arbitrary RO(C2)-

graded cohomology classes. Moreover, since ℜ commutes with suspensions, in the
sense that Φe ◦ Σ∞

C2
≃ Σ∞ ◦ Φe, and any E ∈ SpC2

2,fin is equivalent to Σ−nΣ∞
C2
X for

some n and X ∈ TopC2
∗ , we conclude the same for any u ∈ H⋆

C2
(E).

Now we draw our attention towards comparing the action of the C2-equivariant
Steenrod algebra AC2 on H⋆(X+) to the action of the classical Steenrod algebra A on
H∗(XC2

+ ), where X ∈ TopC2
∗ . Note that

Φ̂C2∗ : H
⋆
C2
(X+) H∗(XC2

+ )

is a ring map.
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Example 2.1.27. When X = ∗, the map

Φ̂C2∗ : π
C2
⋆ HF2

∼= F2[uσ, aσ]⊕Θ{u−i
σ a−j

σ } π∗HF2
∼= F2

sends aσ 7→ 1, uσ 7→ 0, and Θ 7→ 0. This is essentially because smashing with

ẼC2 ≃ colim{S0 aσ−→ Sσ aσ−→ S2σ −→ . . . }

amounts to inverting aσ and the projection π
(0)
F2

kills uσ.

Remark 2.1.28. One can deduce from Example 2.1.15 that in cohomology, the map

λ∗
S0 : H

∗(BC2Σ2
C2
+ ) ∼= F2[t][ι]/(ι

2 − ι) H∗((BΣ2)+) ∼= F2[t],

is the quotient map sending ι 7→ 0.

Example 2.1.29. The map Φ̂C2∗ : H
⋆
C2
((BC2Σ2)+) → H∗(BC2Σ2

C2
+ ) sends x 7→ t and

y → ι, aσ 7→ 1 and uσ 7→ 0.

Lemma 2.1.30. The composition

H⋆
C2
(Th(γ⊕n)) H∗(Th(γ⊕n)C2) H∗(Th(γ⊕n))

Φ̂C2∗ λSρ⊗ω

sends un 7→ un.

Proof. Let ζC2 : (BC2Σ2)+ → Th(γ⊕n) denote the zero-section. Under the zero
section map the Thom class is mapped to the Euler class, and therefore ζ∗C2

(un) = xn.
Likewise, the zero-section for the nonequivariant bundle ζ : (BΣ2)+ → Th(γ⊕n) sends

un 7→ tn. By naturality of Φ̂C2∗ and λ, we get a commutative diagram

H⋆
C2
(Th(γ⊕n)) H∗(Th(γ⊕n)C2) H∗(Th(γ⊕n))

H⋆
C2
((BC2Σ2)+) H∗(BC2Σ2

C2
+ ) H∗((BΣ2)+).

ζ∗C2

Φ̂C2∗
λ∗
Sρ⊗ω

(ζ
C2
C2

)∗ ζ∗

Φ̂C2∗
λ∗
S0

which along with Remark 2.1.28 and injectivity of ζ∗ implies the result.

Corollary 2.1.31. For any space X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X),

P2(Φ̂C2∗(u)) = λ∗
X(Φ̂

C2∗(PC2
2 (u))). (2.1.32)

Proof. It is enough to show that in the following diagram commutes as the blue
path and the red path indicates the left-hand side and the right-hand side of (2.1.32)
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respectively.

D2(X
C2) DC2

2 (X)C2

D2(Σ
nHF2) D2(Φ

C2ΣnρHF2) ΦC2DC2
2 (ΣnρHF2)

D2(S
n) ∧D2(HF2) D2(S

n) ∧D2(Φ
C2HF2) ΦC2DC2

2 (Snρ) ∧ ΦC2DC2
2 (HF2)

Σ2nHF2 ∧ HF2 Σ2nHF2 ∧ ΦC2HF2 ΦC2Σ2nρHF2 ∧ ΦC2HF2

Σ2nHF2 Σ2nΦC2HF2

D2(ΦC2u) (A)

λX

ΦC2D
C2
2 (u)

δ2 (B)

D2(Σnπ
(0)
F2

)

(C)

λΦ
Σnρ∧HF2

δ2 Φ(δ
C2
2 )

un∧Θ
F2
2 (E)

1∧D2(π
(0)
F2

)

un∧Θ
ΦF2
2 (F) un∧Θ

F2
2

Σ2nµF2 (G)

1∧π(0)
F2

Σ2nπ
(0)
F2

∧1

Σ2nΦC2µF2

Σ2nπ
(0)
F2

The squares (A), (B) and (C) commute naturally, the squares (E) and (G) commute

because π
(0)
F2

is an E∞-ring map, and (F) commutes because of Lemma 2.1.30.

Proof of Theorem 2.1.24. For any space X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X), we have

a commutative diagram

(BΣ2)+ ∧ XC2 D2(X
C2))

(BC2Σ2)+ ∧ XC2 DC2
2 (X)C2 .

∆
XC2

λS0∧1XC2 λX

(∆
C2
X )C2

Therefore,

n∑

i=0

tn−i ⊗ Sqi(Φ∗(u)) = ∆∗
XC2 (P2(Φ∗(u)))

= ∆∗
XC2 (λ

∗
X(Φ∗(PC2

2 (u))))

= (λ∗
S0 ⊗ 1

∗
XC2 )(((∆

C2
X )C2)∗(Φ∗(PC2

2 (u))))

= (λ∗
S0 ⊗ 1

∗
XC2 )Φ∗((∆

C2
X )∗(PC2

2 (u)))

= (λ∗
S0 ⊗ 1

∗
XC2 )Φ∗

(
n∑

i=0

xn−i ⊗ Sq2i,i(u)

+
n∑

i=0

yxn−i−1 ⊗ Sq2i+1(u)

)
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= (λ∗
S0 ⊗ 1

∗
XC2 )

(
n∑

i=0

tn−i ⊗ Φ∗(Sq
2i(u))

+
n∑

i=0

ιtn−i−1 ⊗ Φ∗(Sq
2i+1(u))

)

=
n∑

i=0

tn−i ⊗ Φ∗(Sq
2i(u)),

and hence, the result is true for all u ∈ Hnρ
C2
(X) for any X ∈ TopC2

∗ .
Since the squaring operations are stable, the result extends to arbitrary RO(C2)-

graded cohomology classes. Moreover, since the geometric fixed point functor Φ
commutes with suspensions (2.0.2), and any E ∈ SpC2

2,fin is equivalent to Σ−nΣ∞
C2
X for

some n and X ∈ TopC2
∗ , we conclude the same for any u ∈ H⋆

C2
(E).

2.2 The R-motivic Steenrod algebra and a freeness criterion

In this section, we focus particularly on the R-motivic Steenrod algebra. We give a
criterion that will detect freeness for modules over certain subalgebras of AR. Writing
MR

2 for the R-motivic cohomology of a point, we prove:

Theorem 2.2.1. A finitely generated AR(n)-module M is free if and only if

1. M is free as an MR
2 -module, and

2. F2 ⊗MR
2
M is a free F2 ⊗MR

2
AR(n)-module.

We begin by reviewing the R-motivic Steenrod algebra AR following Voevodsky
[54]. The algebra AR is the ring of bigraded homotopy classes of self-maps of the
R-motivic Eilenberg-Mac Lane spectrum HFR

2 :

AR = [HFR
2 ,HFR

2 ]∗,∗.

The unit map SR → HFR
2 induces a canonical projection map

ϵ : AR −→ MR
2 := [SR,HFR

2 ]∗,∗
∼= F2[τ, ρ],

where |τ | = (0,−1) and |ρ| = (−1,−1). Further, using the multiplication map
HFR

2 ∧ HFR
2 → HFR

2 one can give AR a left MR
2 -module structure as well as a right

MR
2 -module structure. Voevodsky shows thatAR is a free leftMR

2 -module. There is an
analogue of the classical Adem basis in the motivic setting, and Voevodsy established
motivic Adem relations, thereby completely describing the multiplicative structure of
AR.

The motivic Steenrod algebra AR also admits a diagonal map, so that its left
MR

2 -linear dual is an algebra over F2. Note that AR is an F2-algebra but not an
MR

2 -algebra as τ is not a central element since

Sq1(τ) = ρ ̸= τSq1. (2.2.2)
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This complication is also reflected in the fact that the pair (MR
2 , homMR

2
(AR,MR

2 )) is a
Hopf algebroid, and not a Hopf algebra like its complex counterpart. The underlying
algebra of the dual R-motivic Steenrod algebra is given by

AR
∗
∼= MR

2 [ξi+1, τi : i ≥ 0]/(τ2i = τξi+1 + ρτi+1 + ρτ0ξi+1)

where ξi and τi live in bidegree (2i+1 − 2, 2i − 1) and (2i+1 − 1, 2i − 1), respectively.
The complete description of the Hopf algebroid structure can be found in [54].

Ricka2 [51] identified the quotient Hopf algebroids of AR
∗ (see also [32]). In par-

ticular, there are quotient Hopf algebroids

AR(n)∗ = AR
∗ /(ξ

2n

1 , . . . , ξ2
n, ξn+1, . . . , τ

2n+1

0 , . . . , τ2n, τn+1, . . . )

which can be thought of as analogues of the quotient Hopf algebras

A(n)∗ = A∗/(ξ
2n+1

1 , . . . , ξ2n+1, ξn+2, . . . )

of the classical dual Steenrod algebra A∗. It is an algebraic fact that

τ−1(AR(n)∗/(ρ)) ∼= F2[τ
±1]⊗A(n)∗ (2.2.3)

as Hopf algebras (see [21, Corollary 2.9]). The above isomorphism sends τi 7→
τ 1−2iξi+1 and ξi+1 7→ τ 1−2i+1

ξ2i+1. The quotient Hopf algebroid AR(n)∗ is the MR
2 -

linear dual of the subalgebra AR(n) of AR, which is generated by the elements
{τ, ρ, Sq1, Sq2, . . . , Sq2n}.

Although τ is not in the center (see (2.2.2)) of AR or AR(n), the element ρ is in
the center. We make use of this fact to prove the following result.

Lemma 2.2.4. A finitely-generated AR(n)-module M is free if and only if

1. M is free as an F2[ρ]-module, and,

2. M/(ρ) is a free AR(n)/(ρ)-module.

Proof. The ‘only if’ part is trivial. For the ‘if’ part, choose a basis B = {b1, . . . , bn} of
M/(ρ) and let b̃i ∈ M be any lift of bi. Let F denote the free AR(n)-module generated
by B and consider the map

f : F → M

which sends bi 7→ b̃i. We show that f is an isomorphism by inductively proving that
f induces an isomorphism F/(ρn) ∼= M/(ρn) for all n ≥ 1. The case of n = 1 is true
by assumption.

2Ricka actually identified the quotient Hopf algebroids of the C2-equivariant dual Steenrod
algebra. However, the difference between the R-motivic Steenrod algebra and the C2-equivariant
Steenrod algebra lies only in the coefficient rings and results of Ricka easily identifies the quotient
Hopf algebroids of the R-motivic Steenrod algebra.
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For the inductive argument, first note that the diagram

0 F/(ρn−1) F/(ρn) F/(ρ) 0

0 M/(ρn−1) M/(ρn) M/(ρ) 0

·ρ

fn−1 fn f0

·ρ

is a diagram of AR(n)-modules (since ρ is in the center) where the horizontal rows are
exact. The map f0 is an isomorphism by assumption (2), and fn−1 is an isomorphism
by the inductive hypothesis; hence, fn is an isomorphism by the five lemma.

Proof of 2.2.1. The result follows immediately from Lemma 2.2.4 combined with [30,
Theorem B] and the fact that AC(n) = AR(n)/(ρ).

In order to employ 2.2.1, we use the work of Adams and Margolis [3], which
provides a freeness criterion for modules over finite-dimensional subalgebras of the
classical Steenrod algebra in terms of Margolis homology. Recall that, for an algebra
A and an element x ∈ A such that x2 = 0, the Margolis homology of M with respect
to x is defined as

M(M, x) =
ker(x : M → M)

img(x : M → M)
.

In the classical Steenrod algebra, the element Ps
t is defined to be dual to ξ2

s

t ∈ A∗.
In terms of the Milnor basis,

Ps
t := Sq(0, . . . , 0︸ ︷︷ ︸

t−1

, 2s).

The element P0
t is often denoted by Qt−1. One may define the R-motivic analogues

of Ps
t ∈ A by setting

Qt := τ∗t and P
s

t := (ξ2s−1

t )∗

in AR(n) for s ≥ 1, recalling that the motivic ξt plays the role of the classical ξ2t . It
is easy to see that under the isomorphism (2.2.3), Qt corresponds to τ 1−2tQt and P

s

t

corresponds to τ 2
s(1−2t)Ps

t .
In the context of 2.2.1, freeness over

F2 ⊗MR
2
AR(n) := AR(n)/(ρ, τ) ∼= AC(n)/(τ)

can be detected using Margolis homology calculations following [30, Theorem B(i)].

Corollary 2.2.5. Let M be a finitely generated left AR(n)-module and let

M/(ρ, τ) := M⊗MR
2
F2.

Then M is a free AR(n)-module if and only if

1. M is free over MR
2 ,
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2. M(M/(ρ, τ),Qi) = 0 for 0 ≤ i ≤ n, and

3. M(M/(ρ, τ),P
s

t) = 0 for 1 ≤ s ≤ t ≤ n.

Remark 2.2.6. The quotient AR(n)/(ρ, τ) fits into a short exact sequence

E(n) AR(n)/(ρ, τ) P(n) (2.2.7)

of connected finite-dimensional Hopf algebras over F2, where E(n) := ΛF2(Q0, . . . ,Qn)
and P(n) := AR(n)/(ρ, τ,Q0, . . . ,Qn). The short exact sequence (2.2.7) splits from
the right. This right splitting map confirms that (2.2.7) is a split exact sequence
of coalgebras as all of the Hopf algebras involved in (2.2.7) admit a cocommutative
comultiplication. However, when (2.2.7) is viewed as an exact sequence of algebras, it
does not split because the algebras involved are not commutative. For example, when
n = 1 then a left splitting map in (2.2.7) would imply that Q0 commutes with Sq2 and
contradicts the fact that Q1 := [Sq2,Q0]. Dually, there is a splitting

AR(n)∗/(ρ, τ) ∼=
F2[ξ1, . . . , ξn]

(ξ2n
1 , . . . , ξ2n)

⊗ Λ(τ0, . . . , τn)

as an algebra, though it does not split as a coalgebra. This is clear from the fact that

∆(τk) ≡
k∑

i=0

ξ2i

k−i ⊗ τi ̸≡ τk ⊗ 1 + 1⊗ τk mod (ρ, τ).

Remark 2.2.8 (A minor correction to [30]). Note that Remark 2.2.6 stands in con-
tradiction to [30, Corollary 4.2]. However, this does not affect [30, Corollary 4.3]

which claims (P
t

t)
2 = 0. This is because P(n) is a sub-Hopf algebra of AR(n)/(ρ, τ).

We also note that the proof of [30, Theorem B(i)] remains unaffected by this change.

Copyright© Ang Li, 2022.
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Chapter 3 The v1-Periodic Region in the cohomology of the C-motivic Ext

The E2-page of the Adams spectral sequence is given by Ext∗,∗A (F2,F2) = H∗,∗(A),
which we denote by Ext, where A is the classical Steenrod algebra. For Ext, Adams
[2] showed that there is a vanishing line of slope 1

2
and intercept 3

2
, and J. P. May

showed there is a periodicity line of slope 1
5
and intercept 12

5
, where the periodicity

operation is defined by the Massey product Pr(−) := ⟨hr+1, h
2r

0 ,−⟩. This result has
not been published by May, but can be found in the thesis of Krause:

Theorem 3.0.1. [36, Theorem 5.14] For r ≥ 2, the Massey product operation
Pr(−) := ⟨hr+1, h

2r

0 ,−⟩ is uniquely defined on Exts,f = Hs,f (A) when s > 0 and
f > 1

2
s+ 3− 2r, where s is the stem, and f is the Adams filtration.

Furthermore, for f > 1
5
s+ 12

5
, the operation

Pr : H
s,f (A)

∼=−→ Hs+2r+1,f+2r(A)

is an isomorphism.

The purpose of this chapter is to discuss an analog of the theorem above in the
C-motivic context. Motivic homotopy theory, also known as A1-homotopy theory, is a
way to apply the techniques of algebraic topology, specifically homotopy, to algebraic
varieties and, more generally, to schemes. The theory was formulated by Morel and
Voevodsky [46].

We analyze the case where the base field F is the complex numbers C. Let M2

denote the bigraded motivic cohomology ring of Spec C, with F2 = Z/2-coefficients.
Voevodsky [55] proved that M2

∼= F2[τ ]. Let AC be the mod 2 motivic Steenrod
algebra over C. The motivic Adams spectral sequence is a trigraded spectral sequence
with

E∗,∗,∗
2 = Ext∗,∗,∗AC (M2,M2),

where the third grading is the motivic weight. (See Dugger and Isaksen [24]). The C-
motivic E2-page, which we denote by ExtC, has a vanishing line computed by Guillou
and Isaksen [29]. Quigley has a partial result that Exts,f,w has a periodicity line of
slope 1

3
under the condition s ≤ w in the case r = 2 [49, Corollary 5.4].

The multiplication by 2 map S0,0 2−→ S0,0 is detected by h0, and the Hopf map
S1,1 η−→ S0,0 is detected by h1 in ExtC. These elements have degrees (0, 1, 0) and
(1, 1, 1) respectively. By an infinite h1-tower we will mean a non-zero sequence of
elements of the form hk

1x in ExtC with k ≥ 0, where x is not h1 divisible. We will
write h1-towers for infinite h1-towers, and refer to x as the base of the h1-tower h

k
1x

(k ≥ 0). Since all h1-towers are τ -torsion, one might guess that the motivic ExtC
groups differ from the classical Ext groups by only infinite h1-towers. This is not
true, but we may expect the h1-torsion part of ExtC to obtain a pattern similar to
Ext. Our result pertains solely to this h1-torsion region.
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Remark 3.0.2. Let AC
∗ denote the dual Steenrod algebra. For ExtC, we can work

over AC
∗ instead of AC. i.e.

E∗,∗,∗
2

∼= Ext∗,∗,∗AC
∗
(M2,M2)∗.

Here we view M2 as the homology of the motivic sphere instead of the cohomology;
this is an AC

∗ -comodule.

The goal of this chapter is the following theorem:

Theorem 3.0.3. For r ≥ 2, the Massey product operation Pr(−) := ⟨hr+1, h
2r

0 ,−⟩ is
uniquely defined on Exts,f,w = Hs,f,w(AC) when s > 0 and f > 1

2
s+ 3− 2r.

Furthermore, for f > 1
5
s+ 12

5
, the restriction of Pr to the h1-torsion

Pr : [H
s,f,w(AC)]h1−torsion → [Hs+2r+1,f+2r,w+2r(AC)]h1−torsion

is an isomorphism.

3.1 The stable (co)module category Stab(Γ)

In order to restrict to working with only the h1-torsion (also h0-torsion) part, first
we would like to choose a suitable working environment: a category with some nice
properties that will serve our purposes. Usually ExtC is defined in the derived category
of AC

∗ -comodules, which we denote D(AC
∗ ). However, the coefficient ring M2 is not

compact in D(AC
∗ ), which means that M2 does not interact well with colimits. The

stable comodule category will better serve our purposes. That is a category C such
that:

1. If M is a AC
∗ -comodule that is free of finite rank over M2 and N is a AC

∗ -
comodule, then HomC(M,N) ∼= ExtAC

∗
(M,N).

2. If M is a AC
∗ -comodule that is free of finite rank over M2, then M is compact

in C. That is to say, for any sequential colimit in C of AC
∗ -comodules

Colim
i

Ni := Colim(N0
f0−→ N1 → · · · → Ni

fi−→ · · · ),

we have Colim
i

ExtAC
∗
(M,Ni) ∼= HomC(M,Colim

i
Ni)

The correct choice of C is called Stab(AC
∗ ). The category can be constructed in

various ways (see [12, Sec. 2.1] for details), and has several useful properties for our
case. The following proposition summarizes some of the discussion in [7, Sec. 4]:

Proposition 3.1.1. The category Stab(AC
∗ ) satisfies conditions (1) and (2) above.
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Namely, for a Hopf algebra Γ and comodule M that is free of finite rank, we have
a diagram

D(Γ)

HomD(Γ)(iM,−) ++

ComodΓ
ioo j //

ExtΓ(M,−)

��

Stab(Γ)

HomStab(Γ)(jM,−)rrgrAb

where i is the canonical functor and j is well-defined only for comodules that are
free of finite rank over M2. This diagram commutes. Because the stable comodule
category cooperates nicely with taking colimits in the sense that the condition (2)
holds, we can compute the colimit of a sequence of ExtΓ(M,N).

Here we introduce notation that will be used in future sections.

Notation 3.1.2. For a motivic spectrum M such that H∗(M) is free of finite rank
over M2, let M also denote the embedded image of the homology of the spectrum
M in the stable comodule category (i.e., M = j(H∗(M))). We use [M,N ]Γ∗,∗,∗ to
denote HomStab(Γ)(M,N), where M , N ∈ Stab(Γ). For example, if M = S, then

H∗(S) = M2, which we also denote by S. Thus Exts,f,wAC
∗

(M2,M2) = [S, S]
AC

∗
s,f,w. When

Γ is the motivic dual Steenrod algebra, we omit the superscript Γ. This notation is
consistent with [36].

We use the grading (s, f, w), where s is the stem, f is the Adams filtration and w
is the motivic weight. Notice that t = s+f is the internal degree. Given a self-map θ:

Σs0,f0,w0M
θ−→ M in Stab(AC

∗ ), we have a cofiber sequence Σs0,f0,w0M
θ−→ M → M/θ

in Stab(AC
∗ ). The associated long exact sequence will be indexed as follows:

· · · → [M,N ]s+s0+1,f+f0−1,w+w0 → [M/θ,N ]s,f,w → [M,N ]s,f,w → [M,N ]s+s0,f+f0,w+w0 → · · ·

Sometimes we omit indices when there is no risk of confusion.

3.2 Massey products

In this section, we show that the cofiber S/hk
0 admits a self-map and identify it with

the Massey product in Theorem 3.0.3. Self-maps are maps of suspensions of an object
to itself. For a dualizable object Y , self maps ΣnY → Y can also be described as
elements of π∗(Y ⊗DY ), with DY the ⊗-dual of Y . In this section we mainly deal
with homological self-maps in Stab(AC

∗ ).
When considering the vanishing region and the periodicity region, we only work

with the h0-torsion part. (Of course, this is not much of a loss: as classically, the only
h0-local elements are in the 0-stem.) We next investigate the h1-torsion part inside
the h0-torsion. For this purpose, we introduce the following notion.

Definition 3.2.1. Let F0 be the fiber of S → S[h−1
0 ], where S[h−1

0 ] := Colim(S
h0−→

S
h0−→ · · · ) in Stab(AC

∗ ). Similarly, let F01 be the fiber of F0 → F0[h
−1
1 ] with F0[h

−1
1 ]

defined as an analogous colimit.

23



The group [S, F01] contains the subset of [S, S] consisting of elements that are
both h0- and h1-torsion, as well as the negative parts of those h0 and h1-towers in
F0[h

−1
1 ]. The regions we are considering are unaffected. We display the corresponding

ExtC groups in Figure 3.1 and 3.2.

s5 10

f

Figure 3.1: [S, F0]
AC∨

∗,∗,∗

s5 10

f

Figure 3.2: [S, F01]
AC∨

∗,∗,∗

The periodicity operator P corresponds to multiplying by the element h4
20 of

the May spectral sequence, meaning that for many values of x, h4
20x ∈ ⟨h3, h

4
0, x⟩.

However, h4
20 does not survive to ExtC. As a result, multiplying by P is not a

map from [S, S] to [S, S]. Luckily, [29, Figure 2] shows that P survives in [S/h0, S].
Similarly, we have the following proposition:

Proposition 3.2.3 ([1]). The element h2r

20 survives the May spectral sequence to
[S/hk

0, S] for k ≤ 2r, and thus gives a corresponding element P 2r−2
in [S/hk

0, S/h
k
0],

i.e. a self-map of S/hk
0.

If N is an AC
∗ -comodule in Stab(AC

∗ ), then [S/hk
0, S/h

k
0] acts on [S/hk

0, N ]. The
corresponding element P (or some power of P ) inside [S/hk

0, S/h
k
0] induces a map from

[S/hk
0, N ] to itself. We would like to show that for any k ≤ 2r and r ≥ 2, multiplying

by P 2r−2
on [S/hk

0, S] coincides with the Massey product Pr(−) := ⟨hr+1, h
2r

0 ,−⟩ in a
certain region. In other words, we must show that there is zero indeterminacy.

The Massey product is defined on the kernel of h2r

0 on [S, S], which we will denote
ker(h2r

0 ). It lands in the cokernel of multiplication by hr+1:

Pr(−) : ker(h2r

0 ) → [S, S]/hr+1.

Remark 3.2.4. Originally one would like to consider the following square and see
that it commutes in a certain region

[S/hk
0, S]

−·P 2r−2

//

��

[S/hk
0, S]

��
ker(h2r

0 )
Pr(−)

// [S, S]/hr+1.

The vertical maps are induced by S → S/hk
0. However, since we lost the advantage

of a vanishing region of f > 1
2
s + 3

2
that we need in the classical setting, the region
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where the vertical maps are isomorphisms is not satisfactory. We solve this problem
by restricting attention to the h0 and h1-torsion.

To better fit our purposes, consider the Massey product defined on [S, F01]

Pr(−) : kerF01(h
2r

0 ) → [S, F01]/hr+1.

This gives the following squares, over which we have more control:

[S/hk
0, F01]

−·P 2r−2

//

��

[S/hk
0, F01]

��
kerF01(h

2r

0 )
Pr(−)

//

��

[S, F01]/hr+1

��
kerS(h

2r

0 )
Pr(−)

// [S, S]/hr+1

(3.2.5)

The canonical map F01 → S induces a map [S, F01] → [S, S] given by inclusion on
the h0- and h1-torsion elements and which sends negative towers to zero. The bottom
square commutes for s > 0 and f > 0 modulo potential indeterminacy. We would
like to show that the indeterminacy vanishes under some conditions.

Let C(η) denote the cofiber of the first Hopf map

S1,1 η−→ S0,0.

Writing Cη for the cohomology H∗,∗(C(η)), we have the following result:

Theorem 3.2.6. [29, Theorem 1.1] The group Exts,f,wAC (M2, Cη) vanishes when s > 0
and f > 1

2
s+ 3

2
.

Theorem 3.2.6 gives us that [S,Cη]s,f,w vanishes when s > 0 and f > 1
2
s + 3

2
.

In other words, there are only h1-towers when s > 0 and f > 1
2
s + 3

2
in [S, S]s,f,w.

Moreover, we have the following fact:

Proposition 3.2.7 (Corollary of [28, Theorem 1.1]). For r ≥ 1, hr+1 does not support
an h1-tower.

Therefore the indeterminacy (hr+1[S, S])s,f,w must vanish when f > 1
2
s + 3 − 2r,

under the following two conditions: that hr+1 has s = 2r+1 − 1, and that there are
only h1-towers in [S, S]s,f,w when s > 0 and f > 1

2
s+ 3

2
, which are hr+1-torsion groups.

Remark 3.2.8. It is easy to see that the indeterminacy (hr+1[S, F01])s,f,w also van-
ishes when f > 1

2
s+ 3− 2r.

The first row of the top square in (3.2.5) is multiplication by some power of the
element P . We next determine when the vertical maps are isomorphisms.
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Lemma 3.2.9 (Motivic version of [36, Lemma 5.2]). Let M,N ∈ Stab(AC
∗ ). Assume

that [M,N ] vanishes when f > as+bw+c for some a, b, c ∈ R, let θ : Σs0,f0,w0M → M

be a map with f0 > as0 + bw0, and let M/θ denote the cofiber of Σs0,f0,w0M
θ−→ M .

Then
[M/θ,N ] → [M,N ]

is an isomorphism above a vanishing plane parallel with the one in [M,N ] but with
f -intercept given by c− (f0 − as0 − bw0).

Proof. The result follows from the long exact sequence associated to the cofiber se-

quence Σs0,f0,w0M
θ−→ M → M/θ:

· · · → [M,N ]s+s0+1,f+f0−1,w+w0 → [M/θ,N ]s,f,w → [M,N ]s,f,w → [M,N ]s+s0,f+f0,w+w0 → · · ·

Remark 3.2.10. This approach could also apply to a vanishing region above several
planes or even a surface. The vanishing condition of Lemma 3.2.9 could be rephrased
as the following:

Assume that [M,N ]∗,∗,∗ vanishes when f > φ(s, w) where φ : R2 → R is a smooth
function. Then the gradient v(−,−) = (∂φ

∂s
(−), ∂φ

∂w
(−)) is a vector field. Let d =

max
(s0,w0)

|v(s0, w0)|, and assume both f0
s0

and f0
w0

are greater than d. The remaining proof

would follow similarly, with the f -intercept given by max{c−(f0−ds0), c−(f0−dw0)}.

We have this as a corollary:

Corollary 3.2.11 (Motivic version of [36, Lemma 5.9]). Let k ≥ 1. For f > 1
2
s+3

2
−k,

the natural map [S/hk
0, F01]s,f,w → [S, F01]s,f,w is an isomorphism.

Proof. To determine this, we need to confirm that [S, F01]s,f,w admits a vanishing
region of f > 1

2
s + 3

2
. The fiber sequence F01 → F0 ↪→ F0[h

−1
1 ] gives us an exact

sequence:

· · · → [S, F01]s,f,w → [S, F0]s,f,w
h−1
1−→ [S, F0[h

−1
1 ]]s,f,w → [S,Σ1,−1,0F01]s,f,w → · · ·

Since [S, F0] differs from [S, S] only in the 0-stem, there are only h1-towers when
f > 1

2
s + 3

2
. And by Theorem 3.2.6 again, [S,Cη]s,f,w vanishes when s > 0 and

f > 1
2
s + 3

2
. In other words, above the plane f = 1

2
s + 3

2
, multiplying by h1, which

detects η, is an isomorphism from [S, F0]s,f,w to [S, F0]s+1,f+1,w+1.
As a result, inverting h1 would be an isomorphism from [S, F0]s,f,w to [S, F0[h

−1
1 ]]s,f,w

when f > 1
2
s+ 3

2
. Therefore, [S, F01]s,f,w vanishes when f > 1

2
s+ 3

2
. Applying Lemma

3.2.9 gives the corollary.

The results in 3.2.3 and 3.2.8 locate the region where both squares commute, thus
obtaining the first part of Theorem 3.0.3.
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Theorem 3.2.12 (Motivic version of [36, Proposition 5.12]). For k ≤ 2r and r ≥ 2,
the cofiber S/hk

0 admits a self-map P 2r−2
of degree (2r+1, 2r, 2r). Thus, for any N ∈

Stab(AC
∗ ), composition with P 2r−2

defines a self-map on [S/hk
0, N ].

When f > 1
2
s + 3 − k, in the case N = F01, the induced map coincides with the

Massey product Pr(−) := ⟨hr+1, h
2r

0 ,−⟩ with zero indeterminacy.

3.3 The Cartan-Eilenberg spectral sequence

We will obtain a vanishing region for [S/(h0, P ), F01]∗,∗,∗ in this section. Consider the
colimit

F0/h
∞
1 := Colim

i
(Σ−1,−1,−1F0/h1

h1−→ · · · h1−→ Σ−i,−i,−iF0/h
i
1

h1−→ · · · )

in Stab(AC
∗ ). As we show in the following result, it differs from F01 by a suspension

in the region we are considering.

Proposition 3.3.1. When f > 1
2
s+ 3

2
,

[S,Σ−1,1,0F0/h
∞
1 ]s,f,w ∼= [S, F01]s,f,w

Proof. To see this, note that the colimit F0/h
∞
1 is a union of all the h1-torsion in F0,

while the fiber F01 detects the h1-torsion together with those negative h1-towers.

Note that F0 coincides with

Σ−1,1,0S/h∞
0 := Σ−1,1,0Colim

i
(Σ0,1,0S/h0

h0−→ · · · h0−→ Σ0,i,0S/hi
0

h0−→ · · · ),

if we ignore the negative h0-tower. That is, we have [S,Σ
−1,1,0S/h∞

0 ]s,f,w ∼= [S, F0]s,f,w
when f > 0.

Remark 3.3.2. We have shown that the map

[S/hk
0, F0/h

∞
1 ]s,f,w → [S, F0/h

∞
1 ]s,f,w

is an isomorphism when f > 1
2
s + 3 − k. We consider this colimit because it is

better for computational purposes (the fiber F01 is harder to deal with than the colimit
F0/h

∞
1 ).

Let θ be a self-map of S/hk
0, and consider the cofiber sequence S/hk

0
θ−→ S/hk

0 →
S/(hk

0, θ). The vanishing region for [S/(hk
0, θ), F0/h

∞
1 ]∗,∗,∗ is the region where

[S/hk
0, F0/h

∞
1 ]s,f,w

θ−→ [S/hk
0, F0/h

∞
1 ]s+s0,f+f0,w+w0

is an isomorphism. The goal of this section is to obtain a vanishing region for
[S/(hk

0, θ), F0/h
∞
1 ]∗,∗,∗ in the case k = 1 and θ = P .
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The dual Steenrod algebra is too large to work with, so we would like to start
with a smaller one, namely AC(1)∗ ∼= M2[τ0, τ1, ξ1]/(τ

2
0 = τξ1, τ

2
1 , ξ

2
1). Then for AC

∗ -
comodules M and N (thus also AC(1)∗-comodules), we can recover [M,N ]A

C
∗ from

[M,N ]A
C(1)∗ via infinitely many Cartan-Eilenberg spectral sequences along normal

extensions of Hopf algebras, as we will explain later.
Let N = F0/h

∞
1 . We will compute [S/h0, F0/h

∞
1 ]A

C(1)∗ as an intermediate step
before reaching our goal of [S/(h0, P ), F0/h

∞
1 ]A

C(1)∗ . As a starting point, we can

compute [S/h0, F0] over AC(1)∗, via the cofiber sequence S
h0−→ S → S/h0.

s

f

Figure 3.3: [S/h0, F0]
AC(1)∗

This is periodic,where the periodicity shifts degree by (8, 4, 4). Since
[S/h0, F0/h

∞
1 ]A

C(1)∗ is a colimit, it is essential to know the maps over which we are
taking the colimit. First let us take a look at the maps induced by multiplying by h1

(we abbreviate Σ−i,−i,−i to Σ−i in this diagram):

h1 // [S/h0,Σ
−1F0] //

h1◦Σ−1

��

[S/h0,Σ
−1F0/h1] //

��

Σ2,0,1[S/h0,Σ
−1F0]

id
��

h1 //

h2
1 // [S/h0,Σ

−2F0]

h1◦Σ−1

��

// [S/h0,Σ
−2F0/h

2
1]

��

// Σ3,1,2[S/h0,Σ
−2F0]

��

h2
1 //

(3.3.4)

All rows are exact. From this we yield a more illuminating diagram:
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0 // coker(h1) //

h1◦Σ−1

��

[S/h0,Σ
−1F0/h1] //

��

ker(h1)

i
��

// 0

0 // coker(h2
1)

h1◦Σ−1

��

// [S/h0,Σ
−2F0/h

2
1]

��

// ker(h2
1)

��

// 0

The maps i on the right column are canonical inclusions, and passing to colimits
gives

Colim
k

(coker(hk
1)) → [S/h0, F0/h

∞
1 ] → Colim

k
(ker(hk

1)).

Working over the dual subalgebra AC(1)∗ we calculate [S/h0,Σ
−1,1,0F0/h

∞
1 ]

AC(1)∗
∗,∗,∗ di-

rectly. Furthermore we have:

Proposition 3.3.5. For any k ∈ Z, k ≥ 1, the maps [S/h0,Σ
−kF0/h

k
1]

AC(1)∗ →
[S/h0,Σ

−k−1F0/h
k+1
1 ]A

C(1)∗ are injective.

The result of the calculation is shown in Figure 3.4. The shift in the figure appears
as result of Proposition 3.3.1.

s

f

Figure 3.4: [S/h0,Σ
−1,1,0F0/h

∞
1 ]

AC(1)∗
∗,∗,∗

This is periodic, with a periodicity degree shift of (8, 4, 4), just as with [S/h0, F0]
AC(1)∗ .

Note that [S/h0,Σ
−1,1,0F0/h

∞
1 ]

AC(1)∗
∗,∗,∗ differs from the classical [S/h0, S]

AC(1)∗
∗,∗ with two

extra negative h1-towers associated to each ”lighting flash”. The element in degree
(−1, 0,−1) in the first pattern is generated by τ with a shift.

Recall the self-map P on S/h0 acts injectively as can be seen in Figure 3.4. Com-
bining this with the long exact sequence:

· · · // [S/(h0, P ), F0/h
∞
1 ]

AC(1)∗
s,f,w

// [S/h0, F0/h
∞
1 ]

AC(1)∗
s,f,w

P //

P // [S/h0, F0/h
∞
1 ]

AC(1)∗
s+8,f+4,w+4

// [S/(h0, P ), F0/h
∞
1 ]

AC(1)∗
s−1,f+1,w

// · · ·
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gives [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]

AC(1)∗
∗,∗,∗ as in Figure 3.5.

Remark 3.3.5. Analogously to Proposition 3.3.5, for any k ∈ Z, k ≥ 1, the following
maps are also injective:

[S/(h0, P ),Σ−kF0/h
k
1]

AC(1)∗ → [S/(h0, P ),Σ−k−1F0/h
k+1
1 ]A

C(1)∗ .

s

f

Figure 3.5: [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]

AC(1)∗
∗,∗,∗

Next we will use the Cartan-Eilenberg spectral sequence to bootstrap our result
from AC(1)∗-homology to AC

∗ -homology. A brief introduction to the Cartan-Eilenberg
spectral sequence (see [17, Ch.XV] for details) is relevant at this point. Given an
extension of Hopf algebras over M2

E → Γ → C

(so in particular E ∼= Γ□CM2), the Cartan-Eilenberg spectral sequence computes
CotorΓ(M,N) for a Γ-comodule M and an E-comodule N . The spectral sequence
arises from the double complex (Γ-resolution of M)□Γ(E-resolution of N), and we
have CotorΓ(M,N) ∼= ExtΓ(M,N) when M and N are τ -free.

The Cartan-Eilenberg spectral sequence has the form

Es,t,∗,∗
1 = Cotort,∗C (M, Ē⊗s ⊗N) ⇒ Cotors+t,∗

Γ (M,N).

If E has trivial C-coaction, then we have Es,t,∗,∗
1

∼= Cotort,∗C (M,N)⊗ Ē⊗s. Taking the
cohomology we obtain the E2-page:

Es,t,∗,∗
2 = Cotors,∗E (M2, Cotort,∗C (M,N)) ∼= Exts,∗E (M2,M2)⊗ Extt,∗C (M,N).

The Cartan-Eilenberg spectral sequence converges when the input is a bounded-
below AC

∗ -comodule. We will obtain a vanishing region for each finite stage
[S/(h0, P ),Σ−kF0/h

k
1]

AC
∗ and then deduce the vanishing region for [S/(h0, P ), F0/h

∞
1 ]A

C
∗

by passing to the colimit.

[S/(h0, P ),Σ−1F0/h1]
AC(1)∗ //

��

[S/(h0, P ),Σ−2F0/h
2
1]

AC(1)∗ //

CESS
��

· · · // [S/(h0, P ), F0/h
∞
1 ]A

C(1)∗

[S/(h0, P ),Σ−1F0/h1]
AC

∗ // [S/(h0, P ),Σ−2F0/h
2
1]

AC
∗ // · · · // [S/(h0, P ), F0/h

∞
1 ]A

C
∗
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We first calculate [S/(h0, P ), F0/h
∞
1 ]A

C(2)∗ , where

AC(2)∗ = M2[τ0, τ1, τ2, ξ1, ξ2]/(τ
2
0 = τξ1, τ

2
1 = τξ2, τ

2
2 , ξ

4
1 , ξ

2
2).

To do this, we will use a sequence of normal maps of Hopf algebras:

AC(2)∗ → AC(2)∗/ξ
2
1 → AC(2)∗/(ξ

2
1 , ξ2) → AC(2)∗/(ξ

2
1 , ξ2, τ2) = AC(1)∗.

First we consider the Cartan-Eilenberg spectral sequence corresponding to the
extension

E(τ2) → AC(2)∗/(ξ
2
1 , ξ2) → AC(1)∗.

The element τ2, which has degree (6, 1, 3), corresponds to h30 in the May spectral
sequence. The AC(1)∗-coaction on E(τ2) is trivial for degree reasons. So we start with
the E1 = E2-page, and deduce a vanishing region on [S/(h0, P ), F0/h

∞
1 ]A

C(2)∗/(ξ21 ,ξ2).

[S/(h0, P ),Σ−1F0/h1]
AC(1)∗ ⊗M2[h30] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A

C(1)∗ ⊗M2[h30]

[S/(h0, P ),Σ−1F0/h1]
AC(2)∗/(ξ21 ,ξ2) // · · · // [S/(h0, P ), F0/h

∞
1 ]A

C(2)∗/(ξ21 ,ξ2)

For the normal extension E(β) → Γ → C of Hopf algebras we state a motivic
version of [36, Lemma 4.10], which gives a relationship between the vanishing region
for [M,N ]Γ and the vanishing condition of [M,N ]C together with the two ”slopes”
associated to β. Note that if β has degree (s0, f0, w0), then

f0
s0

and f0
w0

are the slopes
of the projections of (s0, f0, w0) onto the plane w = 0 and the plane s = 0.

Theorem 3.3.6. Let E(α) → Γ
q−→ C be a normal extension of Hopf algebras and

M ,N ∈ Stab(Γ). Suppose β is an element in [S, S]E of degree (s0, f0, w0) with
s0, f0, w0 all positive. Its image in [S, S]Γ (which we also call β) acts on [M,N ]Γ.
Suppose for some a, b, c,m, c0 ∈ R with a, b > 0 and m ≥ f0

s0
> 0, the group

[q∗(M), q∗(N)]C vanishes when f > as+ bw+ c and also vanishes when f > ms+ c0.
Then

1. if f0 ≤ as0 + bw0, or β acts nilpotently on [M,N ]Γ, then [M,N ]Γ has a parallel
vanishing region. In other words, it vanishes when f > as + bw + c′ for some
constant c′ and also vanishes when f > ms+ c0.

2. otherwise, [M,N ]Γ vanishes when f > mbw0−f0(m−a)
bw0−s0(m−a)

s + bf0−mbs0
bw0−s0(m−a)

w + c′ and
vanishes when f > ms+ c0.

Remark 3.3.7. The additional vanishing plane f > ms+ c0 generalizes the bounded
below condition. In the classical setting, we have that [M,N ]Γ vanishes when s < c0,
but due to the negative h1-towers we do not have a vertical vanishing plane. So we
adjust the ”∞-slope” plane to be f = ms+ c0 to fulfill our purpose. This bound does
not affect the periodicity region we study here, so we omit it henceforth.
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Proof of Theorem 3.3.6. If β has f0 ≤ as0+bw0, then β multiples of classes in [M,N ]C

will lie under the existing vanishing planes.
If f0 > as0 + bw0, then every infinite β tower will contain classes lying outside of

the rigion f > as + bw + c. If β acts nilpotently, there exists an integer k such that
βkx is zero for all x ∈ [M,N ]Γ. Then there is a maximum length for all β-towers, and
so we can still get a parallel vanishing plane f > as+ bw+ c′ on [M,N ]Γ by adjusting
the f -intercept.

Now we turn to case (2). If f0 > as0 + bw0 and β acts non-nilpotently, then there
must exist an element x ∈ [M,N ]Γ for which the classes βkx are not zero on the E∞
page of the Cartan-Eilenberg spectral sequence for every k. Thus no matter how we
move up the existing vanishing plane f > as + bw + c, some β multiples of x will
lie above the plane. Instead, we will find a new vanishing plane f > a′s + b′w + c′

for a′, b′, c′ ∈ R. The new vanishing region f > a′s + b′w + c′ must satisfy the
condition f0 ≤ a′s0 + b′w0 + c′. This plane is spanned by the direction of β and the
intersecting line of the two existing vanishing planes. Hence we can solve to obtain
a′ = mbw0−f0(m−a)

bw0−s0(m−a)
and b′ = bf0−mbs0

bw0−s0(m−a)
.

Remark 3.3.8. In the relevant cases, the starting vanishing regions will have b = 0.
In this case, the 3-dimensional conditions in Theorem 3.3.6 simplify to the following
2-dimensional conditions.

Suppose for some a, c,m, c0 ∈ R with a > 0 and m ≥ f0
s0

> 0, the group

[q∗(M), q∗(N)]C vanishes when f > as + c and also vanishes when f > ms + c0.
Then:

1. if f0 ≤ as0, or β acts nilpotently on [M,N ]Γ, then [M,N ]Γ has a parallel van-
ishing region. That is to say, it vanishes when f > as + c′ for some constant
c′, and also vanishes when f > ms+ c0,

2. if otherwise, then [M,N ]Γ vanishes when f > f0
s0
s+ c′ for some constant c′, and

vanishes when f > ms+ c0.

Remark 3.3.9. Similarly, we could generalize to the statement that the group
[q∗(M), q∗(N)]C vanishes when f > φ(s, w) where φ : R2 → R is a smooth function.
Then the gradient v(−,−) = (∂φ

∂s
(−), ∂φ

∂w
(−)) is a vector field. Now we would like to

consider g = Min
(s0,w0)

|v(s0, w0)| and compare g with f0
s0

and f0
w0
. The conditions can be

rewritten as follows:

1. if f0
s0

≤ g or f0
w0

≤ g, or β acts nilpotently, then [M,N ]Γ has the same vanishing
region translated vertically.

2. if both f0
s0

and f0
w0

> g, and β acts non-nilpotently, then we must modify the

vanishing region of [M,N ]Γ. However, it takes some work to write down a
precise modification, so we omit it here.

Remark 3.3.10. From the cofiber sequence S
hk
0−→ S → S/hk

0 we can take tensor duals
to derive the fiber sequence D(S/hk

0) → S → S. Since D(S/hk
0) ≃ Σ−1,1−k,0S/hk

0, we
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have
[S/hk

0, S]s,f,w = [S,D(S/hk
0)]s,f,w = [S, S/hk

0]s+1,f+k−1,w.

Because S/hk
0 is compact in Stab(AC

∗ ), smashing with some N ∈ Stab(AC
∗ ), we get

[S/hk
0, N ]s,f,w ∼= [S,D(S/hk

0) ∧N ]s,f,w ∼= [S, S/hk
0 ∧N ]s+1,f+k−1,w.

As a result β ∈ [S, S]Γ acts on [M,N ]Γ for compact M ∈ Stab(AC
∗ ), since β acts on

[S,DM ∧N ]Γ.

The group [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]

AC(1)∗
∗,∗,∗ has a single ”lighting flash” pattern

along with two negative h1-towers (see Figure 3.5), so the vanishing region to start
off with is f > c. (We obtain the same vanishing region of

[S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]

AC(1)∗
∗,∗,∗

for each k, since the maps we are taking colimit over are injections by Remark 3.3.5.)

In our case, [M,N ]Γ = [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]

AC(1)∗
∗,∗,∗ , and we will apply Theorem

3.3.6 in the following three cases: (i) β is τ2 of degree (6, 1, 3); (ii) β is ξ2 of degree
(5, 1, 3); (iii) β is ξ21 of degree (3, 1, 2).

Recall that we are working with the Cartan-Eilenberg spectral sequence

[S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]

AC(1)∗ ⊗M2[h30] ⇒ [S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]

AC(2)∗/(ξ21 ,ξ2)

There cannot be any differentials for degree reasons. By Theorem 3.3.6 the element
h30 will bring us a vanishing region f > 1

6
s+ c1 for each k, where c1 is some constant

(we obtain the same constant for all k). Passing to the colimit, we conclude that
[S/(h0, P ),Σ−1,1,0F0/h

∞
1 ]A

C(2)∗/(ξ21 ,ξ2) shares the same vanishing region f > 1
6
s+ c1.

The second step is to consider the normal extension in which we add ξ2, corre-
sponding to the class h21:

E(ξ2) → AC(2)∗/ξ
2
1 → AC(2)∗/(ξ

2
1 , ξ2).

The AC(2)∗/(ξ
2
1 , ξ2)-coaction on E(ξ2) is trivial. We have E2-pages as the first row:

[S/(h0, P ),Σ−1F0/h1]
AC(2)∗/(ξ21 ,ξ2) ⊗M2[h21] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A

C(2)∗/(ξ21 ,ξ2) ⊗M2[h21]

[S/(h0, P ),Σ−1F0/h1]
AC(2)∗/ξ21 // · · · // [S/(h0, P ), F0/h

∞
1 ]A

C(2)∗/ξ21

The spectral sequence collapses at the E2-page. This is because in the May
spectral sequence over AC(2) or AC, there is a differential d1(h30) = h1h21 + h2h20,
but in the group [S/(h0, P ),Σ−1,1,0(Σ−kF0/h

k
1)]

AC(2)∗/(ξ21 ,ξ2), h0 and h2 are zero. As
a result, h21 is also non-nilpotent. For some constant c2, the vanishing region of
[S/(h0, P ),Σ−1,1,0(Σ−kF0/h

k
1)]

AC(2)∗/ξ21 is f > 1
5
s+ c2 for each k according to Theorem

3.3.6, and the same is true for the colimit [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]A

C(2)∗/ξ21 .
Next we consider the Cartan-Eilenberg spectral sequence corresponding to the

extension:
E(ξ21) → AC(2)∗ → AC(2)∗/ξ

2
1.
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Here the class ξ21 corresponds to the class h2 in the May spectral sequence. The
AC(2)∗/ξ

2
1-coaction on E(ξ21) is trivial as well. We have E2-pages as in the first row:

[S/(h0, P ),Σ−1F0/h1]
AC(2)∗/ξ21 ⊗M2[h2] //

��

· · · // [S/(h0, P ), F0/h
∞
1 ]A

C(2)∗/ξ21 ⊗M2[h2]

[S/(h0, P ),Σ−1F0/h1]
AC(2)∗ // · · · // [S/(h0, P ), F0/h

∞
1 ]A

C(2)∗

We do have some non-zero differentials appear. In the previous steps, by intro-
ducing [τ2] = (6, 1, 3) and [ξ2] = (5, 1, 3), which give rise to non-nilpotent elements in
ExtC, we arrived a vanishing region of f > 1

5
s+ c3, where c3 is a constant. However

[ξ21 ] = (3, 1, 2) is nilpotent since h4
2 = 0 in ExtAC(2)∗ and ExtC.

Moving from AC(2)∗ to AC
∗, we have many more elements to introduce. However

those elements won’t satisfy f
s
> 1

5
. By Theorem 3.3.6 (or Remark 3.3.8), for each k,

[S/(h0, P ),Σ−1,1,0(Σ−kF0/h
k
1)]

AC
vanishes if f = 1

5
s + c3. Since the vanishing plane

passes through the point (−6, 0,−1)+3 · (3, 1, 2) = (3, 3, 5), the constant c3 is
12
5
and

the region f > 1
5
s+ 12

5
would be carried through to AC

∗. We conclude that

Proposition 3.3.11. The group [S/(h0, P ),Σ−1,1,0F0/h
∞
1 ]s,f,w has a vanishing region

of f > 1
5
s+ 12

5
.

Note that it is possible for many reasons that the vanishing region we have found
is not optimal. First, we could consider the ”slope” of the motivic weight side f

w

instead of f
s
under certain bounded below conditions. Second, if other elements were

included, more differentials would occur, allowing for a larger vanishing region. More
calculation is required to clarify these cases.

3.4 The motivic periodicity theorem

Let F0 and F01 still be the same as in Definition 3.2.1, so that

[S,Σ−1,1,0F0/h
∞
1 ]s,f,w ∼= [S, F01]s,f,w

when f > 1
2
s + 3. Given a self-map θ on S/hk

0 let us recall the diagram where the
first row is exact:

[S/(hk
0, θ),Σ

−1,1,0F0/h
∞
1 ] // [S/hk

0,Σ
−1,1,0F0/h

∞
1 ] θ //

��

[S/hk
0,Σ

−1,1,0F0/h
∞
1 ]

��

// Σ−1,1,0[S/(hk
0, θ),Σ

−1,1,0F0/h
∞
1 ]

[S,Σ−1,1,0F0/h
∞
1 ]

Pr(−) // [S,Σ−1,1,0F0/h
∞
1 ]

The vertical maps are isomorphisms whenever f > 1
2
s + 3

2
− k due to Corollary

3.2.11. We would like to further restrict the condition to f > 1
2
s + 3 − k in order

to eliminate the indeterminacy. The vanishing condition on [S/(hk
0, θ),Σ

−1,1,0F0/h
∞
1 ],

which is the same as the vanishing condition on [S/(hk
0, θ), F01]s,f,w, tells us whether

θ is an isomorphism.

34



In the previous section, we established the case when k = 1, given in Proposition
3.3.11. We show in Figure 3.6 the (2r+1, 2r, 2r)-periodic pattern for
[S/hk

0,Σ
−1,1,0F0/h

∞
1 ]A

C(1)∗ , where k ≤ 2r. By an analogous computation, one can see
that for a general positive integer k ≤ 2r, the groups [S/(hk

0, P
2r−2

), F01]s,f,w admit a
parallel vanishing region as in the k = 1 case.

s

f

(−1, 0,−1)

(3, k + 1, 1)

· · ·
...

...

(2r+1 + 3, 2r + k + 1, 2r + 2− 1)

Figure 3.6: [S/hk
0,Σ

−1,1,0F0/h
∞
1 ]

AC(1)∗
∗,∗,∗

We have the following lemma for the f -intercept:

Lemma 3.4.7 (Corollary of [36, Lemma 5.4]). Let M,N ∈ Stable(AC
∗ ) with M

compact. Let M1 = M/θ1 be the cofiber of the self-map Σs1,f1,w1M
θ1−→ M , and let

M2 = M/(θ1, θ2) be the cofiber of the self-map Σs2,f2,w2M/θ1
θ2−→ M/θ1. Define M ′

1

and M ′
2 with respect to the self-maps Σs′1,f

′
1,w

′
1M

θ′1−→ M and Σs′2,f
′
2,w

′
2M/θ′1

θ′2−→ M/θ′1
in the same way. Suppose θi and θ′i are parallel, i.e. (si, fi, wi) = λi(s

′
i, f

′
i , w

′
i) where

λi are non-zero real numbers and i = 1, 2.
Further let a, b ∈ R and suppose fi > asi + bwi and f ′

i > as′i + bw′
i for i = 1, 2.

We make the convention that the f -intercept is ∞ if there is no such vanishing plane.
Then the minimal f -intercepts of the vanishing planes parallel to f = as + bw on
[M2, N ] and [M ′

2, N ] agree.

Proof of Lemma 3.4.7. We construct the iterated cofiber L1 = M/(θ1, θ
′
1) and L2 =

M/(θ1, θ2, θ
′
1, θ

′
2). Since fi > asi + bwi and f ′

i > as′i + bw′
i for i = 1, 2, the minimal

f -intercepts for the vanishing planes parellel to f = as+bw agree on [Mi, N ], [M ′
i , N ]

and [Li, N ] by inductively applying Lemma 3.2.9.
Note that the notation for L1 and L2 is ambiguous. The notation does not indicate

that M/θ1 should admit a θ′1 self-map or vice versa. Because of the uniqueness of
(homological) self-maps that Krause has shown in [36, Sec. 4], there is a self-map θ′′1
compatible with both θ1 and θ′1, which acts on M by a power of θ1, and by a power
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of θ′1. We will take L1 to be the cofiber of the self-map θ′′1 . Similarly, there exists a
self-map θ′′2 on L1 that acts on M1 by a power of θ2, and on M ′

1 by a power of θ′2. So
we can set L2 as the cofiber of the self-map θ′′2 .

Remark 3.4.8. Krause’s proof of the uniqueness of self-maps is in the classical
setting, yet for the C-motivic case the proof is analogous.

Remark 3.4.9. The cofiber sequences arising from the Verdier’s axiom and the 3×3
lemma offer an alternative way to view the vanishing condition of [S/(hk

0, P
2r−2

), F01]s,f,w.
Let m,n, l, l′ ∈ N be positive with m ≤ 4l and m+n ≤ 4(l+ l′). We have the following
cofiber sequences:

S/hm
0 → S/hm+n

0 → S/hn
0

S/(hm
0 , P

l+l′) → S/(hm+n
0 , P l+l′) → S/(hn

0 , P
l+l′)

S/(hm
0 , P

l) → S/(hm
0 , P

l+l′) → S/(hm
0 , P

l′).

Passing to the induced long exact sequences in homology, we conclude that for k ≤ 2r,
the groups [S/(hk

0, P
2r−2

), F01]s,f,w admit the same vanishing condition as
[S/(h0, P ), F01]s,f,w.

It follows that for any k ≤ 2r and any self-map θ = P 2r−2
of S/hk

0, the correspond-
ing groups [S/(hk

0, θ), F01] have a vanishing region of f > 1
5
s + 12

5
. Combining with

Theorem 3.2.12, we arrive at the motivic version of Theorem 3.0.1:

Theorem 3.4.10 (Another way of stating Theorem 3.0.3). For r ≥ 2, the Massey
product operation Pr(−) := ⟨hr+1, h

2r

0 ,−⟩ is uniquely defined on Exts,f,w = Hs,f,w(AC)
when s > 0 and f > 1

2
s+ 3− 2r.

Furthermore, for f > 1
5
s+ 12

5
,

Pr : [S, F01]s,f,w
Pr(−)−−−→ [S, F01]s+2r+1,f+2r,w+2r.

is an isomorphism when restricted to the subgroup consisting of elements that are
torsion with respect to both h0 and h1.

Copyright© Ang Li, 2022.
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Chapter 4 Topological realization of AR(1)

Given an A-module M , we say M is realized by X if there is a spectrum X such that
H∗(X) ∼= M as an A-module. Classically, A(1) has 4 different A-module structures,
which are distinguished by the action of Sq4 (as in Figure 1.1, where we depict
a singly-generated free A(1)-module, where each • represents a F2-generator. The
black and blue lines represent the action of Sq1 and Sq2, respectively. The red boxed
lines represent the action of Sq4. Whether or not the dotted red lines exist gives the
4 different A-module structures). And each can be realized as the cohomology of a
spectrum.

The existence and uniqueness of a realization is guaranteed by the R-motivic
Toda realization theorem. The classical Toda realization theorem [53] (see also [14,
Theorem 3.1]), is recast in the modern literature as a special case of Goerss-Hopkins
obstruction theory [25] (when the chosen operad is trivial). This obstruction theory
can be generalized to the R-motivic setting [43], and 4.1 would then be a special case
of such a generalization.

We describe all the 128 AR-module structures on AR(1). The R-motivic Toda
realization theorem indicates that all of them can be realized. We then construct one
specific realization AR

1 of the subalgebra AR(1) using a method of Smith(outlined in
[50, Appendix C]), which constructs new finite spectra from known ones.

4.1 R-motivic Toda realization theorem

The classical Toda realization theorem [53] (see also [14, Theorem 3.1]), is recast
in the modern literature as a special case of Goerss-Hopkins obstruction theory [25]
(when the chosen operad is trivial). This obstruction theory can be generalized to
the R-motivic setting [43], and Section 4.1 would then be a special case of such a
generalization.

More recent work of [48] conceptualizes Goerss-Hopkins obstruction theory in
the general setup of stable ∞-categories with t-structures. If we set C = SpR

2,fin,
A = SHRF2 , and let K to be a finite AR

∗ -comodule in [48, Corollary 4.10], then we get
a sequence of obstruction classes

θn ∈ Ext−2,n+2,0
AR

∗
(K,K) (4.1.1)

for each n ≥ 0, the vanishing of which guarantees the existence of an SHRF2-module
whose homology is isomorphic to K as an AR

∗ -comodule. Since the t-structure in
SpR does not change the motivic weight, the obstruction classes in (4.1.1) lie in the
Ext-groups of motivic weight 0.

If M is a finite MR
2 -free AR-module then K := homMR

2
(M,MR

2 ) is a finite AR
∗ -

comodule,
Ext∗,∗,∗AR

∗
(K,K) ∼= Ext∗,∗,∗AR (M,M),

and therefore, Section 4.1 follows. Alternatively, one can prove Section 4.1 simply by
emulating the classical proof (as exposed in [14, §3]).
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The purpose of this section is to deduce, from the R-motivic Toda realization
theorem (Section 4.1), various weaker forms which are perhaps more convenient for
application purposes. Explicit calculation of Ext∗,∗,∗AR (M,M) can often be difficult, and
one can use a sequence of spectral sequences to approximate these ext groups. Each
such approximation leads to a corresponding weaker form.

4.1.1 Weak R-motivic Toda realization – version (I)

Let M be an AR-module whose underlying MR
2 -module is free and finitely generated.

Let BM denote its MR
2 -basis and DM denote the collection of bidegrees in which there

is an element in BM. For any element x ∈ Ms,w, we let t(x) = s+ w and define

M≥n := MR
2 · {b ∈ BM : t(b) ≥ n}

as the free sub MR
2 -module of M generated by {b ∈ BM : t(b) ≥ n}.

Note that the AR-module structure of M is determined by the action of AR on
the elements of BM and the Cartan formula. This, along with the fact that t(a) ≥ 0
for all a ∈ AR, implies that M≥n are also a sub AR-module of M. Therefore, we get
an AR-module filtration of M

M = M≥k ⊃ M≥k+1 ⊃ · · · ⊃ M≥k+l = 0

such that we for each i there is a short exact sequences

0 M≥i+1 M≥i

⊕
{b∈BM:t(b)=i}

Σ|b|MR
2 0 (4.1.2)

of AR-modules.
A short exact sequence of AR-modules gives a long exact sequence in Ext. By

splicing the long exact sequences induced by (4.1.2), we get an “algebraic” Atiyah-
Hirzebruch spectral sequence

Es′,w′,s,f,w
2 := Bs′,w′

M ⊗ Exts,f,wAR (M,MR
2 ) ⇒ Exts−s′,f,w−w′

AR (M,M) (4.1.3)

and a corresponding weak version of Section 4.1, along with a uniqueness criterion.

Theorem 4.1.4. Let M denote an AR-module whose underlying MR
2 -module is free

and finite. Suppose
Exts−2,f,w

AR (M,MR
2 ) = 0

for f ≥ 3 whenever (s, w) ∈ DM. Then there exists an X ∈ SpR
2,fin such that H∗,∗

R (X) ∼=
M as an AR-module. Further, such a realization is unique if

Exts−1,f,w
AR (M,MR

2 ) = 0

for all f ≥ 2 and (s, w) ∈ DM.
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4.1.2 Weak R-motivic Toda realization – version (II)

For any AR-module M which is MR
2 -free, the quotient M/(ρ) is an AC-module. In

particular,
AR/(ρ) ∼= AC

as a graded Hopf-algebra. Therefore, we have a spectral sequence

ρEs,f,w,i
2 :=

⊕
i≥0 Ext

s+i,f,w+i
AC (M/(ρ),MC

2 ) Exts,f,wAR (M,MR
2 ) (4.1.5)

which is often called the (algebraic) ρ-Bockstein spectral sequence. Thus we get the
following version of the R-motivic Toda realization and uniqueness theorem which is
weaker than Theorem 4.1.4.

Theorem 4.1.6. Let M denote an AR-module whose underlying MR
2 -module is free

and finite. Suppose
Exts−2+i,f,w+i

AC (M/(ρ),MC
2 ) = 0

for f ≥ 3 and all i ≥ 0 whenever (s, w) ∈ DM, then there exists an X ∈ SpR
2,fin such

that H∗,∗
R (X) ∼= M as an AR-module. Further, such a realization is unique if

Exts−1+i,f,w+i
AC (M/(ρ),MC

2 ) = 0

for all f ≥ 2, i ≥ 0 and (s, w) ∈ DM.

4.1.3 Weak R-motivic Toda realization – version (III)

Similarly to the classical case, the C-motivic Steenrod algebra enjoys an increasing
filtration called the May filtration (see [20]), which is easier to express on its dual.
On AC

∗ , the May filtration is induced by assigning the May weights

m(τi−1) = m(ξ2j

i ) = 2i− 1

and extending it multiplicatively. The associated graded is an exterior algebra

gr(AC) ∼= ΛMC
2
(ξi,j : i ≥ 1, j ≥ 0), (4.1.7)

where ξi,0 represents (τi−1)∗ and (ξi,j+1)∗ represents (ξ2j

i )∗ in the associated graded.
When M = MR

2 in (4.1.10), then

MayE∗,∗,∗,∗
1,MC

2

∼= MC
2 [hi,j : i ≥ 1, j ≥ 0], (4.1.8)

where hi,j represents the class ξi,j. The (s, f, w,m)-degrees of these generators are
given by

|hi,j| =
{

(2i − 2, 1, 2i−1 − 1, 2i− 1) if j = 0, and,
(2j(2i − 1)− 1, 1, 2j−1(2i − 1), 2i− 1) otherwise.
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Remark 4.1.9. After reindexing the May filtration of (4.1.8) by setting the May
weight of hi,j equal to i, it is consistent with the indexing used in [20].

When M is a cyclic AR-module, M/(ρ) is also cyclic as an AC-module, thus the
May filtration induces a filtration on M/(ρ). Thus, we get a corresponding May
spectral sequence

MayEs,f,w,m
1,M/(ρ) := Exts,f,w,m

gr(AC) (gr(M/(ρ)),MC
2 ) ⇒ Exts,f,wAC (M/(ρ),MC

2 ) (4.1.10)

computing the input of the ρ-Bockstein spectral sequence (4.1.5). Thus we can for-
mulate a version of R-motivic Toda realization theorem which is even weaker than
Theorem 4.1.6.

Theorem 4.1.11. Let M denote an cyclic AR-module whose underlying MR
2 -module

is free and finite. Suppose
MayEs−2+i,f,w+i,∗

1,M/(ρ) = 0.

for f ≥ 3 and all i ≥ 0 whenever (s, w) ∈ DM. Then there exists an X ∈ SpR
2,fin such

that H∗,∗
R (X) ∼= M as an AR-module. Further, such a realization is unique if

MayEs−1+i,f,w+i,∗
1,M/(ρ) = 0

for f ≥ 2, i ≥ 0 and (s, w) ∈ DM.

4.2 The 128 AR-module structure

Our result concerns realizations of AR(1).

Theorem 4.2.1. There exists 128 different AR-modules whose underlying AR(1)-
module structures are free on one generator, all of which can be realized as H∗,∗

R (X)
for some X ∈ SpR

2,fin.

x0,0

x1,0

x2,1

x3,1

y6,2
y5,2

y4,1
y3,1

Figure 4.1: The AR(1) as an AR(1)-module

Notation 4.2.2. We fix an MR
2 -basis

{x0,0, x1,0, x2,1, x3,1, y3,1, y4,1, y5,2, y6,2}
of AR(1) as in Figure 4.7 (where we depict a singly-generated free AR(1)-module,
where each • represents a MR

2 -generator. The black and blue lines represent the action
of motivic Sq1 and Sq2, respectively. A dotted line represents that the action hits the
τ -multiple of the given MR

2 -generator), so that
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• Sq1(x0,0) = x1,0

• Sq1(x2,1) = x3,1

• Sq1(y3,1) = y4,1

• Sq1(y5,2) = y6,2

• Sq2(x0,0) = x2,1

• Sq2(x1,0) = y3,1

• Sq2(x2,1) = τy4,1

• Sq2(x3,1) = y5,2

• Sq2(y4,1) = y6,2.

We now record all 128 AR-modules of Theorem 4.2.1 using the basis above.

Theorem 4.2.3. For every vector (α03, β03, β14, β06, β25, β26, γ36) ∈ V = F7
2 and

j24 = β03γ36 + α03(β25 + β26),

there exists a unique isomorphism class of AR-module structures on AR(1) determined
by the formulas

(i) Sq4(x0,0) = β03(ρ · y3,1) + (1 + β03 + β14)(τ · y4,1) + α03(ρ · x3,1)

(ii) Sq4(x1,0) = y5,2 + β14(ρ · y4,1)

(iii) Sq4(x2,1) = β26(τ · y6,2) + β25(ρ · y5,2) +j24(ρ
2 · y4,1)

(iv) Sq4(x3,1) = (β25 + β26)(ρ · y6,2)

(v) Sq4(y3,1) = γ36(ρ · y6,2)

(vi) Sq8(x0,0) = β06(ρ
2 · y6,2).

Further, any AR-module whose underlying AR(1)-module is free on one generator is
isomorphic to one listed above.

Notation 4.2.4. For any vector v ∈ V, we denote the corresponding AR-module in
Theorem 4.2.3 by AR

v (1). By AR
1 [v], we denote an object of SpR

2,fin, whose cohomology
is isomorphic to AR

v (1) as an AR-module. We let

AR
1 := {AR

1 [v] : v ∈ V}/(weak equivalence)

denote the set of equivalence classes of finite R-motivic spectra whose cohomology are
free of rank 1 over AR(1).

We begin by proving Theorem 4.2.3, which identifies all possible AR-module struc-
tures on AR(1) up to isomorphism.

Proof of Theorem 4.2.3. Note that the Cartan formula of AR and finiteness of AR(1)
imply that the AR-module structure on AR(1) is determined once the action of Sq4

and Sq8 are specified on its MR
2 -generators. The following are possible Sq4 and Sq8-

actions on the MR
2 -module generators. As can be seen in Figure 4.2, there is no room
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0

1

2

3

4

x0,0 x1,0

x2,1

x3,1
y3,1

y4,1

y5,2 y6,2

Figure 4.2: The free MR
2 -module AR(1)

for other possible actions.

Sq4(x0,0) = β03(ρ · y3,1) + β04(τ · y4,1) + α03(ρ · x3,1)

Sq4(x1,0) = β14(ρ · y4,1) + β15(y5,2)

Sq4(x2,1) = j24(ρ
2 · y4,1) + β25(ρ · y5,2) + β26(τ · y6,2)

Sq4(x3,1) = β36(ρ · y6,2)
Sq4(y3,1) = γ36(ρ · y6,2)
Sq8(x0,0) = β06(ρ

2 · y6,2)

The Adem relation Sq2Sq3 = Sq5 + Sq4Sq1 + ρSq3Sq1 (see Proposition B.1), when
applied to x0,0 and x2,1, yields β15 = 1, β03 + β04 + β14 = 1 and β25 + β26 = β36. The
equation

j24 = β03γ36 + α03β36,

is forced by the Adem relation Sq4Sq4 = Sq2Sq4Sq2+τSq3Sq4Sq1 when applied to x0,0.
This exhausts all constraints imposed by Adem relations in these dimensions.

In Theorem 4.2.3, there are exactly seven free variables taking values in F2, and
therefore, there are exactly 128 different AR-module structure on AR(1). Thus, in
order to complete the proof of Theorem 4.2.1, we realize these AR-modules as spec-
tra using Theorem 4.1.11, which is a weak form of the R-motivic Toda realization
theorem.

Proof of Theorem 4.2.1. Firstly, note that AR
v (1) is a cyclic AR-module for all v ∈ V ,

therefore AC
v (1) := AR

v (1)/(ρ) admits a May filtration. Secondly, note that

gr(AC
v (1))

∼= ΛMC
2
(ξ1,0, ξ1,1, ξ2,0)
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as an gr(AC)-module (see (4.1.7) for notation). Consequently,

MayE∗,∗,∗,∗
1,AC

v(1)
∼= MayE∗,∗,∗,∗

1,MC
2
/(h1,0, h1,1, h2,0) ∼=

MC
2 [hi,j : i ≥ 1, j ≥ 0]

(h1,0, h1,1, h2,0)
. (4.2.3)

In the notation of Subsection 4.1.3

DAR(1) = {(0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 2), (6, 2)}

By directly inspecting the (s, f, w)-degree of MayE∗,∗,∗,∗
1,AC

v(1)
, we see that the condition

necessary for existence in Theorem 4.1.11 is satisfied. Hence, the result.

Remark 4.2.4. The vanishing region of MayE∗,∗,∗,∗
1,AC

v(1)
does not preclude the possibility

of having a nonzero element in Ext−1,2,0
AR (M,M). We suspect (even after running the

differentials in (4.1.3) and (4.1.5)), that the above group is nonzero for a given AR-
module structure on AR(1), and that there are, up to homotopy, multiple realizations
as R-motivic spectra.

4.3 A realization of AR(1)

4.3.1 The spectrum AR
1 via Smith’s construction

Consider the R-motivic question mark complex QR. Let Σn act on Q∧n
R by permuta-

tion. Any element e ∈ Z(2)[Σn] produces a canonical map

ẽ : Q∧n
R Q∧n

R .

Now let e be the idempotent

e = 1+(1 2)−(1 3)−(1 3 2)
3

in Z(2)[Σ3], and denote by e the resulting idempotent of F2[Σ3]. For an R-motivic
spectrum X with action of Σn, we then define

ẽ(X) = hocolim
−→

(X
ẽ−→ X

ẽ−→ . . . ),

and we employ the same notation in the C2-equivariant or classical contexts. We will
use that for a spectrum X with action of Σn, we have an isomorphism

H∗(ẽX;F2) ∼= eH∗(X;F2). (4.3.1)

We record the following important property of e which is a special case of [50, Theorem
C.1.5].

Lemma 4.3.2. If V is a finite-dimensional F2-vector space, then e(V ⊗3) = 0 if and
only if dimV ≤ 1.
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The following result, which gives the values of e on induced representations, is
also straightforward to verify:

Lemma 4.3.3. Suppose that W = IndΣ3
C2
F2 is induced up from the trivial representa-

tion of a cyclic 2-subgroup. Then e(W ) ∼= F2. Moreover, for the regular representation
F2[Σ3] = IndΣ3

e F2, we have dim e(F2[Σ3]) = 2.

We also record the fact that when dimF2 V = 2 and dimF2 W = 3 then

dimF2 e(V
⊗3) = 2 and dimF2 e(W

⊗3) = 8, (4.3.4)

as we will often use this.
The bottom cell of ẽ(Q∧3

R ) is in degree (1, 0), and we define

AR
1 := Σ−1,0ẽ(Q∧3

R ) = Σ−1,0hocolim
−→

(Q∧3
R

ẽ−→ Q∧3
R

ẽ−→ . . . ). (4.3.5)

The purpose of this section is to prove the following theorem.

Theorem 4.3.6. The spectrum AR
1 is a type (2, 1) complex whose bi-graded cohomol-

ogy H∗,∗(AR
1 ) is a free AR(1)-module on one generator.

Let AC2
1 := β(AR

1 ) and QC2 := β(QR). Note that we have a C2-equivariant split-
ting

Q∧3
C2

≃ ẽ(Q∧3
C2
) ∨ (1− ẽ)(Q∧3

C2
)

which splits the underlying spectra as well as the geometric fixed-points, as both Φe

and ΦC2 are additive functors.
We will identify the underlying spectrum Φe(AC2

1 ) by studying the A-module
structure of its cohomology with F2-coefficients. Firstly, note that

Φe(AC2
1 ) ≃ Σ−1ẽ(Φe(Q∧3

C2
)) ≃ Σ−1ẽ(Q∧3),

where Q is the classical question mark complex, whose HF2-cohomology as an A-
module is well understood. It consists of three F2-generators a, b, and c in internal
degrees 0, 1, and 3, such that Sq1(a) = b and Sq2(b) = c are the only nontrivial
relations, as displayed in Figure 4.3.

H∗(Q;F2) =

a

b

c

Figure 4.3: The A-structure of H∗(Q;F2)

Because of the Kunneth isomorphism and the fact that the Steenrod algebra is
cocommutative, we have an isomorphism of A-modules

H∗+1(Φe(AC2
1 );F2) ∼= H∗(ẽ(Q∧3);F2) ∼= e(H∗(Q;F2)

⊗3),

where the second isomorphism is (4.3.1).
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Lemma 4.3.4. The underlying A(1)-module structure of H∗(Φe(AC2
1 );F2) is free on

a single generator.

Proof. Let us denote the A-module H∗(Q;F2) by V. Since dimM(V, Qi) = 1 for i ∈
{0, 1}, it follows from the Kunnneth isomorphism of Qi-Margolis homology groups,
cocommutativity of the Steenrod algebra, and Lemma 4.3.2 that

M(e(V⊗3), Qi) = e(M(V, Qi)
⊗3) = 0

for i ∈ {0, 1}. It follows from [3, Theorem 3.1] that H∗(Φe(AR
1 );F2) is free as an

A(1)-module. It is singly generated because of (4.3.4).

We explicitly identify the image of e : H∗(Q;F2)
⊗3 −→ H∗(Q;F2)

⊗3 in Figure 4.4.

baa+ aba

bab+ abb

caa+ aca

cab+ cba+ bca+ acb

cbc+ bcc
cac+ acc

cbb+ bcb

cab+ bac+ acb+ abc

Figure 4.4: The A-module structure of H∗(Φe(AC2
1 );F2)

Remark 4.3.5. Using the Cartan formula, we can identify the action of Sq4 on
Φe(AC2

1 ). We notice that its A-module structure is isomorphic to A1[10] of [15].
Since such an A-module is realized by a unique 2-local finite spectrum, we conclude

Φe(AC2
1 ) ≃ A1[10]

and is of type 2.

Our next goal is to understand the homotopy type of the geometric fixed-point
spectrum ΦC2(AC2

1 ). First observe that the geometric fixed-points of the C2-equivariant
question mark complex QC2 is the exclamation mark complex

E := ≃ S0 ∨ ΣM2(1)!

This is because ΦC2(h) = 0 and ΦC2(η1,1) = 2. Secondly,

H∗+1(ΦC2(AC2
1 );F2) ∼= H∗(ẽ(E∧3);F2) ∼= e(H∗(E ;F2)

⊗3)
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yxx+ xyx

zxx+ xzx xyy + yxy

zxy + xzy + yxz + xyz

zyz + yzz

zyy + yzyxzz + zxz

xzy + zxy + zyx+ yzx

Figure 4.5: The A-module structure of H∗(ΦC2(AC2
1 );F2).

is an isomorphism of A-modules, where again the second isomorphism is (4.3.1).
We explicitly calculate the A-module structure of H∗(ΦC2(AC2

1 );F2) from the above
isomorphism and record it in Figure 4.5 as a subcomplex of H∗(E ;F2)

⊗3, with the
convention that x, y and z are generators in H∗(E ;F2) in degree 0, 1 and 2 respectively.

Lemma 4.3.6. There is an equivalence

ΦC2(AC2
1 ) ≃ M2(1) ∨ Σ

(
M2(1) ∧M2(1)

)
∨ Σ3M2(1).

In particular, ΦC2(AC2
1 ) is a type 1 spectrum.

Proof. From Figure 4.5, it is clear that we have an isomorphism of A-modules

H∗(ΦC2(AC2
1 );F2) ∼= H∗

(
M2(1) ∨ Σ

(
M2(1) ∧M2(1)

)
∨ Σ3M2(1);F2

)
.

It is possible that the A-module H∗(ΦC2(AC2
1 );F2) may not realize to a unique finite

spectrum (up to weak equivalence). However, other possibilities can be eliminated
from the fact that E∧3 splits Σ3-equivariantly into four components:

E∧3 ≃ S ∨
(

3∨

i=1

ΣM2(1)

)
∨
(

3∨

i=1

Σ2M2(1)
∧2

)
∨ Σ3M2(1)

∧3.

The idempotent ẽ annihilates S ≃ S∧3, and Lemma 4.3.3 implies that

ẽ

(
3∨

i=1

ΣM2(1)

)
≃ ΣM2(1) and

ẽ

(
3∨

i=1

Σ2M2(1) ∧M2(1)

)
≃ Σ2M2(1) ∧M2(1).

Similarly, we see using (4.3.4) that

H∗ (ẽ
(
M2(1)

∧3)) ∼= e
(
H∗ (M2(1))

⊗3) ∼= H∗(ΣM2(1)).

Therefore, as an A-module

H∗ (ẽ
(
Σ3M2(1)

∧3)) ∼= H∗(Σ4M2(1)).
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Since, the A-module H∗(M2(1)) has a unique lift as a finite spectrum up to homotopy
(also see Remark 4.3.7), we conclude ẽ (Σ3M2(1)

∧3) ≃ Σ4M2(1).
As ΦC2(AC2

1 ) is the desuspension of ẽ(E∧3), the result follows.

Remark 4.3.7. It is well-known that if H∗(X) ∼= A(0) ∼= H∗(M2(1)) as an A-module
and X is a 2-local finite spectrum, then X ≃ M2(1). Firstly note that the group
Ext∗,∗A (A(0),A(0)) vanishes in stem equal to −1 and cohomological degree at least 2.
It follows that the identity map A(0) → A(0), which is a nonzero element in degree
(0, 0) in the E2-page of the Adams spectral sequence

Es,t
2 := Exts,tA (H∗(M2(1)),H

∗(X)) ⇒ [X,M2(1)]t−s,

survives to produce a map from X to M2(1). This map, by construction, induces an
isomorphism in homology. Therefore, by Whitehead’s theorem it is an equivalence
(also see [14, § 5]).

Next, we analyze the AR-module structure of H∗,∗(AR
1 ). We begin by recalling

some general properties of the cohomology of motivic spectra.
If X, Y ∈ SpR

2,fin such that H∗,∗(X) is free as a left MR
2 -module, then we have a

Kunneth isomorphism [22, Proposition 7.7]

H∗,∗(X ∧ Y ) ∼= H∗,∗(X)⊗MR
2
H∗,∗(Y ) (4.3.8)

as the relevant Kunneth spectral sequence collapses. Further, if H∗,∗(Y ) is free as a
left MR

2 -module, then so is H∗,∗(X ∧ Y ). The AR-module structure of H∗,∗(X ∧ Y )
can then be computed using the Cartan formula. The comultiplication map of AR

is left MR
2 -linear, coassociative and cocommutative [54, Lemma 11.9], which is also

reflected in the fact that its MR
2 -linear dual is a commutative and associative algebra.

Thus, when H∗,∗(X) is a free left MR
2 -module, the elements of F2[Σn] act on

H∗,∗(X∧n) ∼= H∗,∗(X)⊗MR
2
· · · ⊗MR

2
H∗,∗(X)

via permutation and commute with the action of AR. This also implies that F2[Σn]
also acts on

H∗,∗(X∧n)/(ρ, τ) ∼= H∗,∗(X)/(ρ, τ)⊗ · · · ⊗ H∗,∗(X)/(ρ, τ)

and commutes with the action of AR//MR
2 . From the above discussion we may con-

clude that
H∗,∗(AR

1 )
∼= Σ−1e(H∗,∗(QR)

⊗3) (4.3.9)

is an isomorphism of AR-modules.
We will also rely upon the following important property of the action of the

motivic Steenrod algebra on the cohomology of a motivic space (as opposed to a
motivic spectrum):

47



Remark 4.3.10 (Instability condition for R-motivic cohomology). If X is an R-
motivic space then H∗,∗(X) admits a ring structure, and, for any u ∈ Hn,i(X), the
R-motivic squaring operations obey the rule

Sq2i(u) =

{
0 if n < 2i
u2 if n = 2i.

This is often referred to as the instability condition.

To understand the AR-module structure of H∗,∗(QR), we first make the follow-
ing observation regarding H∗,∗(CR(h)) (as CR(h) is a sub-complex of QR) using an
argument very similar to [20, Lemma 7.4].

Proposition 4.3.11. There are two extensions of AR(0) to an AR-module, and these
AR-modules are realized as the cohomology of CR(h) and CR(2).

0 1 2 3 4 5

0

1

2

3

y0,0 y0,1

0 1 2 3 4 5

0

1

2

3

y0,0 y0,1

H∗,∗
R (CR(h)) H∗,∗

R (CR(2))

Figure 4.6: H∗,∗
R (CR(h)) and H∗,∗

R (CR(2))

Proof. For degree reasons, the only choice in extending AR(0) to an AR-module is
the action of Sq2 on the generator in bidegree (0, 0). We write y0,0 for the generator
in degree (0, 0) and y1,0 for Sq1(y0,0) in (cohomological) bidegree (1, 0). The two
possible choices are

• Sq2(y0,0) = 0 and

• Sq2(y0,0) = ρ · y1,0.

We can realize the degree 2 map as an unstable map S1,0 −→ S1,0, and we will
write CR(2)u for the cofiber. We deduce information about the AR-module structure
of H∗,∗(CR(2)) by analyzing the cohomology ring of S1,1∧CR(2)u using the instability
condition of Remark 4.3.10. First, note that in

H∗,∗(S1,1) ∼= MR
2 · ι1,1

we have the relation ι21,1 = ρ · ι1,1 [54, Lemma 6.8]. Also note that

H∗,∗((CR(2)u)+) ∼= MR
2 [x]/(x

3)
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where x is in cohomological degrees (1, 0). Therefore, in

H∗,∗(S1,1 ∧ CR(2)u) = MR
2 · ι1,1 ⊗MR

2
MR

2 {x, x2}

the instability condition implies

Sq2(ι1,1 ⊗ x) = ι21,1 ⊗ x2 = ρ · ι1,1 ⊗ x2.

Here the space-level cohomology class x2 corresponds to the spectrum-level class y1,0.
Therefore, Sq2(y0,0) = ρ · y1,0 in H∗,∗(CR(2)). This is also reflected in the fact that
multiplication by 2 is detected by h0+ρh1 in the R-motivic Adams spectral sequence
[20, §8].

On the other hand h is the ‘zeroth R-motivic Hopf map’ detected by the element
h0 in the motivic Adams spectral sequence. It follows that Sq2(y0,0) = 0.

In order to express the AR-module structure on H∗,∗(X) for a finite spectrum X,
it is enough to specify the action of AR on its left MR

2 -generators as the action of τ
and ρ multiples are determined by the Cartan formula.

Example 4.3.7. Let {y0,0, y1,0} ⊂ H∗,∗(CR(h)) denote a left MR
2 -basis of H

∗,∗(CR(h)).
The data that

• Sq1(y0,0) = y1,0

• Sq2(y0,0) = 0

completely determines the AR-module structure of H∗,∗(CR(h)).

Proposition 4.3.8. H∗,∗(QR) is a free MR
2 -module generated by a, b and c in coho-

mological bidegrees (0, 0), (1, 0) and (3, 1), and the relations

1. Sq1(a) = b,

2. Sq2(b) = c,

3. Sq4(a) = 0.

completely determine the AR-module structure of H∗,∗(QR).

Proof. H∗,∗(QR) is a free MR
2 -module because the attaching maps of QR induce trivial

maps in H∗,∗(−). The first two relations can be deduced from the obvious maps

1. CR(h) → QR

2. QR → Σ1,0CR(η1,1)

which are respectively surjective and injective in cohomology.
Let hu : S3,2 → S3,2 and ηu1,1 : S

3,2 → S2,1 denote the unstable maps that stabilize
to h and η1,1, respectively. The unstable R-motivic space Qu

R (which stabilizes to QR)
can be constructed using the fact that the composite of the unstable maps

S4,3 S3,2 S3,2
Σ1,1ηu1,1 hu

49



is null. Thus H∗,∗(Qu
R) consists of three generators au, bu and cu in bidegrees (3, 2),

(4, 2) and (6, 3). It follows from the instability condition that Sq4(au) = 0.

Proof of Theorem 4.3.6. From Remark 4.3.5 and Lemma 4.3.6, we deduce that AR
1

is a type (2, 1) complex. To show that the bi-graded R-motivic cohomology of AR
1 is

free as an AR(1)-module, we make use of Corollary 2.2.5.
Since H∗,∗(AR

1 ) is a summand of a free MR
2 -module, it is projective as an MR

2 -
module. In fact, H∗,∗(AR

1 ) is free, as projective modules over (graded) local rings are
free. Also note that the elements

Q0,P
1

1,Q1 ∈ AR(1)/(ρ, τ)

are primitive. Hence we have a Kunneth isomorphism in the respective Margolis
homologies, in particular we have,

M(H∗,∗(AR
1 )/(ρ, τ), x) = e(M(H∗,∗(QR)/(ρ, τ), x)

⊗3)

for x ∈ {Q0,P
1

1,Q1}. Since dimF2 M(H∗,∗(QR)/(ρ, τ), x) = 1 for all x ∈ {Q0,P
1

1,Q1},
by Lemma 4.3.2

M(AR
1 /(ρ, τ), x) = 0

for x ∈ {Q0,P
1

1,Q1}. Thus, by Corollary 2.2.5 we conclude that H∗,∗(AR
1 ) is a free

AR(1)-module. A direct computation shows that

dimF2 H
∗,∗(AR

1 )/(ρ, τ) = 8,

hence H∗,∗(AR
1 ) is AR(1)-free of rank one.

Using the description (4.3.9) and Cartan formula we make a complete calculation
of the AR-module structure of H∗,∗(AR

1 ). Let a, b, c ∈ H∗,∗(QR) as in Proposition 4.3.8.
In Figure 4.7 we provide a pictorial representation with the names of the generators
that are in the image of the idempotent e. For convenience we relabel the generators
in Figure 4.7, where the indexing on a new label records the cohomological bidegrees
of the corresponding generator. The following result is straightforward, and we leave
it to the reader to verify.

Lemma 4.3.9. In H∗,∗(AR
1 ), the underlying AR(1)-module structure, along with the

relations

1. Sq4(v0,0) = τ · w4,1,

2. Sq4(v1,0) = w5,2,

3. Sq4(v2,1) = 0,

4. Sq4(v3,1) = 0 = Sq4(w3,1),

5. Sq8(v0,0) = 0,

completely determine the AR-module structure.
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baa+ aba = v0,0

bab+ abb = v1,0

v2,1 = caa+ aca

v3,1 = cab+ cba+ bca+ acb

cbc+ bcc = w6,2

w5,2 = cac+ acc

cbb+ bcb = w4,1

cab+ bac+ acb+ abc = w3,1

Figure 4.7: The AR-module structure of H∗,∗(A1)

4.3.2 The Betti realization of AR
1

Under the Betti-realization map

β∗ : π∗,∗HRF2
∼= F2[ρ, τ ] π⋆HF2 (4.3.8)

ρ 7→ aσ and τ 7→ uσ. Since the functor β is symmetric monoidal and β(HRF2) = HF2,
the i-th R-motivic squaring operations maps to the i-th RO(C2)-graded squaring
operations under the map

β∗ : AR AC2 .

Hence, H⋆
C2
(AC2

1 [v]) is MC2
2 -free (as H∗,∗

R (AR
1 [v]) is MR

2 -free) and its AC2-module struc-
ture is essentially given by Theorem 4.2.3 (after replacing Sqi with Sqi and MR

2 -basis
elements by its image under β∗).

Corollary 4.3.9. There exists 128 different AC2-modules whose underlying AC2(1)-
module structures are free on one generator, all of which can be realized as the
RO(C2)-graded cohomology of a 2-local finite C2-spectrum.

Remark 4.3.10. The map β∗ of (4.3.8) is only an injection with cokernel the sum-
mand Θ{u−i

σ a−j
σ : i, j ≥ 0} of MC2

2 . In general, for an AR(1)-module MR, the number
of AC2-module structures on β(MR) can be strictly larger than the number of AR-
module structures on MR. But this is not the case when MR = AR

v (1) simply for
degree reasons, therefore Corollary 4.3.9 holds.

As discussed in Example 2.1.25, the restriction map

Φe
∗ : M

C2
2 F2

sends aσ 7→ 0, uσ 7→ 1, and Θ 7→ 0. Thus, when H⋆
C2
(E) is MC2

2 -free, Φe
∗ is simply

“setting aσ = 0, uσ = 1, and Θ = 0”. This observation, along with Theorem 2.1.23,
allows us to completely deduce the A-module structure of H∗(Φe(AR

v (1))) from Theo-
rem 4.2.3. Together with the fact that the A-module structures on A(1) are uniquely-
realized, our observations yield the following theorem, where the notation A1[i, j] is
adopted from [15].
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Theorem 4.3.11. For v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V (as in Theorem 4.2.3),

Φe(AC2
1 [v]) ≃ A1[1 + β03 + β14, β26].

Now we shift our attention towards understand the geometric fixed-points of
AC2

1 [v]. As discussed in Example 2.1.27, the modified geometric fixed-points functor

Φ̂C2∗ : MC2
2 F2

sends aσ 7→ 1, uσ 7→ 0, and Θ 7→ 0. Thus, when H⋆
C2
(E) is MC2

2 -free, Φ̂C2∗ is sim-
ply “setting aσ = 1, uσ = 0, and Θ = 0”. This, along with Theorem 4.2.3 and
Theorem 2.1.24, gives the following.

Notation 4.3.12. Because H⋆
C2
(AC2

1 [v]) isMC2
2 -free, the HF2-cohomology of ΦC2AC2

1 [v]

consists of eight F2-generators, all of which are in the image of Φ̂C2∗. We let

s0 := Φ̂C2∗(x0,0), s1a := Φ̂C2∗(x2,1), s1b := Φ̂C2∗(x1,0), s2 := Φ̂C2∗(y3,1)

t2 := Φ̂C2∗(x3,1), t3a := Φ̂C2∗(y5,2), t3b := Φ̂C2∗(y4,1), t4 := Φ̂C2∗(y6,2).

Note that |si(−)| = |ti(−)| = i.

Theorem 4.3.13. Let v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V, and let

j24 = β03γ36 + α03(β25 + β26)

as in Theorem 4.2.3. The A-module structure on H∗(ΦC2AC2
1 [v]) is determined by the

following relations, as depicted in Figure 4.8:

• Sq1(s0) = s1a

• Sq1(s1b) = s2

• Sq1(t2) = t3a

• Sq1(t3b) = t4

• Sq2(s0) = β03s2 + α03t2

• Sq2(s1a) = β25t3a +j24t3b

• Sq2(s1b) = t3a + β14t3b

• Sq2(s2) = γ36t4

• Sq2(t2) = (β25 + β26)t4

• Sq4(s0) = β06t4.

We find Theorem 2.1.23 and Theorem 2.1.24 very handy for computational pur-
poses. These results can be applied to understand the RO(C2)-graded squaring op-
erations on the cohomology of a wide variety of C2-spectra whose underlying and
geometric fixed-point spectra are known. Alternatively, one can identify the action
of the classical Steenrod algebra on the cohomology of the underlying as well as
the geometric fixed-points of a C2-spectrum from the knowledge of RO(C2)-graded
Steenrod operations. We apply Theorem 2.1.23 and Theorem 2.1.24 to identify the
A-module structure of the underlying and the geometric fixed-points of AC2

1 [v] (see
Theorem 4.3.11 and Theorem 4.3.13).
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α 0
3

β0
3

β 2
5

j24

β 1
4

γ 3
6β2

5
+
β2

6

s0

s1a
s1b

s2t2

t3a
t3b

t4

β06

Figure 4.8: The A-module H∗(ΦC2AC2
1 [v])

In Figure 4.9, we provide the A-module structure of the underlying and the geo-
metric fixed points of AC2

1 [v] for selected values of v ∈ V . We express Sq1, Sq2 and
Sq4 using black, blue, and red lines respectively.
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Figure 4.9: Some underlying and fixed A-modules of AC2
1

v ∈ V H∗(Φe(AC2
1 [v])) H∗(ΦC2AC2

1 [v]) Cofiber of

(0, 0, 1, 0, 0, 0, 0) v : Σ2,1Y(h,1) → Y(h,1)

(1, 1, 0, 0, 0, 0, 1) v : Σ2,1Y(2,1) → Y(h,1)

(0, 1, 0, 1, 0, 1, 0) v : Σ2,1Y(2,1) → Y(2,1)

(1, 0, 0, 0, 0, 1, 1) v : Σ2,1Y(h,1) → Y(2,1)

(0, 0, 0, 1, 0, 1, 0) v : Σ2,1Y(2,1) → Y(h,1)

(1, 0, 0, 0, 0, 0, 0) v : Σ2,1Y(h,1) → Y(2,1)

(1, 0, 0, 0, 0, 0, 1) v : Σ2,1Y(2,1) → Y(2,1)

(1, 1, 1, 1, 1, 0, 1) v : Σ2,1Y(2,1) → Y(2,1)
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Remark 4.3.10 (Appearance of the Joker). We note that the A(1)-module

,

often called the Joker, is a subcomplex of the geometric fixed point of AR
1 [v] if and

only if j24 = 1. Further, when j24 = 1 then in (5.1.2), ϵ and δ cannot both equal h.
This can easily be derived from Theorem 4.2.3 and Theorem 2.1.24.

Copyright© Ang Li, 2022.
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Chapter 5 R-motivic selfmap

Classically any non-contractible finite p-local spectrum admits a periodic vn-selfmap
for some n ≥ 0. This is a consequence of the thick-subcategory theorem [34, Theorem
7], aided by a vanishing line argument [34, §4.2]. In the classical case all the thick
tensor ideals of Spp,fin (the homotopy category of finite p-local spectra) are also prime
(in the sense of [4]). The thick tensor-ideals of the homotopy category of cellular
motivic spectra over C or R are not completely known (but see [31, 36]). However,
one can gather some knowledge about the prime thick tensor-ideals in Ho(SpR

2,fin) (the
homotopy category of 2-local cellular R-motivic spectra) through the Betti realization
functor

β : Ho(SpR
2,fin) Ho(SpC2

2,fin)

using the complete knowledge of prime thick subcategories of Ho(SpC2
2,fin) [5].

The prime thick tensor-ideals of Ho(SpC2
2,fin) are essentially the pull-back of the

classical thick subcategories along the two functors, the geometric fixed-point functor

ΦC2 : Ho(SpC2
2,fin) Ho(Sp2,fin)

and the forgetful functor

Φe : Ho(SpC2
2,fin) Ho(Sp2,fin).

Let Cn denote the thick subcategory of Ho(Sp2,fin) consisting of spectra of type at
least n. The prime thick subcategories,

C(e, n) = (Φe)−1(Cn) and C(C2, n) = (ΦC2)−1(Cn),

are the only prime thick subcategories of Ho(SpC2
2,fin).

Definition 5.0.1. We say a spectrum X ∈ Ho(SpC2
2,fin) is of type (n,m) if Φe(X) is

of type n and ΦC2(X) is of type m.

For a type (n,m) spectrum X, a self-map f : X → X is periodic if and only if at
least one of {Φe(f),ΦC2(f)} are periodic (see [6, Proposition 3.17]).

Definition 5.0.2. Let X ∈ Ho(SpC2
2,fin) be of type (n,m). We say a self-map f : X →

X is

(i) a v(n,m)-selfmap of mixed periodicity (i, j) if Φe(f) is a vn-selfmap of periodicity
i and ΦC2(f) is a vm-selfmap of periodicity j,

(ii) a v(n,nil)-selfmap of periodicity i if Φe(f) is a vn-selfmap of periodicity i and
ΦC2(f) is nilpotent, and,
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(iii) a v(nil,m)-selfmap of periodicity j if Φe(f) is a nilpotent self-map and ΦC2(f) is
a vm-selfmap of periodicity j.

Example 5.0.3. The sphere spectrum SC2 is of type (0, 0). The degree 2 map is a
v(0,0)-selfmap. In general, if we consider the vn-selfmap of a type n spectrum with
trivial action of C2, then the resultant equivariant self-map is a v(n,n)-selfmap.

Example 5.0.4. Let S1,1
C2

denote the C2-equivariant sphere which is the one-point
compactification of the real sign representation. The unstable twist-map

ϵu : S1,1
C2

∧ S1,1
C2

S1,1
C2

∧ S1,1
C2

stabilizes to a nonzero element ϵ ∈ π0,0(SC2). Let h = 1 − ϵ ∈ π0,0(SC2) be the
stabilization of the map

hu = 1− ϵu : S3,2
C2

S3,2
C2
.

Note that on the underlying space ϵ is of degree −1, while on the fixed points it is the
identity. Therefore Φe(h) is multiplication by 2, whereas ΦC2(h) is trivial. Thus h is
a v(0,nil)-selfmap, and the cofiber CC2(h) is of type (1, 0).

Example 5.0.5. The equivariant Hopf map η1,1 ∈ π1,1(SC2) is the Betti realization
of the R-motivic Hopf map η [45, 23]. Up to a unit, it is the stabilization of the
projection map

ηu1,1 := π : S3,2
C2

≃ C2 \ {0} CP1 ∼= S2,1
C2
,

where the domain and the codomain are given the C2-structure using complex conju-
gation. On fixed-points, the map π is the projection map

π : R2 \ {0} RP1,

which is a degree 2 map. From this we learn that while Φe(η1,1) is nilpotent, Φ
C2(η1,1)

is the periodic v0-selfmap. Hence, η1,1 is a v(nil,0)-selfmap and the cofiber C(η1,1) is of
type (0, 1).

Remark 5.0.6. In the C2-equivariant stable homotopy groups, the usual Hopf map
(sometimes referred to as the ‘topological Hopf map’) is different from η1,1 of Exam-
ple 5.0.5. The ‘topological Hopf map’ η1,0 ∈ π1,0(SC2) should be thought of as the
stabilization of the unstable Hopf map

ηu1,0 : S
3,0
C2

S2,0
C2

where both domain and codomain are given the trivial C2-action.
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Definition 5.0.7. We say a spectrum X ∈ Ho(SpR
2,fin) is of type (n,m) if β(X) is

of type (n,m). We call an R-motivic self-map

f : X → X

a v(n,m)-selfmap, where m and n are in N ∪ {nil} (but not both nil), if β(f) is a
C2-equivariant v(n,m)-selfmap.

Remark 5.0.8. The maps ‘multiplication by 2’ (of Example 5.0.3), h (of Exam-
ple 5.0.4), and η1,1 (of Example 5.0.5) admit R-motivic lifts along β and provide us
with examples of a v(0,0)-selfmap, v(0,nil)-selfmap and v(nil,0)-selfmap of the R-motivic
sphere spectrum SR, respectively.

A theorem of Balmer and Sanders [5] asserts that C(e, n) ⊂ C(C2,m) if and only
if n ≥ m+ 1. In particular, C(e, n) is contained in C(C2, n− 1). Consequently, there
are no type (n,m) (C2-equivariant or R-motivic) spectra if n ≥ m + 2. Their result
also implies the following:

Proposition 5.0.9. Let X ∈ Ho(SpC2
2,fin) be of type (n + 1, n) for some n. Then X

cannot support a v(n+1,nil)-selfmap.

The proposition holds since the cofiber of such a self-map would be of type (n+
2, n), contradicting the results of Balmer-Sanders. In particular, neither the C2-
equivariant cofiber CC2(h) nor the R-motivic cofiber CR(h) supports a v(1,nil)-selfmap.
However, it is possible that CC2(h) as well as CR(h) can admit a v(1,0)-selfmap or a
v(nil,0)-selfmap. In fact, η1,1 ∈ π1,1(SR) and η1,1 ∈ π1,1(SC2) induce v(nil,0)-selfmaps of
CR(h) and CC2(h) respectively. In Section 5.3, we show that:

Theorem 5.0.10. The spectrum CR(h) does not admit a v(1,0)-selfmap.

However, it is possible that CC2(h) admits a v(1,0)-selfmap (see Remark 5.3.7 for
details). In contrast to the classical case, there is no guarantee that a finite C2-
equivariant or R-motivic spectrum will admit any periodic self-map, or at least noth-
ing concrete is known yet.

5.1 The spectrum Y

This section we study the R-motivic lifts of the classical spectrum

Y := Σ−3CP2 ∧ RP2,

and selfmaps between them.
From the chromatic point of view, the spectrum Y is extremely useful because it

supports a v1-self-map of lowest possible periodicity, that is, one. Famously, Mark
Mahowald used the spectrum Y and the low periodicity of its v1-self-map to prove the
height 1 telescope conjecture at the prime 2 [38, 39]. However, 1-periodic v1-self-maps
of Y are not unique. In fact, up to homotopy, there are eight different v1-self-maps
supported by Y , all of whose cofibers are realizations of A(1) (see [19]). Up to weak
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equivalence, there are four different finite spectra realizing A(1), and all of them can
be obtained as the cofiber of some v1-self-map of Y . These four different realizations
can be distinguished by their A-module structures. Therefore, it is natural to ask if
all of the v1-self-maps of Y can be lifted to R-motivic analogues, and whether all of
the R-motivic realizations of AR(1) can be obtained as the cofiber of such a lift.

The answer to the above question is complicated by the fact that there are multiple
R-motivic lifts of the spectrum Y . Even if we insist on those lifts which can potentially
realizeAR(1) as a cofiber of a periodic self-map, we are left with two choices; YR

(h,1) and

YR
(2,1). We state our first result towards answering these questions after establishing

some notations. Further, we shall see that some realizations ofAR(1) must be given as
the cofiber of a map between YR

(h,1) and YR
(2,1) rather than as the cofiber of a self-map

of either.

5.1.1 Construction of Y and its lifts

We consider the classical spectrum

Y := M2(1) ∧ C(η)

that admits, up to homotopy, 8 different v1-selfmaps of periodicity 1 [19, Section 2]
(see also [15]). We ask ourselves if the v1-selfmaps are equivariant upon providing Y
with interesting C2-equivariant structures. We will consider four C2-equivariant lifts
of the spectrum Y ,

(i) YC2
triv, where the action of C2 is trivial,

(ii) YC2

(2,1) := CC2(2) ∧ CC2(η1,1), with ΦC2(YC2

(2,1)) = M2(1) ∧M2(1),

(iii) YC2

(h,0) := CC2(h) ∧ CC2(η1,0), with ΦC2(YC2

(h,0)) = ΣC(η) ∨ C(η), and,

(iv) YC2

(h,1) := CC2(h) ∧ CC2(η1,1), with ΦC2(YC2

(h,1)) = ΣM2(1) ∨M2(1).

The C2-spectra YC2
triv, YC2

(2,1) and YC2

(h,1) are of type (1, 1), and YC2

(h,0) is of type (1, 0).
There are unique R-motivic lifts of the classes 2, h, η1,0, and η1,1, and therefore we
have unique R-motivic lifts of YC2

triv, YC2

(2,1), YC2

(h,0), and YC2

(h,1) which we will simply

denote by YR
triv, YR

(2,1), YR
(h,0), and YR

(h,1), respectively.

5.1.2 Selfmaps between the lifts of Y
Let BR

h (1) and BR
2 (1) denote the AR-modules H∗,∗

R (YR
(h,1)) and H∗,∗

R (YR
(2,1)), respectively.

As shown in Lemma 5.2.6, these differ in that the bottom cell of YR
(2,1) supports a Sq4,

whereas the bottom cell of YR
(h,1) does not. In Subsection 4.3.1, we used a method due

to Smith ([50, Appendix C]) to produce the AR-module AR
0 (1). Then we observed

that AR
0 (1) fits into a short exact sequence

Σ3,1BR
h (1) AR

0 (1) BR
h (1)
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that can be realized as a cofiber sequence of finite spectra. We extend the above
result to prove the following.

Theorem 5.1.1. Given v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V, define

ϵ =

{
h if β25 + β26 + γ36 = 0

2 if β25 + β26 + γ36 = 1,
and δ =

{
h if α03 + β03 = 0

2 if α03 + β03 = 1.

Then there exists a short exact sequence

Σ3,1BR
ϵ (1) AR

v (1) BR
δ (1) (5.1.2)

of AR-modules. Moreover, this exact sequence can be realized as the cohomology of a
cofiber sequence

YR
(δ,1) AR

1 [v] Σ3,1YR
(ϵ,1) (5.1.3)

in the category SpR
2,fin.

The map of spectra that underlies the connecting map

v : Σ2,1YR
(ϵ,1) YR

(δ,1) (5.1.4)

of (5.1.3) is a v1-self-map of Y of periodicity 1.
The algebraic part of Theorem 5.1.1 is a straightforward consequence of Theo-

rem 4.2.3 once we identify the AR-modules BR
h (1) and BR

2 (1). However, the topologi-
cal assertions in Theorem 5.1.1, as well as in Theorem 4.2.1, require a technical tool,
which we refer to as the R-motivic Toda realization theorem.

5.2 A v(1,nil)-selfmap on Y(h,1)

With the construction of AR
1 , one might hope that any one of YR

(i,j) fits into an exact
triangle

Σ2,1YR
(i,j) YR

(i,j) AR
1 Σ3,1YR

(i,j) . . .v Σv (5.2.1)

in Ho(SpR
2,fin). The motivic weights prohibit AR

1 from being the cofiber of a self-map
on Ytriv or Y(h,0), as the 2-cell in these complexes appears in weight 0, whereas in AR

1

the 2-cell is in weight 1. We will also see that the spectrum YR
(2,1) cannot be a part

of (5.2.1) because of its AR-module structure (see Lemma 5.2.6). If Y(i,j) = YR
(h,1)

in (5.2.1), then the map v will necessarily be a v(1,nil)-selfmap because YR
(h,1) is of

type (1, 1) and AR
1 is of type (2, 1). The main purpose of this section is to prove

Theorem 5.2.14 and Theorem 5.2.17 by showing that YR
(h,1) does fit into an exact

triangle very similar to (5.2.1)

Σ2,1YR
(i,j) YR

(i,j) CR(v) Σ3,1YR
(i,j) . . .v Σv

where CR(v) is of type (2, 1) and H∗,∗(CR(v)) ∼= H∗,∗(AR
1 ) as AR-modules.
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Remark 5.2.2. The fact that H∗,∗(CR(v)) is isomorphic to H∗,∗(AR
1 ) as AR-modules

does not imply that CR(v) and AR
1 are equivalent as R-motivic spectra. There are

a plethora of examples of Steenrod modules that are realized by spectra of different
homotopy types.

We begin by discussing the AR-module structures of H∗,∗(YR
(h,1)). Using Adem

relations, one can show that the element

Q1 := Sq1Sq2 + Sq2Sq1 ∈ AR(1)

squares to zero. Let Λ(Q1) denote the exterior subalgebra MR
2 [Q1]/(Q

2

1) of AR(1).
Let BR(1) denote the AR(1)-module

BR(1) := AR(1)⊗Λ(Q1)
MR

2 .

Both YR
(2,1) and YR

(h,1) are realizations of BR(1). In other words:

Proposition 5.2.3. There is an isomorphism of AR(1)-modules

H∗,∗(YR
(i,j))

∼= BR(1)

for (i, j) ∈ {(2, 1), (h, 1)}.

Proof. By direct inspection, H∗,∗(YR
(i,j)) is cyclic as an AR(1)-module for (i, j) ∈

{(2, 1), (h, 1)}. Thus we have an AR(1)-module map

fi : AR(1) → H∗,∗(YR
(i,j)). (5.2.4)

The result follows from the fact that Q1 acts trivially on H∗,∗(YR
(i,j)) and a dimension

counting argument.

Remark 5.2.5. Let {y0,0, y1,0} be the MR
2 -basis of H

∗,∗(CR(h)) or H∗,∗(CR(2)), so that
Sq1(y0,0) = y1,0, and let {x0,0, x2,1} a basis of CR(η1,1), so that Sq2(x0,0) = x2,1. If
we consider the MR

2 -basis {v0,0, v1,0, v2,1, v3,1, w3,1, w3,2, w4,2, w5,3, w6,3} of AR(1) from
Figure 4.7, then the maps fi of (5.2.4) are given as in Table 5.1.

Lemma 5.2.6. The AR-module structures on H∗,∗(YR
(2,1)) and H∗,∗(YR

(h,1)) are given
as in Figure 5.1.

Proof. The result is an easy consequence of a calculation using the Cartan formula,

Sq4(xy) = Sq4(x)y + τSq3(x)Sq1(y) + Sq2(x)Sq2(y) + τSq1(x)Sq3(y) + xSq4(y),

and the fact that Sq2(y0,0) = ρy1,0 in H∗,∗(CR(2)), whereas Sq2(y0,0) vanishes in
H∗,∗(CR(h)) (see Proposition 4.3.11).

Remark 5.2.2. Comparing Lemma 5.2.6 and Lemma 4.3.9, we see that the AR(1)-
module map f2, as in Remark 5.2.5, cannot be extended to a map of AR-modules.
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Table 5.1: The maps f2 and fh

x f2(x) fh(x)
v0,0 y0,0x0,0 y0,0x0,0

v1,0 y1,0x0,0 y1,0x0,0

v2,1 y0,0x2,0 + ρ · y1,0 x0,0 y0,0x2,0

v3,1 y1,0x2,0 y1,0x2,0

w3,1 y1,0x2,0 y1,0x2,0

w4,2 0 0
w5,3 0 0
w6,3 0 0

H∗,∗(YR
(h,1))

ρ

H∗,∗(YR
(2,1))

Figure 5.1: H∗,∗(YR
(h,1)) and H∗,∗(YR

(2,1))

Corollary 5.2.3. There is an exact sequence of AR-modules

0 H∗,∗(Σ3,1YR
(h,1)) H∗,∗(AR

1 ) H∗,∗(YR
(h,1)) 0.π∗ ι∗ (5.2.4)

Proof. From the description of the map fh in Remark 5.2.5, along with Lemma 4.3.9
and Lemma 5.2.6, it is easy to check that fh extends to an AR-module map and that

ker fh ∼= H∗,∗(YR
(h,1))

as AR-modules.

The exact sequence (5.2.4) corresponds to a nonzero element in the E2-page of
the R-motivic Adams spectral sequence (also see Remark 5.2.7 and Remark 5.2.9)

v ∈ Ext2,1,1AR (H∗,∗(YR
(h,1) ∧DYR

(h,1)),MR
2 ) ⇒ [YR

(h,1),YR
(h,1)]2,1, (5.2.5)

where DYR
(h,1) := F(YR

(h,1), SR) is the Spanier-Whitehead dual of YR
(h,1). If

Notation 5.2.6. Note that we follow [20, 13] in grading ExtAR as Exts,f,wAR , where s
is the stem, f is the Adams filtration, and w is the weight. We will also follow [26]
in referring to the difference s− w as the coweight.
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Remark 5.2.7. Since H∗,∗(YR
(h,1)) is MR

2 -free, an appropriate universal-coefficient

spectral sequence collapses and we get H∗,∗(DYR
(h,1))

∼= homMR
2
(H∗,∗(YR

(h,1)),MR
2 ). Fur-

ther, the Kunneth isomorphism of (4.3.8) gives us

H∗,∗(YR
(h,1) ∧DYR

(h,1))
∼= H∗,∗(YR

(h,1))⊗MR
2
H∗,∗(DYR

(h,1)),

and therefore,

Ext∗,∗,∗AR (MR
2 ,H

∗,∗(YR
(h,1) ∧DYR

(h,1)))
∼= Ext∗,∗,∗AR (H∗,∗(YR

(h,1)),H
∗,∗(YR

(h,1))).

Theorem 5.2.14 follows immediately if we show that the element v is a nonzero
permanent cycle. The following result implies that a dr-differential (for r ≥ 2) sup-
ported by v has no potential nonzero target.

Proposition 5.2.8. For f ≥ 3, Ext1,f,1AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1))) = 0.

Proof. In order to calculate Ext∗,∗,∗AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1))), we filter the spectrum

YR
(h,1) via the evident maps

Y0 Y1 Y2 Y3.

SR CR(h) CR(h) ∪SR C
R(η1,1) YR

(h,1)

Note that H∗,∗(Yj) are free MR
2 -modules. The above filtration results in cofiber se-

quences

Y0 Y1 Σ1,0SR,

Y1 Y2 Σ2,1SR, and

Y2 Y3 Σ3,1SR,

which induce short exact sequences of AR-modules as the connecting map

CR(Yj → Yj+1) −→ ΣYj

induces the zero map in H∗,∗(−). Thus, applying the functor Ext∗,∗,∗AR (H∗,∗(Y(h,1)),−)
to these short-exact sequences, we get long exact sequences, which can be spliced
together to obtain an Atiyah-Hirzebruch like spectral sequence

E∗,∗,∗,∗
1 = Ext∗,∗,∗AR (H∗,∗(Y(h,1)),MR

2 ){g0,0, g1,0, g2,1, g3,1}

Ext∗,∗,∗AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1))).

An element x · gi,j in the E2-page contributes to the degree |x| − (i, 0, j) of the
abutment. Thus, Proposition 5.2.8 is a straightforward consequence of Proposi-
tion 5.2.10.
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Remark 5.2.9. Because, H∗,∗(YR
(h,1)) is MR

2 -free and finite, we have

H∗,∗(YR
(h,1))

∼= homMR
2
(H∗,∗(Y(h,1)),MR

2 ),

and therefore, Exts,f,wAR (H∗,∗(YR
(h,1)),MR

2 )
∼= Exts,f,wAR

∗
(MR

2 ,H∗,∗(YR
(h,1))).

Proposition 5.2.10. For f ≥ 3 and (i, j) ∈ {(0, 0), (1, 0), (2, 1), (3, 1)}, we have that

Ext1+i,f,1+j
AR

∗
(MR

2 ,H∗,∗(YR
(h,1))) = 0.

Proof. Our desired vanishing concerns only the groups ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1))) in

coweights 0, 1 and 2. These groups can be easily calculated starting from the com-
putations of Ext∗,∗,∗AR

∗
(MR

2 ,MR
2 ) in [20] and [13] and using the short exact sequences in

ExtAR
∗
arising from the cofiber sequences

Σ1,1SR
η1,1−→ SR −→ CR(η1,1) and

CR(η1,1)
h−→ CR(η1,1) −→ CR(h) ∧ CR(η1,1) = YR

(h,1).

We display ExtAR
∗
(MR

2 ,H∗,∗(C
R(η1,1))) in coweights 0, 1 and 2 in the charts below.

Here horizontal, vertical, or diagonal lines denote multiplication by ρ, h0, and h1,
respectively.

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight zero

−2 −1 0 1 2 3 4

0

1

2

ρ

h0

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight one

−2 −1 0 1 2 3 4

0

1

2

τh1
h2

h0[2]

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight two

−2 −1 0 1 2 3 4 5 6

0

1

2

3

τ2h0

(τh1)
2 h2

2ρτh2
1[2]

h2[2]

We find that ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1))) is, in coweights zero, one, and two, also given

by the charts below.
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ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight zero

−2 −1 0 1 2 3 4

0

1

2

1
ρ

ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight one

−2 −1 0 1 2 3 4

0

1

2

τh1
h2

h0[2]

ρ[1]

ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight two

−2 −1 0 1 2 3 4 5 6

0

1

2

τ2h0

(τh1)
2 h2

2ρτh2
1[2]

h2[2]τh1[1]

h0h2[1]

ρh2[1]

The result follows from the above charts.

Remark 5.2.11. One can also resolve Proposition 5.2.10 directly using the ρ-Bockstein
spectral sequence

E1 := ExtAC
∗
(F2[τ ],H∗,∗(YC

(h,1)))⊗ F2[ρ]

ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1)))

(5.2.12)

and identifying a vanishing region for Exts,f,wAC
∗

(F2[τ ],H∗,∗(YC
(h,1))). Even a rough esti-

mate of the vanishing region using the E1-page of the C-motivic May spectral sequence
leads to Proposition 5.2.10. Such an approach would avoid explicit calculations of
ExtAR as in [20] and [13].

Proof of Theorem 5.2.14. By Proposition 5.2.8 every map

v : Σ2,1YR
(h,1) YR

(h,1)

detected by v of (5.2.5) is a nonzero permanent cycle. In order to finish the proof of
Theorem 5.2.14 we must show that v is necessarily a v(1,nil)-selfmap of periodicity 1.
It is easy to see that the underlying map

Φe(β(v)) : Σ2Y Y

is a v1-selfmap of periodicity 1 as

C(Φe(β(v))) ≃ Φe(β(CR(v))) ≃ A1[10]

is of type 1 (see Remark 4.3.5). On the other hand,

ΦC2(β(v)) : Σ2(ΣM2(1) ∨M2(1)) ΣM2(1) ∨M2(1)
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is necessarily a nilpotent map because of [34, Theorem 3(ii)] and the fact that a
v1-selfmap of M2(1) has periodicity at least 4 (see [19] for details) which lives in
[M2(1),M2(1)]8k for k ≥ 1.

Proof of Theorem 5.2.17. Since v is a v(1,nil)-selfmap and YR
(h,1) is of type (1, 1), it

follows that CR(v) is of type (2, 1). Moreover,

H∗,∗(CR(v)) ∼= H∗,∗(AR
1 )

as v is detected by v of (5.2.5) in the E2-page of the Adams spectral sequence. Thus,
H∗,∗(CR(v)) is a free AR(1)-module on single generator.

Remark 5.2.13. It is likely that realizing a different AR-module structure on AR(1)
as a spectrum may lead to a 1-periodic v1-selfmap on YR

(2,1) as well as on YC2

(2,1). We
explore such possibilities in upcoming work.

we prove:

Theorem 5.2.14. The R-motivic spectrum YR
(h,1) admits a v(1,nil)-selfmap

v : Σ2,1YR
(h,1) YR

(h,1)

of periodicity 1.

By applying the Betti realization functor we get:

Corollary 5.2.15. The C2-equivariant spectrum YC2

(h,1) admits a 1-periodic v(1,nil)-
selfmap

β(v) : Σ2,1YC2

(h,1) YC2

(h,1).

Corollary 5.2.16. The geometric fixed-point spectrum of the telescope

β(v)−1YC2

(h,1)

is contractible.

Classically, the cofiber of a v1-selfmap on Y is a realization of the finite subalgebra
A(1) of the Steenrod algebra A. We see a very similar phenomenon in the R-motivic
as well as in the C2-equivariant cases. The C2-equivariant Steenrod algebra AC2 as
well as the R-motivic Steenrod algebra AR admit subalgebras analogous to A(1) (gen-
erated by Sq1 and Sq2) [32, 51], which we denote by AC2(1) and AR(1), respectively.
We observe that:

Theorem 5.2.17. The spectrum CR(v) := Cof(v : Σ2,1YR
(h,1) → YR

(h,1)) is a type (2, 1)

complex whose bigraded cohomology is a free AR(1)-module on one generator.

Corollary 5.2.18. The bigraded cohomology of the C2-equivariant spectrum

CC2(β(v)) ≃ β(CR(v))

is a free AC2(1)-module on one generator.
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5.3 Nonexistence of v(1,0)-selfmap on CR(h) and YR
(h,0)

Our last main result is the following.

Theorem 5.3.1. The spectrum YR
(h,0) does not admit a v(1,0)-selfmap.

Let X be a finite R-motivic spectrum and let f : Σi,jX → X be a map such that

ΦC2(β(f)) : Σi−jΦC2(β(X)) ΦC2(β(X))

is a v0-selfmap. Then it must be the case that i = j, as v0-selfmaps preserve dimen-
sion. Note that both CR(h) and YR

(h,0) are of type (1, 0).

Proposition 5.3.2. The v1-selfmaps of M2(1) are not in the image of the underlying
homomorphism

Φe ◦ β : [Σ8k,8kCR(h),CR(h)]R −→ [Σ8kM2(1),M2(1)].

Proof. The minimal periodicity of a v1-selfmap of M2(1) is 4. Let v : Σ8kM2(1) →
M2(1) be a 4k-periodic v1-selfmap. It is well-known that the composite

Σ8kS Σ8kM2(1) M2(1) Σ1Sv (5.3.3)

is not null (and equals P k−1(8σ) where P is a periodic operator given by the Toda
bracket ⟨σ, 16,−⟩).

Suppose there exists f : Σ8k,8kCR(h) → CR(h) such that Φe ◦ β(f) = v. Then
(5.3.3) implies that the composition

Σ8k,8kSR Σ8k,8kCR(h) CR(h) Σ1,0Sv (5.3.4)

is nonzero as the functor Φe ◦ β is additive. The composite of the maps in (5.3.4)
is a nonzero element of π∗,∗(SR) in negative coweight. This contradicts the fact that
π∗,∗(SR) is trivial in negative coweights [20].

Proposition 5.3.5. The v1-selfmaps of Y are not in the image of the underlying
homomorphism

Φe ◦ β : [Σ2k,2kYR
(h,0),YR

(h,0)]
R −→ [Σ8kY ,Y ].

Proof. Let v : Σ2kY → Y denote a v1-selfmap of periodicity k. Notice that the
composite

S2k Σ2kY Y Y≥1
v (5.3.6)

where Y≥1 is the first coskeleton, must be nonzero. If not, then v factors through the
bottom cell resulting in a map S2k → Σ2kY → S which induces an isomorphism in
K(1)-homology, contradicting the fact that S is of type 0.
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If f : Σ2k,2kYR
(h,0) → YR

(h,0) were a map such that Φe ◦β(f) = v, then (5.3.6) would

force one among the hypothetical composites (A), (B) or (C) in the diagram

Σ2k,2kSR Σ2k,2kYR
(h,0) YR

(h,0) Σ3,0SR (A)

Fib(p3) Σ2,0SR (B)

Fib(p2) Σ1,0SR (C)

p3

p2

p1

to exist as a nonzero map, thereby contradicting the fact that π∗,∗(SR) is trivial in
negative coweights.

Remark 5.3.7. The above results do not preclude the existence of a v(1,0)-selfmap

on CC2(h) and YC2

(h,0). Forthcoming work [27] of the second author and Isaksen shows

that 8σ is in the image of Φe : π7,8(SC2) −→ π7(S) and suggests that CC2(h) supports
a v(1,0)-selfmap.

Copyright© Ang Li, 2022.
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Appendices

Appendix A: An R-motivic analogue of the spectrum Z

Recently in [14], the authors introduced a new type 2 spectrum Z which is notable for
admitting a v2-self-map of lowest possible periodicity, that is 1. The low periodicity
of the v2-self-map makes the spectrum Z suitable for the analysis of the telescope
conjecture which, if true, would imply that the natural map from the telescope of Z
to the K(2)-localization of Z is a weak equivalence. While the telescope conjecture
is true for finite spectra of type 1 [38, 39, 44], it is expected to be false for finite
spectra of type ≥ 2 (see [40]). In fact, in [8], the authors study the prime 2, height
2 telescope conjecture using the spectrum Z and lay down several conjectures (see
[8, § 9]), whose validity would lead to a disproof of the telescope conjecture. In this
work, we also construct an R-motivic analogue of Z which is likely to shed light on
some of these conjectures.

Theorem A.1. There exists ZR ∈ SpR
2,fin such that the underlying AR(2)-module

structure of its cohomology is isomorphic to

H∗,∗
R (ZR) ∼=AR(2) AR(2)⊗Λ(Q̃R

2 )
MR

2

where Q̃R
2 := [Sq4,QR

1 ].

The type 2 spectrum Z ∈ Sp2,fin, is defined by the property that its cohomology
as an A(2)-module is

B(2) := A(2)⊗Λ(Q2) F2,

where Q2 = [Sq4,Q1] is dual to the Milnor generator ξ3 of the dual Steenrod algebra.
They first show that an A-module structure on A(2) satisfying the criteria in [14,
Lemma 2.7] leads to an A-module structure on B(2). In [14], the authors show that
among the 1600 possible A-module structures on A(2) [52], there are some A-modules
that satisfy [14, Lemma 2.7]. Then they use the classical Toda realization theorem
to show that any A-module whose underlying A(2)-module structure is B(2) can be
realized as a 2-local finite spectrum, which they call Z.

We construct ZR ∈ SpR
2,fin by emulating the construction of the classical Z (as

in [14]) in the R-motivic context. Since there is no a priori AR-module structure on
AR(2), we produce one in the following subsection. In fact, we construct an R-motivic
spectrum whose cohomology is the desired AR-module.

A topological realization of AR(2)

LetAR(2) denote the sub-MR
2 -algebra of the R-motivic Steenrod algebraAR generated

by Sq1, Sq2, and Sq4. We will use a method of Smith (exposed in [50, Appendix C])
to construct an R-motivic spectrum AR

2 ∈ SpR
2,fin such that its cohomology as an

AR(2)-module is free on one generator.
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Let h, η1,1 and ν3,2 denote the first three R-motivic Hopf-elements (these are de-
noted ω, η, and ν in [20, Section 8]).

Lemma A.2. The R-motivic Toda-bracket ⟨h, η1,1, ν3,2⟩ contains 0.

Proof. In this argument, it will be convenient to refer to the “coweight”, by which
we mean the difference s− w, as in [26].

Since h and η1,1 have coweight 0 while ν3,2 has coweight 1, it follows that the
bracket ⟨h, η1,1, ν3,2⟩ is comprised of elements in stem 5 with coweight 2. The only
element in stem 5 with coweight 1 is ρ·ν2

3,2 [13]. Since this element is a ν3,2 multiple, it
lies in the indeterminacy, which means that the R-motivic Toda-bracket does contain
zero.

Lemma A.2 implies that we can construct a 4-cell complex K whose cohomology
as an AR-module has the structure described in Corollary A.3 and displayed in Figure
A1.

Corollary A.3. There exists K ∈ SpR
2,fin such that H∗,∗

R (K) is MR
2 -free on four gen-

erators x0, x1, x3 and x7, such that Sqi+1(xi) = x2i+1 for i ∈ {0, 1, 3}.

H∗,∗
R (K) =

x0

x1

x3

x7

Figure A1: The AR-structure of H∗,∗
R (K)

Let e ∈ Z(2)[Σ6] denote the idempotent corresponding to the Young tableaux

6
4
1

5
32

which is constructed as follows. Let ΣRow ⊂ Σ6 denote the subgroup comprised
of permutations that preserve each row. Likewise, let ΣCol denote the subgroup
comprised of column-preserving permutations. Let

R =
∑

r∈ΣRow

r and C =
∑

c∈ΣCol

(−1)sign(c)c (A.4)

and define

e =
1

µ
R · C,
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where µ is an odd integer defined in [50, Theorem C.1.3]. We let e denote the resulting
idempotent in F2[Σ6].

Proposition A.5. The idempotent e ∈ F2[Σ6] has the property that e(V⊗6) = 0 if
dimF2 V < 3 and

dimF2 e(V
⊗6) =

{
8 if dimF2 V = 3,
64 if dimF2 V = 4.

Proof. Let R and C denote the images of R and C in F2[Σ6], respectively. Then
e = R · C. It is straightforward that C vanishes on V⊗6 if dimV ≤ 2.

Now suppose that V has basis {a, b, c}. Then a basis for e(V⊗6) is given by

{
e

(

c
b
a
c
cb

)
, e

(

c
a
b
c
ca

)
, e

(

b
c
a
b
bc

)
, e

(

b
a
c
b
ba

)
, e

(

a
b
c
a
ab

)
, e

(

a
c
b
a
ac

)
,

e

(

c
b
a
a
cb

)
, e

(

b
c
a
a
bc

)}
.

Finally, suppose that dimV = 4 with basis {a, b, c, d}. For any subspace W ⊂ V
spanned by three of these basis elements, the space e(W⊗6) has dimension 8, as we
have just seen. There are 4 choices of W, which together yield a 32-dimensional
subspace of V⊗6. Now consider Young tableaux in which all four basis elements
appear and only one is repeated. In the case that d is repeated, we generate only two
independent elements:

e

(

d
b
a
d
dc

)
and e

(

d
b
c
d
da

)
.

Allowing any basis element to be the repeating one, this gives an 8-dimensional
subspace. Finally, we consider Young tableaux in which all four basis elements appear
and two are repeated. In the case that c and d are repeated, we have the four elements

e

(

c
b
a
d
dc

)
, e

(

d
c
a
b
dc

)
, e

(

d
b
b
c
cd

)
, and e

(

c
d
a
b
cd

)
.

As there are
(
4
2

)
= 6 such choices, this contributes another subspace of dimension

4 · 6 = 24.

We define

AR
2 := Σ−5,−1e(K∧6) = Σ−5,−1(hocolim {K∧6 e→ K∧6 e→ . . . }),

which is a split summand of Σ−5,−1K∧6 as e is an idempotent. We shift the grading
by (−5,−1) to make sure that the AR(2)-module generator of H∗,∗

R (AR
2 ) is in (0, 0)

(see Remark A.12).

Theorem A.6. H∗,∗
R (AR

2 )
∼= AR(2) as an AR(2)-module.
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Proof. By Corollary 2.2.5, H∗,∗
R (AR

2 ) is a free AR(2)-module if and only if H∗,∗
R (AR

2 ) is
free as an MR

2 -module and the Margolis homology M(H∗,∗
R (AR

2 ) ⊗MR
2
F2, x) vanishes

for x ∈ {QR
0 ,Q

R
1 ,P

1

1,Q
R
2 ,P

1

2}, where P
1

1 and P
1

2 are the elements in AR dual to ξ1 and
ξ2, respectively.

Let KR := H∗,∗
R (K). The AR-module H∗,∗

R (AR
2 ) is MR

2 -projective as it is a summand
of

H∗,∗
R (Σ−5K∧6) ∼= Σ−5K

⊗MR
2
6

R ,

which isMR
2 -free. However, MR

2 is a graded local ring, and over a local ring, being pro-

jective is equivalent to being free. Hence, H∗,∗
R (AR

2 ) is MR
2 -free. Since QR

0 ,Q
R
1 ,Q

R
2 ,P

1

1,

and P
1

2 are primitive modulo (ρ, τ), and for K := KR⊗MR
2
F2, i ∈ {0, 1, 2} and t ∈ {1, 2}

dimF2 M(K,QR
i ) = 2 = dimF2 M(K,P

1

t ),

it follows from Proposition A.5 that

M(H∗,∗
R (AR

2 )⊗MR
2
F2, x) ∼= M(e(K⊗6), x) ∼= e(M(K, x)⊗6) = 0

for x ∈ {QR
0 ,Q

R
1 ,P

1

1,Q
R
2 ,P

1

2}. Thus, H∗,∗
R (AR

2 ) is free over AR(2). Proposition A.5 also
implies that the MR

2 -rank of H∗,∗
R (AR

2 ) is 64, and therefore H∗,∗
R (AR

2 ) has rank 1 over
AR(2).

An R-motivic lift of B(2)
Let Q̃R

2 = [Sq4,QR
1 ]. Unlike the classical Steenrod algebra, QR

2 does not agree with
Q̃R

2 . Instead, as in [54, Example 13.7], these are related by the formula

QR
2 = [Sq4,QR

1 ] + ρSq5Sq1.

However, one can check that both QR
2 and Q̃R

2 square to zero, hence generate exterior
algebras. We define (left) AR(2)-modules

BR(2) := AR(2)⊗Λ(QR
2 )
MR

2

and
B̃R(2) := AR(2)⊗Λ(Q̃R

2 )
MR

2 . (A.7)

Let AR
2 denote H∗,∗

R (AR
2 ). It is easy to check that the left ideal generated by QR

2

(likewise Q̃R
2 ) in AR(2) is isomorphic to Σ7,3BR(2) (likewise Σ7,3B̃R(2)). It follows

that there is an exact sequence of AR(2)-modules

0 Σ7,3BR AR
2 BR 0,ι π (A.8)

where BR is either BR(2) or B̃R(2). The main purpose of this subsection is to show
that:
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Lemma A.9. There exists an exact sequence of AR-modules whose underlying AR(2)-
module exact sequence is isomorphic to (A.8) with BR ∼= B̃R(2).

Remark A.10. In the case of BR = BR(2), the image of Σ7,1BR(2) −→ AR
2 is a

sub-AR(2)-module, but not a sub-AR-module. See Remark A.14 for more details.

Lemma A.9 and Remark A.10 are direct consequences of the AR-module structure
of AR

2 which can be deduced from the injection

Σ5,1AR
2 K

⊗MR
2
6

R ,

where KR = H∗,∗
R (KR). We do not want to entirely leave this calculation to the reader

because, without a few tricks, this calculation is likely to require computer assistance
as e has 144 elements in its expression (in terms of the standard F2-generators of

F2[Σ3]) and K
⊗MR

2
6

R has 212 elements in its MR
2 -basis. We begin after setting the

following notation.

Notation A.11. Let xi denote the MR
2 -generators of KR in degree i as in Corol-

lary A.3. We use the numbered Young diagram (abbrev. NYD)

i6
i4
i1
i5
i3i2

to denote the MR
2 -basis element xi1 ⊗ · · · ⊗ xi6 ∈ K

⊗MR
2
6

R , where ij ∈ {0, 1, 3, 7}.

As in Proposition A.5, let R and C denote the images of R and C (see (A.4)) in
F2[Σ6], respectively. Since e = R · C, we record a few properties of R and C. Note
that R annihilates an NYD if it has repeating digits in a row. Likewise, C annihilates
an NYD if there are repeating digits in a column. For instance,

R(
3
3
0
7
01 ) = 0 = C(

3
3
0
7
01 ).

Remark A.12. The lowest degree NYD which is not annihilated by e is

3
1
0
1
00

which lives in degree (5, 1). Of course, there are multiple NYD’s in bidegree (5, 1)
not annihilated by e but their images are the same. Likewise, the NYD of the highest
degree not annihilated by e is

1
3
7
3
77

which lives in bidegree (28, 11).

73



The lowest degree element ι := e(
3
1
0
1
00 ), which serves as theAR-module generator

of Σ5,1AR
2 , can also be expressed as

ι = R(
0
1
3
0
01 )

because the other NYDs present in the expression C(
3
1
0
1
00 ) are annihilated by R.

Since the R-motivic Steenrod algebra is cocommutative we get

R(C(Sqi(−))) = R(Sqi(C(−))) = Sqi(R(C(−))).

This, along with the Cartan formula, allows us to calculate a · ι for any a ∈ AR, fairly
easily. For example,

Sq1 · ι = R(Sq1
0
1
3
0
01 )

= R(
0
1
3
0
11 +

0
1
3
1
01 +

1
1
3
0
01 )

= R(
1
1
3
0
01 ),

Sq2 · ι = R(Sq2
0
1
3
0
01 )

= R(
0
1
3
0
03 +

0
3
3
0
01 + τ(

0
1
3
1
11 +

1
1
3
0
11 +

1
1
3
1
01 ))

= R(
0
3
3
0
01 ),

Sq4 · ι = R(Sq4(
0
1
3
0
01 ))

= R(
0
1
7
0
01 +

0
3
3
0
03 + τ(

0
1
3
1
13 +

1
1
3
0
13 +

1
1
3
1
03 )

+τ(
0
3
3
1
11 +

1
3
3
0
11 +

1
3
3
1
01 ))

= R(
0
1
7
0
01 + τ

1
3
3
1
01 ).

In this way, we calculate

Q̃R
2 · ι = R(

7
1
3
0
01 +

0
7
3
1
01 +

0
1
7
0
13 )

QR
2 · ι = R(

7
1
3
0
01 +

0
7
3
1
01 +

0
1
7
0
13 + ρ

3
3
3
1
01 ),

where the details are left to the reader.

Remark A.13. We record (see Figure A2, in which black dots correspond to gener-
ators of B̃R(2) and orange dots to Σ7,3B̃R(2)), in the notation introduced in Subsec-
tion 4.1.1, that

DB̃R(2) = {(0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (6, 2), (6, 3), (7, 3), (8, 3), (8, 4),
(9, 4), (10, 4), (10, 5), (11, 5), (12, 5), (12, 6), (13, 6), (14, 6), (15, 7), (16, 7)}
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Figure A2: MR
2 -module generators of AR(2)

and DAR
2
= {(i+ 7ϵ, j + 3ϵ) : (i, j) ∈ DB̃R(2) and ϵ ∈ {0, 1}}.

Proof of Lemma A.9. Recall that the image of Σ7,3B̃R(2) in (A.8) is the (left) AR(2)-
submodule of AR

2 generated by Q̃R
2 . We must check that this is closed under the action

of AR. Since Sq1, Sq2, Sq4 are in AR(2), it remains to check that for all i ≥ 3 and
a ∈ AR(2)

Sq2
i · (aQ̃R

2 · ι) = bQ̃R
2 · ι

for some b ∈ AR(2). For degree reasons (see Remark A.13), we only need to consider
the case when i = 3 and a ∈ {1, Sq1, Sq2}. We check

Sq8 · (Q̃R
2 · ι) = (Sq4Sq4 + Sq4Sq2Sq2)Q̃R

2 · ι
Sq8 · (Sq1Q̃R

2 · ι) = (Sq7Sq2 + Sq2Sq7)Sq1Q̃R
2 · ι

Sq8 · (Sq2Q̃R
2 · ι) = (Sq4Sq4Sq2 + Sq4Sq2Sq4 + τSq5Sq4Sq1)Sq2Q̃R

2 · ι

and thus the result holds.

Remark A.14. We notice that

Sq8 · (QR
2 · ι) = R(

7
3
7
0
03 +

0
7
7
3
03 + τ

1
7
7
1
13 + ρ(

3
7
7
1
01 +

7
3
7
1
01 +

7
7
3
1
01 ))

cannot be equal to bQR
2 · ι for any b ∈ AR(2). This is an easy but tedious calculation.

For the convenience of the reader, we note that an F2-basis for the elements in degree
|Sq8| = (8, 4) of AR(2) is given by

{Sq6Sq2, τSq7Sq1, τSq5Sq2Sq1, ρSq7, ρSq6Sq1, ρSq5Sq2, ρSq4Sq2Sq1, ρ2Sq5Sq1}.
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The construction of ZR

Recall the AR-module B̃R
2 , as given in (A.7), and let

BC
2 := B̃R

2 /(ρ).

Proof of Theorem A.1. Since BC
2 is cyclic as anAC-module, it admits a May filtration,

whose associated graded is isomorphic to

gr(BC
2 )

∼= Λ(ξ1,0, ξ1,1, ξ1,2, ξ2,0, ξ2,1)

and whose E2-page of the corresponding May spectral sequence is isomorphic to

MayE∗,∗,∗,∗
1,BC

2

∼= MC
2 [hi,j : i ≥ 1, j ≥ 0]

(h1,0, h1,1, h1,2, h2,0, h2,1)
. (A.15)

From this and Remark A.13, one easily checks that the condition for Theorem 4.1.11
is satisfied. Thus, there exists ZR ∈ SpR

2,fin such that H∗,∗
R (ZR) ∼= B̃R

2 .

Remark A.16. Since, as an A(2)-module

H∗(Φe(β(ZR))) ∼= Φe
∗(β∗(H

∗,∗
R (ZR))) ∼= B(2),

the underlying spectrum of β(ZR) is indeed one of the spectra Z considered in [14],
and therefore of type 2.

Appendix B: The R-motivic Adem relations

Voevodsky established the motivic version of the Adem relations [54, Section 10].
However, his formulas contain some typos, so for the convenience of the reader, we
here present the Adem relations, in the R-motivic case.

Proposition B.1. In the R-motivic Steenrod algebra AR, the product SqaSqb is equal
to

1. (a and b both even)

a/2∑

j=0

τ j mod2

(
b− 1− j

a− 2j

)
Sqa+b−jSqj

2. (a odd and b even)

(a−1)/2∑

j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj + ρ

(
b− j

a− 2j

)
Sqa+b−j−1Sqj.

3. (a even and b odd)

a/2∑

j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj + ρ

(
b− 1− j

a+ 1− 2j

)
Sqa+b−j−1Sqj.
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4. (a and b both odd)
(a−1)/2∑

j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj

Remark B.2. Given that Sqa = Sq1Sqa−1 if a is odd and also that Sq1(τ) = ρ, cases
(2) and (4) follow from (1) and (3), respectively. Note also that (1) is the classical
formula, but with τ thrown in whenever needed to balance the weights. In formula
(2), the left term appears only when j is even, while the second appears only when j
is odd. In formula (3), the second term appears only when j is odd.

Example B.3. Some examples of the R-motivic Adem relation in low degrees are

Sq2Sq2 = τSq3Sq1, Sq3Sq2 = ρSq3Sq1,

and
Sq2Sq3 = Sq5 + Sq4Sq1 + ρSq3Sq1.

Copyright© Ang Li, 2022.
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